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Abstract 

In genome-wide association studies (GWAS), ordinal categorical phenotypes are widely used to measure 

human behaviors, satisfaction, and preferences. However, due to the lack of analysis tools, methods 

designed for binary and quantitative traits have often been used inappropriately to analyze categorical 

phenotypes, which produces inflated type I error rates or is less powerful. To accurately model the 

dependence of an ordinal categorical phenotype on covariates, we propose an efficient mixed model 

association test, Proportional Odds Logistic Mixed Model (POLMM). POLMM is demonstrated to be 

computationally efficient to analyze large datasets with hundreds of thousands of genetic related samples, 

can control type I error rates at a stringent significance level regardless of the phenotypic distribution, and 

is more powerful than other alternative methods. We applied POLMM to 258 ordinal categorical 

phenotypes on array-genotypes and imputed samples from 408,961 individuals in UK Biobank. In total, 

we identified 5,885 genome-wide significant variants, of which 424 variants (7.2%) are rare variants with 

MAF < 0.01.  
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Main  

Large-scale biobanks with hundreds of thousands of genotyped and deeply phenotyped subjects are 

valuable resources to identify genetic components of complex phenotypes.1,2 In biobanks, ordinal 

categorical data is a common type of phenotype, which is often collected from surveys, questionnaires, 

and testing to measure human behaviors, satisfaction, and preferences.3,4  For example, a web 

questionnaire was used for 182,219 UK Biobank participants to collect 150 food and other health 

behavior related preferences, all of which are ordinal categorical phenotypes based on a 9-point hedonic 

scale of liking from 1 (extremely dislike) to 9 (extremely like).5 For ordinal categorical phenotypes, there 

is no underlying measurable scale and therefore it would be inappropriate to treat that phenotype as a 

quantitative trait and apply the linear regression methods.6-8 Another approach is to use an arbitrary cutoff 

to dichotomize the ordinal categorical phenotype into two categories, followed by using a logistic 

regression method.3 This approach suffers from information loss and thus is less powerful.  

For binary and quantitative phenotype data analysis, mixed model approaches have been used to test 

genetic associations conditioning on the sample relatedness.6,9 Some state-of-art optimization strategies 

have been applied to reduce memory usage and computational cost, which makes these mixed model 

approaches practical to incorporate a dense genetic relationship matrix (GRM) in GWAS.8,10 Another 

resource-efficient approach, fastGWA, is to use sparse GRM to adjust for the sample relatedness.11 For 

binary phenotype analysis, unbalanced case-control ratio can result in inflated type I error rates and 

saddlepoint approximation (SPA) has been demonstrated to be more accurate for single-variant analysis7,8, 

region-based analysis12,13, and gene-environment interaction analysis14. Similarly, the sample size 

distribution in ordinal categorical data could also be highly unbalanced, that is, the sample size in one 

category could be dozens of times more than the that in other categories. For example, of the UK Biobank 

participants, more than 90% extremely dislike cigarette smoking and only 1% extremely like it. In ordinal 

categorical data analysis, the effect of the unbalanced sample size distribution on genetic association tests 

should also be carefully examined.  
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In this paper, we propose a scalable and accurate mixed model approach for ordinal categorical data 

analysis in large-scale GWAS. Our approach, Proportional Odds Logistic Mixed Model (POLMM), 

incorporates a random effect into the proportional odds logistic model to control for sample relatedness. 

POLMM uses penalized quasi-likelihood (PQL) and average information restricted maximum likelihood 

(AI-REML) algorithm6 to efficiently fit the mixed model, and then uses SPA to calibrate p values. We 

give two closely related versions, DensePOLMM and FastPOLMM. DensePOLMM incorporates a dense 

GRM using similar state-of-art strategies as in BOLT-LMM10 and SAIGE8, and FastPOLMM is a 

resource-efficient approach that uses sparse GRM in a similar manner as in fastGWA11.  

We demonstrated that POLMM approaches can efficiently analyze large datasets with hundreds of 

thousands of genetic related samples, can control type I error rates, and is statistically powerful through 

extensive simulations as well as real data analysis. Meanwhile, BOLT-LMM, fastGWA, and SAIGE 

approaches cannot control type I error rates and are less powerful, especially when the phenotypic 

distribution is unbalanced. DensePOLMM requires comparable computation time and memory usage as 

SAIGE, and FastPOLMM is more resource-efficient to fit a null mixed model. For example, FastPOLMM 

requires less than 0.1 hour and 4.2 GB memory to fit a null mixed model with around 400,000 subjects. In 

most scenarios, DesnePOLMM and FastPOLMM performed similarly. Only when the number of 

categories is large (e.g. 10) and polygenic effect size is large (e.g. liability heritability = 75.24%), 

DensePOLMM is slightly more powerful than FastPOLMM by no more than 4.67% and 7.51% when 

testing common (minor allele frequency, MAF = 0.3) and low-frequency variants (MAF = 0.01), 

respectively. We applied the FastPOLMM approach to analyze 258 ordinal categorical phenotypes in the 

UK Biobank data, which includes 408,961 samples from white British participants with European 

ancestry, and successfully identified 5,885 genome-wide significant variants with clumping, of which 424 

variants (7.2%) are rare variants with MAF < 0.01. All analysis results have been publicly available 

through a web-based visual server2, which provides intuitive visualizations at three levels of granularity: 
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genome-wide summaries at the trait level, and regional (LocusZoom)15 and phenome-wide summaries at 

the variant level.  

Results 

Overview of the methods. We let � denote the sample size and let  	 denote the number of category 

levels. For subject 
 � �, we let �� 
 1, 2, … , 	 denote its ordinal categorical phenotype. We consider the 

following proportional odds logistic mixed model (POLMM) 

logit����� 
 �� � �� 
 �� � ��
�� � ��� �  � , 1 � ! � 	                                 "1# 

where ��� 
 Pr"�� � !|�� , �� ,  �# is the cumulative probability of the phenotype �� � ! conditional on a '-

dimensional vector of covariates ��  and a hard called or imputed genotype �� . The cutpoints �: �� ( ) (
�� 
 ∞ were used to categorize the data, and coefficients � and � are fixed effect sizes of the covariates 

and genotype. To adjust for sample relatedness, we incorporate an �-dimensional random effect vector 

 
 " �, ) ,  �#� following a multivariate normal distribution +"0, -.# where - is a variance component 

parameter and . is an � / � dimensional GRM. The model (1) is a natural extension of a logistic mixed 

model as in SAIGE and GMMAT.6,8,13 If 	 
 2, the phenotype is binary and the model (1) is a logistic 

mixed model.  

We present two closely related versions of POLMM methods to test null model � 
 0: DensePOLMM 

and FastPOLMM. The methods contain two main steps: (1) fitting the null model to estimate the variance 

component -̂ and other parameters ��1, �̂�; (2) testing for the association between the ordinal categorical 

phenotype and genetic variants. In step 1, we propose an efficient algorithm (Supplementary Note) to 

iteratively estimate parameters using PQL and AI-REML algorithm6. DensePOLMM and FastPOLMM 

use dense and sparse GRM to adjust for sample relatedness, respectively. DensePOLMM stores raw 

genotypes in a binary vector, calculates elements of the dense GRM when needed, and uses PCG 

approach to solve linear systems.8 Using these strategies, DensePOLMM is of the same computation 

complexity as SAIGE8, and requires memory usage 2��/4, where 2� is the number of markers used to 
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construct GRM. On the other hand, FastPOLMM uses a sparse GRM in which all of the small off-

diagonal elements (for example, those < 0.05) are set to 0. GCTA software16 provides an efficient tool to 

calculate GRM for a large-scale dataset. The sparse GRM only needs to be calculated once for one cohort 

study or biobank.  

After fitting the null mixed model, we first use a subset of randomly selected genetic variants to 

calculate the ratio of the variances of the score statistics with and without incorporating the variance 

component. The ratio has been shown approximately constant for all genetic variants with minor allele 

counts (MAC) 4  20.8,10 Then, we use the variance ratio to calibrate the score statistic variance 

(Supplementary Note). To control type I error rates under an unbalanced phenotypic distribution, we use a 

hybrid strategy of normal approximation and SPA to calculate p values.7,8,14,17 If the absolute value of the 

standardized score statistic is close to the mean of 0 (e.g. < 2), POLMM methods use a regular normal 

approximation to calculate p value. Otherwise, POLMM methods use SPA to calculate p values. The 

hybrid strategy can give more accurate p values while remaining high computationally efficient. For each 

variant, the normal approximation takes 5"�#  computations and SPA additionally takes 5��"	 � 1#� 

computations. Using the fact that many elements of the genotype vector � 
 "��, ) , ��#� are zeros (i.e., 

homozygous major genotypes), we use a partial normal approximation7 to speed up the computation of 

SPA to 5"��"	 � 1#) where �� is the number of non-zero elements in the genotype vector �.  

Due to these features, POLMM methods are the only available mixed model methods to associate 

ordinal categorical phenotypes with genetic variants while remaining computationally practical for large 

datasets and accounting for sample relatedness and unbalanced phenotypic distribution.   

Runtime and resource requirements. To evaluate the computational efficiency and memory usage of 

DensePOLMM and FastPOLMM methods, we randomly sampled subjects from 397,798 white British 

UK Biobank participants to analyze an ordinal categorical phenotype, able to confide, which consists of 6 
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levels (Figure S1). We used 340,447 markers to construct GRM and incorporated 6 covariates of sex, 

birth year, and top 4 principal components to fit the null mixed model.  

We compared 5 methods including fastGWA, BOLT-LMM, SAIGE, DensePOLMM, and 

FastPOLMM. Besides the raw phenotype with 6 levels, we combined some levels to make a new 

phenotype with 3 levels to comprehensively evaluate POLMM methods. For fastGWA and BOLT-LMM, 

we treated the ordinal categorical phenotype as a quantitative trait from 1 to 6. For SAIGE, we 

dichotomized the phenotype to a binary phenotype. For fastGWA and FastPOLMM, we set the cutoff of 

the sparse GRM at 0.05. Details about the computing environment for evaluation can be seen in Methods. 

The computation time and memory usage of all 5 methods are presented in Figure S2 and Table S1. In 

step 1, to fit a null mixed model, fastGWA and FastPOLMM were much faster and required much less 

memory than the three methods using dense GRM. BOLT-LMM, SAIGE, and DensePOLMM required 

comparable computation time and memory usage since they used the same optimized strategies to 

incorporate the dense GRM. SAIGE and DensePOLMM were slower than BOLT-LMM since they use 

Hutchinson’s randomized trace estimator when estimating the variance component, which requires a large 

amount of computation time. DensePOLMM required more time than SAIGE when sample size was 

greater than 100,000. This is mainly because DensePOLMM used a block diagonal matrix as the 

preconditioner matrix for PCG, which took more iterations to converge than that in SAIGE given the 

same tolerance criterion. Interestingly, DensePOLMM was faster than SAIGE when the sample size was 

smaller than 40,000. This might be because we optimized C++ codes to read in genotypes for GRM 

construction. For POLMM methods, more computational time and slightly more memory usage were 

required when analyzing a phenotype with more levels. For example, to fit a null mixed model with 

397,798 subjects, if the number of levels is 3, DensePOLMM and FastPOLMM took 49.9 and 0.03 hours, 

respectively; and if the number of levels is 6, DensePOLMM and FastPOLMM took 64.2 and 0.09 hours, 

respectively.  
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In step 2, we first recorded the computation time to analyze 340,447 markers and then projected them 

to a genome-wide analysis with 30 million markers. The genotype data was stored in BGEN format since 

all methods in comparison support the BGEN format and UK Biobank also use it for release of imputed 

data.18 BOLT-LMM and fastGWA were faster than POLMM and SAIGE methods, which is expected as 

logistic regression is more complicated than linear regression. POLMM is slightly faster than SAIGE. As 

the number of levels increased from 3 to 6, the computation time of POLMM methods slightly increased. 

Suppose that we use 24 CPU cores for parallel computation, POLMM methods require around 14.2 hours 

for a genome-wide analysis including around 30 million markers.  

False positive rate and statistical power. We carried out extensive simulations to investigate type I error 

rates and powers of POLMM approaches. We simulated 10,000 subjects in 1,000 families based on the 

pedigree shown in Figure S3, in which each family included 10 subjects. To construct GRM for mixed 

model methods, we simulated 100,000 single nucleotide polymorphisms (SNPs) with MAFs ranging from 

0.05 to 0.5. The estimated kinship coefficients are shown in Figure S4. We simulated phenotypes with 

multiple sample size distributions (Figure S5). In addition to DensePOLMM and FastPOLMM that use a 

hybrid of normal distribution approximation and SPA, we also evaluated DensePOLMM-NoSPA and 

FastPOLMM-NoSPA, both of which use normal distribution approximation to test all variants. We also 

evaluated some alternative methods including SAIGE, fastGWA, and BOLT-LMM. For SAIGE, we 

dichotomized the categorical phenotypes (Figure S5). For fastGWA and BOLT-LMM, we treated the 

categorical phenotype as a quantitative trait. 

We first simulated categorical phenotypes under the null model to evaluate type I error rates. In each 

scenario, a total of 10�  tests were performed (Methods). The simulation results showed that 

DensePOLMM and FastPOLMM methods can control type I error rates at a significance level of 5 /
10�	 (Figures 1 and S6). Meanwhile, type I error rates of other methods were inflated when testing low-

frequency and rare variants (MAF � 0.01) and the phenotypic distribution was unbalanced. For example, 

when variance component was - 
 1 and the sample size proportion in 4 levels was 100:1:1:1, to test 
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low-frequency variants with a MAF of 0.01, the type I error rates of POLMM methods and the other 

methods were less than 3.8 / 10�	 and greater than 3.89 / 10�
, respectively. The result suggested that 

POLMM approaches can accurately account for ordinal categorical responses and using SPA is more 

accurate than using normal distribution. If we dichotomize the categorical phenotype, the POLMM is a 

logistic mixed model and it is expected that SAIGE can control type I error rates.8 Hence, we did not 

evaluate the empirical type I error rates of SAIGE.  

Next, we compared the empirical powers of POLMM methods, SAIGE, fastGWA, and BOLT-LMM 

at a significance level 9 
 5 / 10�	 (Figures 2 and S7). Since fastGWA and BOLT-LMM cannot control 

type I error rates when the phenotypic distribution is unbalanced, we used empirical significance levels to 

evaluate powers. In all simulation scenarios, POLMM methods were the most powerful. When the 

phenotypic distribution is balanced, fastGWA and BOLT-LMM were similarly powerful as POLMM 

methods. However, when the phenotypic distribution is unbalanced, fastGWA and BOLT-LMM methods 

were less powerful than POLMM methods, especially when testing low-frequency variants with MAF = 

0.01. Since the dichotomizing process would result in information loss, SAIGE was also less powerful 

than POLMM methods. Figure S7 showed that different dichotomizing processes could result in 

significantly different powers for SAIGE.  

Comparison between DensePOLMM and FastPOLMM methods. For quantitative trait analysis, Jiang 

et al. have demonstrated that using sparse GRM can reduce computational time and memory usage, while 

still being reliable to control type I error rates.11 However, using spare GRM can be less powerful than 

using dense GRM since sparse GRM cannot incorporate polygenic effects. In this section, we designed 

more simulation scenarios to compare DensePOLMM and FastPOLMM (Methods).  

Figures S8-S11 present the variance component estimation -̂ and the empirical powers of POLMM 

methods. The estimation -̂ of DensePOLMM and FastPOLMM were slightly different, both of which 

deviated from true - , especially when the true -  was large. The biased estimation has been widely 

discussed in other studies using pseudo quasi likelihood (PQL).8 Interestingly, the estimation -̂ increased 
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and tended to the true - as the number of levels increased from 3 to 10. This might be because more levels 

give more information, which results in more accurate estimation of the variance component -. In most 

scenarios, the empirical powers of DensePOLMM and FastPOLMM were similar with the largest 

difference less than 2.5%. Only when SNPs used to construct GRM were significantly associated with the 

phenotype (e.g. liability heritability = 75.24%, see Methods) and the number of levels is large (e.g. 10), 

DensePOLMM is more powerful than FastPOLMM by no more than 4.67% and 7.51%, when testing 

SNPs with MAF = 0.3 and 0.01, respectively. This may be because that only when the number of levels is 

large, accounting for the polygenic effects through dense GRM can substantially improve the power. Note 

that in this simulation, SNPs for dense GRM were simulated independently from the SNPs to test, to 

prevent proximal contamination.  

Compared to DensePOLMM, FastPOLMM can give a substantial improvement in terms of 

computation time and memory usage, while only suffering a limited loss of powers in restricted 

simulation scenarios. Hence, we recommended using FastPOLMM, especially when analyzing a large-

scale dataset with sample size greater than 200,000.   

Application to UK Biobank Data. We used FastPOLMM to conduct genome-wide analyses of 30 

million SNPs with minor allele counts 4 20 and imputation R2 greater than 0.3 in the UK Biobank data of 

408,961 samples from white British participants. We incorporated birth year, sex (if applicable), and top 4 

principal components as covariates, and used 340,447 high-quality SNPs to calculate sparse GRM in 

which all of off-diagonal elements less than 0.05 were set to 0.8,16 We analyzed 258 ordinal categorical 

phenotypes, most of which measured dietary, lifestyle and environment, and psychosocial factors (Table 

S2). All analysis results have been publicly available through a visual server (http://polmm.leelabsg.org/). 

The web interface provides intuitive visualizations at three levels of granularity: genome-wide summaries 

at the trait level, and regional (LocusZoom)15 and phenome-wide summaries at the variant level.2 

To compare BOLT-LMM and FastPOLMM in ordinal categorical data analysis, we selected four food 

preferences with different sample size distribution as phenotypes (Figure S12). The preferences were 
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encoded from 1 (extremely dislike) to 9 (extremely like). For BOLT-LMM, we treated the phenotypes as 

quantitative traits and incorporated the same set of covariates and GRM as in FastPOLMM. Figures 3 and 

S13 present the Manhattan and QQ plots of the analysis results. When the phenotypic distribution is 

balanced, BOLT-LMM performed similarly as FastPOLMM. However, in other cases, BOLT-LMM 

could result in an inflation of type I error rates, especially when testing low-frequency and rare variants 

with MAF < 0.01. FastPOLMM-NoSPA was better than BOLT-LMM but still cannot control type I error 

rates at a genome-wide significance level, which suggests that the proportional odds logistic model and 

SPA both contribute to more accurate association tests. All the real data analysis results were consistent to 

the simulation results, which indicate that using linear models is not a good solution in ordinal categorical 

data analysis, especially when testing low-frequency variants.  

We used PLINK19 to conduct clumping analysis (p value threshold of 5 / 10�	, window size of 5 Mb, 

and linkage disequilibrium threshold :� of 0.1). For these 258 phenotypes, we identified 5,885 clumped 

genome-wide significant variants, of which 424 variants (7.2%) are low-frequency variants with MAF < 

0.01. We used ANNOVAR20 to functionally annotate these genome-wide significant variants.  Total 275 

clumped variants are in exon region, of which 207 (75.3%, binomial test p value: 1.04E-12) variants are 

nonsynonymous variants. Based on the Polyphen2 HDIV score21, 63 nonsynonymous variants (30.4%, 

binomial test p value: 0.506) are probably damaging with the score 4 0.957 and 33 nonsynonymous 

variants (15.9%, binomial test p value: 1) are possibly damaging with the score 4 0.453. Table S3 gives a 

summary of the annotation of more than 24 million SNPs, which were used to calculate the proportion of 

nonsynonymous variants, probably damaging variants, and possibly damaging variants.   

We highlight some nonsynonymous low-frequency SNPs with significant associations. For phenotype 

of “morning/evening person” (UK Biobank Field ID: 1180), we identified an association of 

nonsynonymous SNP rs139315125 (MAF: 0.47%, p value: 5.3E-21, Gene: PER3, Polyphen2 HDIV score: 

0.998, see Figure S14 for more details). Subjects who tend to sleep and wake up early have a higher 

frequency of minor allele G. Gene PER3 is a core component of the circadian clock and the association 
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between this SNP and sleep-wake patterns has been reported in previous studies.22 For phenotype of “Use 

of sun/uv protection” (UK Biobank Field ID: 2267), we identified a nonsynonymous SNP rs121918166 

(MAF: 0.9%, p value: 5.2E-31, Gene: OCA2, Polyphen2 HDIV score: 1, see Figure S15 for more details). 

Subjects who use sun/uv proection more frequently have a higher frequency of minor allele T. Gene 

OCA2 is involved in mammalian pigmentation and this SNP has been previously associated with human 

eye color and melanoma.23-25 Other interesting association include phenotype of “Comparative height size 

at age 10” (UK Biobank Field ID: 1697) and rs78727187 (MAF: 0.6%, p value: 5.1E-19, Gene: FBN2, 

Polyphen2 HDIV score: 0.818),  rs117116488 (MAF: 0.99%, p value: 1.4E-18, Gene: ACAN, Polyphen2 

HDIV score: 0.993), and rs112892337 (MAF: 0.4%, p value: 3.0E-15, Gene: ZFAT, Polyphen2 HDIV 

score: 1); phenotype of “Relative age of first facial hair” (UK Biobank Field ID: 2375) and rs138800983 

(MAF: 0.3%, p value: 8.4E-10, Gene: KRT75, Polyphen2 HDIV score: 0.969). 

Discussion 

In this study, we developed a scalable and accurate genetic association analysis tool, POLMM, for ordinal 

categorical data analysis in a large-scale dataset with hundreds of thousands of samples. The tool is an 

extension of proportional odds logistic model, which can accurately account for the dependence of an 

ordinal categorical phenotype on covariates. Two closely related methods, DensePOLMM and 

FastPOLMM, were proposed to use dense and sparse GRM to adjust for the sample relatedness, 

respectively. DensePOLMM uses similar optimized strategies as in SAIGE and BOLT-LMM, which 

makes it scalable to incorporate a dense GRM into the mixed model. However, as the sample size 

increases, DensePOLMM is still computationally expensive. On the other hand, FastPOLMM is more 

computationally efficient. Extensive simulations demonstrate that FastPOLMM is as reliable as 

DensePOLMM and only suffers a small amount of power loss in limited simulation scenarios. Hence, if 

the sample size is greater than 500,000 and hundreds of GWAS are required for a phenome-wide analysis, 

we recommend using FastPOLMM.      
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We compared our method POLMM with two commonly used strategies: 1) dichotomize the 

categorical phenotype and then use SAIGE8, and 2) treat the categorical phenotype as a quantitative trait 

and then use BOLT-LMM10 and fastGWA11. The dichotomizing process combined multiple levels into 

one group, which could lose useful phenotypic information and statistical power. On the other hand, 

treating the categorical phenotypes as a quantitative trait violates the nature of the ordinal categorical 

phenotype, which could result in inflated type I error rates and power loss. Through simulation studies 

and real data analysis, unless the phenotypic distribution is extremely unbalanced, the linear mixed model 

approaches are still reliable when testing common variants, which suggests that fastGWA analyses that 

limited to SNPs with MAF > 0.01 (http://fastgwa.info/ukbimp/phenotypes) should still be valid for many 

of the phenotypes. However, considering the diversity of the phenotypic distribution, it is difficult to 

select a MAF cutoff to remain the association testing accurate in practical. In addition, we identified many 

phenotypes associated variants with MAF < 0.01 in the UK-Biobank data analysis, that were missed in 

the fastGWA analyses.  

We applied the FastPOLMM to analyze 258 ordinal categorical phenotypes on UK Biobank, of which 

150 phenotypes are food and other preferences (UK Biobank Category 1039). The preference data 

(version 1.1) was released in January 2020. To the best of our knowledge, this is the first time that GWAS 

were applied to analyze the preference data. All analyses results have been made publicly available 

through a visual server (http://polmm.leelabsg.org/). The web interface provides intuitive visualizations 

and is useful resource for post-GWAS analyses.  

There are several limitations in POLMM, most of which are similar as SAIGE and other mixed model 

approaches. First, DensePOLMM is still computationally expensive when fitting a null mixed model with 

greater than 500,000 samples. Second, POLMM methods estimate odds ratios for genetic markers using 

the parameter estimates from the null model and might not be accurate. Third, POLMM assumes an 

infinitesimal architecture, that is, the effect sizes of genetic markers are normally distributed. If the 

genetic architecture is non-infinitesimal, POLMM methods may sacrifice power. Finally, the variance 
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component estimate -̂ is biased and should not be used to estimate heritability. Interestingly, we observe a 

more accurate estimate -̂ as the number of categories increases. Although based on the proportional odds 

assumption, POLMM approaches can still control type I error rates at a stringent significance level of 

5 / 10�	 when categorical phenotypes follow other models including adjacent category logistic model 

and stereotype model (Figure S16).  

In the future, we plan to extend the current single-variant test to gene- or region-based multiple 

variants tests to better identify the rare variants. Recently, a novel machine learning method called 

REGENIE was proposed for quantitative and binary traits analysis. Instead of using mixed effect model, 

REGENIE26 uses ridge regression model to account for polygenic effects. We plan to evaluate the 

strategies in REGENIE in ordinal categorical data analysis to extend POLMM. POLMM approaches are 

motivated to analyze large-scale biobank data collected following a cohort study design. Suppose that 

data is collected from a matched case-control study design, the stratified sampling for different levels 

could inflate the parameter estimation and genetic association testing.27 We plan to extend the POLMM 

approaches to deal with the effect of the sampling.      

Ordinal categorical phenotypes are widely observed in survey, questionnaires, and testing to measure 

human behaviors, satisfaction, and preferences. However, due to the lack of analysis tools, methods 

designed for binary and quantitative traits have been used to analyze the categorical data, which is 

inappropriate and can result in suspicious results. Our method POLMM provides an accurate and scalable 

solution with the following features: can accurately model the ordinal categorical data using a 

proportional odds logistic model which can; can adjust for sample relatedness by incorporating random 

effects; can be scalable to analyze a large-scale dataset with hundreds of thousands of subjects; can test 

low-frequency variants under unbalanced phenotypic distribution by using SPA to approximate the null 

distribution of the test statistics. Due to all these features, POLMM is a unified and the only available 

approach for ordinal categorical data analysis in biobanks and large cohort studies. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.333146doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333146
http://creativecommons.org/licenses/by/4.0/


14 

 

URLs.  

POLMM (version 0.2.2), https://github.com/WenjianBI/POLMM.  

BOLT-LMM (version 2.3.4), https://alkesgroup.broadinstitute.org/BOLT-LMM.   

SAIGE (version 0.36.3), https://github.com/weizhouUMICH/SAIGE.  

fastGWA (GCTA, version 1.93.1beta), https://cnsgenomics.com/software/gcta/#fastGWA.  

UK Biobank PheWeb and analysis results, http://polmm.leelabsg.org/.  

ANNOVAR (16 Apr 2018), https://doc-openbio.readthedocs.io/projects/annovar/en/latest/  
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Methods 

Data Simulation. In simulation studies, genotypes were simulated based on the pedigree shown in Figure 

S1, in which each family includes 10 subjects. To estimate GRM for mixed models fitting, we simulated 

100,000 independent SNPs with MAFs ranging from 0.05 to 0.5. For subject 
, two covariates ���  and ���  

were simulated following the standard normal distribution and a Bernoulli (0.5) distribution, respectively. 

Given the variance component - , random effects  
 " �,  � , ) ,  �#  were simulated following a 

multivariate normal distribution +"0, -.# where . is the GRM from the family structure. We followed 

model (1) to simulate ordinal categorical phenotypes using linear predicator �� 
 0.5 ; ��� < 0.5 ; ��� <
� ; �� <  � , 
 � �, in which ��  is the genotype value of one SNP. We considered two common types of 

phenotypic distribution: bell-shaped distribution with three categories and L-shaped distribution with four 

categories (Figure S3), and selected cutpoints � to correspond to the given phenotypic distribution.  

Under the null model � 
 0, we considered three variance components - 
0.5, 1, and 2 to evaluate 

type I error rates at a significance level 9 
 5 / 10�	. For each phenotypic distribution, we simulated 

100 datasets of phenotypes. We considered common, low-frequency, and rare SNPs with MAFs of 0.3, 

0.01, and 0.005, respectively. For each MAF, we simulated 10� SNPs. Thus, for each pair of phenotypic 

distribution and MAF, totally 10�  tests were performed. Under the alternative model � = 0 , we 

considered variance component - 
 1 and increased genetic effect size � to evaluate empirical powers at 

a significance level 9 
 5 / 10�	. For each �, we simulated 200 datasets including ordinal categorical 

phenotypes and genotypes of one causal SNP. Since BOLT-LMM methods cannot control type I error 

rates in some scenarios, we used empirical significance levels to calculate the empirical powers.  

To compare DensePOLMM and FastPOLMM, we added a scenario to simulate random effect vector  . 

First, we randomly selected 50,000 SNPs (i.e. 50%) from the 100,000 SNPs that were used to estimate 

GRM. Then, for subject 
 , random effect  � 
 √- ; ∑ ��
 ; �
��


��  where 2� 
 50,000 , ��
  was the 

genotype of the @-th selected SNP, and �
 was simulated following a normal distribution +"0, 0.085# so 

that the empirical variance of the random effects is close to -. In this scenario, the random effects were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.333146doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333146
http://creativecommons.org/licenses/by/4.0/


18 

 

strongly related to the estimated GRM used in the null mixed models fitting. We set variance components 

- 
 1 and 10 to simulate moderate and high heritability, respectively. We simulated phenotypes with 5 

and 10 evenly distributed categories.  

Details for Runtime Evaluation. All analyses were conducted on CPU cores of Intel(R) Xeon(R) Gold 

6138 @ 2.00GHz. In step 1, we used 8 CPU cores and recorded the computation time. For SAIGE, 

fastGWA, and POLMM methods, the null mixed model fitting result can be saved and used for 

association testing. Hence, the genotype data to test can be divided into multiple chunks for parallel 

computation. In step 2, we used 1 CPU core and recorded the computation time. For BOLT-LMM, the 

model fitting and association testing cannot be separately implemented. We extracted “the time for 

streaming genotypes and writing output” from log files to record the computation time in step 2. Since 

FastPOLMM and DensePOLMM are the same when testing genetic association effect, we only recorded 

the computation time of DensePOLMM in step 2. 

Liability Threshold Model and Liability Heritability. Model (1) is equivalent to the following liability 

threshold model 

A� 
 �� < B� 
 ��
�� < ��� <  � < B� ,  

where A�  is a latent variable and error term B�  follows a logistic distribution with a location parameter of 0 

and a scale parameter of 1. The ordinal categorical phenotype �� 
 ! if the latent variable A�  is between 

cutpoints ���� and ��. The variances of  �  and B�  are - and C�/3, respectively. Hence, similar to SAIGE8, 

we define a liability heritability @����� 
 -/"- < C�/3#. Variance components - 
 1 and 10 correspond to 

liability heritability @����� 
23.3% and 75.2%, respectively.  

Maximum likelihood estimation and score test. For mathematical convenience, we define a 	 / 1 

vector �D� 
 ���� , ) , �����  as an equivalent representation of  the ordinal categorical phenotype ��  : if 

�� 
 !, then ��� 
 1 and the other elements in �D�  are 0. For subject 
, the log-likelihood function given 

random effects   is    
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E�"�, �;  , �# 
 log"Pr"��## 
 G ��� log�H����

���
, 

where H��  is the mean of ��� , that is,  

H�� 
 I����� 
 Pr"��� 
 1# 
 Pr"�� 
 !# 
 Pr"�� � !# � Pr"�� � ! � 1#. 
Similar to SAIGE8, we propose an efficient algorithm (Supplementary Note) to iteratively estimate 

parameters using PQL and AI-REML algorithm to maximize log-likelihood function  

E"�, �, -; �# 
 log J expNE"�, �;  , �#O / "2C#��� |-.|��� / exp P� 1
2  �"-.#�� Q R  

where E"�, �;  , �# 
 ∑ E�"�, �;  , �#��� , and then use a hybrid strategy of normal approximation and SPA 

to calculate p values. 

Conditional analysis. We let � denote the �-dimensional genotype vector of the marker to test and let ��  

denote the �-dimensional genotype vector of the conditioning marker. The covariate-adjusted genotype 

vectors  

�S 
 � � ����TU�VWVTU������TU�VWVTU�, �S
� 
 �� � ����TU�VWVTU������TU�VWVTU�� 

correspond to the two genotype vectors. The definitions of matrix �, TU, V, W,  and X can be seen in 

Supplementary Note. Under the null hypothesis, the conditional score statistic is  

Y� 
 "�S� � Z�S
�
�# ; TU�X[U , where Z 
 �S�VWV�S

�/�S
�
�VWV�S

� , 

and its estimated variance .\:"Y�# 
 "�S� � Z�S
�
�# ; VWV ; "�S � Z�S

�#. Then, we can use similar hybrid 

strategies to test the conditional score statistic using normal distribution approximation and SPA.    

Parameter estimation. Fitting an alternative mixed model is required to accurately estimate the 

parameter �] and the corresponding odds ratio log"�]#. However, it takes much time and is not scalable for 

a genome-wide association study. We used similar strategy as in SAIGE to use the information from the 

null model fitting to estimate the parameter  

�] 
 �S�TU�X[U
�S�TU�XTU�S 
 Y

.\:̂"Y#. 
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Since both Y and .\:̂"Y# have been calculated for association p-value estimation, it does not require 

additional computations. We use p values to estimate the standard error of �] as _`"�]# 
 |�]/A|, where z-

score corresponds to the association p value / 2. 

Leave-one-chromosome-out scheme. To avoid contamination for correlated markers, we implemented 

an option to apply the leave-one-chromosome-out (LOCO) for DensePOLMM and FastPOLMM methods. 

If LOCO scheme is used, we first use all SNPs to estimate the variance component -̂, and then for each 

chromosome, we updated the estimation of �1,  a, and � ̂after excluding all SNPs in the same chromosome. 

This strategy is the same as SAIGE and BOLT-LMM. For FastPOLMM, we first used tool GCTA to 

calculate GRM for each chromosome and then combined them to calculate GRMs.  

Approaches to Reducing Computation Time and Memory Cost. To make DensePOLMM method 

computationally practical for studies with large sample size �, we use strategies as in BOLT-LMM10 and 

SAIGE8 to reduce computational and memory cost. Instead of storing an � / � dimensional dense GRM, 

we compactly store raw genotypes of the genetic variants into a binary vector and use them when dense 

GRM is needed. When fitting the null mixed model and estimating variance .\:̂"Y#, we need solve linear 

system Σ ; c 
 d, which is challenging since Cholesky decomposition takes 5"��# computation and very 

large memory space to invert matrix Σ.  For a given vector d, we use PCG approach8 to directly calculate 

Σ��d . To make the convergence faster, we use a block diagonal matrix e 
 diag"e� , ) , e�# as the 

preconditioner matrix, where "	 � 1# / "	 � 1#  matrix e� 
 V�
��W�

��V�
�� < -.�� ; 1���1���� , "	 � 1# /

"	 � 1# matrix V� 
 diag�V�� , ) , V�������, and "	 � 1# dimensional vector of ones 1��� 
 "1, 1, ) ,1#�. 

Given the same tolerance criterion as in SAIGE, PCG in POLMM usually takes 6-8 iterations to converge, 

which is ~ 1.5 times more than that in SAIGE. This might be because that we use a block diagonal matrix 

as the preconditioner matrix, in which each block corresponds to one subject. When updating variance 

component -̂, we estimate trhX.Ui by using Hutchinson’s randomized trace estimator, ∑ A��X.U A���
��� , where 

A� , ) , A��  are �� independent random vectors whose elements are i.i.d Rademacher random variables.28 
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In addition, we use Intel Threading Building Block (TBB) implemented in RcppParallel package29 for the 

multi-threading computation. 

Genome build. All genomic coordinates are given according to NCBI Build 37/UCSC hg19. 
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Figure 1. Empirical type I error rates of POLMM, BOLT-LMM, and fastGWA methods at a significance 
level 5e-8. We simulated 1,000 families with a total sample size � 
 10,000 and an ordinal categorical 
phenotype including four levels with sample sizes ��, ��, ��, and ��. From left to right, the plots consider 
four scenarios: balanced (��: ��: ��: �� 
 1: 1: 1: 1), moderately unbalanced (��: ��: ��: �� 
 10: 1: 1: 1), 
unbalanced "��: ��: ��: �� 
 30: 1: 1: 1#, and extremely unbalanced (��: ��: ��: �� 
 100: 1: 1: 1). From 
top to bottom, the plots consider three variance components - 
 0.5, 1, and 2. We simulated common, 
low-frequency, and rare variants with MAFs of 0.3, 0.01 and 0.005, respectively. 
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Figure 2. Empirical powers of POLMM, SAIGE, BOLT-LMM, and fastGWA methods at significance 
level 5e-8. We simulated 1,000 families with a total sample size � 
 10,000 and an ordinal categorical 
phenotype including four levels with sample sizes ��, ��, ��, and ��. From left to right, the plots consider 
four scenarios: balanced (��: ��: ��: �� 
 1: 1: 1: 1), moderately unbalanced (��: ��: ��: �� 
 10: 1: 1: 1), 
unbalanced "��: ��: ��: �� 
 30: 1: 1: 1#, and extremely unbalanced (��: ��: ��: �� 
 100: 1: 1: 1). From 
top to bottom, the plots consider two MAFs of 0.3 and 0.01 to simulate common and low-frequency 
variants. We let variance component - 
 1. For SAIGE, we dichotomize phenotype as 0 or 1 depending 
on the subject is in level 1 or not. For BOLT-LMM, the empirical powers were calculated based on the 
empirical significance levels since it cannot control type I error rates for low-frequency variants.  
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Figure 3. Manhattan plots for UK Biobank analysis 

(A) Liking for cigarette smoking (UK Biobank Field ID: 20641) 

 

(B) Liking for tea with sugar (UK Biobank Field ID: 20734) 

 

(C) Liking for burn of spicy foods (UK Biobank Field ID: 20627) 

 

(D) Liking for vegetables (UK Biobank Field ID: 20739) 
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Figure S1 Sample size distribution of categorical phenotype, able to confide, in UK Biobank. For SAIGE, 
we defined a binary phenotype as 1 or 0 depending on whether the categorical phenotype is “almost daily” 
or not. For POLMM methods, we combined subjects that are neither “never or almost never” nor “almost 
daily” to make a categorical phenotype with 3 levels.  
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Figure S2. Computation time and memory usage of BOLT-LMM, SAIGE, DensePOLMM, FastPOLMM, 
and fastGWA. CPU core is Intel(R) Xeon(R) Gold 6138 @ 2.00GHz. (A). Computation time in step 1 to 
fit a null mixed model; (B) Computation in step 2 to test 30 million variants; (C) Memory usage in step 1, 
fastGWA requires less than 0.4 GB memory when sample size is less than 100,000.  
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Figure S3. Pedigree of families in simulation studies 
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Figure S4. Kinship coefficients estimated from the empirical GRM in simulation studies 
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Figure S5. Sample size distribution of the ordinal categorical phenotypes in simulation studies. We 
simulated 1,000 families with a total sample size � 
 10,000. (A) Bell-shaped phenotype distribution 
with three levels. The sample sizes in three levels are ��, ��, and ��, respectively. From left to right, we 
simulated four scenarios: balanced (��: ��: �� 
 1: 1: 1), moderately unbalanced (��: ��: �� 
 1: 10: 1), 
unbalanced (��: ��: �� 
 1: 30: 1), and extremely unbalanced (��: ��: �� 
 1: 100: 1). (B) L-shaped 
phenotype distribution with four levels. The sample sizes in four levels are �� , �� , �� , and �� , 
respectively. From left to right, we simulate four scenarios: balanced ( ��: ��: ��: �� 
 1: 1: 1: 1 ), 
moderately unbalanced ( ��: ��: ��: �� 
 10: 1: 1: 1 ), unbalanced "��: ��: ��: �� 
 30: 1: 1: 1# , and 
extremely unbalanced (��: ��: ��: �� 
 100: 1: 1: 1). For bell-shaped phenotype distribution, we use two 
methods to dichotomize the categorical phenotype to evaluate SAIGE. SAIGE-1: level 1 versus levels 2 
and 3; SAIGE-2: levels 1 and 2 versus level 3. For L-shaped phenotype distribution, we dichotomize the 
phenotype: level 1 versus levels 2-4.  
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Figure S6. Empirical type I error rates of POLMM, BOLT-LMM, and fastGWA methods at a significance 
level 5e-8. We simulated 1,000 families with a total sample size � 
 10,000 and an ordinal categorical 
phenotype including three levels with sample sizes ��, ��, and ��. From left to right, the plots consider 
four scenarios: balanced (��: ��: �� 
 1: 1: 1), moderately unbalanced (��: ��: �� 
 1: 10: 1), unbalanced 
"��: ��: �� 
 1: 30: 1#, and extremely unbalanced (��: ��: �� 
 1: 100: 1). From top to bottom, the plots 
consider three variance components - 
 0.5, 1, and 2. We simulated common, low-frequency, and rare 
variants with MAFs of 0.3, 0.01 and 0.005, respectively. 
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Figure S7. Empirical powers of DensePOLMM, FastPOLMM, SAIGE, BOLT-LMM, and fastGWA 
methods at a significance level 5e-8. We simulated 1,000 families with a total sample size � 
 10,000 
and an ordinal categorical phenotype including three levels with sample sizes ��, ��, and ��. From left to 
right, the plots consider four scenarios: balanced ( ��: ��: �� 
 1: 1: 1 ), moderately unbalanced 
( ��: ��: �� 
 1: 10: 1 ), unbalanced ( ��: ��: �� 
 1: 30: 1 ), and extremely unbalanced ( ��: ��: �� 

1: 100: 1). From top to bottom, the plots consider two MAFs of 0.3 and 0.01 to simulate common and 
low-frequency variants. We let variance component - 
 1 . For SAIGE, we use different cutoffs to 
dichotomize phenotypes (SAIGE-1: level 1 as controls and levels 2,3 as cases; SAIGE-2: levels 1,2 as 
controls and level 3 as cases). For BOLT-LMM, the empirical powers were calculated based on the 
empirical significance levels since it cannot control type I error rates for low-frequency variants.  
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Figure S8. Estimated variance component of DensePOLMM and FastPOLMM when number of levels is 3. (A) vector � is simulated following 
��0, ��� and � 	 1; (B) vector � is simulated based on the SNPs used in GRM and � 	 1; (C) vector � is simulated following ��0, ��� and 
� 	 10; (D) vector � is simulated based on the SNPs used in GRM and � 	 10. 
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Figure S9. Estimated variance component of DensePOLMM and FastPOLMM when the number of evenly distributed levels is 3, 5, and 10. (A) 
vector � is simulated following ��0, ��� and � 	 1; (B) vector � is simulated based on the SNPs used in GRM and � 	 1; (C) vector � is 
simulated following ��0, ��� and � 	 10; (D) vector � is simulated based on the SNPs used in GRM and � 	 10. 
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Figure S10. Empirical powers of DensePOLMM and FastPOLMM when the number of levels is 3. (A) vector � is simulated following ��0, ��� 
and � 	 1; (B) vector � is simulated based on the SNPs used in GRM and � 	 1; (C) vector � is simulated following ��0, ��� and � 	 10; (D) 
vector � is simulated based on the SNPs used in GRM and � 	 10. 
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Figure S11. Empirical powers of DensePOLMM and FastPOLMM when the number of evenly distributed 
levels is 3, 5, and 10. (A) vector � is simulated following ��0, ��� and � 	 1; (B) vector � is simulated 
based on the SNPs used in GRM and � 	 1; (C) vector � is simulated following ��0, ��� and � 	 10; (D) 
vector � is simulated based on the SNPs used in GRM and � 	 10. 
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Figure S12. Sample size distribution of the four ordinal categorical phenotypes selected to compare 
POLMM and BOLT-LMM methods in UK Biobank data analysis 
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Figure S13. QQ plots for UK Biobank analysis 

(A) Liking for cigarette smoking (UK Biobank Field ID: 20641) 

 

(B) Liking for tea with sugar (UK Biobank Field ID: 20734) 

 

(C) Liking for burn of spicy foods (UK Biobank Field ID: 20627) 

 

(D) Liking for vegetables (UK Biobank Field ID: 20739) 
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Figure S14. Morning/evening person versus rs139315125, a nonsynonymous single nucleotide variant in
PER3 Gene. The phenotypes (Field ID: 1180) include 4 ordinal categories: definitely an “evening” person
more an “evening” than a “morning” person, more a “morning” than “evening” person, and definitely a
“morning” person. (A) phenome-wide association plot on 258 ordinal categorical phenotypes, (B)
regional association plots between rs139315125, (C) sample size distribution in different categories, (D)
minor allele frequencies in different categories 
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Figure S15. Use of sun/uv protection versus rs121918166, a nonsynonymous single nucleotide variant in 
OCA2 Gene. The phenotypes (Field ID: 2267) include 4 ordinal categories: Never/rarely, sometimes, 
most of the time, and always. (A) phenome-wide association plot on 258 ordinal categorical phenotypes, 
(B) regional association plots between rs121918166, (C) sample size distribution in different categories, 
(D) minor allele frequencies in different categories 
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Figure S16. Type I error rates of FastPOLMM methods when categorical phenotypes were simulated 
following adjacent category logistic model (ACL, upper panels) and stereotype model (STR, lower 
panels). For both ACL and STR, we evaluated type I error rates at significance levels of 5e-5 and 5e-8. 
More details about the ACL and STR models and simulations can be seen in Supplementary Note. 
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Table S1. Comparison of different methods for computation time and memory usage given different 
sample sizes. CPU core is Intel(R) Xeon(R) Gold 6138 @ 2.00GHz.  

Sample 
Size 

BOLT-
LMM 

SAIGE DensePOLMM FastPOLMM fastGWA 

3 levels 6 levels 3 levels 6 levels 

A. Computation time in Step 1 (Hours) 

10000 0.1411 0.4177 0.3630 0.3712 0.0045 0.0049 0.0007 
20000 0.2563 0.7367 0.6042 0.7134 0.0048 0.0102 0.0014 
40000 0.4649 1.2081 1.2237 1.3909 0.0062 0.0162 0.0015 
1.00E+05 1.4462 3.6556 5.9188 7.3769 0.0124 0.0241 0.0038 
2.00E+05 3.4735 9.6960 18.1085 21.2003 0.0223 0.0406 0.0090 
397798 8.7587 40.3603 49.9075 64.1850 0.0324 0.0893 0.0203 

B. Computation time in Step 2 (Hours) 

10000 58.845 83.098 61.616 61.476 61.616 61.476 39.229 
20000 70.274 93.073 69.583 69.664 69.583 69.664 39.753 
40000 79.088 110.238 89.650 89.668 89.650 89.668 42.461 
1.00E+05 95.520 184.972 146.928 155.909 146.928 155.909 49.548 
2.00E+05 109.971 310.370 240.802 261.855 240.802 261.855 64.996 
397798 118.605 384.618 296.906 339.898 296.906 339.898 81.112 

C. Memory usage (GB) 

10000 1.684 1.483 1.378 1.465 1.168 1.208 < 0.400 
20000 2.480 2.349 2.002 2.057 1.167 1.250 < 0.400 
40000 4.098 4.072 3.284 3.417 1.228 1.316 < 0.400 
1.00E+05 9.028 8.912 7.060 7.333 1.332 1.863 < 0.400 
2.00E+05 17.378 17.199 13.453 14.128 1.774 2.511 0.580 
397798 33.996 33.513 25.986 27.700 2.561 4.140 0.870 
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Table S2. Summary of the 258 ordinal categorical phenotypes in UK Biobank data analysis 

A. Distribution of different phenotype categories B. Distribution of level numbers 
Phenotype category Number  Level number Number 

Food and other preference 150  3 20 
Psychosocial factors 46  4 34 
Lifestyle and environment 16  5 23 
Dietry 12  6 23 
Physical activity 7  7 5 
Alcohol consumption 5  8 3 
Health and medical history 5  9 150 
Sleeping 5    
Early life factors 4    
Smoking 4    
Sociodemographics 4    
 

 

Table S3. Summary of markers used in data analysis of “Liking for adding salt to foods”. Gene annotation 
and Polyphen2 HDIV score are from ANNOVAR. Based on Polyphen2 HDIV score, the nonsynonymous 
variants are divided into 3 groups: Probably damaging variants (Polyphen2 HDIV score �  0.957), 
Possibly damaging variants (Polyphen2 HDIV score �  0.453 and �  0.956), and Benign variants 
(Polyphen2 HDIV score � 0.452).  

Variants 
in genome 

Exon 
variants 

Nonsynonymous 
variants 
(proportion in 
exon variants) 

Probably 
damaging 
variants  
(proportion in 
nonsynonymous 
variants) 

Possibly 
damaging 
variants 
(proportion in 
nonsynonymous 
variants)  
 

Benign variants 
(proportion in 
nonsynonymous 
variants) 

All variants in data analysis 

24,135,90

6 

229,586 124,975 (54.4%) 41,092 (32.9%) 20,141 (16.1%) 58,450 (46.8%) 

Significant variants for 258 phenotypes (p value < 5e-8) 

5,885 275 207 (75.3%) 63 (30.4%) 33 (15.9%) 111 (53.6%) 
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