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ABSTRACT
PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with

aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in
detail. Here, we applied a meta-analysis approach, leveraging two large PCa cohorts with experimentally validated
PTEN and ERG status, to derive a transcriptomic signature of PTEN loss, while also accounting for potential
confounders due to ERG rearrangements. Strikingly, the signature indicates a strong activation of both innate and
adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made
use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs
recently annotated by the FANTOM consortium. With this resource, we analyzed the TCGA-PRAD cohort, creating a
comprehensive transcriptomic landscape of PTEN loss in PCa that comprises both the coding and an extensive non-

coding counterpart.
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Introduction
Previous molecular studies have explored the genomic heterogeneity of prostate adenocarcinomas (PCa) revealing

distinct molecular subsets characterized by common genome alterations (1-3). Among these molecular alterations,
loss of the tumor suppressor gene phosphatase and tensin homolog (PTEN) — which is implicated in the negative-
regulation of the PI3K-AKT-mTOR pathway — has been identified as one of the most common genomic drivers of
primary PCa (4,5). Since alterations in the PI3K pathway are present in more than 30% of human cancers, the
identification of an expression signature associated with PTEN loss has been investigated in different tumor contexts,
including breast, bladder, lung, and PCa (6,7).

Assessment of PTEN status by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in large
clinical PCa cohorts has shown a consistent association with adverse pathological features such as high Gleason score,
extra-prostatic extension, as well as prognostic value for biochemical recurrence and cancer-related death (4,8). IHC-
based assessment of PTEN status has been shown to correlate tightly with genomic alterations of the PTEN locus and
captures not only loss of the gene, but also mutation and epigenetic changes that lead to PTEN functional
inactivation(4,9,10) and the potential clinical utility of PTEN IHC as a valuable prognostic marker has been
demonstrated previously (11-14).

Though PTEN is involved in a myriad of cellular processes spanning cellular proliferation to tumor
microenvironment interactions (5), the transcriptional landscape related to PTEN expression has not yet been explored
in depth, and the role of long non-coding RNAs (IncRNAs) remains elusive (15). These observations, added to the
evidence that subtle PTEN downregulation can lead to cancer susceptibility (16), demonstrate the important role of
PTEN in cancer biology but also highlight the need for additional studies.

Similarly, gene rearrangements of the ETS transcription factor, ERG, with the androgen-regulated gene
Transmembrane Serine Protease 2 (TMPRSS2) are present in ~50% of PCa from patients of European descent.
TMPRSS2-ERG fusion (herein denoted as ERG* for fusion present and ERG™ for absence of fusion) has been shown to
activate the PI3K-kinase pathway similarly to PTEN loss (17), leading to increased proliferation and invasion.

Importantly, tumors harboring TMPRSS2-ERG rearrangements show an enrichment for PTEN loss (17,18). The co-
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occurrence of these two genomic alterations makes it challenging to dissect the contributions of each to the
transcriptomic landscape.

The goal of this study was to elucidate the transcriptional landscape of PTEN loss in PCa through the analysis
of two large and very well clinically-curated cohorts, for which PTEN and ERG status was assessed by clinical-grade IHC:
The Natural History (NH) cohort, in which patients that underwent radical prostatectomy for clinically localized PCa did
not receive neoadjuvant therapy or adjuvant hormonal therapy prior to documented distant metastases (19); and the
Health Professionals Follow-up Study (HPFS) cohort in which the patients were followed for over 25 years (20). Based
on IHC-assessed PTEN status for these cohorts, we built a PTEN-loss signature highly concordant across the
independent datasets, in both presence and absence of TMPRSS2-ERG fusion. Overall, this PTEN-loss signature was
associated with cellular processes associated with aggressive tumor behavior (e.g., increased motility and proliferation)
and, surprisingly, with increases in gene sets related to the immune response. In addition, through our recently
developed FANTOM-CAT/recount2 (FC-R2) resource (21) and copy-number-variation data, we expanded this signature

beyond coding genes and report the non-coding RNA repertory resulting from PTEN loss.
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Methods

Data collection and Immunostaining
All expression data used in this work were gathered from public domain databases. In this work, we made use of three

cohorts: FC-R2 TCGA, Natural History (NH), and Health Professionals Follow-up Study (HPFS). Information about each
cohort is summarized in Table 1. Information about PTEN status by immunohistochemistry for the HPFS cohort was
readily available and therefore obtained from the public domain. For NH cohort samples, IHC staining for PTEN and
ERG were performed using a previously validated protocol (22). Last, for TCGA we used the Copy Number Variation
(CNV) called by the GISTIC algorithm to define PTEN status and expectation-maximization algorithm to define ERG

status.

Meta-analysis of NH and HPFS cohorts
We performed a meta-analysis approach using a Bayesian hierarchical multi-level model (BHM) for cross-study

detection of differential gene expression implemented in the Bioconductor package XDE (23) on microarray-based
cohorts to obtain a PTEN-null signature from PTEN IHC validated samples. The model was fitted using the delta gp
model with empirical starting values and 1000 bootstraps were performed. All remaining parameters were set to
default values. This analysis was also performed stratifying the samples by ERG status to evaluate the impact of the

ERG rearrangement in the signature.

Differential expression analysis in the TCGA cohort
A generalized linear model (GLM) approach coupled with empirical Bayes moderation of standard errors and voom

precision weigths (24,25) was used to detect differentially expressed genes in the TCGA cohort. The models were
adjusted for surrogate variables with the SVA package (26). Adjusted p-values controlling for multiple hypothesis
testing were performed using the Benjamini-Hochberg method and genes with false discovery rate (FDR) equal or less

than 0.1 were reported (27).

Gene set enrichment analysis (GSEA)
The results from the meta-analysis performed in the NH and HPFS cohort were ranked by the weighted size effect

(average of the posterior probability of concordant differential expression multiplied by the Bayesian effect size of
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each cohort). The results from the TCGA cohort were ranked by t-statistics. Ranked lists were tested for gene set
enrichment. Gene set enrichment analysis (GSEA) was performed using a Monte Carlo adaptive multilevel splitting
approach, implemented in the fgsea (28) package. A collection of gene sets (Hallmarks, REACTOME, and GO Biological
Processes) were obtained from the Broad Institute MSigDB database. The androgen response gene set was obtained
from Scheaffer et al (29). Gene sets with less than 15 and more than 1500 genes were removed from the analysis,
except for the GO biological processes whose max size was set to 300 to avoid overly generic gene sets. The enriched

pathways were collapsed to maintain only independent ones using the function collapsePathways from fgsea.
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Results

Meta-analysis of Natural History and Health Professionals Follow-Up Study cohorts
We sought to obtain a consensus signature of PTEN loss that could be reproduced across independent cohorts. We

utilized a meta-analysis approach leveraging a multi-level model for cross-study detection of differential gene
expression (DGE). We fitted a Bayesian hierarchical model (BHM) for analysis of differential expression across multiple
studies that allowed us to aggregate data from two previously described tissue microarray-based cohorts where PTEN
and ERG status was determined by IHC (Table 1 and Figure 1) and we derived a PTEN-loss signature (Figure 2). In this
analysis, we observed 813 genes for which the differential expression was highly concordant (Bayesian Effect Size (BES)
> 1, posterior probability of concordant differential expression (PPCDE) > 0.95) (Table S1).

The consequences of PTEN loss on cell cycle regulation and tumor cell invasion has been extensively reported
previously (4,30,31). Accordingly, beyond PTEN itself, the top DEG genes in our signature reflected this profile (Figure
2 and Table S1). Dermatopontin (DPT) (BES = -2.59, PPCDE = 1) and Alanyl membrane aminopeptidase (ANPEP) (BES =
-2.53, PPCDE = 1) were found down-regulated upon PTEN loss. Leucine-Rich Repeat Neuronal 1 (LRRN1) was among
the genes up-regulated upon PTEN loss (BES = 3.36, PPCDE = 1). These and other genes found differentially expressed
upon PTEN loss have all been shown to be associated with a more aggressive phenotype in several cancer types (5) .

Notably, we found ERG among the top upregulated genes in the signature (Figure 2). As expected (18,32,33),
ERG rearrangement was more common among cases with PTEN loss compared to intact PTEN in all cohorts (Fisher
exact test, p < 0.001). Given this enrichment, it was not surprising that ERG was among the most up-regulated genes
in the BHM signature, as well as PLA2G7, which has been shown to be among the most highly overexpressed genes in
ERG-rearranged PCa compared to those lacking ERG rearrangements (34). The presence of ERG and ERG-regulated
transcripts in the PTEN-loss signature suggested that this signature might be confounded by enrichment of ERG
rearranged tumors among the tumors with PTEN loss.

Since ERG rearrangements represent a major driver event in PCa and PTEN loss is enriched in ERG-rearranged
tumors, we next investigated the role of ERG in our PTEN-loss signature. To this end, we repeated the Bayesian
hierarchical model for the analysis of differential expression by stratifying the samples by ERG status. In the background
with ERG rearrangement, we observed a similar signature to the previous overall PTEN-loss signature, but without the

aforementioned ERG-associated genes (Supplementary figure S1 and Supplementary table S2). However, in the
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absence of ERG rearrangement, we could not find any significant differences between samples with or without PTEN
loss. This was unexpected given that PTEN is a powerful tumor suppressor capable of triggering multiple molecular

changes.

Extending the PTEN-loss signature
To validate our PTEN loss signatures in an orthogonal cohort, we next examined the TCGA PRAD cohort (35), where

PTEN status was estimated by genomic copy number (CN) assessment, which was closely aligned with PTEN gene
expression (Figure S3). We recently developed a comprehensive expression atlas based on the FANTOM-CAT
annotations. This meta-assembly is currently the broadest collection of the human transcriptome (21,36). These gene
models include many novel IncRNA categories such as enhancers and promoters, allowing the signature to be further
expanded beyond the coding repertoire. We used TCGA expression data from the FC-R2 expression atlas (21) to
perform DGE analysis stratified by the PTEN status as derived from CN analysis. We also performed the same analysis
in a stratified manner as in the HPFS and NH cohorts, using the ERG expression with expectation maximization (EM)
algorithm to define ERG status given the bimodal nature of ERG expression in PCa. Interestingly, we were able to detect
differential expression between PTEN-null and PTEN-intact samples without ERG rearrangement in the TCGA cohort,
which used high-throughput sequencing as opposed to gene expression microarrays, suggesting that there the lack of
signal in the previous analysis can be a reflection of the potential limitations with the later technology.

We observed 521 differentially expressed genes (DEG) when comparing PTEN-null and PTEN-wild-type samples
(FDR £0.01, LogFC = 1), of which 257 were coding genes and 264 were non-coding genes (Supplementary Table S3).
When stratifying the samples by ERG status, we obtained 435 and 364 DEG in the background with and without ERG
rearrangement (Supplementary Table S4 and S5), respectively, with similar proportions of coding and non-coding
genes. Using Correspondence-at-the-top (CAT) analysis of the coding genes, we observed a higher concordance than
expected by chance between the TCGA PTEN-loss signature and that from the BHM (Figure S4). This confirmed that
CN is a reasonable proxy to IHC-staining in TCGA which allowed us to expand this signature beyond coding RNAs.

In this analysis, we were able to detect a variety of IncRNAs that are already known to be involved in PCa

development and progression. Notably, several differentially expressed IncRNAs were already reported to be
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associated with PCa (37-46) (e.g. PCA3, PCGEM1, SCHLAP1, KRTAP5-AS1, Mir-596) (Supplementary Table S3-S5). PCA3
is a prostate-specific IncRNA overexpressed in PCa tissue. Similarly, IncRNA PCGEM1 expression is increased and highly
specific in PCa where it promotes cell growth and it has been associated with high-risk PCa patients (41,42). On the
other hand, KRTAP5-AS1 expression has not been directly associated with PCa.

Also ranked high among IncRNAs differentially expressed were the IncRNAs SChLAP1 and its uncharacterized
antisense neighbor AC009478.1. SchLAP1 is overexpressed in a subset of PCa where it antagonizes the tumor-
suppressive function of the SWI/SNF complex and can independently predict poor outcomes (45,46). On the other
hand, the role of AC009478.1 in PCa development is still unknown. Interestingly, SchLAP1 and ACO09478.1 expression
is strongly correlated in the TCGA datasets only in PCa (R = 0.94, p < 2.2e-26) and bladder cancer (R = 0.85, p < 2.2e-
26) (Figure S5).

Strikingly, a substantial proportion of IncRNAs associated with PTEN loss were not yet associated with PCa. Out
of the 264 DE non-coding genes, 134 were novel and annotated only in the FANTOM-CAT meta-assembly annotation
(Table 2). Among the FANTOM-CAT exclusive genes, those with the highest fold change in close proximity with coding
genes were CATG0O0000038715, CATG0O0000079217, and CATG0O0000117664 (Figure S6). These genes were mostly
expressed in PCa as opposed to other cancer types in the TCGA dataset (Figure 3).

Among the downregulated genes were CATGO0000038715 and CATG00000079217. CATGO0000038715 is in
close proximity to CYP4F2 and CYP4F11, encoding members of the cytochrome P450 enzyme superfamily. Expression
of CATG00000038715 and CYP4F2 are highly correlated (R=0.91, p < 2.2e-16) in PCa, and expression of the former was
highly specific for PCa (Figure S7). CATG0O0000079217 is in close proximity to the coding gene FBXL7, an F-box gene
which is a component of the E3 ubiquitin ligase complex. While expression of FBXL7 and CATG00000079217 showed
only a weak correlation (R=0.14, p < 7.4e-4), CATG0O0000079217 expression was notably higher in PCa and breast
cancer than in other cancers, and it was moderately correlated with several PCa biomarkers (e.g. KLK2, KLK3, STEAP2,
PCGEM1, SLC45A3) (41,42,47-51) (R=0.37-0.57, p < 2.2e-16) in TCGA.

CATG00000117664 was among the most upregulated IncRNA and it is located near GPR158, a G protein
coupled receptor highly expressed in brain. The expression between GPR158 were correlated (R=0.54, p < 2.2e-16),
and CATG00000117664 expression was shown to be highly specific to PCa (52) (Figure S7).
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PTEN loss induces the innate and adaptive immune system
We performed Gene Set Enrichment Analysis (GSEA) using fgsea (28) and tested both the BHM- and TCGA-generated

molecular signatures for enrichment in three collections of the Molecular Signature Database (MSigDB) (53,54):
HALLMARKS, REACTOME, and GO Biological Processes (BP). Results were similar in both signatures, with positive
enrichment of proliferation and cell cycle-related gene sets (e.g. MYC1 targets, MTORC1 signaling, cell cycle
checkpoints, and DNA repair) and both innate and adaptive immune system associated gene sets (e.g. Neutrophil
degranulation, MHC antigen presentation, interferon-alpha, and gamma) (Figure 4-5 and Supplementary Table S6-
$20). The positive enrichment of MHC antigen presentation, interferon-alpha and -gamma in PTEN-null tumors is
consistent with our previous study showing that the absolute density of T-cells is increased in PCa with PTEN loss (55).

Since PTEN-null tumors are known to have decreased androgen output, which is a strong suppressor of
inflammatory immune cells (29,56,57), we hypothesized that this decrease in androgen levels could activate an
immune response. We, therefore, performed a GSEA analysis using a collection of androgen-regulated genes from
Schaeffer et al. (29) to test if the PTEN-null signature was enriched in this gene set. Both the TCGA- and BHM-signature
were shown to be positively enriched in genes that were shown to be repressed upon dihydrotestosterone treatment

(NES =1.39-155, FDR < 0.05) (Figure S8).
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Discussion
With an estimated prevalence of up to 50%, PTEN loss is recognized as one of the major driving events in PCa (58).

PTEN antagonizes PI3K-AKT/PKB and is a key modulator of the AKT-mTOR signaling pathways which are important in
regulating cell growth and proliferation. Accordingly, PTEN loss is consistently associated with more aggressive disease
features and poor outcomes. Saal and collaborators previously generated a transcriptomic signature of PTEN loss in
breast cancer (6). While this signature was correlated with worse patient outcomes in breast and other independent
cancer datasets, including PCa, the signature unsurprisingly fails to capture key characteristics of PCa such as ERG-
rearrangement (6,11). Significantly, a transcriptomic signature reflecting the landscape of PTEN loss in PCa has not
been described to date.

Immunohistochemistry (IHC) assay is a clinically utilized technique to determine the status of the PTEN gene,
with high sensitivity and specificity for underlying genomic deletions (59) (Figure 1). Therefore, we analyzed
transcriptome data from two large PCa cohorts — the Health Professional Follow-up Study (HPFS) and the Natural
History (NH) study — for which IHC-based PTEN and ERG status was available (n = 390 and 207, respectively), deriving
a PTEN-loss gene expression signature specific to PCa (Figure 2 and Supplementary Table S1). Genes that are associated
with increased proliferation and invasion in several cancer types, such as DPT, ANPEP and LRRN1, were among the
most concordant DEG in this signature. DPT has been shown to inhibit cell proliferation through MYC repression and
to be down-regulated in both oral and thyroid cancer (60,61). It has also been shown to control cell adhesion and
invasiveness, with low expression leading to a worst prognosis (61,62). ANPEP is known to play an important role in
cell motility, invasion, and metastasis progression (62,63), and lower expression of this gene has been associated with
the worst prognosis (64). LRRN1 is a direct transcriptional target of MYCN, and an enhancer of EGFR and IGRF signaling
pathway (65). Higher levels of LRRN1 expression promote tumor cell proliferation, inhibiting cell apoptosis, and play
an important role in preserving pluripotency-related proteins through AKT phosphorylation (65-67), leading to a poor
clinical outcome in gastric and brain cancer.

Notably, ERG was shown to be upregulated in our signature, which led us to perform a stratified analysis to
avoid capturing signals driven mostly by ERG overexpression. Surprisingly, we were not able to detect significant
differences by PTEN status in the HPFS and NH cohorts, which were quantified by gene expression microarrays, in the

ERG samples. Conversely, when analyzing the TCGA cohort, we were able to detect significant changes by PTEN status
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in the ERG" samples (Supplementary Tables S3-S5). However, given the known limitations of gene expression
microarrays performed on formalin fixed material, such as the limited dynamic range of expression values (68), we
believe that the HPFS and NH datasets were limited by the technology employed. Nevertheless, concordance between
the BHM- and TCGA- cohorts were similar in both the overall and the ERG* background comparison (Supplementary
Figure S4).

We observed in the TCGA cohort several IncRNAs that have already been associated with PCa progression were
found in our signature. PCA3 acts by a variety of mechanisms such as down-regulation of the oncogene PRUNE2 and
up-regulation of the PRKD3 gene by acting as a miRNA sponge for mir-1261 leading to increase proliferation and
migration(37,38). Conversely, knockdown of PCA3 can lead to partial reversion of epithelial-mesenchymal transition
(EMT) (39) which can lead to increased cell invasion, motility, and survival (40). Although KRTAP5-AS1 has not been
associated with PCa, it has recently shown that KRTAP5-AS1 can act as a miRNA sponge for miRNAs, such as mir-596,
which targets the oncogene CLDN4 which enhances the invasion capacity of cancer cells and promote EMT (40,43),
thereby overexpression of KRTAP5-AS1 can lead increased levels of CLDN4 (44). Mir-596 has also been shown to be
overexpressed in response to androgen signaling and associated with anti-androgen therapy resistance (44).

Moreover, many IncRNAs exclusively annotated in the FANTOM-CAT were associated with PTEN-loss and were
shown to be expressed mostly in PCa (Figure 3). Since these genes are novel genes without elucidated function, we
analyzed potential roles for these genes by looking at coding genes located in the same loci. Among the top DE IncRNAs,
genes within proximity to coding genes were CATGO0000038715, CATG0O0000079217, and CATG0O0000117664 (Figure
S6) which are positioned in the same loci as CYP4F2, FBXL7, and GPR158, respectively. CYP4F2 is involved in the process
of inactivating and degrading leukotriene B4 (LTB4). LTB4 is a key gene in the inflammatory response that is produced
in leukocytes in response to inflammatory mediators and can induce the adhesion and activation of leukocytes on the
endothelium.(69). FBXL7 regulates mitotic arrest by degradation of AURKA, which is known to promote inflammatory
response and activation of NF-kB (70,71). Likewise, increase expression of GPR158 is reported to stimulate cell
proliferation in PCa cell lines, and it is linked to neuroendocrine differentiation (72).

We consistently observed a strong enrichment in immune response genes and gene sets upon PTEN loss
(Figure 4 and Supplementary Tables $S6-S20). Immune-associated genes (i.e. GP2 and PLA2G2A) were found amongst
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the top up-regulated genes in our signature (Figure 2). Positive enrichment of Interferon-alpha- and gamma-response
genes (FDR < 0.01) further suggests that a strong immuno-responsive environment, with both innate and adaptive
systems activated, is developed in PTEN-null tumors (Figure 5). The positive enrichment of MHC class Il antigen
presentation, neutrophil degranulation, vesicle-mediated transport, and FC receptor pathway-related genes suggests
that PTEN-null tumors may be immunogenic (Figure 4). This finding was particularly surprising given that PTEN is itself
a key positive regulator of innate immune response, controlling the import of /IRF3, which is responsible for IFN
production. Accordingly, disruption of PTEN expression has previously been reported to lead to decreased innate
immune response (73). Conversely, it has also been hypothesized that the increased genomic instability caused by, or
associated with, PTEN loss can increase immunogenicity in the tumor micro-enviroment (TME) (74). This finding is of
particular interest given that immune-responsive tumors can be good candidates for immunotherapy-based
approaches.

Remarkably, despite loss of PTEN being associated with higher expression of the immune checkpoint gene
programmed death ligand-1 (PD-L1) in several cancer types (75,76) this is not true in PCa (77). So far, current
immunotherapeutic interventions, such as PD-1 blockade, in PCa have not been successful. One of the possible reasons
is the lack of PD-L1 expression (77). Therefore, alternative targets must be considered for immunotherapy in PCa. One
alternative target is the checkpoint molecule B7-H3 (CD276), whose expression has already been associated with PCa
progression and worse prognosis (78) and has been suggested as a target for immunotherapy (79,80). CD276 was one
of the most concordant up-regulated genes in our signature (Figure 2) suggesting that its expression is associated with
PTEN loss. Interestingly, B7-H3 expression may be down-regulated by androgens (81).

The effects of androgen on the immune system has already been extensively studied and reviewed (56).
Androgens are known to suppress inflammatory immune cells and to impair the development and function of B- and
T-cells (57). We, therefore, hypothesized that the decreased levels of androgen in PTEN-null TME could lead to an
unsuppressed immune system. By testing our signature for enrichment in androgen-related genes (AR) derived from
Schaeffer et al. (29), we observed that upon PTEN-loss, androgen-sensitive genes that are typically suppressed by DHT
are positively enriched, indicating that androgen levels or androgen response in PTEN-null tumors may be lower than
in their PTEN-intact counterparts (Figure S8). This decrease in AR-signaling has been described in PTEN-null tumors, in
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which activation of PI3K pathway inhibits AR activity. (82). Furthermore, AR inhibition activates AKT signaling by
inhibiting AKT phosphatase levels further boosting cell proliferation (82), which has also been noted in this study
(Figure 3). Finally, in the non-coding repertoire, both PCA3 and PCGEM1 are modulated by androgen (83,84) and were
down-regulated upon PTEN loss which tracks with the observed decreased androgen response in PTEN-null tumors

(Figure S6 and S8).
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Conclusion
Altogether, we have generated a highly concordant gene signature for PTEN loss in PCa across three independent

datasets. We show that this signature was highly enriched in proliferation and cell cycle genes, leading to a more
aggressive phenotype upon PTEN loss, which is concordant with the literature. Moreover, we have shown that PTEN
loss is associated with an increase in both innate and adaptive immune response. Although the literature shows that
PTEN loss usually leads to immuno-suppression, we find evidence that this finding may be reversed in PCa. This
observation has potential implications in the context of precision medicine since immune responsive tumors are more
likely to respond to immunotherapies. Therefore, PTEN-null tumors might benefit more from this approach than PTEN-
intact tumors. Potentially, PTEN status can guide immunotherapy combination with other approaches such as
androgen ablation.

Finally, by leveraging the FC-R2 resource, we were able to highlight many IncRNAs that may be associated with
PCa progression. Although functional characterization these IncRNAs is beyond the scope of this study, we have shown
that these novel IncRNAs are highly specific to PCa and track with several coding mRNAs and IncRNAs already reported
to be involved in PCa development and progression, most notably, genes involved in immune response. By providing a
PCa-specific signature for PTEN loss, as well as highlighting potential new players, we hope to empower further studies
on the mechanisms leading to the development of PCa as well its more aggressive subtypes aiding in the future

development of potential biomarkers, drug targets and guide therapies choice.
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Figures and Tables

Cohort PTEN-null  PTEN-intact N
TCGA 95 321 416
HPFS 91 299 390
Natural History 56 151 207
Total 242 771 1,013

Table 1. Cohorts summary Table shows cohorts summary for the 3 cohorts used in this study: TCGA (only primary tumor samples
with high Gistic scores were used); Health Professional Follow-up Study (all); and Natural History cohort (samples with IHC call

available). PTEN-null represents samples with PTEN deletion and PTEN-intact regular primary tumors.
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531
PTEN-null vs PTEN-intact overall  PTEN-null vs PTEN-intact in ERG+ PTEN-null vs PTEN-intact in ERG-
Coding genes 257 (13) 226 (7) 185 (10)
Non-coding genes 264 (134) 209 (117) 179 (82)
Total 521 (137) 435 (124) 364 (92)
532

533 Table 2. Summary of differentially expressed genes between PTEN-null and PTEN-intact with logFC > 1 and FDR < 0.01 across
534 different ERG backgrounds. Number in parenthesis shows the number of genes exclusive to the FANTOM-CAT annotations.

535
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PTEN intact

536 Figure 1. PTEN immunostaining in tissue microarray (TMA) spots from the Natural History Cohort. Left panel: intact PTEN protein

537 is present in all sampled tumor glands (brown chromogen). Right panel: PTEN loss in all sampled tumor glands. Images reduced

538 from 40X.
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540 Figure 2. Cross-study meta-analysis of differential gene expression. Genes in the same loci as PTEN such as RLN1 and ATAD1

541 were found down-regulated. PTEN-null vs PTEN-intact meta-analysis of HPFS/PHS and NH cohorts with Bayesian Hierarchical
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542 Model for DGE using XDE showing the top 25 most concordant differentially up- and down-regulated genes. PTEN status were
543 based on IHC assays.

>44
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Figure 3. Expression profiles of novel FANTOM-CAT genes CATG00000038715, CATG00000079217 and CATG00000117664 across

33 cancer types. Violin-plots shows expression (log, CPM+1) distribution.
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551 Figure 4. Top enriched gene sets enriched across PTEN-null and PTEN-intact in the TCGA and BHM cohorts stratified by ERG
552 status and overall. Heatmap of mean-centered log; signed p-values (normalized enriched score multiplied by logio of p-value)
553 showing the top 10 enriched gene sets of each collection (ranked by signed p-value).

554
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Figure 5. Expression of immune-related genes stratified by PTEN status. Top 20 were selected based on the leading edge of the

GSEA of the adaptive and innate immune system gene sets from REACTOME. Significances based on t-test between PTEN-null and

PTEN-intact using log, CPM+1 values. Significance cutoffs: *=<0.05; **<0.01; *** <0.001; ****<0.0001.
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Figure S1. Cross-study of differential gene expression in PTEN-null vs PTEN-intact in ERG* samples. Meta-analysis of HPFS/PHS

and NH cohorts with Bayesian Hierarchical Model for DGE using XDE showing the top 25 most concordant differentially up- and

down-regulated genes. PTEN status were based on IHC assays.
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569 Figure S3. PTEN expression levels stratified by CNV. Figure shows PTEN expression levels distribution by copy number variation
570 (CNV), called by GISTIC algorithm.

571

35/42


https://doi.org/10.1101/2020.10.08.332049
http://creativecommons.org/licenses/by-nc/4.0/

572

573

574

575

576

577

578

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332049; this version posted October 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

0.30
I

— "\Mww

0.20
I

Down

Common Proportion
0.10
||

00

0.

0 100 200 300 400 500
List Size

Figure S4. Correspondence-at-the-top (CAT) plot between TCGA CNV-based calls and the Bayesian Hierarchical Model approach
(BHM). Agreement of genes ranked by t-statistics (TCGA) and average Bayesian Effect Size (BHM). Lines represent agreement
between tested cohorts for PTEN-intact vs PTEN-null. Black-to-light grey shades represent the decreasing probability of agreeing
by chance based on the hypergeometric distribution, with intervals ranging from 0.999999 (light grey) to 0.95 (dark grey). Lines

outside this range represent agreement in different cohorts with a higher agreement than expected by chance.
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Figure S5. Expression of AC009478.1 is shown to be highly specific to PRAD, BLCA, to a lesser extent in UECA and BRCA. Figure

shows raw expression values of SchLAP1 and AC009478.1 across cancer types. Pearson correlations and p-values are shown in

red.
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Figure S6. Expression of FANTOM-CAT IncRNAs genes (top) and close coding genes (bottom) stratified by PTEN status. Significances

based on t-test between PTEN-null and PTEN-intact using log, CPM+1 value. Significance cutoffs: *=<0.05; **<0.01; *** < 0.001;

***%<0.0001.
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591 Figure S7. Person correlation gene CATG00000038715 and CYP4F2 across cancer types. CATGO0000038715 and CYP4F2

592 expression are shown to be highly correlated in PCa. Moreover, CATGO0000038715 expression is shown to be highly specific to
593 PCa. With exception of leukemia cells, none of the other tumors expressed high levels of CATG00000038715.
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596 Figure S8. Gene set enrichment for Androgen repressed genes. Gene set enrichment analysis of gene signature showing positive
597 enrichment of genes repressed by dihydrotestosterone after 6 hours of exposure obtained from Schaeffer et al.*®. Enrichment for
598 BHM-signature is shown in panel A and TCGA-signature in panel B.
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