

1 Transcriptional landscape of PTEN loss in primary prostate 2 cancer

3

4 Eddie Ludy Imada^{1,2,3}, Diego Fernando Sanchez², Wikum Dinalankara^{1,2}, Thiago Vidotto⁴, Ericka M Ebot⁵,
5 Svitlana Tyekucheva⁵, Gloria Regina Franco³, Lorelei Mucci¹, Massimo Loda¹, Edward M Schaeffer⁶, Tamara
6 Lotan^{2,3}, and Luigi Marchionni^{1,5,*}

7

8 ¹ Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA

9 ² Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

10 ³ Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

11 ⁴ Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

12 ⁵ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

13 ⁶ Department of Urology, Northwestern University, Evanston, IL, US

14 * Correspondence to: lum4003@med.cornell.edu

15

16

17 **ABSTRACT**

18 PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with
19 aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in
20 detail. Here, we applied a meta-analysis approach, leveraging two large PCa cohorts with experimentally validated
21 PTEN and ERG status, to derive a transcriptomic signature of *PTEN* loss, while also accounting for potential
22 confounders due to *ERG* rearrangements. Strikingly, the signature indicates a strong activation of both innate and
23 adaptive immune systems upon *PTEN* loss, as well as an expected activation of cell-cycle genes. Moreover, we made
24 use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs
25 recently annotated by the FANTOM consortium. With this resource, we analyzed the TCGA-PRAD cohort, creating a
26 comprehensive transcriptomic landscape of *PTEN* loss in PCa that comprises both the coding and an extensive non-
27 coding counterpart.

28 **Introduction**

29 Previous molecular studies have explored the genomic heterogeneity of prostate adenocarcinomas (PCa) revealing
30 distinct molecular subsets characterized by common genome alterations (1–3). Among these molecular alterations,
31 loss of the tumor suppressor gene phosphatase and tensin homolog (*PTEN*) – which is implicated in the negative-
32 regulation of the PI3K-AKT-mTOR pathway – has been identified as one of the most common genomic drivers of
33 primary PCa (4,5). Since alterations in the PI3K pathway are present in more than 30% of human cancers, the
34 identification of an expression signature associated with *PTEN* loss has been investigated in different tumor contexts,
35 including breast, bladder, lung, and PCa (6,7).

36 Assessment of *PTEN* status by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in large
37 clinical PCa cohorts has shown a consistent association with adverse pathological features such as high Gleason score,
38 extra-prostatic extension, as well as prognostic value for biochemical recurrence and cancer-related death (4,8). IHC-
39 based assessment of *PTEN* status has been shown to correlate tightly with genomic alterations of the *PTEN* locus and
40 captures not only loss of the gene, but also mutation and epigenetic changes that lead to *PTEN* functional
41 inactivation(4,9,10) and the potential clinical utility of *PTEN* IHC as a valuable prognostic marker has been
42 demonstrated previously (11–14).

43 Though *PTEN* is involved in a myriad of cellular processes spanning cellular proliferation to tumor
44 microenvironment interactions (5), the transcriptional landscape related to *PTEN* expression has not yet been explored
45 in depth, and the role of long non-coding RNAs (lncRNAs) remains elusive (15). These observations, added to the
46 evidence that subtle *PTEN* downregulation can lead to cancer susceptibility (16), demonstrate the important role of
47 *PTEN* in cancer biology but also highlight the need for additional studies.

48 Similarly, gene rearrangements of the ETS transcription factor, *ERG*, with the androgen-regulated gene
49 Transmembrane Serine Protease 2 (*TMPRSS2*) are present in ~50% of PCa from patients of European descent.
50 *TMPRSS2-ERG* fusion (herein denoted as *ERG*⁺ for fusion present and *ERG*⁻ for absence of fusion) has been shown to
51 activate the PI3K-kinase pathway similarly to *PTEN* loss (17), leading to increased proliferation and invasion.
52 Importantly, tumors harboring *TMPRSS2-ERG* rearrangements show an enrichment for *PTEN* loss (17,18). The co-

53 occurrence of these two genomic alterations makes it challenging to dissect the contributions of each to the
54 transcriptomic landscape.

55 The goal of this study was to elucidate the transcriptional landscape of *PTEN* loss in PCa through the analysis
56 of two large and very well clinically-curated cohorts, for which *PTEN* and *ERG* status was assessed by clinical-grade IHC:
57 The Natural History (NH) cohort, in which patients that underwent radical prostatectomy for clinically localized PCa did
58 not receive neoadjuvant therapy or adjuvant hormonal therapy prior to documented distant metastases (19); and the
59 Health Professionals Follow-up Study (HPFS) cohort in which the patients were followed for over 25 years (20). Based
60 on IHC-assessed *PTEN* status for these cohorts, we built a *PTEN*-loss signature highly concordant across the
61 independent datasets, in both presence and absence of *TMPRSS2-ERG* fusion. Overall, this *PTEN*-loss signature was
62 associated with cellular processes associated with aggressive tumor behavior (e.g., increased motility and proliferation)
63 and, surprisingly, with increases in gene sets related to the immune response. In addition, through our recently
64 developed FANTOM-CAT/recount2 (FC-R2) resource (21) and copy-number-variation data, we expanded this signature
65 beyond coding genes and report the non-coding RNA repertory resulting from *PTEN* loss.

66

67 **Methods**

68 **Data collection and Immunostaining**

69 All expression data used in this work were gathered from public domain databases. In this work, we made use of three
70 cohorts: FC-R2 TCGA, Natural History (NH), and Health Professionals Follow-up Study (HPFS). Information about each
71 cohort is summarized in Table 1. Information about *PTEN* status by immunohistochemistry for the HPFS cohort was
72 readily available and therefore obtained from the public domain. For NH cohort samples, IHC staining for *PTEN* and
73 *ERG* were performed using a previously validated protocol (22). Last, for TCGA we used the Copy Number Variation
74 (CNV) called by the GISTIC algorithm to define *PTEN* status and expectation-maximization algorithm to define *ERG*
75 status.

76

77 **Meta-analysis of NH and HPFS cohorts**

78 We performed a meta-analysis approach using a Bayesian hierarchical multi-level model (BHM) for cross-study
79 detection of differential gene expression implemented in the Bioconductor package XDE (23) on microarray-based
80 cohorts to obtain a *PTEN*-null signature from *PTEN* IHC validated samples. The model was fitted using the delta gp
81 model with empirical starting values and 1000 bootstraps were performed. All remaining parameters were set to
82 default values. This analysis was also performed stratifying the samples by *ERG* status to evaluate the impact of the
83 *ERG* rearrangement in the signature.

84

85 **Differential expression analysis in the TCGA cohort**

86 A generalized linear model (GLM) approach coupled with empirical Bayes moderation of standard errors and voom
87 precision weights (24,25) was used to detect differentially expressed genes in the TCGA cohort. The models were
88 adjusted for surrogate variables with the SVA package (26). Adjusted p-values controlling for multiple hypothesis
89 testing were performed using the Benjamini-Hochberg method and genes with false discovery rate (FDR) equal or less
90 than 0.1 were reported (27).

91

92 **Gene set enrichment analysis (GSEA)**

93 The results from the meta-analysis performed in the NH and HPFS cohort were ranked by the weighted size effect
94 (average of the posterior probability of concordant differential expression multiplied by the Bayesian effect size of

95 each cohort). The results from the TCGA cohort were ranked by t-statistics. Ranked lists were tested for gene set
96 enrichment. Gene set enrichment analysis (GSEA) was performed using a Monte Carlo adaptive multilevel splitting
97 approach, implemented in the fgsea (28) package. A collection of gene sets (Hallmarks, REACTOME, and GO Biological
98 Processes) were obtained from the Broad Institute MSigDB database. The androgen response gene set was obtained
99 from Scheaffer et al (29). Gene sets with less than 15 and more than 1500 genes were removed from the analysis,
100 except for the GO biological processes whose max size was set to 300 to avoid overly generic gene sets. The enriched
101 pathways were collapsed to maintain only independent ones using the function collapsePathways from fgsea.
102

103 **Results**

104 **Meta-analysis of Natural History and Health Professionals Follow-Up Study cohorts**

105 We sought to obtain a consensus signature of *PTEN* loss that could be reproduced across independent cohorts. We
106 utilized a meta-analysis approach leveraging a multi-level model for cross-study detection of differential gene
107 expression (DGE). We fitted a Bayesian hierarchical model (BHM) for analysis of differential expression across multiple
108 studies that allowed us to aggregate data from two previously described tissue microarray-based cohorts where *PTEN*
109 and *ERG* status was determined by IHC (Table 1 and Figure 1) and we derived a *PTEN*-loss signature (Figure 2). In this
110 analysis, we observed 813 genes for which the differential expression was highly concordant (Bayesian Effect Size (BES)
111 ≥ 1 , posterior probability of concordant differential expression (PPCDE) ≥ 0.95) (Table S1).

112 The consequences of *PTEN* loss on cell cycle regulation and tumor cell invasion has been extensively reported
113 previously (4,30,31). Accordingly, beyond *PTEN* itself, the top DEG genes in our signature reflected this profile (Figure
114 2 and Table S1). Dermatopontin (*DPT*) (BES = -2.59, PPCDE = 1) and Alanyl membrane aminopeptidase (*ANPEP*) (BES =
115 -2.53, PPCDE = 1) were found down-regulated upon *PTEN* loss. Leucine-Rich Repeat Neuronal 1 (*LRRN1*) was among
116 the genes up-regulated upon *PTEN* loss (BES = 3.36, PPCDE = 1). These and other genes found differentially expressed
117 upon *PTEN* loss have all been shown to be associated with a more aggressive phenotype in several cancer types (5) .

118 Notably, we found *ERG* among the top upregulated genes in the signature (Figure 2). As expected (18,32,33),
119 *ERG* rearrangement was more common among cases with *PTEN* loss compared to intact *PTEN* in all cohorts (Fisher
120 exact test, $p \leq 0.001$). Given this enrichment, it was not surprising that *ERG* was among the most up-regulated genes
121 in the BHM signature, as well as *PLA2G7*, which has been shown to be among the most highly overexpressed genes in
122 *ERG*-rearranged PCa compared to those lacking *ERG* rearrangements (34). The presence of *ERG* and *ERG*-regulated
123 transcripts in the *PTEN*-loss signature suggested that this signature might be confounded by enrichment of *ERG*
124 rearranged tumors among the tumors with *PTEN* loss.

125 Since *ERG* rearrangements represent a major driver event in PCa and *PTEN* loss is enriched in *ERG*-rearranged
126 tumors, we next investigated the role of *ERG* in our *PTEN*-loss signature. To this end, we repeated the Bayesian
127 hierarchical model for the analysis of differential expression by stratifying the samples by *ERG* status. In the background
128 with *ERG* rearrangement, we observed a similar signature to the previous overall *PTEN*-loss signature, but without the
129 aforementioned *ERG*-associated genes (Supplementary figure S1 and Supplementary table S2). However, in the

130 absence of *ERG* rearrangement, we could not find any significant differences between samples with or without *PTEN*
131 loss. This was unexpected given that *PTEN* is a powerful tumor suppressor capable of triggering multiple molecular
132 changes.

133

134 **Extending the PTEN-loss signature**

135 To validate our *PTEN* loss signatures in an orthogonal cohort, we next examined the TCGA PRAD cohort (35), where
136 *PTEN* status was estimated by genomic copy number (CN) assessment, which was closely aligned with *PTEN* gene
137 expression (Figure S3). We recently developed a comprehensive expression atlas based on the FANTOM-CAT
138 annotations. This meta-assembly is currently the broadest collection of the human transcriptome (21,36). These gene
139 models include many novel lncRNA categories such as enhancers and promoters, allowing the signature to be further
140 expanded beyond the coding repertoire. We used TCGA expression data from the FC-R2 expression atlas (21) to
141 perform DGE analysis stratified by the *PTEN* status as derived from CN analysis. We also performed the same analysis
142 in a stratified manner as in the HPFS and NH cohorts, using the *ERG* expression with expectation maximization (EM)
143 algorithm to define *ERG* status given the bimodal nature of *ERG* expression in PCa. Interestingly, we were able to detect
144 differential expression between *PTEN*-null and *PTEN*-intact samples without *ERG* rearrangement in the TCGA cohort,
145 which used high-throughput sequencing as opposed to gene expression microarrays, suggesting that there the lack of
146 signal in the previous analysis can be a reflection of the potential limitations with the later technology.

147 We observed 521 differentially expressed genes (DEG) when comparing *PTEN*-null and *PTEN*-wild-type samples
148 (FDR ≤ 0.01 , LogFC ≥ 1), of which 257 were coding genes and 264 were non-coding genes (Supplementary Table S3).
149 When stratifying the samples by *ERG* status, we obtained 435 and 364 DEG in the background with and without *ERG*
150 rearrangement (Supplementary Table S4 and S5), respectively, with similar proportions of coding and non-coding
151 genes. Using Correspondence-at-the-top (CAT) analysis of the coding genes, we observed a higher concordance than
152 expected by chance between the TCGA *PTEN*-loss signature and that from the BHM (Figure S4). This confirmed that
153 CN is a reasonable proxy to IHC-staining in TCGA which allowed us to expand this signature beyond coding RNAs.

154 In this analysis, we were able to detect a variety of lncRNAs that are already known to be involved in PCa
155 development and progression. Notably, several differentially expressed lncRNAs were already reported to be

156 associated with PCa (37–46) (e.g. *PCA3*, *PCGEM1*, *SCHLAP1*, *KRTAP5-AS1*, *Mir-596*) (Supplementary Table S3-S5). *PCA3*
157 is a prostate-specific lncRNA overexpressed in PCa tissue. Similarly, lncRNA *PCGEM1* expression is increased and highly
158 specific in PCa where it promotes cell growth and it has been associated with high-risk PCa patients (41,42). On the
159 other hand, *KRTAP5-AS1* expression has not been directly associated with PCa.

160 Also ranked high among lncRNAs differentially expressed were the lncRNAs *SChLAP1* and its uncharacterized
161 antisense neighbor *AC009478.1*. *SchLAP1* is overexpressed in a subset of PCa where it antagonizes the tumor-
162 suppressive function of the SWI/SNF complex and can independently predict poor outcomes (45,46). On the other
163 hand, the role of *AC009478.1* in PCa development is still unknown. Interestingly, *SchLAP1* and *AC009478.1* expression
164 is strongly correlated in the TCGA datasets only in PCa ($R = 0.94$, $p < 2.2e-26$) and bladder cancer ($R = 0.85$, $p < 2.2e-$
165 26) (Figure S5).

166 Strikingly, a substantial proportion of lncRNAs associated with *PTEN* loss were not yet associated with PCa. Out
167 of the 264 DE non-coding genes, 134 were novel and annotated only in the FANTOM-CAT meta-assembly annotation
168 (Table 2). Among the FANTOM-CAT exclusive genes, those with the highest fold change in close proximity with coding
169 genes were *CATG0000038715*, *CATG0000079217*, and *CATG00000117664* (Figure S6). These genes were mostly
170 expressed in PCa as opposed to other cancer types in the TCGA dataset (Figure 3).

171 Among the downregulated genes were *CATG0000038715* and *CATG0000079217*. *CATG0000038715* is in
172 close proximity to *CYP4F2* and *CYP4F11*, encoding members of the cytochrome P450 enzyme superfamily. Expression
173 of *CATG0000038715* and *CYP4F2* are highly correlated ($R=0.91$, $p < 2.2e-16$) in PCa, and expression of the former was
174 highly specific for PCa (Figure S7). *CATG0000079217* is in close proximity to the coding gene *FBXL7*, an F-box gene
175 which is a component of the E3 ubiquitin ligase complex. While expression of *FBXL7* and *CATG0000079217* showed
176 only a weak correlation ($R=0.14$, $p < 7.4e-4$), *CATG0000079217* expression was notably higher in PCa and breast
177 cancer than in other cancers, and it was moderately correlated with several PCa biomarkers (e.g. *KLK2*, *KLK3*, *STEAP2*,
178 *PCGEM1*, *SLC45A3*) (41,42,47–51) ($R=0.37-0.57$, $p < 2.2e-16$) in TCGA.

179 *CATG00000117664* was among the most upregulated lncRNA and it is located near *GPR158*, a G protein
180 coupled receptor highly expressed in brain. The expression between *GPR158* were correlated ($R=0.54$, $p < 2.2e-16$),
181 and *CATG00000117664* expression was shown to be highly specific to PCa (52) (Figure S7).

182

183 **PTEN loss induces the innate and adaptive immune system**

184 We performed Gene Set Enrichment Analysis (GSEA) using fgsea (28) and tested both the BHM- and TCGA-generated
185 molecular signatures for enrichment in three collections of the Molecular Signature Database (MSigDB) (53,54):
186 HALLMARKS, REACTOME, and GO Biological Processes (BP). Results were similar in both signatures, with positive
187 enrichment of proliferation and cell cycle-related gene sets (e.g. MYC1 targets, MTORC1 signaling, cell cycle
188 checkpoints, and DNA repair) and both innate and adaptive immune system associated gene sets (e.g. Neutrophil
189 degranulation, MHC antigen presentation, interferon-alpha, and gamma) (Figure 4-5 and Supplementary Table S6-
190 S20). The positive enrichment of MHC antigen presentation, interferon-alpha and -gamma in PTEN-null tumors is
191 consistent with our previous study showing that the absolute density of T-cells is increased in PCa with PTEN loss (55).

192 Since *PTEN*-null tumors are known to have decreased androgen output, which is a strong suppressor of
193 inflammatory immune cells (29,56,57), we hypothesized that this decrease in androgen levels could activate an
194 immune response. We, therefore, performed a GSEA analysis using a collection of androgen-regulated genes from
195 Schaeffer et al. (29) to test if the *PTEN*-null signature was enriched in this gene set. Both the TCGA- and BHM-signature
196 were shown to be positively enriched in genes that were shown to be repressed upon dihydrotestosterone treatment
197 (NES =1.39-155, FDR ≤ 0.05) (Figure S8).

198

199 **Discussion**

200 With an estimated prevalence of up to 50%, *PTEN* loss is recognized as one of the major driving events in PCa (58).
201 *PTEN* antagonizes PI3K-AKT/PKB and is a key modulator of the AKT-mTOR signaling pathways which are important in
202 regulating cell growth and proliferation. Accordingly, *PTEN* loss is consistently associated with more aggressive disease
203 features and poor outcomes. Saal and collaborators previously generated a transcriptomic signature of *PTEN* loss in
204 breast cancer (6). While this signature was correlated with worse patient outcomes in breast and other independent
205 cancer datasets, including PCa, the signature unsurprisingly fails to capture key characteristics of PCa such as *ERG*-
206 rearrangement (6,11). Significantly, a transcriptomic signature reflecting the landscape of *PTEN* loss in PCa has not
207 been described to date.

208 Immunohistochemistry (IHC) assay is a clinically utilized technique to determine the status of the *PTEN* gene,
209 with high sensitivity and specificity for underlying genomic deletions (59) (Figure 1). Therefore, we analyzed
210 transcriptome data from two large PCa cohorts – the Health Professional Follow-up Study (HPFS) and the Natural
211 History (NH) study – for which IHC-based *PTEN* and *ERG* status was available (n = 390 and 207, respectively), deriving
212 a *PTEN*-loss gene expression signature specific to PCa (Figure 2 and Supplementary Table S1). Genes that are associated
213 with increased proliferation and invasion in several cancer types, such as *DPT*, *ANPEP* and *LRRN1*, were among the
214 most concordant DEG in this signature. *DPT* has been shown to inhibit cell proliferation through MYC repression and
215 to be down-regulated in both oral and thyroid cancer (60,61). It has also been shown to control cell adhesion and
216 invasiveness, with low expression leading to a worst prognosis (61,62). *ANPEP* is known to play an important role in
217 cell motility, invasion, and metastasis progression (62,63), and lower expression of this gene has been associated with
218 the worst prognosis (64). *LRRN1* is a direct transcriptional target of *MYCN*, and an enhancer of EGFR and IGRF signaling
219 pathway (65). Higher levels of *LRRN1* expression promote tumor cell proliferation, inhibiting cell apoptosis, and play
220 an important role in preserving pluripotency-related proteins through *AKT* phosphorylation (65–67), leading to a poor
221 clinical outcome in gastric and brain cancer.

222 Notably, *ERG* was shown to be upregulated in our signature, which led us to perform a stratified analysis to
223 avoid capturing signals driven mostly by *ERG* overexpression. Surprisingly, we were not able to detect significant
224 differences by *PTEN* status in the HPFS and NH cohorts, which were quantified by gene expression microarrays, in the
225 *ERG* samples. Conversely, when analyzing the TCGA cohort, we were able to detect significant changes by *PTEN* status

226 in the *ERG*⁺ samples (Supplementary Tables S3-S5). However, given the known limitations of gene expression
227 microarrays performed on formalin fixed material, such as the limited dynamic range of expression values (68), we
228 believe that the HPFS and NH datasets were limited by the technology employed. Nevertheless, concordance between
229 the BHM- and TCGA- cohorts were similar in both the overall and the *ERG*⁺ background comparison (Supplementary
230 Figure S4).

231 We observed in the TCGA cohort several lncRNAs that have already been associated with PCa progression were
232 found in our signature. PCA3 acts by a variety of mechanisms such as down-regulation of the oncogene *PRUNE2* and
233 up-regulation of the *PRKD3* gene by acting as a miRNA sponge for *mir-1261* leading to increase proliferation and
234 migration(37,38). Conversely, knockdown of PCA3 can lead to partial reversion of epithelial-mesenchymal transition
235 (EMT) (39) which can lead to increased cell invasion, motility, and survival (40). Although *KRTAP5-AS1* has not been
236 associated with PCa, it has recently shown that *KRTAP5-AS1* can act as a miRNA sponge for miRNAs, such as *mir-596*,
237 which targets the oncogene *CLDN4* which enhances the invasion capacity of cancer cells and promote EMT (40,43),
238 thereby overexpression of *KRTAP5-AS1* can lead increased levels of *CLDN4* (44). *Mir-596* has also been shown to be
239 overexpressed in response to androgen signaling and associated with anti-androgen therapy resistance (44).

240 Moreover, many lncRNAs exclusively annotated in the FANTOM-CAT were associated with PTEN-loss and were
241 shown to be expressed mostly in PCa (Figure 3). Since these genes are novel genes without elucidated function, we
242 analyzed potential roles for these genes by looking at coding genes located in the same loci. Among the top DE lncRNAs,
243 genes within proximity to coding genes were *CATG0000038715*, *CATG0000079217*, and *CATG00000117664* (Figure
244 S6) which are positioned in the same loci as *CYP4F2*, *FBXL7*, and *GPR158*, respectively. *CYP4F2* is involved in the process
245 of inactivating and degrading leukotriene B4 (*LTB4*). *LTB4* is a key gene in the inflammatory response that is produced
246 in leukocytes in response to inflammatory mediators and can induce the adhesion and activation of leukocytes on the
247 endothelium.(69). *FBXL7* regulates mitotic arrest by degradation of *AURKA*, which is known to promote inflammatory
248 response and activation of NF- κ B (70,71). Likewise, increase expression of *GPR158* is reported to stimulate cell
249 proliferation in PCa cell lines, and it is linked to neuroendocrine differentiation (72).

250 We consistently observed a strong enrichment in immune response genes and gene sets upon *PTEN* loss
251 (Figure 4 and Supplementary Tables S6-S20). Immune-associated genes (i.e. *GP2* and *PLA2G2A*) were found amongst

252 the top up-regulated genes in our signature (Figure 2). Positive enrichment of Interferon-alpha- and gamma-response
253 genes (FDR ≤ 0.01) further suggests that a strong immuno-responsive environment, with both innate and adaptive
254 systems activated, is developed in *PTEN*-null tumors (Figure 5). The positive enrichment of MHC class II antigen
255 presentation, neutrophil degranulation, vesicle-mediated transport, and FC receptor pathway-related genes suggests
256 that *PTEN*-null tumors may be immunogenic (Figure 4). This finding was particularly surprising given that *PTEN* is itself
257 a key positive regulator of innate immune response, controlling the import of *IRF3*, which is responsible for IFN
258 production. Accordingly, disruption of *PTEN* expression has previously been reported to lead to decreased innate
259 immune response (73). Conversely, it has also been hypothesized that the increased genomic instability caused by, or
260 associated with, *PTEN* loss can increase immunogenicity in the tumor micro-environment (TME) (74). This finding is of
261 particular interest given that immune-responsive tumors can be good candidates for immunotherapy-based
262 approaches.

263 Remarkably, despite loss of *PTEN* being associated with higher expression of the immune checkpoint gene
264 programmed death ligand-1 (*PD-L1*) in several cancer types (75,76) this is not true in PCa (77). So far, current
265 immunotherapeutic interventions, such as *PD-1* blockade, in PCa have not been successful. One of the possible reasons
266 is the lack of *PD-L1* expression (77). Therefore, alternative targets must be considered for immunotherapy in PCa. One
267 alternative target is the checkpoint molecule *B7-H3 (CD276)*, whose expression has already been associated with PCa
268 progression and worse prognosis (78) and has been suggested as a target for immunotherapy (79,80). *CD276* was one
269 of the most concordant up-regulated genes in our signature (Figure 2) suggesting that its expression is associated with
270 *PTEN* loss. Interestingly, *B7-H3* expression may be down-regulated by androgens (81).

271 The effects of androgen on the immune system has already been extensively studied and reviewed (56).
272 Androgens are known to suppress inflammatory immune cells and to impair the development and function of B- and
273 T-cells (57). We, therefore, hypothesized that the decreased levels of androgen in *PTEN*-null TME could lead to an
274 unsuppressed immune system. By testing our signature for enrichment in androgen-related genes (AR) derived from
275 Schaeffer et al. (29), we observed that upon *PTEN*-loss, androgen-sensitive genes that are typically suppressed by DHT
276 are positively enriched, indicating that androgen levels or androgen response in *PTEN*-null tumors may be lower than
277 in their *PTEN*-intact counterparts (Figure S8). This decrease in AR-signaling has been described in *PTEN*-null tumors, in

278 which activation of PI3K pathway inhibits AR activity. (82). Furthermore, AR inhibition activates AKT signaling by
279 inhibiting AKT phosphatase levels further boosting cell proliferation (82), which has also been noted in this study
280 (Figure 3). Finally, in the non-coding repertoire, both *PCA3* and *PCGEM1* are modulated by androgen (83,84) and were
281 down-regulated upon *PTEN* loss which tracks with the observed decreased androgen response in *PTEN*-null tumors
282 (Figure S6 and S8).

283

284

285 **Conclusion**

286 Altogether, we have generated a highly concordant gene signature for *PTEN* loss in PCa across three independent
287 datasets. We show that this signature was highly enriched in proliferation and cell cycle genes, leading to a more
288 aggressive phenotype upon *PTEN* loss, which is concordant with the literature. Moreover, we have shown that *PTEN*
289 loss is associated with an increase in both innate and adaptive immune response. Although the literature shows that
290 *PTEN* loss usually leads to immuno-suppression, we find evidence that this finding may be reversed in PCa. This
291 observation has potential implications in the context of precision medicine since immune responsive tumors are more
292 likely to respond to immunotherapies. Therefore, *PTEN*-null tumors might benefit more from this approach than *PTEN*-
293 intact tumors. Potentially, *PTEN* status can guide immunotherapy combination with other approaches such as
294 androgen ablation.

295 Finally, by leveraging the FC-R2 resource, we were able to highlight many lncRNAs that may be associated with
296 PCa progression. Although functional characterization these lncRNAs is beyond the scope of this study, we have shown
297 that these novel lncRNAs are highly specific to PCa and track with several coding mRNAs and lncRNAs already reported
298 to be involved in PCa development and progression, most notably, genes involved in immune response. By providing a
299 PCa-specific signature for *PTEN* loss, as well as highlighting potential new players, we hope to empower further studies
300 on the mechanisms leading to the development of PCa as well its more aggressive subtypes aiding in the future
301 development of potential biomarkers, drug targets and guide therapies choice.

302

303 **Acknowledgments**

304 This publication was made possible through support from the National Institutes of Health–National Cancer Institute
305 (NIH-NCI) grants U01CA196390, and R01CA200859; and the U.S. Department of Defense (DoD) office of the
306 Congressionally Directed Medical Research Programs (CDMRP) award W81XWH-16-1-0739 and W81XWH-16-1-0737;
307 and Fundação de Amparo a Pesquisa do Estado de Minas Gerais award BDS-00493-16.

308

309 **Author contributions statement**

310 L.M. and T.L. conceived the idea; L.M., E.L.I. and T.L. designed the study; E.L.I., D.F.S., W.D., T.L., and L.M. performed
311 the analysis; E.L.I., D.F.S., T.L., T.V., G.R.F., and L.M. interpreted the results; T.L., E.M.E., S.T., L.M., M.L., and E.M.S.
312 provided data and tools; E.L.I., D.F.S., T.L., and L.M. wrote the manuscript; all authors reviewed and approved the
313 manuscript.

314 **References**

- 315 1. Cancer Genome Atlas Research Network, TCGA. The Molecular Taxonomy of Primary Prostate Cancer. *Cell* [Internet]. 2015
316 Nov 5;163(4):1011–25. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26544944>
- 317 2. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate
318 cancer. *Cancer Cell*. 2010;18(1):11–22.
- 319 3. Baca S, Garraway L. The genomic landscape of prostate cancer. *Front Endocrinol (Lausanne)* [Internet]. 2012;3:69. Available
320 from: <https://www.frontiersin.org/article/10.3389/fendo.2012.00069>
- 321 4. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate
322 cancer. *Nat Rev Urol* [Internet]. 2018;15(4):222–34. Available from: <http://dx.doi.org/10.1038/nrurol.2018.9>
- 323 5. Lee Y-R, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. *Nat
324 Rev Mol Cell Biol* [Internet]. 2018;19(9):1–16. Available from: <http://dx.doi.org/10.1038/s41580-018-0015-0>
- 325 6. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She Q-BBQ-B, Maurer M, et al. Poor prognosis in carcinoma is associated
326 with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. *Proc Natl Acad Sci* [Internet]. 2007
327 May 1;104(18):7564–9. Available from: <http://www.pnas.org/content/104/18/7564>
- 328 7. Ong CW, Maxwell P, Alvi MA, McQuaid S, Waugh D, Mills I, et al. A gene signature associated with PTEN activation defines
329 good prognosis intermediate risk prostate cancer cases. *J Pathol Clin Res*. 2018;4(2):103–13.
- 330 8. Morais CL, Han JS, Gordetsky J, Nagar MS, Anderson AE, Lee S, et al. Utility of PTEN and ERG immunostaining for
331 distinguishing high-grade PIN from intraductal carcinoma of the prostate on needle biopsy. *Am J Surg Pathol* [Internet].
332 2015 Feb;39(2):169–78. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25517949>
- 333 9. Lotan TL, Wei W, Ludkovski O, Morais CL, Guedes LB, Jamaspishvili T, et al. Analytic validation of a clinical-grade PTEN
334 immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. *Nat Genet*. 2016;29(8):904–14.
- 335 10. Lotan TL, Heumann A, Rico SD, Hicks J, Leckstell K, Koop C, et al. PTEN loss detection in prostate cancer: comparison of PTEN
336 immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. *Oncotarget*. 2017;8(39):65566–76.
- 337 11. Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A, et al. Fluorescence in situ hybridization study shows association
338 of PTEN deletion with ERG rearrangement during prostate cancer progression. *Mod Pathol* [Internet]. 2009 Aug
339 1;22(8):1083–93. Available from: <http://www.nature.com/articles/modpathol200969>
- 340 12. Leapman MS, Nguyen HG, Cowan JE, Xue L, Stohr B, Simko J, et al. Comparing Prognostic Utility of a Single-marker
341 Immunohistochemistry Approach with Commercial Gene Expression Profiling Following Radical Prostatectomy. *Eur Urol*
342 [Internet]. 2018;74(5):668–75. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/30181067>

343 13. Ahearn TU, Pettersson A, Ebot EM, Gerke T, Graff RE, Morais CL, et al. A Prospective Investigation of PTEN Loss and ERG
344 Expression in Lethal Prostate Cancer. *J Natl Cancer Inst* [Internet]. 2016 Feb;108(2). Available from:
345 <http://www.ncbi.nlm.nih.gov/pubmed/26615022>

346 14. Lotan TL, Tomlins SA, Bismar TA, Van der Kwast TH, Grignon D, Egevad L, et al. Report From the International Society of
347 Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular
348 Biomarkers in Prostate Cancer. *Am J Surg Pathol* [Internet]. 2020 Jul;44(7):e15–29. Available from:
349 <http://www.ncbi.nlm.nih.gov/pubmed/32044806>

350 15. Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. *Cancer Sci*. 2017;108(11):2107–14.

351 16. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, et al. Subtle variations in Pten dose determine cancer
352 susceptibility. *Nat Genet*. 2010;42(5):454–8.

353 17. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase
354 pathway activation in prostate oncogenesis. *Nat Genet* [Internet]. 2009 May;41(5):524–6. Available from:
355 <http://www.ncbi.nlm.nih.gov/pubmed/19396167>

356 18. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN
357 to promote cancer progression in the prostate. *Nat Genet* [Internet]. 2009 May;41(5):619–24. Available from:
358 <http://www.nature.com/doifinder/10.1038/ng.370>

359 19. Ross AE, Johnson MH, Yousefi K, Davicioni E, Netto GJ, Marchionni L, et al. Tissue-based Genomics Augments Post-
360 prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men. *Eur Urol* [Internet]. 2016
361 Jan;69(1):157–65. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26058959>

362 20. Penney KL, Sinnott JA, Tyekucheva S, Gerke T, Shui IM, Kraft P, et al. Association of prostate cancer risk variants with gene
363 expression in normal and tumor tissue. *Cancer Epidemiol Biomarkers Prev* [Internet]. 2015 Jan;24(1):255–60. Available
364 from: <http://www.ncbi.nlm.nih.gov/pubmed/25371445>

365 21. Imada EL, Sanchez DF, Collado-Torres L, Wilks C, Matam T, Dinalankara W, et al. Recounting the FANTOM CAGE-Associated
366 Transcriptome. *Genome Res*. 2020;30(7):gr–254656.

367 22. Lotan TL, Gurel B, Sutcliffe S, Espi D, Liu W, Xu J, et al. PTEN Protein Loss by Immunostaining: Analytic Validation and
368 Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients. *Clin Cancer Res* [Internet]. 2011 Oct
369 15;17(20):6563–73. Available from: <http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-11-1244>

370 23. Scharpf RB, Tjelmeland H, Parmigiani G, Nobel AB. A Bayesian model for cross-study differential gene expression. *J Am Stat
371 Assoc*. 2009;104(488):1295–310.

372 24. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
373 Stat Appl Genet Mol Biol [Internet]. 2004;3:Article3. Available from:
374 <http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=abstract>

375 25. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts.
376 Genome Biol [Internet]. 2014;15(2):R29. Available from: <http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29>

378 26. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet [Internet].
379 2007 Sep;3(9):1724–35. Available from:
380 <http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.0030161>

381 27. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R
382 Stat Soc [Internet]. 1995;Series B,(1):289–300. Available from:
383 http://www.dm.uba.ar/materias/analisis_expl_y_conf_de_datos_de_exp_de_marrays_Mae/2006/1/teoricas/FDR_1995.pdf

385 28. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation.
386 BioRxiv [Internet]. 2016;60012. Available from: <https://www.biorxiv.org/content/10.1101/060012v1>

387 29. Schaeffer EM, Marchionni L, Huang Z, Simons B, Blackman A, Yu W, et al. Androgen-induced programs for prostate
388 epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene [Internet]. 2008 Dec
389 4;27(57):7180–91. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/18794802>

390 30. Leinonen KA, Saramaki OR, Furusato B, Kimura T, Takahashi H, Egawa S, et al. Loss of PTEN Is Associated with Aggressive
391 Behavior in ERG-Positive Prostate Cancer. Cancer Epidemiol Biomarkers Prev [Internet]. 2013 Dec 1;22(12):2333–44.
392 Available from: <http://cebp.aacrjournals.org/cgi/doi/10.1158/1055-9965.EPI-13-0333-T>

393 31. Yoshimoto M, Ludkovski O, DeGrace D, Williams JL, Evans A, Sircar K, et al. PTEN genomic deletions that characterize
394 aggressive prostate cancer originate close to segmental duplications. Genes, Chromosom Cancer. 2012;51(2):149–60.

395 32. Mehra R, Salami SS, Lonigro R, Bhalla R, Siddiqui J, Cao X, et al. Association of ERG/PTEN status with biochemical recurrence
396 after radical prostatectomy for clinically localized prostate cancer. Med Oncol [Internet]. 2018 Oct 5;35(12):152. Available
397 from: <http://www.ncbi.nlm.nih.gov/pubmed/30291535>

398 33. Krohn A, Freudenthaler F, Harasimowicz S, Kluth M, Fuchs S, Burkhardt L, et al. Heterogeneity and chronology of PTEN
399 deletion and ERG fusion in prostate cancer. Mod Pathol. 2014;27(12):1612.

400 34. Massoner P, Kugler KG, Unterberger K, Kuner R, Mueller LAJ, Fälth M, et al. Characterization of transcriptional changes in

401 ERG rearrangement-positive prostate cancer identifies the regulation of metabolic sensors such as neuropeptide Y. PLoS
402 One [Internet]. 2013;8(2):e55207. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/23390522>

403 35. Network CGAR, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-
404 Cancer analysis project. Nat Genet [Internet]. 2013 Oct;45(10):1113–20. Available from:
405 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24071849&retmode=ref&cmd=prlinks>

406 36. Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJLL, Gough J, et al. An atlas of human long non-coding RNAs
407 with accurate 5' ends. Nature [Internet]. 2017 Mar 1;543(7644):199–204. Available from:
408 <http://dx.doi.org/10.1038/nature21374>

409 37. Salameh A, Lee AK, Cardó-Vila M, Nunes DN, Efstathiou E, Staquicini FI, et al. PRUNE2 is a human prostate cancer
410 suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci [Internet]. 2015;112(27):8403–8.
411 Available from: <http://www.pnas.org/lookup/doi/10.1073/pnas.1507882112>

412 38. He JH, Li BX, Han ZP, Zou MX, Wang L, Lv YB, et al. Snail-activated long non-coding RNA PCA3 up-regulates PRKD3 expression
413 by miR-1261 sponging, thereby promotes invasion and migration of prostate cancer cells. Tumor Biol [Internet].
414 2016;37(12):16163–76. Available from: <http://dx.doi.org/10.1007/s13277-016-5450-y>

415 39. Lemos AEGEGEG, Ferreira LB, Batoreu NM, de Freitas PP, Bonamino MH, Gimba ERP. PCA3 long noncoding RNA modulates
416 the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumor Biol [Internet]. 2016;37(8):11339–48.
417 Available from: <http://dx.doi.org/10.1007/s13277-016-5012-3>

418 40. Agarwal R, D’Souza T, Morin PJ. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is
419 associated with increased matrix metalloproteinase-2 activity. Cancer Res. 2005;65(16):7378–85.

420 41. Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, et al. PCGEM1, a prostate-specific gene, is overexpressed in
421 prostate cancer. Proc Natl Acad Sci [Internet]. 2000;97(22):12216–21. Available from:
422 <http://www.pnas.org/cgi/doi/10.1073/pnas.97.22.12216>

423 42. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L, et al. Elevated expression of PCGEM1, a prostate-specific
424 gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene. 2004;23(2):605.

425 43. Lin X, Shang X, Manorek G, Howell SB. Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS
426 One. 2013;8(6):e67496.

427 44. Song YX, Sun JX, Zhao JH, Yang YC, Shi JX, Wu ZH, et al. Non-coding RNAs participate in the regulatory network of CLDN4
428 via ceRNA mediated miRNA evasion. Nat Commun [Internet]. 2017;8(1):1–16. Available from:
429 <http://dx.doi.org/10.1038/s41467-017-00304-1>

430 45. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive
431 prostate cancer and antagonizes the SWI/SNF complex. *Nat Genet.* 2013;45(11):1392–403.

432 46. Mehra R, Udager AM, Ahearn TU, Cao X, Feng FY, Loda M, et al. Overexpression of the long non-coding RNA SChLAP1
433 independently predicts lethal prostate cancer. *Eur Urol.* 2016;70(4):549–52.

434 47. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. *Nat Rev Cancer.* 2008;8(7):497.

435 48. Nam RK, Zhang WW, Klotz LH, Trachtenberg J, Jewett MAS, Sweet J, et al. Variants of the hK2 protein gene (KLK2) are
436 associated with serum hK2 levels and predict the presence of prostate cancer at biopsy. *Clin cancer Res.* 2006;12(21):6452–
437 8.

438 49. Cicek MS, Liu X, Casey G, Witte JS. Role of androgen metabolism genes CYP1B1, PSA/KLK3, and CYP11 α \$ in prostate cancer
439 risk and aggressiveness. *Cancer Epidemiol Prev Biomarkers.* 2005;14(9):2173–7.

440 50. Whiteland H, Spencer-Harty S, Morgan C, Kynaston H, Thomas DH, Bose P, et al. A role for STEAP2 in prostate cancer
441 progression. *Clin & Exp metastasis.* 2014;31(8):909–20.

442 51. Perner S, Rupp NJ, Braun M, Rubin MA, Moch H, Dietel M, et al. Loss of SLC45A3 protein (prostein) expression in prostate
443 cancer is associated with SLC45A3-ERG gene rearrangement and an unfavorable clinical course. *Int J cancer.*
444 2013;132(4):807–12.

445 52. Patel N, Itakura T, Jeong S, Liao C-P, Roy-Burman P, Zandi E, et al. Expression and Functional Role of Orphan Receptor
446 GPR158 in Prostate Cancer Growth and Progression. Robson CN, editor. *PLoS One* [Internet]. 2015 Feb 18;10(2):e0117758.
447 Available from: <https://dx.plos.org/10.1371/journal.pone.0117758>

448 53. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB)
449 3.0. *Bioinformatics* [Internet]. 2011 Jun 15;27(12):1739–40. Available from:
450 <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr260>

451 54. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a
452 knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* [Internet]. 2005 Oct
453 25;102(43):15545–50. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/16199517>

454 55. Kaur HB, Guedes LB, Lu J, Maldonado L, Reitz L, Barber JR, et al. Association of tumor-infiltrating T-cell density with
455 molecular subtype, racial ancestry and clinical outcomes in prostate cancer. *Mod Pathol* [Internet]. 2018;31(10):1539–52.
456 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29849114>

457 56. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. *Cell Immunol* [Internet]. 2015
458 Apr;294(2):87–94. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25708485>

459 57. Ylitalo EB, Thysell E, Jernberg E, Lundholm M, Crnalic S, Egevad L, et al. Subgroups of Castration-resistant Prostate Cancer
460 Bone Metastases Defined Through an Inverse Relationship Between Androgen Receptor Activity and Immune Response.
461 Eur Urol [Internet]. 2017;71(5):776–87. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/27497761>

462 58. Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci. 2017;131(3):197–210.

463 59. Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J, et al. PTEN protein loss by immunostaining: analytic validation and
464 prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res [Internet]. 2011 Oct
465 15;17(20):6563–73. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21878536>

466 60. Guo Y, Li H, Guan H, Ke W, Liang W, Xiao H, et al. Dermatopontin inhibits papillary thyroid cancer cell proliferation through
467 MYC repression. Mol Cell Endocrinol. 2019;480:122–32.

468 61. Yamatoji M, Kasamatsu A, Kouzu Y, Koike H, Sakamoto Y, Ogawara K, et al. Dermatopontin: a potential predictor for
469 metastasis of human oral cancer. Int J cancer. 2012;130(12):2903–11.

470 62. Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, et al. Aminopeptidase N regulated by zinc in human prostate
471 participates in tumor cell invasion. Int J cancer. 2001;92(1):49–54.

472 63. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, et al. Aminopeptidase N is involved in cell motility and
473 angiogenesis: its clinical significance in human colon cancer. Gastroenterology. 2002;122(2):376–86.

474 64. Sørensen KD, Abildgaard MO, Haldrup C, Ulhøi BP, Kristensen H, Strand S, et al. Prognostic significance of aberrantly
475 silenced ANPEP expression in prostate cancer. Br J Cancer. 2013;108(2):420–8.

476 65. Hossain S, Takatori A, Nakamura Y, Suenaga Y, Kamijo T, Nakagawara A. LRRN1 enhances EGF-mediated MYCN induction
477 in neuroblastoma and accelerates tumor growth in vivo. Cancer Res. 2012;72(17):4587–96.

478 66. Hossain MS, Ozaki T, Wang H, Nakagawa A, Takenobu H, Ohira M, et al. N-MYC promotes cell proliferation through a direct
479 transactivation of neuronal leucine-rich repeat protein-1 (NLRR1) gene in neuroblastoma. Oncogene. 2008;27(46):6075–
480 82.

481 67. Liao C-H, Wang Y-H, Chang W-W, Yang B-C, Wu T-J, Liu W-L, et al. Leucine-Rich Repeat Neuronal Protein 1 Regulates
482 Differentiation of Embryonic Stem Cells by Post-Translational Modifications of Pluripotency Factors. Stem Cells.
483 2018;36(10):1514–24.

484 68. Wilhelm BT, Landry J-R. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing.
485 Methods [Internet]. 2009 Jul;48(3):249–57. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/19336255>

486 69. Hardwick JP. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases.
487 Biochem Pharmacol. 2008;75(12):2263–75.

488 70. Coon TA, Glasser JR, Mallampalli RK, Chen BB. Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A,
489 causing mitotic arrest. *Cell cycle*. 2012;11(4):721–9.

490 71. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and
491 tumorigenesis in mice and human gastric neoplasia. *Gastroenterology* [Internet]. 2013 Dec;145(6):1312-22.e1-8. Available
492 from: <http://www.ncbi.nlm.nih.gov/pubmed/23993973>

493 72. Fenner A. Prostate cancer: Orphan receptor GPR158 finds a home in prostate cancer growth and progression. *Nat Rev Urol*
494 [Internet]. 2015 Apr;12(4):182. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25753095>

495 73. Li S, Zhu M, Pan R, Fang T, Cao Y-YY, Chen S, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity.
496 *Nat Immunol*. 2016;17(3):241.

497 74. Vidotto T, Melo CM, Castelli E, Koti M, dos Reis RB, Squire JA. Emerging role of PTEN loss in evasion of the immune response
498 to tumours. *Br J Cancer* [Internet]. 2020;122(12):1732–43. Available from: <http://dx.doi.org/10.1038/s41416-020-0834-6>

499 75. Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 Expression by Oncogenic Activation of the
500 AKT-mTOR Pathway in Non-Small Cell Lung Cancer. *Cancer Res* [Internet]. 2016 Jan 15;76(2):227–38. Available from:
501 <http://www.ncbi.nlm.nih.gov/pubmed/26637667>

502 76. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A, et al. Programmed death ligand 1 expression and tumor-
503 infiltrating lymphocytes in glioblastoma. *Neuro Oncol* [Internet]. 2015 Aug;17(8):1064–75. Available from:
504 <http://www.ncbi.nlm.nih.gov/pubmed/25355681>

505 77. Martin AM, Nirschl TR, Nirschl CJ, Francica BJ, Kochel CM, van Bokhoven A, et al. Paucity of PD-L1 expression in prostate
506 cancer: innate and adaptive immune resistance. *Prostate Cancer Prostatic Dis* [Internet]. 2015 Dec;18(4):325–32. Available
507 from: <http://www.ncbi.nlm.nih.gov/pubmed/26260996>

508 78. Yuan H, Wei X, Zhang G, Li C, Zhang X, Hou J. B7-H3 over expression in prostate cancer promotes tumor cell progression. *J
509 Urol* [Internet]. 2011 Sep;186(3):1093–9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21784485>

510 79. Papanicolau-Sengos A, Yang Y, Pabla S, Lenzo FL, Kato S, Kurzrock R, et al. Identification of targets for prostate cancer
511 immunotherapy. *Prostate* [Internet]. 2019;79(5):498–505. Available from:
512 <http://www.ncbi.nlm.nih.gov/pubmed/30614027>

513 80. Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. *Int J Biol Sci* [Internet].
514 2020;16(11):1767–73. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/32398947>

515 81. Benzon B, Zhao SG, Haffner MC, Takhar M, Erho N, Yousefi K, et al. Correlation of B7-H3 with androgen receptor, immune
516 pathways and poor outcome in prostate cancer: an expression-based analysis. *Prostate Cancer Prostatic Dis* [Internet].

517 2017;20(1):28–35. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/27801901>

518 82. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K
519 and androgen receptor signaling in PTEN-deficient prostate cancer. *Cancer Cell*. 2011;19(5):575–86.

520 83. Gezer U, Tiryakioglu D, Bilgin E, Dalay N, Holdenrieder S. Androgen stimulation of PCA3 and miR-141 and their release from
521 prostate cancer cells. *Cell J*. 2015;16(4):488.

522 84. Parolia A, Crea F, Xue H, Wang Y, Mo F, Ramnarine VR, et al. The long non-coding RNA PCGEM1 is regulated by androgen
523 receptor activity in vivo. *Mol Cancer*. 2015;14(1):46.

524

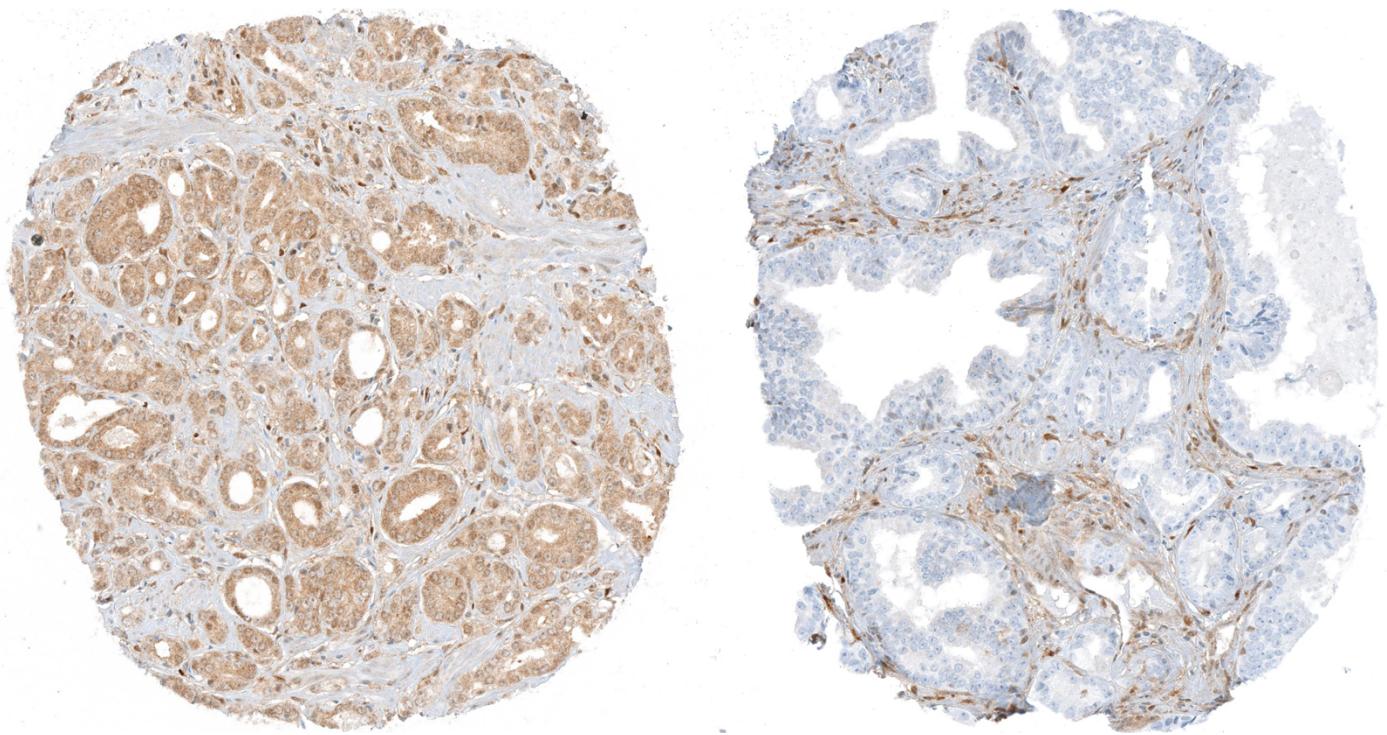
525 **Figures and Tables**

Cohort	PTEN-null	PTEN-intact	N
TCGA	95	321	416
HPFS	91	299	390
Natural History	56	151	207
Total	242	771	1,013

526

527 **Table 1.** Cohorts summary Table shows cohorts summary for the 3 cohorts used in this study: TCGA (only primary tumor samples
528 with high Gistic scores were used); Health Professional Follow-up Study (all); and Natural History cohort (samples with IHC call
529 available). PTEN-null represents samples with PTEN deletion and PTEN-intact regular primary tumors.

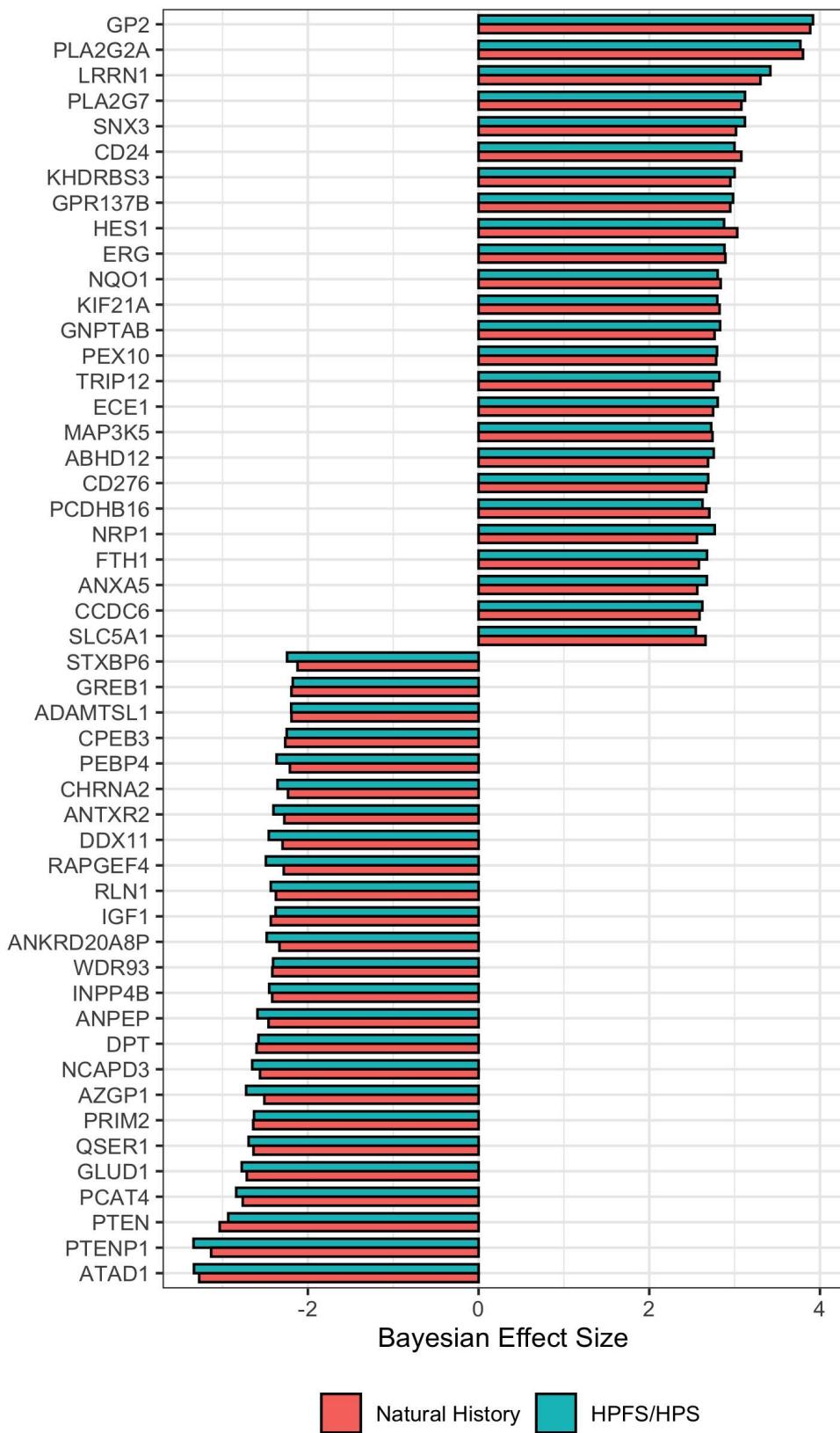
530


531

	PTEN-null vs PTEN-intact overall	PTEN-null vs PTEN-intact in ERG+	PTEN-null vs PTEN-intact in ERG-
Coding genes	257 (13)	226 (7)	185 (10)
Non-coding genes	264 (134)	209 (117)	179 (82)
Total	521 (137)	435 (124)	364 (92)

532

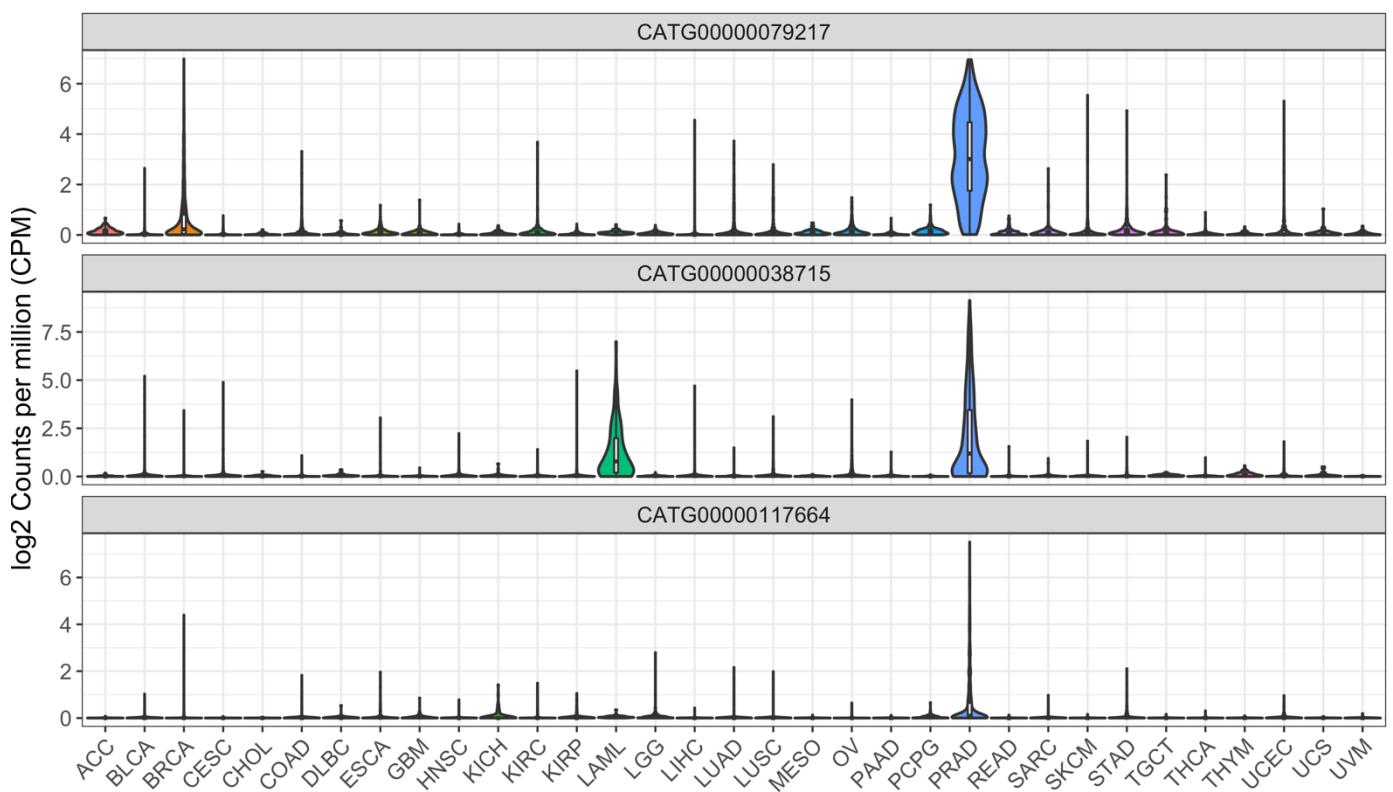
533 **Table 2.** Summary of differentially expressed genes between PTEN-null and PTEN-intact with $\log FC \geq 1$ and $FDR \leq 0.01$ across
534 different ERG backgrounds. Number in parenthesis shows the number of genes exclusive to the FANTOM-CAT annotations.


535

PTEN intact

PTEN loss

536 **Figure 1.** PTEN immunostaining in tissue microarray (TMA) spots from the Natural History Cohort. Left panel: intact PTEN protein
537 is present in all sampled tumor glands (brown chromogen). Right panel: PTEN loss in all sampled tumor glands. Images reduced
538 from 40X.

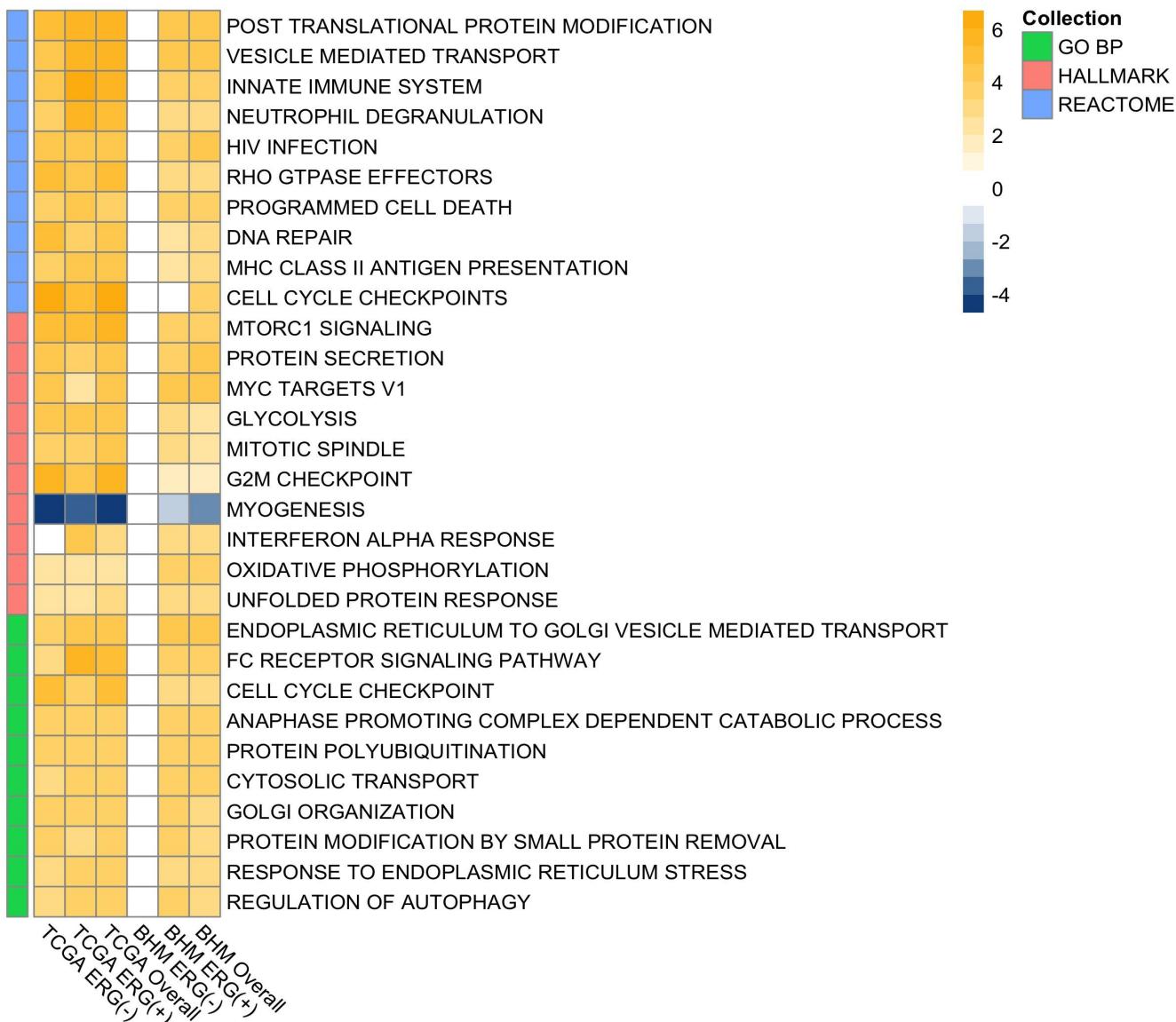


539

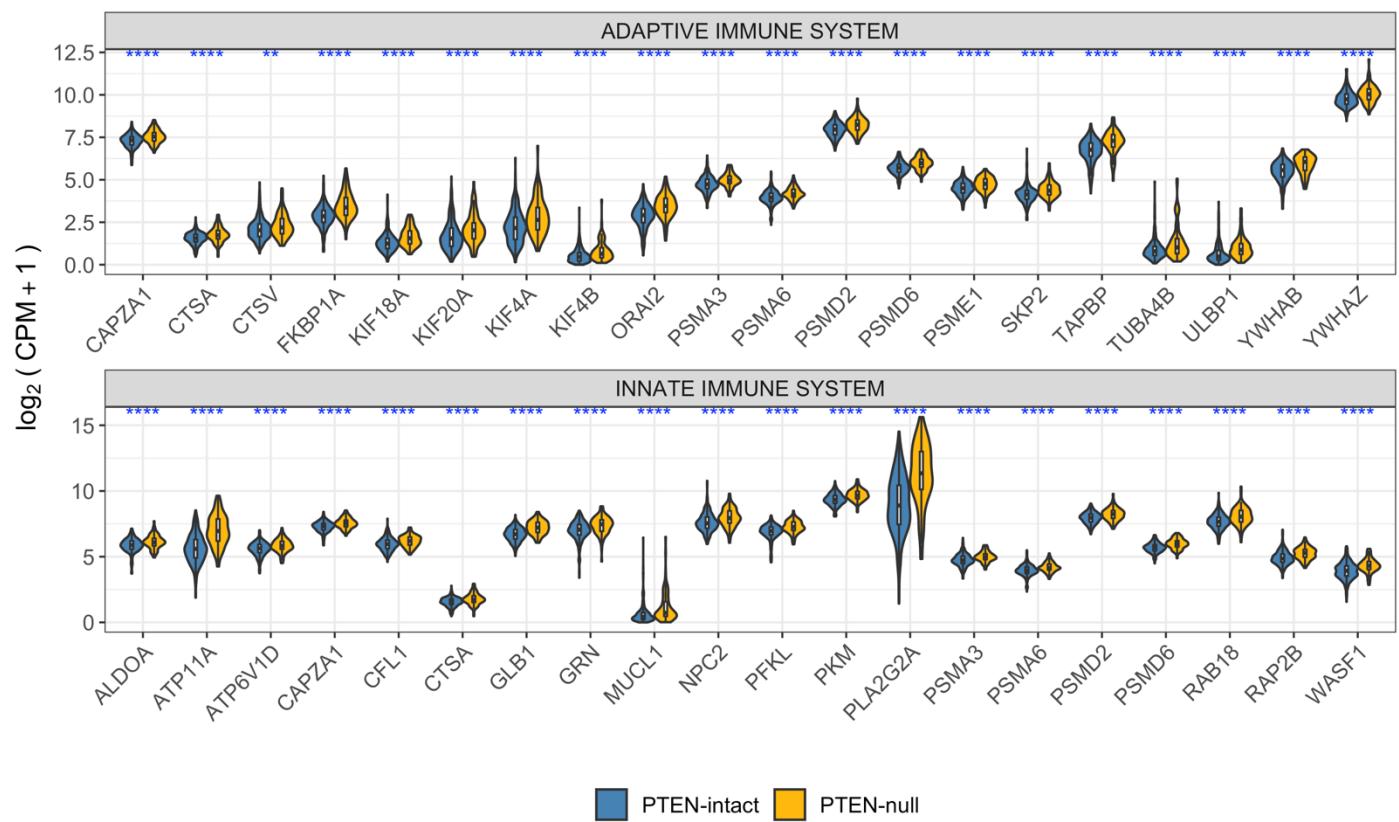
540 **Figure 2.** Cross-study meta-analysis of differential gene expression. Genes in the same loci as PTEN such as RLN1 and ATAD1

541 were found down-regulated. PTEN-null vs PTEN-intact meta-analysis of HPFS/PHS and NH cohorts with Bayesian Hierarchical

542 Model for DGE using XDE showing the top 25 most concordant differentially up- and down-regulated genes. PTEN status were
543 based on IHC assays.
544



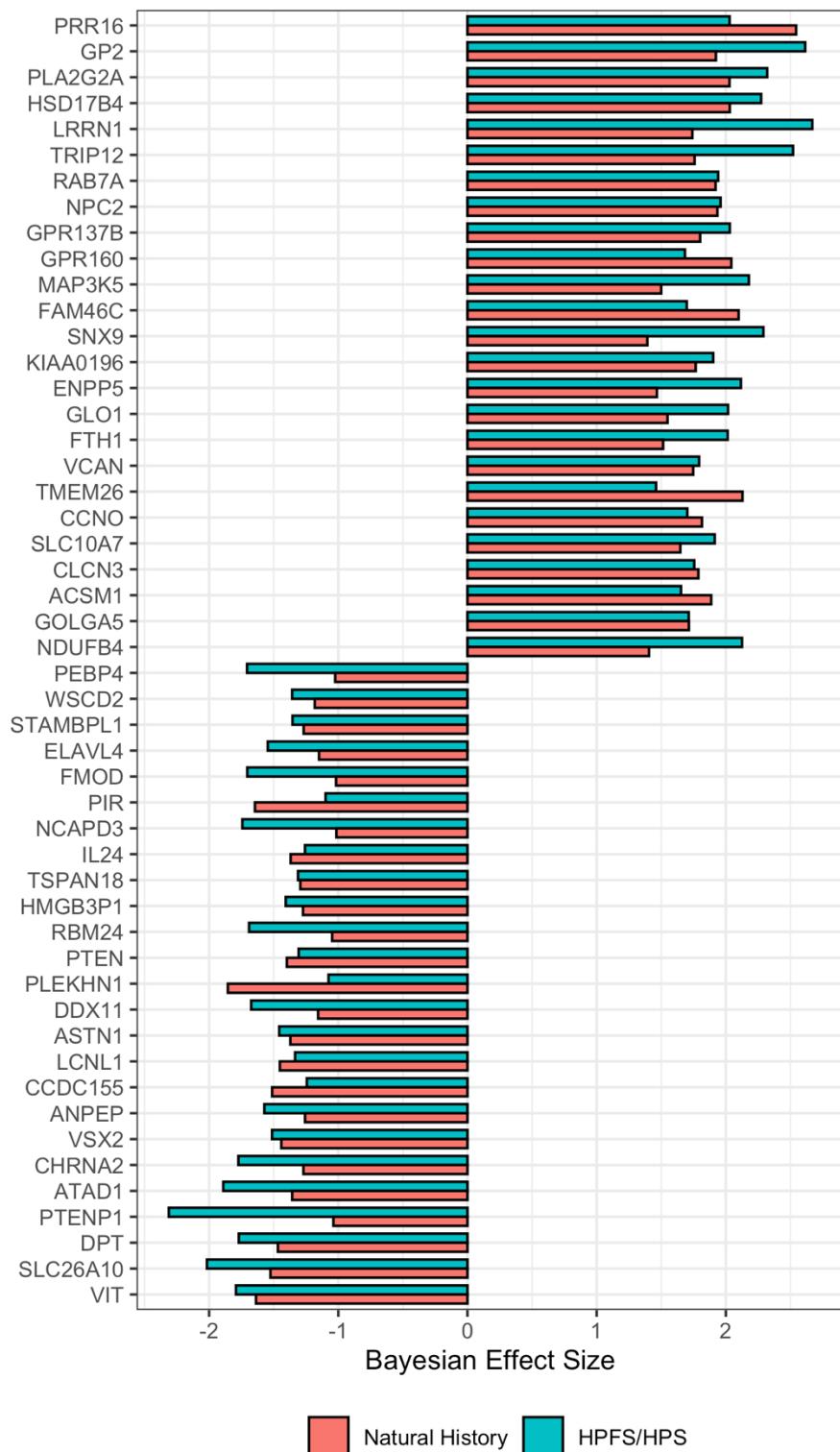
545


546 **Figure 3.** Expression profiles of novel FANTOM-CAT genes CATG00000038715, CATG00000079217 and CATG00000117664 across
547 33 cancer types. Violin-plots shows expression (\log_2 CPM+1) distribution.

548

549

555

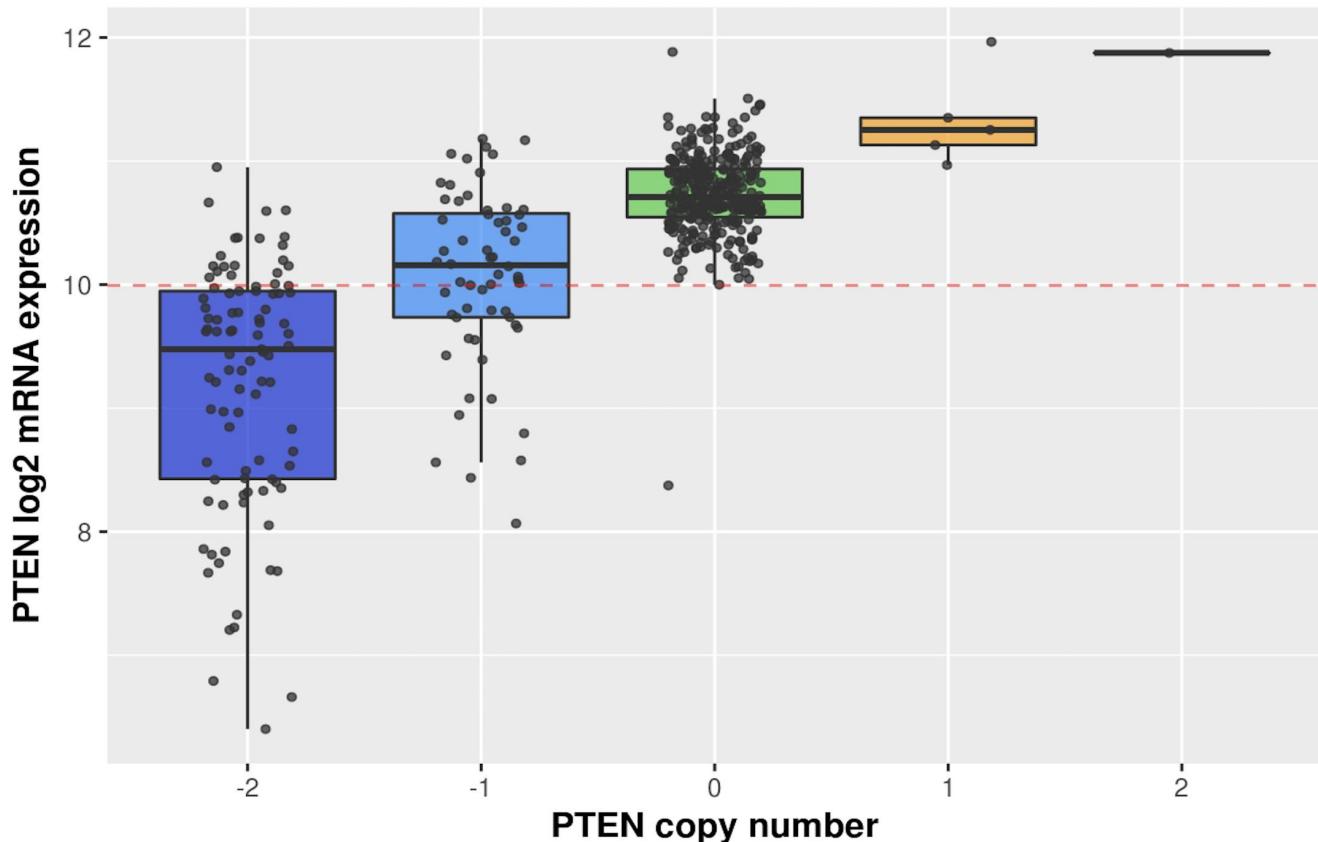

556

557 **Figure 5.** Expression of immune-related genes stratified by PTEN status. Top 20 were selected based on the leading edge of the
558 GSEA of the adaptive and innate immune system gene sets from REACTOME. Significances based on t-test between PTEN-null and
559 PTEN-intact using log₂ CPM+1 values. Significance cutoffs: * ≤ 0.05 ; ** ≤ 0.01 ; *** ≤ 0.001 ; **** ≤ 0.0001 .

560

561 **Supplementary Figures and Tables**

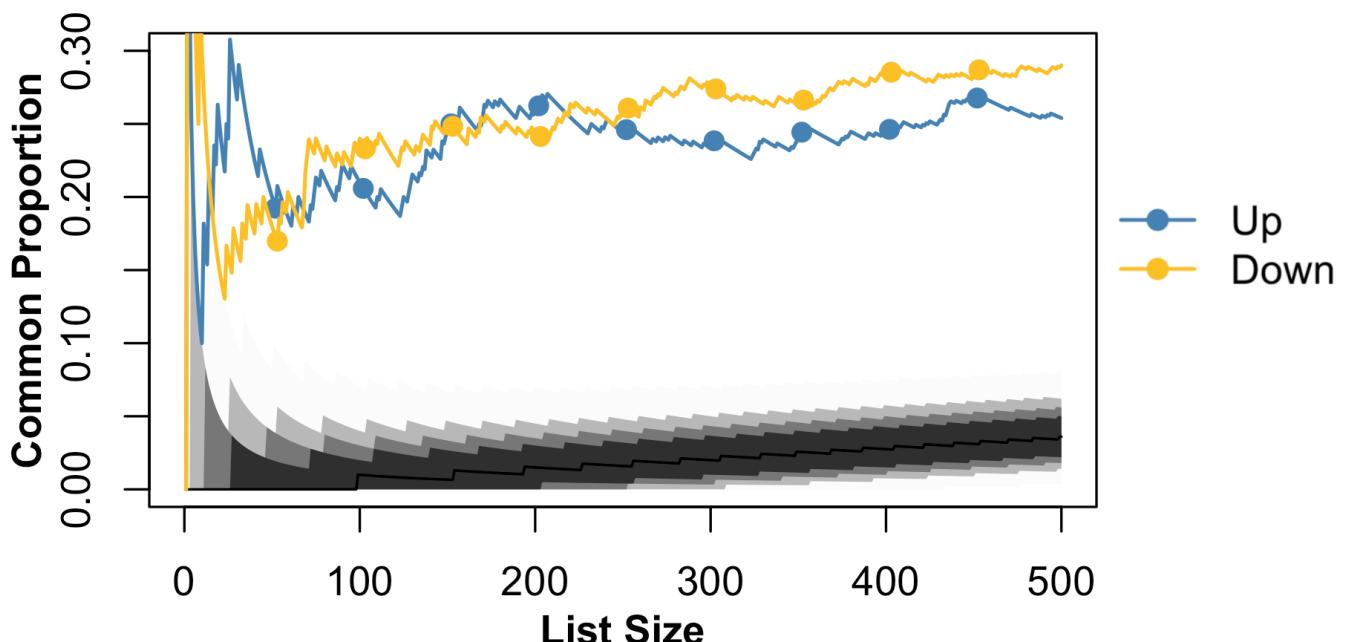
562



563

564 **Figure S1.** Cross-study of differential gene expression in PTEN-null vs PTEN-intact in ERG⁺ samples. Meta-analysis of HPFS/PHS
565 and NH cohorts with Bayesian Hierarchical Model for DGE using XDE showing the top 25 most concordant differentially up- and
566 down-regulated genes. PTEN status were based on IHC assays.

567


PTEN expression stratified by PTEN copy number status

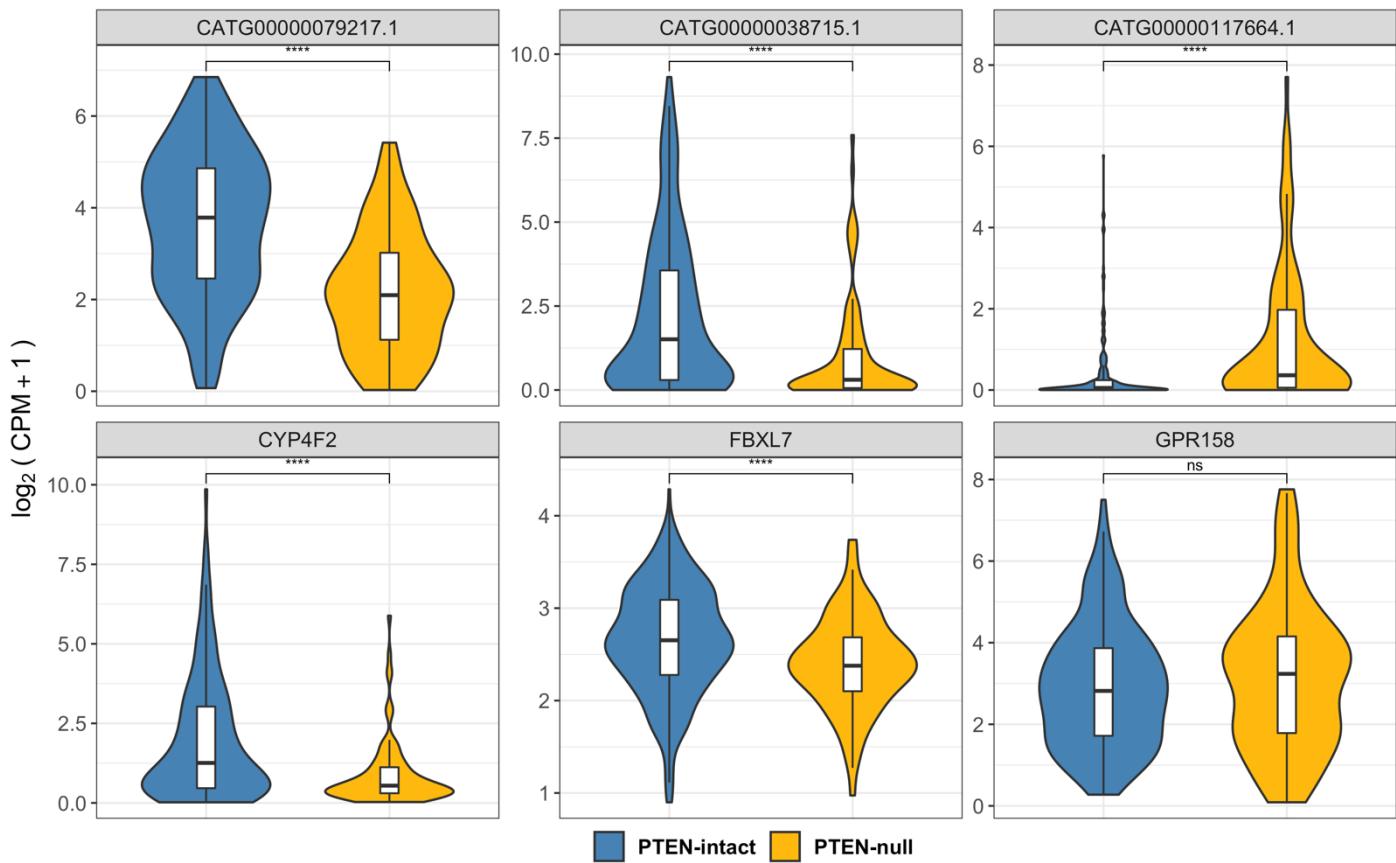
568

569 **Figure S3.** PTEN expression levels stratified by CNV. Figure shows PTEN expression levels distribution by copy number variation
570 (CNV), called by GISTIC algorithm.

571

572

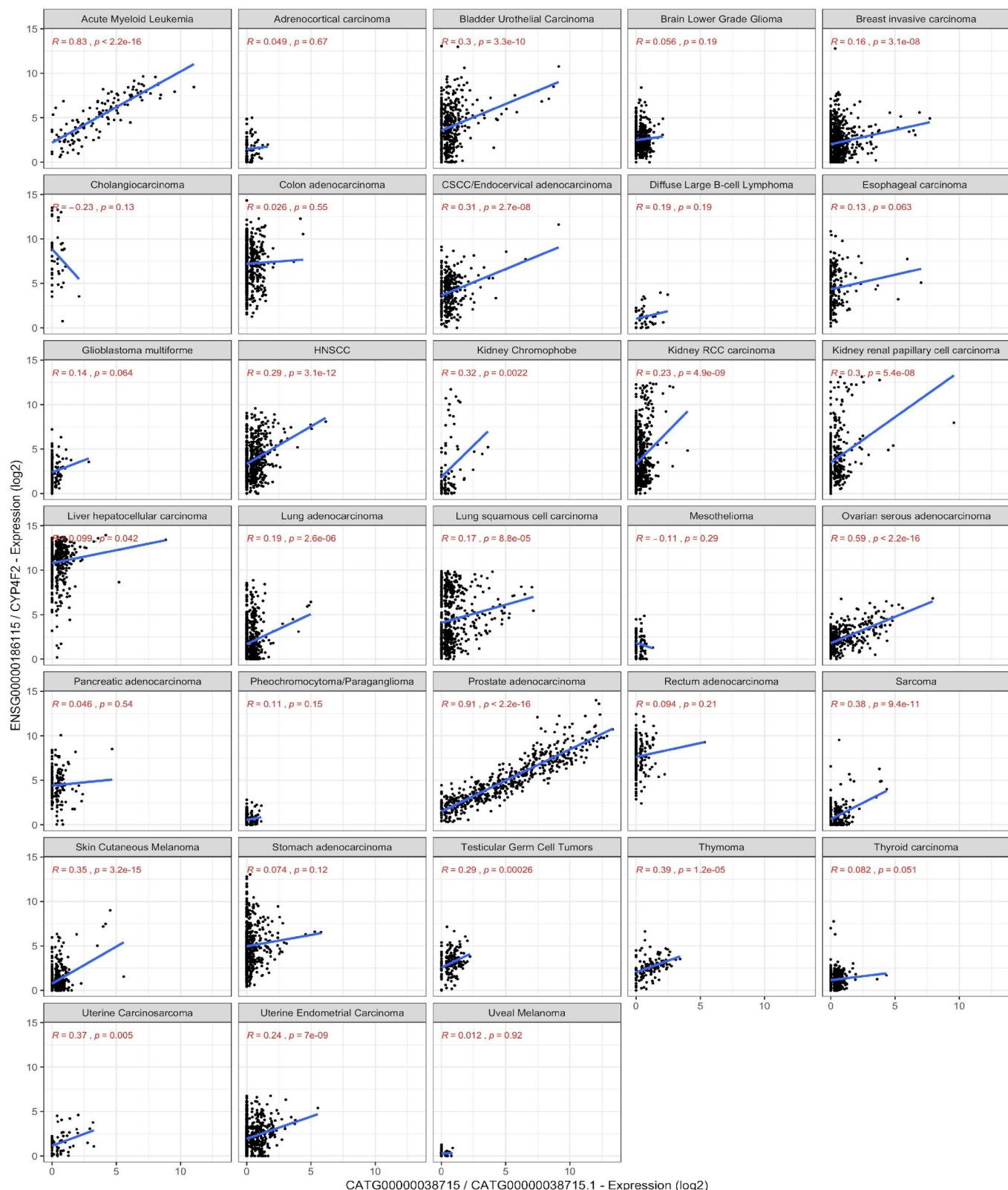
573 **Figure S4.** Correspondence-at-the-top (CAT) plot between TCGA CNV-based calls and the Bayesian Hierarchical Model approach
574 (BHM). Agreement of genes ranked by t-statistics (TCGA) and average Bayesian Effect Size (BHM). Lines represent agreement
575 between tested cohorts for PTEN-intact vs PTEN-null. Black-to-light grey shades represent the decreasing probability of agreeing
576 by chance based on the hypergeometric distribution, with intervals ranging from 0.999999 (light grey) to 0.95 (dark grey). Lines
577 outside this range represent agreement in different cohorts with a higher agreement than expected by chance.


578

579

580 **Figure S5.** Expression of AC009478.1 is shown to be highly specific to PRAD, BLCA, to a lesser extent in UECA and BRCA. Figure
 581 shows raw expression values of SchLAP1 and AC009478.1 across cancer types. Pearson correlations and p-values are shown in
 582 red.

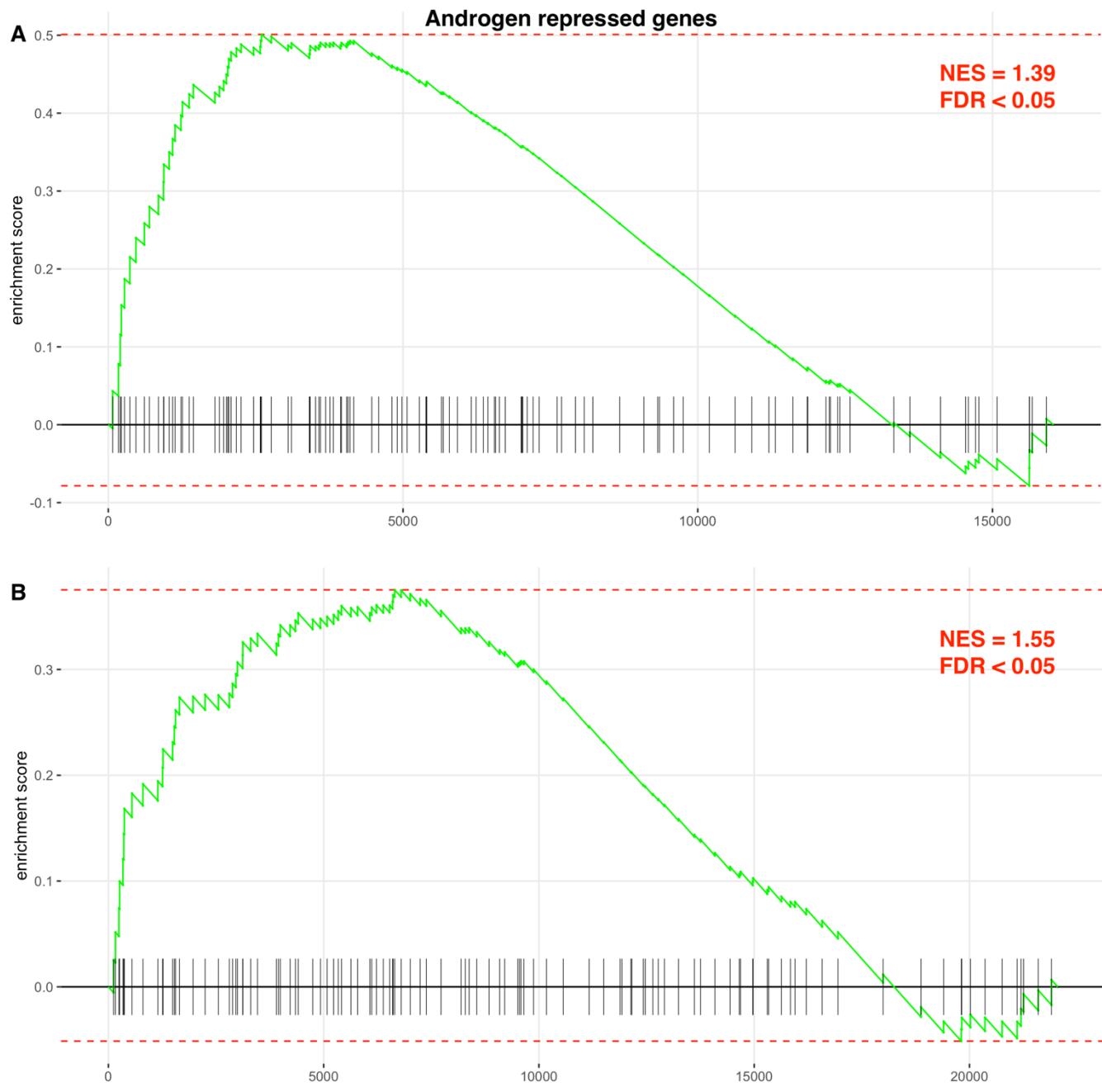
583



584

585 **Figure S6.** Expression of FANTOM-CAT lncRNAs genes (top) and close coding genes (bottom) stratified by PTEN status. Significances
586 based on t-test between PTEN-null and PTEN-intact using \log_2 CPM+1 value. Significance cutoffs: * ≤ 0.05 ; ** ≤ 0.01 ; *** ≤ 0.001 ;
587 **** ≤ 0.0001 .

588


589

590

591 **Figure S7.** Person correlation gene CATG00000038715 and CYP4F2 across cancer types. CATG00000038715 and CYP4F2
 592 expression are shown to be highly correlated in PCa. Moreover, CATG00000038715 expression is shown to be highly specific to
 593 PCa. With exception of leukemia cells, none of the other tumors expressed high levels of CATG00000038715.

