

1 **Title: Biting and resting preferences of malaria vectors in The Gambia**

2 **Authors:**

3 Majidah Hamid-Adiamoh^{*1,2}, Davis Nwakanma², Benoit Sessinou Assogba², Mamadou Ousmane

4 Ndiath², Umberto D'Alessandro², Yaw A. Afrane^{1,3} and Alfred Amambua-Ngwa²

5

6 **Affiliations:**

7 ¹ *West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of*
8 *Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana*

9 ² *Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical*
10 *Medicine*

11 ³*Department of Medical Microbiology, University of Ghana Medical School, University of Ghana,*
12 *Ghana*

13

14 Majidah Hamid-Adiamoh^{*1,2}

15 E-mails: madiamoh@mrc.gm

16

17 Davis Nwakanma²

18 E-mail: davis.nwakanma@lshtm.ac.uk

19

20 Benoit Sessinou Assogba²

21 E-mails: sbassogba@mrc.gm

22

23

24 Mamadou Ousmane Ndiath²

25 E-mails: Mamadou-Ousmane.Ndiath@lshtm.ac.uk

26

27 Umberto D'Alessandro²

28 Email: Umberto.Dalessandro@lshtm.ac.uk

29

30 Yaw A. Afrane^{1,3}

31 Email: YAfrane@ug.edu.gh

32

33 Alfred Amambua-Ngwa^{1,2}

34 Email: alfred.ngwa@lshtm.ac.uk

35

36 *Corresponding author (MHA)

37

38

39

40

41

42

43

44

45 **Abstract**

46 **Background**

47 The scale-up of indoor residual spraying and long-lasting insecticidal nets, together with other
48 interventions have considerably reduced the malaria burden in The Gambia. This study examined
49 the biting and resting preferences of the local insecticide-resistant vector populations few years
50 following scale-up of anti-vector interventions.

51

52 **Method**

53 Indoor and outdoor-resting *Anopheles gambiae* mosquitoes were collected between July and
54 October 2019 from ten villages in five regions in The Gambia using pyrethrum spray collection
55 (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction assays were
56 performed to identify molecular species, insecticide resistance mutations, *Plasmodium* infection
57 rate and host blood meal.

58

59 **Results**

60 A total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423, 50.1%).
61 Four main vector species were identified, including *An. arabiensis* (indoor: 15%, outdoor: 26%);
62 *An. coluzzii* (indoor: 19%, outdoor: 6%), *An. gambiae* s.s. (indoor: 11%, outdoor: 16%), *An. melas*
63 (indoor: 2%, outdoor: 0.1%) and hybrids of *An. coluzzii*-*An. gambiae* (indoors: 3%, outdoors: 2%).
64 A significant preference for outdoor resting was observed in *An. arabiensis* (Pearson $X^2=22.7$,
65 $df=4$, $P<0.001$) and for indoor resting in *An. coluzzii* (Pearson $X^2=55.0$, $df=4$, $P<0.001$). Prevalence
66 of the voltage-gated sodium channel (*Vgsc*)-1014S was higher in the indoor-resting (allele freq. =
67 0.96, 95%CI: 0.78–1) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) *An. arabiensis*

68 population. For *An. coluzzii*, the prevalence of most mutation markers were higher in the outdoor
69 (allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–0.86)
70 mosquitoes. Sporozoite positivity rate was 1.3% (95% CI: 0.5–2%). Indoor-resting *An. coluzzii*
71 had mainly fed on human blood while indoor-resting *An. arabiensis*, animal blood.

72

73 Conclusion

74 The indoor-resting behavior of *An. arabiensis* that preferred animal blood and had low sporozoite
75 rates, may be determined by the *Vgsc-1014S* mutation. Control interventions may include
76 complementary vector control approaches such as zooprophylaxis.

77

78

79

80

81

82

83

84

85

86

87

88 **Introduction**

89 Successful implementation of indoor residual spraying (IRS) and long-lasting insecticidal nets
90 (LLINs) has hugely contributed to the malaria decline observed in sub-Saharan Africa [1]. These
91 interventions reduce transmission by primarily limiting human contact with human-feeding
92 (anthropophagic), indoor-feeding (endophagic) and indoor-resting (endophilic) vectors [2].
93 Unfortunately, these measures also induce selection for physiological and behavioral resistance in
94 vector populations, resulting in reduced mosquito susceptibility to most of the current insecticides
95 used for LLINs and IRS [3], as well as increased exophilic behavioral phenotypes in primarily
96 endophilic vectors [4]. Moreover, residual transmission where LLINs and IRS use is extensive, is
97 maintained by vectors with physiological and behavioral resistance [5]. Therefore, studying the
98 behavioral dynamics of vector populations during the scale up of vector control interventions will
99 assist in determining the appropriate response to emerging behavioral changes.

100 Malaria burden in The Gambia has declined significantly over the last decades with vector control
101 approaches being a major component of intervention, coordinated and implemented by The
102 Gambia National Malaria Control Program (GNMCP). Following the World Health Organization
103 (WHO) Global Plan for Insecticide Resistance Management (GPIRM), the GNMCP has
104 consistently implemented rotational use of different classes of insecticides for IRS, to curtail
105 dichlorodiphenyltrichloroethane (DDT) and deltamethrin resistance. For IRS, DDT was replaced
106 initially by deltamethrin and bendiocarb, and since 2017 by pirimiphos-methyl (actellic 300CS)
107 [6]. Similarly, LLINs intervention has been stable over the years and Gambia has recorded
108 successful LLINs coverage as high as 90% [7,8].

109 Despite such successes, residual transmission has become increasingly spatially heterogeneous,
110 with its intensity increasing from western to eastern Gambia, and could have been driven by

111 specific vector population dynamics [9]. The major vector species, namely *Anopheles arabiensis*,
112 *An. coluzzii* and *An. gambiae sensu stricto* (s.s.) are variably distributed throughout the country.
113 *An. arabiensis* is most prevalent in the eastern Gambia while *An. coluzzii* and *An. gambiae* s.s.
114 inhabit the western region [10,11]. However, *An. arabiensis* has been recently found throughout
115 the country [12], indicating possible replacement due to successful control of other sibling species
116 [13,14]. Moreover, the population prevalence of each vector species varies by season, whereby
117 *An. arabiensis* and *An. coluzzii* are dominant throughout the rainy season, while *An. gambiae* s.s.
118 become rarest early in the onset of dry season [10,11]. DDT and pyrethroid resistance has been
119 reported at various degrees in all vectors, that continue to be highly susceptible to carbamates and
120 organophosphates [12,15,16].

121 Host seeking and resting behavior of vectors are important metrics to evaluate the impact of control
122 and resistance management strategies [17]. Vector behavioral adaptation, resistance selection and
123 persistent transmission could increase during extensive scale-up of interventions, and this
124 information can only be captured by real-time surveillance [18,19]. Hence, national malaria control
125 programs should actively monitor behavioral dynamics in the local vector population, to inform
126 decisions.

127 In The Gambia, DDT and pyrethroid resistance is widespread and associated with residual
128 transmission [12,15]. However, the effect of control activities on vectors feeding and resting
129 behavior remains unclear. The biting and resting preferences of *An. gambiae sensu lato* (s.l.)
130 populations was investigated in The Gambia following few years of intensive vector control
131 interventions.

132

133 Materials and methods

134 *Anopheles gambiae s.l.* collection

135 Indoor and outdoor-resting adult mosquitoes were sampled from July to October 2019, during the
136 malaria transmission season across five administrative regions in The Gambia, namely Central
137 River Region (CRR), Lower River Region (LRR), North Bank Region (NBR), Upper River Region
138 (URR) and West Coast Region (WCR). WCR is a coastal area characterized by mangrove swamps.
139 The remaining regions are mainly inland and have forest vegetation. Rice is mainly cultivated in
140 CRR while cereals farming is common in all regions. Two villages were selected from each region
141 and most of the villages are GNMCP surveillance sites with high LLIN and IRS coverage. Malaria
142 transmission is highest in URR compared to other regions in The Gambia [7].

143 Indoor-resting mosquitoes were collected from sleeping rooms using pyrethrum spray collection
144 (PSC). Twenty houses per village, at least 50m apart from each other, were randomly selected. In
145 each village, collections were done for two consecutive days, with ten houses sampled per day.
146 Outdoor-resting mosquitoes were sampled from pit shelter traps using prokopak aspirator. Three
147 pit shelter traps that were 10m away from the selected compounds, were placed at different parts
148 in each village. Both indoor and outdoor collections were conducted from 06.00 am to 09.00am in
149 every collection day.

150

151

152 Mosquito identification

153 Morphological identification of female *An. gambiae s.l.* was done using identification keys as
154 described by Gillies & Coetzee [20]. Afterwards, mosquitoes were stored individually in 96%

155 ethanol in 1.5ml Eppendorf tube until DNA extraction. DNA was extracted separately from
156 abdomen and head/thoraces of individual mosquitoes using Qiagen QIAxtractor robot. Species-
157 specific genotyping PCR to identify *An. arabiensis*, *An. melas* and *An. gambiae* was performed as
158 previously described [21]. This was followed by restriction enzyme digestion to specifically
159 identify *An. coluzzii*, *An. gambiae* s.s. and their hybrids (*An. coluzzii-An. gambiae* s.s.) [22].

160

161

162 **Insecticide resistance markers identification**

163 Screening for molecular markers of target-site resistance to carbamates, DDT, pyrethroids and
164 organophosphates was done on all samples using a probe-based assay (TaqMan SNP genotyping)
165 [23]. The following markers were investigated: voltage-gated sodium (*Vgsc*)-1014F, *Vgsc*-1014S
166 and *Vgsc*-1575Y associated with target-site mutation to DDT and pyrethroids [24–26].
167 Acetylcholine esterase (*Ace*)-119S, marker for carbamate and organophosphate resistance [27] and
168 glutathione-S-transferase epsilon 2 (*Gste2*)-114T, involved in metabolic resistance to DDT [28]
169 were also assayed. The TaqMan allelic discrimination assay is a multiplex real time PCR with
170 primers and probes specific for each insecticide target gene and discriminate susceptible (wild
171 type) and resistant (mutant) alleles based on probe fluorescence signals [29].

172

173

174 **Plasmodium sporozoite detection**

175 DNA extracted from mosquito head and thoraces was used to detect sporozoites of *Plasmodium*
176 *falciparum*, *P. ovale*, *P. malariae* and *P. vivax* species, employing TaqMan SNP genotyping
177 protocol [30] which enables discriminatory identification of circum-sporozoites (CSPs) of *P.*

178 *falciparum* from *P. ovale*, *P. malariae* and *P. vivax* CSPs. Genomic DNA specific to each of these
179 *Plasmodium* species were analyzed in each assay as positive controls.

180

181

182 **Blood meal identification**

183 Extracted DNA from engorged mosquito abdomens were amplified using modified multiplex
184 PCRs with primers targeting cytochrome B genes of human and animal hosts including chicken,
185 cow, dog, donkey, goat, horse and pig [31,32].

186

187

188 **Statistical analyses**

189 The proportion of each mosquito species in relation to the total number of mosquitoes captured
190 from each region was calculated in percentage, as well as allele frequencies of indoor and outdoor-
191 resting mosquitoes. Sporozoite positivity rate was the proportion of PCR positive mosquitoes
192 among all mosquitoes tested. Human (HBI) and animal blood meal indices were estimated as the
193 proportion of mosquitoes positive for human or animal hosts among those positive for all hosts.
194 Mean differences between HBI and animal blood meal indices by vector species and resting
195 locations were analyzed by ANOVA. Statistical analyses were done using Stata/IC 15.0 (2017
196 StataCorp LP).

197

198

199 **Results**

200 **Anopheles species distribution and their resting behavior**

201 A total of 844 *An. gambiae* s.l. mosquitoes were collected from the five regions. Four main vector
202 species were identified, namely *An. arabiensis* (N=350, 41%); *An. coluzzii* (N=214, 25%), *An.*
203 *gambiae* s.s. (N=224, 27%) and *An. melas* (N=17, 2%). Hybrids of *An. coluzzii-An. gambiae* s.s.
204 were also detected (N=39, 5%). Most mosquitoes were collected from URR (642, 76%), followed
205 by LRR (97, 11%) and then the other regions (Fig 1).

206

207 **Fig 1: Distribution of *Anopheles gambiae* s.l by region as collected indoors and outdoors.**

208 *An. coluzzii-An. gambiae* s.s. are the hybrids of *An. coluzzii* and *An. gambiae* s.s. Mosquitoes were collected from
209 5 regions: CRR- central river region, LRR-lower river region. NBR- north bank region. URR-upper river region
and WCR- West coast region.

210 Overall, the number of mosquitoes resting indoors (421, 49.9%) and outdoors (423, 50.1%) were
211 similar. Nevertheless, the resting preference varied by species. A significantly higher proportion
212 of *An. arabiensis* were found outdoor (26.1%) than indoor (15.4%) (Pearson $X^2=22.7$, df=4,
213 P<0.001) while both *An. coluzzii* (19.1% indoor and 6.3% outdoor, Pearson $X^2=55.0$, df=4,
214 P<0.001) and *An. melas* (1.9% indoor and 0.1% outdoor, Pearson $X^2=13.3$, df=4, P<0.01) preferred
215 resting indoor. For *An. gambiae* s.s. (10.9% indoor and 15.6% outdoor, Pearson $X^2=7.0$, df=4,
216 P<0.1) and *An. coluzzii-An. gambiae* s.s. hybrids (2.6% indoor and 2% outdoor, Pearson $X^2=0.7$,
217 df=4, P<0.95), there was no significance difference between resting indoor and outdoor. In URR,
218 the region with the highest malaria transmission in The Gambia, *An. arabiensis* was most abundant
219 vector (45.8%, 294) (indoor: 14.5%, outdoor: 31.3%), followed by *An. gambiae* s.s. (28.4%, 182)

220 (indoor: 12.8%, outdoor: 15.6%) and *An. coluzzii* (21.5%, 138) (indoor: 13.6%, outdoor: 7.9%).
221 No *An. gambiae* s.s. was collected in CRR while *An. melas* was mainly found in LRR (N=15). All
222 mosquitoes collected from LRR and NBR were resting indoors. The hybrids of *An. coluzzii* and
223 *An. gambiae* s.s. were mainly found in URR (indoor: 2.3%, outdoor: 1.9%) and WCR (indoor:
224 10%, outdoor: 8.3%).

225

226

227

228 **Distribution of voltage-gated sodium channel (Vgsc) mutation
229 markers in the vectors**

230 Vgsc point mutations associated with DDT and pyrethroid resistance were highly prevalent and
231 detected at varying frequencies in all vector species across all regions. Overall, *An. arabiensis* was
232 found resting indoors when resistance allele frequency was higher in the indoor population,
233 whereas *An. coluzzii* were resting outdoors with higher outdoor resistance. No consistent resting
234 preference was observed in *An. gambiae* in the presence of mutations.

235 *Vgsc-1014S* mutation was found predominantly in indoor-resting vector populations (Table 1). In
236 *An. arabiensis*, the mutation was more frequent in the indoor-resting than outdoor-resting
237 mosquitoes regardless of the region. *Vgsc-1014S* was also the only mutation identified in *An.*
238 *gambiae* s.s. and *An. melas* when found resting indoors.

239 **Table 1: Frequencies of insecticide resistance alleles on VGSC, GST and AChE loci in *Anopheles gambiae* s.l. populations from**

240 all study regions

241

Region	Anopheles species	Vgsc-1014F		Vgsc-1014S		Vgsc-1575Y		GSTe2-114T		Ace1-119S	
		Indoor	Outdoor	Indoor	Outdoor	Indoor	Outdoor	Indoor	Outdoor	Indoor	Outdoor
URR	<i>An. arabiensis</i> (N=294)	0.05	0.02	0.91	0.82	0	0.004	0	0.01	0	0
	<i>An. coluzzii</i> (N=138)	0.74	0.92	0.25	0.04	0.68	0.9	0.78	0.9	0	0
	<i>An. gambiae</i> ss (N=182)	1	0.99	0	0.01	0.96	0.98	0.98	0.99	0.05	0.04
	<i>An. col./ gam</i> (N=27)	0.93	1	0	0	0.87	1	0.87	0	0.07	0
LRR	<i>An. arabiensis</i> (N=10)	0	-	0.9	-	0	-	0.1	-	0	-
	<i>An. coluzzii</i> (N=71)	0.66	-	0.3	-	0	-	0	-	0	-
	<i>An. gambiae</i> ss (N=1)	0	-	1	-	0	-	0	-	0	-
	<i>An. melas</i> (N=15)	0	-	1	-	0	-	0	-	0	-
WCR	<i>An. arabiensis</i> (N=8)	-	0.13	-	0.88	-	0	-	0	-	0
	<i>An. coluzzii</i> (N=1)	-	1	-	0	-	0	-	0	-	0
	<i>An. gambiae</i> ss (N=40)	0.25	0.13	0.75	0.84	0.13	0.06	0	0	0	0
	<i>An. col./ gam</i> (N=11)	0	0	1	1	0	0	0.17	0	0	-
CRR	<i>An. arabiensis</i> (N=34)	0	1	0.96	0	0	0	0.1	0.27	0	0
	<i>An. coluzzii</i> (N=3)	-	1	-	0	0	0	0	0	0	0
	<i>An. melas</i> (N=1)	0	-	1	-	0	-	0	-	-	0

Vgsc- voltage-gated sodium channel. GSTe2-glutathione-s-transferase epsilon 2. Ace1-Acetylcholine esterase1.

243 In *An. arabensis* resting indoors in URR, *Vgsc-1014S* frequency was higher in the indoor- (allele
244 freq. = 0.91, 95%CI: 0.84–0.96) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87)
245 mosquitoes. Moreover, *Vgsc-1014S* was the only mutation identified in this species when found
246 resting indoors (allele freq. = 0.96, 95%CI: 0.78–1) in CRR. Similarly in URR, the *Vgsc-1014S*
247 mutation in *An. coluzzii* was higher in the indoor (allele freq. = 0.25, 95%CI: 0.17–0.36) than
248 outdoor-resting mosquitoes (allele freq. = 0.04, 95%CI: 0.005–1.3). In LRR, the mutation was
249 found only in indoor-resting mosquitoes (allele freq. = 0.3, 95%CI: 0.19–0.42). Conversely in
250 WCR, the mutation was common in *An. gambiae* s.s. and higher among outdoor- (allele freq. =
251 0.84, 95%CI: 0.67–0.95) than indoor-resting (allele freq. = 0.75, 95%CI: 0.35–0.97) mosquitoes.

252 *Vgsc-1014F* was almost fixed in most mosquitoes, except *An. arabiensis*. It was also more
253 common in the outdoor- than indoor-resting mosquitoes. More specifically in URR, the mutation
254 was found higher in outdoor-resting (allele freq. = 0.92, 95%CI: 0.81–0.98) than the indoor-resting
255 *An. coluzzi* population (allele freq. = 0.74, 95%CI: 0.63–0.82). Likewise, in the hybrid population
256 of *An. coluzzi* and *An. gambiae* s.s., the mutation was fixed and higher in the outdoor-resting (allele
257 freq. = 1, 95%CI: 0.74–1) than indoor-resting (allele freq. = 0.93, 95%CI: 0.80–1) mosquitoes.
258 The mutation was similarly fixed in both the indoor (allele freq. = 1, 95%CI: 0.96–1) and outdoor
259 (allele freq. = 0.99, 95%CI: 0.95–1) *An. gambiae* s.s. populations. Conversely in WCR, *Vgsc-*
260 *1014F* was more frequent in *An. gambiae* s.s. resting indoors (allele freq. = 0.25, 95%CI: 0.03–
261 0.65) than the outdoor population (allele freq. = 0.13, 95%CI: 0.04–0.29). Whereas in LRR, where
262 only mosquitoes resting indoors were caught, this mutation was most common in *An. coluzzii*
263 (allele freq. = 0.66, 95%CI: 0.81–0.98).

264 *Vgsc-1575Y* and *GSTE2-114T* were found mostly in URR and were more frequent in outdoor-
265 resting mosquitoes. The mutations were almost fixed in *An. gambiae* s.s. regardless of resting place
266 (allele freq. = 0.96-1, 95% CI: 0.92–1.2). When *An. coluzzii* was found resting outdoors also in
267 this region, these mutations were higher (allele freq. = 0.9, 95% CI: 0.79–0.97) than in their indoor-
268 resting counterpart (allele freq. = 0.68-0.78, 95% CI: 0.56–0.86). The hybrids of *An. coluzzii* and
269 *An. gambiae* s.s. with higher and fixed *Vgsc-1575Y* mutation were equally resting outdoors (allele
270 freq. = 1, 95% CI: 0.74–1) while those found resting indoors were carrying only the *GSTE2-114T*
271 mutation (allele freq. = 0.87, 95% CI: 0.60–0.98).

272 The carbamate and organophosphate resistance marker, acetylcholine esterase (*Ace*)-119S was
273 detected only in 8 (4 indoor and 4 outdoor) *An. gambiae* s.s. and in one hybrid specimen in URR.

274

275

276 **Sporozoite infection rate**

277 *Plasmodium falciparum* sporozoites were detected in 11 out of 844 mosquitoes (Table 2),
278 representing a 1.3% (95% CI: 0.5–2%) infection rate. All the infected mosquitoes were caught in
279 URR, of which six were resting indoors and five resting outdoors. Outdoor-resting *An. arabiensis*
280 were mostly infected (36%, 4/11), followed by indoor-resting *An. gambiae* s.s. (27%, 3/11) and
281 *An. arabiensis* (18%, 2/11). One each of outdoor-resting *An. coluzzii* and *An. coluzzii-An. gambiae*
282 s.s. hybrid were also infected.

283

284

285

286

287

288 **Table 2: Sporozoite positivity rate in the eleven vector species that were infected based on**
289 **their resting locations**

290

	<i>An. arabiensis</i> proportion (n)	<i>An. coluzzii</i> proportion (n)	<i>An. gambiae</i> s.s. proportion (n)	<i>An. coluzzii-An.</i> <i>gambiae</i> s.s. proportion (n)
Indoor	0.18 (2)	0.09 (1)	0.27 (3)	0
Outdoor	0.36 (4)	0	0	0.09 (1)

n= number of mosquitoes positive for sporozoite detection. Proportion = the number positive per species divided by overall positive (11).

291

292

293

294 **Host blood meal preference**

295 Host blood meal origin was determined in 251 randomly selected engorged mosquito abdomens.
296 Overall, animal and human blood meal indices were higher for indoor- than outdoor-resting
297 mosquitoes (Table 3). In all vector species, most blood meal (91%) had animal origin. Indoor-
298 resting *An. coluzzii* had the highest preference for human blood while indoor-resting *An. arabiensis*
299 had most preference for animal blood.

300

301 **Table 3: Human and animal blood meal preferences of the indoor and outdoor-resting vector species in combined study sites.**

302

	<i>An. arabiensis</i>		<i>An. coluzzii</i>		<i>An. gambiae</i> ss		<i>An. col./An. gambiae</i> ss	
	Indoor (n)	Outdoor(n)	Indoor(n)	Outdoor(n)	Indoor(n)	Outdoor(n)	Indoor(n)	Outdoor(n)
Human	0.01 (3)	0.004 (1)	0.03 (7)	0	0.01 (2)	0.01 (2)	0	0.004 (1)
Animal	0.23 (58)	0.16 (40)	0.12 (30)	0.09 (23)	0.12 (29)	0.13 (33)	0.04 (9)	0.02 (6)
Human + Animal	0.004 (1)	0.004 (1)	0.01 (3)	0	0.01 (2)	0	0	0
HBI	2	0.8	4	0	1	0.8	0	0.4
Animal blood indices	23	16	12	9	12	13	4	2

303 Proportion (number). HBI= Human blood index.

304

305 Discussion

306 Insecticide resistance is currently widespread among malaria vectors in The Gambia [12,15],
307 resulting in insecticide rotation for IRS and more recently the use of actellic, an organophosphate
308 insecticide, as recommended by WHO [33]. It is unclear how such vector control interventions
309 have influenced the vectors' feeding and resting behavior, and malaria transmission dynamics. In
310 this study, *An. arabiensis* had a marked preference for outdoor resting and *An. coluzzii* and *An.*
311 *melas* for indoor resting. Resting location was similar for *An. gambiae* s.s. and *An. coluzzii-An.*
312 *gambiae* s.s. hybrid populations. Moreover, local vectors had a marked preference for animal
313 blood. The sporozoite infection rate was low and infectious mosquitoes were mainly outdoor-
314 resting *An. arabiensis*.

315 *An. arabiensis* tended to rest indoors if they had resistance mutations. This was particularly evident
316 for the *Vgsc-1014S* which seems to influence the resting behavior of this vector species. Vectors
317 with this mutation, which is not fixed yet, may prefer to rest indoors as it protects against the effect
318 of IRS and LLINs [37]. It would be worthwhile to further explore how this mutation modulates
319 resting behavior in vector species. Conversely, *Vgsc-1014F* seems to be fixed in most vector
320 populations in West Africa [34,35], and this may explain why vectors with this mutation do not
321 have a specific resting behavior [36].

322 *An. coluzzii* displayed an outdoor-resting behavior when genotypically more resistant than the
323 indoor population. This was consistent across all mutation markers except *Vgsc-1014S*; and was
324 observed mainly in URR, where most mosquitoes were caught. The association between genotypic
325 resistance and outdoor-resting behavior in *An. coluzzii* was recently reported in Northern Ghana
326 [36]. However, for *An. gambiae* s.s., the mutation frequency did not vary by resting location. *Vgsc-*

327 1014F was the main mutation in *An. gambiae* s.s at fixed frequencies and did not have any
328 significant effect on resting behavior.

329 The vector populations analyzed had a higher preference for animal than human blood meal and
330 the overall sporozoite rate was also low. Given the current low malaria prevalence in The Gambia
331 [9], a low sporozote rate is expected. These may reflect the impact of the scaled-up in IRS and
332 LLINs program in the study sites which seems to successfully limit mosquito access to human
333 blood meal indoors and consequently reducing transmission, as previously reported [39,40]. The
334 observed choice of animal blood by majority of the vectors could lead to increase in vector
335 population that may eventually resort to biting humans in the long run and become difficult to
336 control.

337 Furthermore, the proportion of vectors resting indoors and that have taken a blood meal either
338 from human and animal source, could be a concern for the effectiveness of vector control
339 measures. This shows that the vectors took blood meal from animals outdoors and later went
340 indoors to rest regardless of the presence of IRS and LLINs, indicating that these vectors are
341 resistant to the insecticides being used. This behavior was as previously demonstrated where
342 blood-fed mosquitoes were more resistant than their unfed counterpart [41]. Notably, alternative
343 vector control methods such as treatment of animals with endectocides [42] and zooprophylaxis
344 [43], could be promising tools that could be adopted by the Gambia National Malaria Control
345 Program.

346 The significant preference for outdoor resting by *An. arabiensis* and indoor resting in *An. coluzzii*
347 prevalent in URR may explain the high intensity of malaria transmission in this region [7,9], which
348 may be driven by these vectors. *An. coluzzii* is highly anthropophagic, endophilic and an efficient

349 vector of malaria (44), traits that facilitate its contact with human indoors as observed here. A
350 previous study in this setting corroborated the finding here where HBI as high as 80% was
351 documented in *An. coluzzii* and *An. gambiae* s.s. [10]. Further, a relatively high vector parity rate
352 was recently reported in the same vector species [9]. Moreover, *An. arabiensis* is known for its
353 exophilic behavior that increases outdoor transmission in unprotected humans outside LLINs [45].

354 The composition of the vector species was consistent with previous studies in the Gambia where
355 the most abundant vector was *An. arabiensis*, followed by *An. gambiae* s.s. and, *An. coluzzii* along
356 with their hybrids [12,15,16]. Low density of *An. melas* found was as a result of our choice of
357 villages in the West, which were not located in the coastal regions where this species breeds in
358 salty water [46–48]. Remarkably, predominance of *An. arabiensis* could be as a result of its
359 outdoor-resting preference to avoid insecticide used in IRS and LLINs [49]. This leaves the highly
360 anthropophilic and endophilic species more exposed to vector interventions, possibly leading to
361 relative advantage that maintains the exophilic population and malaria transmission [45].

362

363

364 Conclusion

365 The study observed an indoor-resting behavior in *An. arabiensis* that were carrying *Vgsc-1014S*
366 mutation and outdoor-resting behavior in *An. coluzzii* populations having other mutations.
367 However, preference for outdoor resting was predominant in *An. arabiensis* and indoor resting in
368 *An. coluzzii* populations. No specific preference for indoor or outdoor-resting behavior was
369 demonstrated in *An. gambiae* s.s. and remaining vector species. An overall high preference for

370 animal blood meal was found in the vector populations. Low rate of mosquito infectivity was
371 identified likely due to high coverage of LLINs and IRS in the study regions. As malaria
372 transmission remains low in The Gambia, which is in earnest preparation for pre-elimination
373 phase, the magnitude of genotypic resistance observed in this study suggests a serious threat to the
374 success of vector intervention in pre-elimination programs. Finally, the observed preference for
375 animal host by vector populations, recommends the consideration of veterinary endectocides and
376 zooprophylaxis as complementary vector control measures.

377

378

379 **Acknowledgements**

380 We thank Messrs Musa Jawara, and Mamlie Touray for their assistance in the field work for this
381 study.

382

383

384 **Funding**

385 This work was supported by funds from a Wellcome Trust DELTAS Africa grant (*DEL-15-007:*
386 *Awandare*). Majidah Hamid-Adiamoh was supported by a WACCBIP-Wellcome Trust DELTAS
387 PhD fellowship. The DELTAS Africa Initiative is an independent funding scheme of the African
388 Academy of Sciences (AAS)'s Alliance for Accelerating Excellence in Science in Africa (AESA)
389 and supported by the New Partnership for Africa's Development Planning and Coordinating
390 Agency (NEPAD Agency) with funding from the Wellcome Trust (107755/Z/15/Z: Awandare)

391 and the UK government. Additional support was also provided by the H3Africa PAMGENe
392 project, H3A/18/002, funded by the AAS. The views expressed in this publication are those of the
393 author(s) and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK
394 government.

395

396 **Competing Interests:**

397 The authors have declared that no competing interests exist.

398

399

400

401

402

403

404

405

406

407 References

- 408 1. WHO. World Malaria Report 2019. Geneva. World Health Organization; 2019.
- 409 2. Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and
410 excitorepellency to malaria control: a deterministic model of mosquito host-seeking
411 behavior and mortality. *Trans R Soc Trop Med Hyg.* 2007;9:867-80.
- 412 3. Ranson H, Guessan RN, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in
413 African anopheline mosquitoes : what are the implications for malaria control ? *Trends
414 Parasitol* 2011;27:91-8.
- 415 4. Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Charles HJ, et al. The
416 importance of mosquito behavioral adaptations to malaria control in Africa. *Evolution.*
417 2013;1218-30.
- 418 5. Killeen GF. Characterizing, controlling and eliminating residual malaria transmission.
419 *Malar J.* 2014;13:330.
- 420 6. Gambia National Malaria Control Program (GNMCP). Malaria Indicator Survey, Banjul.
421 2011.
- 422 7. Mwesigwa J, Okebe J, Affara M, Di Tanna GL, Nwakanma D, Janha O, et al. On-going
423 malaria transmission in The Gambia despite high coverage of control interventions: A
424 nationwide cross-sectional survey. *Malar J.* 2015;14:1-9.
- 425 8. Pinder M, Jawara M, Jarju LBS, Salami K, Jeffries D, Adiamoh M, et al. Efficacy of indoor
426 residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian
427 communities with high usage of long-lasting insecticidal mosquito nets: A cluster-

428 randomised controlled trial. *Lancet*. 2015;385(9976):1436–46.

429 9. Mwesigwa J, Achan J, Di Tanna GL, Affara M, Jawara M, Worwui A, et al. Residual
430 malaria transmission dynamics varies across The Gambia despite high coverage of control
431 interventions. *PLoS One*. 2017;12:1–24.

432 10. Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, et al. *Anopheles gambiae*
433 complex along the Gambia river, with particular reference to the molecular forms of *An.*
434 *gambiae* s.s. *Malar J*. 2008;7:182.

435 11. Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, et al. Dry season
436 ecology of *Anopheles gambiae* complex mosquitoes in the Gambia. *Malar J*. 2008;7:156.

437 12. Opondo KO, Jawara M, Cham S, Jatta E, Jarju L, Camara M, et al. Status of insecticide
438 resistance in *Anopheles gambiae* (*s.l.*) of the Gambia. *Parasit Vectors*. 2019;12:1–287.

439 13. Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, et al. Species
440 shifts in the *Anopheles gambiae* complex: Do LLINs successfully control *Anopheles*
441 *arabiensis*? *PLoS One*. 2012; 7:e31481.

442 14. Sougoufara S, Harry M, Doucouré S, Sembène PM, Sokhna C. Shift in species composition
443 in the *Anopheles gambiae* complex after implementation of long-lasting insecticidal nets in
444 Dielmo, Senegal. *Med Vet Entomol*. 2016;30:365–8.

445 15. Opondo KO, Weetman D, Jawara M, Diatta M, Fofana A, Crombe F, et al. Does insecticide
446 resistance contribute to heterogeneities in malaria transmission in the Gambia? *Malar J*.
447 2016;15:1–10.

448 16. Wilson AL, Pinder M, Bradley J, Donnelly MJ, Hamid-Adiamoh M, Jarju LBS, et al.

449 Emergence of knock-down resistance in the *Anopheles gambiae* complex in the Upper River
450 Region, the Gambia, and its relationship with malaria infection in children. Malar J.
451 2018;17:1–14.

452 17. Padonou G, Sezonlin M, Gbedjissi G, Ayi I, Azondekon R DA, et al. Biology of *Anopheles*
453 *gambiae* and insecticide resistance: Entomological study for a large scale of indoor residual
454 spraying in south east Benin. J Parasitol Vector Biol. 2011;3:59–68.

455 18. Shcherbacheva A, Haario H, Killeen G. Modeling host-seeking behavior of African malaria
456 vector mosquitoes in the presence of long-lasting insecticidal nets. Math Biosci.
457 2018;295:36–47.

458 19. Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioral resilience and
459 resistance in residual malaria vector populations. Malar J. 2013;12:124.

460 20. Gillies MT, Coetzee M. A Supplement to the Anophelinae of the South of the Sahara
461 (Afrotropical Region). South African Instit Med Res. 1987;55:1–143.

462 21. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the *Anopheles*
463 *gambiae* complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–29

464 22. Fanello C, Santolamazza F, Della Torre A. Simultaneous identification of species and
465 molecular forms of the *Anopheles gambiae* complex by PCR-RFLP. Med Vet Entomol.
466 2002; 16:461-4.

467 23. Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of
468 knockdown resistance (kdr) mutations in *Anopheles gambiae*: A comparison of two new
469 high-throughput assays with existing methods. Malar J. 2007;6:111.

470 24. Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, et al.
471 Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated
472 sodium channel of *Anopheles gambiae*. Proc Natl Acad Sci. 2012;109:6614–19.

473 25. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al.
474 Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria
475 vector *Anopheles gambiae* s.s. Insect Mol Biol. 1998; 7:179–84.

476 26. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a
477 point mutation in the voltage-gated sodium channel gene of Kenyan *Anopheles gambiae*
478 associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–97.

479 27. Djogbenou LS, Weetman D, Dabire R, Ketoh G, Chandre F, Weill M, et al. The evolution
480 of resistance to carbamates and organophosphate insecticides in *Anopheles gambiae*. Am J
481 Trop Med Hyg. 2012.

482 28. Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, et al. Metabolic and
483 target-site mechanisms combine to confer strong DDT resistance in *Anopheles gambiae*.
484 PLoS One. 2014;7:179–84.

485 29. Bass C, Nikou D, Vontas J, Williamson MS, Field LM. Development of high-throughput
486 real-time PCR assays for the identification of insensitive acetylcholinesterase (ace-1R) in
487 *Anopheles gambiae*. Pestic Biochem Physiol. 2010;96:80–5.

488 30. Bass C, Nikou D, Blagborough AM, Vontas J, Sinden RE, Williamson MS, et al. PCR-
489 based detection of Plasmodium in *Anopheles* mosquitoes: A comparison of a new high-
490 throughput assay with existing methods. Malar J. 2008;7:177.

491 31. Kent RJ, Thuma PE, Mharakurwa S, Norris DE. Seasonality, blood feeding behavior, and
492 transmission of *Plasmodium falciparum* by *Anopheles arabiensis* after an extended drought
493 in southern Zambia. *Am J Trop Med Hyg.* 2007;76(2):267-74.

494 32. Rebekah J. Kent and Douglas E. Norris. *Am J Trop Med Hyg.* Identif Mamm Blood Meals
495 Mosquitoes By A Mult Polym Chain React Target Cytochrome B. 2005;73(2):336–342.

496 33. WHO. Guidelines for malaria vector control. 2019. Geneva: World Health Organization;
497 2019.

498 34. Silva APB, Santos JMM, Martins AJ, Tadei W, Thatcher B, Santos J, et al. Mutations in the
499 voltage-gated sodium channel gene of anophelines and their association with resistance to
500 pyrethroids – a review. *Parasit Vectors.* 2014;7:450.

501 35. Koukpo CZ, Fassinou AJYH, Ossè RA, Agossa FR, Sovi A, Sewadé WT, et al. The current
502 distribution and characterization of the L1014F resistance allele of the *kdr* gene in three
503 malaria vectors (*Anopheles gambiae*, *Anopheles coluzzii*, *Anopheles arabiensis*) in Benin
504 (West Africa). *Malar J.* 2019;18:175.

505 36. Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D'Alessandro U, Awandare GA,
506 Afrane YA. Insecticide resistance in indoor and outdoor-resting *Anopheles gambiae* in
507 Northern Ghana. *Malar J.* 2020;19:314.

508 37. Kabula B, Kisimba W, Tungu P, Ndege C, Batengana B, Kollo D, et al. Co-occurrence and
509 distribution of East (L1014S) and West (L1014F) African knock-down resistance in
510 *Anopheles gambiae* sensu lato population of Tanzania. *Trop Med Int Heal.* 2014;19:331-
511 341.

512 38. Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, Zhou G, et al. Resting behavior
513 of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria
514 vector control measures. PLoS One. 2020;15:e0224718.

515 39. Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, et al. Impact of
516 vector control interventions on malaria transmission intensity, outdoor vector biting rates
517 and *Anopheles* mosquito species composition in Tororo, Uganda. Malar J. 2019; 18(1):445.

518 40. Abong'o B, Gimnig JE, Torr SJ, Longman B, Omoke D, Muchoki M, et al. Impact of indoor
519 residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of
520 transmission and malaria case burden in Migori County, western Kenya. Sci Rep.
521 2020;10(1):4518.

522 41. Machani MG, Ochomo E, Sang D, Bonizzoni M, Zhou G, Githeko AK, et al. Influence of
523 blood meal and age of mosquitoes on susceptibility to pyrethroids in *Anopheles gambiae*
524 from Western Kenya. Malar J. 2010;18:1–9.

525 42. Chaccour C, Killeen GF. Mind the gap: Residual malaria transmission, veterinary
526 endectocides and livestock as targets for malaria vector control. Malar J. 2016;15:24.

527 43. Habtewold T, Prior A, Torr SJ, Gibson G. Could insecticide-treated cattle reduce
528 Afro-tropical malaria transmission? Effects of deltamethrin-treated Zebu on *Anopheles*
529 *arabiensis* behavior and survival in Ethiopia. Med Vet Entomol. 2004;18:408–17.

530 44. Zoh DD, Yapi A, Adja MA, Guindo-Coulibaly N, Kpan DMS, Sagna AB, et al. Role of
531 *Anopheles gambiae* s.s. and *Anopheles coluzzii* (Diptera: Culicidae) in Human Malaria
532 Transmission in Rural Areas of Bouaké, in Côte d'Ivoire. J Med Entomol. 2020;57:1254–
533 1261.

534 45. Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission
535 by behaviorally-resistant *Anopheles arabiensis* is mediated by mosquitoes that have
536 previously been inside houses. *Malar J*. 2016;15:1–10.

537 46. Bryan JH, Petrarca V, Di Deco MA, Coluzzi M. Adult behavior of members of the
538 *Anopheles gambiae* complex in the Gambia with special reference to *An. melas* and its
539 chromosomal variants. *Parassitologia*. 1987;29:221–49

540 47. Adamou A, Dao A, Timbine S, Kassogué Y, Yaro AS, Diallo M, et al. The contribution of
541 aestivating mosquitoes to the persistence of *Anopheles gambiae* in the Sahel. *Malar J*.
542 2011;10:151.

543 48. Arcaz AC, Huestis DL, Dao A, Yaro AS, Diallo M, Andersen J, et al. Desiccation tolerance
544 in *Anopheles coluzzii*: the effects of spiracle size and cuticular hydrocarbons. *J Exp Biol*.
545 2016;219:1675–88

546 49. Durnez L, Coosemans M. Residual transmission of Malaria: An Old Issue for New
547 Approaches. *Anopheles mosquitoes - New insights into Malar vectors*. 2013;671–704.

548

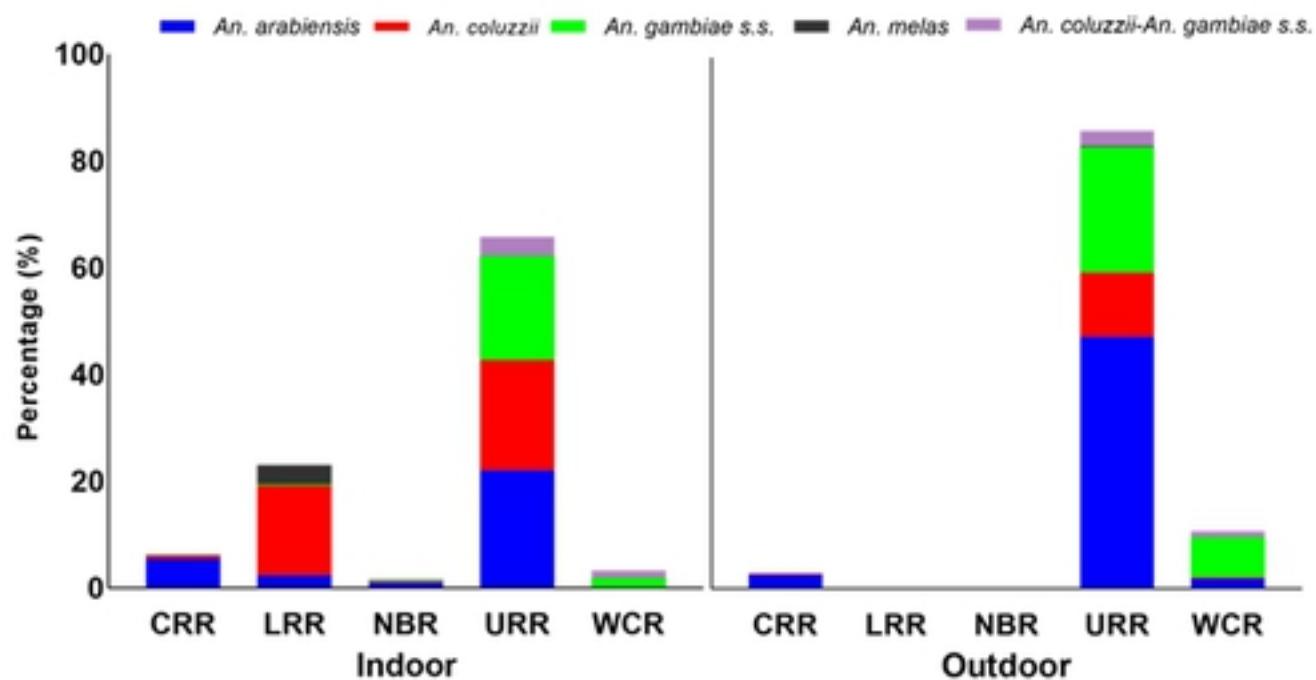


Figure 1