

1 **Action potential-coupled Rho GTPase signaling drives presynaptic plasticity**

2

3 **Shataakshi Dube¹, Bence Rácz⁴, Walter E. Brown², Yudong Gao², Erik J. Soderblom^{2,3},**

4 **Ryohei Yasuda⁵, and Scott H. Soderling^{1,2,*}**

5

6 ¹Department of Neurobiology; Duke University Medical Center; Durham, NC 27710; USA.

7 ²Department of Cell Biology; Duke University Medical Center; Durham, NC 27710; USA.

8 ³Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational

9 Biology; Duke University Medical Center; Durham, NC 27710; USA.

10 ⁴Department of Anatomy and Histology; University of Veterinary Medicine Budapest; Budapest;
11 Hungary.

12 ⁵Max Planck Florida Institute for Neuroscience; Jupiter, FL 33458; USA.

13

14 *Corresponding author: Scott H. Soderling, Email: scott.soderling@duke.edu

1 ABSTRACT

2 In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal
3 signaling to presynaptic plasticity remain controversial and poorly understood. To identify and
4 evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic
5 cytomatrix using *in vivo* biotin identification (iBiLD). The resultant proteome was heavily enriched
6 for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3
7 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely
8 associated with presynaptic vesicle membranes and negatively regulate synaptic vesicle
9 replenishment at both excitatory and inhibitory synapses. Using optogenetics and fluorescence
10 lifetime imaging, we show this pathway bidirectionally sculpts short-term synaptic depression and
11 that its presynaptic activation is coupled to action potentials by voltage-gated calcium influx. Thus,
12 this study provides a new proteomic framework for understanding presynaptic physiology and
13 uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic
14 plasticity that is conserved across cell types.

1 INTRODUCTION

2 Dynamic tuning of neurotransmitter release in response to patterns of activity is a fundamental
3 process that ultimately governs how experience modulates neural networks. During bursts of
4 high-frequency firing, the complex interplay between presynaptic calcium levels and vesicle
5 availability can result in a transient enhancement or reduction of synaptic strength, a process
6 known as short-term synaptic plasticity (Regehr, 2012). Although recent work has clarified some
7 of the calcium sensors important for short-term enhancement during facilitation (Jackman and
8 Regehr, 2017; Jackman et al., 2016) and augmentation (Xue et al., 2018), the signaling molecules
9 that sense action potentials to translate other forms of short-term plasticity are still poorly
10 understood. Reduction of release during short-term depression (STD) is generally thought to
11 reflect the depletion of the readily releasable pool of synaptic vesicles. However, at many
12 synapses, vesicle depletion cannot fully account for the extent of depression (Bellingham and
13 Walmsley, 1999; Byrne, 1982; Chen et al., 2004; Hsu et al., 1996; Kraushaar and Jonas, 2000;
14 Parker, 1995; Sullivan, 2007; Thomson and Bannister, 1999; Waldeck et al., 2000; Xu and Wu,
15 2005; Zucker and Bruner, 1977), suggesting the presence of additional unknown activity-
16 dependent signaling mechanisms driving STD.

17 The actin cytoskeleton has long been implicated in many stages of the synaptic vesicle
18 cycle that could modulate short-term plasticity, including exocytosis, endocytosis, vesicle
19 trafficking, and reserve pool clustering (Cingolani and Goda, 2008; Rust and Maritzen, 2015). Yet
20 these potential roles have been controversial, as actin depolymerizing agents have enhanced,
21 reduced, or had no effect on each of these processes depending on the study (Cole et al., 2000;
22 Darcy et al., 2006; Gaffield et al., 2006; Gramlich and Klyachko, 2017; Lee et al., 2012; Morales
23 et al., 2000; Sakaba and Neher, 2003; Sankaranarayanan et al., 2003). These pharmacological
24 manipulations, while powerful, may not be the ideal method to reveal the diverse functions and
25 regulation of presynaptic actin, because they influence the entire actin cytoskeleton. They do not
26 specifically probe the unique actin pools that exist within different subcellular compartments

1 (Papandreou and Leterrier, 2018). Indeed, many aspects of postsynaptic physiology have been
2 clarified by genetic analyses of actin signaling cascades within dendritic spines. These studies
3 have revealed that distinct pools of actin sculpt dendritic spine morphology, modulate adhesion,
4 and regulate plasticity mechanisms such as the anchoring and trafficking of glutamate receptors
5 (Spence and Soderling, 2015). These different pools are tightly regulated by the Rho-family
6 GTPases (including RhoA, Rac1, and Cdc42), which act on effector proteins to control actin
7 filament assembly and disassembly during both baseline transmission and synaptic plasticity
8 (Hedrick and Yasuda, 2017; Murakoshi et al., 2011; Tolias et al., 2011). Furthermore, these
9 signaling pathways are heavily implicated in neurological diseases such as intellectual disability,
10 autism, and schizophrenia (Spence and Soderling, 2015; Yan et al., 2016), highlighting the
11 importance of synaptic actin for proper neural function. Given the clear links between actin
12 turnover and postsynaptic plasticity, it is therefore surprising that there is little evidence supporting
13 a role for the presynaptic actin cytoskeleton or its signaling molecules in mechanisms of short-
14 term presynaptic plasticity. Some studies have even suggested that presynaptic actin remodeling
15 is only important during synapse maturation (Shen et al., 2006; Yao et al., 2006).

16 Here, we uncover a new, conserved role for Rho-family GTPase signaling in driving STD
17 at both glutamatergic and GABAergic presynaptic terminals. First, in order to enable genetic
18 analysis of the presynaptic cytoskeleton, we defined the actin signaling pathways present in
19 presynaptic terminals. These proteins have not been systematically identified because the
20 presynaptic cytomatrix cannot be biochemically purified, limiting previous studies of the
21 presynaptic proteome to synaptic vesicles and the active zone. To capture a larger fraction of the
22 presynaptic cytomatrix, we used *in vivo* Biotin Identification (iBiLD) and localized the promiscuous
23 biotin ligase BiLD2 to presynaptic terminals by fusing it to Synapsin, a presynaptic actin-binding
24 protein (Doussau and Augustine, 2000; Greengard et al., 1994). Similar to our previous work
25 isolating the proteomes of inhibitory postsynapses (Uezu et al., 2016) and dendritic filopodia
26 (Spence et al., 2019), this approach led to the mass spectrometry-based identification of 200

1 proteins within presynaptic terminals of the hippocampus and cortex. This network of presynaptic
2 proteins was highly enriched for regulators of the actin cytoskeleton and converged on a Rac1-
3 Arp2/3 signaling pathway that leads to the *de novo* nucleation of branched actin filaments (Higgs
4 and Pollard, 2001; Mullins et al., 1998). While Rac1 and Arp2/3 have established roles at the
5 postsynapse (Hedrick and Yasuda, 2017; Kim et al., 2013; Spence et al., 2016; Tolias et al.,
6 2011), here we discovered that Rac1 and Arp2/3 are also closely associated with presynaptic
7 vesicle membranes *in vivo*. We developed genetic, optogenetic, and electrophysiological
8 strategies to specifically isolate presynaptic effects and demonstrated that Rac1-Arp2/3 signaling
9 negatively regulates synaptic vesicle replenishment and can bidirectionally alter STD. By imaging
10 a Rac1 activity sensor (Hedrick et al., 2016) in presynaptic terminals, we also found that Rac1
11 activation is coupled to action potential trains via voltage-gated calcium influx. Thus, Rac1 and
12 branched actin have an important, previously uncharacterized presynaptic role in sculpting short-
13 term synaptic plasticity. These results define a new activity-dependent signaling mechanism that
14 contributes to STD and is conserved across cell types. This also challenges the prevailing view
15 that the Rac1-Arp2/3 pathway functions largely at excitatory postsynapses, prompting re-
16 evaluation of its mechanism in neurodevelopmental disorders.

17

18 **RESULTS**

19 **Identification of the proteomic composition of the presynaptic cytomatrix *in vivo***

20 Current knowledge about presynaptic actin regulation at mature synapses is limited to the
21 discovery of both pre- and post-synaptic effects in a few genetic knockout studies (Connert et al.,
22 2006; Wolf et al., 2015; Xiao et al., 2016). A larger inventory of presynaptic actin regulators is still
23 lacking due to the inability of traditional biochemical methods to isolate the presynaptic cytomatrix,
24 where actin signaling likely occurs. Proteomic studies from isolated synaptic vesicles and active
25 zone fractions, although powerful, have identified few actin signaling molecules (Abul-Husn et al.,
26 2009; Boyken et al., 2013; Burre et al., 2006; Coughenour et al., 2004; Morciano et al., 2009;

1 Morciano et al., 2005; Takamori et al., 2006; Weingarten et al., 2014; Wilhelm et al., 2014), despite
2 actin being the most abundant cytoskeletal element in presynaptic terminals (Wilhelm et al.,
3 2014).

4 We turned to a proximity-based proteomics approach, *in vivo* Biotin Identification (iBioID),
5 in which the promiscuous biotin ligase BioID2 is fused to a protein in a compartment of interest,
6 and nearby biotinylated proteins are identified by mass spectrometry (Kim et al., 2016; Spence et
7 al., 2019; Uezu et al., 2016). To direct BioID2's activity towards the presynaptic cytomatrix, we
8 created a Synapsin1a fusion protein with a flexible 4x[GGGGS] linker (Figure 1A). Synapsin is a
9 synaptic vesicle protein that is also known to bind actin (Doussau and Augustine, 2000;
10 Greengard et al., 1994), making it the ideal bait for discovering presynaptic actin signaling
11 pathways. Importantly, Synapsin has been tagged previously with GFP without disrupting its
12 presynaptic targeting (Gitler et al., 2004b). To validate this approach, we expressed BioID2-
13 Synapsin, untargeted BioID2, and GFP in cultured hippocampal neurons and incubated them with
14 exogenous biotin (Figure 1—figure supplement 1A-C). BioID2-Synapsin was enriched in
15 presynaptic boutons similarly to Bassoon, an active zone marker, while the localization of BioID2
16 was indistinguishable from GFP, confirming it acts as a soluble fill (Figure 1—figure supplement
17 1D). The biotinylation activity of BioID2-Synapsin was also significantly enhanced in presynaptic
18 terminals in comparison to BioID2 alone (Figure 1—figure supplement 1E).

19 With these probes validated, we created adeno-associated viruses (AAVs) for BioID2-
20 Synapsin and BioID2 as a negative control, and then injected them into the brains of newborn
21 mice (Figure 1B). After weaning and supplying exogenous biotin via injections, biotinylated
22 proteins were collected from purified cortical and hippocampal synaptosomes and analyzed using
23 ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with label-
24 free quantitation. Based on peptide identity, a total of 518 proteins were identified in all samples,
25 which were then filtered based on fold enrichment over negative control and adjusted p-value

1 (Figure 1C). This resulted in a network of 200 proteins selectively enriched in presynaptic
2 terminals (Figure 1D).

3 Bioinformatic network analysis revealed that the Synapsin iBiLD proteome is highly
4 enriched for proteins implicated in presynaptic function (Figure 1E). Multiple compartments of
5 presynaptic terminals were represented, including synaptic vesicles (20 proteins), active zones
6 (8 proteins), and recycling endosomes (6 proteins). The proteome covered both excitatory and
7 inhibitory terminals, as suggested by the identification of *Slc17a6* (Vglut2), *Slc1a2* (Glt1), *Slc32a1*
8 (*Vgat*), and *Gad2*. DAVID analysis (Dennis et al., 2003) of the proteome found a significant
9 enrichment for the biological processes of “synaptic vesicle endocytosis” (22 proteins,
10 $p=1.7\times10^{-6}$) and “synaptic vesicle exocytosis” (30 proteins, $p=3.6\times10^{-9}$), among others. Eight
11 proteins were of unknown function, not including the previously uncharacterized *Kiaa1107*
12 (APache) which was recently shown to be involved in synaptic vesicle trafficking (Piccini et al.,
13 2017). The only protein in the network strongly associated with the postsynaptic density (PSD)
14 was Shank1, but there is recent evidence that Shank proteins have an unappreciated presynaptic
15 function (Wu et al., 2017).

16 Regulators of the actin cytoskeleton were heavily overrepresented in the Synapsin iBiLD
17 proteome (54 proteins, $p=9.8\times10^{-7}$). Importantly, very few of these actin signaling molecules had
18 been previously studied in presynaptic terminals (Figure 1E, Actin Cytoskeleton vs Known
19 Presynaptic). The network also contained regulators of the microtubule and septin cytoskeleton,
20 suggesting the capture of multiple components of the presynaptic cytomatrix. Overall, the network
21 was highly interconnected with 54% of proteins (108 proteins) previously known to be presynaptic,
22 suggesting high coverage of the presynaptic compartment.

23 To validate the Synapsin iBiLD proteome, we selected 23 candidate genes that had not
24 previously been shown to localize to presynaptic terminals, with a particular focus on actin
25 regulators and proteins of unknown function (Table S1). We determined the localization of these
26 proteins using Homology-Independent Universal Genome Engineering (HiUGE) (Gao et al.,

1 2019), a CRISPR/Cas9-based technology to tag endogenous proteins. Hippocampal neurons
2 were cultured from *H11Cas9* mice constitutively expressing Cas9 and then infected with AAVs
3 for candidate C-terminal guide RNAs and their corresponding 2xHA-V5-Myc epitope-tag HiUGE
4 donor (Figure 2A). Positive labeling was observed from 19 out of 23 genes, of which 14 displayed
5 a robust signal with good signal-to-noise ratio above background fluorescence (Table S1).

6 These 14 candidates included 12 actin regulators and 2 genes of unknown function,
7 *Fam171b* and *Nwd2*. All endogenous candidate proteins were expressed throughout the cell
8 body, dendrites, and in some cases dendritic spines (Figure 2C-P). As expected, all 14 proteins
9 were also expressed in axons, with significant enrichment in presynaptic terminals as compared
10 to a GFP cell fill (Figure 2B,Q). Together, this highlights the discovery of a considerable number
11 of proteins that were previously not known to localize to presynaptic terminals, and suggests that
12 the Synapsin iBiLD network can reveal novel insights into presynaptic function.

13

14 **Diversity of presynaptic actin signaling and convergence on the Rac1-Arp2/3 pathway**

15 On closer examination of the 54 actin cytoskeleton proteins in the Synapsin iBiLD network, we
16 uncovered a surprisingly rich diversity of actin signaling molecules in presynaptic terminals
17 (Figure 3A). Many were adaptor proteins that linked the actin cytoskeleton to other signaling
18 pathways or cellular structures, including endocytosis, phosphoinositide signaling, Arf GTPases,
19 Rap GTPases, focal adhesions, and adherens junctions. At the level of actin monomers and
20 filaments, we identified regulators involved in bundling and cross-linking filaments, severing
21 filaments, capping filaments, and sequestering monomers. Of note, we found 2 proteins, *Tagln3*
22 and *Wipf3*, known to bind actin but with uncharacterized cellular function.

23 Most interestingly, at the level of Rho GTPase signaling, only *Rac1* was significantly
24 enriched. We also identified several Guanine Nucleotide Exchange Factors (GEFs: *Trio*, *Itsn1*,
25 and *Itsn2*) and GTPase Activating Proteins (GAPs: *Bcr*, *Arhgap1*, *Arhgap32*, and *Arhgap44*),
26 which activate and inactivate Rho GTPases, respectively. Downstream of Rac1, we identified its

1 effector proteins *Pak1*, *Cttn*, and members of the WAVE complex (*Cyfip2* and *Abi2*). Cortactin
2 and WAVE are nucleation promoting factors that activate the Arp2/3 complex to nucleate
3 branched actin filaments. Using overrepresentation analysis, we found that regulators of Arp2/3,
4 including Rac1, were significantly enriched in the Synapsin iBiLD network (Figure 3B). In
5 contrast, regulators of formins, which nucleate linear actin filaments (Schonichen and Geyer,
6 2010), were not significantly enriched. Thus, we hypothesized that Rac1-Arp2/3 signaling and
7 branched actin play an important role in presynaptic terminals.

8

9 **Rac1 and Arp2/3 are associated with synaptic vesicle membranes *in vivo***

10 To validate the presence of Rac1 and Arp2/3 in presynaptic terminals *in vivo*, we investigated
11 their localization using immunogold electron microscopy. We probed hippocampal CA1 of adult
12 mice with antibodies against Rac1 and ArpC2, one of the non-actin-binding subunits of the Arp2/3
13 complex (Figure 3C-D). Rac1 localized to the PSD (Figure 3E), which is consistent with its known
14 function in dendritic spine development and plasticity. However, unexpectedly, the majority of
15 Rac1 labeling (70.3%) localized to presynaptic terminals and was closely associated with synaptic
16 vesicle membranes. Gold particles coding for Rac1 were also located on plasma membranes.
17 Overall, the distribution of presynaptic Rac1 was not significantly different from that of synaptic
18 vesicles (Figure 3G).

19 As reported previously (Racz and Weinberg, 2008), ArpC2 was concentrated in dendritic
20 spines approximately 200nm below the PSD (Figure 3F). However, a fraction of gold particles
21 (25.6%) localized to presynaptic terminals with a consistent and specific distribution. ArpC2 was
22 present among synaptic vesicles, although it preferentially localized to the presynaptic membrane
23 beyond the synaptic vesicle cluster (Figure 3H). Very little immunolabeling was observed when
24 the primary antibody was omitted as a negative control. In the few synapses that did have staining
25 (<1%), there was diffuse non-specific signal across the synapse (Figure 3—figure supplement 1).

1 Taken together, the overlapping distributions of Rac1 and Arp2/3 at synaptic vesicles suggest a
2 potential common presynaptic function related to synaptic vesicle modulation.

3

4 **Presynaptic Rac1 negatively regulates synaptic vesicle replenishment**

5 We next tested whether Rac1 played a role in regulating neurotransmitter release. Since Rac1
6 functions postsynaptically in both development and plasticity (Hedrick and Yasuda, 2017; Tolias
7 et al., 2011), we isolated its presynaptic function by using a mixed hippocampal culture system
8 where presynaptic wildtype (WT) or knock-out (KO) neurons expressed channelrhodopsin
9 (ChR2), and light-evoked responses were recorded from postsynaptic WT neurons (Figure 4A).
10 To accomplish this, WT neurons were electroporated with tdTomato and then sparsely seeded
11 with *Rac1*^{fl/fl} neurons expressing ChR2-EYFP. To minimize developmental effects, AAV-hSyn-Cre
12 was added after 10 days *in vitro* (DIV10) to half the coverslips, deleting *Rac1* from neurons
13 expressing ChR2. In cultures without Cre, neurons expressing ChR2 remained functionally WT
14 (Figure 4B).

15 We conducted whole-cell patch-clamp recordings from tdTomato-expressing WT neurons
16 on DIV16-18, using light stimulation of presynaptic WT or KO neurons to evoke excitatory
17 postsynaptic currents (EPSCs). Presynaptic *Rac1* deletion did not affect the amplitude, charge
18 transfer, or kinetics of single evoked EPSCs (Figure 4—figure supplement 1C). It also did not
19 affect the paired pulse ratio (PPR) (Figure 4C). Next, to assess quantal release parameters,
20 EPSCs were evoked in the presence of Sr²⁺ (in place of Ca²⁺), which induces asynchronous
21 quantal events after an initial synchronous release. Presynaptic *Rac1* deletion did not affect the
22 amplitude or frequency of quantal events (Figure 4D). Finally, a 20Hz high frequency stimulation
23 (HFS) train was used to probe synaptic vesicle recycling. Surprisingly, presynaptic *Rac1* deletion
24 reduced short-term synaptic depression in response to HFS (Figure 4E). There was no effect on
25 asynchronous release during the train, as measured by the steady-state basal current (Figure 4—
26 figure supplement 1A,D). Quantification of the cumulative EPSC curve showed that presynaptic

1 *Rac1* deletion increased the synaptic vesicle replenishment rate, without altering the release
2 probability or size of the readily releasable pool (RRP).

3 To determine whether this was a common function of *Rac1* across different kinds of
4 presynaptic terminals, we next tested the effects of *Rac1* deletion from presynaptic inhibitory
5 neurons. Inhibitory neurons were also present in our cultures, so we used light to evoke inhibitory
6 postsynaptic currents (IPSCs). Presynaptic *Rac1* deletion from inhibitory neurons caused similar
7 effects as in excitatory neurons. There were no effects on single evoked IPSCs (Figure 4—figure
8 supplement 1E), PPR (Figure 4F), quantal events (Figure 4G), or asynchronous release during
9 HFS trains (Figure 4—figure supplement 1B,F). However, there was a reduction in the short-term
10 depression of IPSCs due to an increase in the synaptic vesicle replenishment rate (Figure 4H).
11 Together, these data suggest that *Rac1* negatively regulates synaptic vesicle replenishment at
12 both excitatory and inhibitory synapses.

13
14 **Presynaptic Arp2/3 negatively regulates release probability and vesicle replenishment**
15 We next tested whether Arp2/3 has similar functions in regulating neurotransmitter release, since
16 we found components of the WAVE complex in the presynaptic cytomatrix that are known to
17 activate Arp2/3 downstream of *Rac1*. Using a similar mixed culture strategy, WT neurons were
18 sparsely seeded with *ArpC3^{f/f};Ai14* neurons expressing ChR2-EYFP (*ArpC3* encodes a critical
19 subunit of the Arp2/3 complex, and *Ai14* is a Cre reporter allele expressing tdTomato). Cre was
20 added to half the coverslips on DIV10, and then whole-patch clamp recordings were conducted
21 from non-fluorescent WT neurons on DIV16-18 (Figure 5A-B).

22 Presynaptic *ArpC3* deletion in excitatory neurons increased the amplitude, charge, and
23 decay time constants of single evoked EPSCs (Figure 5—figure supplement 1A). It also
24 decreased PPR across interstimulus intervals (Figure 5C), suggesting an increased release
25 probability. Presynaptic *ArpC3* deletion did not affect quantal amplitude, but it significantly
26 increased the frequency of quantal events (Figure 5D). Since *ArpC3* deletion did not affect the

1 density of synapses formed by axons (Figure 5—figure supplement 2), the frequency effect was
2 likely due to increased release probability rather than increased synapse number. Presynaptic
3 *ArpC3* deletion also reduced short-term synaptic depression in response to 20Hz light stimulation
4 (Figure 5E), with no significant change in asynchronous release during the train (Figure 5—figure
5 supplement 1B). Quantification of the cumulative EPSC showed that there was an increase in
6 both release probability and synaptic vesicle replenishment rate. The same phenotypes were
7 observed by *ArpC3* deletion in presynaptic inhibitory neurons (Figure 5F-H, Figure 5—figure
8 supplement 1C-D).

9 Importantly for these experiments, both *ArpC3* and *Rac1* WT and KO neurons were able
10 to consistently fire light-evoked action potentials at 20Hz (Figure 5—figure supplement 3A-B, F-
11 G). *ArpC3* deletion did not affect most intrinsic properties of neurons, but it did increase the width
12 of light-evoked action potentials (Figure 5—figure supplement 3H-I). It also increased the width
13 of action potentials from current injection (Figure 5—figure supplement 3J), suggesting there was
14 a change in intrinsic membrane properties. Because of this, it is possible that the effect of *ArpC3*
15 deletion on synaptic vesicle replenishment, as seen through increased current amplitudes at the
16 end of the 20Hz train, was actually caused by an increased action potential width or increased
17 release probability during each stimulation. However, since *Rac1* deletion increased synaptic
18 vesicle replenishment rate without affecting the action potential waveform (Figure 5—figure
19 supplement 3C-E) or release probability, this strongly suggests that these phenotypes are
20 separable, and that the *Rac1*-*Arp2/3* pathway functions to negatively regulate synaptic vesicle
21 replenishment at both excitatory and inhibitory synapses.

22

23 **Bidirectional control of presynaptic *Rac1* signaling modulates short-term depression**

24 We next set out to test whether acute modulation of *Rac1* signaling would similarly affect synaptic
25 vesicle replenishment. To accomplish this, we utilized photoactivatable *Rac1* (PA-*Rac1*)
26 constructs with dominant negative (DN) or constitutively active (CA) *Rac1* mutations (Wu et al.,

1 2009), along with additional mutations in the photoactivation domain to decrease background
2 activity in the dark (Hayashi-Takagi et al., 2015). PA-Rac1 constructs were co-expressed with the
3 red-shifted opsin ChrimsonR (Klapoetke et al., 2014) by fusing them with a P2A ribosome skip
4 sequence along with an HA epitope tag (Figure 6A). This allowed for dual-color, light-driven
5 control of both Rac1 signaling and neurotransmitter release in the same presynaptic neurons.
6 Cultured hippocampal neurons were sparsely seeded with neurons expressing the ChrimsonR-
7 tdTomato-P2A-HA-PA-Rac1 DN or CA constructs, or ChrimsonR-tdTomato alone as the WT
8 control. Both ChrimsonR and PA-Rac1 expressed readily in the same neurons.

9 On DIV14-16, whole-cell patch-clamp recordings were conducted from non-fluorescent
10 postsynaptic neurons in the dark (Figure 6B). A 20Hz train was evoked with red-shifted light to
11 obtain the baseline EPSC response. After waiting one minute for recovery, blue light was used to
12 stimulate PA-Rac1 into the light state, where it remained on the order of seconds to minutes
13 before decaying back to the dark, closed state (Wang et al., 2016). In the light state, PA-Rac1
14 was able to act in a DN or CA manner to modulate Rac1 signaling, and a second 20Hz train was
15 quickly evoked with red-shifted light to determine the effect. ChrimsonR, although red-shifted, is
16 known to still be activated by blue light, so light intensities were chosen to minimize crosstalk.
17 Any remaining crosstalk did not have an effect on WT control neurons, since the EPSC trains
18 before and after blue light stimulation were not significantly different (Figure 6C).

19 Acute inactivation of presynaptic Rac1 signaling phenocopied the genetic deletion;
20 presynaptic stimulation of PA-Rac1 DN resulted in reduced short-term synaptic depression due
21 to an increase in synaptic vesicle replenishment rate (Figure 6D, F-H). Conversely, acute
22 activation of Rac1 signaling drove the phenotype in the opposite direction. Presynaptic stimulation
23 of PA-Rac1 CA resulted in increased short-term synaptic depression due to a decrease in
24 synaptic vesicle replenishment rate (Figure 6E, F-H). Neither manipulation affected release
25 probability or RRP size. This bidirectional effect demonstrates that presynaptic Rac1 signaling

1 sets the precise level of synaptic depression through its negative regulation of vesicle
2 replenishment.

3

4 **Action potential trains activate Rac1 in presynaptic terminals**

5 To investigate the dynamics of presynaptic Rac1 signaling, and to determine whether its activity
6 is coupled to action potential trains, we used 2-photon Fluorescence Lifetime Imaging Microscopy
7 (2pFLIM) in conjunction with a FRET-based sensor of Rac1 activity (Hedrick et al., 2016;
8 Takahashi et al., 2015). AAVs encoding the FLIM donor (mEGFP-Rac1) and FLIM acceptor
9 (mCherry-Pak2 GTPase Binding Domain-mCherry) were microinjected into CA3 of organotypic
10 hippocampal slices on DIV10-13 (Figure 7A-B). After allowing at least 7 days for axonal
11 expression, 2pFLIM was conducted on presynaptic boutons in CA1. A stimulation electrode was
12 placed in the Schaffer collaterals at the CA3/CA1 border, and a recording electrode was placed
13 in CA1 to record evoked field potentials.

14 Upon electrical stimulation to induce action potential trains, Rac1 activity was significantly
15 elevated in presynaptic boutons (Figure 7C-E). Interestingly, this increase in activity was
16 persistent for a period of 60-90s, as measured by an increase in binding fraction. There was no
17 change in binding fraction in the presence of TTX (Figure 7F-G), confirming that presynaptic Rac1
18 activation is action potential-dependent. There was also no change in binding fraction in the
19 presence of Cd²⁺ (Figure 7H-I), demonstrating that presynaptic Rac1 activation requires calcium
20 influx through voltage-gated calcium channels. Post-hoc staining of slices revealed that nearly all
21 (~92%) of boutons from GFP+ mCherry+ axons contained synapsin (identified by local axonal
22 swelling, Figure 7—figure supplement 1), showing that these boutons tightly corresponded to
23 presynaptic terminals. In summary, these data demonstrate a high-frequency train of action
24 potentials leads to the activation of Rac1 in presynaptic terminals through calcium signaling. The
25 time scale of Rac1 activity observed, on the order of tens of seconds, further supports its
26 physiological role in presynaptic plasticity.

1 **DISCUSSION**

2 Here, we used iBiLD with a Synapsin probe to identify 200 proteins in cortical and hippocampal
3 presynaptic terminals *in vivo*, with significant enrichment of cytoskeletal-associated proteins. This
4 extends previous efforts to identify the proteome of isolated synaptic vesicles and active zone
5 fractions (Abul-Husn et al., 2009; Boyken et al., 2013; Burre et al., 2006; Coughenour et al., 2004;
6 Morciano et al., 2009; Morciano et al., 2005; Takamori et al., 2006; Weingarten et al., 2014;
7 Wilhelm et al., 2014). Synapsin is thought to reside in multiple presynaptic terminal compartments
8 (Guarnieri et al., 2015; Hilfiker et al., 1999), so the spread of activated biotin allowed for
9 identification of proteins throughout these regions. Thus, while our iBiLD approach identified
10 components of the synaptic vesicles and the active zone, it also allowed for a more holistic view
11 of presynaptic terminal space, including the presynaptic cytomatrix. Indeed, our analysis revealed
12 a large number of proteins (92/200) that were not previously known to localize to presynapses,
13 and these were mainly involved in actin cytoskeleton regulation, cell-cell adhesion, or other
14 signaling pathways. We also validated the presynaptic localization of 14 of these proteins using
15 an endogenous genomic tagging approach and an additional protein, Rac1, using electron
16 microscopy. These results provide a new framework from which to view the cellular biology of
17 presynaptic physiology and uncover a new actin-based mechanism of short-term plasticity. We
18 anticipate that the technological advances we report here, combining electrophysiology with
19 paired optogenetic control of both activity and signaling, will enable new insights into how these
20 proteins function to couple neuronal spiking with transmitter release.

21

22 **Actin remodeling as a new mechanism of short-term synaptic depression**

23 Although there is evidence suggesting the existence of active mechanisms to cause short-term
24 depression, the identity of these processes remains unresolved (Bellingham and Walmsley, 1999;
25 Byrne, 1982; Chen et al., 2004; Hsu et al., 1996; Kraushaar and Jonas, 2000; Parker, 1995;
26 Sullivan, 2007; Thomson and Bannister, 1999; Waldeck et al., 2000; Xu and Wu, 2005; Zucker

1 and Bruner, 1977). Our experiments using PA-Rac1 reveal that elevating or dampening levels of
2 presynaptic Rac1 activity inversely alters synaptic vesicle replenishment rates, bidirectionally
3 modulating the degree of short-term synaptic depression. Thus, regulation of Rac1 activity,
4 upstream of Arp2/3-dependent actin polymerization, appears to play a central role in connecting
5 activity to the tuning of vesicle replenishment, driving short-term depression. This pathway acts
6 similarly at both excitatory and inhibitory synapses, suggesting it is a fundamental aspect of
7 presynaptic function.

8 The mechanism by which this occurs likely does not depend on actin-synapsin interactions
9 since synapsin function differs across cell types (Gitler et al., 2004a; Patzke et al., 2019).
10 Signaling from Rac1 to Arp2/3 is known to nucleate branched actin filaments, which in presynaptic
11 terminals may act as a barrier to diffusion to restrict synaptic vesicle mobility (Rothman et al.,
12 2016). This would also make the active zone proteins Bassoon and Piccolo less available for
13 accelerating vesicle replenishment (Butola et al., 2017; Hallermann et al., 2010). Alternatively, the
14 Rac1-Arp2/3 pathway could negatively regulate synaptic vesicle endocytosis, although this would
15 be surprising since Arp2/3 is required for endocytosis in yeast (Moreau et al., 1997) and actin
16 itself is required for most, if not all forms of synaptic vesicle endocytosis in mammals (Soykan et
17 al., 2017; Watanabe et al., 2013; Wu et al., 2016). This could also potentially explain why previous
18 studies using actin depolymerizing agents did not detect an increase in synaptic vesicle
19 replenishment. These pharmacological agents would have impaired the actin required for
20 endocytosis (and thus synaptic vesicle replenishment), thereby masking forms of negative
21 regulation by other pools of actin such as those we report here.

22

23 **Insights into the structure and function of the presynaptic actin cytoskeleton**

24 Our systematic genetic analyses of Rac1 and Arp2/3 function provide new insights into the
25 regulation of the presynaptic actin cytoskeleton that could not be understood using
26 pharmacological approaches. Previously, it was thought that actin was not present within the

1 synaptic vesicle cluster but rather localized around its periphery and at endocytic zones, based
2 on studies using immunoelectron microscopy or cryoelectron tomography (Fernandez-
3 Busnadio et al., 2010; Pechstein and Shupliakov, 2010; Sikorski et al., 2007). However, our
4 finding that Rac1 and Arp2/3 are closely associated with vesicle membranes within the synaptic
5 vesicle cluster suggests this may need to be re-examined. Since this pathway appears to be
6 coupled to activity during short-term plasticity, we speculate that the actin filaments produced are
7 too transient to be detected by conventional methods.

8 We found that Arp2/3-dependent actin plays a role not only in synaptic vesicle
9 replenishment, but also in the negative regulation of release probability. Loss of Arp2/3 also led
10 to a change in intrinsic membrane properties, because action potential width was increased by
11 both ChR2 stimulation and current injection. Recently it was shown that Arp2/3-dependent actin
12 slows the inactivation rate of Kv3.3, a voltage-gated potassium channel that is important for action
13 potential repolarization (Zhang et al., 2016). Thus, it is plausible that loss of Arp2/3 could increase
14 action potential width via impaired repolarization. Increased width of the action potential would
15 also likely lead to an increase in calcium influx during repetitive stimulation, explaining the
16 increase in release probability we observed.

17 Nonetheless, our results highlight that there are at least two different pools of branched
18 actin in presynaptic terminals: a Rac1-Arp2/3-dependent pool in the synaptic vesicle cluster that
19 regulates vesicle replenishment and synaptic depression, and an Arp2/3-dependent pool that
20 regulates release probability independently of Rac1. As discussed earlier, there may also be a
21 third pool of actin involved in synaptic vesicle endocytosis that is not dependent on Rac1 or
22 Arp2/3. Multiple pools of actin assemblies existing in subdomains of presynaptic terminals is
23 consistent with the diversity of actin regulators identified within the Synapsin iBiID proteome.
24 Based on the identity of these proteins, it is now possible to use similar genetic analyses to
25 delineate the presynaptic functions of actin severing proteins, bundling proteins, crosslinking
26 proteins, and others during both baseline synaptic transmission and synaptic plasticity. It is

1 particularly intriguing that presynaptic boutons enlarge after long-term potentiation in a form of
2 structural plasticity (Chereau et al., 2017). We propose this new form of structural plasticity will
3 be informed by the highly diverse nature of actin regulatory proteins enriched in presynaptic
4 terminals, like that of the postsynapse. In support of this idea, actin remodeling was recently
5 shown to be involved in a form of long-term depression at GABAergic terminals that is mediated
6 by retrograde cannabinoid signaling (Monday et al., 2020).

7

8 **Rac1 signaling in presynaptic terminals and implications for neurological diseases**

9 Postsynaptic Rho GTPase signaling is clearly important for dendritic spine development,
10 maintenance, and plasticity (Hedrick and Yasuda, 2017; Tolias et al., 2011), but here we show
11 that Rac1 is also abundant in presynaptic terminals, where it is involved in the essential processes
12 of synaptic vesicle replenishment and short-term synaptic plasticity. We found that presynaptic
13 Rac1 is transiently activated by calcium influx during HFS, but what is the upstream calcium
14 sensor? It is tempting to speculate the involvement of CaMKII, since CaMKII is present in
15 presynaptic terminals (Ding et al., 2013) and interacts with L-type voltage-gated calcium channels
16 (Abiria and Colbran, 2010), and we detected CaMKII β in the Synapsin iBiLD proteome.
17 Interestingly, the Rac1 GEF identified in our proteomics, Trio, is a likely CaMKII substrate
18 important for plasticity at postsynaptic sites (Herring and Nicoll, 2016), and thus may also
19 modulate Rac1 presynaptically. The conservation of Rac1 plasticity signaling at both the pre- and
20 postsynapse is a surprising finding given the different mechanisms tuning efficacy between these
21 sites. This highlights the concept that synaptic actin remodeling is a convergent mechanism for
22 coupling activity to changes in the efficacy of neurotransmission regardless of synaptic locale.

23 Defects in Rho GTPases signaling pathways are also heavily implicated in
24 neurodevelopmental disorders (Spence and Soderling, 2015; Yan et al., 2016), including
25 missense mutations in *Rac1* that cause intellectual disability (Lelieveld et al., 2016; Reijnders et
26 al., 2017) and an Arp2/3 mutation associated with schizophrenia (Gulsuner et al., 2020). Studies

1 investigating the neural basis for these cognitive impairments, including our own, have focused
2 mainly on deficits in dendritic spine development and plasticity with only limited assessments of
3 presynaptic function (Kim et al., 2013; Kim et al., 2015; Soderling et al., 2007; Tian et al., 2018;
4 Volk et al., 2015; Zoghbi and Bear, 2012). Our results compel a re-evaluation to include the
5 potential presynaptic phenotypes in these diseases.

6 Together, this study sheds light on the previously uncharacterized and conserved
7 regulation of presynaptic actin, and creates a new framework for understanding how presynaptic
8 structure and strength may be altered during learning and disease. The Rac1-Arp2/3 pathway is
9 a common regulator of plasticity at both sides of the synapse, and many other signaling pathways
10 that are thought to be confined to postsynaptic sites may also be engaged presynaptically. The
11 experimental strategies and resources that we developed here open numerous avenues of future
12 research, and bring into focus the exquisite, complex signaling that occurs in presynaptic
13 terminals.

14

15

16 **ACKNOWLEDGEMENTS**

17 We thank George Augustine for generously providing the GFP-Synapsin1a construct. We also
18 thank members of the Yasuda lab for 2pFLIM support, in particular David Kloetzer for coordinating
19 visits to Florida, Jaime Richards for preparing organotypic slices, and Paula Parra-Bueno for
20 extensive help setting up imaging experiments. We also thank members of the Soderling lab for
21 helpful discussion and critical reviews of the manuscript. This work was supported by an NIH
22 grant (R01MH103374) to S.H.S.; a European Union and European Social Fund grant (EFOP-
23 3.6.2-16-2017-0008), an NKFIH grant (KKP126998), and a János Bolyai Research Fellowship of
24 the Hungarian Academy of Sciences to B.R.; and an NSF Graduate Research Fellowship (DGE-
25 1644868) to S.D.

26

1 **AUTHOR CONTRIBUTIONS**

2 Conceptualization, S.D. and S.H.S.; Methodology, S.D., B.R., Y.G., E.J.S., R.Y., and S.H.S.;
3 Investigation, S.D., B.R., W.E.B., and E.J.S.; Resources, B.R., E.J.S., R.Y., and S.H.S.; Writing
4 – Original Draft, S.D. and S.H.S.; Writing – Review and Editing, S.D., B.R., W.E.B., E.J.S., Y.G.,
5 R.Y., and S.H.S.; Visualization, S.D.; Supervision, R.Y. and S.H.S.; Funding Acquisition, S.D.,
6 B.R., and S.H.S.

7

8 **COMPETING INTERESTS**

9 S.H.S. and Y.G. have filed a patent application related to the HiUGE technology, and the IP has
10 been licensed to CasTag Biosciences. S.H.S. is a founder of CasTag Biosciences. R.Y. is a
11 founder and shareholder of Florida Lifetime Imaging LLC, a company that helps people set up
12 FLIM.

13

14 **MATERIALS AND METHODS**

15 **Animals**

16 C57BL/6J mice (stock #000664) and *H11Cas9* mice (stock #028239) were purchased from The
17 Jackson Laboratory. *Rac1^{fl/fl}* and *ArpC3^{fl/fl};Ai14* mice have been described previously (Chrostek et
18 al., 2006; Kim et al., 2015). Mice of both sexes were used for all experiments. All mice were
19 housed (two to five mice per cage) in facilities provided by Duke University's Division of Laboratory
20 Animal Resources or Max Planck Florida Institute for Neuroscience's Animal Resource Center.
21 All experimental procedures were conducted with protocols approved by the Institutional Animal
22 Care and Use Committee at Duke University and Max Planck Florida Institute for Neuroscience,
23 in accordance with National Institutes of Health guidelines.

24

25 **Primary neuronal culture**

1 Primary hippocampal neuron cultures were prepared from mice by isolating hippocampi from P0-
2 P1 pups of both sexes under a dissection microscope. For mixed cultures, hippocampi were
3 stored in Hibernate-A medium (Gibco) supplemented with 2% B-27 (Gibco) for 1-2 days at 4°C
4 until the second litter was born. Then, hippocampi were incubated with papain (Worthington) at
5 37°C for 18 min, dissociated by gentle trituration, and plated onto 18mm glass coverslips treated
6 with poly-L-lysine (Sigma). Electroporations were performed immediately before plating neurons
7 using a Nucleofector 2b Device (Lonza) and the Mouse Neuron Nucleofector Kit (Lonza), following
8 the manufacturer's instructions. Neurons were maintained in Neurobasal A medium
9 supplemented with 2% B-27 and 1% GlutaMAX (Gibco) in an incubator at 37°C and 5% CO₂.
10 After 5 days in culture, 5µM cytosine arabinoside (Sigma) was added to inhibit glial division.
11 Subsequently, medium was half exchanged every 3-4 days. For PA-Rac1 experiments, cultures
12 were wrapped in foil to minimize background activity due to ambient light.

13

14 **Organotypic hippocampal slice culture**

15 Organotypic hippocampal slices were prepared from C57BL/6J mice. Briefly, P3-P8 pups of both
16 sexes were euthanized by deep anesthesia with isoflurane followed by decapitation. Hippocampi
17 were dissected from the brain, cut into coronal slices (350µm thickness) using a McIlwain tissue
18 chopper (Ted Pella), and plated on Millicell hydrophilic PTFE membranes (Millipore). Slices were
19 maintained in culture medium containing MEM medium (Life Technologies), 20% horse serum,
20 1mM L-glutamine, 1mM CaCl₂, 2mM MgSO₄, 12.9mM D-glucose, 5.2mM NaHCO₃, 30mM
21 HEPES, 0.075% ascorbic acid, 1µg/ml insulin, and 1% penicillin-streptomycin. Medium was fully
22 exchanged every 2-3 days.

23

24 **Plasmids**

25 pCMV-EGFP-Synapsin1a (rat) was generously provided by George Augustine. pAAV-hSyn-
26 hChR2 (H134R)-EYFP (Addgene plasmid #26973) was a gift from Karl Deisseroth. pCAG-

1 ChrimsonR-tdTomato (Addgene plasmid #59169) was a gift from Edward Boyden. pCMV-
2 mEGFP-Rac1 (Addgene plasmid #83950) and pCAG-mCherry-PBD2-mCherry (Addgene
3 plasmid #83951) were a gift from Ryohei Yasuda. pAAV-hSyn-BioID2-HA, pAAV-hSyn-BioID2-
4 Linker-BioID2-HA, pCAG-GFP, pAAV-hSyn-Cre, and pBetaActin-tdTomato were previously
5 generated in the Soderling lab.

6 pAAV-hSyn-BioID2-Linker-Synapsin1a-HA was generated by PCR of Synapsin1a from
7 pCMV-EGFP-Synapsin1a (primers FWD: 5'GGTGTCTAAGGAATTCAACTACCTGCGGCGC
8 CGC3' and REV: 5'AAGGGTAAGCGCTAGCGTCGGAGAAGAGGGCTGGC3') and insertion into
9 the EcoRI/NheI sites of pAAV-hSyn-BioID2-Linker-BioID2-HA using In-Fusion cloning (TaKaRa).
10 pCAG-ChrimsonR-tdTomato-P2A-HA-PA Rac1 (DN) and pCAG-ChrimsonR-tdTomato-P2A-HA-
11 PA Rac1 (CA) were generated by synthesis of BioXp tiles (SGI-DNA) containing the C-terminus
12 of tdTomato fused to P2A-HA-PA Rac1. PA Rac1 sequences (Wu et al., 2009) contained L514K
13 and L531E mutations in the PA domain to reduce background activity in the dark (Hayashi-Takagi
14 et al., 2015) as well as DN (T17N) or CA (Q61L, E91H, and N92H) mutations in Rac1. DNA tiles
15 were inserted into the NotI/BsmBI sites of pCAG-ChrimsonR-tdTomato using In-Fusion cloning.
16 pAAV-hSyn-mEGFP-Rac1 was generated by PCR of mEGFP-Rac1 from pCMV-mEGFP-Rac1
17 (primers FWD: 5'ACCGGC TAGAGTCGACACCATGGTGAGCAAGGG3' and REV:
18 5'TAAGCGAATTGGATCCTTACA ACAGCAGG3') and insertion into the Sall/BamHI sites of
19 pAAV-hSyn-BioID2-Linker-BioID2-HA using In-Fusion cloning. pAAV-hSyn-mCherry-PBD2-
20 mCherry was generated by PCR of mCherry-PBD2-mCherry from pCAG-mCherry-PBD2-
21 mCherry (primers FWD: 5'ACCGGCTA GAGTCGACGGTCGCCACCATGGTGA3' and REV:
22 5'TAAGCGAATTGGATCCGGCG CTTACTTGTAA3') and insertion into the Sall/BamHI sites
23 of pAAV-hSyn-BioID2-Linker-BioID2-HA using In-Fusion cloning. For generation of HiUGE
24 plasmids, see the “HiUGE tagging of candidate genes” section below. All constructs generated in
25 the Soderling lab were validated by sequencing (Eton Bioscience).

26

1 **AAV production and purification**

2 HEK293T cells (ATCC CRL-11268) were obtained from the Duke Cell Culture Facility, which tests
3 for mycoplasma contamination. Cells were maintained in culture medium containing DMEM
4 medium (Gibco), 10% fetal bovine serum (Sigma F4135), and 1% penicillin-streptomycin in an
5 incubator at 37°C and 5% CO₂. Large-scale, high-titer viruses were produced in the Soderling lab
6 using iodixanol (OptiPrep; Sigma) gradients as previously described (Uezu et al., 2016). Briefly,
7 1.5x10⁷ HEK293T cells were seeded onto each of six 15cm dishes per virus on the day before
8 transfection. Cells were transfected using polyethylenimine (PEI MAX; Polysciences 24765-1)
9 with 30µg helper plasmid pAdΔF6, 15µg serotype plasmid AAV2/9, and 15µg pAAV plasmid
10 carrying the transgene. Cells were harvested 72 hours after transfection, resuspended in cell lysis
11 buffer (15mM NaCl, 5mM Tris-HCl, pH 8.5), and subjected to 3 freeze-thaw cycles. The cell lysate
12 was treated with 50U/ml benzonase, applied over an iodixanol density gradient (15%, 25%, 40%,
13 and 60%), and ultracentrifuged for 2 hours at 60,000rpm in a Beckman Ti-70 rotor. The AAV-
14 containing fraction was collected and concentrated by repeated washes with sterile PBS through
15 a 100kDa filter (Amicon). The final volume of ~200µl was aliquoted and stored at -80°C until use.
16 AAVs were titered using quantitative real-time PCR with primers against the ITR element (FWD:
17 5'GGAACCCCTAGTGATGGAGTT3' and REV: 5'CGGCCTCAGTGAGCGA3') (Aurnhammer et
18 al., 2012).

19 Small-scale viruses were produced in the Soderling lab as previously described (Gao et
20 al., 2019). Briefly, 2.5x10⁵ HEK293T cells were seeded onto one well in a 12-well plate per virus
21 on the day before transfection. Cells in each well were transfected using polyethylenimine (PEI
22 MAX; Polysciences 24765-1) with 0.8µg helper plasmid pAdΔF6, 0.4µg serotype plasmid AAV2/1,
23 and 0.4µg pAAV plasmid carrying the transgene. Media was then changed to glutamine-free
24 DMEM (ThermoFisher 11960044) supplemented with 1% GlutaMAX (Gibco) and 10% FBS
25 (Sigma F4135). The AAV-containing supernatant medium was collected 72 hours after

1 transfection and filtered through a 0.45 μ m Spin-X centrifuge tube filter (MilliporeSigma CLS8162).
2 Small-scale viruses were stored at 4°C for up to one month until use.

3

4 **Immunocytochemistry and immunohistochemistry**

5 For immunocytochemistry, cultured neurons were fixed at indicated timepoints with 4% PFA, 4%
6 sucrose in PBS for 15min at 4°C. They were permeabilized with 0.25% Triton X-100 in PBS for
7 7min at room temperature and then blocked with blocking buffer containing 5% normal goat
8 serum, 0.2% Triton X-100 in PBS for 1 hour at room temperature. Primary antibodies were diluted
9 in blocking buffer and applied for 2 hours at room temperature. Coverslips were washed three
10 times with 0.1% Triton X-100 in PBS for 5min at room temperature. Fluorescent secondary
11 antibodies were diluted in blocking buffer and applied for 1 hour at room temperature, followed by
12 counterstaining with DAPI. The coverslips were washed again and then mounted onto glass slides
13 with FluorSave Reagent (Millipore 345789).

14 For immunohistochemistry, organotypic slices were cut at indicated timepoints from
15 membranes with a scalpel and treated as free-floating sections. They were fixed with 4% PFA in
16 PBS for 30min at 4°C and permeabilized with 1% Triton X-100 in PBS overnight at 4°C. They
17 were then blocked in blocking buffer containing 5% normal goat serum, 0.1% Triton X-100, 0.03%
18 NaNa₃ in PBS for 6.5 hours at room temperature. Primary antibodies were diluted in blocking
19 buffer and applied for 2 days at 4°C. Slices were washed three times with 0.2% Triton X-100 in
20 PBS for 1 hour at room temperature. Fluorescent secondary antibodies were diluted in blocking
21 buffer and applied overnight at 4°C, followed by counterstaining with DAPI. Slices were washed
22 again and then mounted onto glass slides with FluorSave Reagent (Millipore 345789).

23 The following antibodies were used, with dilutions in blocking buffer indicated in
24 parentheses. Primary antibodies: rat anti-HA (Roche 11867431001, 1:500), mouse anti-HA
25 (Biolegend 901501, 1:500), mouse anti-V5 (ThermoFisher R960-25, 1:500), mouse anti-Myc
26 (Santa Cruz sc-40, 1:250), mouse anti-bassoon (Abcam ab82958, 1:400), chicken anti-GFP

1 (Abcam ab13970, 1:500), rabbit anti-RFP (Rockland 600-401-379, 1:500), rat anti-RFP
2 (Chromotek 5F8, 1:500), rabbit anti-Homer1 (Synaptic Systems 160002, 1:500), guinea pig anti-
3 Synapsin1 (Synaptic Systems 106104, 1:500), guinea pig anti-Vgat (Synaptic Systems 131004,
4 1:500), mouse anti-Gephyrin (Synaptic Systems 147011, 1:300), and mouse anti-Rac1 (BD
5 Biosciences 610650, 1:250). Fluorophore-conjugated secondary antibodies: goat anti-chicken
6 Alexa Fluor 488 (ThermoFisher A-11039, 1:500), goat anti-guinea pig Alexa Fluor 488
7 (ThermoFisher A-11073, 1:500), goat anti-guinea pig Alexa Fluor 647 (ThermoFisher A-21450,
8 1:500), goat anti-mouse Alexa Fluor 488 (ThermoFisher A-11029, 1:500), goat anti-mouse Alexa
9 Fluor Plus 647 (ThermoFisher A-32728, 1:500), goat anti-rat Alexa Fluor 488 (ThermoFisher A-
10 11006, 1:500), goat anti-rat Alexa Fluor 568 (ThermoFisher A-11077, 1:500), goat anti-rat Alexa
11 Fluor 647 (ThermoFisher A-21247, 1:500), goat anti-rabbit Alexa Fluor 568 (ThermoFisher A-
12 11036, 1:500), donkey anti-rabbit Alexa Fluor 647 (ThermoFisher A-31573, 1:500), and
13 streptavidin Alexa Fluor 555 (ThermoFisher S-32355, 1:500).

14

15 **Validation of BiOID probes**

16 Hippocampal neuron cultures were prepared from C57BL/6J mice as described earlier. 1.5×10^6
17 neurons were electroporated with 1 μ g pAAV-hSyn-BiOID2-Linker-Synapsin1a-HA, pAAV-hSyn-
18 BiOID2-HA, or pCAG-GFP. 1.75×10^5 WT and 1.65×10^4 electroporated neurons were plated per
19 well in a 24-well plate. Biotin (Sigma) was added to the media on DIV13 at a final concentration
20 of 100 μ M, and neurons were fixed and stained on DIV14. Coverslips were imaged on a Zeiss
21 LSM 710 inverted confocal microscope. All images were acquired by z-series (0.13 μ m intervals)
22 using a 63x/1.4 numerical aperture (NA) oil-immersion objective. Maximum intensity projections
23 from z-stacks along axons were analyzed in FIJI / ImageJ (Schindelin et al., 2012; Schneider et
24 al., 2012). Intensity for HA (or GFP), streptavidin, and Bassoon was measured in both presynaptic
25 terminals and the neighboring axonal shaft in small circular regions of interest (0.25 μ m diameter).
26 Presynaptic terminals were identified as bouton-like swellings that colocalized with Bassoon.

1 Presynaptic enrichment was calculated by dividing the background-subtracted intensity in
2 presynaptic terminals by the background-subtracted intensity in the corresponding axon.
3 Localization values were then normalized to the average presynaptic enrichment of GFP, and
4 biotinylation values were normalized to the average presynaptic enrichment of streptavidin in
5 neurons expressing BiolD2. Values for each axon were the average of at least four presynaptic
6 terminals. All images were analyzed blinded to the condition. All probes were tested in at least
7 three independent cultures.

8

9 **Synapsin *in vivo* BiolD (iBiolD)**

10 P0-P1 C57BL/6J pups were anesthetized by hypothermia and intracranially injected with viruses
11 as described previously (Uezu et al., 2016). AAV2/9-hSyn-BiolD2-HA or AAV2/9-hSyn-BiolD2-
12 Linker-Synapsin1a-HA were bilaterally injected into the brain with a 10 μ l Hamilton syringe (titer
13 $\sim 3 \times 10^{13}$ GC/ml; 0.8 μ l per hemisphere), directed predominately into the hippocampus and cortex.
14 Pups recovered on home cage bedding under a heat lamp and were returned to the dam together
15 as a litter. From P21-P27, pups received daily subcutaneous injections of 24mg/kg biotin to
16 increase biotinylation efficiency. At P28, brains were harvested from mice after deep isoflurane
17 anesthesia. Cortices and hippocampi were quickly dissected, flash frozen in liquid nitrogen, and
18 stored in a liquid nitrogen tank until ready for biotinylated protein purification.

19 A total of three independent purifications were performed. For each round of purification,
20 the cortices and hippocampi of five mice were used per probe. First, synaptosomes were prepared
21 from each mouse sample using a sucrose gradient. Frozen brain tissue was dounce homogenized
22 in homogenization buffer (20mM sucrose, 5mM HEPES, 1mM EGTA, pH 7.4). Homogenate was
23 centrifuged for 10min at 1,000 x g at 4°C. The supernatant (S1; crude cytosolic fraction) was
24 transferred to a new tube and centrifuged for 20min at 12,000 x g at 4°C. The pellet (P2; crude
25 synaptosomal fraction) was resuspended in resuspension buffer (320mM sucrose, 5mM Tris/Cl,
26 pH 8.1), applied over a sucrose density gradient (1.2M, 1M, and 0.8M), and ultracentrifuged for 2

1 hours at 85,000 x g at 4°C in a Beckman SW 41 Ti rotor. All solutions contained a cocktail of
2 protease and phosphatase inhibitors with final concentrations of 2µg/ml leupeptin, 2µg/ml
3 pepstatin A, 1mM AEBSF, and 143µM sodium orthovanadate.

4 The purified synaptosomal fraction was carefully collected, and all synaptosomes
5 expressing the same BiOID probe were combined. Synaptosomes were lysed in RIPA buffer with
6 sonication, followed by the addition of SDS to a final concentration of 1%. The lysate was then
7 boiled for 5min by incubation in a 100°C water bath. After cooling on ice, samples were pre-
8 cleared by the addition of Protein A agarose resin (Pierce) and rotation for 30min at 4°C. Beads
9 were pelleted by centrifugation for 1min at 3,000 x g at 4°C, and the supernatant was collected
10 with a 30g needle. To pulldown biotinylated proteins, high capacity NeutrAvidin agarose resin
11 (Pierce) was added to the pre-cleared supernatant and rotated overnight for 14.5 hours at 4°C.
12 Beads were pelleted by centrifugation for 1min at 3,000 x g at 4°C, and the supernatant was
13 carefully removed using a 30g needle. Beads were extensively washed 2 times with 2% SDS, 2
14 times with 1% Triton X-100/1% deoxycholate/25mM LiCl, 2 times with 1M NaCl, and 5 times with
15 50mM ammonium bicarbonate in mass spectrometry-grade water (Honeywell). Biotinylated
16 proteins were eluted into elution buffer (5mM biotin, 4% SDS, 20% glycerol, 10% beta-
17 mercaptoethanol, 125mM Tris, pH 6.8 in mass spectrometry-grade water) by incubation for 5min
18 in a 95°C heat block with periodic vortexing. Beads were pelleted by centrifugation for 1min @
19 3,000 x g. The supernatant with eluted biotinylated proteins was carefully transferred to a low-
20 protein-binding tube (Eppendorf) with a 30g needle and stored at -80°C.

21

22 Quantitative mass spectrometry

23 The Duke Proteomics Core Facility received six eluents from streptavidin resins. Samples were
24 supplemented with 10µl 10% SDS, then reduced with 10mM dithiolthreitol for 30min at 80°C,
25 alkylated with 20mM iodoacetamide for 45min at room temperature, and supplemented with a
26 final concentration of 1.2% phosphoric acid and 384µl of S-Trap (Protifi) binding buffer (90%

1 MeOH/100mM TEAB). Proteins were trapped on the S-Trap, digested using 20ng/μl sequencing
2 grade trypsin (Promega) for 1 hour at 47°C, and eluted using 50mM TEAB, followed by 0.2% FA,
3 and lastly using 50% ACN/0.2% FA. All samples were then lyophilized to dryness and
4 resuspended in 12μl 1%TFA/2% acetonitrile containing 25 fmol/μl yeast alcohol dehydrogenase
5 (ADH_YEAST). From each sample, 3μl was removed to create a QC Pool sample which was run
6 periodically throughout the acquisition period.

7 Quantitative ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-
8 MS/MS) was performed on 2.4μl (~20%) of each sample, using a nanoAcquity UPLC system
9 (Waters Corp) coupled to a Thermo Orbitrap Fusion Lumos high resolution accurate mass tandem
10 mass spectrometer (Thermo) via a nanoelectrospray ionization source. Briefly, the sample was
11 first trapped on a Symmetry C18 20mm × 180μm trapping column (5μl/min at 99.9/0.1 v/v
12 water/acetonitrile), after which the analytical separation was performed using a 1.8μm Acquity
13 HSS T3 C18 75μm × 250mm column (Waters Corp) with a 90-min linear gradient of 5 to 40%
14 acetonitrile with 0.1% formic acid at a flow rate of 400 nanoliters/minute (nl/min) with a column
15 temperature of 55°C. Data collection on the Lumos mass spectrometer was performed in a data-
16 dependent acquisition (DDA) mode of acquisition with a r=120,000 (@ m/z 200) full MS scan from
17 m/z 375 – 1500 with a target AGC value of 2e5 ions followed by 30 MS/MS scans at r=15,000 (@
18 m/z 200) at a target AGC value of 5e4 ions and 45ms. A 20s dynamic exclusion was employed
19 to increase depth of coverage. The total analysis cycle time for each sample injection was
20 approximately 2 hours. The QC Pool was analyzed at the beginning, after every 3rd sample, and
21 end of the sample set (3 times total). Individual samples were analyzed in a random order.

22 Following 9 total UPLC-MS/MS analyses (excluding conditioning runs, but including 3
23 replicate QC injections), data was imported into Proteome Discoverer 2.2 (Thermo Scientific Inc.),
24 and analyses were aligned based on the accurate mass and retention time of detected ions
25 (“features”) using Minora Feature Detector algorithm in Proteome Discoverer. Relative peptide
26 abundance was calculated based on area-under-the-curve (AUC) of the selected ion

1 chromatograms of the aligned features across all runs. The MS/MS data was searched against
2 the SwissProt *M. musculus* database (downloaded in August 2017) with additional proteins,
3 including yeast ADH1, bovine serum albumin, as well as an equal number of reversed-sequence
4 “decoys” for false discovery rate determination. Mascot Distiller and Mascot Server (v2.5, Matrix
5 Sciences) were utilized to produce fragment ion spectra and to perform the database searches.
6 Precursor and product mass tolerances were set to 5ppm and 0.8Da, respectively, with full trypsin
7 specificity and up to two missed cleavages. Database search parameters included fixed
8 modification on Cys (carbamidomethyl) and variable modifications on Meth (oxidation) and Asn
9 and Gln (deamidation). The overall dataset had 65,397 peptide spectral matches. Additionally,
10 286,563 MS/MS spectra were acquired for peptide sequencing by database searching. The data
11 was annotated at a 1% peptide false discovery rate, resulting in identification of 5,406 peptides
12 and 518 proteins.

13

14 **Differential protein expression and network analysis of proteomics data**

15 Protein expression levels were intensity-scaled to the endogenously biotinylated proteins,
16 pyruvate carboxylase (Q05920) and propionyl-CoA carboxylase (Q91ZA3). Imputation of missing
17 values was performed after normalization (Karpievitch et al., 2012) using the MinDet method
18 (Lazar et al., 2016). Missing values were replaced by the minimum value observed in each
19 sample. For proteins found exclusively in BiOID2-Synapsin but only in 2 out of the 3 replicates,
20 the missing value was replaced by the average of the 2 replicates. To identify proteins specific to
21 BiOID2-Synapsin compared to BiOID2, two-tailed t-tests were performed on log2-transformed
22 protein intensities. P-values were corrected for multiple hypothesis testing using the FDR method.
23 Fold changes were calculated by dividing the average protein intensity in BiOID2-Synapsin by that
24 in BiOID2. To generate a high confidence list of hits, carboxylases, keratins, and other
25 contaminants were removed as likely artifacts of overexpression or endogenously biotinylated
26 proteins. These included proteins known to reside in other subcellular localizations such as the

1 Golgi, endoplasmic reticulum, lysosome, nucleus, proteasome, and mitochondria, and those
2 identified by PSD95-BirA (Uezu et al., 2016). To consider something specific for BiOID2-Synapsin,
3 we required at least 2 peptides to be identified in at least 2 replicates, with fold change greater
4 than 32.5 over the negative control (BiOID2) and adjusted p-value < 0.05.

5 Network figures were created using Cytoscape (v3.6) with node labels corresponding to
6 the gene name for the identified protein. A non-redundant list of protein-protein interactions was
7 assembled from the HitPredict database using the R package getPPIs
8 (<http://github.com/twesleyb/getPPIs>), with additional hand annotation based on literature review.
9 In all networks, node size is proportional to fold enrichment over BiOID2 alone, and node shading
10 corresponds to adjusted p-value. Clustergrams were based on gene set enrichment analysis
11 using DAVID (<https://david.ncifcrf.gov>) (Dennis et al., 2003), as well as manual inspection based
12 on UniProt database annotation and literature review. Neurological disease annotations were
13 compiled based on UniProt, OMIM, and SFARI databases.

14

15 **HiUGE tagging of candidate genes**

16 23 candidate genes were selected from the Synapsin iBiOID proteome that had not previously
17 been shown to localize to presynaptic terminals. These encoded for mostly actin regulators and
18 2 proteins of unknown function (see Table S1). Known protein isoforms, domains, binding regions,
19 and localization signals were carefully assessed to minimize disruptions to protein function or
20 localization by the insertion of a tag, and genes were generally tagged as close to the stop codon
21 as reasonable. Mouse exon sequences were retrieved from the Ensembl genome browser
22 (<http://useast.ensembl.org>) (Zerbino et al., 2018), and PAM sites (NGG) in these regions were
23 identified using the CRISPOR guide RNA selection tool (<http://crispor.tefor.net>) (Haeussler et al.,
24 2016). Target sequences were chosen for each gene based on specificity, predicted efficiency,
25 and proximity to the stop codon.

1 Candidate guide RNAs were cloned as previously described (Gao et al., 2019). Briefly,
2 oligos containing the 20bp target sequences with Sapl overhangs were annealed. For some of
3 the guides, an extra G was added at the start of the target sequence to enhance transcription
4 under the U6 promotor. A combined restriction digestion and ligation reaction was performed to
5 insert the annealed oligos behind the U6 promoter of the gene-specific GS-gRNA vector using
6 Sapl (NEB) and T4 DNA ligase (NEB). Correct integration of all oligos was confirmed by
7 sequencing (Eton Bioscience). The 2xHA-V5-Myc HiUGE donor vector was created in all three
8 open reading frames (ORFs) by inserting the payload sequence into the XbaI/PmlI sites of the
9 HiUGE donor vector. The payload harbors a tandem array of six epitope tags (2x HA-, V5-, and
10 Myc-tag), each separated by a spacing linker A(EAAAK)₂A (Arai et al., 2001; Zhao et al., 2008).
11 This design enables binding access of different epitope tag antibodies for flexible and synergistic
12 labeling of modified endogenous proteins. Small-scale AAVs were prepared as described earlier
13 for all candidate guides, 2xHA-V5-Myc HiUGE donors in the corresponding ORFs, and pAAV-
14 Ef1a-GFP (as control).

15 To tag candidate genes, hippocampal neuron cultures were prepared from *H11Cas9* mice
16 as described earlier. Neurons were plated densely, with dissociated cells from the hippocampi of
17 4 animals spread evenly across each 24-well plate. Small-scale AAVs (200ul each of guide and
18 donor, or Ef1a-GFP alone) were added to each well on DIV0. As an additional negative control,
19 neurons were also infected with only the donor AAV. Neurons were fixed and stained on DIV12-
20 14 and then imaged on a Leica TCS SP8 inverted confocal microscope. Coverslips were first
21 comprehensively viewed under the eyepieces to assess labeling efficiency, signal strength, and
22 localization consistency. Candidate guides were not imaged further if there were no positive cells
23 across 3 coverslips, or if the signal in positive cells was barely detectable above background
24 fluorescence (see Table S1).

25 Images of whole neurons were acquired using a 20x/0.75 NA multi-immersion objective,
26 and all images of axons were acquired by z-series (0.13μm intervals) using a 40x/1.3 NA oil-

1 immersion objective. The sparse labeling of cells aided in the identification of axons, which were
2 located as thin protrusions extending away from cell bodies for long distances with local swellings
3 characteristic of presynaptic boutons. Maximum intensity projections from z-stacks along axons
4 were analyzed in FIJI / ImageJ. Intensity for HA-V5-Myc (or GFP) and Synapsin1 was measured
5 in both presynaptic terminals and the neighboring axonal shaft in small circular regions of interest
6 (0.25 μ m diameter). Presynaptic terminals were identified as bouton-like swellings that colocalized
7 with Synapsin1. Presynaptic enrichment was calculated by dividing the background-subtracted
8 intensity in presynaptic terminals by the background-subtracted intensity in the corresponding
9 axon. Enrichment values were then normalized to the average presynaptic enrichment of GFP.
10 Values for each axon were the average of at least three presynaptic terminals, and axons from at
11 least 5 neurons per guide were analyzed. All images were analyzed blinded to the condition. All
12 guides were tested across four independent cultures. For display purposes, Synapsin1 puncta
13 within axons were obtained by masking Synapsin1 fluorescence with a thresholded image of
14 axonal HA-V5-Myc (or GFP). This was then merged with the original HA-V5-Myc (or GFP) image.

15

16 **Overrepresentation analysis for comparison of Arp2/3 and formin regulation**

17 The enrichment of proteins involved in Arp2/3 or formin regulation in the Synapsin iBiLD network
18 was calculated using overrepresentation analysis (Boyle et al., 2004; Rivals et al., 2007) and
19 hand-annotation based on literature review. The 31 genes involved in Arp2/3 regulation were:
20 *ActR2, ActR3, ArpC1, ArpC2, ArpC3, ArpC4, ArpC5, Ctnn, Ctnnbp2, Ctnnbp2nl, Cyfip1, Cyfip2,*
21 *Abi1, Abi2, Brk1, Nckap1, Wasf1, Wasl, Wipf1, Wipf2, Wipf3, Wash1, WashC2, WashC3,*
22 *WashC4, WashC5, Rac1, Cdc42, Abi1, Abi2, and Srgap3.* The 36 genes involved in formin
23 regulation were: *Diaph1, Diaph2, Diaph3, Daam1, Daam2, Fmn1, Fmn2, Fmn3, Inf2, Fhdc1,*
24 *Fhod1, Fhod3, Grid2ip, Fmn1, Fmn2, RhoA, RhoB, RhoC, RhoD, RhoF, Rac1, Cdc42, Fnbp1,*
25 *Fnbp1l, Rock1, Rock2, Dvl1, Dvl2, Dvl3, Baiap2, Pax6, Nckipsd, Src, Spire1, Srgap2, and Iqgap1.*
26 The enrichments of these genes in the Synapsin iBiLD network was compared against a

1 background of the entire mouse genome using a statistical test based on the hypergeometric
2 distribution. A p-value, corresponding to the probability of obtaining by chance a number of
3 annotated proteins equal or greater than the observed, was calculated using a custom script in
4 MATLAB (MathWorks) implementing the equation:

$$5 \quad p_{x \geq k} = 1 - \sum_{x=0}^{k-1} \frac{\binom{A}{x} \binom{N-A}{n-x}}{\binom{N}{n}}$$

6 where N is the total number of genes in the background, A is the number of annotated genes in
7 the background, n is the total number of genes in the sublist, and k is the number of annotated
8 genes in the sublist. p-values for Arp2/3 and formin regulation were adjusted for multiple
9 hypothesis testing using the FDR method.

10

11 **Pre-embedding immunogold electron microscopy**

12 C57BL/6J mice were deeply anesthetized with pentobarbital (60mg/kg, i.p.) and then
13 transcardially perfused with 0.9% NaCl followed by a mixture of 4% PFA and 0.1% glutaraldehyde
14 (Electron Microscopy Sciences) in 0.1M phosphate buffer (PB), pH 7.4. Brains were removed and
15 post-fixed overnight in 4% PFA without glutaraldehyde at 4°C. 60µm coronal sections from
16 hippocampal CA1 were cut with a Leica VT1000 vibratome and processed for pre-embedding
17 immunoelectron microscopy. Sections were incubated in primary antibodies diluted in 2% NDS.
18 Primary antibodies used were as follows: mouse anti-Rac1 (BD Biosciences 610650, 1:100) and
19 rabbit anti-ArpC2 (Millipore 07-227, 1:200).

20 Floating sections were treated for 30min in 1% sodium borohydride in 0.1M PB to quench
21 free aldehyde groups. The sections were incubated in 20% NDS for 30min to suppress
22 nonspecific binding and then incubated for 12hr in the primary antibody, along with 2% NDS.
23 Sections were incubated in biotinylated anti-rabbit IgG (Jackson) for 2hr. After rinses in PBS,
24 sections were incubated in biotinylated donkey-anti rabbit or mouse IgG (Jackson) for 30 minutes,

1 respective to the primary antibody. After washes in 0.1M PB, sections were incubated in 1.4nm
2 Nanogold®-Streptavidin (Nanoprobes, 1:100) for 1hr at room temperature and rinsed in PB.
3 Sections were washed in 0.1M Na acetate (to remove phosphate and chloride ions), followed by
4 silver enhancement with IntensEM (GE Healthcare Life Sciences) or gold enhancement with
5 GoldEnhance EM Plus (Nanoprobes) for approximately 8min.

6 Sections were processed as described above in control experiments, omitting primary
7 antibody from the incubation solution. Sections were post-fixed in 0.5% osmium tetroxide in 0.1M
8 PB for 30min. After dehydration in ascending ethanol series and contrasting with 1% uranyl
9 acetate for 1hr in 70% EtOH, sections were incubated in propylene oxide and infiltrated with
10 Durcupan resin (Sigma) and flat-mounted between sheets of Aclar (Electron Microscopy
11 Sciences) within glass slides. Seventy-nanometer sections were cut, mounted on 300 mesh
12 copper grids, contrasted with lead citrate (Ultrostain II; Leica), and examined in a JEOL TEM-
13 1011 electron microscope at 80 kV; images were collected with a Megaview 12-bit 1024 × 1024
14 CCD camera. Electron micrographs were taken from randomly selected fields, focusing on the
15 middle one third of hippocampal CA1 *stratum radiatum*.

16

17 **Quantitative analysis of immunogold labeling and synaptic vesicle position**

18 Synaptic vesicle distances, immunogold particle distances, and profile areas were measured from
19 electron micrographs using ImageJ 1.52a. The “axo-dendritic” positions of immunogold particles
20 were calculated as previously described (Racz and Weinberg, 2004). Briefly, we defined the
21 lateral edges of the PSD for a random sample of clearly-defined synapses, and measured the
22 shortest distance from the center of each gold particle to the outer layer of the presynaptic
23 membrane. Normalized axodendritic position (d_N , the fraction of the distance from the presynaptic
24 plasma membrane) was computed according to the equation:

25

$$d_N = \frac{d_2}{d_1}$$

1 where d_2 is the axodendritic distance from the presynaptic membrane to the particle or synaptic
2 vesicle, and d_1 is the distance of the axodendritic diameter of the given terminal profile. Thus, 0
3 corresponds to a particle at the presynaptic membrane of the terminal, while 1 corresponds to a
4 particle at the opposite plasma membrane, at the furthest possible position on the terminal profile.
5 For this measurement, only particles lying within the axon terminal were considered.

6

7 **Mixed hippocampal cultures for presynaptic isolation**

8 Hippocampal neuron cultures were prepared from C57BL/6J (WT), *Rac1^{f/f}*, or *ArpC3^{f/f};Ai14* mice
9 as described earlier. For presynaptic Rac1 experiments, 1.75×10^6 *Rac1^{f/f}* neurons were
10 electroporated with 1.5 μ g pAAV-hSyn-ChR2-EYFP, and 5×10^6 WT neurons were electroporated
11 with 3 μ g pBA-tdTomato. 5×10^5 WT electroporated and 1.75×10^5 *Rac1^{f/f}* electroporated neurons
12 were plated per well in a 24-well plate. This resulted in the sparse seeding of *Rac1^{f/f};ChR2-EYFP*
13 neurons, as ~80% of electroporated neurons do not survive. On DIV10, AAV2/9-hSyn-Cre was
14 added to half of wells (0.5 μ l of 3.21×10^{13} GC/ml per well), with sterile PBS as loading control. For
15 presynaptic Arp2/3 experiments, 1.5×10^6 *ArpC3^{f/f};Ai14* neurons were electroporated with 1 μ g
16 pAAV-hSyn-ChR2-EYFP or pBA-tdTomato. 1.75×10^5 WT and 0.6×10^5 *ArpC3^{f/f};Ai14*
17 electroporated neurons were plated per well in a 24-well plate. On DIV10, AAV2/9-hSyn-Cre was
18 added to half of wells (0.5 μ l of 3.21×10^{13} GC/ml per well), with sterile PBS as loading control. For
19 PA-Rac1 experiments, 1.5×10^6 WT neurons were electroporated with 0.5 μ g pCAG-ChrimsonR-
20 tdT, pCAG-ChrimsonR-tdT-P2A-PA Rac1 DN, or pCAG-ChrimsonR-tdT-P2A-PA Rac1 CA, and
21 1.5 μ g pCDNA3. 1.75×10^5 WT and 1.5×10^5 electroporated neurons were plated per well in a 24-
22 well plate. For immunostaining of mixed cultures, neurons were fixed and stained on DIV16.
23 Coverslips were imaged on a Zeiss LSM 710 inverted confocal microscope. All images were
24 acquired by z-series (0.13 μ m intervals) using a 63x/1.4 numerical aperture (NA) oil-immersion
25 objective.

26

1 **Electrophysiology**

2 Somatic whole-cell currents were recorded from cultured hippocampal neurons on DIV16-18
3 under a Zeiss Axio Examiner.D1 upright microscope equipped with IR-DIC optics. Patch pipettes
4 (4-7 M Ω) were created from borosilicate glass capillaries (Sutter Instrument) using a P-97 puller
5 (Sutter Instrument). Coverslips were superfused with artificial CSF (aCSF) containing 124mM
6 NaCl, 26mM NaHCO₃, 10mM dextrose, 2mM CaCl₂, 3mM KCl, 1.3mM MgSO₄, and 1.25mM
7 NaH₂PO₄ (310 mOsm/L), continuously bubbled at room temperature with 95% O₂ and 5% CO₂.
8 For voltage-clamp experiments, pipette intracellular solution contained 135mM Cs-
9 methanesulfonate, 8mM NaCl, 10mM HEPES, 0.3mM EGTA, 10mM Na₂phosphocreatine, 4mM
10 MgATP, 0.3mM Na₂GTP, 5mM TEA-Cl, and 5mM QX-314 (pH 7.3 with CsOH, 295 mOsm/L).
11 Light-evoked EPSCs were recorded at -70mV holding potentials in aCSF with the following
12 modifications: 100 μ M picrotoxin, 10 μ M bicuculline methiodide, and 50 μ M D-AP5. Light-evoked
13 IPSCs were recorded at 0mV holding potentials in aCSF with the following modifications: 50 μ M
14 D-AP5 and 20 μ M CNQX. For strontium substitution experiments, 4mM SrCl₂ replaced 2mM CaCl₂
15 in aCSF. For current-clamp recordings, pipette intracellular solution contained 135mM K-
16 methanesulfonate, 8mM NaCl, 10mM HEPES, 0.3mM EGTA, 4mM MgATP, and 0.3mM Na₂GTP
17 (pH 7.3 with KOH, 295 mOsm/L). Light-evoked action potentials were recorded at 0pA holding
18 currents in aCSF with the following modifications: 20 μ M CNQX, 50 μ M D-AP5, 100 μ M picrotoxin,
19 and 10 μ M bicuculline methiodide. No corrections were made for the 8.5-9.0mV estimated liquid
20 junction potentials of these solutions. All drugs were purchased from MilliporeSigma or Tocris.

21 Light was delivered through the objective using an LED light source (CoolLED pE-
22 300ultra) with 460nm and 525-660m excitation peaks and corresponding filter sets, with the
23 shutter controlled by TTL inputs. 1ms pulses of 460nm light were used to activate ChR2, while
24 3ms pulses of 525-660nm light were used to activate ChrimsonR. Light intensities were kept
25 constant across all recordings (20% for EPSCs and 10% for IPSCs). For paired pulse and

1 strontium substitution experiments, neurons were stimulated at no more than 0.1Hz between
2 sweeps. Recordings were not continued if the light-evoked current was not monosynaptic.

3 Series resistance was monitored throughout all voltage-clamp recordings with brief 5mV
4 hyperpolarizing pulses, and only recordings which remained stable over the period of data
5 collection were analyzed. Data were recorded with a Multiclamp 700B amplifier (Molecular
6 Devices), digitized at 50kHz with a Digidata 1550 (Molecular Devices), and low-pass filtered at 1
7 kHz. For PA-Rac1 experiments, recordings were conducted in the dark with monitors and other
8 light sources covered by blue light filters (135 Deep Golden Amber; Lee). These coverslips were
9 allowed to recover for 15min in the dark after transferring them to the recording chamber, and
10 between each recording. For all recordings, the experimenter was not blinded to the condition. All
11 experiments were repeated on at least three independent cultures.

12 For voltage-clamp experiments, EPSC and IPSC amplitudes were manually detected and
13 calculated offline using MiniAnalysis (Synaptosoft) with suggested detection parameters. Paired-
14 pulse ratio (PPR) was calculated as the average of 6-10 trials conducted every 10s. Quantal
15 events from strontium substitution experiments were also manually detected in MiniAnalysis with
16 a threshold of 5pA. All events were counted in 500ms (for qEPSCs) or 1s (for qIPSCs) time
17 windows after stimulation, with stimulation every 10s for 5min. For 20Hz stimulation trains, a linear
18 regression was performed on the final 10 data points on cumulative current curves, as specified
19 by the “train method” (Stevens and Williams, 2007; Thanawala and Regehr, 2016). The size of
20 the readily releasable pool (RRP) was quantified as the y-intercept of the line, the synaptic vesicle
21 replenishment rate as the slope of the line, and the initial release probability (p) as the amplitude
22 of the first current divided by the RRP size. Analysis of charge transfer, kinetics, and basal current
23 was done in Clampfit 10 (Molecular Devices). For current-clamp experiments, action potentials
24 were counted if the peak was greater than 0mV. Action potential waveforms were also analyzed
25 using Clampfit 10. All experiments were analyzed blinded to the condition.

26

1 **Quantification of axonal synapse density**

2 The sparse seeding of *ArpC3^{fl/fl};Ai14;tdTomato* neurons allowed for the identification of long
3 axonal processes away from cell bodies. Maximum intensity projections from z-stacks along these
4 axons were analyzed in FIJI / ImageJ. Presynaptic (Synapsin1 or Vgat) puncta within axons were
5 obtained by masking their fluorescence with a thresholded image of the tdTomato axonal fill. A
6 custom Puncta Analyzer plugin for ImageJ 1.29 written by Barry Wark (Ippolito and Eroglu, 2010)
7 was then used to calculate the number of presynaptic puncta within axons that was colocalized
8 with postsynaptic puncta (Homer1 or Gephyrin) in the field. The length of each axon was
9 determined in FIJI/ ImageJ using the Simple Neurite Tracer plugin (Longair et al., 2011). Axonal
10 synapse density was calculated as the number of colocalized puncta divided by the length of the
11 axon. All experiments were repeated on at least three independent cultures, and all images were
12 analyzed blinded to the condition.

13

14 **Microinjection of organotypic hippocampal slices**

15 Organotypic hippocampal slices were prepared in the Yasuda lab. Slices were microinjected in
16 CA3 on DIV10-13 to induce expression of the Rac1 FLIM donor (AAV2/9-hSyn-mEGFP-Rac1)
17 and acceptor (AAV2/9-hSyn-mCherry-PBD2-mCherry). Briefly, AAVs were mixed together in a
18 1:2 donor: acceptor ratio (final titer of each ~1-2x10¹² GC/ml) with 10% Fast Green FCF dye.
19 Pipettes were created from glass capillaries (VWR) using a P-1000 puller (Sutter Instrument) and
20 back-filled with AAV mixture. The mixture was microinjected into the pyramidal cell layer of CA3
21 using a Picospritzer III (Parker) set to 18psi with a pulse duration of 50ms, and then slices on
22 culture inserts were returned to the incubator.

23

24 **Two-photon fluorescence lifetime imaging (2pFLIM)**

25 On DIV17-24, at least 7 days after microinjection, 2pFLIM was conducted on synaptic boutons in
26 CA1. Organotypic slices were cut from inserts using a scalpel and transferred to an imaging

1 chamber. Slices were superfused with artificial CSF (aCSF) containing 124mM NaCl, 3mM KCl,
2 1.25mM NaH₂PO₄, 26mM NaHCO₃, 10mM dextrose, 4mM CaCl₂, and 1.3mM MgSO₄ (310
3 mOsm/L), continuously bubbled at room temperature with 95% O₂ and 5% CO₂. A concentric
4 bipolar electrode (CBAPC75; FHC) was placed in the Schaffer collaterals and attached to an ISO-
5 Flex stimulus isolator (AMPI). A recording electrode filled with aCSF was placed in CA1 *stratum*
6 *radiatum*, and stimulation intensity was adjusted to evoke field potentials at half-maximum
7 amplitude. Data were recorded with a Multiclamp 700B amplifier (Molecular Devices) interfacing
8 with custom software. Slices with mistargeting of viral microinjections or evidence of epileptiform
9 activity were discarded. For pharmacological experiments, 0.5μM TTX or 300μM CdCl₂ was
10 washed onto slices after evoking field potentials, and slices were then incubated with the
11 compound for at least 30min before imaging.

12 2pFLIM using a custom-built microscope was performed as previously described
13 (Murakoshi et al., 2011). GFP and mCherry were excited with a Ti-sapphire laser (Chameleon;
14 Coherent) tuned to a wavelength of 920nm. All samples were imaged using <2mW laser power
15 measured below the objective. Fluorescence was collected using a 60x/1.0 NA water-immersion
16 objective (Olympus), divided with a dichroic mirror (565nm) and detected with two separate
17 photoelectron multiplier tubes (PMTs) placed downstream of two wavelength filters (510/70-2p
18 for green and 620/90-2p for red; Chroma). PMTs with low transfer time spread (H7422-40p;
19 Hamamatsu) were used for both red and green channels. Photon counting for fluorescence
20 lifetime imaging was performed using a time-correlated single photon counting board (SPC-150;
21 Becker and Hickl) controlled with custom software, while fluorescence images were acquired
22 using a separate data acquisition board (PCI-6110; National Instrument). 2pFLIM images were
23 collected with 64 × 64 pixels at 128 ms/frame, with 80 frames per image. A new image was taken
24 every 10s over a period of 5min. 2s stimulation at 50Hz was initiated by hand after a 2min baseline
25 period. All conditions were imaged over at least four independent slices.

1 To measure the fraction of donor bound to acceptor, we fit a fluorescence lifetime curve
2 summing all pixels over a whole image with a double exponential function convolved with the
3 Gaussian pulse response function:

4
$$F(t) = F_0 [P_D H(t, t_0, \tau_D, \tau_G) + P_{AD} H(t, t_0, \tau_{AD}, \tau_G)]$$

5 where τ_{AD} is the fluorescence lifetime of donor bound with acceptor, P_D and P_{AD} are the fraction of
6 free donor and donor bound with acceptor, respectively, and $H(t)$ is a fluorescence lifetime curve
7 with a single exponential function convolved with the Gaussian pulse response function:

8
$$H(t, t_0, \tau_D, \tau_G) = \frac{1}{2} \exp\left(\frac{\tau_G^2}{2\tau_D^2} - \frac{t - t_0}{\tau_D}\right) \operatorname{erfc}\left(\frac{\tau_G^2 - \tau_D(t - t_0)}{\sqrt{2}\tau_D\tau_G}\right)$$

9 in which τ_D is the fluorescence lifetime of the free donor, τ_G is the width of the Gaussian pulse
10 response function, F_0 is the peak fluorescence before convolution, t_0 is the time offset, and erfc is
11 the error function.

12 We fixed τ_D to the fluorescence lifetime obtained from free EGFP (2.6ns) and τ_{AD} to 1.1ns
13 based on previous experiments (Hedrick et al., 2016). To generate the fluorescence lifetime
14 image, we calculated the mean photon arrival time, $\langle t \rangle$, in each pixel as:

15
$$\langle t \rangle = \int t F(t) dt / \int F(t) dt$$

16 Then, the mean photon arrival time is related to the mean fluorescence lifetime, $\langle \tau \rangle$, by an offset
17 arrival time, t_0 , which is obtained by fitting the whole image with the following equation:

18
$$\langle \tau \rangle = \langle t \rangle - t_0$$

19 Finally, the binding fraction (P_{AD}) was calculated for small regions of interest in presynaptic
20 boutons as:

21
$$P_{AD} = \tau_D (\tau_D - \langle \tau \rangle) (\tau_D - \tau_{AD})^{-1} (\tau_D + \tau_{AD} - \langle \tau \rangle)^{-1}$$

1 Change in binding fraction was calculated by subtracting the average value before stimulation.
2 Data with lifetime fluctuations in the baseline that were greater than 0.1ns were excluded before
3 further analysis. Lifetime drift was not corrected in the analysis.

4

5 **Quantification of presynaptic boutons containing synapsin**

6 Maximum intensity projections from z-stacks along axons in CA1 of organotypic slices were
7 analyzed in FIJI / ImageJ. Synapsin1 puncta within axons were obtained by masking their
8 fluorescence with a thresholded image of axons expressing both mCherry-PBD2-mCherry and
9 mEGFP-Rac1. Presynaptic boutons were manually marked as swellings along axons, and then
10 Synapsin1 puncta were independently marked using the custom Puncta Analyzer plugin for
11 ImageJ 1.29 (Ippolito and Eroglu, 2010). Swellings containing at least one Synapsin1 puncta were
12 counted as Synapsin+ boutons. Images were analyzed from axons in three different slices.

13

14 **Statistics**

15 For all graphs, center values represent mean, and error bars represent standard error of the mean
16 (SEM). Details of exact sample sizes and statistical tests used can be found in figure legends. No
17 statistical methods were used to predetermine sample sizes, but our sample sizes are similar to
18 those reported in previous publications (Hedrick et al., 2016; Spence et al., 2019). Statistical
19 analysis was performed in Prism 8 (GraphPad) and MATLAB R2017a (MathWorks). We
20 compared independent sample means using two-tailed t-tests, one-way ANOVAs, two-way
21 ANOVAs, and repeated measures ANOVAs as appropriate. ANOVAs were followed by Tukey's,
22 Dunnett's, or Sidak's multiple comparisons tests. When required, hypergeometric tests and t-tests
23 were adjusted for multiple comparisons using the FDR method. We confirmed necessary
24 parametric test assumptions using the Shapiro-Wilk test (normality). Violations in test assumption
25 were corrected by transformations when possible; otherwise, the equivalent non-parametric tests
26 were applied instead. Type-1 error rates for all tests were set at 0.05.

1 **DATA AVAILABILITY**

2 All data generated in this study are included in the manuscript and supporting files. Raw
3 proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE
4 partner repository with the dataset identifier PXD019342 (Note to reviewers – please login with
5 the reviewer account, username: reviewer28883@ebi.ac.uk, password: [XRNgjLCm](https://www.ebi.ac.uk/pride/submit/reviewer28883)).

6

7 **REFERENCES**

8 Abiria, S.A., and Colbran, R.J. (2010). CaMKII associates with CaV1.2 L-type calcium channels
9 via selected beta subunits to enhance regulatory phosphorylation. *J Neurochem* **112**, 150-
10 161.

11 Abul-Husn, N.S., Bushlin, I., Moron, J.A., Jenkins, S.L., Dolios, G., Wang, R., Iyengar, R.,
12 Ma'ayan, A., and Devi, L.A. (2009). Systems approach to explore components and
13 interactions in the presynapse. *Proteomics* **9**, 3303-3315.

14 Arai, R., Ueda, H., Kitayama, A., Kamiya, N., and Nagamune, T. (2001). Design of the linkers
15 which effectively separate domains of a bifunctional fusion protein. *Protein Eng* **14**, 529-
16 532.

17 Aurnhammer, C., Haase, M., Muether, N., Hausl, M., Rauschhuber, C., Huber, I., Nitschko, H.,
18 Busch, U., Sing, A., Ehrhardt, A., *et al.* (2012). Universal real-time PCR for the detection
19 and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat
20 sequences. *Hum Gene Ther Methods* **23**, 18-28.

21 Bellingham, M.C., and Walmsley, B. (1999). A novel presynaptic inhibitory mechanism underlies
22 paired pulse depression at a fast central synapse. *Neuron* **23**, 159-170.

23 Boyken, J., Gronborg, M., Riedel, D., Urlaub, H., Jahn, R., and Chua, J.J.E. (2013). Molecular
24 Profiling of Synaptic Vesicle Docking Sites Reveals Novel Proteins but Few Differences
25 between Glutamatergic and GABAergic Synapses. *Neuron* **78**, 285-297.

1 Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., and Sherlock, G. (2004).
2 GO::TermFinder--open source software for accessing Gene Ontology information and
3 finding significantly enriched Gene Ontology terms associated with a list of genes.
4 Bioinformatics 20, 3710-3715.

5 Burre, J., Beckhaus, T., Schagger, H., Corvey, C., Hofmann, S., Karas, M., Zimmermann, H.,
6 and Volknandt, W. (2006). Analysis of the synaptic vesicle proteome using three gel-
7 based protein separation techniques. Proteomics 6, 6250-6262.

8 Butola, T., Wichmann, C., and Moser, T. (2017). Piccolo Promotes Vesicle Replenishment at a
9 Fast Central Auditory Synapse. Front Synaptic Neurosci 9, 14.

10 Byrne, J.H. (1982). Analysis of synaptic depression contributing to habituation of gill-withdrawal
11 reflex in *Aplysia californica*. Journal of neurophysiology 48, 431-438.

12 Chen, G., Harata, N.C., and Tsien, R.W. (2004). Paired-pulse depression of unitary quantal
13 amplitude at single hippocampal synapses. Proceedings of the National Academy of
14 Sciences of the United States of America 101, 1063-1068.

15 Chereau, R., Saraceno, G.E., Angibaud, J., Cattaert, D., and Nagerl, U.V. (2017).
16 Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to
17 changes in action potential conduction velocity. Proceedings of the National Academy of
18 Sciences of the United States of America 114, 1401-1406.

19 Chrostek, A., Wu, X., Quondamatteo, F., Hu, R., Sanecka, A., Niemann, C., Langbein, L.,
20 Haase, I., and Brakebusch, C. (2006). Rac1 is crucial for hair follicle integrity but is not
21 essential for maintenance of the epidermis. Mol Cell Biol 26, 6957-6970.

22 Cingolani, L.A., and Goda, Y. (2008). Actin in action: the interplay between the actin
23 cytoskeleton and synaptic efficacy. Nature reviews Neuroscience 9, 344-356.

24 Cole, J.C., Villa, B.R., and Wilkinson, R.S. (2000). Disruption of actin impedes transmitter
25 release in snake motor terminals. J Physiol 525 Pt 3, 579-586.

1 Connert, S., Wienand, S., Thiel, C., Krikunova, M., Glyvuk, N., Tsytsyura, Y., Hilfiker-Kleinert, D.,
2 Bartsch, J.W., Klingauf, J., and Wienands, J. (2006). SH3P7/mAbp1 deficiency leads to
3 tissue and behavioral abnormalities and impaired vesicle transport. *EMBO J* 25, 1611-
4 1622.

5 Coughenour, H.D., Spaulding, R.S., and Thompson, C.M. (2004). The synaptic vesicle
6 proteome: A comparative study in membrane protein identification. *Proteomics* 4, 3141-
7 3155.

8 Darcy, K.J., Staras, K., Collinson, L.M., and Goda, Y. (2006). Constitutive sharing of recycling
9 synaptic vesicles between presynaptic boutons. *Nature neuroscience* 9, 315-321.

10 Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A.
11 (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery.
12 *Genome Biol* 4, P3.

13 Ding, J.D., Kennedy, M.B., and Weinberg, R.J. (2013). Subcellular organization of CaMKII in rat
14 hippocampal pyramidal neurons. *J Comp Neurol* 521, 3570-3583.

15 Doussau, F., and Augustine, G.J. (2000). The actin cytoskeleton and neurotransmitter release:
16 an overview. *Biochimie* 82, 353-363.

17 Fernandez-Busnadio, R., Zuber, B., Maurer, U.E., Cyrklaff, M., Baumeister, W., and Lucic, V.
18 (2010). Quantitative analysis of the native presynaptic cytomatrix by cryoelectron
19 tomography. *The Journal of cell biology* 188, 145-156.

20 Gaffield, M.A., Rizzoli, S.O., and Betz, W.J. (2006). Mobility of synaptic vesicles in different
21 pools in resting and stimulated frog motor nerve terminals. *Neuron* 51, 317-325.

22 Gao, Y., Hisey, E., Bradshaw, T.W.A., Erata, E., Brown, W.E., Courtland, J.L., Uezu, A., Xiang,
23 Y., Diao, Y., and Soderling, S.H. (2019). Plug-and-Play Protein Modification Using
24 Homology-Independent Universal Genome Engineering. *Neuron* 103, 583-597 e588.

25 Gitler, D., Takagishi, Y., Feng, J., Ren, Y., Rodriguez, R.M., Wetsel, W.C., Greengard, P., and
26 Augustine, G.J. (2004a). Different presynaptic roles of synapsins at excitatory and

1 inhibitory synapses. *The Journal of neuroscience : the official journal of the Society for*
2 *Neuroscience* 24, 11368-11380.

3 Gitler, D., Xu, Y., Kao, H.T., Lin, D., Lim, S., Feng, J., Greengard, P., and Augustine, G.J.
4 (2004b). Molecular determinants of synapsin targeting to presynaptic terminals. *The*
5 *Journal of neuroscience : the official journal of the Society for Neuroscience* 24, 3711-
6 3720.

7 Gramlich, M.W., and Klyachko, V.A. (2017). Actin/Myosin-V- and Activity-Dependent Inter-
8 synaptic Vesicle Exchange in Central Neurons. *Cell Rep* 18, 2096-2104.

9 Greengard, P., Benfenati, F., and Valtorta, F. (1994). Synapsin I, an actin-binding protein
10 regulating synaptic vesicle traffic in the nerve terminal. *Adv Second Messenger*
11 *Phosphoprotein Res* 29, 31-45.

12 Guarnieri, F.C., Benfenati, F., and Valtorta, F. (2015). Synapsins and Synaptic Vesicle Storage.
13 In *Presynaptic Terminals* (Springer, Tokyo), pp. 295–326.

14 Gulsuner, S., Stein, D.J., Susser, E.S., Sibeko, G., Pretorius, A., Walsh, T., Majara, L., Mndini,
15 M.M., Mqulwana, S.G., Ntola, O.A., *et al.* (2020). Genetics of schizophrenia in the South
16 African Xhosa. *Science* 367, 569-573.

17 Haeussler, M., Schonig, K., Eckert, H., Eschstruth, A., Mianne, J., Renaud, J.B., Schneider-
18 Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., *et al.* (2016). Evaluation of off-target
19 and on-target scoring algorithms and integration into the guide RNA selection tool
20 CRISPOR. *Genome Biol* 17, 148.

21 Hallermann, S., Fejtova, A., Schmidt, H., Weyhersmuller, A., Silver, R.A., Gundelfinger, E.D.,
22 and Eilers, J. (2010). Bassoon speeds vesicle reloading at a central excitatory synapse.
23 *Neuron* 68, 710-723.

24 Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y.I., Loshbaugh, A.L.,
25 Kuhlman, B., Hahn, K.M., and Kasai, H. (2015). Labelling and optical erasure of synaptic
26 memory traces in the motor cortex. *Nature* 525, 333-338.

1 Hedrick, N.G., Harward, S.C., Hall, C.E., Murakoshi, H., McNamara, J.O., and Yasuda, R.
2 (2016). Rho GTPase complementation underlies BDNF-dependent homo- and
3 heterosynaptic plasticity. *Nature* 538, 104-108.

4 Hedrick, N.G., and Yasuda, R. (2017). Regulation of Rho GTPase proteins during spine
5 structural plasticity for the control of local dendritic plasticity. *Curr Opin Neurobiol* 45, 193-
6 201.

7 Herring, B.E., and Nicoll, R.A. (2016). Kalirin and Trio proteins serve critical roles in excitatory
8 synaptic transmission and LTP. *Proceedings of the National Academy of Sciences of the*
9 *United States of America* 113, 2264-2269.

10 Higgs, H.N., and Pollard, T.D. (2001). Regulation of actin filament network formation through
11 ARP2/3 complex: activation by a diverse array of proteins. *Annu Rev Biochem* 70, 649-
12 676.

13 Hilfiker, S., Pieribone, V.A., Czernik, A.J., Kao, H.T., Augustine, G.J., and Greengard, P. (1999).
14 Synapsins as regulators of neurotransmitter release. *Philos Trans R Soc Lond B Biol Sci*
15 354, 269-279.

16 Hsu, S.F., Augustine, G.J., and Jackson, M.B. (1996). Adaptation of Ca(2+)-triggered
17 exocytosis in presynaptic terminals. *Neuron* 17, 501-512.

18 Ippolito, D.M., and Eroglu, C. (2010). Quantifying synapses: an immunocytochemistry-based
19 assay to quantify synapse number. *J Vis Exp*.

20 Jackman, S.L., and Regehr, W.G. (2017). The Mechanisms and Functions of Synaptic
21 Facilitation. *Neuron* 94, 447-464.

22 Jackman, S.L., Turecek, J., Belinsky, J.E., and Regehr, W.G. (2016). The calcium sensor
23 synaptotagmin 7 is required for synaptic facilitation. *Nature* 529, 88-91.

24 Karpievitch, Y.V., Dabney, A.R., and Smith, R.D. (2012). Normalization and missing value
25 imputation for label-free LC-MS analysis. *BMC Bioinformatics* 13 *Suppl 16*, S5.

1 Kim, D.I., Jensen, S.C., Noble, K.A., Kc, B., Roux, K.H., Motamedchaboki, K., and Roux, K.J.
2 (2016). An improved smaller biotin ligase for BioID proximity labeling. Molecular biology of
3 the cell 27, 1188-1196.

4 Kim, I.H., Racz, B., Wang, H., Burianek, L., Weinberg, R., Yasuda, R., Wetsel, W.C., and
5 Soderling, S.H. (2013). Disruption of Arp2/3 results in asymmetric structural plasticity of
6 dendritic spines and progressive synaptic and behavioral abnormalities. The Journal of
7 neuroscience : the official journal of the Society for Neuroscience 33, 6081-6092.

8 Kim, I.H., Rossi, M.A., Aryal, D.K., Racz, B., Kim, N., Uezu, A., Wang, F., Wetsel, W.C.,
9 Weinberg, R.J., Yin, H., *et al.* (2015). Spine pruning drives antipsychotic-sensitive
10 locomotion via circuit control of striatal dopamine. Nature neuroscience 18, 883-891.

11 Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto,
12 T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., *et al.* (2014). Independent optical excitation
13 of distinct neural populations. Nat Methods 11, 338-346.

14 Kraushaar, U., and Jonas, P. (2000). Efficacy and stability of quantal GABA release at a
15 hippocampal interneuron-principal neuron synapse. The Journal of neuroscience : the
16 official journal of the Society for Neuroscience 20, 5594-5607.

17 Lazar, C., Gatto, L., Ferro, M., Bruley, C., and Burger, T. (2016). Accounting for the Multiple
18 Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare
19 Imputation Strategies. J Proteome Res 15, 1116-1125.

20 Lee, J.S., Ho, W.K., and Lee, S.H. (2012). Actin-dependent rapid recruitment of reluctant
21 synaptic vesicles into a fast-releasing vesicle pool. Proceedings of the National Academy
22 of Sciences of the United States of America 109, E765-774.

23 Lelieveld, S.H., Reijnders, M.R., Pfundt, R., Yntema, H.G., Kamsteeg, E.J., de Vries, P., de
24 Vries, B.B., Willemsen, M.H., Kleefstra, T., Lohner, K., *et al.* (2016). Meta-analysis of
25 2,104 trios provides support for 10 new genes for intellectual disability. Nature
26 neuroscience 19, 1194-1196.

1 Longair, M.H., Baker, D.A., and Armstrong, J.D. (2011). Simple Neurite Tracer: open source
2 software for reconstruction, visualization and analysis of neuronal processes.
3 *Bioinformatics* 27, 2453-2454.

4 Monday, H.R., Bourdenx, M., Jordan, B.A., and Castillo, P.E. (2020). CB1 receptor-mediated
5 inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination.
6 *Elife* 9.

7 Morales, M., Colicos, M.A., and Goda, Y. (2000). Actin-dependent regulation of neurotransmitter
8 release at central synapses. *Neuron* 27, 539-550.

9 Morciano, M., Beckhaus, T., Karas, M., Zimmermann, H., and Volknandt, W. (2009). The
10 proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion
11 molecules and maxi-channels. *J Neurochem* 108, 662-675.

12 Morciano, M., Burre, J., Corvey, C., Karas, M., Zimmermann, H., and Volknandt, W. (2005).
13 Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis.
14 *J Neurochem* 95, 1732-1745.

15 Moreau, V., Galan, J.M., Devilliers, G., Haguenuuer-Tsapis, R., and Winsor, B. (1997). The
16 yeast actin-related protein Arp2p is required for the internalization step of endocytosis.
17 *Molecular biology of the cell* 8, 1361-1375.

18 Mullins, R.D., Heuser, J.A., and Pollard, T.D. (1998). The interaction of Arp2/3 complex with
19 actin: nucleation, high affinity pointed end capping, and formation of branching networks of
20 filaments. *Proceedings of the National Academy of Sciences of the United States of
21 America* 95, 6181-6186.

22 Murakoshi, H., Wang, H., and Yasuda, R. (2011). Local, persistent activation of Rho GTPases
23 during plasticity of single dendritic spines. *Nature* 472, 100-104.

24 Papandreou, M.J., and Leterrier, C. (2018). The functional architecture of axonal actin. *Mol Cell
25 Neurosci* 91, 151-159.

1 Parker, D. (1995). Depression of synaptic connections between identified motor neurons in the
2 locust. *Journal of neurophysiology* 74, 529-538.

3 Patzke, C., Brockmann, M.M., Dai, J., Gan, K.J., Grauel, M.K., Fenske, P., Liu, Y., Acuna, C.,
4 Rosenmund, C., and Sudhof, T.C. (2019). Neuromodulator Signaling Bidirectionally
5 Controls Vesicle Numbers in Human Synapses. *Cell* 179, 498-513 e422.

6 Pechstein, A., and Shupliakov, O. (2010). Taking a back seat: synaptic vesicle clustering in
7 presynaptic terminals. *Front Synaptic Neurosci* 2, 143.

8 Piccini, A., Castroflorio, E., Valente, P., Guarneri, F.C., Aprile, D., Michetti, C., Bramini, M.,
9 Giansante, G., Pinto, B., Savardi, A., *et al.* (2017). APache Is an AP2-Interacting Protein
10 Involved in Synaptic Vesicle Trafficking and Neuronal Development. *Cell Rep* 21, 3596-
11 3611.

12 Racz, B., and Weinberg, R.J. (2004). The subcellular organization of cortactin in hippocampus.
13 *The Journal of neuroscience : the official journal of the Society for Neuroscience* 24,
14 10310-10317.

15 Racz, B., and Weinberg, R.J. (2008). Organization of the Arp2/3 complex in hippocampal
16 spines. *The Journal of neuroscience : the official journal of the Society for Neuroscience*
17 28, 5654-5659.

18 Regehr, W.G. (2012). Short-term presynaptic plasticity. *Cold Spring Harb Perspect Biol* 4,
19 a005702.

20 Reijnders, M.R.F., Ansor, N.M., Kousi, M., Yue, W.W., Tan, P.L., Clarkson, K., Clayton-Smith,
21 J., Corning, K., Jones, J.R., Lam, W.W.K., *et al.* (2017). RAC1 Missense Mutations in
22 Developmental Disorders with Diverse Phenotypes. *Am J Hum Genet* 101, 466-477.

23 Rivals, I., Personnaz, L., Taing, L., and Potier, M.C. (2007). Enrichment or depletion of a GO
24 category within a class of genes: which test? *Bioinformatics* 23, 401-407.

25 Rothman, J.S., Kocsis, L., Herzog, E., Nusser, Z., and Silver, R.A. (2016). Physical
26 determinants of vesicle mobility and supply at a central synapse. *Elife* 5.

1 Rust, M.B., and Maritzen, T. (2015). Relevance of presynaptic actin dynamics for synapse
2 function and mouse behavior. *Exp Cell Res* 335, 165-171.

3 Sakaba, T., and Neher, E. (2003). Involvement of actin polymerization in vesicle recruitment at
4 the calyx of Held synapse. *The Journal of neuroscience : the official journal of the Society
5 for Neuroscience* 23, 837-846.

6 Sankaranarayanan, S., Atluri, P.P., and Ryan, T.A. (2003). Actin has a molecular scaffolding,
7 not propulsive, role in presynaptic function. *Nature neuroscience* 6, 127-135.

8 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
9 S., Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for
10 biological-image analysis. *Nat Methods* 9, 676-682.

11 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of
12 image analysis. *Nat Methods* 9, 671-675.

13 Schonichen, A., and Geyer, M. (2010). Fifteen formins for an actin filament: a molecular view on
14 the regulation of human formins. *Biochim Biophys Acta* 1803, 152-163.

15 Shen, W., Wu, B., Zhang, Z., Dou, Y., Rao, Z.R., Chen, Y.R., and Duan, S. (2006). Activity-
16 induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. *Neuron* 50,
17 401-414.

18 Siksou, L., Rostaing, P., Lechaire, J.P., Boudier, T., Ohtsuka, T., Fejtova, A., Kao, H.T.,
19 Greengard, P., Gundelfinger, E.D., Triller, A., *et al.* (2007). Three-dimensional architecture
20 of presynaptic terminal cytomatrix. *The Journal of neuroscience : the official journal of the
21 Society for Neuroscience* 27, 6868-6877.

22 Soderling, S.H., Guire, E.S., Kaech, S., White, J., Zhang, F., Schutz, K., Langeberg, L.K.,
23 Bunker, G., Raber, J., and Scott, J.D. (2007). A WAVE-1 and WRP signaling complex
24 regulates spine density, synaptic plasticity, and memory. *The Journal of neuroscience :
25 the official journal of the Society for Neuroscience* 27, 355-365.

1 Soykan, T., Kaempf, N., Sakaba, T., Vollweiter, D., Goerdeler, F., Puchkov, D., Kononenko,
2 N.L., and Haucke, V. (2017). Synaptic Vesicle Endocytosis Occurs on Multiple Timescales
3 and Is Mediated by Formin-Dependent Actin Assembly. *Neuron* 93, 854-866 e854.

4 Spence, E.F., Dube, S., Uezu, A., Locke, M., Soderblom, E.J., and Soderling, S.H. (2019). In
5 vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-
6 mediated synaptic maturation. *Nat Commun* 10, 386.

7 Spence, E.F., Kanak, D.J., Carlson, B.R., and Soderling, S.H. (2016). The Arp2/3 Complex Is
8 Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse
9 Unsilencing. *The Journal of neuroscience : the official journal of the Society for
10 Neuroscience* 36, 9696-9709.

11 Spence, E.F., and Soderling, S.H. (2015). Actin Out: Regulation of the Synaptic Cytoskeleton. *J
12 Biol Chem* 290, 28613-28622.

13 Stevens, C.F., and Williams, J.H. (2007). Discharge of the readily releasable pool with action
14 potentials at hippocampal synapses. *Journal of neurophysiology* 98, 3221-3229.

15 Sullivan, J.M. (2007). A simple depletion model of the readily releasable pool of synaptic
16 vesicles cannot account for paired-pulse depression. *Journal of neurophysiology* 97, 948-
17 950.

18 Takahashi, N., Sawada, W., Noguchi, J., Watanabe, S., Ucar, H., Hayashi-Takagi, A., Yagishita,
19 S., Ohno, M., Tokumaru, H., and Kasai, H. (2015). Two-photon fluorescence lifetime
20 imaging of primed SNARE complexes in presynaptic terminals and beta cells. *Nat
21 Commun* 6, 8531.

22 Takamori, S., Holt, M., Stenius, K., Lemke, E.A., Gronborg, M., Riedel, D., Urlaub, H., Schenck,
23 S., Brugger, B., Ringler, P., et al. (2006). Molecular anatomy of a trafficking organelle. *Cell*
24 127, 831-846.

25 Thanawala, M.S., and Regehr, W.G. (2016). Determining synaptic parameters using high-
26 frequency activation. *J Neurosci Methods* 264, 136-152.

1 Thomson, A.M., and Bannister, A.P. (1999). Release-independent depression at pyramidal
2 inputs onto specific cell targets: dual recordings in slices of rat cortex. *J Physiol* 519 Pt 1,
3 57-70.

4 Tian, C., Kay, Y., Sadybekov, A., Rao, S., Katritch, V., and Herring, B.E. (2018). An Intellectual
5 Disability-Related Missense Mutation in Rac1 Prevents LTP Induction. *Front Mol Neurosci*
6 11, 223.

7 Tolias, K.F., Duman, J.G., and Um, K. (2011). Control of synapse development and plasticity by
8 Rho GTPase regulatory proteins. *Prog Neurobiol* 94, 133-148.

9 Uezu, A., Kanak, D.J., Bradshaw, T.W., Soderblom, E.J., Catavero, C.M., Burette, A.C.,
10 Weinberg, R.J., and Soderling, S.H. (2016). Identification of an elaborate complex
11 mediating postsynaptic inhibition. *Science* 353, 1123-1129.

12 Volk, L., Chiu, S.L., Sharma, K., and Huganir, R.L. (2015). Glutamate synapses in human
13 cognitive disorders. *Annu Rev Neurosci* 38, 127-149.

14 Waldeck, R.F., Pereda, A., and Faber, D.S. (2000). Properties and plasticity of paired-pulse
15 depression at a central synapse. *The Journal of neuroscience : the official journal of the*
16 *Society for Neuroscience* 20, 5312-5320.

17 Wang, H., Vilela, M., Winkler, A., Tarnawski, M., Schlichting, I., Yumerefendi, H., Kuhlman, B.,
18 Liu, R., Danuser, G., and Hahn, K.M. (2016). LOVTRAP: an optogenetic system for
19 photoinduced protein dissociation. *Nat Methods* 13, 755-758.

20 Watanabe, S., Rost, B.R., Camacho-Perez, M., Davis, M.W., Sohl-Kielczynski, B., Rosenmund,
21 C., and Jorgensen, E.M. (2013). Ultrafast endocytosis at mouse hippocampal synapses.
22 *Nature* 504, 242-247.

23 Weingarten, J., Lassek, M., Mueller, B.F., Rohmer, M., Lunger, I., Baeumlisberger, D., Dudek,
24 S., Gogesch, P., Karas, M., and Volknandt, W. (2014). The proteome of the presynaptic
25 active zone from mouse brain. *Mol Cell Neurosci* 59, 106-118.

1 Wilhelm, B.G., Mandad, S., Truckenbrodt, S., Krohnert, K., Schafer, C., Rammner, B., Koo, S.J.,
2 Classen, G.A., Krauss, M., Haucke, V., *et al.* (2014). Composition of isolated synaptic
3 boutons reveals the amounts of vesicle trafficking proteins. *Science* 344, 1023-1028.

4 Wolf, M., Zimmermann, A.M., Gorlich, A., Gurniak, C.B., Sasse-Pognetto, M., Friauf, E., Witke,
5 W., and Rust, M.B. (2015). ADF/Cofilin Controls Synaptic Actin Dynamics and Regulates
6 Synaptic Vesicle Mobilization and Exocytosis. *Cereb Cortex* 25, 2863-2875.

7 Wu, S., Gan, G., Zhang, Z., Sun, J., Wang, Q., Gao, Z., Li, M., Jin, S., Huang, J., Thomas, U., *et*
8 *al.* (2017). A Presynaptic Function of Shank Protein in Drosophila. *The Journal of*
9 *neuroscience : the official journal of the Society for Neuroscience* 37, 11592-11604.

10 Wu, X.S., Lee, S.H., Sheng, J., Zhang, Z., Zhao, W.D., Wang, D., Jin, Y., Charnay, P., Ervasti,
11 J.M., and Wu, L.G. (2016). Actin Is Crucial for All Kinetically Distinguishable Forms of
12 Endocytosis at Synapses. *Neuron* 92, 1020-1035.

13 Wu, Y.I., Frey, D., Lungu, O.I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K.M. (2009).
14 A genetically encoded photoactivatable Rac controls the motility of living cells. *Nature* 461,
15 104-108.

16 Xiao, X., Levy, A.D., Rosenberg, B.J., Higley, M.J., and Koleske, A.J. (2016). Disruption of
17 Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in
18 Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice. *The Journal of*
19 *neuroscience : the official journal of the Society for Neuroscience* 36, 6778-6791.

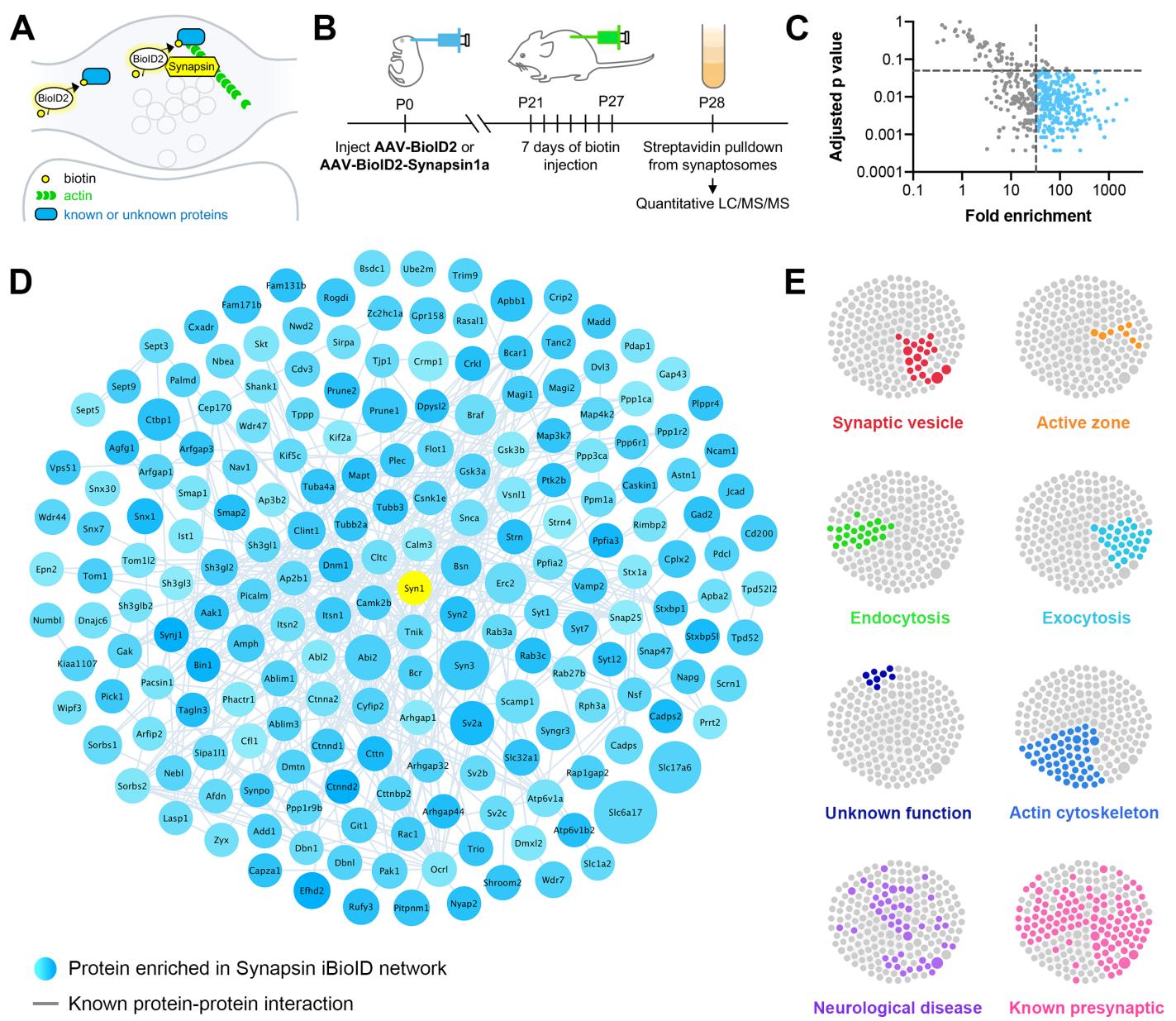
20 Xu, J., and Wu, L.G. (2005). The decrease in the presynaptic calcium current is a major cause
21 of short-term depression at a calyx-type synapse. *Neuron* 46, 633-645.

22 Xue, R., Ruhl, D.A., Briguglio, J.S., Figueroa, A.G., Pearce, R.A., and Chapman, E.R. (2018).
23 Doc2-mediated superpriming supports synaptic augmentation. *Proceedings of the*
24 *National Academy of Sciences of the United States of America* 115, E5605-E5613.

1 Yan, Z., Kim, E., Datta, D., Lewis, D.A., and Soderling, S.H. (2016). Synaptic Actin
2 Dysregulation, a Convergent Mechanism of Mental Disorders? The Journal of
3 neuroscience : the official journal of the Society for Neuroscience 36, 11411-11417.

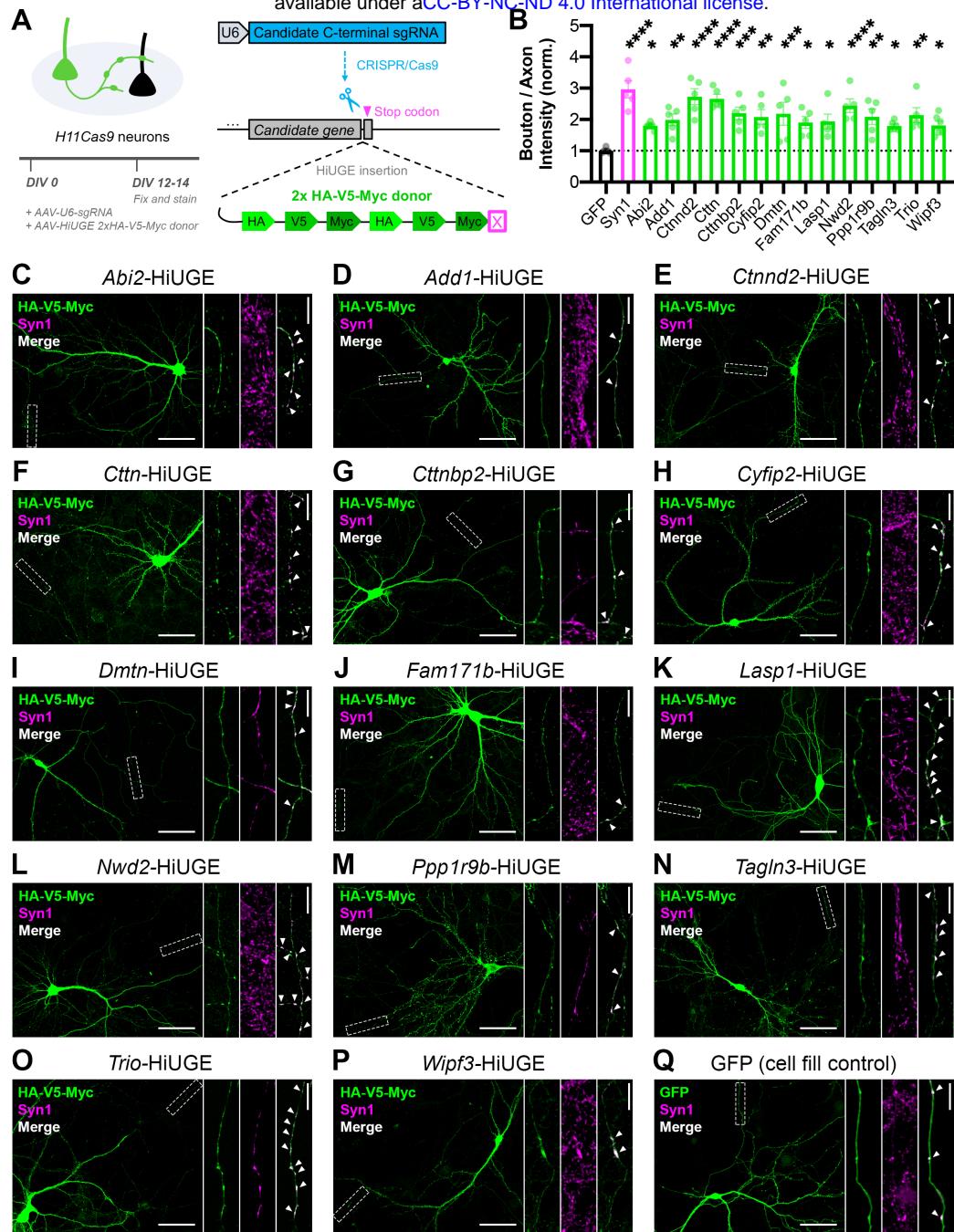
4 Yao, J., Qi, J., and Chen, G. (2006). Actin-dependent activation of presynaptic silent synapses
5 contributes to long-term synaptic plasticity in developing hippocampal neurons. The
6 Journal of neuroscience : the official journal of the Society for Neuroscience 26, 8137-
7 8147.

8 Zerbino, D.R., Achuthan, P., Akanni, W., Amode, M.R., Barrell, D., Bhai, J., Billis, K., Cummins,
9 C., Gall, A., Giron, C.G., *et al.* (2018). Ensembl 2018. Nucleic Acids Res 46, D754-D761.


10 Zhang, Y., Zhang, X.F., Fleming, M.R., Amiri, A., El-Hassar, L., Surguchev, A.A., Hyland, C.,
11 Jenkins, D.P., Desai, R., Brown, M.R., *et al.* (2016). Kv3.3 Channels Bind Hax-1 and
12 Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell
13 165, 434-448.

14 Zhao, H.L., Yao, X.Q., Xue, C., Wang, Y., Xiong, X.H., and Liu, Z.M. (2008). Increasing the
15 homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion
16 protein by linker engineering. Protein Expr Purif 61, 73-77.

17 Zoghbi, H.Y., and Bear, M.F. (2012). Synaptic dysfunction in neurodevelopmental disorders
18 associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4.


19 Zucker, R.S., and Bruner, J. (1977). Long-lasting depression and the depletion hypothesis at
20 crayfish neuromuscular junctions. Journal of comparative physiology 121, 223-240.

21

Figure 1. Identification of the proteomic composition of the presynaptic cytomatrix using *in vivo* BiOLD.

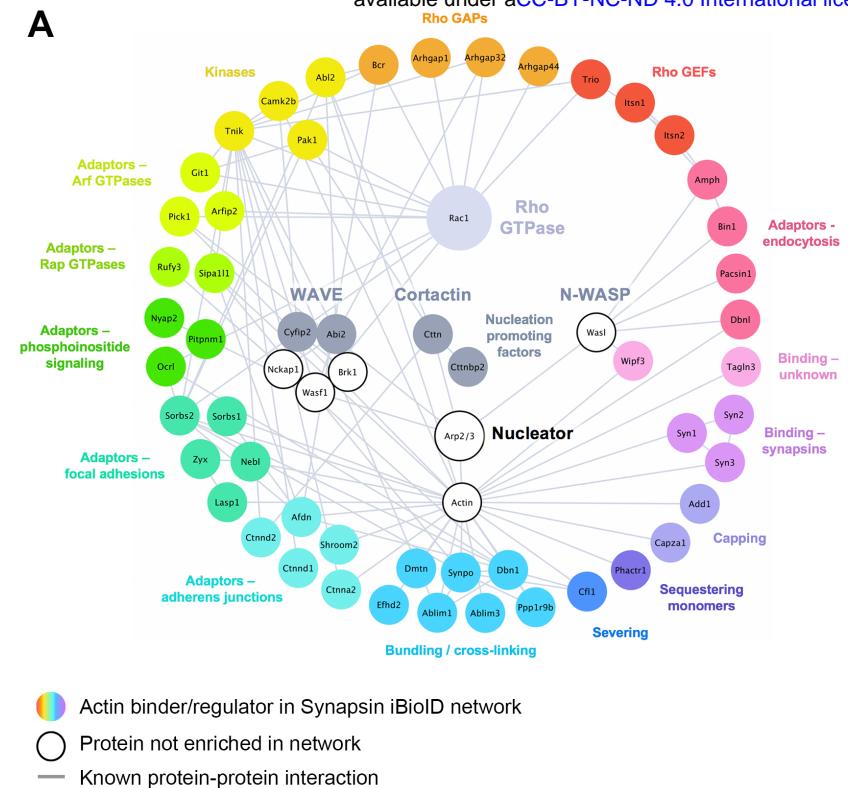
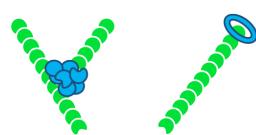
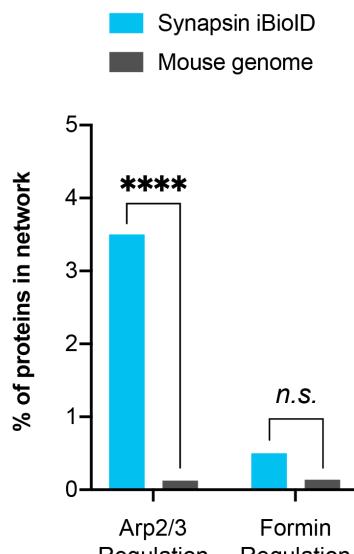
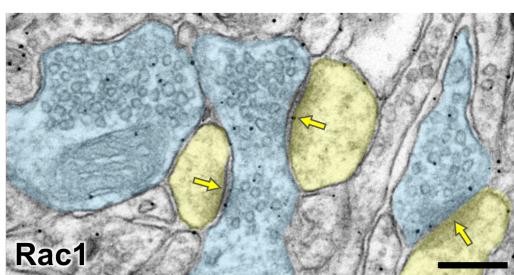

(A) Schematic of the iBiOLD approach in presynaptic terminals. **(B)** Timeline of *in vivo* injections and sample collection. **(C)** Filters used to select proteins based on fold enrichment over negative control and FDR adjusted p-value (t-tests). **(D)** Synapsin iBiOLD identified a rich network of 200 known and previously unknown proteins enriched in presynaptic terminals. Node titles correspond to gene name, size represents fold enrichment over the BiOLD2 negative control (range 32.7 – 2275.1), shading represents FDR adjusted p-value with light blue being a lower p-value and darker blue a higher p-value (range 0.0003 – 0.049). Edges are previously reported protein-protein interactions in the HitPredict database or by hand annotation. **(E)** Clustergrams of proteins that are in synaptic vesicles (red, n=20/200 proteins) or active zones (orange, n=8); involved in endocytosis (green, n=22), exocytosis (cyan, n=30), or actin regulation (blue, n=54); have unknown function (navy, n=8); are implicated in neurological diseases (purple, n=46) as identified through DAVID analysis or hand annotation; and are known to be presynaptic (pink, n=108).

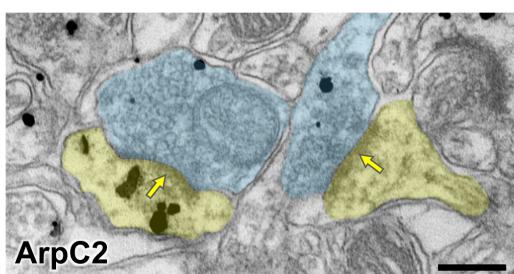
Figure 2. Validation of the presynaptic localization of Synapsin iBiOLD proteins.

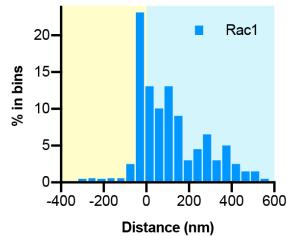


(A) Schematic of approach to tag endogenous proteins in neurons using HiUGE. Cultured hippocampal neurons were infected on DIV0 with AAVs containing the candidate sgRNA and a 2x-HA-V5-Myc HiUGE donor in the corresponding open reading frame. Neurons expressing a GFP cell fill were used as a control. **(B)** Quantification of presynaptic enrichment for GFP control (n=6 neurons), presynaptic marker Syn1 (Synapsin1, n=5), and candidate proteins (Abi2 n=6, Add1 n=5, Ctnnd2 n=5, Ctnn n=5, Ctnnbp2 n=5, Cyfip2 n=5, Dmtn n=5, Fam171b n=5, Lasp1 n=5, Nwd2 n=5, Ppp1r9b n=5, Tagln3 n=6, Trio n=5, Wipf3 n=6); one-way ANOVA ($F_{15,68}=5.401$, $p<0.0001$) with Dunnett's multiple comparisons test vs GFP: Syn1 ($p<0.0001$), Abi2 ($p=0.0422$), Add1 ($p=0.0088$), Ctnnd2 ($p<0.0001$), Ctnn ($p<0.0001$), Ctnnbp2 ($p=0.0008$), Cyfip2 ($p=0.0032$), Dmtn ($p=0.0010$), Fam171b ($p=0.0215$), Lasp1 ($p=0.0156$), Nwd2 ($p<0.0001$), Ppp1r9b ($p=0.0030$), Tagln3 ($p=0.0437$), Trio ($p=0.0016$), Wipf3 ($p=0.0359$). **(C-Q)** Representative images of the localization of candidate proteins (HA/V5/Myc or GFP; green) and a presynaptic marker (Synapsin1; magenta). Scale bars, 50 μ m. Insets show staining along axons. The merged image contains only Synapsin1 puncta within the axon, and white arrows point to presynaptic terminals (colocalized puncta). Scale bars, 5 μ m. All data are mean \pm SEM. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.

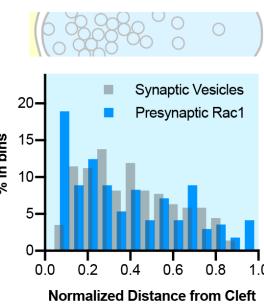
A

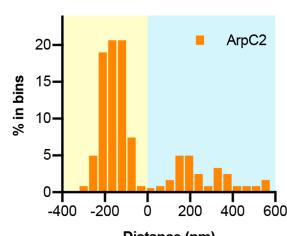


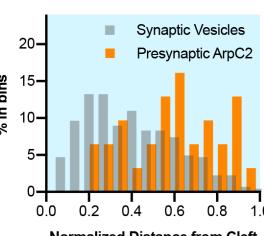
- Actin binder/regulator in Synapsin iBiLD network
- Protein not enriched in network
- Known protein-protein interaction


B

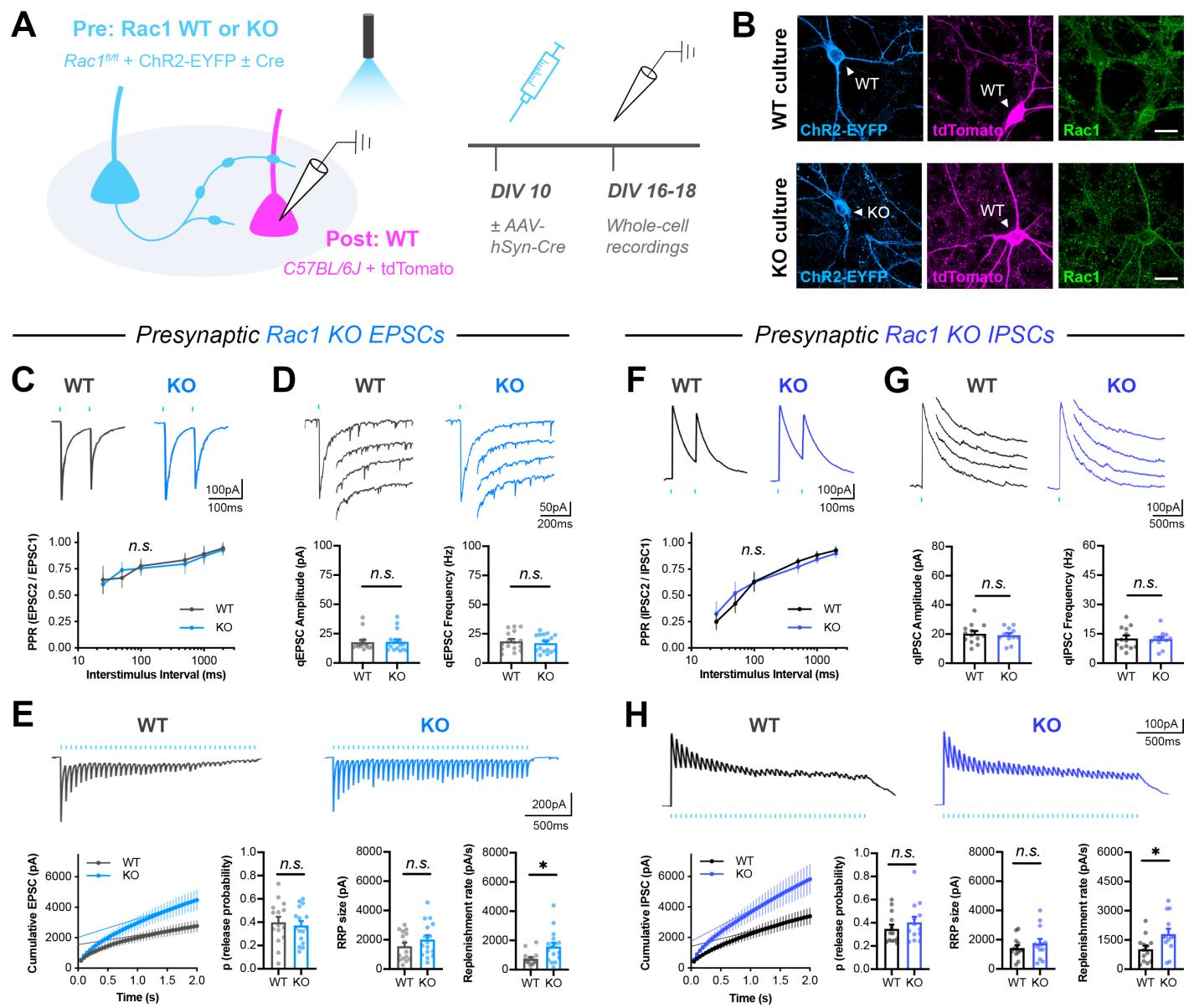

C


D


E Post Pre


G

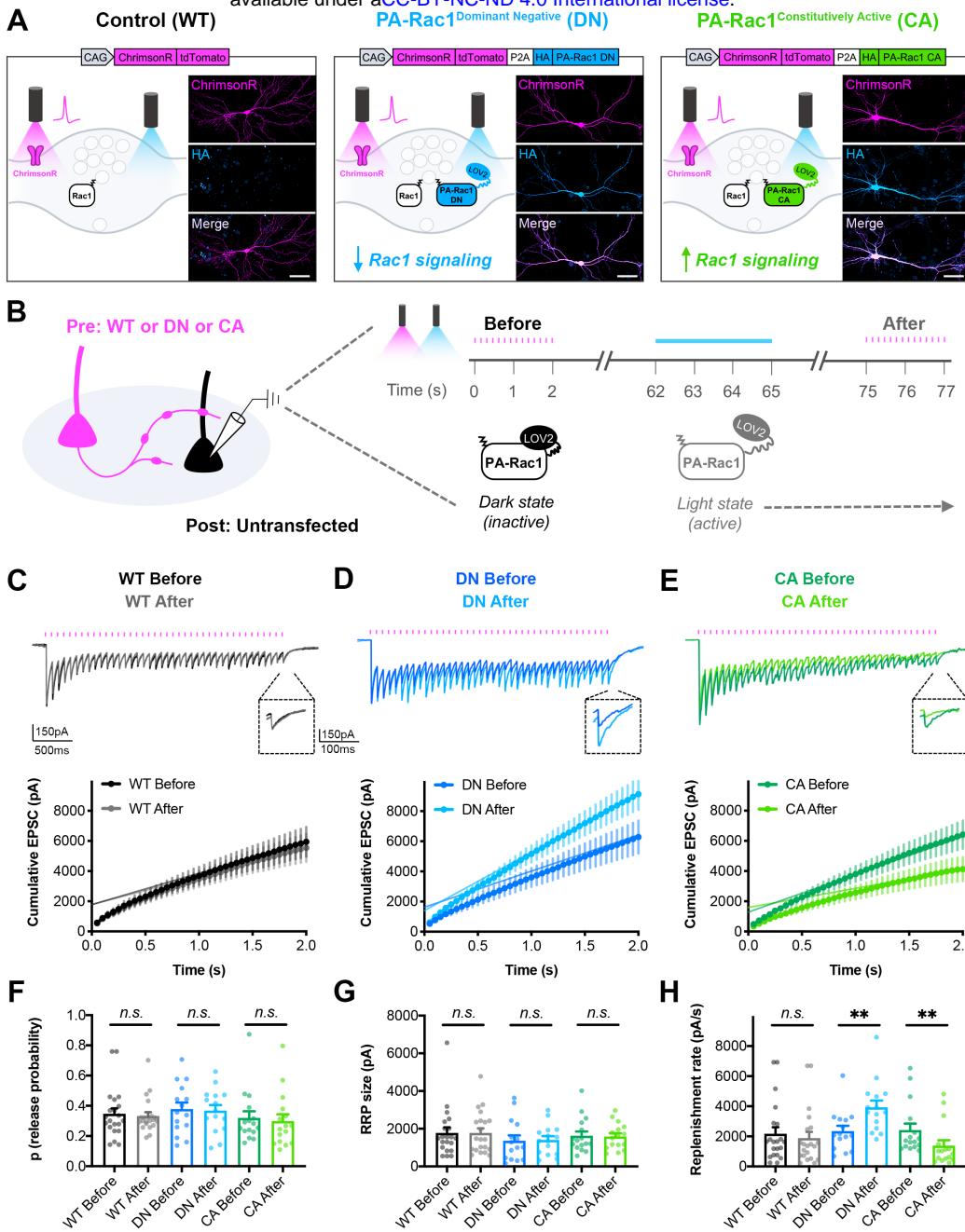
F



H

Figure 3. Actin signaling pathways in presynaptic terminals.

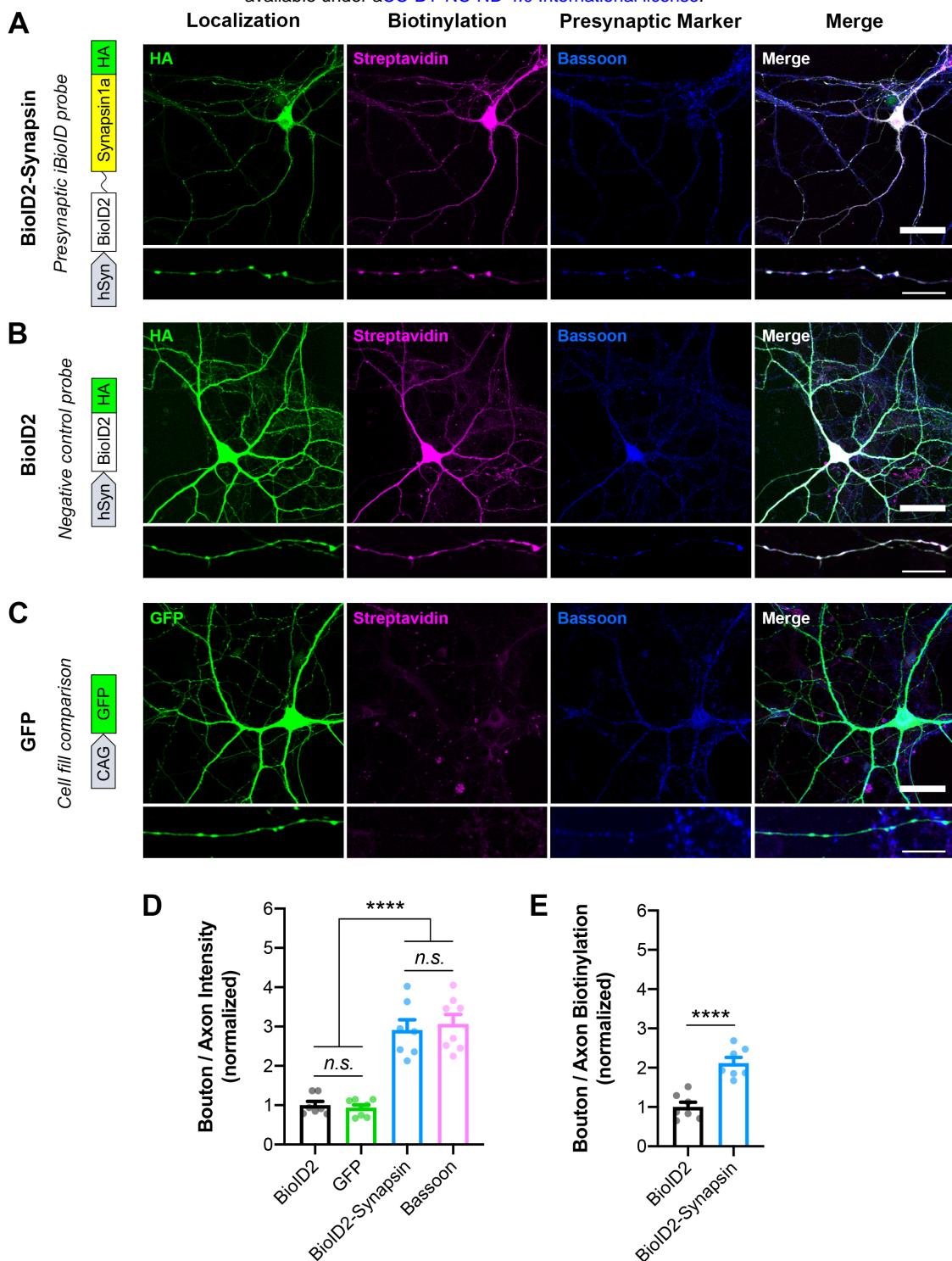
(A) Network showing the diversity of presynaptic actin signaling pathways in the Synapsin iBiLD proteome. Node titles correspond to gene name, and node size emphasizes the proteins further studied. Colored nodes are actin regulators in the Synapsin iBiLD network, while white nodes are proteins not enriched compared to negative control. Edges are previously reported protein-protein interactions in the HitPredict database or by hand annotation. **(B)** Regulators of actin nucleation in the Synapsin iBiLD network converge on Arp2/3, which nucleates branched actin filaments, rather than on formins, which nucleate linear actin filaments; FDR-adjusted hypergeometric test on Synapsin iBiLD vs mouse genome for Arp2/3 regulation ($p=1.2 \times 10^{-8}$) and formin regulation ($p=0.2555$). **(C-D)** Representative pre-embedding immunogold-labeled electron micrographs in mouse hippocampal CA1 for **(C)** Rac1 and **(D)** ArpC2. Dendritic spines are pseudocolored yellow, presynaptic terminals are pseudocolored blue, and a yellow arrow points to the synaptic cleft. Scale bars, 200nm. **(E-F)** Axodendritic distribution of gold particles at the synapse coding for **(E)** Rac1 (blue, $n=15$ synapses) and **(F)** ArpC2 (orange, $n=19$ synapses). **(G-H)** Presynaptic distribution of synaptic vesicles (gray) and gold particles for **(G)** Rac1 (blue) and **(H)** ArpC2 (orange). Distances were normalized from the synaptic cleft based on the axodendritic length of the presynaptic terminal. *** $p<0.0001$, n.s. not significant.


Figure 4. Presynaptic Rac1 negatively regulates synaptic vesicle replenishment.

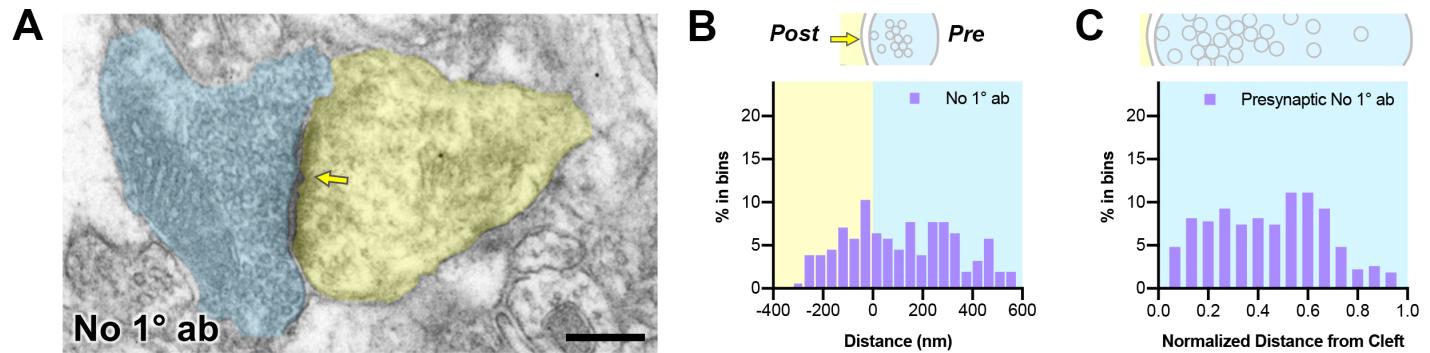
(A) Schematic of mixed hippocampal neuron cultures to isolate effects of presynaptic Rac1 knockout. Whole-cell patch clamp recordings were conducted on tdTomato+ WT neurons with light delivered through the objective by a 460nm LED. **(B)** Representative images of WT and KO cultures fixed on DIV16 and stained for ChR2-EYFP (blue), tdTomato (magenta), and Rac1 (green). Scale bars, 15 μ m. **(C-E)** Light-evoked EPSCs in WT and KO cultures. Representative traces and quantification for: **(C)** PPR (WT n=15 neurons/3 cultures, KO n=17/3); two-way repeated measures ANOVA ($F_{1,30}=0.1462$, $p=0.7049$) with Sidak's multiple comparisons test: 25ms ($p=0.9941$), 50ms ($p=0.7469$), 100ms ($p=0.9974$), 500ms ($p=0.9842$), 1000ms ($p=0.9989$), 2000ms ($p=0.9976$). **(D)** Strontium-evoked qEPSCs (WT n=16/3, KO n=17/3); Mann-Whitney U tests for amplitude ($U=130$, $p=0.8451$) and frequency ($U=120$, $p=0.5814$). **(E)** 20Hz stimulation trains (WT n=15/3, KO n=16/3) and release probability (t-test, $t_{29}=0.4671$, $p=0.6439$), RRP size (t-test, $t_{29}=1.271$, $p=0.2137$), and replenishment rate (t-test, $t_{29}=2.574$, $p=0.0154$). **(F-H)** Light-evoked IPSCs in WT and KO cultures. Representative traces and quantification for: **(F)** PPR (WT n=12/3, KO n=11/3); two-way repeated measures ANOVA ($F_{1,21}=0.04765$, $p=0.8293$) with Sidak's multiple comparisons test: 25ms ($p=0.8116$), 50ms ($p=0.5124$), 100ms ($p>0.9999$), 500ms ($p=0.4174$), 1000ms ($p=0.4110$), 2000ms ($p=0.7703$). **(G)** Strontium-evoked qIPSCs (WT n=13/3, KO n=12/3); t-tests for amplitude ($t_{23}=0.2064$, $p=0.6798$) and frequency ($t_{23}=0.2064$, $p=0.8383$). **(H)** 20Hz stimulation trains (WT n=13/3, KO n=13/3) and release probability (t-test, $t_{24}=0.9657$, $p=0.3438$), RRP size (t-test, $t_{24}=0.9253$, $p=0.3640$), and replenishment rate (t-test, $t_{29}=2.382$, $p=0.0255$). All data are mean \pm SEM. * $p<0.05$, n.s. not significant.

Figure 5. Presynaptic Arp2/3 negatively regulates release probability and synaptic vesicle replenishment.

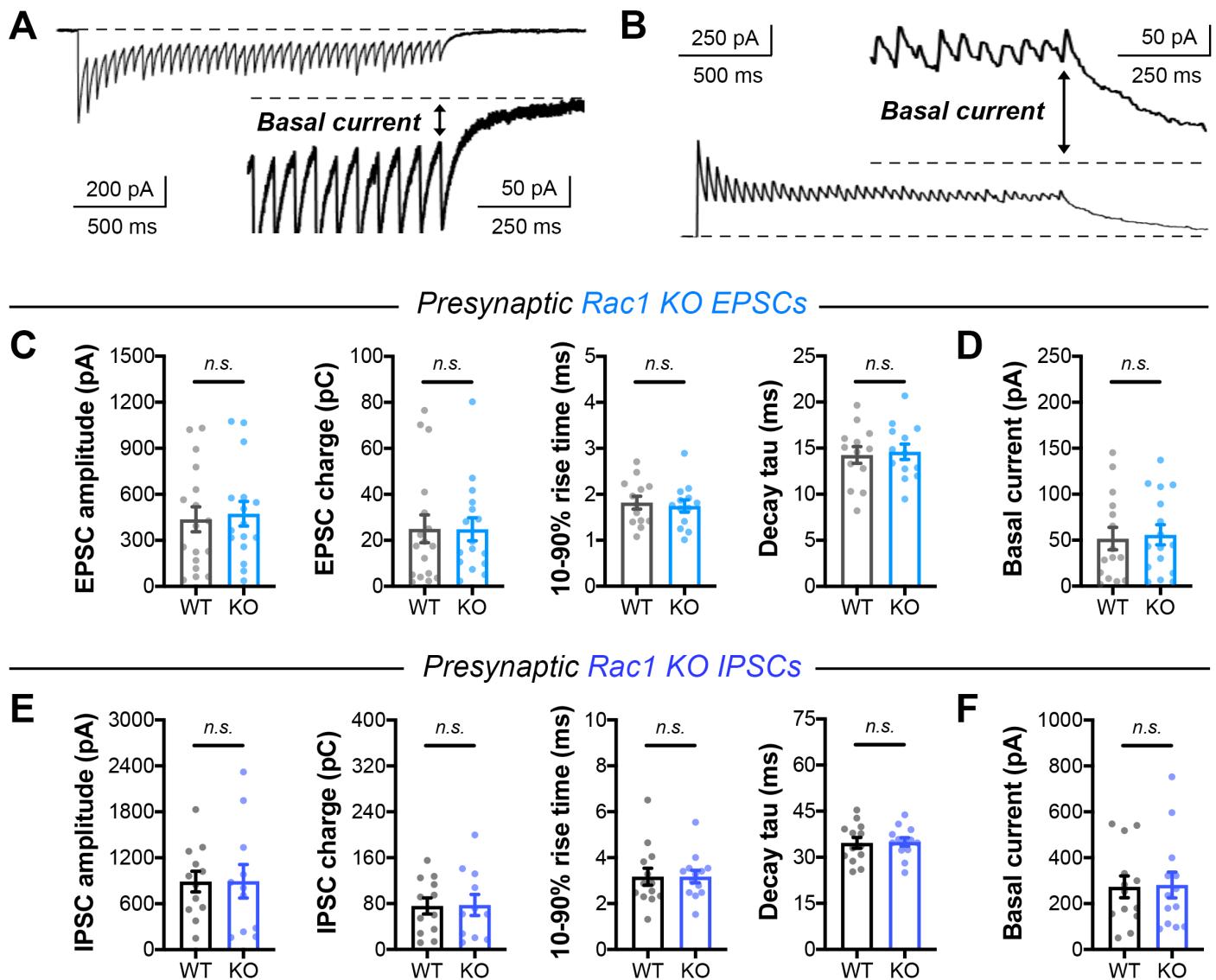
(A) Schematic of mixed hippocampal neuron cultures to isolate effects of presynaptic *ArpC3* knockout. Whole-cell patch clamp recordings were conducted on non-fluorescent WT neurons with light delivered through the objective by a 460nm LED. **(B)** Representative images of WT and KO cultures fixed on DIV16 and stained for ChR2-EYFP (blue), tdTomato (magenta), and DAPI (green). Scale bars, 25 μ m. **(C-E)** Light-evoked EPSCs in WT and KO cultures. Representative traces and quantification for: **(C)** PPR (WT n=10 neurons/3 cultures, KO n=12/3); two-way repeated measures ANOVA ($F_{1,20}=22.50$, $p=0.0001$) with Sidak's multiple comparisons test: 25ms ($p=0.0435$), 50ms ($p=0.0194$), 100ms ($p=0.0099$), 500ms ($p=0.2168$), 1000ms ($p=0.2319$), 2000ms ($p=0.6130$). **(D)** Strontium-evoked qEPSCs (WT n=9/3, KO n=8/3); Mann-Whitney U test for amplitude ($U=31$, $p=0.6730$) and t-test for frequency ($t_{15}=2.973$, $p=0.0095$). **(E)** 20Hz stimulation trains (WT n=10/3, KO n=10/3) and release probability (t-test, $t_{18}=2.107$, $p=0.0494$), RRP size (t-test, $t_{18}=0.3957$, $p=0.3957$), and replenishment rate (t-test, $t_{18}=2.215$, $p=0.0399$). **(F-H)** Light-evoked IPSCs in WT and KO cultures. Representative traces and quantification for: **(F)** PPR (WT n=14/3, KO n=13/3); two-way repeated measures ANOVA ($F_{1,25}=16.41$, $p=0.0004$) with Sidak's multiple comparisons test: 25ms ($p=0.0022$), 50ms ($p=0.0117$), 100ms ($p=0.0111$), 500ms ($p=0.4100$), 1000ms ($p=0.9999$), 2000ms ($p=0.3992$). **(G)** Strontium-evoked qIPSCs (WT n=14/3, KO n=15/3); t-tests for amplitude ($t_{27}=0.3989$, $p=0.6931$) and frequency ($t_{27}=2.471$, $p=0.0201$). **(H)** 20Hz stimulation trains (WT n=14/3, KO n=14/3) and release probability (Mann-Whitney U-test, $U=52$, $p=0.0350$), RRP size (t-test, $t_{26}=0.6733$, $p=0.5067$) and replenishment rate (t-test, $t_{26}=3.621$, $p=0.0012$). All data are mean \pm SEM. * $p<0.05$, ** $p<0.01$, n.s. not significant.


Figure 6. Bidirectional control of presynaptic Rac1 signaling modulates short-term synaptic depression.

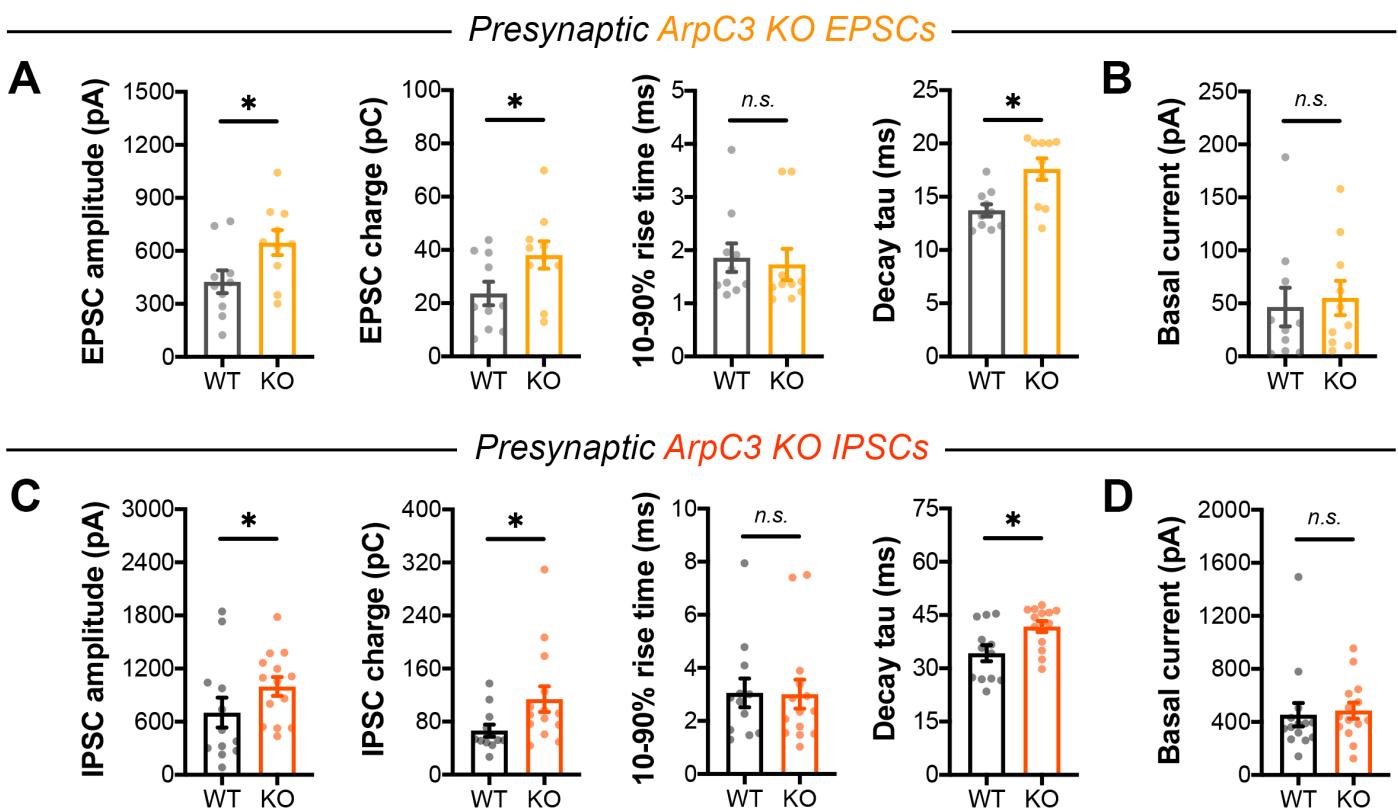
(A) Schematic of constructs created to control the firing of presynaptic neurons with reduced or enhanced Rac1 signaling. ChrimsonR-tdTomato was expressed alone as a control (WT), or co-expressed with HA-tagged photoactivatable Rac1 (PA-Rac1) with dominant negative (DN) or constitutively active (CA) mutations. Insets are representative images of WT, DN, and CA cultures fixed on DIV14 and stained for tdTomato (magenta) and HA (blue). Scale bars, 50µm. **(B)** Schematic of experimental design. Whole-cell patch clamp recordings were conducted on non-fluorescent neurons with light delivered through the objective by an LED. The “Before” 20Hz train was evoked by 525-660nm light. After waiting one minute for recovery, PA-Rac1 was brought into the open configuration by 460nm light to modulate presynaptic Rac1 signaling. Then, the “After” 20Hz train was evoked by 525-660nm light. **(C-E)** Representative traces and quantification of before and after EPSC trains in **(C)** WT cultures (black, gray, n=21 neurons/3 cultures), **(D)** DN cultures (blue, cyan, n=15/3), and **(E)** CA cultures (green, lime, n=16/3). **(F-H)** Estimates from cumulative EPSCs in all cultures of: **(F)** Release probability; WT (Mann-Whitney U-test, U=217, p=0.9355), DN (t-test, t₂₈=0.1803, p=0.8582), CA (Mann-Whitney U-test, U=108, p=0.4677). **(G)** RRP size; WT (Mann-Whitney U-test, U=217, p=0.9355), DN (t-test, t₂₈=0.1081, p=0.9147), and CA (Mann-Whitney U-test, U=124, p=0.8965). **(H)** Replenishment rate; WT (Mann-Whitney U-test, U=182, p=0.3394), DN (t-test, t₂₈=2.800, p=0.0092), CA (Mann-Whitney U-test, U=48, p=0.0019). All data are mean ± SEM. **p<0.01, n.s. not significant.


Figure 7. Action potential trains activate Rac1 in presynaptic terminals.

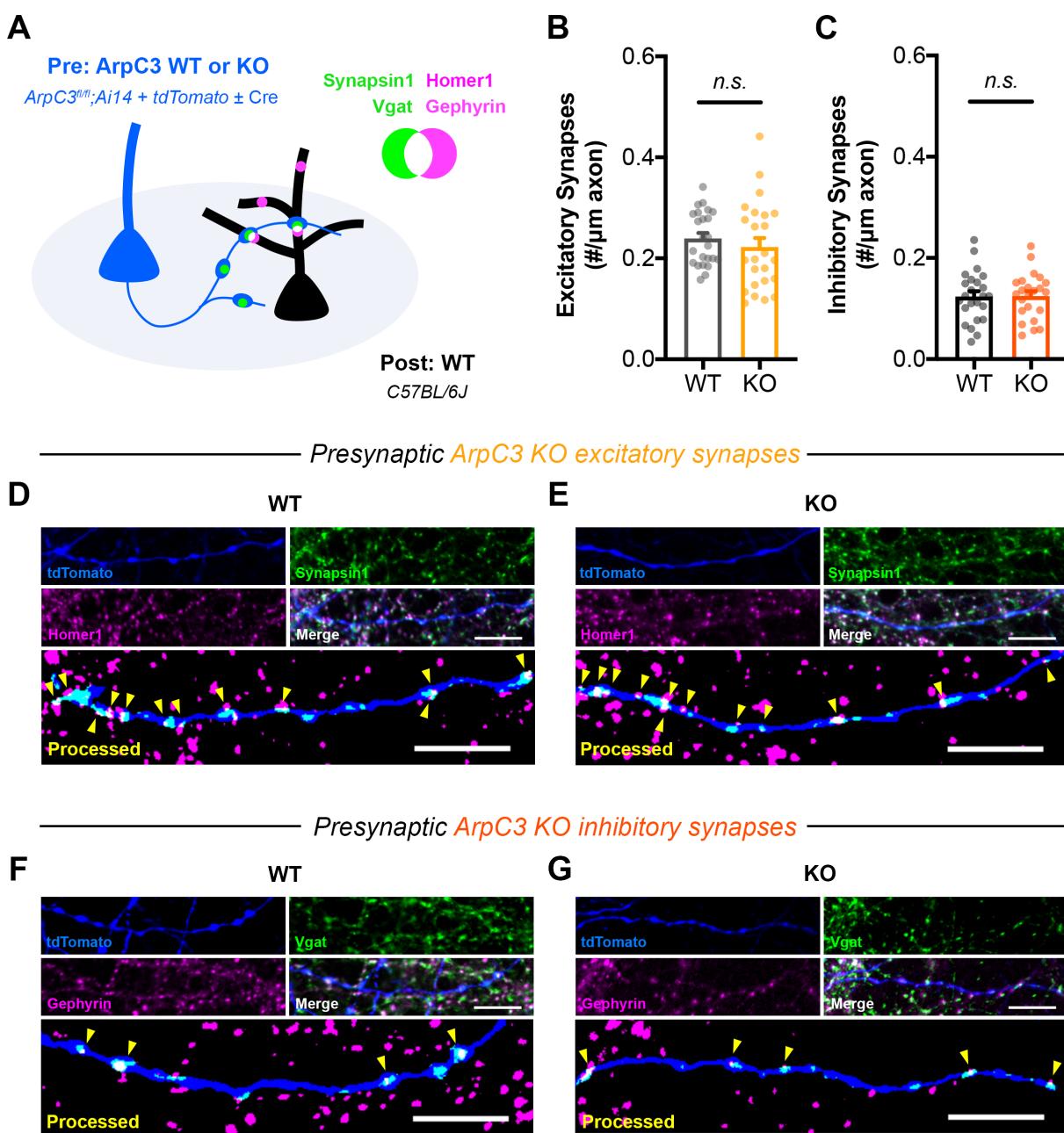
(A) Experimental design in organotypic hippocampal slices. **(B)** Schematic of Rac1 sensor. Activation of Rac1 leads to its association with the GTPase binding domain of Pak2^{R71C,S78A} (PBD2), increasing FRET between GFP and mCherry. This is measured as a decrease in fluorescence lifetime, or an increase in binding fraction. **(C)** Representative 2pFLIM images of a bouton before and after stimulation for 2s at 50Hz. Scale bar, 1μm. **(D)** Mean time course of the change in binding fraction of the Rac1 sensor in aCSF (cyan, n=15 boutons/5 slices) with **(E)** quantification; one-way repeated measures ANOVA ($F_{6,84}=3.89$, $p=0.0018$) with Dunnett's multiple comparisons test vs the baseline (-30-0s): 0-30s ($p=0.0005$), 30-60s ($p=0.0102$), 60-90s ($p=0.0142$), 90-120s ($p=0.2881$), 120-150s ($p=0.6807$). **(F)** Mean time course of Rac1 sensor in TTX (black, n=12/4) with **(G)** quantification; one-way repeated measures ANOVA ($F_{6,66}=0.8539$, $p=0.5334$) with Dunnett's multiple comparisons test vs the baseline (-30-0s): 0-30s ($p=0.9930$), 30-60s ($p=0.9839$), 60-90s ($p=0.6430$), 90-120s ($p=0.7654$), 120-150s ($p=0.6548$). **(H)** Mean time course of Rac1 sensor in Cd²⁺ (green, n=13/4) with **(I)** quantification; one-way repeated measures ANOVA ($F_{6,72}=0.2728$, $p=0.9479$) with Dunnett's multiple comparisons test vs the baseline (-30-0s): 0-30s ($p>0.9999$), 30-60s ($p=0.9996$), 60-90s ($p=0.9996$), 90-120s ($p=0.9997$), 120-150s ($p=0.8896$). All data are mean \pm SEM. * $p<0.05$, *** $p<0.001$, n.s. not significant.


Figure 1—figure supplement 1. Validation of Synapsin iBioID probes in cultured hippocampal neurons.

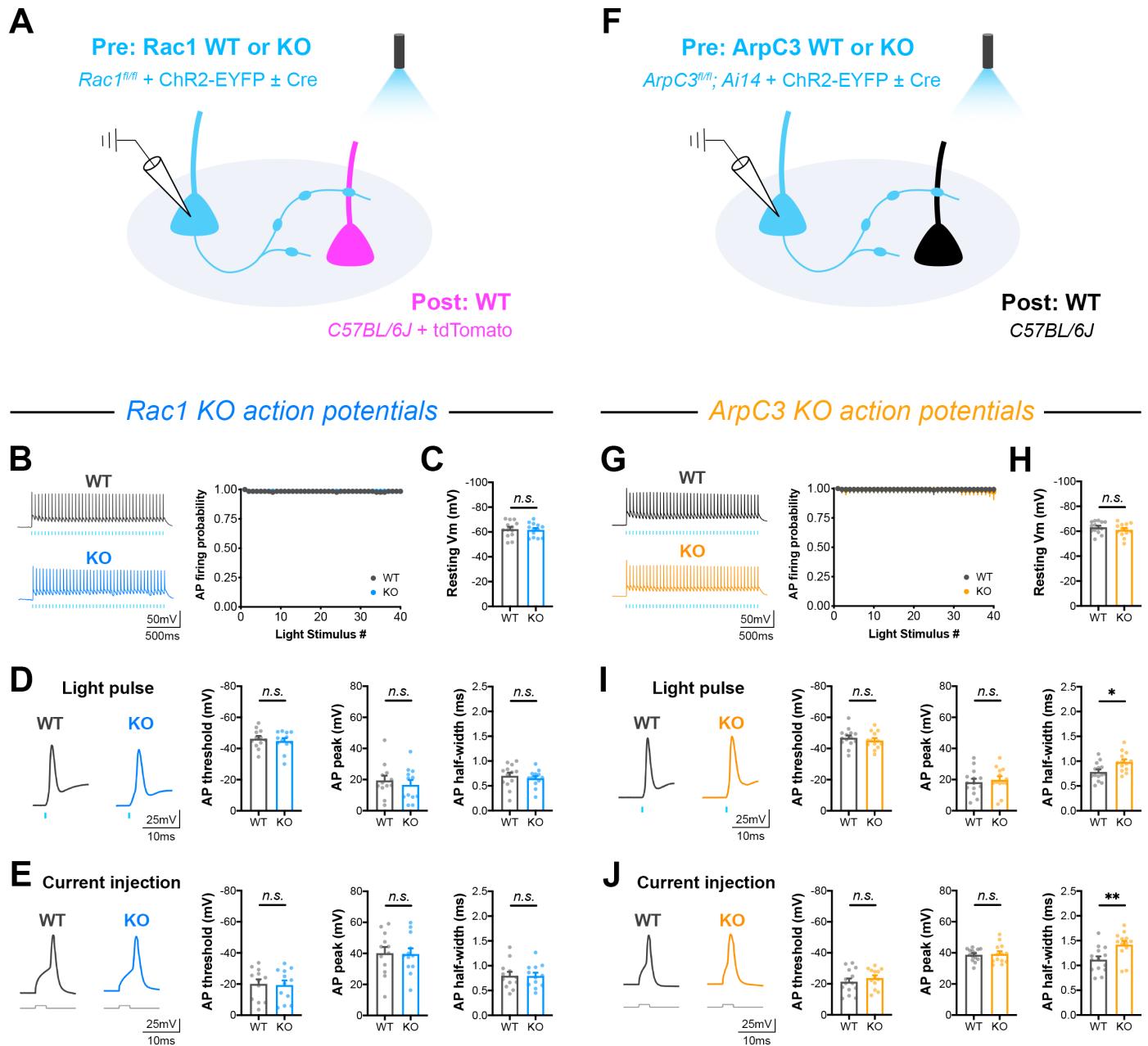
(A-C) Representative images of localization (HA or GFP; green), biotinylation (Streptavidin; magenta), and a presynaptic marker (Bassoon; blue) in neurons expressing **(A)** BioID2-Linker-Synapsin1a-HA, the iBioID bait, **(B)** BioID2-HA, the negative control, and **(C)** GFP, a soluble fill. Scale bars, 40 μ m. Insets show staining along axons. Scale bars, 10 μ m. **(D)** Presynaptic enrichment of localization for all probes (BioID2 n=7 neurons/3 cultures, GFP n=8/3, BioID2-Synapsin n=7/3, Bassoon n=8/3); one-way ANOVA ($F_{3,26}=60.18$, $p<0.0001$) with Tukey's multiple comparisons test: BioID2 vs GFP ($p=0.9526$), BioID2 vs BioID2-Synapsin ($p<0.0001$), BioID2 vs Bassoon ($p<0.0001$), GFP vs BioID2-Synapsin ($p<0.0001$), GFP vs Bassoon ($p<0.0001$), BioID2-Synapsin vs Bassoon ($p=0.9655$). **(E)** Presynaptic enrichment of biotinylation for iBioID probes (BioID2 n=7/3, BioID2-Synapsin n=7/3); t-test ($t_{12}=5.943$, $p<0.0001$). All data are mean \pm SEM. **** $p<0.0001$, n.s. not significant.


Figure 3—figure supplement 1. Negative control for immunogold electron microscopy.

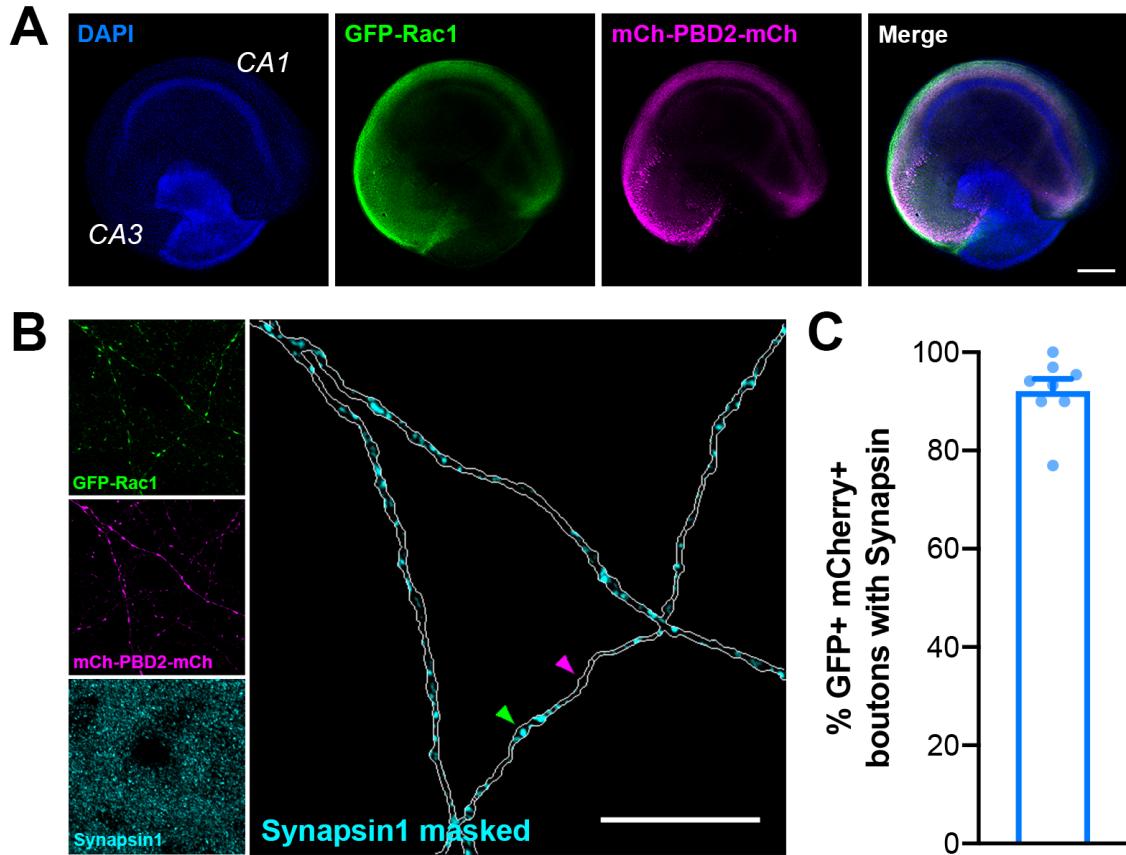
(A) Representative pre-embedding immunogold-labeled electron micrograph in mouse hippocampal CA1 with primary antibody omitted. Dendritic spines are pseudocolored yellow, presynaptic terminals are pseudocolored blue, and a yellow arrow points to the synaptic cleft. Scale bar, 200nm. **(B)** Axodendritic distribution of gold particles at the synapse in negative control samples ($n=102$ synapses). **(C)** Presynaptic distribution of gold particles in negative control samples. Distances were normalized from the synaptic cleft based on the axodendritic length of the presynaptic terminal.


Figure 4—figure supplement 1. Single evoked currents and asynchronous release in Rac1 neurons.

(A-B) Visual representation of steady-state basal current in **(A)** EPSC trains and **(B)** IPSC trains. **(C)** Quantification of single evoked EPSCs in *Rac1* cultures (WT n=17 neurons/3 cultures, KO n=16/3) for amplitude (t-test, $t_{31}=0.3127$, $p=0.7566$), charge (Mann-Whitney U-test, $U=123$, $p=0.6567$), rise time (t-test, $t_{31}=0.5223$, $p=0.6051$), and decay time constant (t-test, $t_{31}=0.08846$, $p=0.9301$). **(D)** Basal current in *Rac1* EPSC trains (WT n=15/3, KO n=16/3); t-test ($t_{29}=0.2560$, $p=0.7998$). **(E)** Quantification of IPSCs in *Rac1* cultures (WT n=12/3, KO n=11/3) for amplitude (t-test, $t_{21}=0.01487$, $p=0.9883$), charge (t-test, $t_{21}=0.07053$, $p=0.9444$), rise time (t-test, $t_{21}=0.5311$, $p=0.6009$), and decay time constant (t-test, $t_{21}=0.3887$, $p=0.7014$). **(F)** Basal current in *Rac1* IPSC trains (WT n=13/3, KO n=13/3); Mann-Whitney U-test ($U=83$, $p=0.9598$). All data are mean \pm SEM. n.s. not significant.


Figure 5—figure supplement 1. Single evoked currents and asynchronous release in ArpC3 neurons.

(A) Quantification of EPSCs in ArpC3 cultures (WT n=10/3, KO n=10/3) for amplitude (t-test, $t_{18}=2.323$, $p=0.0321$), charge (t-test, $t_{18}=2.127$, $p=0.0475$), rise time (Mann-Whitney U-test, $U=38$, $p=0.3811$), and decay time constant (Mann-Whitney U-test, $U=17$, $p=0.0111$). **(B)** Basal current in ArpC3 EPSC trains (WT n=10/3, KO n=10/3); Mann-Whitney U-test ($U=42$, $p=0.5787$). **(C)** Quantification of IPSCs in ArpC3 cultures (WT n=12/3, KO n=14/3) for amplitude (Mann-Whitney U-test, $U=44$, $p=0.0407$), charge (Mann-Whitney U-test, $U=42$, $p=0.0310$), rise time (Mann-Whitney U-test, $U=78$, $p=0.7810$), and decay time constant (Mann-Whitney U-test, $U=36$, $p=0.0127$). **(D)** Basal current in ArpC3 IPSC trains (WT n=14/3, KO n=14/3); Mann-Whitney U-test ($U=72$, $p=0.2456$). All data are mean \pm SEM. * $p<0.05$, n.s. not significant.


Figure 5—figure supplement 2. ArpC3 loss does not affect the density of synapses formed along axons.

(A) Schematic of mixed hippocampal neuron cultures to isolate effects of ArpC3 knockout on axonal synapse density. $ArpC3^{fl/fl}, Ai14$ neurons were electroporated with tdTomato and sparsely seeded amongst WT neurons on DIV0. To limit developmental effects, AAV-hSyn-Cre was added on DIV10 to half the coverslips. Neurons were fixed on DIV16 and stained for excitatory (Synapsin1, Homer1) or inhibitory (Vgat, Gephyrin) synapse markers. **(B)** Excitatory synapse density along axons (WT n=24 neurons/3 cultures, KO n=24/3); t-test ($t_{46}=0.8180$, $p=0.4176$). **(C)** Inhibitory synapse density along axons (WT n=24/3, KO n=23/3); t-test ($t_{45}=0.9572$, $p=0.9572$). **(D-E)** Representative images of **(D)** WT and **(E)** KO axons stained for tdTomato (blue), Synapsin1 (green), and Homer1 (magenta). Synapsin1 puncta were masked inside tdTomato+ axons and counted as synapses (yellow arrows) if they colocalized with Homer1 puncta. Scale bars: 10 μm . **(F-G)** Representative images of **(F)** WT and **(G)** KO axons stained for tdTomato (blue), Vgat (green), and Gephyrin (magenta). Vgat puncta were masked inside tdTomato+ axons and counted as synapses (yellow arrows) if they colocalized with Gephyrin puncta. Scale bars, 10 μm . All data are mean \pm SEM. n.s. not significant.

Figure 5—figure supplement 3. Action potential firing and intrinsic membrane properties in *Rac1* and *ArpC3* neurons.

(A) Schematic of *Rac1* mixed hippocampal neuron cultures. Current clamp recordings were conducted from ChR2+ neurons with light delivered through the objective by a 460nm LED (WT n=12 neurons/3 cultures, KO n=12/3). **(B)** Probability of firing action potentials during a 20Hz light stimulation train (two-way repeated measures ANOVA, $F_{1,22}=0.004558$, $p=0.9468$). **(C)** Resting membrane potential (t-test, $t_{22}=0.2579$, $p=0.7989$). **(D)** Waveforms of light-evoked action potentials and quantification of threshold (Mann-Whitney U-test, $U=65$, $p=0.7125$), height (t-test, $t_{22}=0.6447$, $p=0.5258$), and half-width (t-test, $t_{22}=0.8472$, $p=0.4060$). **(E)** Waveforms of action potentials elicited by current injection and quantification of threshold (t-test, $t_{22}=0.1823$, $p=0.8571$), height (t-test, $t_{22}=0.1056$, $p=0.9168$), and half-width (t-test, $t_{22}=0.0502$, $p=0.9604$). **(F)** Schematic of *ArpC3* mixed hippocampal neuron cultures and current clamp recordings (WT n=14/3, KO n=13/3). **(G)** Probability of firing action potentials during a 20Hz light stimulation train (two-way repeated measures ANOVA, $F_{1,25}=0.07845$, $p=0.7817$). **(H)** Resting membrane potential (t-test, $t_{25}=1.068$, $p=0.2959$). **(I)** Waveforms of light-evoked action potentials and quantification of threshold (t-test, $t_{25}=0.7780$, $p=0.4438$), height (t-test, $t_{25}=0.4700$, $p=0.6424$), and half-width (t-test, $t_{25}=2.745$, $p=0.0111$). **(J)** Waveforms of action potentials elicited by current injection and quantification of threshold (t-test, $t_{25}=0.8628$, $p=0.3964$), height (t-test, $t_{25}=0.2601$, $p=0.7969$), and half-width (t-test, $t_{25}=2.991$, $p=0.0062$). All data are mean \pm SEM. * $p<0.05$, ** $p<0.01$, n.s. not significant.

Figure 7—figure supplement 1. Presynaptic boutons in organotypic slices used for 2pFLIM contain synapsin.
(A) Representative image of an organotypic hippocampal slice microinjected in CA3 with AAV-mEGFP-Rac1 and AAV-mCherry-PBD2-mCherry on DIV10 and fixed and stained on DIV20 for DAPI (blue), GFP (green), mCherry (magenta), and Synapsin1 (cyan). Scale bar, 300 μ m. **(B)** Representative image of axons in CA1 expressing the Rac1 activity sensor. Green arrow points to a Synapsin1+ bouton, and magenta arrow points to a bouton without Synapsin1 staining. Scale bar, 15 μ m. **(C)** Quantification of percent of GFP+ mCherry+ boutons with Synapsin1 staining (n=142 boutons/8 slices). All data are mean \pm SEM.

Table S1. Candidate genes screened for HiUGE validation of the Synapsin-iBiOLD proteome. A detailed list of C-terminal guide RNAs to validate the presynaptic localization of candidate genes.

#	Gene	Target Sequence (PAM is underlined)	ORF	MIT Score	Figure or reason for exclusion
1	<i>Abi2</i>	TGAGTCCATCATGCATTATT <u>CGG</u>	+1	79	Figure 2C
2	<i>Add1</i>	AGAAGAAGAGTGACTCCTGAAGG	+0	32	Figure 2D
3	<i>Ctnnd2</i>	TCGCCGACTCCTGGGTGA <u>AGG</u>	+2	87	Figure 2E
4	<i>Ctn</i>	GCTCTCCCAGCCA <u>ACTATGTGG</u>	+1	58	Figure 2F
5	<i>Ctnbp2</i>	TGTAGGCAGGC <u>CTATTGTTGG</u>	+0	84	Figure 2G
6	<i>Cyfip2</i>	GCCCCCA <u>ATCCACCAGTCATTGG</u>	+1	87	Figure 2H
7	<i>Dmtn</i>	GCCGGCAGGG <u>ATGTCAGAAGAGG</u>	+2	59	Figure 2I
8	<i>Fam171b</i>	ATTAGTTAGGG <u>GAATCAGTGGG</u>	+2	83	Figure 2J
9	<i>Lasp1</i>	GCTGCCAGCCA <u>ACTACGTGGAGG</u>	+1	78	Figure 2K
10	<i>Nwd2</i>	TAAACATCGTGT <u>CAGTTATCTGG</u>	+0	88	Figure 2L
11	<i>Ppp1r9b</i>	GAACTCCAATT <u>CTACTTAACAGG</u>	+1	83	Figure 2M
12	<i>Tagln3</i>	TGACGGGTACGG <u>ATGCCAGG</u>	+0	81	Figure 2N
13	<i>Trio</i>	TTCAAGATA <u>GGTCAAACCTCTAGG</u>	+0	81	Figure 2O
14	<i>Wipf3</i>	AGTTATCTCTGAAGGC <u>ACTCCGG</u>	+0	69	Figure 2P
15	<i>Ablim1</i>	ATGTCGTT <u>CGCTCTCCAAAGAGG</u>	+0	91	low signal-to-noise ratio
16	<i>Arhgap1</i>	GTGGTGAGCT <u>CAGACCCCCCTGGG</u>	+1	44	low signal-to-noise ratio
17	<i>Bcr</i>	TGTCT <u>TTGCTGTCAGGGGCAGG</u>	+0	66	low signal-to-noise ratio
18	<i>Neb1</i>	CAA <u>ACTCAATGTAATTGCTGGG</u>	+2	75	low signal-to-noise ratio
19	<i>Rac1</i>	GAGGGGG <u>GACAGAGAACCGCTCGG</u> (with V5 donor to replace C-terminal of Rac1, V5-VLCPPPVKRKRKCLL)	+2	58	low signal-to-noise ratio
20	<i>Ablim3</i>	GAGCCTCAGC <u>CTAGAAAAGCCGG</u>	+2	72	signal below detection
21	<i>Arhgap44</i>	GAGAGTACAG <u>CCCTTGATGTGG</u>	+2	82	signal below detection
22	<i>Shank1</i>	CCAGGAAAA <u>ATTGAGAGCCGG</u>	+2	66	signal below detection
23	<i>Zyx</i>	GGTCCAT <u>CTCAACTCAGGTCTGG</u>	+2	81	signal below detection