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Abstract

In genome-wide association studies (GWAS), ordinal categorical phenotypes are widely used to measure
human behaviors, satisfaction, and preferences. However, due to the lack of analysis tools, methods
designed for binary and quantitative traits have often been used inappropriately to analyze categorical
phenotypes, which produces inflated type | error rates or is less powerful. To accurately model the
dependence of an ordinal categorical phenotype on covariates, we propose an efficient mixed model
association test, Proportional Odds Logistic Mixed Model (POLMM). POLMM is demonstrated to be
computationally efficient to analyze large datasets with hundreds of thousands of genetic related samples,
can control type | error rates at a stringent significance level regardless of the phenotypic distribution, and
is more powerful than other alternative methods. We applied POLMM to 258 ordina categorical
phenotypes on array-genotypes and imputed samples from 408,961 individuals in UK Biobank. In total,
we identified 5,885 genome-wide significant variants, of which 424 variants (7.2%) are rare variants with

MAF < 0.01.
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Main

Large-scale biobanks with hundreds of thousands of genotyped and deeply phenotyped subjects are
valuable resources to identify genetic components of complex phenotypes.*? In biobanks, ordinal
categorical data is a common type of phenotype, which is often collected from surveys, questionnaires,
and testing to measure human behaviors, satisfaction, and preferences®* For example, a web
guestionnaire was used for 182,219 UK Biobank participants to collect 150 food and other hedth
behavior related preferences, al of which are ordinal categorical phenotypes based on a 9-point hedonic
scale of liking from 1 (extremely dislike) to 9 (extremely like).” For ordinal categorical phenotypes, there
is no underlying measurable scale and therefore it would be inappropriate to treat that phenotype as a
quantitative trait and apply the linear regression methods.®® Another approach is to use an arbitrary cutoff
to dichotomize the ordinal categorical phenotype into two categories, followed by using a logistic

regression method.® This approach suffers from information loss and thus is less powerful.

For binary and quantitative phenotype data analysis, mixed model approaches have been used to test
genetic associations conditioning on the sample relatedness.®® Some state-of-art optimization strategies
have been applied to reduce memory usage and computational cost, which makes these mixed model
approaches practical to incorporate a dense genetic relationship matrix (GRM) in GWAS.2'® Another
resource-efficient approach, fastGWA, is to use sparse GRM to adjust for the sample relatedness.** For
binary phenotype analysis, unbalanced case-control ratio can result in inflated type | error rates and
saddlepoint approximation (SPA) has been demonstrated to be more accurate for single-variant analysis™®,
region-based analysis®*®, and gene-environment interaction analysis™. Similarly, the sample size
distribution in ordinal categorical data could also be highly unbalanced, that is, the sample size in one
category could be dozens of times more than the that in other categories. For example, of the UK Biobank
participants, more than 90% extremely dislike cigarette smoking and only 1% extremely like it. In ordina
categorical dataanalysis, the effect of the unbalanced sample size distribution on genetic association tests

should aso be carefully examined.
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In this paper, we propose a scalable and accurate mixed model approach for ordinal categorical data
analysis in large-scde GWAS. Our approach, Proportional Odds Logistic Mixed Model (POLMM),
incorporates a random effect into the proportional odds logistic model to control for sample relatedness.
POLMM uses penalized quasi-likelihood (PQL) and average information restricted maximum likelihood
(AI-REML) agorithm® to efficiently fit the mixed model, and then uses SPA to calibrate p values. We
give two closely related versions, DensePOLMM and FastPOLMM. DensePOLMM incorporates a dense
GRM using similar state-of-art strategies as in BOLT-LMM™ and SAIGE®, and FastPOLMM is a

resource-efficient approach that uses sparse GRM in asimilar manner asin fastGWA™.

We demonstrated that POLMM approaches can efficiently analyze large datasets with hundreds of
thousands of genetic related samples, can control type | error rates, and is statistically powerful through
extensive simulations as well as real data analysis. Meanwhile, BOLT-LMM, fastGWA, and SAIGE
approaches cannot control type | error rates and are less powerful, especialy when the phenotypic
distribution is unbalanced. DensePOLMM requires comparable computation time and memory usage as
SAIGE, and FastPOLMM is more resource-efficient to fit a null mixed model. For example, FastPOLMM
requires less than 0.1 hour and 4.2 GB memory to fit a null mixed model with around 400,000 subjects. In
most scenarios, DesnePOLMM and FastPOLMM performed similarly. Only when the number of
categories is large (e.g. 10) and polygenic effect size is large (e.g. liability heritability = 75.24%),
DensePOLMM is slightly more powerful than FastPOLMM by no more than 4.67% and 7.51% when
testing common (minor alele frequency, MAF = 0.3) and low-frequency variants (MAF = 0.01),
respectively. We applied the FastPOLMM approach to analyze 258 ordinal categorical phenotypesin the
UK Biobank data, which includes 408,961 samples from white British participants with European
ancestry, and successfully identified 5,885 genome-wide significant variants with clumping, of which 424
variants (7.2%) are rare variants with MAF < 0.01. All analysis results have been publicly available

through a web-based visual server?, which provides intuitive visuaizations at three levels of granularity:
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genome-wide summaries at the trait level, and regional (LocusZoom)® and phenome-wide summaries at

the variant levdl.

Results
Overview of the methods. We let n denote the sample size and let ] denote the number of category
levels. For subjecti < n, welety; = 1,2,...,] denote its ordinal categorical phenotype. We consider the

following proportional odds logistic mixed model (POLMM)

logit(vi}-) =€ - =6]-—XiT,8—Giy—bi, 1<j<] (D
where v;; = Pr(y; < j|X;, G;, b;) isthe cumulative probability of the phenotype y; < j conditional on a p-
dimensional vector of covariates X; and a hard called or imputed genotype G;. The cutpointse: ; < - <
€; = oo were used to categorize the data, and coefficients § and y are fixed effect sizes of the covariates
and genotype. To adjust for sample relatedness, we incorporate an n-dimensional random effect vector
b = (by, -+, b,)T following a multivariate normal distribution N (0, 7V) where 7 is a variance component
parameter and V isann X n dimensiona GRM. The model (1) is a natural extension of a logistic mixed

model as in SAIGE and GMMAT.*®® |f | = 2, the phenotype is binary and the model (1) is a logistic

mixed mode!.

We present two closely related versions of POLMM methods to test null model y = 0: DensePOLMM
and FastPOLMM . The methods contain two main steps: (1) fitting the null model to estimate the variance
component £ and other parameters (3, ¢); (2) testing for the association between the ordinal categorical
phenotype and genetic variants. In step 1, we propose an efficient algorithm (Supplementary Note) to
iteratively estimate parameters using PQL and Al-REML algorithm®. DensePOLMM and FastPOLMM
use dense and sparse GRM to adjust for sample relatedness, respectively. DensePOLMM stores raw
genotypes in a binary vector, calculates elements of the dense GRM when needed, and uses PCG
approach to solve linear systems.? Using these strategies, DensePOLMM is of the same computation

complexity as SAIGE®, and requires memory usage m,n/4, where m, is the number of markers used to
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construct GRM. On the other hand, FastPOLMM uses a sparse GRM in which al of the small off-
diagonal elements (for example, those < 0.05) are set to 0. GCTA software'® provides an efficient tool to
calculate GRM for alarge-scale dataset. The sparse GRM only needs to be calculated once for one cohort

study or biobank.

After fitting the null mixed model, we first use a subset of randomly selected genetic variants to
calculate the ratio of the variances of the score statistics with and without incorporating the variance
component. The ratio has been shown approximately constant for all genetic variants with minor allele
counts (MAC) = 202 Then, we use the variance ratio to calibrate the score statistic variance
(Supplementary Note). To control type | error rates under an unbalanced phenotypic distribution, we use a
hybrid strategy of normal approximation and SPA to calculate p values.”®**'" If the absolute value of the
standardized score statistic is close to the mean of 0 (e.g. < 2), POLMM methods use a regular normal
approximation to calculate p value. Otherwise, POLMM methods use SPA to calculate p values. The
hybrid strategy can give more accurate p values while remaining high computationally efficient. For each
variant, the normal approximation takes O(n) computations and SPA additionally takes O(n(J — 1))
computations. Using the fact that many elements of the genotype vector G = (G4, -, G,,))T are zeros (i.e.,
homozygous major genotypes), we use a partial normal approximation’ to speed up the computation of

SPA to 0(n,(J — 1)) where n, isthe number of non-zero elements in the genotype vector G.

Due to these features, POLMM methods are the only available mixed model methods to associate
ordinal categorical phenotypes with genetic variants while remaining computationally practical for large

datasets and accounting for sample relatedness and unbalanced phenotypic distribution.

Runtime and resource requirements. To evaluate the computational efficiency and memory usage of
DensePOLMM and FastPOLMM methods, we randomly sampled subjects from 397,798 white British

UK Biobank participants to analyze an ordinal categorical phenotype, able to confide, which consists of 6
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levels (Figure S1). We used 340,447 markers to construct GRM and incorporated 6 covariates of sex,

birth year, and top 4 principal components to fit the null mixed model.

We compared 5 methods including fastGWA, BOLT-LMM, SAIGE, DensePOLMM, and
FastPOLMM. Besides the raw phenotype with 6 levels, we combined some levels to make a new
phenotype with 3 levels to comprehensively evaluate POLMM methods. For fassGWA and BOLT-LMM,
we treated the ordinal categorical phenotype as a quantitative trait from 1 to 6. For SAIGE, we
dichotomized the phenotype to a binary phenotype. For fastGWA and FastPOLMM, we set the cutoff of

the sparse GRM at 0.05. Details about the computing environment for evaluation can be seen in Methods.

The computation time and memory usage of all 5 methods are presented in Figure S2 and Table S1. In
step 1, to fit a null mixed model, fastGWA and FastPOLMM were much faster and required much less
memory than the three methods using dense GRM. BOLT-LMM, SAIGE, and DensePOLMM required
comparable computation time and memory usage since they used the same optimized strategies to
incorporate the dense GRM. SAIGE and DensePOLMM were slower than BOLT-LMM since they use
Hutchinson’ s randomized trace estimator when estimating the variance component, which requires alarge
amount of computation time. DensePOLMM required more time than SAIGE when sample size was
greater than 100,000. This is mainly because DensePOLMM used a block diagonal matrix as the
preconditioner matrix for PCG, which took more iterations to converge than that in SAIGE given the
same tolerance criterion. Interestingly, DensePOLMM was faster than SAIGE when the sample size was
smaller than 40,000. This might be because we optimized C++ codes to read in genotypes for GRM
construction. For POLMM methods, more computational time and slightly more memory usage were
required when analyzing a phenotype with more levels. For example, to fit a null mixed model with
397,798 subjects, if the number of levelsis 3, DensePOLMM and FastPOLMM took 49.9 and 0.03 hours,
respectively; and if the number of levels is 6, DensePOLMM and FastPOLMM took 64.2 and 0.09 hours,

respectively.
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In step 2, we first recorded the computation time to analyze 340,447 markers and then projected them
to a genome-wide analysis with 30 million markers. The genotype data was stored in BGEN format since
all methods in comparison support the BGEN format and UK Biobank also use it for release of imputed
data® BOLT-LMM and fastGWA were faster than POLMM and SAIGE methods, which is expected as
logistic regression is more complicated than linear regression. POLMM is dlightly faster than SAIGE. As
the number of levelsincreased from 3 to 6, the computation time of POLMM methods dlightly increased.
Suppose that we use 24 CPU cores for parallel computation, POLMM methods require around 14.2 hours

for a genome-wide analysis including around 30 million markers.

False positive rate and statistical power. We carried out extensive simulationsto investigate type | error
rates and powers of POLMM approaches. We simulated 10,000 subjects in 1,000 families based on the
pedigree shown in Figure S3, in which each family included 10 subjects. To construct GRM for mixed
model methods, we simulated 100,000 single nucleotide polymorphisms (SNPs) with MAFs ranging from
0.05 to 0.5. The estimated kinship coefficients are shown in Figure $S4. We simulated phenotypes with
multiple sample size distributions (Figure S5). In addition to DensePOLMM and FastPOLMM that use a
hybrid of normal distribution approximation and SPA, we also evaluated DensePOLMM-NoSPA and
FastPOLMM-NOSPA, both of which use normal distribution approximation to test all variants. We also
evaluated some alternative methods including SAIGE, fastGWA, and BOLT-LMM. For SAIGE, we
dichotomized the categorical phenotypes (Figure S5). For fastGWA and BOLT-LMM, we treated the

categorical phenotype as a quantitative trait.

We first simulated categorical phenotypes under the null model to evaluate type | error rates. In each
scenario, a total of 10° tests were performed (Methods). The simulation results showed that
DensePOLMM and FastPOLMM methods can control type | error rates at a significance level of 5 x
1078 (Figures 1 and S6). Meanwhile, type | error rates of other methods were inflated when testing low-
frequency and rare variants (MAF < 0.01) and the phenotypic distribution was unbalanced. For example,

when variance component wast = 1 and the sample size proportion in 4 levels was 100:1:1:1, to test
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low-frequency variants with a MAF of 0.01, the type | error rates of POLMM methods and the other
methods were less than 3.8 x 10~8 and greater than 3.89 x 107, respectively. The result suggested that
POLMM approaches can accurately account for ordinal categorical responses and using SPA is more
accurate than using normal distribution. If we dichotomize the categorical phenotype, the POLMM is a
logistic mixed model and it is expected that SAIGE can control type | error rates.® Hence, we did not

evaluate the empirical type | error rates of SAIGE.

Next, we compared the empirical powers of POLMM methods, SAIGE, fastGWA, and BOLT-LMM
at asignificancelevel @ = 5 x 1078 (Figures 2 and S7). Since fastGWA and BOLT-LMM cannot control
type | error rates when the phenotypic distribution is unbalanced, we used empirical significance levelsto
evaluate powers. In al simulation scenarios, POLMM methods were the most powerful. When the
phenotypic distribution is balanced, fastGWA and BOLT-LMM were similarly powerful as POLMM
methods. However, when the phenotypic distribution is unbalanced, fastGWA and BOLT-LMM methods
were less powerful than POLMM methods, especially when testing low-frequency variants with MAF =
0.01. Since the dichotomizing process would result in information loss, SAIGE was also less powerful
than POLMM methods. Figure S7 showed that different dichotomizing processes could result in

significantly different powersfor SAIGE.

Comparison between DensePOLMM and FastPOLMM methods. For quantitative trait analysis, Jiang
et al. have demonstrated that using sparse GRM can reduce computational time and memory usage, while
still being reliable to control type | error rates.** However, using spare GRM can be less powerful than
using dense GRM since sparse GRM cannot incorporate polygenic effects. In this section, we designed

more simulation scenarios to compare DensePOLMM and FastPOLMM (Methods).

Figures S8-S11 present the variance component estimation 7 and the empirical powers of POLMM
methods. The estimation 7 of DensePOLMM and FastPOLMM were dlightly different, both of which
deviated from true t, especially when the true t was large. The biased estimation has been widely
discussed in other studies using pseudo quasi likelihood (PQL).? Interestingly, the estimation # increased

8
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and tended to the true t as the number of levelsincreased from 3 to 10. This might be because more levels
give more information, which results in more accurate estimation of the variance component z. In most
scenarios, the empirical powers of DensePOLMM and FastPOLMM were similar with the largest
difference less than 2.5%. Only when SNPs used to construct GRM were significantly associated with the
phenotype (e.g. liability heritability = 75.24%, see Methods) and the number of levelsis large (e.g. 10),
DensePOLMM is more powerful than FastPOLMM by no more than 4.67% and 7.51%, when testing
SNPswith MAF = 0.3 and 0.01, respectively. This may be because that only when the number of levelsis
large, accounting for the polygenic effects through dense GRM can substantially improve the power. Note
that in this simulation, SNPs for dense GRM were simulated independently from the SNPs to test, to

prevent proximal contamination.

Compared to DensePOLMM, FastPOLMM can give a substantial improvement in terms of
computation time and memory usage, while only suffering a limited loss of powers in restricted
simulation scenarios. Hence, we recommended using FastPOLMM, especially when analyzing a large-

scale dataset with sample size greater than 200,000.

Application to UK Biobank Data. We used FastPOLMM to conduct genome-wide analyses of 30
million SNPs with minor allele counts > 20 and imputation R? greater than 0.3 in the UK Biobank data of
408,961 samples from white British participants. We incorporated birth year, sex (if applicable), and top 4
principal components as covariates, and used 340,447 high-quality SNPs to calculate sparse GRM in
which al of off-diagonal elements less than 0.05 were set to 0.3'° We analyzed 258 ordinal categorical
phenotypes, most of which measured dietary, lifestyle and environment, and psychosocia factors (Table
S2). All analysis results have been publicly available through avisual server (http://polmm.leelabsg.org/).
The web interface provides intuitive visualizations at three levels of granularity: genome-wide summaries

at the trait level, and regional (LocusZoom)™ and phenome-wide summaries at the variant level .2

To compare BOLT-LMM and FastPOLMM in ordinal categorical data analysis, we selected four food
preferences with different sample size distribution as phenotypes (Figure S12). The preferences were

9
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encoded from 1 (extremely dislike) to 9 (extremely like). For BOLT-LMM, we treated the phenotypes as
guantitative traits and incorporated the same set of covariates and GRM asin FastPOLMM. Figures 3 and
S13 present the Manhattan and QQ plots of the analysis results. When the phenotypic distribution is
balanced, BOLT-LMM performed similarly as FastPOLMM. However, in other cases, BOLT-LMM
could result in an inflation of type | error rates, especially when testing low-frequency and rare variants
with MAF < 0.01. FastPOLMM-NOoSPA was better than BOLT-LMM but still cannot control type | error
rates at a genome-wide significance level, which suggests that the proportional odds logistic model and
SPA both contribute to more accurate association tests. All the real data analysis results were consistent to
the simulation results, which indicate that using linear modelsis not a good solution in ordinal categorical

data analysis, especially when testing low-frequency variants.

We used PLINK™ to conduct clumping analysis (p value threshold of 5 x 108, window size of 5 Mb,
and linkage disequilibrium threshold 2 of 0.1). For these 258 phenotypes, we identified 5,885 clumped
genome-wide significant variants, of which 424 variants (7.2%) are low-frequency variants with MAF <
0.01. We used ANNOVAR? to functionally annotate these genome-wide significant variants. Total 275
clumped variants are in exon region, of which 207 (75.3%, binomial test p value: 1.04E-12) variants are
nonsynonymous variants. Based on the Polyphen2 HDIV score®, 63 nonsynonymous variants (30.4%,
binomial test p value: 0.506) are probably damaging with the score > 0.957 and 33 nonsynonymous
variants (15.9%, binomial test p value: 1) are possibly damaging with the score > 0.453. Table S3 gives a
summary of the annotation of more than 24 million SNPs, which were used to calculate the proportion of

nonsynonymous variants, probably damaging variants, and possibly damaging variants.

We highlight some nonsynonymous low-frequency SNPs with significant associations. For phenotype
of “morning/evening person” (UK Biobank Field ID: 1180), we identified an association of
nonsynonymous SNP rs139315125 (MAF: 0.47%, p vaue: 5.3E-21, Gene: PER3, Polyphen2 HDIV score:
0.998, see Figure S14 for more details). Subjects who tend to sleep and wake up early have a higher

frequency of minor allele G. Gene PERS is a core component of the circadian clock and the association

10
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between this SNP and sleep-wake patterns has been reported in previous studies.” For phenotype of “Use
of sun/uv protection” (UK Biobank Field ID: 2267), we identified a nonsynonymous SNP rs121918166
(MAF: 0.9%, p value: 5.2E-31, Gene: OCA2, Polyphen2 HDIV score: 1, see Figure S15 for more details).
Subjects who use sun/uv proection more frequently have a higher frequency of minor alele T. Gene
OCA2 is invalved in mammalian pigmentation and this SNP has been previously associated with human
eye color and melanoma.?*? Other interesting association include phenotype of “Comparative height size
at age 10" (UK Biobank Field ID: 1697) and rs78727187 (MAF: 0.6%, p value: 5.1E-19, Gene: FBN2,
Polyphen2 HDIV score: 0.818), rs117116488 (MAF: 0.99%, p vaue: 1.4E-18, Gene: ACAN, Polyphen2
HDIV score: 0.993), and rs112892337 (MAF: 0.4%, p value: 3.0E-15, Gene: ZFAT, Polyphen2 HDIV
score: 1); phenotype of “Relative age of first facial hair” (UK Biobank Field I1D: 2375) and rs138800983

(MAF: 0.3%, p value: 8.4E-10, Gene: KRT75, Polyphen2 HDIV score: 0.969).
Discussion

In this study, we devel oped a scalable and accurate genetic association analysistool, POLMM, for ordinal
categorical data analysis in a large-scale dataset with hundreds of thousands of samples. The tool is an
extension of proportional odds logistic model, which can accurately account for the dependence of an
ordinal categorical phenotype on covariates. Two closely related methods, DensePOLMM and
FastPOLMM, were proposed to use dense and sparse GRM to adjust for the sample relatedness,
respectively. DensePOLMM uses similar optimized strategies as in SAIGE and BOLT-LMM, which
makes it scalable to incorporate a dense GRM into the mixed model. However, as the sample size
increases, DensePOLMM is gtill computationally expensive. On the other hand, FastPOLMM is more
computationally efficient. Extensive simulations demonstrate that FastPOLMM is as reliable as
DensePOLMM and only suffers a small amount of power loss in limited simulation scenarios. Hence, if
the sample size is greater than 500,000 and hundreds of GWAS are required for a phenome-wide analysis,

we recommend using FastPOLMM.
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We compared our method POLMM with two commonly used strategies: 1) dichotomize the
categorical phenotype and then use SAIGE?, and 2) treat the categorical phenotype as a quantitative trait
and then use BOLT-LMM™ and fastGWA™. The dichotomizing process combined multiple levels into
one group, which could lose useful phenotypic information and statistical power. On the other hand,
treating the categorical phenotypes as a quantitative trait violates the nature of the ordina categorical
phenotype, which could result in inflated type | error rates and power loss. Through simulation studies
and real dataanalysis, unless the phenotypic distribution is extremely unbalanced, the linear mixed model
approaches are still reliable when testing common variants, which suggests that fastGWA analyses that
limited to SNPs with MAF > 0.01 (http://fastgwa.info/ukbimp/phenotypes) should still be valid for many
of the phenotypes. However, considering the diversity of the phenotypic distribution, it is difficult to
select aMAF cutoff to remain the association testing accurate in practical. In addition, we identified many
phenotypes associated variants with MAF < 0.01 in the UK-Biobank data analysis, that were missed in

the fastGWA anal yses.

We applied the FastPOLMM to analyze 258 ordina categorical phenotypes on UK Biobank, of which
150 phenotypes are food and other preferences (UK Biobank Category 1039). The preference data
(version 1.1) was released in January 2020. To the best of our knowledge, thisis the first time that GWAS
were applied to anayze the preference data. All analyses results have been made publicly available
through a visua server (http://polmm.leelabsg.org/). The web interface provides intuitive visualizations

and is useful resource for post-GWAS analyses.

There are several limitationsin POLMM, most of which are similar as SAIGE and other mixed model
approaches. First, DensePOLMM s still computationally expensive when fitting a null mixed model with
greater than 500,000 samples. Second, POLMM methods estimate odds ratios for genetic markers using
the parameter estimates from the null model and might not be accurate. Third, POLMM assumes an
infinitesimal architecture, that is, the effect sizes of genetic markers are normally distributed. If the

genetic architecture is non-infinitessmal, POLMM methods may sacrifice power. Finally, the variance
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component estimate 7 is biased and should not be used to estimate heritability. Interestingly, we observe a
more accurate estimate 7 as the number of categories increases. Although based on the proportional odds
assumption, POLMM approaches can still control type | error rates at a stringent significance level of
5 x 1078 when categorical phenotypes follow other models including adjacent category logistic model

and stereotype model (Figure S16).

In the future, we plan to extend the current single-variant test to gene- or region-based multiple
variants tests to better identify the rare variants. Recently, a novel machine learning method called
REGENIE was proposed for quantitative and binary traits analysis. Instead of using mixed effect model,
REGENIE® uses ridge regression model to account for polygenic effects. We plan to evaluate the
strategies in REGENIE in ordina categorical data analysis to extend POLMM. POLMM approaches are
motivated to analyze large-scale biobank data collected following a cohort study design. Suppose that
data is collected from a matched case-control study design, the stratified sampling for different levels
could inflate the parameter estimation and genetic association testing.”” We plan to extend the POLMM

approaches to deal with the effect of the sampling.

Ordinal categorical phenotypes are widely observed in survey, guestionnaires, and testing to measure
human behaviors, satisfaction, and preferences. However, due to the lack of analysis tools, methods
designed for binary and quantitative traits have been used to analyze the categorical data, which is
inappropriate and can result in suspicious results. Our method POLMM provides an accurate and scalable
solution with the following features: can accurately model the ordinal categorical data using a
proportional odds logistic model which can; can adjust for sample relatedness by incorporating random
effects; can be scalable to analyze a large-scale dataset with hundreds of thousands of subjects; can test
low-frequency variants under unbaanced phenotypic distribution by using SPA to approximate the null
distribution of the test statistics. Due to al these features, POLMM is a unified and the only available

approach for ordinal categorical data analysisin biobanks and large cohort studies.
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URLs.

POLMM (version 0.2.2), https://github.com/WenjianBI/POLMM.

BOLT-LMM (version 2.3.4), https://alkesgroup.broadinstitute.org/BOLT-LMM.

SAIGE (version 0.36.3), https.//github.com/weizhouUMICH/SAIGE.

fastGWA (GCTA, version 1.93.1beta), https.//cnsgenomics.com/software/getal/#astGWA.

UK Biobank PheWeb and analysis results, http://polmm.leelabsg.org/.

ANNOVAR (16 Apr 2018), https://doc-openbio.readthedocs.io/projects/annovar/en/| atest/
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Methods

Data Simulation. In simulation studies, genotypes were simulated based on the pedigree shown in Figure
S1, in which each family includes 10 subjects. To estimate GRM for mixed maodels fitting, we simulated
100,000 independent SNPs with MAFs ranging from 0.05 to 0.5. For subject i, two covariates X;; and X,
were simulated following the standard normal distribution and a Bernoulli (0.5) distribution, respectively.
Given the variance component T, random effects b = (b, b,,-+, b,) were simulated following a
multivariate normal distribution N(0,7V) where V is the GRM from the family structure. We followed
model (1) to simulate ordinal categorical phenotypes using linear predicator ; = 0.5 - X;; + 0.5 - X;5 +
y - G; + b;, i <n,inwhich G; is the genotype value of one SNP. We considered two common types of
phenotypic distribution: bell-shaped distribution with three categories and L-shaped distribution with four
categories (Figure S3), and selected cutpoints e to correspond to the given phenotypic distribution.

Under the null model y = 0, we considered three variance componentsz =0.5, 1, and 2 to evauate
type | error rates at a significance level @ = 5 x 1078, For each phenotypic distribution, we simulated
100 datasets of phenotypes. We considered common, low-frequency, and rare SNPs with MAFs of 0.3,
0.01, and 0.005, respectively. For each MAF, we simulated 107 SNPs. Thus, for each pair of phenotypic
distribution and MAF, totally 10° tests were performed. Under the alternative model y # 0, we
considered variance component T = 1 and increased genetic effect size y to evaluate empirical powers at
a significance level @ = 5 x 1072, For each y, we simulated 200 datasets including ordinal categorical
phenotypes and genotypes of one causal SNP. Since BOLT-LMM methods cannot control type | error
rates in some scenarios, we used empirical significance levels to calculate the empirical powers.

To compare DensePOLMM and FastPOLMM, we added a scenario to simulate random effect vector b.
First, we randomly selected 50,000 SNPs (i.e. 50%) from the 100,000 SNPs that were used to estimate
GRM. Then, for subject i, random effect b; = VT - 2, Gy, - ¥ Where m, = 50,000, G;, was the
genotype of the h-th selected SNP, and y;, was simulated following a normal distribution N (0, 0.085) so

that the empirical variance of the random effects is close to 7. In this scenario, the random effects were
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strongly related to the estimated GRM used in the null mixed models fitting. We set variance components
7 =1 and 10 to simulate moderate and high heritability, respectively. We simulated phenotypes with 5

and 10 evenly distributed categories.

Details for Runtime Evaluation. All analyses were conducted on CPU cores of Intel(R) Xeon(R) Gold
6138 @ 2.00GHz. In step 1, we used 8 CPU cores and recorded the computation time. For SAIGE,
fastGWA, and POLMM methods, the null mixed mode fitting result can be saved and used for
association testing. Hence, the genotype data to test can be divided into multiple chunks for parallel
computation. In step 2, we used 1 CPU core and recorded the computation time. For BOLT-LMM, the
model fitting and association testing cannot be separately implemented. We extracted “the time for
streaming genotypes and writing output” from log files to record the computation time in step 2. Since
FastPOLMM and DensePOLMM are the same when testing genetic association effect, we only recorded

the computation time of DensePOLMM in step 2.

Liability Threshold Model and Liability Heritability. Model (1) is equivalent to the following liability
threshold model

zi=n;+8 = X[ B+ Gy + b; + 6,
where z; isalatent variable and error term §; follows a logistic distribution with a location parameter of 0
and a scale parameter of 1. The ordinal categorical phenotype y; = j if the latent variable z; is between
cutpointse;_; and €;. The variances of b; and §; are t and % /3, respectively. Hence, similar to SAIGE®,
we define a liability heritability hZ,;, = t/(t + 7 /3). Variance components t = 1 and 10 correspond to

liability heritability hZ,, =23.3% and 75.2%, respectively.

Maximum likelihood estimation and score test. For mathematical convenience, we define aj x 1

vector y; = (yil,---,yi])T as an equivalent representation of the ordinal categorical phenotype y; : if
yi = Jj, theny;; = 1 and the other elements in J; are 0. For subject i, the log-likelihood function given

random effects b is
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WGB3, €) = og(PrO) = B i ok,
where ;; isthe mean of y;;, that is,
iy = E(yi;) =Pr(y;; = 1) =Pr(y; = j) = Pr(y; < j) — Pr(y; <j — 1).
Similar to SAIGE®, we propose an efficient algorithm (Supplementary Note) to iteratively estimate

parameters using PQL and Al-REML a gorithm to maximize log-likelihood function

I(B,y,T;€) = logj exp{l(B,y; b, €)} x (Zﬂ)_%l’ﬂ”_% X exp {—%bT(TV)_lb} db

where [(B,v; b, €) = Xi<n Li(B,V; b, €), and then use a hybrid strategy of normal approximation and SPA

to calculate p values.

Conditional analysis. We let G denote the n-dimensional genotype vector of the marker to test and let G,
denote the n-dimensional genotype vector of the conditioning marker. The covariate-adjusted genotype
vectors
G=G-X(X"ZTRYRZX) 'XTZTRWRZG, G, =G, —X(XTZTRWRZX) 'XTZ'RWRZG,
correspond to the two genotype vectors. The definitions of matrix X, Z,R, W, and Pcan be seen in
Supplementary Note. Under the null hypothesis, the conditional score statisticis
T, = (GT — AGF) - ZTPY,where A = GTRWRG,/GF RVRG,,
and its estimated variance Var(T,) = (G' — AG) - R¥R - (G — AG,). Then, we can use similar hybrid

strategies to test the conditional score statistic using normal distribution approximation and SPA.

Parameter estimation. Fitting an aternative mixed model is required to accurately estimate the
parameter ¥ and the corresponding odds ratio log(y). However, it takes much time and is not scalable for
a genome-wide association study. We used similar strategy as in SAIGE to use the information from the

null model fitting to estimate the parameter
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Since both T and Var(T) have been calculated for association p-value estimation, it does not require
additional computations. We use p values to estimate the standard error of  as se(y) = |7/z|, where z-

score corresponds to the association p value/ 2.

L eave-one-chromosome-out scheme. To avoid contamination for correlated markers, we implemented
an option to apply the leave-one-chromosome-out (LOCO) for DensePOLMM and FastPOLMM methods.
If LOCO scheme is used, we first use all SNPs to estimate the variance component £, and then for each
chromosome, we updated the estimation of 3, b, and € after excluding al SNPs in the same chromosome.
This strategy is the same as SAIGE and BOLT-LMM. For FastPOLMM, we first used tool GCTA to

calculate GRM for each chromosome and then combined them to cal culate GRMs.

Approaches to Reducing Computation Time and Memory Cost. To make DensePOLMM method
computationally practical for studies with large sample size n, we use strategies as in BOLT-LMM™ and
SAIGE?® to reduce computational and memory cost. Instead of storing an n x n dimensional dense GRM,
we compactly store raw genotypes of the genetic variants into a binary vector and use them when dense
GRM is needed. When fitting the null mixed model and estimating variance Var (T), we need solve linear
system X - x = u, which is challenging since Cholesky decomposition takes 0(n?) computation and very
large memory space to invert matrix . For a given vector u, we use PCG approach® to directly calculate
~~1u. To make the convergence faster, we use a block diagonal matrix Q = diag(Q,,--,Q,,) as the
preconditioner matrix, where (J — 1) x (J — 1) matrix Q; = Ry "W, 'Ry + 1V - 1,417, (J — 1) X
(J — 1) matrix R; = diag(R;y, -, Rij_1y), and (J — 1) dimensional vector of ones1; ; = (1,1,--,1)".
Given the same tolerance criterion asin SAIGE, PCG in POLMM usually takes 6-8 iterations to converge,
which is~ 1.5 times more than that in SAIGE. This might be because that we use a block diagonal matrix
as the preconditioner matrix, in which each block corresponds to one subject. When updating variance
component £, we estimate tr[PV] by using Hutchinson’s randomized trace estimator, ¥,/%, z{ PV z;, where

Zq,+, Zn, A€ ng independent random vectors whose elements are i.i.d Rademacher random variabl es.?®
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In addition, we use Intel Threading Building Block (TBB) implemented in RcppParallel package® for the

multi-threading computation.

Genome build. All genomic coordinates are given according to NCBI Build 37/UCSC hgl9.
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Figure 1. Empirical type | error rates of POLMM, BOLT-LMM, and fastGWA methods at a significance
level 5e-8. We simulated 1,000 families with atotal sample size n = 10,000 and an ordinal categorical
phenotype including four levels with sasmple sizesn,, n,, ns;, and n,. From left to right, the plots consider
four scenarios: balanced (n,: ny:n3:n, = 1:1: 1: 1), moderately unbalanced (n;: n,: ny:n, = 10:1:1: 1),
unbalanced (ny:n,: n3:n, = 30:1:1: 1), and extremely unbalanced (n,: n,: n3:n, = 100:1: 1: 1). From
top to bottom, the plots consider three variance components T = 0.5, 1, and 2. We simulated common,
low-frequency, and rare variants with MAFs of 0.3, 0.01 and 0.005, respectively.
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Figure 2. Empirica powers of POLMM, SAIGE, BOLT-LMM, and fastGWA methods at significance
level 5e-8. We simulated 1,000 families with a total sample sizen = 10,000 and an ordinal categorical
phenotype including four levels with sample sizesnq, n,, n;, and n,. From left to right, the plots consider
four scenarios: balanced (n,: ny:n3:n, = 1:1: 1: 1), moderately unbalanced (nq:n,:n3:n, = 10:1:1: 1),
unbalanced (ny:n,: n3:n, = 30:1:1: 1), and extremely unbaanced (n,:n,: n3:n, = 100:1: 1: 1). From
top to bottom, the plots consider two MAFs of 0.3 and 0.01 to simulate common and low-frequency
variants. We let variance component T = 1. For SAIGE, we dichotomize phenotype as 0 or 1 depending
on the subject is in level 1 or not. For BOLT-LMM, the empirical powers were calculated based on the
empirical significance levels sinceit cannot control type | error rates for low-frequency variants.
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Figure 3. Manhattan plots for UK Biobank analysis
(A) Liking for cigarette smoking (UK Biobank Field ID: 20641)
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(D) Liking for vegetables (UK Biobank Field ID: 20739)
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Figure S1 Sample size distribution of categorical phenotype, able to confide, in UK Biobank. For SAIGE,
we defined a binary phenotype as 1 or 0 depending on whether the categorical phenotype is “amost daily”
or not. For POLMM methods, we combined subjects that are neither “never or amost never” nor “amost

daily” to make a categorical phenotype with 3 levels.
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Figure S2. Computation time and memory usage of BOLT-LMM, SAIGE, DensePOLMM, FastPOLMM,
and fastGWA. CPU coreis Intel(R) Xeon(R) Gold 6138 @ 2.00GHz. (A). Computation time in step 1 to
fit anull mixed model; (B) Computation in step 2 to test 30 million variants; (C) Memory usage in step 1,
fastGWA requires less than 0.4 GB memory when sample size isless than 100,000.
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Figure S3. Pedigree of familiesin ssimulation studies
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Figure $4. Kinship coefficients estimated from the empirical GRM in simulation studies
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Figure S5. Sample size distribution of the ordinal categorical phenotypes in simulation studies. We
simulated 1,000 families with a total sample sizen = 10,000. (A) Bell-shaped phenotype distribution
with three levels. The sample sizes in three levels are n,, n,, and n3, respectively. From left to right, we
simulated four scenarios: balanced (n,: ny:ny = 1:1:1), moderately unbalanced (n,:n,:n; = 1:10:1),
unbalanced (n;:n,:n; = 1:30:1), and extremely unbalanced (n;:n,:n; =1:100:1). (B) L-shaped
phenotype distribution with four levels. The sample sizes in four levels are ny, n,, nsy, and n,,
respectively. From left to right, we simulate four scenarios: balanced (nq:n,:n;:n, =1:1:1:1),
moderately unbalanced (n;:n,:nz:in, =10:1:1:1), unbaanced (n;:n,:nz:n, =30:1:1:1), and
extremely unbalanced (n4: n,: n3:n, = 100: 1: 1: 1). For bell-shaped phenotype distribution, we use two
methods to dichotomize the categorical phenotype to evaluate SAIGE. SAIGE-1: level 1 versus levels 2
and 3; SAIGE-2: levels 1 and 2 versus level 3. For L-shaped phenotype distribution, we dichotomize the
phenotype: level 1 versus levels 2-4.
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Figure S6. Empirical type | error rates of POLMM, BOLT-LMM, and fastGWA methods at a significance
level 5e-8. We simulated 1,000 families with a total sample sizen = 10,000 and an ordinal categorical
phenotype including three levels with sample sizesn,, n,, and n;. From left to right, the plots consider
four scenarios: balanced (n,: n,:n; = 1: 1: 1), moderately unbalanced (n,: n,: ny = 1:10: 1), unbalanced
(nq:ny:nz = 1:30: 1), and extremely unbalanced (n,: n,: n; = 1:100: 1). From top to bottom, the plots
consider three variance components t = 0.5, 1, and 2. We simulated common, low-frequency, and rare
variants with MAFs of 0.3, 0.01 and 0.005, respectively.
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Figure S7. Empirical powers of DensePOLMM, FastPOLMM, SAIGE, BOLT-LMM, and fastGWA
methods at a significance level 5e-8. We simulated 1,000 families with a total sample sizen = 10,000
and an ordinal categorical phenotype including three levels with sample sizesn,, n,, and n5. From left to
right, the plots consider four scenarios: balanced (ni:n,:n; =1:1:1), moderately unbalanced
(nq:ny:ny =1:10:1), unbalanced (n;:ny:n; = 1:30:1), and extremely unbalanced (n,:n,:n; =
1:100:1). From top to bottom, the plots consider two MAFs of 0.3 and 0.01 to simulate common and
low-frequency variants. We let variance component T = 1. For SAIGE, we use different cutoffs to
dichotomize phenotypes (SAIGE-1: level 1 as controls and levels 2,3 as cases, SAIGE-2: levels 1,2 as
controls and level 3 as cases). For BOLT-LMM, the empirical powers were calculated based on the
empirical significance levels sinceit cannot control type | error rates for low-frequency variants.
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Figure S8. Estimated variance component of DensePOLMM and FastPOLMM when number of levelsis 3. (A) vector b is simulated following

N(0,7V) and T = 1; (B) vector b is simulated based on the SNPs used in GRM and t = 1; (C) vector b issimulated following N (0, V) and
7 = 10; (D) vector b is simulated based on the SNPs used in GRM and T = 10.
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Figure S9. Estimated variance component of DensePOLMM and FastPOLMM when the number of evenly distributed levelsis 3, 5, and 10. (A) =z
vector b issimulated following N (0, V) and T = 1; (B) vector b is simulated based on the SNPs used in GRM and t = 1; (C) vector b is “3
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Figure S10. Empirical powers of DensePOLMM and FastPOLMM when the number of levelsis 3. (A) vector b is simulated following N(0, TV)
and T = 1; (B) vector b is simulated based on the SNPs used in GRM and t = 1; (C) vector b issimulated following N(0, V) and t = 10; (D)
vector b issimulated based on the SNPsused in GRM and t = 10.
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Figure S11. Empirical powers of DensePOLMM and FastPOLMM when the number of evenly distributed
levelsis 3, 5, and 10. (A) vector b issimulated following N(0,7V) and T = 1; (B) vector b is simulated
based on the SNPs used in GRM and t = 1; (C) vector b is simulated following N(0, V) and t = 10; (D)
vector b issimulated based on the SNPsused in GRM and t = 10.
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Figure S12. Sample size distribution of the four ordinal categorical phenotypes selected to compare
POLMM and BOLT-LMM methodsin UK Biobank data analysis
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Figure S13. QQ plotsfor UK Biobank analysis
(A) Liking for cigarette smoking (UK Biobank Field ID: 20641)
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(B) Liking for teawith sugar (UK Biobank Field ID: 20734)
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(C) Liking for burn of spicy foods (UK Biobank Field ID: 20627)
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(D) Liking for vegetables (UK Biobank Field ID: 20739)

BOLT-LMM FastPOLMM-NoSPA FastPOLMM
15.2 .152 52
15.05 15.05 - 15.05
~ 144 14 14 4
o .
e 12 » 12 s ..
_? 10 4 10 4 = MAF={D.05,0 5] N 8NP 5380 503
— = MAF={D.005,0.05} N SNPs= 3.357.184
o 8 8 * | ® MAF~{D.001,0.005]; N SNPs= 3,164,600
o » MAF[5.58-05,0.001} N SNP2=12,136.013
H 6 [
= 4] 4
2 2
1] 0
0 2 4 B 0 2 4 3] 1] 2 4 [
Expected (-log,P) Expected (- log,oP) Expected (- log,,P)

37


https://doi.org/10.1101/2020.10.09.333146
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.333146; this version posted October 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure S14. Morning/evening person versus rs139315125, a nonsynonymous single nucleotide variant in
PERS Gene. The phenotypes (Field ID: 1180) include 4 ordinal categories: definitely an “evening” person,
more an “evening” than a “morning” person, more a “morning” than “evening” person, and definitely a
“morning” person. (A) phenome-wide association plot on 258 ordinal categorical phenotypes, (B)
regiona association plots between rs139315125, (C) sample size distribution in different categories, (D)
minor alele frequenciesin different categories
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Figure S15. Use of sun/uv protection versus rs121918166, a nonsynonymous single nucleotide variant in
OCAZ2 Gene. The phenotypes (Field ID: 2267) include 4 ordinal categories: Never/rarely, sometimes,
most of the time, and always. (A) phenome-wide association plot on 258 ordinal categorica phenotypes,
(B) regional association plots between rs121918166, (C) sample size distribution in different categories,
(D) minor allele frequencies in different categories

A
.y
gn.
LN . O,
NP, N
< AN
B

4 LD Ref\ar
®12>r?208
@2B>r2206
®05=r12>04
®04>r2202

®02>r=200
@ no i dele

C D
rs121918166 rs121918166
150000 1
1%
o 100901 —
S
2 ® 0.9%
=3 k=]
g o
& 8
500001 i
. N
o

Never/rarely Sometimes Usually Always Never/rarely Somelimes Usually Always

39


https://doi.org/10.1101/2020.10.09.333146
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.333146; this version posted October 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure S16. Type | error rates of FastPOLMM methods when categorical phenotypes were simulated
following adjacent category logistic model (ACL, upper panels) and stereotype model (STR, lower
panels). For both ACL and STR, we evaluated type | error rates at significance levels of 5e-5 and 5e-8.

More details about the ACL and STR models and simulations can be seen in Supplementary Note.

Method . FastPOLMM-NoSPA (STR) . FastPOLMM (STR)
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Table S1. Comparison of different methods for computation time and memory usage given different
sample sizes. CPU coreis Intel (R) Xeon(R) Gold 6138 @ 2.00GHz.

Sample BOLT- SAIGE DensePOLMM FastPOLMM fastGWA
Size LMM 3levels ’ 6 levels 3levels 6 levels

A. Computation timein Step 1 (Hours)

10000 0.1411 0.4177 0.3630 0.3712 0.0045 0.0049 0.0007
20000 0.2563 0.7367 0.6042 0.7134 0.0048 0.0102 0.0014
40000 0.4649 1.2081 1.2237 1.3909 0.0062 0.0162 0.0015
1.00E+05 | 1.4462 3.6556 5.9188 7.3769 0.0124 0.0241 0.0038
2.00E+05 | 3.4735 9.6960 18.1085 21.2003 0.0223 0.0406 0.0090
397798 8.7587 40.3603 49.9075 64.1850 0.0324 0.0893 0.0203
B. Computation timein Step 2 (Hours)

10000 58.845 83.098 61.616 61.476 61.616 61.476 39.229
20000 70.274 93.073 69.583 69.664 69.583 69.664 39.753
40000 79.088 110.238 89.650 89.668 89.650 89.668 42.461
1.00E+05 | 95.520 184.972 146.928 155.909 146.928 155.909 49.548
2.00E+05 | 109.971 310.370 240.802 261.855 240.802 261.855 64.996
397798 118.605 384.618 296.906 339.898 296.906 339.898 81.112
C. Memory usage (GB)

10000 1.684 1.483 1.378 1.465 1.168 1.208 < 0.400
20000 2.480 2.349 2.002 2.057 1.167 1.250 < 0.400
40000 4.098 4.072 3.284 3.417 1.228 1.316 < 0.400
1.00E+05 | 9.028 8.912 7.060 7.333 1.332 1.863 < 0.400
2.00E+05 | 17.378 17.199 13.453 14.128 1.774 2.511 0.580
397798 33.996 33.513 25.986 27.700 2.561 4.140 0.870
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Table S2. Summary of the 258 ordinal categorical phenotypesin UK Biobank data analysis
A. Distribution of different phenotype categories B. Distribution of level numbers

Phenotype category Number Level number Number
Food and other preference 150 3 20
Psychosocial factors 46 4 34
Lifestyle and environment 16 5 23
Dietry 12 6 23
Physical activity 7 7 5
Alcohol consumption 5 8 3
Health and medical history 5 9 150
Sleeping 5
Early life factors 4
Smoking 4
Sociodemographics 4

Table S3. Summary of markers used in data analysis of “Liking for adding salt to foods”. Gene annotation
and Polyphen2 HDIV score are from ANNOV AR. Based on Polyphen2 HDIV score, the nonsynonymous
variants are divided into 3 groups: Probably damaging variants (Polyphen2 HDIV score = 0.957),
Possibly damaging variants (Polyphen2 HDIV score > 0.453 and < 0.956), and Benign variants
(Polyphen2 HDIV score < 0.452).

Variants Exon Nonsynonymous | Probably Possibly Benign variants
in genome | variants variants damaging damaging (proportionin
(proportionin variants variants Nnonsynonymous

exon variants) (proportionin (proportionin variants)
NONSynonymous | NONSynonymous

variants) variants)
All variantsin data analysis
24,13590 | 229,586 124,975 (54.4%) | 41,092 (32.9%) | 20,141 (16.1%) | 58,450 (46.8%)
6
Significant variants for 258 phenotypes (p value < 5e-8)
5,885 275 207 (75.3%) 63 (30.4%) 33 (15.9%) 111 (53.6%)
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