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ABSTRACT

Asteroid wasting events and mass mortality have occurred for over a century. We currently lack
a fundamental understanding of the microbial ecology of asteroid disease, with disease
investigations hindered by sparse information about the microorganisms associated with grossly
normal specimens. We surveilled viruses and protists associated with grossly normal specimens
of three asteroid species (Patiriella regularis, Stichaster australis, Coscinasterias muricata) on
the North Island, New Zealand, using metagenomes prepared from virus and ribosome-sized
material. We discovered several densovirus-like genome fragments in our RNA and DNA
metagenomic libraries. Subsequent survey of their prevalence within populations by quantitative
PCR (qPCR) demonstrated their occurrence in only a few (13 %) specimens (n = 36). Survey of
large and small subunit rRNAs in metagenomes revealed the presence of a mesomycete (most
closely matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR
revealed that it is widely detectable (80%) and present predominately in body wall tissues across
all 3 species of asteroid. Our results raise interesting questions about the roles of these

microbiome constituents in host ecology and pathogenesis under changing ocean conditions.
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INTRODUCTION

Recent and renewed interest in echinoderm microbiome ecology has revealed the paucity in
understanding of the roles of the microbial community in host biology and ecology; particularly
with respect to negative impacts such as mass mortality. Asteroid mass mortality due to a
condition termed “sea star wasting disease” (also known as “asteroid idiopathic wasting
syndrome”) has occurred in the northeast Pacific starting in 2013 [1], and in Port Phillip Bay,
Australia and Shandong Province, China in 2014 [2]. Indeed, wasting has been observed for over
a century [3]. Microbiological investigation of wasting asteroids initially indicated the presence
of the Asteroid ambidensovirus 1 [4] (known at the time as Sea Star associated Densovirus or
SSaDV; [1]), and wasted asteroids were inhabited by a suite of cultivable copiotrophic (i.e.
bacteria that rapidly consume abundant organic matter) bacteria [5, 6]. Firm microbial
associations with sea star wasting remain elusive, similar to other echinoderm diseases (reviewed
in [7]). Despite the lack of conclusive disease etiology, previous work has highlighted distinct
microbiome associations with echinoderms [8], building on previous microscopic and
cultivation-based studies [9-11]. These surveys suggest that echinoderms may harbor an
underexplored diversity of microorganisms. Environmental perturbation under future climate
scenarios may shift the relationship between these microorganisms and their hosts [12]. Hence,
there is value in surveying the diversity and prevalence of microorganisms associated with
grossly normal specimens, which may then inform future marine disease event investigations,

when and if they occur.

A grand challenge in surveying microbial eukaryotic microorganisms associated with metazoa
using PCR-based approaches is that well-conserved marker genes (e.g. ribosomal RNAs) are
shared between symbiotic partners. Hence, unbiased surveys of host-associated protists using
PCR amplification-based approaches are limited. Modified primer design to exclude metazoan
partners, using primers distinct to expected taxonomic groups (e.g. fungal ITS; [13]), and the use
of blocking PCR primers [14, 15] may alleviate this burden, but demand a priori knowledge of
native protistan diversity. The study of viral diversity associated with metazoan hosts has been
approached by two methods. First, viral genomes have been recovered from deeply sequenced
host transcriptomes [16, 17]. This approach provides key information about expressed host genes

in addition to a wealth of viral diversity, including deeply-branching viral genotypes across a
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wide range of invertebrate hosts [17]. A second approach enriches for viruses by physical size
and capsid-induced protection from nucleases [18]. Here, viral metagenomes are typically
prepared using a homogenization-size exclusion-nuclease approach, where tissues are normally
‘cleaned’ (washed) of putative epibionts [19]. Viral metagenomes prepared using this approach
have potential to yield more information than viruses alone, since only a tiny fraction (typically <
5%) of metavirome sequence space is annotated as viruses [20] and the remaining sequence
space is believed to mostly reflect host RNAs. Ribosomes, which are typically 25 — 30 nm in
diameter, are also liberated from cells during homogenization, pass through the filters typically
used in metavirome preparation, and transcript RNAs may be protected from nucleases used to
digest co-extracted nucleic acids. Thus, ribosomal RNAs are well represented in viral
metagenomes and may include protistan, bacterial and archaeal components of the host-
associated microbiome. Comparison of non-viral sequences in viral metagenomes against rRNA
databases can be used to study microbiome constituents that are inaccessible or impractically

studied by PCR-based approaches.

The goal of the present study was to identify viruses and protists in common New Zealand
asteroids by surveying virus- and ribosome-sized RNAs, and use this information to guide survey
of microbial prevalence within and between populations and between tissue types. We
discovered several densovirus genome fragments in two species of asteroid, but these were only
detected at low prevalence within the populations studied by quantitative PCR. We also
discovered fungal, mycetozoan and mesomycetozoan constituents of the asteroid microbiome. A
mesomycetozoan similar to a fish pathogen was prevalent in all asteroids tested, and bore highest
loads in body wall samples, suggesting it may be a common constituent of the asteroid

microbiome.
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MATERIALS AND METHODS

Sample collection: Asteroid samples (n = 77 individuals across 3 species) were collected for
metagenomic investigation of viral diversity and viral prevalence at several locations on the
North Island, New Zealand, in January and February 2018 (Table 1). Asteroids were collected by
hand, either from the intertidal or subtidal, and immediately placed into individual plastic bags,
which were transported to the laboratory for dissection in a cooler (Fig. 1). The taxonomic
identity and arm length of individuals was recorded for each specimen. Coelomic fluid was
withdrawn from individuals using a 5 mL syringe fitted with a sterile 25G needle. Body wall
tissues were removed by sterile (5 mm) biopsy punch. Gonads and pyloric caeca were dissected
from coelomic cavities by first creating an incision into the coelomic cavity using clean
disposable razor blades, then using sterilized forceps to remove small (~ 2 — 4 mm) sections of
these tissues. All tissue and coelomic fluid samples were preserved in RNALater at a ratio of 2:1
(vol:vol), refrigerated, and transported to the laboratory at Cornell University for further

processing, which occurred within 4 months of collection.

Figure 1: Sampled specimens of Stichaster australis (A-B), Coscinasterias muricata (C-D) and
Patiriella regularis (E-F). Viral metagenomes were prepared from body wall (b) samples
collected by biopsy punch. Additional specimens of gonad (g) and pyloric caeca (p) were

collected for quantification of viral genotypes and the mesomycetozoan.

Table 1: Sampling locations, species and morphological characteristics of asteroids collected as
part of this study. Samples collected at Ti Point were collected subtidally by SCUBA Diver,
while those collected elsewhere were collected intertidally. RL = Ray length, SE = Standard

Error.
Location Latitude Longitude | Date Species n | RL RL SE
(cm)
Piha, Auckland 36.9597S | 174.4628 E | 1/22/2018 | Stichaster 19 | 13.58 0.56

australis

Ti Point, Northland | 36.3178 S 174.6178 E | 1/27/2018 | Coscinasterias 17 | 7.42 1.10

muricata
Matheson’s Bay, 36.3011 S 171.8011 E | 1/27/2018 | Patiriella 20 | 2.81 0.17
Northland regularis
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Coscinasterias 1 10.00
muricata
Scorcher Bay, 41.3078 S 174.8325 E | 2/15/2018 | Patiriella 20 | 1.89 0.11
Wellington regularis

93

94  Metavirome Preparation: Three body wall biopsy samples from each species were selected for
95  viral metagenomics (one each from Stichaster australis, Coscinasterias muricata and Patiriella
96  regularis; Table 2). For each sample, the biopsy punch was removed from RNALater and subject
97  to the workflow detailed in [19] with modifications by Ng et al [21] and Hewson et al. [22].
98  Briefly, the sample was homogenized by bead beating (Zymo Bead Beater tubes) in 1 mL of 0.02
99  um-filtered PBS. The sample was filtered through a 0.2 um PES syringe filter. The filtrate was

100 treated with DNAse I (5 U; Thermo Fisher Scientific), RNAse One (50 U; Promega) and

101  Benzonase (250 U; Sigma-Aldrich) for 3 h at 37°C in an attempt to remove co-extracted host

102 nucleic acids. Enzyme activity was halted by treatment with 50 uM EDTA. RNA was extracted

103  from the resulting purified viral fraction using the Zymo Mini RNA isolation kit, and

104  subsequently amplified using the TransPlex WTA2 (Sigma Aldrich) kit. We did not standardize

105  template quantity of extracted RNA (2 pl) prior to amplification. Amplicons were quantified

106  using PicoGreen and submitted for sequencing on a Illumina MiSeq (2 x 250 bp paired-end)

107  platform after TruSeq PCR-free library preparation at the Cornell Biotechnology Resource

108  Center. Sequences have been deposited in the NCBI under BioProject PRINA636826.

109

110  Table 2: Library characteristics prepared from asteroids in Northland and Auckland region,
111 January 2018.

112 Species Date Total Assembled Total Viral
Reads Reads Contigs | Contigs

113 Coscinasterias muricata 1/27/2018 3,867,602 981,140 27,032 2
114 Stichaster australis 1/22/2018 1,673,102 681,086 2,170 0

Patiriella regularis 1/27/2018 1,635,372 301,574 6,332 2
115
116  Bioinformatic processing: Sequence libraries were initially trimmed for adapters and quality
117  (ambiguous bases <2) using the CLC Genomics Workbench 4.0. Each of the 3 metaviromes were

6
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118  assembled separately using the CLC Genomic Workbench 4.0 native algorithm using a minimum
119  overlap of 0.5 and similarity of 0.8. The resulting contig spectra was aligned against several

120  boutique databases of RNA viruses as described elsewhere [22]. Because RNA viral

121  metagenomes also capture ssDNA viruses [23], we also searched contig spectra by tBLASTx

122 against a boutique database of densoviral genomes (complete genomes from NCBI using

123 keyword “densovirus”). Sequence matches against any of these databases at an E-value <10-2°
124  were further aligned against the non-redundant (nr) library at NCBI by BLASTx, and contigs

125  discarded if they matched known bacterial or eukaryl proteins at a higher percentage and E-value
126  than viruses. Uncertain amplification biases and variation in template RNA quantity preclude

127  quantitative interpretation of metagenome constituents. Hence, analyses of metagenomes focused

128  on detection of constituents and subsequent quantitative PCR of selected contigs.

129  Quantitative PCR (qPCR) of densovirus genome fragments: TagMan Primer/Probe sets were
130  designed around two contiguous sequences matching the nonstructural proteins of densoviruses
131 (Coscinasterias muricata contig 17 and Patiriella regularis contig 15838) and validated against
132 an oligonucleotide standard (Table 2). DNA was extracted from 36 biopsy punch body wall

133 samples (10 Stichaster australis, 3 Coscinasterias muricata, 13 Patiriella regularis from near
134 Auckland and 10 Patiriella regularis from Scorcher Bay, Wellington) using the Zymo Tissue &
135  Insect Kit. DNA was then subject to quantitative PCR (qPCR) in an Applied Biosystems

136  StepOne Real-Time PCR machine. Each qPCR reaction comprised 1 X SSO Probes SuperMix
137  (BioRad), and 200 pmol of each primer and probe (Table 2). Reactions were subject to a 10

138  minute incubation step at 50°C, followed by a 3 minute denaturation step at 94°C. Following hot
139  start activation, reactions were subject to 50 cycles of heating to 94°C and annealing at 58°C,
140  where fluorescence was measured at the conclusion of each thermal cycle. Reactions were run in
141  duplicate against an 8-fold dilution (covering 10 to 108 copies reaction™!). A positive detection of
142 the virus was considered when both duplicates were within 1 Ct, and were considered “detected
143  but not quantifiable” (DNQ) when one replicate generated a positive Ct but the other replicate
144  failed to yield an amplicon.

145

146
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147  Table 3: Primers and probes used in this study to examine the prevalence and load of densovirus

148  and mesomycetozoan-like contiguous sequences.
Target Primer Sequence (5' - 3")
Name
Patiriella NZ1DV_F AGTTGTTACTTGGGGCTTGT
regularis NZIDV_R CCGTGCTCAGTACTTTGTCG
contig 15838 | NZIDV Pr | [FAM]JCAGCACCAGATGTTGCAGCTGTTGA[TAM]
NZIDV_Std | AGTTGTTACTTGGGGCTTGTATAATAATACTGCTACAGCACCAGATG
TTGCAGCTGTTGATCAAGTTAATGCACGACAAAGTACTGAGCACGG
Coscinasteri | NZ3DV_F ATCTTCAATGCACTCGGAGC
as muricata | NZ3DV_R AGTAACGCCATGGATCTCGA
contig 17 NZ3DV_Pr | [FAM]JAGTGTCACAGAACGCGCTTGTGGA[TAM]
NZ3DV_Std | ATCTTCAATGCACTCGGAGCCAGTGTCACAGAACGCGCTTGTGGAAC
TACAAGCACAATCAGAATTCGAGATCCATGGCGTTACT
Stichaster NZ2Iso F GCTAGGGTTCTATGGCTGGT
australis NZ2Iso R GCTCCCCAGGATTTTCAAGG
contig 929 | NZ2Iso Pr [FAM]CGAGTCCGGTGCGTCCTCGA[TAM]
NZ2Iso_Std GCTAGGGTTCTATGGCTGGTAGAGCTCGGCACTTCTGCCGAGTCCGG
TGCGTCCTCGACGGCCCTTGAAAATCCTGGGGAGC
149
150  Investigation of eukaryote 18S and 28S rRNAs in metaviromes: Contiguous sequences generated
151  from viral metagenomes (described above) were queried against the Silva database (version
152 rl132) of 16S/18S and 23S/28S rRNAs [24] by BLASTn and contigs matching at E<10-1° to 18S
153  or 28S rRNAs were considered for further analysis. Matches meeting this criterion were then
154  queried against the non-redundant database at NCBI. Matches to asteroid 18S and 28S rRNAs
155  were removed from further consideration, as were matches to other metazoan rRNAs. The
156  resulting contig spectra were aligned against close matches from NCBI using the CLC Sequence
157  Viewer 8.0 (Qiagen).
158  Investigation of mesomycetozoan tissue and species specificity: Quantitative PCR (qQPCR)
159  primers were designed around the 28S rRNA sequence matching Ichthyosporea sp. (Stichaster
160  contig 929) and used to amplify body wall DNA extracts from 20 Stichaster australis, 6
161  Coscinasterias muricata, and 10 Patiriella regularis. Additionally, for each of the 20 Stichaster
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162  australis, samples of pyloric caeca and gonad were also examined for the presence and

163  abundance of this sequence.
164
165 RESULTS AND DISCUSSION

166  Viruses associated with Asteroid Tissues: Metaviromes prepared from asteroid body wall

167  samples contained between 1.6 — 3.9 million paired-end reads (Table 2). Assembly of these

168  resulted in 2,170 to 27,032 contigs, where contigs recruited 18 — 41% of total reads. No RNA
169  viruses were detected by alignment. However, alignment against densoviral genomes resulted in
170 2 contigs matching to the nonstructural gene 1 (NS1) and 2 contigs matching structural (VP)
171 genes at E < 10" (Fig. 2). Three of these contigs — two from Coscinasterias muricata and one
172 from Patiriella regularis- overlapped with ambidensovirus peptide sequences recovered from
173 species of starfish collected worldwide. A further contig from Patiriella regularis matched a
174  decapod penstyldensoviruses. Phylogenetic analyses based on NS1 revealed that Coscinasterias
175  muricata contig 16413 was most similar to densoviruses recovered from Asterias rubens in

176  Scotland [25] (Fig. 3). Phylogenetic analyses based on structural genes of the remaining viral
177  contigs (Coscinasterias muricata contig 15838 and Patiriella regularis contig 3718) suggested
178  that these were most similar to ambidensoviruses from molluscs [26, 27], insects [28], a

179  crustacean [29], and human spinal fluid [30]. Quantitative PCR (qPCR) of the densovirus-like
180  Coscinasterias muricata contig 15838 yielded only 3 DNQ results; two in Coscinasterias

181  muricata (of 3 total surveyed) from Ti Point; and one Stichaster australis from Piha. qRT-PCR
182  of Patiriella contig 17 yielded two DNQ results, both from Patiriella regularis collected at

183  Matheson’s Bay. In no sample did we consistently detect the presence of either contig between
184  replicate amplifications. This may be interpreted as indicating their very low copy number (<10)

185  in DNA extracts.

186 Figure 2: Contig map of densovirus-like genome fragments recovered from Coscinasterias

187 muricata and Patiriella regularis viral metagenomes. The colors of arrows indicate densoviral
188 gene, and the best match (by BLASTx against the non-redundant database at NCBI) along with
189 e-value is indicated adjacent to each ORF. The black lines running through ORFs indicate total
190 contig length. The numbers in brackets below each contig are the number of reads recruiting to

191 the contig from the origin library.
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192 Figure 3: Phylogenetic representation of Patiriella regularis and Coscinasterias muricata-
193 associated densoviral genome fragments. The trees are based upon 170 amino acid (Non-
194 Structural), 211 amino acid (Structural; middle), and 104 amino acid (Structural; bottom)

195 alignments performed using the CLC Sequence Viewer version 8.0. The trees were constructed

196 with neighbor joining and Jukes-Cantor distance, where bootstrap values (1000 reps) are
197 indicated above nodes. Red labels indicate sequences obtained in this study, while green labels
198 indicate sequences obtained from asteroids in other studies.

199

200 The observation of densoviruses in these species was not surprising, since their recovery in other
201  asteroids [1, 5, 23, 31] and urchins [32] suggests they may be a common constituent of

202 echinoderm microbiomes. Parvoviruses form persistent infections in hosts [33, 34], and are

203  highly prevalent and persistent in asteroid populations [31]. They are also widely endogenized in
204  host genomes [35]. None of the densovirus-like contigs discovered in this survey represented
205 complete genomes, so it is possible that these also represent endogenized densoviruses.

206  However, flanking regions to their open reading frames did not match asteroid genomes,

207  suggesting they were unlikely to be endogenized genome elements.

208  The pathology of densoviruses and significance in wasting diseases or other conditions is

209  unclear. The copy number of Asteroid ambidensovirus-1 (SSaDV) and related densoviruses is
210 elevated in wasting-affected Pycnopodia helianthoides [5]. However, histopathology [36] and
211 other investigations [6, 23, 31] have failed to clinically connect densoviruses (or viruses in

212 general) to sea star wasting disease. Densoviruses, like all parvoviruses, replicate in somatic
213 cells. Infection in arthropods leads to respiratory impairment [37] and triggering of apoptosis
214 [38], and has been linked to elevated mortality in crustacea [29, 39]. The discovery of a

215  penstyldensovirus genome fragment in Patiriella regularis raises interesting questions about its
216  role in host ecology. In penaeid shrimp, persistent infection by penstyldensoviruses delays

217  mortality from white spot syndrome virus [40], suggesting densoviruses in general may play both
218  detrimental and beneficial roles in host ecology. None of the asteroids sampled in this survey
219  were grossly abnormal, and the low prevalence of the Patiriella regularis penstyldensovirus

220  genome fragment in asteroid populations at our collection sites may indicate that these infections

10
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221  represent sub-clinical, or perhaps persistent infections which are unrelated to wasting or mass

222 mortality.

223 Protists associated with asteroids: A total of 15 contigs matched 18S and 28S rRNAs based on
224  alignment. Of these, nine were fungal (five were Ascomycetes, four were Basidiomycetes), two
225  were mycetozoan and one was mesomycetozoan (Fig. 4; Figs. S1-S4). The mesomycetozoan
226  contiguous sequence (Stichaster contig 929) was most similar to a fish pathogen Ichthyosporea
227  sp. ex Tenebrio molitor (Fig. 4). The abundance of this contiguous sequence was significantly
228  higher in the body wall of Stichaster australis than in either Coscinasterias muricata (p = 0.019,
229  Student’s t-test, df=4) or Patiriella regularis (p = 0.018, Student’s t-test, df=4) (Fig. 5). The

230  abundance in epidermal tissues was also significantly higher in Stichaster australis than in either
231  gonads or pyloric caeca (p = 0.013 and p=0.006, respectively, Student’s t-test, df=8). The

232 contiguous sequence was detected in any quantity in 80 — 85% of all samples tested with no

233 pattern with tissue specificity or species.

234

235  Fig. 4: Phylogenetic representation of asteroid-associated 28S rRNA sequences in purified virus

236 metagenomes. The tree was constructed by neighbor joining and based on an 849 nucleotide
237 alignment of eukaryotic 28S rRNA. Shown are close matches by BLAST against the non-
238 redundant database.

239

240 Fig. 5: Mesomycetozoan 28S rRNA copies as determined by qPCR in asteroid tissues. a,b
241 denotes significant difference (p < 0.025, Student’s t-test with Bonferroni correction for 2
242 comparisons).

243

244  The association of microbial eukaryotes, especially fungi and fungi-like protists, with

245  echinoderms is not extensively documented in previous surveys. Hewson et al [22] reported the
246  detection of totiviruses, which are fungal viruses, in several Holothuroidea. Similarly, Nerva et al
247  [41] reported the mycovirome of fungi isolated from Holothuria polii. These reports suggest that
248  fungi may be common constitutents of the sea cucumber microbiome. Wei et al [42] reported the
249  cultivation of a symbiotic fungi most similar to Penicillium from an asteroid in China.

250  Labyrinthulids have also been cultivated from the surface of wasting asteroids in the northeast

11
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251  Pacific [43]. However, their role in wasting pathology is unknown. There has been a body of
252  work examining anti-fungal properties of asteroid extracts [44-47], suggesting that fungi

253  discovered in this survey are unlikely to represent pathogens, but rather may be adapted to the
254  chemical environment of their host. Further investigation of their roles in host chemical defense

255  and dysbiosis is therefore warranted.

256  Mesomycetozoa are of interest since they represent the closest unicellular ancestor to

257  multicellular animals [48]. They represent parasites of vertebrates [49-51] of which several,

258 including Ichthyosporea spp. are aquatic. Aquatic mesomycetozoans infect fish and amphibians
259  [50-53] and cause dermal disease. Mesomycetozoa may also form symbioses with their hosts
260  (e.g. the mealworm Tenebrio molitor, [54] and other taxa [55, 56] (reviewed in [57]). Our

261  observation of an Icthyosporea-like TRNA in Stichaster is the first report of this group in

262 Asteroidea. The observations of greater load in epidermal tissues than internal organs suggests
263  they may also form dermal infections, and their widespread occurrence in asteroid populations
264  from the North Island of New Zealand suggests that mesomycetozoans are non-specific and

265  broadly prevelant. Because we did not observe gross disease signs in any specimen, it is unlikely
266  that this microorganism is a pathogen, but rather, they may represent a normal constituent of the

267  host microbiome.
268
269 CONCLUSIONS

270  To the best of our knowledge, this is the first investigation of viruses and mesomycetozoa

271 associated with asteroids in New Zealand. Discovery of these taxa suggests an undiscovered
272 bank of potential parasites or symbionts inhabiting echinoderms, and demands further

273  investigation into their ecological roles. While we did not observe gross signs of disease in any
274  specimen, we speculate that they may cause sub-clinical disease, or may interact with changing
275  ocean conditions and give rise to more extensive disease events in the future. Our work

276  demonstrates the value in unbiased surveys of microbiome constituents (i.e. microbial

277  surveillance) which may inform future disease investigations by providing a picture of grossly

278  normal microbiome constituents.
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457  Fig. S1: Phylogenetic representation of asteroid-associated 18S rRNA sequences in purified

458  virus metagenomes. The tree was constructed by neighbor joining and based on an 689
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459  nucleotide alignment of eukaryotic 18S rRNAs. Shown are close matches by BLAST against the
460  non-redundant database.

461

462  Fig. S2: Phylogenetic representation of asteroid-associated ascomycete 28S rRNA sequences in
463  purified virus metagenomes. The tree was constructed by neighbor joining and based on an 368
464  nucleotide alignment of eukaryotic 28S rRNAs. Shown are close matches by BLAST against the
465  non-redundant database.

466

467  Fig. S3: Phylogenetic representation of asteroid-associated 28S rRNA sequences in purified

468  virus metagenomes. The tree was constructed by neighbor joining and based on a 481 nucleotide
469  alignment of eukaryotic 28S rRNAs. Shown are close matches by BLAST against the non-

470  redundant database.

471

472 Fig. S4: Phylogenetic representation of asteroid-associated ascomycete 28S rRNA sequences in
473  purified virus metagenomes. The tree was constructed by neighbor joining and based on a 506
474  nucleotide alignment of eukaryotic 28S rRNAs. Shown are close matches by BLAST against the
475  non-redundant database.

476

477
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