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Abstract

effective use of secondary memory.

minimizer

We present Raptor, a tool for approximately searching many queries in large collections of nucleotide
sequences. In comparison with similar tools like Mantis and COBS, Raptor is 12-144 times faster and uses up
to 30 times less memory. Raptor uses winnowing minimizers to define a set of representative k-mers, an
extension of the Interleaved Bloom Filters (IBF) as a set membership data structure, and probabilistic
thresholding for minimizers. Our approach allows compression and a partitioning of the IBF to enable the
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Background

The recent improvements of full genome sequenc-
ing technologies, commonly subsumed under the term
NGS (Next Generation Sequencing), have tremen-
dously increased the sequencing throughput. Within
10 years, it rose from 21 billion base pairs [1, 2] col-
lected over months to about 400 billion base pairs per
day (current throughput of Ilumina’s HiSeq 4000).
The costs for producing one million base pairs could
also be reduced from many thousands of dollars to a
few cents. As a result of this dramatic development,
the number of new data submissions, generated by
various biotechnological protocols (ChIP-Seq, RNA-
Seq, etc.), to genomic databases has grown dramat-
ically and is expected to continue to increase faster
than the cost and capacity of storage devices can keep
up. Ongoing projects like the 100,000 Genome Project
[3] or the American 1,000,000 Genome Project [4] will
easily produce data in the range of several petabases.
This growth not only challenges the storage infrastruc-
tures and the processing pipelines of public databases
because of the sheer data throughput, but also chal-
lenges algorithm engineers to improve the efficiency
of sequence analysis pipelines and develop new strate-
gies for compression, data parallelism, and concurrent
computing.
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The main task in analyzing NGS data is to search
sequencing reads or short sequence patterns (e.g., read
mapping and variant calling) or analyzing expres-
sion profiles in large collections of sequences (i.e. a
database). Searching the entirety of such databases
mentioned above is usually only possible by searching
the metadata or a set of results initially obtained from
the experiment. Searching (approximately) for specific
genomic sequence in all the data has not been possi-
ble in reasonable computational time. The demand for
solutions can be seen by the various attempts towards
enabling sequence searches on large databases (see [5]
for an overview). While the NIH SRA provides a se-
quence search functionality, the search is restricted to a
limited number of experiments. Full-text indexing data
structures, such as the FM-index, are currently unable
to mine data of this scale. Word-based indices, such as
those used by internet search engines, are not directly
appropriate for edit-distance based biological sequence
searches [6]. The sequence-specific solution CaBLAST
[7] and its variants require an index of known genomes,
genes or proteins, and thus cannot search for novel phe-
nomena in raw sequencing files. In addition, none of
these existing approaches are able to match a query
sequence that spans multiple short sequences. This
holds also true in the field of mapping-based metage-
nomic binning and quantitation where the relevant mi-
crobial databases grow about as fast as the sequence
archives. The NCBI Refseq database of prokaryotic
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genomes contains about 30 GiB of sequence, still small
enough to build an FM-index for the genomes, which
takes about 24h time and about 50 GiB memory [8].
However, including the draft genomes into the analy-
sis increases the database to 380 GiB. Building a single
search structure like an FM-index for this amount of
data is infeasible.

Related work

The problem of approximately searching queries in
ultra-large databases has recently been addressed by
several groups, focusing on different applications, but
all using methods based on the k-mer content of the
databases. In the field of alignment-free metagenomic
analysis, which focuses on k-mer based analysis, the
size of the data also becomes slowly prohibitive. For
example, Kraken [9] needs =~ 147 GiB RAM for index-
ing 380 GBases. For analyzing RNA-Seq data, some
groups aimed at searching the raw files directly for
a set of transcripts ([10] and shortly afterwards [11]).
They propose novel solutions to the problem of search-
ing a transcript of interest in all relevant RNA-Seq ex-
periments. Up until recently, these searches were only
based on the sequences itself; the tool REINDEER [12]
is the first approach to also account for the sequence
abundances.

As a benchmark, all three publications use a data set
of 2,652 RNA-seq sequencing runs of human blood,
breast and brain tissue (a total of ~ 6.5 TiB) in which
they search for 214,293 known transcripts. For a single
query their methods need in the range of 2-20 minutes,
which is a tremendous improvement and a speedup
of orders of magnitude compared to previous meth-
ods. Although a breakthrough, the methods presented
by the groups need 4 and 0.3-2 days for processing
the above set of 214,293 queries, respectively. Very
recently, this time was improved by the Padro group
with the tool Mantis in [13] to 82 minutes. Moreover,
Bradley et al. [14] propose a Bloom filter based solu-
tion that can index about 170 TiB of (repetitive) raw
sequence into an index of 1.5 TiB. However, search-
ing, for example, 220 MiB of plasmid sequence takes 11
days using 8 cores. The same group followed up with a
newer approach called COBS [6]. Finally, the construc-
tion time of an index build on top of 170 TiB of input
data was further improved by the tool RAMBO [15]
which only needs 14 hours on a cluster of 100 nodes.
Taken together, all approaches are still very demand-
ing in terms of memory consumption and run time.

Our contribution

In this paper we propose a data structure, called bin-
ning directory, that can distribute approximate search
queries based on an extension of the recently intro-
duced Interleaved Bloom Filters (IBF) [8]. A binning
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directory combines a so called z-partitioned IBF (a-
PIBF) with winnowing minimizers and probabilistic
thresholding that takes into account the varying num-
ber of minimizers in each read. We present our imple-
mentation, called Raptor, discuss its capabilities and
limitations, and compare it with the state-of-the-art
methods Mantis and COBS. Our comparison shows
that Raptor is up to 12-144 times faster than the com-
petitors in answering approximate string searches with
full sensitivity and a very good specificity. In addition,
we only use a fraction of the memory and can further
trade run time for main memory consumption.

Results

Raptor stores a representative transformation of the
k-mer content of the database that is divided up into
a number of bins, typically a few hundred to a few
thousand (see Methods section for details). The term
representative indicates that the k-mer content could
be transformed by a function which reduces its size and
distribution (for example, using winnowing minimizers
on the text and its reverse complement or using gapped
k-mers). In this work we use (w,k)-minimizers for
computing representative k-mers. A (w, k)-minimizer
is essentially the lexicographically minimal k-mer of
all k-mers and their reverse complements in a window
of size w. The same transformation is applied to the
k-mers of the query (see Methods and Figure 1 for an
example and details). Raptor uses a set membership
data structure, the x-PIBF, to retrieve binning bitvec-
tors indicating whether a representative k-mer is in
a bin or not. It then combines the binning bitvectors
of all representative k-mers in a query into a counting
vector and applies a thresholding step to determine
the membership of a query in a bin.

In the following, we report our computational ex-
periments for Raptor. Firstly, we will use an artificial
data set to discuss the limitations of binning direc-
tories, the impact of compression, the impact of the
use of (w, k)-minimizers for different window sizes, and
the time/space trade-off when using different partition
sizes. We will also compare different binning directo-
ries with Mantis and COBS using this data set.

Secondly, we will evaluate Raptor using a real data
set used by several groups to determine the member-
ship of transcripts in RNA-Seq files [13] and compare
Raptor with Mantis [13] and COBS [6].

All experiments were conducted on a Dell PowerEdge
T640 with an Intel Xeon Gold 6248 CPU using 32
threads and 1TiB of main memory. All file I/O was
performed to and from a memory mapped file system
(/dev/shm).
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Data sets

Artificial data set

We created a random DNA sequence of 4 GiB size and
divided it into b bins which would correspond to b dif-
ferent genomes in, e.g., a metagenomic data set. Using
the Mason genome variator [16], we then generated
16 similar genomes in each bin which differ about 1%
from each other on average. This could be seen as bins
containing the genomes for a very homologous species.
The total sequence length is hence 64 GiB, however,
containing b groups of highly similar sequences. Fi-
nally, we uniformly sampled a total of 220 reads of
length 100 bp from the genomes and introduced 2 er-
rors in each read to simulate a sequencing experi-
ment. On this data set we use (19, 19)-minimizers and
(23, 19)-minimizers in conjunction with thresholds de-
rived by the k-mer Lemma or our probabilistic thresh-
olding for determining which bin contains the query.
The value k = 19 was chosen to make random occur-
rences seldom (see Methods for a detailed discussion).

Real data set

In order to evaluate our method on real data, we took
the data set from [13] which consists of 2, 568 RNA-Seq
experiments. Similarly to [13], we excluded all exper-
iments that have an average read length below 50bp,
because reads shorter than that are rarely relevant in
practice. Furthermore, this allowed us to test the min-
imizer approach with a broader window size. This left
us with 1, 742 RNA-Seq experiments which have a size
of around 6 TiB (gzipped FASTQ files). All tools were
tested on this data set using k = 20, a value used in
the competitors’ publications.

Speed and space consumption of Raptor with
(w, k)-minimizers
False positive (FP) count for different IBF sizes
A Bloom filter has a false positive rate depending on
the ratio of stored elements to its size. For a fixed
number of elements stored it holds that the less space
we allocate, the more false positives will occur. In our
experiment this will lead to overcounting k-mers and
hence lead to false positive assignments of reads to
bins. To evaluate this effect, we allocated IBFs of 1,2, 4
and 8 GiB size and report the used RAM, construc-
tion time, search time and false positive bin assign-
ments for b = 64 and b = 1,024 bins for uncompressed
and compressed vectors using h = 2 hash functions.
Also, we use (19, 19)-minimizers and the traditional k-
mer counting lemma threshold in one experiment, and
(23,19)-minimizers in conjunction with a new prob-
abilistic threshold (see Methods) in a second experi-
ment. The results are shown in Table 1.

Our experiments show that allocating only 1GiB
for an IBF using (19, 19)-minimizers results in a high
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number of FP for all values b - we would have to con-
duct about 6 - 10° and 9.6 - 10° wrong verifications for
the IBF for b = 64 and b = 1,024, respectively. For
(23, 19)-minimizers, the numbers are over one order of
magnitude smaller (2.8 - 10* and 4.4 - 10°). This is to
be expected since we store a smaller set of represen-
tative k-mers. By doubling the size of the IBF, the
number of false positives is already heavily reduced
for (19, 19)-minimizers. Indeed, there are no more FP
caused by the Bloom filter. Note that the 189 FP for
b = 64 are reads whose minimizer composition ac-
tually occurs in a different bin than its original bin
by chance. Since distributing the k-mers to more bins
reduces the chance of the same minimizer composi-
tion being present in different bins, the FP count for
b = 1,024 is 0. For (23,19)-minimizers, we can still
see 197 — 189 = 8 FP induced by the Bloom filter for
b = 64 and 141 for b = 1,024. This indicates that
the distribution of the (23, 19)-minimizers is not com-
pletely uniform or that our probabilistic threshold for
the counting lemma introduced a few FP. In general,
the effect of using minimizers on the FP rate is neg-
ligible. For larger sized IBF, no FP searches induced
by the Bloom filter occur for both minimizer sets. The
FP counts are obviously the same if we apply lossless
compression to the bitvector.

Time and space usage for index construction

The construction time for b = 64 is between 11 and 13
minutes and for b = 1,024 between 4 and 6 minutes.
For 1,024 bins, the wall clock time is smaller, since
we can parallelize the construction (in chunks of 64)
which is not possible for 64 bins. The space needed for
construction is the size of the IBF and thread-local
storage for the input sequences. In order to compress
the IBF, both the uncompressed and compressed ver-
sion must be in memory for a short amount of time,
resulting in an increased memory peak.

For (23, 19)-minimizers, the construction time is gen-
erally lower since we insert fewer representative k-
mers. While for b = 64, the times are comparable, the
IBF can be built almost twice as fast for b = 1,024
compared to (19, 19)-minimizers.

Time and space usage for the search

For b = 64, Raptor needs about 1s to search for the
220 reads for all IBF sizes. This holds true for both
minimizer sets. Although Raptor searches fewer rep-
resentative k-mers in case of the (23,19)-minimizers,
we need to compute the minimizers of the query be-
forehand, which is additional work. For b = 1,024 we
need between 2.2s for a 2GiB IBF and 1.6s for a
8 GiB IBF. The increase for larger b is to be expected
since we need to check for all bits in the binning bitvec-
tor. This takes longer for larger binning bitvectors. For
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64
Construct Search Construct Search
Time RAM Time RAM FP Time RAM Time RAM FP
1 GiB (19,19)-IBF 10:47 3,626 0.95 1,236 604,533 (23,19)-MIBF 10:14 3,577 0.92 1,238 28,438
(19,19)-IBFc | 11:28 4,456 5,54 3,382 604,533 | (23,19)-MIBFc | 10:50 3,570 1.80 1,986 28,438
> GiB (19, 19)-IBF 11:37 4,693 0.91 2,260 189 (23,19)-MIBF | 10:51 4,564 0.93 2,254 197
(19,19)-IBFc | 12:29 6,688 498 4,592 189 (23,19)-MIBFc | 11:25 4,593 1.56 2,365 197
4GB (19,19)-IBF 12:13 6,706 0.93 4,310 189 (23,19)-MIBF | 11:05 6,703 0.92 4,310 189
(19,19)-IBFc | 13:03 10,000 4.64 5,857 189 (23,19)-MIBFc | 11:52 6,924 1.66 2,750 189
8 GiB (19,19)-IBF 12:54 10,791 0.85 8,404 189 (23,19)-MIBF 11:28 10,711 0.89 8,406 189
(19,19)-IBFc | 13:51 15,318 3.91 7,072 189 (23,19)-MIBFc | 12:22 11,351 1.67 3,112 189
1,024
Construct Search Construct Search
Time RAM Time RAM FP Time RAM Time RAM FP
1GB (19, 19)-IBF 4:08 6,803 341 1,230 9,696,834 | (23,19)-MIBF 2:48 6,918 0.98 1,235 445,968
(19,19)-IBFc | 4:46 6,879 37.29 3,381 9,696,884 | (23,19)-MIBFc | 3:28 6,853 12.12 1,982 445,968
> GiB (19, 19)-IBF 5:02 7,798 2.29 2,260 0 (23,19)-MIBF 3:04 7,775 0.94 2,260 141
(19,19)-IBFc | 5:48 7,807 25.39 4,592 0 (23,19)-MIBFc | 3:46 7,797 8.15 2,373 141
2 (9, 10)-IBF [ 540 0064 102 4308 0 (23,19)-MIBF | 3:12 9,014 0.92 4,308 0
(19,19)-IBFc | 6:36 9,999 18.46 5,854 0 (23,19)-MIBFc | 3:58 9,870 5.80 2,742 0
8 GiB (19, 19)-IBF 6:04 13,908 1.61 8,403 0 (23,19)-MIBF 3:21 13,999 0.94 8,404 0
(19,19)-IBFc | 7:08 15,318 12.95 7,075 0 (23,19)-MIBFc | 4:13 14,044 459 3,112 0

Table 1 Run time and memory consumption of Raptor using differently sized IBF for b = 64 and b = 1,024. On the left are the
numbers for (19, 19)-minimizers (IBF), on the right for (23, 19)-minimizers (MIBF). Compressed versions are denoted by the suffix
c’. Construction times are in MM:SS, search times in SS.ss. RAM represents the memory peak in MiB during the construction and
search, respectively. A total of 1,048,576 reads were processed, allowing for up to 2 errors. False positives (FP) are reads originating
from bin ¢ assigned to a bin j # i, neglecting the fact that the read may match with bin 5 when allowing for 2 errors.

(23, 19)-minimizers, we only see a slight increase and
still need about 1s. The benefit of querying fewer k-
mers becomes pronounced and the IBF is up to twice
as fast as the IBF for (19, 19)-minimizers.

When searching, it is also interesting how large the
memory footprint is if we use compressed bitvectors.
For b = 64 and (19, 19)-minimizers, we see for the IBF
that compression actually increases the memory foot-
print until we use a IBF of 8 GiB. This means that the
bitvectors are not sparse and that the space overhead
of the compression algorithm outweighs the benefit of
compressing the data.

In addition, the search time increases by a factor of
about 4 for b = 64 and about 8-11 for b = 1,024, which
makes compression here unattractive.

This changes for (23, 19)-minimizers. For b = 64, the
search time increases from about 1s to only 1.6s while
we can compress the bitvector from 4.3 to 2.7 GiB
or from 8.4 to 3.1 GiB. For b = 1,024, the compres-
sion is similar since we store the same number of k-
mers, but the run time increases by a factor of 5-8.
This is due to the need to uncompress the 1,024 bit
long binning bitvector which takes longer than for
the 64 bit long bitvector. Still, for (23,19)-minimizers
and smaller b, using compression offers an attractive
time/space trade-off. For querying, we can observe
that, in general, a sparser bitvector returns the results
faster.

Impact of the number of partitions on the speed
Finally, we investigated the impact of partitioning the
IBF into x = 1,2,4, 8 parts. Since Raptor cannot di-

rectly evaluate the counting vector for each read after
having looked at one part, we need to store the inter-
mediate results and check if we match the threshold
after having counted the k-mers in all parts of the par-
tition. To do this, Raptor allocates a buffer vector of
size 107 where each position holds a vector of b bits
that is assigned to one of the reads. After counting
the occurrences of the k-mers of a read in one parti-
tion, we can add the result to the vector and use the
vector for the next batch of reads. We report on the
construction and search time as well as on the maxi-
mum memory allocated by the resulting z-PIBF, for
b = 64 and b = 1,024 bins. We use an 8 GiB IBF in
these experiments. The results are shown in Table 2

In general, we observe for all minimizers that the
construction and query times grow higher the more
parts Raptor uses. For (19, 19)-minimizers, the build
time increases from about 13 minutes to 23 minutes
for b = 64, while for b = 1,024 it increases from about
6 to 8 minutes. For b = 64, the search time for the
IBF increases from about 1s for a 1-PIBF to 4.3 s for
a 8-PIBF. When using more parts, the run time in-
creases, but the space needed to hold a single part in
memory decreases. While we need 8 GiB memory to
use a 1-PIBF, we only need 1.4 GiB if we use an 8-
PIBF. When using (23, 19)-minimizers, we see similar
trends for b = 64. Furthermore, like in the unparti-
tioned case, the search time is faster. Indeed, for an 8-
PIBF we need only 2.68 seconds for the query and for
an 8-PIBFc only 6.9 seconds while using only 857 MiB
peak memory.
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64
Construct Search Construct Search
Time RAM Time RAM FP Time RAM Time RAM FP
1-IBF (19,19)-IBF | 13:03 10,823 0.92 8,398 189 | (23,19)-MIBF 11:23 10,773 0.89 8,405 189
(19,19)-IBFc | 13:10 15,318 4.47 7,072 189 | (23,19)-MIBFc | 12:04 11,351 1.41 3,112 189
>_IBF (19,19)-IBF | 16:49 6,757 156 4,470 189 | (23,19)-MIBF 14:34 6,804 1.18 4,478 189
(19,19)-IBFc | 18:38 7,853 7.74 4,118 189 | (23,19)-MIBFc | 15:08 6,888 237 2,071 189
4-IBF (19,19)-IBF | 19:59 4,814 256 2,427 189 | (23,19)-MIBF 19:31 4,796 1.75 2,422 189
(19,19)-IBFc | 18:43 5,055 12.86 2,339 189 | (23,19)-MIBFc | 19:21 4,869 4.16 1,284 189
8-IBF (19,19)-IBF 22:35 3,930 4.27 1,405 189 [ (23,19)-MIBF 29:34 3,918 2.68 1,406 190
(19,19)-IBFc | 23:37 3,969 23.06 1,336 189 | (23,19)-MIBFc | 27:47 3,934  6.90 857 190
1,024
Construct Search Construct Search
Time RAM Time RAM FP Time RAM Time RAM FP
LIBF (19, 19)-IBF 6:09 13,992 1.69 8,398 0 (23,19)-MIBF 3:24 14,094 093 8,404 0
(19,19)-IBFc | 7:10 15,318 12.44 7,071 0 (23,19)-MIBFc | 4:13 14,107 457 3,112 0
> IBF (19,19)-IBF 6:32 10,548 3.48 6,396 0 (23,19)-MIBF 4:10 10,642 1.51 6,396 0
(19,19)-IBFc | 7:36 10,542 2494 6,037 0 (23,19)-MIBFc | 5:01 10,646 8.70 4,079 0
sigF (19, 19-BF [ 648 8490 620 4348 0 | (23,19-MIBF | 5:32 8572 261 435 O
(19,19)-IBFc | 7:52 8,489 47.10 4,259 0 (23,19)-MIBFc | 6:23 8,572 16.48 3,204 0
8.IBF (19, 19)-I1BF 7:51 7,631 11.70 3,318 0 (23,19)-MIBF 8:25 7,512 462 3,318 8
(19,19)-IBFc | 8:39 7,432 92,77 3,278 0 (23,19)-MIBFc | 9:19 7,512 32.07 2,772 8

Table 2 Construction and search time for partitioned IBF of size 8 GiB. The IBF is partitioned into 1 to 8 parts. On the left are the
numbers for (19, 19)-minimizers (IBF), on the right for (23, 19)-minimizers (MIBF). Compressed versions are denoted by the suffix
c’. Construction times are in MM:SS, search times in SS.ss. RAM represents the memory peak in MiB during the construction and
search, respectively. Raptor processes a total of 1,048,576 reads, allowing for up to 2 errors. False positives (FP) are reads
originating from bin 7 assigned to a bin j # ¢, neglecting the fact that the read may match with bin j when allowing for 2 errors.

For b = 1,024 and (19, 19)-minimizers, the search
times for the IBF increases from 1.69s to 11.7s for
a 8-PIBF. As before, compression is unattractive for
this case, while it pays off for the (23,19)-minimizer
version.

In general, the construction time of Raptor’s index
increases, the more parts we create, since we have to
stream over our input z times and store x parts on
the disk. However, we observe that this increase has
a lower rate than the increase in the parts, as both
constructing and querying a x-PIBF do take less than
x times the time of a 1-PIBF. The reason for this is
that we do not have to access the bitvector for k-mers
that are not in the current part.

Impact of probabilistic thresholding on false negatives
In this section we show that our probabilistic thresh-
olding is crucial in avoiding false negatives. When we
use (19, 19)-minimizers, the k-mer lemma ensures that
we have no false negatives, but this is no longer true
when using minimizers with w > k. This is apparent
since the number and distribution of (w, k)-minimizers
is sequence dependent and hence leads to a different
threshold for each read. In the Methods section we de-
scribe how we derive a method to compute a threshold
depending on the the parameters w, k and the number
of minimizers a query has.

Indeed, Table 3 shows that a simple adaption of the
k-mer Lemma for (23, 19)-minimizers would not work
well. Instead of k& we would use w as the length of
the k-mer, i.e. w = % = 0.41. If we now
require 41% of the (23,19)-minimizers in a read to

64 1,024
FP FN FP FN
1GiB|309 796 | 1803 753
2GiB | 189 1803 0 1696
4 GiB | 189 2270 0 2172
8 GiB | 189 2422 0 2308

Table 3 False positives (FP) and false negatives for differently
sized (23, 19)-MIBF using the adapted k-mer lemma. The
resulting threshold is = 41%. False positives are reads
originating from bin ¢ assigned to a bin j # i, neglecting the
fact that the read may match with bin j when allowing for 2
errors. False negatives are reads originating from bin ¢ not
assigned assigned to bin 7.

be present, it results in up to 2,400 false negatives,
which would not be acceptable. In contrast, our proba-
bilistic threshold computation yields no false negatives
for (23,19)-minimizers. Tools like Mantis and COBS,
which use a simple percentage cutoff, would suffer in
a similar increase in false negatives if they used min-
imizers. However, they could use our results to adapt
their thresholding. In our data set, the number of min-
imizers for each read ranges from 15 to 35 while our
thresholds range from 4 to 13.

For example, for a query of length 100 with 20
minimizers the threshold is 6, which is lower than
0.41-20 = 8.2. Using our threshold avoids falsely filter-
ing out the query. In general, the percentage of min-
imizers that need to be present ranges from 26% to
38%. This shows that applying a single threshold is
not sufficient.
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Construct Search
Time RAM  Space Time RAM FP
64 COBS 89:06 20,654 21 130.8 20,492 125
Mantis - - - - - -
1.024 COB_S 26:37 20,657 21 13433 20,470 O
' Mantis | 78:33 (+49:12) 36,048 21 46.81 21,018 O
Table 4 Comparison COBS and Mantis for the artificial data set with 64 and 1,024 bins. Construction times are in MM:SS, search

times in SS.ss. The construction time in brackets for Mantis is the additional time the preprocessing tool Squeakr needs. The used
disk space is in GiB, the maximum RAM in MiB. All approaches are built for £ = 19.

Comparison with other tools

In the following, we compare Raptor with the state-
of-the-art tools Mantis [13] and COBS [6] using the
artificial data set and a real data set of 1,742 RNA-
Seq experiments also used in [13] as described earlier.
Note that the computational experiments for the real
data set only use one thread for all tools, the same
as it was done in the competitors’ publications. The
effect of parallelization was tested using the artificial
data set where we used 32 threads.

Artificial data set
We built an index over the artificial data set (separated
in 64 and 1,024 bins) with COBS and Mantis for a k-
mer size of 19. Afterwards, we queried the same reads
we have already searched with Raptor using BDs. Both
COBS and Mantis consider a transcript found if the
amount of k-mers found is more or equal to a given
threshold. Instead of using the default threshold of 80
percent, we determined a threshold according to the
standard k-mer counting lemma, which was 53 percent.
Moreover, we had to adapt our input for the index
construction of Mantis by adding random quality
scores to our FASTA files because Mantis only accepts
FASTQ files as input. But even with this adaptation,
Mantis, or more precisely the helper tool Squeakr,
resulted in a segmentation fault for the artificial data
set separated in 64 bins, thus we only present result
for Mantis with 1,024 bins.

As can be seen in Table 4, the construction of
COBS and Mantis takes at least three times longer
than for Raptor. Furthermore, searching with Raptor
only needs a fraction of the space (about 5-8 GiB vs.
20 GiB) COBS and Mantis need, while being as accu-
rate. The most striking difference is the search time.
For (19, 19)-minimizers, Raptor needs between 0.9s for
b =64 and 1.6s for b = 1,024. This is about 144 times
faster than COBS and (for b = 1,024) about 30 times
faster than Mantis.

Real data set

We built an index over the real data set with COBS,
Mantis, and Raptor using a binning directory for a k-
mer size of 20 (since this value was used in [13], see

Construct
Time RAM Space
(20,20)-IBF 34 8.1 8
(40, 20)-IBF 2 0.9 0.8
COBS 4,620 702.6 4,265
Mantis 135 29.7 17

Table 5 Comparison of Raptor, COBS and Mantis. Construction
times are in minutes. The used disk space and the maximum
RAM are given in GiB. All approaches are built for £k = 20.

Additional File 2). For Raptor, we created two ver-
sions, one using a binning directory with an IBF with
(20, 20)-minimizers and one version using a binning di-
rectory with an IBF with (40, 20)-minimizers. Mantis
uses a cutoff in order to sort out low-frequency k-mers
that probably resulted from sequencing errors [13]. In
order to be comparable, Raptor applied the same cut-
offs for both versions of the binning directories. The
results are shown in Table 5.

Raptor’s construction time of the binning directory

is faster than Mantis and COBS and, when using
(40, 20)-minimizers, the space consumption drops to
only five percent of that of Mantis. COBS’s construc-
tion time and space consumption is nowhere near
the other two applications, because COBS has no
preprocessing step and does not use cutoffs to filter
out erroneous k-mers. Therefore, further comparisons
to COBS are omitted.
In order to compare the query times, three differently
sized sets (100, 1,000, and 10,000 transcripts) were
used. Each set was created by randomly picking
human gene transcripts. The lengths varied between
46 bp and 101, 518 bp.

Search

Time RAM FPR

(20, 20)-1BF 7 8 0.025

100 transcripts (40, 20)-IBF 1 0.8 0.015
Mantis 12 18.7 0.0

(20, 20)-IBF 10 8 0.03

1,000 transcripts (40, 20)-IBF 1 0.8 0.016
Mantis 30 19 0.0

(20, 20)-IBF 46 8 0.031

10,000 transcripts (40, 20)-I1BF 4 0.8 0.017
Mantis 232 23.3 0.0

Table 6 Comparison of Raptor and Mantis. Search times are in

seconds, RAM is given in GiB. All approaches are built for

k = 20.
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The false positive rate (FPR) was determined by
comparing Raptor’s results to Mantis, assuming Man-
tis correctly finds all experiments as it claims to be
exact. A similar evaluation was applied in [13]. Also,
the definition of a found transcript is based on the
evaluation of [13]. Therefore, both Mantis and Raptor
consider a transcript found in an experiment if 80% of
its representative k-mers are found.

As shown in Table 6, Raptor using a BD with
(40, 20)-minimizers is significantly faster (12-58 times)
than Mantis and uses only a fraction of main memory
while still being specific with a low FP rate of about
0.017. Even when using (20, 20)-minimizers, Raptor
outperforms Mantis in space and time consumption.

Discussion
In this paper we presented an approach to answer ap-
proximate string queries using a representative set of
k-mers of the database and query. We stored a set
of (w,k)-minimizers as representative k-mers of the
database in a binning directory using a partitioned,
interleaved Bloom filter.

Binning directories could be used in various settings
which we discuss below.

Using BDs for metagenomic profiling

Tools like Kraken [9] or Centrifuge [17] perform
metagenomic binning by querying the k-mer content
of genomes using NGS reads and inferring the pres-
ence or absence of organisms in the sample using the
taxonomy of a phylogenetic tree.

Hence, we could use BDs for a classification based on
taxonomic levels (e.g., species, genus, ...) or assembly
level, and group the reference genome sequences ac-
cordingly. Using the counts for k-mers given by the
BD, we can infer the composition of a metagenomic
sample. Indeed, [18] already applied this idea as de-
scribed in [8] for this task.

Using BDs for querying file content

Another application for BDs which we also used in
one benchmark is to query all existing human RNA-
Seq files in the SRA for the presence of transcripts.
For this application, the bins would be defined by the
respective file content. We would expect that the effec-
tive text size n(k) is considerably less than 5 TBases
since we sample from human genes. Of course, this ap-
plication scenario is not limited to RNA-Seq files.

Using BDs for read mapping

In the context of read mapping, we can use the
BD as follows. The database would be the reference
genome(s) we want to map our reads against. Assume
we have partitioned them into bins such that similar
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parts of the genomes are placed within the same bin.
In the context of metagenomics analysis, this could
be achieved by using a taxonomic tree (see also [8]);
alternatively, the sequences could be clustered based
on similarity. The sequences in the bins could then be
indexed using a compressed suffix array or other suit-
able indices and the BD can be used to distribute the
approximate searches.

Possible extensions

Currently, Raptor stores all representative k-mers,
even if some representative k-mers in the reference
data set are ubiquitous, i.e. they appear in all or al-
most all, e.g., 95%, bins. While some approaches, like
Mantis, exclude certain k-mers from consideration, one
could instead exclude them from the IBF and store
them in a small lookup table. Whenever such a k-mer
is queried, we can increase the counters on all bins and
save the lookups in the IBF. This might reduce the size
of the IBF and speed up the search time.

While not shown in this paper, the update operation
on an IBF was already used in DREAM-Yara [8] and
ganon [18]. Adding data is trivial since we just need to
set the corresponding bits in the x-PIBF. For removing
data from the x-PIBF we need to clear and rebuild the
affected bins of the update.

Conclusion

In conclusion, we presented a novel, versatile, fast, and
memory efficient data structure for k-mer based analy-
sis of large sets of partitioned sequences using binning
directories. Our implementation, Raptor, is ready for
secondary memory use and its data structures can be
efficiently compressed if the used bitvector is sparse.
Furthermore, we showed that the concept of (w,k)-
minimizers allows to effectively reduce the set of rep-
resentative k-mers without sacrificing specificity nor
sensitivity by applying our probabilistic thresholding.
Raptor outperformed the state-of-the-art tools Mantis
and COBS in both run time and space consumption.
The use of (40, 20)-minimizers was able to reduce the
memory footprint of our method from 8 to 0.9 GiB
for the RNA-Seq data set introduced in [13], which is
about one order of magnitude less compared to Mantis
(=~ 19-23 GiB). Using (w, k)-minimizers, the run time
was better by factors between 12 and 144 compared to
Mantis and COBS which enables completely new ways
for analyzing large sequencing archives in ways that
were not possible before. Raptor and binning directo-
ries are available in the SeqAn library [19] of efficient
data types and algorithms.
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Methods

Binning directories

In the following, we give a more formal definition of
binning directories and explain how we solve current
bottlenecks.

(w, k)-minimizers

In this work we introduce the concept of (w,k)-
minimizers for computing representative k-mers. In
Figure 1, we show an example for this concept. The
reverse complement sequence is denoted in lower case,
and we used the lexicographically smallest k-mer for
clarity. In practice, this leads to a skewed distribution
of minimizers which can be corrected by, for example,
applying an XOR operation with a random value to each
k-mer hash value before taking the numeric minimum
(see [20] for a discussion). In the Figure you see a short
example of a) ungapped 4-mers in a window of size 4,
which means we take the lexicographically smallest of
the k-mer and its reverse complement as the minimiz-
ing k-mer. The second case b) shows the minimizing
4-mers for a window of size 8. We form the minimum
of all k-mers and their reverse complement in this win-
dow. We denote the window span with -’ and place
the minimizing k-mer at the respective window posi-
tion. For the properties and the size of the data we will
handle, £ will usually be in the range of 16-32.

Effective text size and ratio

In general, Raptor assumes that we have a collection
of strings {7;} over an alphabet X, with a total length
n = > | T; |. Raptor stores the k-mer content of
{T}} or a representative transformation of it. Raptor
uses (w, k)-minimizers for computing the set of repre-
sentative k-mers.

To capture the repetitiveness of the {7}, we define
the effective text length n(k) as the number of dis-
tinct, representative k-mers in all the T;. In order to
store the set of texts {T}}, we further assume that we
have divided the T} into b bins B; (mind that a single
T; itself could be partitioned into several bins with-
out many adaptations). For the strings in a bin B;,
we denote the set of representative k-mers with B; (k)
and the effective text length with n;(k) as the number
of representative k-mers of the strings in B;, i.e. the
cardinality of B;(k).

Dividing the strings into bins could result in a large
or small intersection of their representative k-mer con-
tent, depending on the method. To capture this, we
define the effective text ratio r;(k) as Z;?,;)(k). The ef-
fective text ratio is a measure of how well we have
partitioned our k-mer content into the bins. Ideally it
is 1 and in the worst case it is b. We want to point out
that the effective text length n(k) is a crucial measure
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for the problem of indexing large genomic text collec-
tions. For example, [14] compute an index for 170 TiB
of sequence data. However, this data set is quite repet-
itive since its effective text length n(31) is only 6-101°.

For our artificial data set we give the effective text
ratio r(k) for different k for both 64 and 1,024 bins in
Table 7.

One can see that we need a k-mer size of at least 16
to achieve an effective text ratio under 2. For £ > 19
the effective text ratio is near 1 which means that most
k-mers in the bins are unique. For this reason we used
k =19 in our experiments.

Binning directory

We define a binning directory (BD) for the text collec-
tion {7} divided into b bins B; as a data structure that
returns the counts of the representative k-mers in the
query multiset (k) for each bin B;. In this work a bin-
ning directory uses a set membership data structure,
namely the x-PIBF, that returns the bin membership
as a (compressed) bitvector which we call the binning
bitvector. The BD then combines the binning bitvec-
tors into count vectors. Our Tool Raptor uses (proba-
bilistic) thresholding to determine whether a query is
in a bin or not.

Implementing a simple version is indeed not difficult.
The problems lies in the fact that the effective text
size n(k) can be very large, i.e. 10'° to 10'2. For ex-
ample, the metagenomics data set used in [8] contains
about 2 - 10'° different 19-mers. A naive implemen-
tation that stores all those 19-mers in a hash table
containing the binning vectors for 1,024 bins would
need about 40 TiB (an open addressing hash table with
about 4 - 10'° entries, each pointing to a 1,024 bit
bitvector). Hence, the challenge is implementing the
BD in a more space efficient way while maintaining a
fast run time.

We approach this problem in two ways in this paper.
For implementing a binning directory, we adapted the
IBF data structure presented in [8] to work well on sec-
ondary memory. We call it the z-partitioned IBF (a-
PIBF). Secondly, we employ (w, k)-minimizers to re-
duce the number of representative k-mers significantly
while still accurately answering the question in which
bins a query can occur.

Answering a query with Raptor

Answering a query includes the retrieval of the binning
bitvectors and the counting of k-mers to determine the
bins to be searched. Using a x-PIBF, Raptor has to
compute h hash functions, retrieve h sub-bitvectors
and compute a bitwise AND. We can use a standard
bitvector of size n that uses n bits, or the compressed
bitvector of the SDSL [21] that uses approximately
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b,k 12 13 14 15 16 17 18 19 20
64 62.84 | 40.52 | 1419 | 3.96 | 1.57 | 1.13 | 1.03 | 1.01 | 1.00
1,024 || 225.98 | 62.19 | 1592 | 408 | 1.58 | 1.13 | 1.03 | 1.01 | 1.00

Table 7 Effective text ratios r(k) for 64 and 1,024 bins and different values of k for the artificial data set. Values are rounded.

m- (2 + log %) bits, where m is the number of bits set
and n the length of the bitvector.

For counting, Raptor has to traverse the binning
bitvector of size b and increment counters for each bit
set to 1. To speed up this crucial step we used, for
uncompressed bitvectors, the 1zcount intrinsic opera-
tion which counts the number of leading zeros in a 64
bit word. This accelerated the bin counting step by a
factor of almost 2 compared to the individual checking
of each bit.

A further speed up is possible once the AVX512
SIMD extensions are available on standard comput-
ers (already possible for Intel’s Skylake processor).
These optimizations cannot be directly applied to com-
pressed bitvectors.

Having the counts, we apply a thresholding accord-
ing to the original k-mer counting lemma [22] or ac-
cording to a probabilistic model for (w, k)-minimizers.

Lemma 1 For a given k and number of errors e,
there are ky, =| p | —k + 1 many k-mers in p and an
approximate occurrence of p in T has to share at least
t=(kp —k-e) k-mers.

Hence, if the count exceeds the threshold for the
bin, we report the pattern to occur in this bin, other-
wise not. This approach is depicted in Figure 2. How-
ever, using minimizers makes the direct application of
Lemma 1 impossible for w > k. We present a solution
in the next section.

Probabilistic thresholding

Lemma 1 works only for (k, k)-minimizers. It does not
hold for general (w,k)-minimizers. The latter is ap-
parent since the number and distribution of (w,k)-
minimizers is sequence dependent and hence leads to
different thresholds for each read.

This problem is exemplified in Figure 3. The exam-
ples show that an error does not only directly inval-
idate the minimizers covering the error position but
also indirectly affects minimizers not covering the error
position, resulting in a different count of minimizers.

Taking these indirectly destroyed minimizers into
consideration, there are several ad hoc ways to com-
pute the threshold. The first is to adapt Lemma 1 such
that we compute the threshold as follows: For a given
k, w and number of errors e, there are w, =|p | —w+1
many windows in p and if we take the multiplicity of

the minimizers into account, an approximate occur-
rence of p in T has to share at least t = (w, —w - €)
minimizers, i.e. we replace k with w. However, this
leads to low thresholds. The threshold in Figure 3 a)
would be negative, i.e. 13 —8+1 — 8 = —2, and thus
useless for filtering.

Another way to compute an individual threshold is
to repeat the following two steps for each error: 1)
compute the minimizer coverage of a query p (count-
ing each minimizer only once) 2) One maximum cover-
age position is chosen and the minimizers covering this
position are removed. The overall number of removed
minimizers is subtracted from the number of minimiz-
ers to obtain the threshold ¢. This works better than
the first approach, but is quite time-consuming to com-
pute.

We can show that a simple probabilistic model yields
thresholds that are on average much better than the
above ad hoc methods and removes the need to com-
pute an individual threshold for each read. Instead, the
threshold can be looked up in a table given the number
of minimizers of a query and the parameters (w, k)
and hence the filtering speeds up considerably. The
method models the occurrences of (w, k)-minimizers
within the windows and how they affect each other
(see Figure 3 for an example). Our method models
the distributions of the minimizer occurrences and how
they affect each other. Given a threshold 7 for the cu-
mulative probability of d minimizers being affected by
errors, we compute a value for the number of mini-
mizers not affected by errors. Details can be found in
Additional File 1.

x-Partitioned Interleaved Bloom filter

Finally, we propose our last contribution, the use of
an x-partitioned interleaved Bloom filter (z-PIBF) in
binning directories, which are an extension of the IBF
proposed in [8].

An IBF for b bins combines b standard Bloom filters
[23]. A Bloom filter is simply a bitvector of size n and
a set of h hash functions that map a value, in our case
a representative k-mer, to one of the bit positions. A
value is present in the Bloom filter if all h positions
return a 1. Note that a Bloom filter can give a false
positive answer. However, if the Bloom filter size is
large enough, the probability of a false positive answer
is low. A Bloom filter of size n bits with & different hash
functions and m elements inserted has a probability of
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giving a false positive answer of approximately

e (1-(2)")

For this reason, we have to allocate sufficient space
such that ps, does not become too large. Still, the
problem of using a simple Bloom filter is that it does
not point us to the binning bitvectors. To alleviate the
problem, the IBF uses b Bloom filters (one for each
bin) with identical hash functions and then interleaves
their bitvectors. Putting it differently, this means that
it replaces each bit in the Bloom filter by a (sub)-
bitvector of size b, where the i-th bit "belongs” to the
Bloom filter for bin B;. The resulting IBF has a size of
b-n. When inserting a k-mer from bin B; into the IBF,
it computes all h hash functions which point to the
position of the block where the sub-bitvectors are and
then sets the i-th bit from the respective beginnings.
Hence, the IBF effectively interleaves b Bloom filters
in a way that allows us to easily retrieve the binning
bitvectors for the h hash functions. When querying in
which bins a k-mer can be found, we retrieve the h
sub-bitvectors and apply a logical AND to them which
results in the required binning bitvector indicating the
membership of the k-mer in the bins. The procedure
is depicted in Figure 4.

Finally, the binning bitvectors are summed up to ob-
tain the count vectors. For this, we allocate ¢ many
counters, each with b entries, where ¢ is the number of
threads used. These counters are reused as we process
the reads in parallel.

Partitioning the IBF

If the set of stored k-mers is very large or if we want
to achieve a very low false positive rate of the IBF,
it might be too big to keep in the main memory. For
those cases we implemented the z-partitioned IBF (z-
PIBF) where we partition the set of stored k-mers into
x parts as follows:

For a x-PIBF of size s bits, we create x parts, each
with [s/z] bits. Then we partition the k-mers based
on the first ¢ characters with ¢ > [log, (x)], where o is
the alphabet size. We count the g-mer frequencies of all
k-mers and assign them as evenly as possible to the x
parts (see Table 8 for an example). The counting step
can be omitted, in which case we assume a uniform
prefix distribution.

Finally, we have to adapt our hash functions such
that all h hash values for a k-mer lie in the same part of
the 2-PIBF. This can easily be done by storing offsets
in a ¢% large table and adding those to the hash values
for an IBF of size [s/z].
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2-mer AA AC AG AT CA CC CG CT
part 0 0 0 1 1 1 2 2
22mer GA GC GG GT TA TC TG TT
part 2 3 3 3 4 4 4 4
Table 8 Example of the assignment of g-mers to x=5
partitions. Given a DNA alphabet (0=4) and x=5, we have to
distribute the 16 possible g-mers evenly to the 5 parts. In this
example we assume a uniform distribution of the g-mers.

If we query a set of k-mers, we load the first part
of the z-PIBF into memory, stream over all k-mers
counting the relevant ones for this part and ignoring
the others. Then we repeat this for all other parts after
loading them. In the Results section we report on the
time/memory trade-off.

Compressing bitvectors

Binning directories use a large bitvector containing
all the binning bitvectors for all representative k-
mers. In this work we also allow the use of a com-
pressed bitvector implementation from the SDSL [21].
While a standard bitvector of size n uses n bits, the
compressed bitvector of the SDSL uses approximately
m- (2 + log %) bits, where m is the number of bits set,
and n the length of the bitvector. Note that while this
reduces the space consumption, it increases the access
time which we will discuss in the experiments.

To construct a compressed bitvector, we first have
to create the entire uncompressed bitvector and then
compress it. This means that both the uncompressed
and compressed bitvectors have to be in main memory
at some point during construction which increases the
memory footprint during construction while reducing
the memory requirements when using the bitvector.
A main property of the compressed bitvector is that
it is immutable. If we want to change a bit after the
vector is constructed, we need to change the bit in
the uncompressed bitvector and reconstruct the com-
pressed bitvector. Since decompression for the com-
pressed bitvector is not supported by the SDSL, we
also need to store the uncompressed bitvector on disk
to enable future updates of the IBF. Nevertheless, we
need to have the whole bitvector initially in memory
which might pose a problem. This problem can be
solved elegantly using the partitioning of the IBF as
proposed before.
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Figures

Figure 1 Examples of (w, k)-minimizers. a) and b) show the
same k for different window sizes, the former with a window
size w = k and the latter with a larger window of 8. Note that
the reverse complemented sequences, shown in lower case,
have to be read from right to left. The window width is
indicated by a dash and the minimizing k-mer is placed within
the window. Subsequent windows often share the same
minimizer which we illustrated by showing those as well,
although they are only stored once.

Figure 2 Binning directory in conjunction with the k-mer
Lemma. Bins with a counter greater than or equal to the
threshold (in this case 4) need to be validated for p.
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Figure 3 Impact of a direct error on the number of k-mers.
The sequences a) and b) represent the same sequence without
and with an error at position 6 replacing a T with a G,
respectively. The sequence in a) has 3 minimizers, one of
which (caca) is destroyed by the error position. Hence, we
could assume that a sequence with one error at this position
has a count of 2. However, introducing the error by replacing
T with G has the effect that the first window now has a
different minimizer not covering the errorposition (ggca) and
hence b) still has a minimizer count of 3. Thus, a) and b)
would be wrongly deemed not matching with 1 error.

Figure 4 Example of an IBF. Differently colored Bloom filters
of length n for the b bins are shown in the top. The individual
Bloom filters are interleaved to make an IBF of size b X n. In
the example we retrieve 3 positions for a k-mer (ACGTACT)
using 3 different hash functions. The corresponding
sub-bitvectors are combined with a bitwise & resulting in the
needed binning bitvector.

Additional Files

Additional file 1 — Probabilistic Threshold Model

Contains additional information on how we obtained the minimizer
thresholds used in the paper.

Additional file 2 — Command Line Arguments

Describes how we used the tools Mantis and COBS.
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a) (4,4)-minimizer.
ACGTCGACGTTTAG
ACGT ctgc aatc

CGTC ACGT
cagc gcaa
TCGA caaa

CGAC aaat

11 (4,4)-minimizers

b) (8,4)-minimizer
ACGTCGACGTTTAG
ACGT----

---CGAC-
-—--ACGT
----gcaa

----caaa
---caaa-
--caaa—-

5 (8,4)-minimizers
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Interleaved Bloom Filter I BF'
lolofofofo]..[1]1]o]1]o]1]..[o]o]o]o]o]o]..[1]0o]0]0] .. |

P ™mn
wemp sub — bitvectors of IBF
|Alc|clc[a[c|G]A]..[A[c[c|Alg] for kmers of patiern p
ACGGA BF(k1) [0]olo]o]1]..[1]
CGGAC 1BF(ks) [1]0|1]0]1]..[1]

GGACG BF(ks) [ 1[1]1]1]0]..]0]

ACCAG 1BFk)[1]0]o]o]1]..[0]
Count(P) |5[2]4]0]3]..|3]

potental bins for pattern p (threshold = 4) v v
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a) (8,4)-minimizer
Without errors
CCGTGtCATAGTA

—--caca—-
-caca-—-—
caca——--
-—--ATAG
-—-——atca
-—-—atca-

3 (8,4)-minimizers

b) (8,4) minimizer
With an error
CCGTGgCATAGTA
ggca————
-—-—-cgta
-—--cgta-
-——--ATAG
-—--atca
-—-—atca-
4 (8,4)-minimizers


https://doi.org/10.1101/2020.10.08.330985
http://creativecommons.org/licenses/by-nc/4.0/

IBF

" HToTaTolo[1] .. Jolilo[1]o]o
’BFb‘:TL

" oTiolololo] .. Jolo]1]1]0]0]

2 ToToJolo]o]o] .. [1]o]o]o]0]0]

BF

“To[1]oJo[1]o] .. To[1]o]o]o]1]
-« |[IBF|=0bxn >
olofo]..]1]1]o[1]..]o]o]o]0]..]1 1]o]o]..[1]o]o[1]..]oJo]o]1]..]1

H1(ACGTACT) =[oTo ToT
Ho(ACGTACT) =[oTo [1 1.
& H3(ACGTACT) =[7T0 o

— p) ——— p —

— 5 —

7/

|1

1

Bins of ACGTACT = mnm!

— ) —e—— ) —e b


https://doi.org/10.1101/2020.10.08.330985
http://creativecommons.org/licenses/by-nc/4.0/

