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Abstract 
Laboratory experimental evolution provides a window into the details of the evolutionary 
process. To investigate the consequences of long-term adaptation, we evolved 205 S. 
cerevisiae populations (124 haploid and 81 diploid) for ~10,000 generations in three 
environments. We measured the dynamics of fitness changes over time, finding 
repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic 
adaptation is coupled with a steady accumulation of mutations, widespread genetic 
parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do 
not observe long-term coexistence or populations with highly elevated mutation rates. We 
find that evolution in diploid populations involves both fixation of heterozygous 
mutations and frequent loss-of-heterozygosity events. Together, these results help 
distinguish aspects of evolutionary dynamics that are likely to be general features of 
adaptation across many systems from those that are specific to individual organisms and 
environmental conditions.  
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Introduction 
As human health is increasingly threatened by emerging pathogens, multidrug resistant 
infections, and therapy-evading cancer cells, our understanding of the dynamics and 
predictability of evolution is of growing importance. Yet predicting the course of evolution 
is difficult, since it is driven by a complex combination of deterministic and stochastic 
forces. On the one hand, beneficial mutations that establish within a population often rise 
to fixation at rates nearly perfectly predicted by decades-old theory. On the other hand, 
random forces such as mutation, genetic drift, and recombination ensure an enduring role 
for chance and contingency. To understand evolution, we must appreciate the interactions 
between these deterministic and stochastic components.  

While there is extensive theoretical work analyzing how the interplay between these 
factors affects the rate, predictability, and molecular basis of evolution, empirical 
evidence remains relatively limited. In large part this stems from a basic difficulty: we 
cannot easily characterize the predictability of evolution using observational studies of 
natural populations, because we cannot replicate evolutionary history. In addition, the 
inferences we can make from extant populations and the fossil record are limited by a lack 
of complete data.  

To circumvent these difficulties, scientists have turned to laboratory evolution 
experiments, primarily in microbial populations. These provide a simple model system in 
which researchers can maintain many replicate populations for hundreds or thousands of 
generations, in a setting where the environment and other relevant parameters (e.g. 
population size) can be precisely controlled and manipulated. By conducting phenotypic 
and sequencing studies of the resulting evolved lines, we can observe evolution in action, 
and ask whether specific phenotypic and genotypic outcomes are predictable.  

Over the last several decades, a few consistent results have emerged from these types of 
experiments (reviewed in Kassen (2014)). As populations evolve in a constant 
environment, they gain fitness along a fairly predictable trajectory, following a pattern of 
declining adaptability in which the rate of fitness increase slows as populations adapt 
(Couce and Tenaillon, 2015; Kryazhimskiy et al., 2014; Wiser et al., 2013). Meanwhile, the 
rate of molecular evolution remains roughly constant (Barrick et al., 2009; Good et al., 
2017; Tenaillon et al., 2016). Mutations are rarely predictable at the nucleotide level but 
often moderately predictable at higher levels: mutations in certain genes or pathways are 
repeatedly fixed across replicate populations (Bailey et al., 2015; Kryazhimskiy et al., 2014; 
Tenaillon et al., 2012, 2016). Phenotypes not under direct selection change less predictably 
than fitness in the evolution environment, but sometimes still exhibit some correlation 
with level of adaptation in the evolution environment (Jerison et al., 2020; Leiby and Marx, 
2014; Ostrowski et al., 2005). 

Most of these microbial and viral evolution experiments, as well as those in multicellular 
eukaryotes such as C. elegans and Drosophila melanogaster, involve at most about 1,000 
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generations of adaptation to a novel environment. This makes them well suited to studying 
the initial dynamics of adaptation, where a population encounters a novel environment 
and rapidly acquires beneficial mutations as it evolves in response to this new challenge. 
However, it is unclear how far we can extrapolate findings from this type of study. Will 
evolutionary dynamics remain similar over longer timescales? Or will the evolutionary 
dynamics change in qualitative ways once a population has had thousands of generations 
to become well-adapted to the laboratory environment?   

The experiment best equipped to answer this question is the Long-Term Evolution 
Experiment (LTEE) conducted by Richard Lenski and collaborators. For over 30 years and 
70,000 generations (reviewed in Lenski (2017)), the Lenski lab has propagated 12 
Escherichia coli populations in minimal media by batch culture. The LTEE has led to 
numerous insights into evolutionary dynamics over both short and long timescales, and 
has also provided many examples of interesting phenomena such as contingency (Blount 
et al., 2012; Good et al., 2017), the spontaneous emergence of quasi-stable coexistence 
(Good et al., 2017; Plucain et al., 2014; Rozen and Lenski, 2000), and evolution of mutation 
rates (Sniegowski et al., 1997; Wielgoss et al., 2013). The LTEE is unique among microbial 
evolution experiments in its long timescale, and provides an important look at evolution 
well beyond the initial rapid adaptation of a population to a novel laboratory 
environment. However, it is limited by its specificity: it involves twelve replicate 
populations, each founded from a single E. coli strain, all evolving in the same constant 
environment. It thus remains unclear which of the broad conclusions drawn from this 
experiment will be generalizable to other organisms and environments. Would we draw 
similar conclusions when other species are allowed to evolve in other environments for 
long periods of time? 

While no other laboratory evolution experiments match the LTEE in timescale, a few have 
extended beyond the ~1,000 generations of most other experiments. For example, 
Behringer et al. (2018) evolved E. coli populations in tubes for up to 10,000 generations and 
found that they repeatedly evolved a biofilm phenotype and stable coexisting 
subpopulations. Fisher et al. (2018) evolved laboratory populations of the budding yeast S. 
cerevisiae for 4,000 generations, finding that as in E. coli, these populations gain fitness 
along predictable trajectories characterized by declining adaptability. This experiment, 
along with Marad et al. (2018), also studied the relationship between ploidy and 
adaptation, finding that in general diploids adapt more slowly than haploids, presumably 
due to the inaccessibility of recessive beneficial mutations (Zeyl 2003; Marad et al. 2018; 
Fisher et al. 2018). While these experiments provide an important first look into long-term 
adaptation in yeast and E. coli, they all involve relatively limited whole-population 
sequencing, and none have provided data on the dynamics of molecular evolution in both 
haploid and diploid populations over many thousands of generations. 
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To fill this gap, we established a long-term evolution experiment in the spirit of the LTEE, 
with a total of 205 budding yeast populations (split between haploids and diploids) 
evolving in three different laboratory environments. In this paper, we describe the first 
10,000 generations of this experiment. We find that some aspects of evolution in our 
system are broadly consistent with the conclusions of the LTEE and other long-term 
evolution experiments. For example, the dynamics of fitness increase are largely 
repeatable between replicate lines and show a pattern of declining adaptability over time 
even while the rate of molecular evolution remains relatively constant. However, there 
are also key differences: we find no evidence of stably coexisting lineages or widespread 
evolution of mutator phenotypes. As the first laboratory evolution of this length in a 
eukaryotic system, our study provides an important test of the generality of conclusions 
from earlier work (primarily the LTEE), as well as a novel opportunity to observe 
evolutionary dynamics over long timescales across many replicate populations in multiple 
environmental conditions.   

Figure 1. Experimental design. We propagated budding yeast lines in 96-well microplates in 
one of three environmental conditions, using a daily dilution protocol as shown at top. Each 
population was founded by a single clone of one of three ancestral genotypes (a haploid MATa, 
a haploid MAT𝛼, and a diploid, all derived from the W303 strain background). On a weekly basis, 
we froze all populations in glycerol at -80°C for long-term storage. The frozen timepoints used 
for the analyses in this paper are indicated at bottom.  
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Results 
We founded 45 haploid mating type a (MATa), 8 mating type 𝛼 (MAT𝛼), and 37 diploid S. 
cerevisiae populations in each of three evolution environments (90 populations per 
environment, for a total of 270 independent lines; see Figure 1). Each population was 
founded from a single independent colony of the corresponding ancestral W303 MATa, 
MAT𝛼, or diploid strain (see Methods for details). We then propagated each population in 
batch culture in one well of an unshaken 96-well microplate in the appropriate 
environment (YPD at 30°C,  SC at 30°C, and SC at 37°C), with daily 1:210 dilutions for the 
30°C environments, and 1:28 dilutions for the 37°C environment. We froze glycerol stocks 
of each population every week (corresponding to every 70 generations in the 30°C 
environments, and every 56 generations in the 37°C environment), creating a frozen fossil 
record for future analysis. A total of 65 populations were lost during the first 10,000 
generations of evolution due to contamination, evaporation, or pipetting errors (see 
Methods for details; Figure 1 - figure supplement 1), leaving us with 205 populations.  

Fitness changes during evolution 
To measure changes in fitness over time, we unfroze populations from 8 timepoints in 
each of the 205 evolved populations (see Figure 1) and conducted competitive fitness 
assays against a fluorescently labeled reference strain (see Methods for details). In Figure 
2, we show the resulting fitness trajectories in each population. We find that in most cases, 
including almost all haploid populations, these trajectories tell a familiar story of declining 
adaptability: populations predictably increase in fitness rapidly in the first few hundred 
generations, and then adapt more slowly as time progresses (Figure 2 - figure supplement 
1A). We find a different pattern in some diploid populations, where an initial slower 
period of fitness gain is succeeded by a significant rapid increase in fitness. However, even 
in these cases, populations at lower fitness midway through the experiment tend to adapt 
more quickly and “catch up” in the second half of the experiment (Figure 2). We also find 
that a few populations (indicated by asterisks in Figure 2) experience dramatic increases 
in fitness, and subsequently remain at higher fitness than other populations for the 
duration of the experiment. As we describe in more detail below, these events are caused 
by a specific mutation in the adenine biosynthesis pathway (see “ADE pathway mutations” 
section).  

On average, our haploid populations gained more fitness over the course of evolution than 
diploids (P<0.02, Mann-Whitney U test), consistent with prior work (Fisher et al., 2018; 
Marad et al., 2018; Zeyl, 2003). This effect could be entirely due to reduced accessibility of 
recessive beneficial mutations in diploids (as these previous studies propose). However, 
we note that this effect is also consistent with declining adaptability: the diploids have a 
higher ancestral fitness than the haploids in all three environments (Figure 2). In 
agreement with this hypothesis, we find that in SC 30°C, diploids adapt much slower than 
haploids during the first half of the evolution, but gain significantly more fitness than 
either haploid strain background in the second half of evolution (Figure 2 - figure 
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supplement 1B; P<0.02, Mann-Whitney U test). This is also consistent with the more rapid 
evolution of MATa haploids compared to MAT𝛼 haploids in SC 30°C, where the MATa 
haploids start at lower fitness (Figure 2 - figure supplement 1B; P<0.02, Mann-Whitney U 
test). Together, these results are consistent with a picture in which the pattern of declining 
adaptability as a function of fitness applies not only along the course of a fitness trajectory 
for one population, but also between ancestral strains of different ploidy and mating type. 
This effect tends to draw fitness trajectories together as evolution proceeds, leading almost 
all populations to a similar final fitness.  

Molecular evolution 
At six of the timepoints used for fitness assays (Figure 1), we also performed whole-
population, whole-genome sequencing in 90 focal populations (12 MATa, 12 diploid, and 6 
MAT𝛼 from each environment). After aligning sequencing reads and calling variants, we 
use observed allele counts across multiple timepoints to filter out sequencing and 
alignment errors and identify a set of mutations present in each evolving population 
(Methods). At each sequenced timepoint, we call mutations fixed if they are at greater than 
or equal to 40% frequency (diploids) or 90% frequency (haploids) and do not drop below 
these thresholds at a later timepoint. We additionally call loss of heterozygosity in 
mutations in diploids using the criteria for fixation in haploids (90% threshold).  

Our data shows that mutations fix steadily through time across all sequenced populations 
(Figure 3). While we would need more sequenced timepoints to fully observe the 
frequency trajectories of mutations in these populations, we can see a few patterns from 
our temporally sparse sequencing (Figure 3A, Figure 3 figure supplements 1-9). We 
frequently observe clonal interference in which groups of mutations rise to high 
frequency and then plummet to extinction, outcompeted by another group. All 
populations fix mutations throughout the experiment; we find no evidence for the 

Figure 2. Fitness changes during evolution. Competitive fitness is plotted relative to a 
reference strain in each environment. Inferred ancestral fitness is indicated by horizontal lines 
and colored by strain. Populations with premature stop-codon reversion mutations in ADE2 are 
indicated by asterisks. Correlations between replicate fitness measurements are shown in Figure 
2 – figure supplement 2. 
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emergence of stably coexisting lineages within any of our populations (Figure 3B, Figure 
3 - figure supplement 10). Denser sequencing through time would be required to 
determine whether any populations exhibit shorter periods of semistable coexistence (e.g. 
as seen by Frenkel et al. (2015)). It is also possible we are missing coexistence of haplotypes 
at very low frequency (≲5%), which sequencing may not be able to detect. However, our 
results rule out long-term coexistence of multiple lineages at substantial frequencies like 
that observed in the LTEE or Behringer et al. (2018). 

We find that the rate of mutation accumulation in the MATa populations is consistently 
higher than in MAT𝛼 or diploid populations (Figure 3B). This is likely due to a higher 

Figure 3. Dynamics of molecular evolution. (A) Allele frequencies over time in four example 
populations. Nonsynonymous mutations in “multi-hit” genes are solid black lines (see 
“Parallelism” section below), nonsynonymous mutations in the adenine biosynthesis pathway 
are colored orange and labeled, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. (B) Number of fixed mutations over time in each 
population. Timepoints with average coverage less than 10 (for haploids) or 20 (for diploids) are 
not plotted.  
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mutation rate in our MATa ancestor. Consistent with this hypothesis, we find that MATa 
populations have a lower ratio of nonsynonymous to synonymous mutations than MAT𝛼 
or diploid populations in all three environments, as expected if a higher mutation rate 
leads to an increase in hitchhiking (though we note that this comparison is only significant 
in SC 37°C; P<0.01, Mann-Whitney U Test, figure 4A). We identified a putative causal 
mutation in TSA1 in our MATa ancestor; this mutation is absent in our MAT𝛼 ancestor and 
heterozygous in our diploid ancestor. We confirmed that the TSA1 mutation increases 
mutation rate in a BY strain background (Figure 4 - figure supplement 1).  

Overall, we find that dN/dS ratios for fixed mutations in our populations are near one 
(Figure 4A), suggesting that selection in favor of beneficial (and presumably typically 
nonsynonymous) mutations is balanced by hitchhiking of neutral mutations and purifying 
selection against deleterious mutations. The relative prevalence of different types of fixed 
mutations across strains and environments are similar, with roughly 45-50% missense 
mutations, 40-45% synonymous and noncoding mutations, and 5-10% nonsense and indel 

Figure 4. Types of mutations. (A) Swarm plot of dN/dS (ratio of nonsynonymous / synonymous 
fixations by the final timepoint, scaled by the ratio of possible nonsynonymous / synonymous 
mutations across the genome) for each environment-strain combination. Each point represents 
one population and the horizontal line represents the median. Asterisks indicate significant 
differences (P<0.01, Mann-Whitney U test) between strains in the same environment. (B) 
Breakdown of mutation types for all mutations fixed by the final timepoint, in all populations 
corresponding to each environment-strain combination.  

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.330191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.330191
http://creativecommons.org/licenses/by-nd/4.0/


mutations (Figure 4B). While there is variation between populations in the number of 
mutations accumulated, we do not observe any sudden increases in the rate of mutation 
accumulation (Figure 3B). This stands in contrast to the LTEE, where mutator alleles sweep 
to fixation and dramatically increase the mutation rate in 6 of 12 replicate populations. 
We do observe one potential mutator event: P1E11, a MAT𝛼 population evolved in YPD 
30°C has an unusually large number of indel mutations, likely due to a mutation in the 
mismatch repair protein MSH3 that hitchhiked to fixation with an indel mutation in GPB2 
(Figure 4 - figure supplement 2). However, the elevation in mutation rate in this population 
remains relatively modest. While we do observe mutations in mutator-associated genes 
such as MSH3 in other populations, we do not observe clear differences in mutation-type 
distribution or rate of mutation accumulation in these populations, suggesting that these 
mutations lead to at most subtle changes in mutation rate (stacked mutation type plots for 
each population are shown in Figure 4 - figure supplements 3-11). Further work will be 
needed to characterize more subtle variation in mutation rate in each of these populations. 

Parallelism 
Next, we examined whether mutations in certain genes are fixed more frequently than we 
would expect by chance. We define a “hit” as a nonsynonymous mutation that is fixed by 
the final timepoint, and define the multiplicity of a gene as the number of hits in that gene 
across all sequenced populations, divided by its relative target size (Good et al., 2017). As 
in many other laboratory evolution experiments, we observe an excess of high multiplicity 
genes in our data, relative to a null in which mutations are fixed randomly across all open 
reading frames (Figure 5A).  

Figure 5. Parallelism. Comparison between null and actual distributions of (A) the fraction of 
genes with multiplicity ≥ m (see Methods), (B) the fraction of genes with hits in ≥ PH populations, 
and (C) the fraction of amino acid sites with hits in ≥ PH populations (those with PH ≥ 3 are listed 
in Figure 5 - figure supplement 1). For all three plots, the null distribution (shown in gray) is 
obtained by simulating random hits to genes, taking into account the number of hits in each 
population in our data and the relative length of each gene.  
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Figure 6. Multi-hit genes. Each row represents a gene. The first three blocks are groups of genes 
identified from gene-ontology enrichment analysis of multi-hit genes (from top to bottom: 
adenine biosynthesis, sterility, and negative regulation of the Ras pathway). The bottom block is 
all other genes with hits in at least 10 populations. Each column in the heatmap represents a 
population, such that if a gene is hit in that population the square will be colored (darker color 
if a gene is hit 2 or more times in that population). Red squares indicate premature-stop-lost 
mutations in ADE2, which correspond to the populations with asterisks in Figure 2. One 
population that was not sequenced (not shown here) also has this mutation (confirmed by 
Sanger sequencing). The table at left gives more information on each multi-hit gene: “High 
impact” is the fraction of hits that are likely to cause a loss-of-function, as annotated by SnpEff 
(e.g. nonsense mutations), “LOH” (loss of heterozygosity) is the fraction of hits in diploid 
populations that fix homozygously, and “Effect” describes whether the hits are distributed 
significantly unevenly across strain-types (S), environments (E), or both (SxE), when compared 
to a null model where fixations are not strain or environment dependent. 
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To understand the functional basis of this parallelism, we focus on multi-hit genes, defined 
as those with hits in six or more populations. These multi-hit genes (Figure 6) are enriched 
for several gene ontology (GO) terms (Figure 6 - figure supplement 1), indicating 
parallelism at the level of biosynthetic and signaling pathways. In Figure 6 we show all 
genes with hits in ten or more populations, and highlight several key functional groups 
(adenine biosynthesis, sterility, and negative regulators of the Ras pathway; see Figure 6 - 
figure supplements 2-4 for analogous figures for all other multi-hit genes). Mutations in 
the latter two functional groups are commonly observed in yeast evolution experiments, 
and have been shown to be beneficial in similar environments (Echenique et al., 2019; 
Kryazhimskiy et al., 2014; Lang et al., 2013; Venkataram et al., 2016). The mutations in 
adenine biosynthesis, by contrast, reflect the particular genotype of our ancestral strains; 
we discuss these further below.  

We next asked whether some multi-hit genes are more likely to fix mutations in particular 
strain backgrounds or environments. We find that most multi-hit genes have mutations 
distributed across both haploid mating types, diploids, and all three environmental 
conditions, indicating that these mutations are presumably beneficial in all of these 
contexts. However, we do find several mutations that are either strain or environment 
specific (“Effect” column in Figure 6; Figure 6 - figure supplement 5, Supplemental Data). 
For example, mutations in SRS2 and LCB3 are fixed more often in SC 37°C, while mutations 
in CCW12 are fixed more in diploids. 

To investigate the impact of the mutations in multi-hit genes on protein function, we used 
SnpEff (Cingolani et al., 2012) to predict the impact of each mutation. In Figure 6, we show 
the fraction of mutations in each multi-hit gene that were annotated as “High Impact.” 
Because most of these high-impact mutations are nonsense or frameshift mutations, they 
are very likely to lead to loss of function of the associated gene, as are some fraction of the 
“Moderate Impact” mutations (e.g. some missense mutations or in-frame deletions). We 
find that many of our multi-hit genes have a large percentage of high impact mutations, 
suggesting that selection acts in favor of loss-of-function of the corresponding genes, 
consistent with many earlier laboratory evolution experiments (Murray, 2020). However, 
this is not universal: a few genes with 10 or more hits have no high-impact mutations fixed, 
and several of these genes are essential (Figure 6). This suggests that selection in these 
genes may be instead for change- or gain-of-function.  

ADE pathway mutations 
The founding genotype of all the populations used in this experiment is derived from the 
W303 strain background, which has a premature stop codon in the ADE2 gene (ade2-1). 
This disrupts the adenine biosynthetic pathway, which is likely deleterious because 
adenine depletion can limit growth even in rich media (Kokina et al., 2014). In addition, 
loss-of-function of ADE2 causes buildup of a toxic intermediate, phospho-
ribosylaminoimidazole (AIR), which is converted to a visible red pigment that accumulates 
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in the vacuole (Kokina et al., 2014; Sharma et al., 2003) (Figure 7A). This means that loss-
of-function mutations upstream in this pathway, which are deleterious when ADE2 is 
functional because they disrupt adenine biosynthesis, are strongly beneficial in the ade2-
1 background because they prevent this toxic buildup (Echenique et al., 2019). Consistent 
with this, we see rapid fixation of at least one mutation in the ADE pathway, typically 
upstream of ADE2, in almost all of our sequenced populations, along with frequent loss of 
heterozygosity of these mutations in diploids (Figure 3A).  

Five of our sequenced populations find a better solution: they fix mutations that revert the 
premature stop codon so that the full ADE2 sequence can be translated (populations 
indicated by asterisks in Figure 2 and mutations shown in red in Figure 6; note that one 
unsequenced high-fitness population also has this mutation, confirmed by Sanger 
sequencing). These populations have higher fitness than other populations from the same 
strain background and environment, presumably because they have both repaired the 
defect in adenine biosynthesis and avoided the buildup of the toxic intermediate. As we 
would expect, these populations do not fix any loss-of-function mutations in other ADE 
pathway genes. The fact that only six of our populations find this higher-fitness reversion 
of ade2-1 is presumably a consequence of differences in target size: while loss-of-function 

Figure 7. ADE pathway evolution. (A) Simplified schematic of the adenine biosynthesis 
pathway. Circles represent metabolic intermediates; AIR is the toxic metabolic intermediate 
phosphoribosylaminoimidazole. (B) Schematic of a fitness landscape with four possible states 
defined by whether ADE2 is functional and whether the ADE pathway upstream of ADE2 is 
functional. The small insets represent the state of the pathway in (A) at each position. Elevation 
in the landscape represents putative fitness differences, and the width of the arrows represents 
the putative mutation rates between the different states. 
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in genes upstream in the pathway can arise from a variety of mutations in five genes 
upstream of ADE2, the ade2-1 reversion requires a mutation at a specific codon in ADE2.  

We note that once a population has fixed an upstream loss-of-function mutation, it 
requires reversion of both the original ade2-1 mutation and the upstream mutation to find 
the higher-fitness genotype. While this is possible in principle, both mutations have single-
codon target sizes and when they occur alone are likely neutral and deleterious 
respectively, making this evolutionary path extremely improbable. We do not observe any 
populations that move from the lower fitness genotype to the higher fitness genotype even 
after 10,000 generations of evolution. Figure 7 depicts these evolutionary states using a 
simple fitness landscape framework. 

Contingency 
The alternative evolutionary paths involving mutations in the ADE pathway are an 
example of contingency that is already well understood (Echenique et al., 2019; Roman, 
1956). We next sought to analyze the role of contingency more broadly in our experiment. 
To do so, we first analyzed whether mutations are over-dispersed or under-dispersed 
among populations, following Good et al. (2017). Looking within each environment-strain 
combination, we find that mutations are more over-dispersed than expected by chance; 
this is still true if we also include mutations that are present but not fixed (Figure 7 - figure 
supplement 1). This provides evidence of “coupon collecting”: populations with a fixed 
nonsynonymous mutation in a gene are less likely to fix another mutation in that gene.  

We next sought to test whether mutations in a given gene tend to open up or close off 
opportunities for beneficial mutations in other genes. To do so, we calculated the mutual 
information between multi-hit genes (i.e. for each pair of multi-hit genes, whether a 
population with a fixed nonsynonymous mutation in the first gene is more or less likely to 
have a fixed nonsynonymous mutation in the second). As in Fisher et al. (2019), we find 
that the sum of mutual information across all pairs of multi-hit genes in our experiment 
is higher than in simulations (P=0.03, Figure 7 - figure supplement 2). Thus there is an 
overall statistical signature of contingency in our data: mutations in certain genes make 
mutations in others more or less likely. However, we do not have power to isolate this 
signature to individual pairs of genes; the mutual information between any two multi-hit 
genes in our experiment is not higher than we would expect by chance. Note that because 
we calculate mutual information separately for each environment-strain combination (at 
most 12 populations per group), we have less power than Fisher et al. (2019) to detect 
interactions between genes. In sum, while we cannot confidently identify more specific 
examples of contingency in our data beyond a general pattern of coupon-collecting, it is 
likely to be playing a role, as in the LTEE (Good et al., 2017).  
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Patterns of molecular evolution specific to diploids 
Our experiment provides an opportunity to compare asexual adaptation in diploids to that 
in haploids, and to characterize diploid-specific aspects of the evolutionary dynamics 
(Figure 8). In contrast to Fisher et al. (2018), only one of our focal haploid populations 
underwent a whole genome duplication and became diploid during our experiment 
(Figure 8 - figure supplements 1-2, and see Methods). We have excluded this population 
from all comparative analyses, and we restrict our analysis of diploids here to the diploid 
populations started from a diploid ancestor.  

A key difference between evolution in diploids and haploids has to do with the dominance 
effects of mutations. Some mutations that provide a fitness advantage in haploids may be 
fully or partially dominant in diploids, and hence provide a fitness advantage when they 
initially arise in a single chromosome. Others are likely to be recessive, and hence are 
neutral when they initially arise in a single chromosome. Earlier laboratory evolution 
experiments have found that diploid populations of budding yeast tend to adapt more 
slowly than haploids, which could be a signature of the impact of Haldane’s sieve (e.g. if 
most beneficial mutations in haploids are loss-of-function mutations and most loss-of-
function mutations are recessive) (Fisher et al., 2018; Marad et al., 2018; Zeyl, 2003).  
Consistent with this expectation, our diploid populations did increase in fitness more 
slowly than haploids over the course of the experiment, and the majority of mutations in 
our diploid populations fix as heterozygotes. However, we note that diploid populations 
do not accumulate mutations at a lower rate (and do not have a lower dN/dS) than our 
haploid MAT𝛼 populations. Thus the slower rate of fitness increase in diploids could 
instead be partly or entirely a consequence of diminishing returns (Chou et al., 2011; Khan 
et al., 2011; Kryazhimskiy et al., 2014).  

One way for recessive (or incompletely dominant) mutations arising in diploid 
populations to bypass Haldane’s sieve is by loss of heterozygosity (LOH), in which a 
mutation is copied to the sister chromosome by mitotic recombination or whole-
chromosome homozygosis (Forche et al., 2011; Gerstein et al., 2014; St Charles et al., 2012). 
We see signatures of these LOH events across the genome in our experiment (Figure 8A). 
As in Marad et al. (2018) and Fisher et al. (2018), we observe certain areas of the genome 
with higher rates of LOH, such as the right arms of chromosomes XII and IV. These 
concentrations of LOH are likely due to some combination of selection in favor of LOH 
events and differences in the rates at which they occur. Higher rates of LOH on the right 
arm of chromosome XII are likely related to high levels of recombination associated with 
the ribosomal DNA array (Fisher et al., 2018; Marad et al., 2018), but we also see evidence 
that patterns of LOH are affected by selection for recessive beneficial mutations that 
would otherwise be filtered out by Haldane’s sieve (as in Gerstein et al. (2014)), notably 
among loss-of-function mutations in the adenine pathway (Figure 3A, Figure 8A) . 

As driver mutations sweep to fixation in diploids, they have the potential to bring along 
recessive deleterious hitchhikers (which then also fix as heterozygotes). Consistent with 
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this, we find that mutations fixed as heterozygotes in diploids include a large percentage 
of high impact mutations in essential genes, while mutations fixed in haploids and 
mutations fixed homozygously in diploids include nearly zero high impact mutations in 
essential genes (Figure 8B). Even in non-essential genes, mutations that fix heterozygously 
in diploids are more likely to be high impact mutations compared to those that fix in 
haploids or those that fix homozygously in diploids, again suggesting that diploids are 
fixing recessive deleterious mutations as heterozygotes (Figure 8C). This build-up of 
recessive deleterious load in diploids is expected, but takes on an interesting light in the 
context of the widespread loss of heterozygosity we observe. As recessive deleterious load 

Figure 8. Patterns of Molecular Evolution and Loss of Heterozygosity in Diploids. (A) 
Genomic positions of all mutations that experienced loss of heterozygosity (LOH) across all 
diploid populations (loss of heterozygosity defined by a mutation reaching >90% frequency). 
Each horizontal line represents one population, and the histogram at right represents the total 
number of LOH fixations in each population, with populations arranged by environment. The 
top histogram represents the frequency of loss of heterozygosity across the genome, and the 
chromosomes underneath show the centromere location with a black circle. Genes with five or 
more LOH fixations are annotated. (B) The fraction of fixed nonsynonymous mutations that are 
in essential genes, plotted for mutations fixed in haploid populations, mutations fixed 
homozygously in diploid populations (LOH) and mutations fixed heterozygously in diploid 
populations, plotted separately for mutations annotated as high or moderate impact by SnpEff 
(High impact mutations are likely to cause loss-of-function). The dashed line represents the 
fraction of the coding genome that is in essential genes. (C) The ratio of high impact to moderate 
impact fixations in the same three mutation groups as in (B), for mutations in non-essential 
genes only. 
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accumulates in the population, it will limit the rate of LOH by making many LOH events 
strongly deleterious or lethal. Thus, passage through Haldane’s sieve by loss of 
heterozygosity should become less likely as populations accumulate a substantial load of 
hitchhiking heterozygous mutations. However, we note that recombination with sufficient 
inbreeding could dramatically alter these dynamics, by continuously purging recessive 
deleterious load (Charlesworth and Willis, 2009). 

While we hypothesize that most of the heterozygous fixations in diploids are either 
dominant beneficial mutations or neutral or deleterious hitchhikers, some may be 
overdominant beneficial mutations, which are only accessible to diploids. One strong 
candidate for overdominance is CCW12, which is hit preferentially in diploids (Figure 6) 
and in which only 2 of the 17 fixed mutations lost heterozygosity (both of these mutations 
are in-frame deletions of the final amino acid). In Leu et al. (2020), mutations in CCW12 
were maintained in asexual diploid populations but lost in sexual populations, supporting 
a hypothesis of overdominance, though Leu et al. (2020) did not detect overdominance in 
reconstructed strains in their evolution environments. Extensive reconstructions or 
backcrossing will be required to understand the importance of overdominance in the 
evolution of our diploid populations. 

Loss of the 2-micron plasmid and killer phenotype 
While the mitochondria is maintained throughout evolution in all of our focal populations, 
we detected frequent loss or loss-of-function in three other exclusively extrachromosomal 
elements: the 2-micron plasmid and two double-stranded RNA components of the yeast 
“killer virus” toxin-antitoxin system (Schmitt and Breinig, 2002).  

Following Buskirk et al. (2020) and Jerison et al. (2020), we performed halo killing assays 
against a sensitive strain for each of our focal populations at each sequenced timepoint 
(Woods and Bevan, 1968). To avoid potential inactivation of the toxin at higher 
temperatures in liquid media (Woods and Bevan, 1968), we conducted these assays at 
room temperature on agar plates. By the final timepoint, 89/90 of our focal populations 
lost the ability to kill a susceptible strain (Figure 9A), and this loss happened most rapidly 
in the high temperature environment, consistent with previous work (Jerison et al., 2020). 
This effect is likely due to some combination of segregation or replication failure at high 
temperatures (Weinstein et al., 1993) and toxin inactivation at high temperatures (Woods 
and Bevan, 1968). While we have not sequenced RNA viral genomes over time in our 
experiment, Buskirk et al. (2020) also observed widespread loss of killing ability in evolved 
yeast populations and determined that mutations in the K1 toxin gene were causing a loss 
of killing ability. While they found no evidence for a fitness benefit to the host from these 
loss-of-function mutations in the toxin gene, they observed that these mutations were 
favored in intracellular competition with other viral variants. 
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The 2-micron plasmid is a selfish genetic element that imposes a cost on the cell without 
providing any apparent benefit (Harrison et al., 2012). Because it is a DNA element, we can 
directly observe loss of this element in many of our populations. It appears to be lost less 
frequently in diploid strains, and, as with the killer phenotype, it is lost most consistently 
and rapidly in the high temperature environment (Figure 9B). 

Discussion 
Evolution experiments are as much about hypothesis generation as hypothesis testing, and 
work across the field has now laid out a series of hypotheses about evolution in general. 
No experiment can cover the breadth of biological and environmental diversity needed to 
fully test these hypotheses; we cannot replay all of evolution. However, a relatively 
consistent set of results has emerged across microbial species evolved asexually for 
thousands of generations in the lab (Kassen, 2014). Our results confirm many aspects of 
the picture drawn by previous work, with several important exceptions.  

Most of our populations followed predictable fitness trajectories in which fitness increases 
slowed over time. This pattern was not observed, however, in some of our diploid 
populations, which instead increased in fitness at a slow constant rate similar to Marad et 
al. (2018), before experiencing significant rapid increases in fitness likely associated with 
individual selective sweeps (Figure 3, SC environments). Our populations show signatures 

Figure 9. Loss of extrachromosomal elements. (A) Killer virus activity at each sequenced 
timepoint, determined by a killer assay against a sensitive strain. Each row represents one 
population. Examples of raw data for each qualitative phenotypic category are shown in the key, 
and the full raw data underlying these scores is shown in Figure 9 - figure supplement 1. (B) 2-
micron plasmid copy number at each sequenced timepoint. Rows represent the same 
populations as in A. The x in a diploid population at generation 1410 marks a population we 
excluded due to contamination in the population during these experiments. 
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of clonal interference, and they accumulated fixed mutations linearly through time even 
late in the experiment. We find only one strong case of repeatability at the level of the 
nucleotide change, but we observe widespread parallelism across strains and 
environments at the level of genes and pathways: populations predictably adapt through 
loss-of-function mutations in the adenine biosynthesis pathway, sterility-associated genes, 
and negative regulators of the Ras pathway. 

We do not observe two phenomena that results from the LTEE had previously suggested 
might be common: the fixation of mutator alleles that dramatically increase mutation 
rates, and the spontaneous emergence of long-term quasi-stable coexistence between 
competing lineages. The reasons for these differences remain unclear. In part, we may not 
observe these phenomena simply because of the shorter timescale of our experiment. 
However, we note that within the first 10,000 generations of the LTEE, 4 of the 12 
populations fix mutator alleles, and 3 of the 12 populations have coexisting lineages 
detectable from sequencing data. Instead, the lack of mutator lineages may stem from a 
difference in the rate at which mutators arise or a different balance between the relative 
importance of beneficial and deleterious mutations (or differences in other population 
genetic parameters such as the population size or wild-type mutation rate) that leads to 
less indirect selection for mutators (Good and Desai, 2016). The difference in how 
commonly coexistence emerges is similarly unclear. Our strains and environments may 
simply lack the metabolic pathway architecture to produce cross-feeding or other 
interactions that could be the basis for coexistence. Regardless of the reasons for these 
differences, our results suggest that the evolution of mutation rates and of stable ecological 
interactions may not be as general or widespread as the LTEE has suggested, and may 
instead vary substantially based on differences in the organisms or details of the 
environmental conditions.  

As the longest running evolution experiment in yeast, this project provides a window into 
how dominance and loss of heterozygosity can affect the dynamics of adaptation in 
diploids. Our diploid populations appear to carry substantial recessive deleterious load 
(Figure 8B-C) and may carry beneficial overdominant mutations, but future studies 
involving genetic reconstructions or backcrossing will be needed to fully characterize 
these effects. We also observe widespread loss of heterozygosity. The dynamics of 
mutations in the adenine biosynthesis pathway provides a particularly interesting 
example of both how Haldane’s sieve slows adaptation in diploids and how diploids can 
bypass the sieve by loss of heterozygosity. At some point during the experiment, most of 
our diploid populations homozygously fix a loss-of-function mutation upstream in the 
pathway, which eliminates the deleterious toxic intermediate produced as a result of the 
ancestral ade2-1 mutation. While the rate of loss of heterozygosity was high enough to 
produce these genotypes and expose them to selection, it appears to have been a limiting 
factor; haploids typically fixed these mutations earlier in the experiment (Figure 3 - figure 
supplements 2-10). Haldane’s “speedcheck” here slowed adaptation but also provided 
diploid populations with more time to search for the single-codon target of the (highly 
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beneficial and apparently dominant) ade2-1 reversion, and indeed, 4/6 populations with 
this mutation in our experiment are diploids.  

Perhaps the most important product of microbial evolution experiments is a base of 
intuition for understanding how the interactions between different evolutionary forces 
determine the dynamics and outcomes of genotypic and phenotypic evolution. The extent 
to which this base of intuition can be generalized across systems and scales -- ranging from 
specific protein complexes to human pathogens to entire clades of sexually reproducing 
species -- is an important set of largely unanswered questions. However, laboratory 
microbial evolution experiments have provided basic expectations to compare against, 
and have highlighted a collection of phenomena that can sometimes play a major role in 
adaptation. Our results here reinforce the conclusion that long-term adaptation to a 
constant environment can be characterized by widespread clonal interference, 
contingency, and steady molecular evolution even as fitness increases slow down over 
time. They also highlight the role of dominance and loss of heterozygosity in diploid 
evolution. However, our work also calls into question the generality of conclusions about 
the importance of the evolution of mutation rates or stable coexistence. As our populations 
continue to evolve, further analysis of our experiment and of other complementary 
studies will further broaden our understanding of the processes that determine the rate, 
predictability, and molecular basis of evolution.   
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Materials and Methods 
Strains 
The two haploid strains used for this study are MJM361, which has genotype MATa, 
YCR043C:KanMX, STE5pr-URA3, ade2-1, his3Δ::3xHA, leu2Δ::3xHA, trp1-1, can1::STE2pr-
HIS3 STE3pr-LEU2, HML::NATMX, and MJM335, which has genotype MAT𝛼, 
YCR043C:HGHB, STE5pr-URA3, ade2-1, his3Δ::3xHA, leu2Δ::3xHA, trp1-1, can1::STE2pr-
HIS3 STE3pr-LEU2, HMR::NATMX. We created MJM361 and MJM335 by knocking out HML 
or HMR with the NatMX cassette in MJM64 and MJM36 respectively (McDonald et al., 2016). 
The diploid strain used in this study, MJM102, is a cross of MJM64 and MJM36. 

Culture conditions 
We propagated all populations in 128 μL of media in unshaken flat-bottom polypropylene 
96-well plates (VWR #82050-786). For one environment, we used rich YPD media (1% Bacto 
yeast extract (VWR #90000-726), 2% Bacto peptone (VWR #90000–368), 2% dextrose (VWR 
#90000–904)) and grew populations at 30°C. For the other two environments, we used 
synthetic complete (SC) media (0.671% YNB with nitrogen (Sunrise Science #1501–250), 
0.2% SC (Sunrise Science # 1300–030), 2% dextrose) and grew populations at 30°C or 37°C. 
All media was supplemented with 100 μg/ml ampicillin and 25 μg/ml tetracycline. We 
performed daily 1:210 dilutions of populations in YPD 30°C and SC 30°C and daily 1:28 
dilutions of populations in SC 37°C using a BiomekFXp robot (Beckman Coulter). Before 
dilution, we resuspended cultures by shaking at 1200 rpm for 2 minutes, and after dilution 
we shook the new plates at 1200 rpm for 1 minute, both on a Titramax 100 plate shaker 
(Heidolph Instruments). After each transfer, the tips (VWR #89204-794) used to dilute 
cultures were washed with water (to wash out cells) and 100% ethanol (to lyse residual 
cells), left to dry overnight, and reused in culture propagation. The 96-well microplates 
used to maintain populations were bleached (to lyse cells), washed with distilled water, 
and autoclaved (121°C, 30 mins) before being reused. Every 7 days, we froze aliquots of all 
populations in 27% glycerol (final concentration) at -80°C. To monitor for contamination, 
6 well-spaced wells in each environment were intentionally left “blank” at the start of the 
experiment (i.e. they contained only media and no cells). At several timepoints during the 
evolution we noticed contamination in the previously blank wells of our 96 well plates. 
During instances of contamination, we unfroze all populations from an older glycerol 
archive and inoculated 4 μL directly into 124 μL of the appropriate media for each 
environment. A record with notes on the evolution is available in Supplementary file 1. 

Population loss and cross-contamination 
Over the course of this experiment, we periodically screened our populations for drug 
resistance (Hygromycin, G-418, and ClonNat) in order to detect cross-contamination. Using 
these checks, we observed multiple instances of cross-contamination in the YPD 30°C 
environment from other yeast species which were part of a concurrent evolution 
experiment. These events were likely due to mistakes during our tip washing or media 
filling procedures, which were more carefully controlled later in the experiment. As 
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described above for the case of outside contamination, if we observed cross-contamination 
shortly after it occurred, we restarted the experiment from a previously frozen timepoint. 
In several cases we failed to recognize cross-contamination until thousands of generations 
had passed, so we excluded these populations from our analysis (Figure 1 - figure 
supplement 1 lists these populations). While it is possible that cross-contamination 
occurred more frequently than just the cases we observed, the sequencing data for focal 
populations suggests otherwise (fixed mutations remained fixed in all populations for the 
duration of the experiment). Due to a combination of errors in Biomek pipetting and 
evaporation (especially in the 37°C environment), we also lost several populations over 
the course of the experiment (the wells became blanks); these are also excluded from our 
analysis, and are listed in Figure 1 - figure supplement 1. 

Fitness assays 
In order to assess competitive fitness using a consistent reference for each environment, 
we isolated clones at various generations from an arbitrarily chosen evolving diploid 
population in YPD 30°C (P1G09). We looked for clones that had fitnesses intermediate 
between the ancestral strains and evolved strains in each environment, and tagged these 
clones by inserting a yNatMX cassette and GFP (pRPL39::eGFP::tADH) into an intergenic 
region (chromosome VII, position 649234) that was previously used as a neutral insertion 
site control in Johnson et al. (2019). This produced the reference strains used for fitness 
assays in YPD 30°C and SC 30°C (2490A-GFP1), and SC 37°C (11470A-GFP1). 

Fitness assays were performed as described previously (Lang et al., 2011). Briefly, we 
unfroze populations and a reference strain from glycerol stocks, allowed them to grow in 
their evolution environment for one full growth cycle, and then mixed the populations 
with the reference strain in equal proportions. We then maintained these mixed 
populations for 3 daily growth cycles, as described above. At each transfer, we diluted cells 
from each well into PBS and used flow cytometry (Fortessa and LSRII, BD Biosciences) to 
measure the ratio of the two competing types, counting approximately 10,000-40,000 cells 
for each measurement.  

To get fitness measurements for each population-timepoint, we first calculated the 
frequency of fluorescent reference cells in each sample by gating our flow cytometry data 
to separate the fluorescent cells. Because a small percentage of reference cells do not 
fluoresce, we estimated this percentage from six wells that only contained the reference 
in each environment and used these values to correct the reference frequency in all other 
wells. We then calculated the fitness of each population-timepoint as the slope of the 
natural log of the ratio between the frequencies of the non-reference and reference cell 
populations over time (timepoints with reference frequency under 5% or over 95% were 
excluded). After taking the mean of fitness measurements from two replicates, we 
corrected for batch effects in our assays by subtracting the mean fitness measured for an 
unlabeled reference (2490A) in the same fitness assay.  
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Because the ancestral genotypes have a strongly deleterious mutation in the adenine 
biosynthesis pathway and haploids very quickly fix strongly beneficial suppressor 
mutations, it was difficult to measure ancestral fitness in some cases; we sometimes 
observed changes in fitness during the fitness assay even when using clones from 
generation zero (which had been grown prior to and after freezing glycerol stocks). In all 
but one environment-strain combination, we were able to identify populations without 
any nonsynonymous mutations detected from our sequencing data at the first timepoint 
(generation 70 for YPD 30°C and SC 30°C, generation 56 for SC 37°C), so we used the median 
of the fitness measured among these populations at the first timepoint to define ancestral 
fitness. All MATa populations in YPD 30°C had nonsynonymous mutations present (and 
often fixed) at generation 70, but one unsequenced population had a significantly lower 
generation 70 fitness than all others (similar to the one MAT𝛼 population in YPD 30°C with 
no-nonsynonymous mutations at generation 70), so we use the fitness estimated at 
generation 70 for that population as our ancestral fitness for MATa populations in YPD. 

Whole-genome sequencing 
For each of the three environments, we selected 30 focal populations: 12 diploid 
populations, 12 MATa populations, and 6 MAT𝛼 populations. We chose these populations 
randomly after excluding populations in wells along the edge of the plate (which we have 
had the most problems with losing due to evaporation or pipetting errors) and populations 
where we had detected cross-contamination. We performed whole-genome, whole-
population sequencing on each of these populations at 6 timepoints. After unfreezing 
populations as described above, we transferred each of our focal populations into 5 
replicate wells in their evolution environment, let them grow for 24 hours, and then 
pelleted ~0.5 mL of cells. We used a DNA extraction protocol based on the “BOMB gDNA 
extraction using GITC lysis” from Oberacker et al. (2019). Briefly, we resuspended the cell 
pellets in 50 μL of zymolyase buffer (5mg/mL Zymolyase 20T (Nacalai Tesque), 1M Sorbitol, 
100mM Sodium Phosphate pH 7.4, 10mM EDTA, 0.5% 3-(N,N-Dimethylmyristylammonio)-
propanesulfonate (Sigma, T7763), 200µg/mL RNAse A, and 20mM DTT) (Nguyen Ba et al., 
2019) and incubated the suspension at 37°C for 1 hour. Subsequently, we added 85μL of a 
modified BOMB buffer (4M guanidinium-isothiocyanate (Goldbio G-210-500), 50 mM Tris-
HCl pH 8, 20 mM EDTA) and then 115μL of isopropanol (VWR# BDH1133-4LP), mixing by 
pipetting for 3 minutes after each addition. We then added 20μL of Zymo Research 
MagBinding beads to bind DNA, mixed for 3 minutes by pipetting, separated beads from 
the solution using a Magnum FLX 96-well magnetic separation rack (Alpaqua), and 
removed the supernatant. We washed the beads with 400 μL of isopropanol and twice with 
300 μL of 80% ethanol. Finally, we added 75 μL of sterile water to the beads and mixed by 
pipetting for 3 minutes. Finally, we separated beads from solution and transferred 44 μL 
of the supernatant (containing the DNA) into a new 96-well PCR plate (Bio-Rad HSP9631) 
for library preparation. This entire process was carried out on a BiomekFXp robot 
(Beckman Coulter).  
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Sequencing libraries were prepared using a Nextera (Illumina) kit as previously described 
(Baym et al., 2015), but with 3 additional PCR cycles for a total of 16, and with a two-sided 
bead-based size selection after PCR (we used either 0.5/0.7X or 0.55/0.65X bead buffer 
ratios with PCRClean DX Magnetic Beads (Aline)). Libraries were sequenced to an average 
depth of 20-fold (haploids) or 40-fold (diploids) coverage using a Nextseq 500 (Illumina). 

Sequencing analysis 
We trimmed Illumina reads with NGmerge version 0.2 (Gaspar, 2018), aligned all the first-
timepoint samples to a SNP-corrected W303 genome (Lang et al., 2013) using BWA version 
0.7.15 (Li, 2013), and marked duplicate reads with Picard version 2.9.0 
(http://broadinstitute.github.io/picard). We used samtools (Li et al., 2009) to merge these 
alignments and then used Pilon version 1.23 (Walker et al., 2014) to create a new reference 
genome that is corrected for additional SNPs present in the ancestral strains. We then 
repeated this process until the marking duplicate reads step for all samples using this new 
reference and called variants using GATK version 4.1.3.0 (McKenna et al., 2010), 
specifically using HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs with 
heterozygosity set to 0.005. We annotated these variants using SnpEff version 4.3T 
(Cingolani et al., 2012), and split multi-allelic records into individual records. 

We extracted allele depths for each variant to determine the number of reads supporting 
the reference and alternate alleles at each site. We then filtered variants based on these 
read counts. We first excluded mutations with less than 5 reads representing the alternate 
allele across all timepoints. To create this filtered list of variants present in each 
population, we required that mutations pass at least one of these two criteria:  

1) The total alternate-allele reads across all timepoints for the population in 
question is more than 90% of the total alternate-allele reads across all 
populations and all timepoints. 

OR 

2) (At least two timepoints have at least 5 reads supporting the alternate 
allele) AND (The total alternate-allele reads across all timepoints for the 
population in question is more than 90% of the total alternate-allele reads 
across all populations at only the first timepoint). 

The first criterion addresses if a mutation is unique to a single population, which provides 
strong evidence that it is not a common sequencing or alignment error. However, we do 
not want to exclude the possibility of parallelism at the nucleotide level, so we include the 
second criterion as a more lenient way to exclude these types of errors while not requiring 
uniqueness. Some small number of sequencing or alignment errors will pass these filters, 
so we emphasize that this is only a lenient first step, and that our analysis of parallelism 
and contingency relies on also observing fixation. 
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We simplify our SnpEff annotations to indicate one of five types of mutation; in order of 
decreasing putative effect they are indel, nonsense, missense, synonymous, or noncoding. 
For mutations with multiple annotations, we assign the mutation type with the largest 
putative effect. To test if some nearby mutations are part of a single mutational event, we 
perform Fisher’s exact test on the alternate and reference allele counts at each timepoint 
for mutations within 25 bp of each other. If two mutations have no significant differences 
detected at the P<0.01 level for any timepoint, we label them as part of the same “mutation 
group,” and they are counted as one mutation in subsequent analysis. We define 
mutations as “present” at a particular timepoint if they have coverage of at least 5X and 
are at greater than or equal to 0.1 frequency. We define mutations as “fixed” at a particular 
timepoint if they have coverage of at least 5X, are at greater than or equal to a frequency 
of 40% (diploids) or 90% (haploids), and do not drop below these thresholds while still at 
>=5X coverage at a later timepoint. If a mutation is called fixed at one timepoint, it is 
automatically called fixed at later timepoints, even if they have less than 5X coverage. 
Using the same rules, we also call loss of heterozygosity of a mutation in diploids using a 
frequency threshold of 90%. We exclude mutations called in the 2-micron plasmid from 
further analysis since most populations lose this plasmid during evolution and variation 
in coverage, and misalignments can easily produce false mutation calls in these cases. We 
also exclude mutations in the telomeres, where alignment errors and repetitive regions 
make mutation calling difficult. 

Structural variant / copy number variant analysis 
We use LUMPY and smoove (https://github.com/brentp/smoove) to call structural variants 
in our sequencing data (Layer et al. 2014). All structural variants called are listed in the 
processed variant call files for each population included in Supplementary file 2. In 
addition, we use a custom pipeline to identify putative copy number variants (CNVs) in 
our data. We use samtools-depth to calculate per-site depth from our bam files, and then 
calculate the average depth in non-overlapping 500 bp windows along the genome. We 
calculate the median window-depth across the entire genome for each sample and divide 
all window-depths by this value to get “relative depth.” To account for regions that are at 
a different copy number in our ancestral strains, we calculate the average relative depth 
at the first sequenced timepoint for each window (and for each strain). We divide the 
relative depth in our data by these values to get “standardized depth.” Windows with a 
relative depth less than 0.25 at the first timepoint are excluded from analysis. For each 
chromosome in each sample, we use a simple, untrained HMM to detect tracts of 
standardized depth that deviate from the expectation of 1. We allow states 0, 0.5, 1, 1.5, 2, 
3, and 4, with variances equal to the calculated variance in standardized depth multiplied 
by the state (except for state 0, where we use the calculated variance multiplied by 0.5), 
initial probabilities of 1% for each non-1 state (94% for state 1), and transition matrix 
probabilities of .01% for all non-diagonal entries (99.94% along the diagonal). This is a 
rough detection method, but it succeeds in identifying putative CNVs, which we then 
subject to a filtering process. First, we merge CNV records across timepoints if they cover 
the same region. Next, we exclude CNVs in telomeric regions, CNVs found in only one 
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timepoint, and CNVs that are less than 4 windows (2kb) long. Finally, we manually inspect 
our structural variant and CNV calls together using a modified version of Samplot 
(https://github.com/ryanlayer/samplot) to create a list of confirmed copy number variants 
in our populations (Supplementary file 3, structural variants detected in at least two 
different populations are listed in Figure 3 - figure supplement 11). During this analysis, 
we noticed two regions with high copy-number that experienced copy-number changes in 
many populations: one associated with the CUP1 tandem array and one associated with 
the ribosomal DNA tandem array. We excluded these regions from the above analysis and 
show their copy number changes in every population in Figure 3 - figure supplement 12. 

Analysis of multi-hit genes 
To look for evidence of parallelism and contingency in our data, we focus on 
nonsynonymous mutations in genes (we consider all open reading frames to be genes for 
this analysis) that are fixed at the final timepoint. We define the multiplicity as the number 
of hits multiplied by the number of possible nonsynonymous mutations for that gene, 
scaled by the mean number of possible nonsynonymous mutations across all genes. In our 
null model, the hits for each population (the number of hits from our data) are randomly 
assigned to genes from the complete set of 6579 annotated open reading frames in S. 
cerevisiae, weighted by the number of possible nonsynonymous mutations in each gene. 
We simulate these random draws 1,000 times to generate null distributions for gene 
multiplicity and number of unique populations in which a gene has at least one hit. To 
look for parallelism at the codon level, we randomize the location of each nonsynonymous 
fixed mutation in the gene in which it occurred and then count the number of populations 
with simulated hits at each amino acid position. We repeat this process ten times to build 
a null distribution and compare it to the empirical distribution of populations hit for each 
amino acid position (Figure 5C). 

Next, we move away from using multiplicity, since we know that selection is playing a 
large role and mutation rate is not completely limiting adaptive dynamics (clonal 
interference is observed in our sequencing data). This means that as we look to identify 
common targets of selection, we will treat the probability of a hit in any gene where we 
have observed at least one hit as equally likely (instead of weighting by the number of 
possible nonsynonymous mutations). To this end, we define multi-hit genes as those with 
hits in at least six populations. Based on the simulations above, a gene has a P=0.02 chance 
of being hit in at least six populations. While this is a lenient cutoff that will produce a 
number of false positives, we see a large excess of genes with hits in greater than six 
populations in our data (Figure 5B). To look for functional patterns in our mutation data, 
we performed GO-Term Enrichment on the set of multi-hit genes analysis using the 
GOATOOLS python library (Klopfenstein et al., 2018).  The enrichments that were 
significant after Benjamini-Hochberg multiple hypothesis testing correction are listed in 
Figure 6 - figure supplement 2. 
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We define essential genes based on data from the yeast gene deletion collection (Giaever 
et al., 2002; Liu et al., 2015). The set of essential genes used in Figure 8 are those classified 
as non-evolvable in Liu et al. (2015). 

Multi-hit gene enrichment by strain and/or environment 
Within a given set of populations, we model the probability of a multi-hit gene i being 
associated with a fixation event based on Ñi , the number of populations with a mutation 
fixed in gene i plus a 0.1 pseudocount (to avoid zero probabilities), and M, the total number 
of gene hits across all populations in the set (we ignore when a gene is hit multiple times 
in the same population for this probability calculation). We model the probability a gene 
is hit in population j based on the total number of gene hits in population j, Mj: 

𝑃(𝐺𝑒𝑛𝑒	𝑖	𝑛𝑜𝑡	ℎ𝑖𝑡	𝑖𝑛	𝑝𝑜𝑝	𝑗) 	= 	𝑃(ℎ!" = 0) 	= 	 (	1 − (Ñ! 	/	𝑀)	)#!, 

𝑃(𝐺𝑒𝑛𝑒	𝑖	ℎ𝑖𝑡	𝑖𝑛	𝑝𝑜𝑝	𝑗) 	= 	𝑃(ℎ!" = 0) 	= 	1 − (	1 − (Ñ! 	/	𝑀)	)#!. 

To test whether genes are disproportionately mutated in different strain backgrounds 
(MATa, MAT𝛼, diploid) or different environments, we compare four models that use 
different sets of populations to compute P(hij): 

1) P(hij) is calculated using the entire set of populations (so that there is only one P(hij)  
for each multi-hit gene) 

2) P(hij) is calculated separately for each strain background (so that there are three 
P(hij) for each multi-hit gene, one for each strain) 

3) P(hij) is calculated separately for each environment (so that there are three P(hij) for 
each multi-hit gene, one for each environment) 

4) P(hij) is calculated separately for each environment-strain combination (so that 
there are nine P(hij) for each multi-hit gene, one for each environment-strain 
combination) 

For each multi-hit gene, we calculate the log-likelihood of the data under each model and 
calculate log-likelihood ratios between model 1 and each of the other three models. We 
then create 10,000 null datasets by drawing values from the probabilities defined in model 
1 and compute log-likelihood ratios for these simulated data. To define significant effects 
(at a P<0.05 level), we compare our log-likelihood ratios to distributions of log-likelihood 
ratios from these null datasets and correct for multiple hypothesis testing using a 
Benjamini-Hochberg correction. If multiple models are significantly better than model 1, 
we use the Akaike information criterion (AIC) to determine the model that best explains 
the data. Data on multi-hit genes and these statistical tests are available in  in 
Supplementary file 4. 

Mutual information analyses 
Next, we investigate whether the fixation of a mutation in any of our multi-hit genes is 
dependent on fixation of a mutation in another multi-hit gene.  For each environment-
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strain combination, we calculate mutual information between all multi-hit genes as 
described in Fisher et al. (2019). Because we separate our data into sets of populations with 
a shared environment and strain background, our data contain many cases where a gene 
is hit zero times, which inflates the sensitivity to the pseudocount used in Fisher et al. 
(2019). To avoid this issue, we set the mutual information between two genes to zero if 
either of the genes has no mutations in a given environment-strain combination. We sum 
the mutual information values for each pair of genes across the 9 possible environment-
strain combinations, and record the total mutual information (MItot, the sum of MI values 
across all possible gene pairs) and the maximum mutual information between any two 
genes (MImax).  

Next, we compare these results to simulated datasets. To avoid mistaking an environment 
or strain effect for an association between genes, we use separate P(hij|e) for each 
environment-strain combination e, as in model 4 above. We simplify our P(hij|e) 
expression to P(hi|e) here by treating populations as exchangeable (note that the number 
of fixed mutations in each environment-strain combination is not highly variable (Figure 
3B)), so that P(hi=0|e) = 1 - (Ni / Ntot,e) and P(hi=1|e) = Ni / Ntot,e  , where  Ntot,e is the total 
number of populations in environment-strain combination e. We create 10,000 null 
datasets by drawing from P(hi|e), and calculate mutual information as described above to 
build null distributions for MItot and MImax.  

The results are plotted in Figure 7 - figure supplement 1. While our MItot for our data is 
higher than in simulated datasets (P=0.03), MImax  for our data lies well within the range of 
simulated data, so we cannot detect any specific examples of contingency. As in Fisher et 
al. (2019), we test the robustness of our results to choices of the pseudocount εM between 
0.1 and 2 (the value used above was 1), and find that it does not qualitatively change our 
results. 

Over-/under- dispersion analysis 
Following Good et al. (2017), we looked for statistical patterns of contingency by 
comparing the dispersion configurations for genes with simulated data. For each 
environment-strain combination, we record the number of times each gene is hit and the 
number of populations in which it is hit. We also simulate distributing these hits across 
populations by multinomial draws weighted by the number of hits in each population. We 
run this simulation, for each possible number of hits (up to the maximum observed), 
10,000 times for each environment-strain combination. For each number of hits, we 
compute the probability of those hits being distributed among each possible number of 
populations for both our data and the simulated data. We compute the “excess probability” 
in our data by subtracting the simulated probability from the data probability. The results 
are plotted in Figure 7 - figure supplement 2A. We repeat this process with mutations that 
are detected but do not fix included (Figure 7 - figure supplement 2B). Red squares along 
the diagonal suggest that the mutations are overdispersed, meaning that nonsynonymous 
mutations are less likely to fix multiple times in the same population than we would expect 

27

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.330191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.330191
http://creativecommons.org/licenses/by-nd/4.0/


by chance. As in Good et al. (2017), we quantify this observation of overdispersion by 
showing that mutations have less “missed opportunities” than we would expect by chance 
(Figure 7 - figure supplement 2).  

Killer phenotype assays 
To assay for the killer phenotype, we used a modified halo killing assay (Woods and Bevan, 
1968). First, we plated a 150 μL of 1:100 diluted saturated culture of a sensitive strain 
(YAN563) on a single-well (VWR #46600-638) methylene blue agar plate (20 g/L peptone, 10 
g/L yeast extract, 20 g/L citric acid monohydrate, 30 mg/L methylene blue, 10 g/L K2HPO4, 
20 g/L dextrose, 15 g/L noble agar). We then used the Biomek Fxp Liquid Handler to spot 
3.5 μL of saturated culture of each of our focal populations onto this lawn. We designed a 
Biomek protocol that uses a deck spring attachment (“Alpillo” from Alpaqua) to make sure 
that the tips contacted the agar but did not pierce the agar layer during this step. After 2-3 
days of incubation at room temperature, we scanned the plates. We scored each 
population-timepoint as “Killer,” “Diminished Killing,” or “No Killing,” based on the size of 
the zone of inhibition (halo) around the spot (see Figure 9A for examples of each category, 
and Figure 9 - figure supplement 1 for the underlying images). The sensitive strain used 
(YAN563) is a cross between YAN457 (MATa, his3D1, ura3D0, leu2D0, lys2D0, RME1pr::ins-
308A, ycr043cD0::NatMX, can1::RPL39pr_ymGFP_Ste2pr_SpHIS5_Ste3pr_LEU2, derived 
from BY4742) and YAN433 (MATα, his3D1, ura3D0, leu2D0, lys2D0, RME1pr::ins-308A, 
ycr043cD0::HphMX4, can1::RPL39pr_ymCherry_Ste2pr_SpHIS5_Ste3pr_LEU2, derived 
from BY4742). 

Ploidy assays 
To investigate whether any of our focal populations had changed ploidy during the course 
of the experiment, we measured the DNA content of clones isolated from each focal 
population at the final timepoint. We isolated 1-2 clones from each focal population and 
measured DNA content using a nucleic acid stain as described previously in Jerison et al. 
(2020), but with minor modifications. Briefly, we diluted 4 μL of saturated cultures from 
each clone (grown in YPD) into 120 μL of water in a 96-well plate, centrifuged the plate, 
removed the supernatant, resuspended in 50 μL water, added 100 μL of ethanol and 
pipetted slowly to mix, and incubated at room temperature for 1 hour. Next, we 
centrifuged the plate, removed the supernatant, let dry for ~5 minutes, resuspended in 65 
μL RNase solution (2 mg/ml RNase in 10 mM Tris-HCl, pH 8.0 and 15 mM NaCl), and 
incubated at 37°C for 2 hours. We then added 65 μL of 2 μM Sytox Green (Thermo Fisher 
Scientific S7020), covered the plates in aluminum foil, and shook on a Titramax 100 plate 
shaker (Heidolph Instruments) for approximately 45 minutes at room temperature. We 
measured DNA content using a linear FITC channel on a Fortessa flow cytometer (BD 
Biosciences). FITC histograms are shown and described in Figure 8 - figure supplement 1. 
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Determining the mutation responsible for a higher mutation rate in 
MATa populations 
To investigate the putative higher mutation rate in the MATa populations in our 
experiment, we examined a list of mutations that differentiate our MATa ancestor and our 
MAT𝛼 ancestor (available in Supplementary file 5), and identified a putative causative 
mutation: a missense mutation at a conserved residue in TSA1 (G146S, nucleotide 
mutation: G->A at bp 436). TSA1 encodes thioredoxin peroxidase, which is involved in 
eliminating reactive oxygen species that can cause DNA damage, and previous work has 
shown that deleting the gene causes an increase in mutation rate (Huang et al., 2003). As 
we would expect, this mutation is heterozygous in the diploid ancestor. 

We reconstructed the TSA1 G146S mutation by Delitto Perfetto in the S288C background 
(Storici and Resnick, 2006). Briefly, we transformed BY4741 with a KlURA3-KanMX4 
cassette, knocking out the whole TSA1 gene, thus creating YAN727. We then removed the 
cassette with a PCR amplified TSA1 fragment containing the G146S mutation, selecting on 
5-FOA and the absence of G418 resistance, thus creating YAN728. The presence of the 
mutation was then confirmed by Sanger sequencing. We used BY4741 for these 
reconstructions because our MAT𝛼 ancestor has a functional URA3 (under the STE5 
promoter), making it more difficult to create this type of reconstruction. 

We performed fluctuation assays on each of the three strains as previously described 
(Lang and Murray, 2008). Briefly, we inoculated a colony from each strain into SC, grew 
overnight, diluted 1/10,000 and split into 100 μL aliquots in all wells of a 96-well plate, 
sealed the plate with aluminum foil, and incubated at 30°C without shaking for 48 hours. 
We combined the 8 wells from column 2 of each plate and used the pooled culture to 
measure cell density on a Coulter Counter Z2 (Beckman Coulter). We spotted the entire 
volume of each of the other 88 wells on CSM-Arg (Sunrise Scientific) plates supplemented 
with 100 mg/L L-canavanine (Sigma-Aldrich, St. Louis). Plates were allowed to dry 
overnight at room temperature, incubated at 30°C for 36 hours, then left at room 
temperature for 12 hours before counting and scanning. We attempted to count all 
colonies >0.25mm in size in each spotted culture, but note that our estimates of counts >50 
are approximate due to overlapping colonies (counts available in Supplementary file 5). 

We used the Ma-Sandri-Sarkar Maximum Likelihood Estimator (Sarkar et al. 1992), 
implemented in python (https://github.com/bondarevts/flucalc), to measure the mutation 
rate at the CAN1 locus (Radchenko et al., 2018; Sarkar et al., 1992). As noted in Lang and 
Murray (2008), there is likely limited postplating growth of sensitive yeast at this 
Canavanine concentration, leading to the deviations from the expected Luria-Delbruck 
distribution in Figure 3 - figure supplement 13. Despite this complication, we can easily 
see that the TSA1 mutation causes a ~5-fold increase in mutation rate over the BY4741 
background, and the TSA1 deletion causes an ~8-fold increase in mutation rate over the 
BY4741 background (Figure 3 - figure supplement 13). In our case, the important result is 
simply that the TSA1 G146S mutation causes an increase in mutation rate, consistent with 

29

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.09.330191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.330191
http://creativecommons.org/licenses/by-nd/4.0/


the hypothesis that it underlies the higher number of fixed mutations in MATa populations 
in our experiment. 
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Figure Supplements 
Environment Populations lost during evolution due to evaporation, pipetting errors, or contamination 

YPD 30°C 

P1A02 (blank);P1A11 (blank);P1D07 (blank);P1D08 (blank);P1E06 (blank);P1E07 (blank);P1E08 
(blank);P1G03 (blank);P1H03 (blank);P1B08 (contaminated);P1G02 (contaminated);P1G06 
(contaminated);P1B09 (contaminated);P1D02 (contaminated);P1F12 (contaminated);P1H01 
(contaminated);P1A07 (contaminated);P1D11 (contaminated) 

SC 30°C 
P2A08 (blank);P2D07 (blank);P2E01 (blank);P2E05 (blank);P2E07 (blank);P2F10 (blank);P2G03 
(blank);P2G07 (blank); 

SC 37°C 

P3A01 (blank);P3A02 (blank);P3A04 (blank);P3A05 (blank);P3A06 (blank);P3A07 (blank);P3A08 
(blank);P3A09 (blank);P3A11 (blank);P3B01 (blank);P3B02 (blank);P3B03 (blank);P3B04 
(blank);P3B05 (blank);P3B09 (blank);P3B12 (blank);P3C01 (blank);P3C02 (blank);P3C08 
(blank);P3C12 (blank);P3D01 (blank);P3D07 (blank);P3D08 (blank);P3D12 (blank);P3E01 
(blank);P3E05 (blank);P3E06 (blank);P3E07 (blank);P3E09 (blank);P3F01 (blank);P3G01 
(blank);P3H01 (blank);P3H06 (blank);P3H07 (blank);P3H08 (blank);P3H09 (blank);P3H10 
(blank);P3H11 (blank);P3H12 (blank) 

Figure 1 - figure supplement 1. Record of populations lost during evolution.  
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Figure 2 - figure supplement 1. Declining adaptability. (A) Fitness increase rate (per 10,000 
generations) between timepoints over the course of evolution. The insets are the same data, but 
with a cut-off y-axis. (B) For each strain and environment, the mean rate of fitness gain over the 
first half of evolution (square points) and the second half of evolution (triangle points), as a function 
of initial fitness or the mean fitness at the midpoint, respectively. Colors are the same as in (A). 
Error bars represent standard deviations. 
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Figure 2 - figure supplement 2. Correlations between absolute fitness measured in replicate 
competitions with a fluorescent reference.  
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Figure 3 - figure supplement 1. Allele frequencies over time in all focal diploid populations in YPD 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 2. Allele frequencies over time in all focal MATa populations in YPD 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 3. Allele frequencies over time in all focal MAT𝛼 populations in YPD 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 4. Allele frequencies over time in all focal diploid populations in SC 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 5. Allele frequencies over time in all focal MATa populations in SC 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 6. Allele frequencies over time in all focal MAT𝛼 populations in SC 
30°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 7. Allele frequencies over time in all focal diploid populations in SC 
37°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 8. Allele frequencies over time in all focal MATa populations in SC 
37°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 9. Allele frequencies over time in all focal MAT𝛼 populations in SC 
37°C. Nonsynonymous mutations in “multi-hit” genes are solid black lines, mutations in the adenine 
biosynthesis pathway are colored orange, other nonsynonymous mutations are thin grey lines, and 
synonymous mutations are dotted lines. 
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Figure 3 - figure supplement 10. No evidence of coexistence. The number of mutations present 
in a population plotted against the number of mutations fixed, both scaled by the total number 
fixed by the final timepoint. Long-term coexistence of multiple lineages in a population would be 
visible here as horizontal lines because more mutations would be present over time, but no 
mutations would fix; we do not observe any clear examples of this here, in contrast to the LTEE. 
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Approximate 
position 

Copy Number 
Changes 
Observed Type 

Genes likely 
affected Notes Populations with Changes 

chrI:19500.. 
23000 Deletion (1N®0N) Deletion  

likely Ty1-LTR-
associated P1B02;P3E11 

chrIII:151500.. 
169000 

Duplication 
(1N®2N), Deletion 
(2N®1N) 

Duplication 
& Deletion 
seen 

MAK32;PET18;MA
K31;HSP30;SLM5;
PMP1;NPP1;RHB1; 

likely Ty1-LTR-
associated P2G04;P3C03;P3D09 

chrIV:1155000.. 
1160000 

Deletion (1N®0N, 
2N®0N) Deletion HXT6;HXT7 

likely due to HXT6-HXT7 
recombination 

P1B04;P1B11;P1C05;P1C06;
P1E04;P1G04;P1G05;P1G08;
P1B07;P1G10;P2B07 

chrIV:1160000.. 
1163600 

Deletion (1N®0N, 
2N®0N) Deletion HXT3;HXT6 

likely due to HXT3-HXT6 
recombination 

P1C02;P1E09;P1G08;P1B07;
P1G10;P2B07;P2C10 

chrIV:884000.. 
987500 

Duplication 
(1N®2N, 2N®3N) Duplication Many 

likely Ty1/Ty2-
associated P3G09;P3C11 

chrV:497000.. 
569500 

Duplication 
(2N®4N, 2N®3N) Duplication Many 

duplication of a large 
section of the right arm 
of chrV, likely Ty1-
associated 

P3B08;P3D09;P2B09;P3D10;
P1C07;P1G09;P2F09;P2G10;
P2D08 

chrX:198000.. 
202000 

Duplication 
(1N®2N), Deletion 
(2N®0N, 1N®0N) 

Duplication 
& Deletion 
seen  

likely Ty1/Ty4-
associated P2C06;P2D11;P3C07;P3G06 

chrXV:0..25000 
Duplication 
(2N®4N) Duplication 

IMA2;ENB1;CSS3;
PAU20;BDS1;AAD
15 

duplication of a large 
section of the left arm 
of chrXV P3B10;P3D10 

chrXV:1074000.. 
1078500 Deletion (1N®0N) Deletion HSP33  P2D06;P3G06 

Figure 3 - figure supplement 11. Table of copy number change events observed in more than one 
population, excluding those show in Figure 3 – figure supplement 12. All detected copy number 
change events are listed in Supplementary file 3. 
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Figure 3 - figure supplement 12. Copy number variation in the ribosomal DNA array and CUP1 
array, determined from sequencing coverage data. 
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Figure 4 - figure supplement 1. (A) Inferred mutation rates of BY4741, BY4741 with TSA1 deleted 
(YAN727), and BY4741 with the G146S mutation in TSA1 (YAN728). Error bars represent 95% 
confidence intervals. (B) Cumulative distributions of colony counts from fluctuation assays and 
corresponding Luria-Delbrück fits, colors are the same as in (A).  
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Figure 4 - figure supplement 2. Population P1E11, a putative mutator. (A) Histogram of the 
percentage of fixed mutations that are indels in all 90 focal populations, with P1E11 indicated by 
an arrow. (B) Allele frequencies of mutations in P1E11. Nonsynonymous mutations in “multi-hit” 
genes are solid black lines, other nonsynonymous mutations are thin grey lines, synonymous 
mutations are dotted lines, indels are brown lines, and mutations in MSH3 and GPB2 are colored 
and labeled. We hypothesize that the MSH3 mutation hitchhiked to fixation with the selected GPB2 
indel mutation, which occurred partially due to higher rates of indel mutations in strains without 
proper MSH3 function. 
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Figure 4 - figure supplement 3. Stacked plot of fixed mutation types over time in all focal diploid 
populations in YPD 30°C. 
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Figure 4 - figure supplement 4. Stacked plot of fixed mutation types over time in all focal MATa 
populations in YPD 30°C. 
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Figure 4 - figure supplement 5. Stacked plot of fixed mutation types over time in all focal MAT𝛼 
populations in YPD 30°C. 
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Figure 4 - figure supplement 6. Stacked plot of fixed mutation types over time in all focal diploid 
populations in SC 30°C. 
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Figure 4 - figure supplement 7. Stacked plot of fixed mutation types over time in all focal MATa 
populations in SC 30°C. 
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Figure 4 - figure supplement 8. Stacked plot of fixed mutation types over time in all focal MAT𝛼 
populations in SC 30°C. 
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Figure 4 - figure supplement 9. Stacked plot of fixed mutation types over time in all focal diploid 
populations in SC 37°C. 
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Figure 4 - figure supplement 10. Stacked plot of fixed mutation types over time in all focal MATa 
populations in SC 37°C. 
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Figure 4 - figure supplement 11. Stacked plot of fixed mutation types over time in all focal MAT𝛼 
populations in SC 37°C.  
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Gene Pop. Chrom. Pos. Mutation Change Notes 

RRT15 P1B04 chrXII 491006 A->G D13G Possibly the result of homologous 
repair; two sequences homologous 
to this region have this A->G 
mutation, but also have another 
mutation not seen in alignments 
supporting this mutation (suggesting 
this is not just misalignment). 

RRT15 P3C05 chrXII 491006 A->G D13G 
RRT15 P3D10 chrXII 491006 A->G D13G 

RRT15 P2D06 chrXII 491006 A->G D13G 

HHF2 P1H11 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 

Repetitive sequence deletion. 

HHF2 P3F07 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P3F03 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P3C10 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P2C11 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P1E04 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P2B04 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P1G08 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P2C10 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P1B07 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
HHF2 P3G10 chrXIV 577236 TTCGGTGGTTAAACAA->T Frameshift 
ADE5,7 P1B11 chrVII 57654 A->G R399G 

Possibly functional, possibly by 
chance since this is a multi-hit gene. ADE5,7 P3B07 chrVII 57655 G->A R399K 

ADE5,7 P3E02 chrVII 57655 G->T R399I 
ADE2 P1E11 chrXV 565924 A->C Stop64E 

Parallelism due to strong fitness 
benefit of fixing the premature stop 
codon ade2-1. 

ADE2 P2F07 chrXV 565922 T->G Stop64Y 
ADE2 P2B09 chrXV 565924 A->G Stop64Q 
ADE2 P1C09 chrXV 565924 A->G Stop64Q 
ADE2 P3B10 chrXV 565924 A->C Stop64E 

ADE2 P2D01 chrXV 565924 A->T Stop64K 
Non-focal population, mutation 
predicted by fitness data and 
confirmed by Sanger sequencing 

ACE2 P3C07 chrXII 406273 AT->A Frameshift 
T deletion in an 8 T run. ACE2 P1E09 chrXII 406273 AT->A Frameshift 

ACE2 P3F09 chrXII 406273 AT->A Frameshift 
CCW12 P2B07 chrXII 370261 TACA->T Frameshift 

Repetitive sequence deletion; yields a 
protein with one less Leucine at the 
end of the protein. 

CCW12 P3B07 chrXII 370261 TACA->T Frameshift 
CCW12 P3E08 chrXII 370261 TACA->T Frameshift 
CCW12 P1F07 chrXII 370261 TACA->T Frameshift 
STE12 P3F11 chrVIII 276224 TG->T Frameshift 

G deletion or insertion in an 8 G run. 

STE12 P3D05 chrVIII 276224 TG->T Frameshift 
STE12 P1G09 chrVIII 276224 TG->T Frameshift 
STE12 P3F05 chrVIII 276224 TG->T Frameshift 
STE12 P3D03 chrVIII 276224 TG->TGG Frameshift 
STE12 P3G02 chrVIII 276224 TG->T Frameshift 
STE12 P3C11 chrVIII 276224 TG->T Frameshift 

Figure 5 - figure supplement 1. All fixed mutations in codon positions with 3 or more fixed 
mutations.  
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GO ID GO term 

P-value 
(Benjamini-
Hochberg 
Corrected) 

Number 
genes in 

group Genes Hit in Group 

GO:0043087 regulation of GTPase 
activity 0.00012 9 TRS130;IRA1;IQG1;RGA2;TRS120;IRA2 

GO:0010525 
regulation of 
transposition, RNA-
mediated 

0.0124 6 STE11;STE4;STE5;STE7 

GO:0007165 signal transduction 0.0124 65 IRA1;BEM2;STE4;IQG1;RGA2;CYR1;IRA
2;GPB1;COS111;GPB2 

GO:0046580 
negative regulation of 
Ras protein signal 
transduction 

0.0124 7 GPB1;IRA1;IRA2;GPB2 

GO:0001403 
invasive growth in 
response to glucose 
limitation 

0.0124 43 STE12;STE11;STE4;STE5;STE7;GPB1;GP
B2;FLO11 

GO:0007124 pseudohyphal growth 0.0124 56 STE12;STE11;MDS3;PDA1;STE7;CDC39;
GPB1;GPB2;FLO11 

GO:0006189 de novo' IMP 
biosynthetic process 0.03114 9 ADE6;ADE4;ADE2;ADE5,7 

GO:0006075 (1->3)-beta-D-glucan 
biosynthetic process 0.03372 4 GSC2;FKS1;FKS3 

GO:0006164 purine nucleotide 
biosynthetic process 0.03806 18 ADE4;ADE2;ADE5,7;ADE6;ADE3 

Figure 6 - figure supplement 1. All GO-enrichments for multi-hit genes that were significant at the 
P<0.05 level after Benjamini-Hochberg multiple hypothesis testing correction. 
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Figure 6 - figure supplement 2. Same as Figure 6, but for all multi-hit genes not shown in Figure 6 
(plot 1/3). 
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Figure 6 - figure supplement 3. Same as Figure 6, but for all multi-hit genes not shown in Figure 6 
(plot 2/3). 
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Figure 6 - figure supplement 4. Same as Figure 6, but for all multi-hit genes not shown in Figure 6 
(plot 3/3). 
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Figure 6 - figure supplement 5. Same as Figure 6, but for all multi-hit genes where hits are 
distributed significantly unevenly across strain-types (S), environments (E), or both (SxE) compared 
to a null model where fixations are not strain or environment dependent.  
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Figure 7 - figure supplement 1. Overdispersion. (A) For each environment-strain combination, 
we plot the number of genes having a certain number of fixed nonsynonymous mutations (y axis) 
spread amongst a certain number of unique populations (x axis). Each possible outcome is 
colored by its excess probability, as compared to a simulated null expectation in which mutations 
are distributed among populations using a multinomial distribution that takes into account how 
many nonsynonymous mutations fix in each population. Each plot is annotated with Δm, the 
difference between the total number of “missed opportunities” as defined by Good et al. (2017) 
and the average total number of missed opportunities from simulated datasets, along with the 
probability of finding less than or equal to our total missed opportunities in one of the simulated 
datasets. The negative values for Δm indicate that we are seeing less missed opportunities than we 
would expect by chance, indicating overdispersion most likely caused by a “coupon collecting” 
effect. (B) The same as A, but also including nonsynonymous mutations that are detected but do 
not fix. 
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Figure 7 - figure supplement 2. Mutual information analysis. Comparison of the sum of mutual 
information between all multi-hit genes in our dataset and the mutual information between this 
set of genes in simulated data based on probabilities assigned to each mutation in each population, 
allowing for different probabilities in each environment strain combination (see Methods).  
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Figure 8 - figure supplement 1. The ploidy state of two clones from each focal population, shown 
by FITC histograms of Sytox-stained cells. The x-axis is in arbitrary fluorescence units, and the y-
axis is normalized frequency. We have shaded the area where single-genome-copy cells (1N) 
usually fall to help identify haploids. Populations with abnormal FITC histograms are marked by 
asterisks. P1B03 is the only haploid population that became diploid. Based on sequencing data, this 
transition likely happened between generation 5000 and generation 7500 (Figure 3 - figure 
supplement 3). P1H11 and P3F11 both had one diploid and one haploid clone, suggesting that 
diploids may be present in these populations, but have not fixed. P1B04 and P1B11 have strange 
FITC histograms, which we believe is due to clustering phenotypes in these populations (Figure 8 - 
figure supplement 2). Based on continued fixations in sequencing data even at the final timepoint, 
it is unlikely that diploid haplotypes have played a significant role in any of these four populations 
up to this point in the evolution (Figure 3 - figure supplements 3, 4, and 10). 
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Figure 8 - figure supplement 2. Cell imaging from 3 populations with abnormal Sytox data. Note 
the clustering phenotypes observed in later timepoints of P1B04 and P1B11. The microscope failed 
to capture an image for P1B04 generation 10190. All imaging data is available in Supplementary file 
6. 
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Figure 9 - figure supplement 1. Contrast-enhanced scanned images of killer virus halo assays. 
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