

1 **Schengen-pathway controls spatially separated and chemically distinct**
2 **lignin deposition in the endodermis.**

3 **Guilhem Reyt^a, Priya Ramakrishna^{a,†}, Isai Salas-González^b, Satoshi Fujita^{c,‡}, Ashley**
4 **Love^d, David Tiemessen^d, Catherine Lapierre^e, Kris Morreel^{f,g}, Monica Calvo**
5 **Polanco^{h,¶}, Paulina Flis^a, Niko Geldner^c, Yann Boursiac^h, Wout Boerjan^{f,g}, Michael W.**
6 **George^{d,i}, Gabriel Castrillo^a, David E. Salt^{a,*}**

7 ^a *Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham,*
8 *LE12 5RD, UK*

9 ^b *Dept. of Biology CB #3280 The University of North Carolina at Chapel Hill, North Carolina 27599, USA*

10 ^c *Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland*

11 ^d *School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK*

12 ^e *Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Sacla, 78000, Versailles, France*

13 ^f *Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium*

14 ^g *Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium*

15 ^h *Biochimie & Physiologie Moléculaire des Plantes, University of Montpellier, CNRS, INRA, SupAgro,*
16 *34060 Montpellier, France*

17 ⁱ *Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China,*
18 *199 Taikang East Road, Ningbo 315100, China*

19 *Present address:*

20 [†] *Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva,*
21 *Switzerland*

22 [‡] *National Institute of Genetics, Mishima, Shizuoka, Japan*

23 [¶] *Excellence Unit of the University of Salamanca, CIALE, 37185, Salamanca, Spain*

24 ^{*} *Corresponding author: David.Salt@nottingham.ac.uk*

30 **ABSTRACT**

31 Lignin is a complex polymer precisely deposited in the cell wall of specialised plant cells,
32 where it provides essential cellular functions. Plants coordinate timing, location, abundance
33 and composition of lignin deposition in response to endogenous and exogenous cues. In roots,
34 a fine band of lignin, the Caspary strip encircles endodermal cells. This forms an extracellular
35 barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A
36 signalling pathway senses the integrity of this diffusion barrier and can induce over-
37 lignification to compensate for barrier defects. Here, we report that activation of this
38 endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the
39 phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory
40 lignin that is chemically distinct from Caspary strip lignin. We also report that a complete
41 loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant
42 growth.

43

44

45 **INTRODUCTION**

46

47 Lignin is a phenolic polymer and is one of the main components of secondary-thickened cell
48 wall in vascular plants. Its chemical properties give strength, stiffness and hydrophobicity to
49 the cell wall. Lignin provides mechanical support, modulates the transport of water and solutes
50 through the vascular systems, and provides protection against pathogens (1, 2). Lignin
51 polymerisation occurs through oxidative coupling of monolignols and other aromatic
52 monomers (3, 4). The monolignols, that is *p*-coumaryl, coniferyl, and sinapyl alcohols are
53 synthesized from the amino acid phenylalanine through the phenylpropanoid pathway. They
54 are then polymerised into lignin to form the *p*-hydroxyphenyl (H), guaiacyl (G), and syringyl
55 (S) subunits of the lignin polymer. Lignin composition and abundance are highly variable
56 among and within plants species, tissues, cell types and can be modulated by environmental
57 cues (1).

58 In roots, large amounts of lignin is deposited in the xylem vessels, an important component of
59 the vascular system (5, 6). Yet, lignin is also deposited in the endodermal cells surrounding the
60 vascular tissues, for Caspary strip (CS) formation (7). Both the vascular system and the CS
61 play a critical role for water and mineral nutrient uptake from the soil and their transport toward
62 the shoot (8-10). In *Arabidopsis thaliana*, the composition of lignin monomers in CS and xylem
63 is similar with a strong predominance of G-unit (>90%) (7). However, the machinery required
64 for CS lignification appears to be distinct from that needed for xylem lignification (6, 11).

65 The deposition of the CS in the endodermal cell wall prevents the apoplastic diffusion of solutes
66 between the outer and inner tissues of the root, forcing solutes to pass through the symplast of
67 endodermal cells (8). CS lignin encircles each endodermal cell, forming a bridge between them.
68 This precise lignin deposition is defined by the presence of the transmembrane Caspary strip
69 domain proteins (CASPAs) (12), peroxidases (13, 14) and the dirigent-like protein ESB1 (15).
70 The expression of this lignin polymerisation machinery is tightly controlled by the transcription
71 factor MYB36 (16, 17). A surveillance mechanism for CS integrity, called the Schengen-
72 pathway, boosts CS deposition and is necessary for CS fusion and sealing of the extracellular
73 space (apoplast) (18). This pathway involves vasculature-derived peptides CASPARIAN
74 STRIP INTEGRITY FACTORS 1 and 2 (CIF1 and 2) (19, 20) and their perception by the
75 leucine-rich repeat receptor-like kinase (LRR-RLK) called SCHENGEND3 (SGN3, also called
76 GSO1). Their interaction triggers a cascade of signalling events mediated by kinases, that
77 involves SGN1, and the activation of the NADPH oxidase RBOHF (SGN4) leading to ROS
78 production, necessary for lignin polymerisation (14, 18, 21). These kinase signalling events

79 occur on the cortex-facing side of the CS and mediates the transition from a discontinuous CS
80 with islands of lignin into a continuous CS with its characteristic ring of lignin that seals the
81 apoplast (18). Once the CS is sealed, CIF peptide diffusion is blocked and the Schengen-
82 pathway becomes inactive. In mutants with an impaired CS, such as *esb1* and *myb36*, the
83 Schengen-pathway is constitutively activated due to a constant leak of the CIF(s) peptides
84 through the CS region (12, 15, 17, 18, 22). This induces a compensatory lignification in the
85 cell corners and suberisation of endodermal cells. However, the role of this compensatory
86 lignin and the mechanism controlling its deposition are not fully understood.

87 Here, we demonstrate that the constitutive activation of the Schengen-pathway induces the
88 deposition of a compensatory lignin in the corners of endodermal cells chemically distinct from
89 CS lignin. We characterised this lignin and found commonalities with stress- and pathogen-
90 response lignin, which has a high content of H subunit. Furthermore, we demonstrate that this
91 cell corner lignification is preceded by a transcriptional reprogramming of endodermal cells,
92 causing a strong induction of the phenylpropanoid pathway and a significant inactivation of
93 aquaporin expression. Our findings also establish that the activation of the Schengen-pathway
94 to compensate for a defective CS is of critical importance for plants to maintain their mineral
95 nutrients homeostasis and water balance.

96

97 RESULTS AND DISCUSSION

98

99 **SGN3 and MYB36 control two pathways leading to different endodermal lignification.**

100 In order to disentangle the role of MYB36 and SGN3 in controlling endodermal lignification,
101 we generated the double mutant *sgn3-3 myb36-2*. We analysed the endodermal accumulation
102 of lignin in the double mutant *sgn3-3 myb36-2*, and the corresponding single mutants *sgn3-3*
103 and *myb36-2* (Fig. 1A-C). In the early stage of endodermal differentiation, we observed
104 deposition of CS lignin in “a string of pearl” manner in WT and *sgn3-3* (Fig. 1A). No
105 endodermal lignification was observed in *myb36-2* or *sgn3-3 myb36-2* at this developmental
106 stage of the root (Fig. 1A). Later in endodermal development, 10 cells after the onset of
107 elongation, we observed a continuous CS ring of lignin, sealing the endodermal cells in WT
108 plants (Fig. 1A-C). As we expected, in *sgn3-3* impaired in the activation of the Schengen-
109 pathway, CS lignification still appears in a discontinuous fashion, and *myb36-2* exhibits
110 compensatory lignification in the corners of the endodermal cells facing the cortical side of the
111 endodermis as previously reported (9, 17). In contrast, no ectopic lignification was observed in
112 the double mutant *sgn3-3 myb36-2* at the same developmental stage (Fig. 1A-C). These results

113 establish that the cell-corner compensatory lignification observed in *myb36-2* lacking CS (17),
114 is SGN3-dependent.

115 To test how these different patterns of endodermal lignification found in WT, *sgn3-3*, *myb36-2*
116 and *sgn3-3 myb36-2* affect the permeability of the root apoplast, we assessed the penetration
117 of the fluorescent apoplastic tracer propidium iodide (PI) (23) into the stele (Fig. 1D). We
118 quantified the percentage of root length permeable to PI, and found that it is partially increased
119 in *sgn3-3* and *myb36-2* in comparison with WT (Fig. 1D). Surprisingly, we observed in the
120 double mutant *sgn3-3 myb36-2*, that the entire length of the root was permeable to PI, indicating
121 an additive effect of both mutations in the double mutant. This result suggests that MYB36 and
122 SGN3 control endodermal lignification through two-independent pathways. The lack of
123 compensatory cell-corner lignification in *sgn3-3 myb36-2* could explain the full permeability
124 of the root found in these plants. This finding supports recent observations assigning a role as
125 an apoplastic barrier to the SGN3-dependent cell-corner lignification (13). In addition, over-
126 activation of the Schengen-pathway is also known to trigger an enhanced suberisation in other
127 CS mutants, including *myb36* (9, 17, 24). We confirm this observation in the *myb36-2* mutant
128 where an early suberisation is observed (Fig. 1E). This enhanced suberisation in *myb36* is also
129 SGN3 dependent since the *sgn3-3 myb36-2* double mutant shows the same pattern of
130 suberisation as WT plants (Fig 1E).

131 Our results indicate that MYB36 and SGN3 control endodermal lignification through two
132 pathways: (a) The pathway involved in CS lignification controlled by both MYB36 and SGN3;
133 and (b) The pathway involved in compensatory lignification of the endodermal cell corners
134 controlled exclusively by SGN3.

135

136 **Endodermal cell-corner lignin is chemically distinct from CS lignin**

137 We investigated the chemical nature and biochemical origins of CS lignin and compensatory
138 cell-corner lignin. For this, we used confocal Raman microscopy on root cross-sections, in
139 order to spatially resolve the chemistry of these different types of lignin. We triggered
140 endodermal cell-corner lignin deposition by feeding WT plants with CIF2 peptide (+CIF2), the
141 ligand of the SGN3 receptor, able to activate the Schengen-pathway. We separately imaged
142 regions of interest (ROIs) containing CS lignin in WT plants, ROIs with endodermal cell-
143 corner lignin in WT treated with CIF2 and ROIs containing xylem lignin from WT plants,
144 treated or not with CIF2 (Sup. Fig. 1). Then, we used a multivariate curve resolution (MCR)
145 analysis on these Raman images to spatially and spectrally resolve lignin in these different
146 ROI. The lignin spectra corresponding to these regions are shown in Fig. 2A-B. We observed

147 that the CS lignin spectrum is distinct from that of endodermal cell-corner lignin. For example,
148 peaks known to be assigned to lignin display higher (ex: 1337 cm⁻¹, aliphatic OH bend (25))
149 and lower (ex: 1606 cm⁻¹, aromatic ring stretch (25)) intensity in CS lignin in comparison with
150 endodermal cell-corner lignin. Another striking difference was observed for the peak at 1656-
151 1659 cm⁻¹ assigned to a double bond conjugated to an aromatic ring (e.g.: coniferyl alcohol or
152 coniferaldehyde, (25)). This peak is missing in the endodermal cell-corner lignin of WT treated
153 with CIF2 in comparison with CS lignin, suggesting a change in the phenolic composition of
154 the cell-corner lignin. Conversely, the xylem lignin spectrum of plants treated with or without
155 CIF2 was similar, with the most intense peaks showing comparable intensity. This suggests
156 that changes in lignin composition triggered by the over-activation of the Schengen-pathway
157 mainly occur in the endodermis, and xylem lignin remains largely unaffected.
158 These conclusions were further confirmed spatially by mapping the intensity of these different
159 lignin spectra on large Raman maps containing xylem and endodermal lignin in WT plants
160 treated or not treated with CIF2 (Fig. 2C). We observed that the CS lignin spectrum localises
161 to the CS and xylem vessels suggesting a similar lignin composition, as previously shown for
162 monomer composition using thioacidolysis (7). Additionally, the endodermal cell-corner lignin
163 spectrum localises almost exclusively to the site of lignification in the corners of the
164 endodermal cells, and is essentially absent from the xylem. However, the xylem lignin
165 spectrum (WT +CIF2) matches exclusively to the xylem vessel and is not observed at the
166 endodermal cell corners. This strongly supports the conclusion that over-activation of the
167 Schengen-pathway triggers deposition of lignin at endodermal cell-corners that has a unique
168 chemical composition compared to both CS and xylem lignin.
169 To confirm these differences between CS and endodermal cell-corners lignin, we adopted an
170 approach to directly measure the subunit composition of endodermal lignin avoiding possible
171 contamination from the highly lignified protoxylem cells (7). We genetically crossed a
172 collection of CS mutants that represent different level of lignin accumulation in the endodermis
173 with the *arabidopsis histidine transfer protein 6.1* mutant (*ahp6-1*). This mutant, in the
174 presence of low amounts of the phytohormone cytokinin, shows a strong delay in protoxylem
175 differentiation, without affecting CS formation (Fig. 2D) (7, 26). Therefore, in the resulting
176 lines the majority of lignin derived from the protoxylem is lost allowing us to analyse primarily
177 lignin with an endodermal origin. To explore how the chemical composition of the cell-corner
178 lignin differs from CS lignin, we collected root tips (3 mm) of 6-day-old *ahp6-1* and *ahp6-1*
179 *esb1-1 sgn3-3* mutants accumulating CS lignin only, and from mutants (*ahp6-1 myb36-2* and
180 *ahp6-1 esb1-1*) with cell-corner lignification and a reduced amount of CS lignin. Additionally,

181 as a control we used *ahp6-1* plants treated with the CIF2 peptide that strongly induces the
182 Schengen-pathway and deposition of cell-corner lignin (Fig. 2D). We measured the relative
183 content of H, G and S subunits in lignin in all samples using thioacidolysis followed by GC-
184 MS (Fig. 2E). We found that CS lignin monomer composition in our control line *ahp6-1* (H:
185 5%, G: 87%, S: 8%) was similar to that previously reported (7). The monomer composition of
186 the defective CS in the mutant *ahp6-1 esb1-1 sgn3-3* is overall similar to WT with a small
187 increase in G and decrease in S subunits. Strikingly, we observed that lignin composition in
188 the lines and treatments that induce the accumulation of cell-corner lignin (*ahp6-1 esb1-1*,
189 *ahp6-1 myb36-2*, *ahp6-1(+CIF2)*) was different from the control and mutant lines that only
190 accumulate lignin in the CS. The lignin extracted from these plants showed a higher proportion
191 of H monomers. In the case of *ahp6-1* treated with CIF2, H content was increased to 19 % and
192 G content was decreased. Thioacidolysis and Raman results indicate that over-activation of the
193 Schengen-pathway triggers the deposition of a chemically distinct H-rich lignin in the corner
194 of the endodermal cells.

195 Such a high content of H subunits in lignin is rarely found in angiosperm. Similar levels of H
196 subunits in lignin mainly occurs in compression wood of gymnosperm (27-30) and in defence-
197 induced lignin, and has been termed “stress lignin” (31-35). We therefore conclude that
198 Schengen-pathway induced endodermal cell-corner lignin is a novel form of ‘stress lignin’.
199 Taken together, both chemical analysis of lignin subunits by thioacidolysis and spatially
200 resolved confocal Raman spectroscopy show that lignin deposited in endodermal cell corners
201 upon activation of the Schengen-pathway is H-rich and chemically and spatially distinct from
202 both CS and xylem lignin.

203 **Schengen-pathway modulates the phenylpropanoid pathway and induces defense-related
204 mechanisms.**

205 To investigate the biosynthesis of the endodermal H-rich stress lignin we performed RNA-seq
206 on root tips (5 mm) of WT plants, on roots showing a strong activation of the Schengen-
207 pathway (WT treated with exogenous CIF2, *myb36-2* and *esb1-1*) and roots with no Schengen
208 signalling (*sgn3-3*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* and *sgn3-3* treated with exogenous CIF2).
209 Clustering analysis of the differentially expressed genes shows that roots displaying cell-corner
210 lignification (WT treated with exogenous CIF2, *myb36-2* and *esb1-1*) due to the over-activation
211 of the Schengen-pathway share a similar transcriptional response that is distinct from that
212 observed in the other genotypes (Fig. 3A, Sup. Fig. 2A, Sup. Table 1). CIF2 application to
213 *sgn3-3* shows a similar transcriptional response to non-treated WT and *sgn3-3* and does not
214 trigger the transcriptional changes observed during the strong activation of the Schengen-

215 pathway (WT treated with exogenous CIF2, *myb36-2* and *esb1-1*). This is in line with previous
216 transcriptomic data in response to CIF2 (18) and the idea that SGN3 is the only receptor for
217 CIF2 in roots. We observed that genes in cluster C1 are upregulated by the activation of the
218 Schengen-pathway. This cluster is enriched in genes involved in the phenylpropanoid pathway
219 (Sup. Fig. 2B). We hypothesize that the activation of this pathway would provide the phenolic
220 substrates required for the enhanced lignification and suberisation induced by the Schengen-
221 pathway. We observed strong activation of expression of genes encoding all the key enzymes
222 of the phenylpropanoid pathway required for monolignol biosynthesis, with the exception of
223 *C3'H*, *C3H* and *F5H* (Fig. 3B, Sup. Fig. 2C). H-rich lignin is known to be accumulated when
224 expression of *C3'H* is repressed in *A. thaliana* and poplar (36-39). This activation of all the
225 main enzymes of the phenylpropanoid pathway with the exception of *C3'H* observed after
226 triggering the Schengen-pathway could explain the high level of H-units incorporation into
227 endodermal cell-corner lignin (Fig. 3B, Sup. Fig. 2C). Similarly, the roots of the cellulose
228 synthase isomer mutant *eli1* (*ectopic lignification1*) accumulate H-rich lignin and display
229 strong gene activation for most of the phenylpropanoid pathway, with the exception of *C3'H*
230 (40). Interestingly, ectopic lignification in this mutant is also under the control of another
231 receptor-like kinase, *THE1* (THESEUS), also involved in cell wall integrity sensing (41, 42).
232 We then tried to identify transcriptional regulators with a role in the regulation of the Schengen-
233 pathway sector controlling phenylpropanoid synthesis. We performed a gene expression
234 correlation analysis between the phenylpropanoid pathway genes and their transcriptional
235 regulators (3, 43) (Sup. Fig. 2C). We found that the expression of the transcription factor
236 *MYB15* highly correlates with the expression of most of the genes required for monolignol
237 biosynthesis, with the notable exception of *C3'H* (Sup. Fig. 2C). Upregulation of *MYB15* in
238 response to CIF2 have been previously shown (18). This transcription factor is known to bind
239 to the promoter of *PAL1*, *C4H*, *HCT*, *CCoAOMT1* and *COMT* but does not bind to the promoter
240 of *C3'H* and *F5H* (44). Schengen-pathway activation of *MYB15* expression provides a
241 plausible mechanism to explain the induction of the main enzymes of the phenylpropanoid
242 pathway with the exception of *C3'H* and *F5H*. This modulation of gene expression could
243 explain the enhanced incorporation of *p*-coumaryl alcohol into the stress lignin we observe at
244 endodermal cell corners. Interestingly, *MYB15* is an activator of basal immunity in *A. thaliana*
245 by inducing the synthesis of defense lignin and soluble phenolics (44).
246 To test if over-activation of the Schengen-pathway leads to the production of defense-inducible
247 soluble phenolics, we undertook secondary metabolites profiling using Ultra High Performance
248 Liquid Chromatography (UHPLC). Profiling was performed on root tips (5 mm) of the *esb1-1*

249 mutant having a defective CS and constitutive activation of the Schengen-pathway, in *sgn3-3*
250 and *sgn3-3 esb1-1* having a defective CS and inactivation of the Schengen-pathway and in WT.
251 We observed distinct accumulation of soluble secondary metabolites across the different
252 genotypes (Sup. Fig. 3, Sup. Table 2). We identified 20 phenolic compounds that differentially
253 accumulate specifically due to the activation of the Schengen-pathway out of 52 compounds.
254 We found higher accumulation of the conjugated neolignan G(8-O-4)*p*CA, scopoletin,
255 flavonoid derivatives such as conjugated kaempferol (astragalin and 4'-O-acetylkaemferol-3-
256 O-hexoside), isorhamnetin and acetylhyperoside. Scopoletin biosynthesis is controlled by the
257 enzyme F6'H1 and COSY (45, 46) and the transcription factor MYB15 (44). We found that
258 the expression of the three genes encoding these proteins is induced by the over-activation of
259 the Schengen-pathway (Fig 3B, Sup. Fig. 2C). Scopoletin is a modulator of plant-microbe
260 interaction (44, 47-49). In addition to that, we found a strong induction of genes related to
261 defense (response to chitin/systemic acquired resistance/immune response/hypersensitive
262 response) among the genes induced by the activation of the Schengen-pathway (C1; Fig. 3A
263 and Sup. Fig. 2B). This corroborates a publication showing similarities between the Schengen-
264 pathway and the microbe-associated molecular patterns (MAMP) signalling pathway (18).
265

266 **Cell wall attachment to plasma membrane relies on CS domain formation rather than 267 lignin deposition.**

268 The apoplast in between two endodermal cells is sealed by the deposition of CS lignin. This
269 sealing is perfected by the anchoring of the CS membrane domain (CSD) to the cell wall (CW),
270 through an unknown mechanism. Upon plasmolysis, the protoplasts of endodermal cells retract
271 but the CSD remains tightly attached to the CS (23, 50, 51). This attachment appears in a
272 developmental manner during the differentiation of the endodermis and occurs in a
273 concomitant manner with the recruitment of the Caspary strip membrane domain proteins
274 (CASPs) at the CSD and with CS lignin deposition (23). We then wanted to study whether or
275 not the different types and sites of lignification contribute to the attachment of the plasma
276 membrane (PM), to the CW. To visualize the PM, we used an endodermis specific PM marker
277 (pELTP::mCit-SYP122) in WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* (Fig. 4A). The PM
278 marker is excluded from the CSD in WT as described for other endodermal plasma membrane
279 marker lines (14, 23). This exclusion is still observed in *sgn3-3* but in an interrupted manner
280 similarly to that observed for lignin (Fig. 1A-C). The exclusion domain disappears entirely in
281 the *myb36-2* and *sgn3-3 myb36-2* mutants. Additionally, no exclusion zone in the PM is
282 observed in *myb36-2* where cell-corner lignin is deposited. We then used mannitol-induced

283 plasmolysis to visualise the PM attachment to the CW. Upon plasmolysis, the PM retracts but
284 remains attached to the CS in WT and *sgn3-3*, forming a flattened protoplast (Fig. 4A).
285 However, small portions of the PM are able to detach from the CW in a *sgn3-3* mutant as seen
286 in Supp. Fig. 4A. This is likely to happen where the PM exclusion domain is interrupted in
287 *sgn3-3* (Fig. 4A). In *myb36-2* and *sgn3-3 myb36-2*, the CW attachment to the PM is lost (Fig.
288 4A, Supp. Fig. 4A). Importantly, retraction of the PM is observed in *myb36-2* at the corner of
289 the endodermal cells on the cortex side where cell-corner lignin is deposited (Fig 1A). These
290 results clearly show the requirement of MYB36 for the formation of the CSD excluding the
291 PM marker. Additionally, the presence of CSD, but not cell-corner lignin is required for PM
292 attachment to the CW.

293 We then tested if CS lignin is required for the PM attachment to the CS. For this, we used an
294 inhibitor of the phenylpropanoid pathway, piperonylic acid (PA), that inhibit lignin
295 accumulation (7). Treatment with PA suppresses lignin accumulation in the vasculature and in
296 the CS (Fig. 4B). Absence of lignin did not affect the exclusion of the PM marker at the CSD.
297 This was further confirmed using the CSD marker line (pCASP1::CASP1-GFP) (12) that
298 showed similar localisation independently of the CS lignin presence (Fig. 4B). Additionally,
299 the PM attachment to the CS is still observed when CS lignin deposition is inhibited (Fig. 4A-
300 B, Supp. Fig. 4A). These findings indicate that CS lignin is not required for the formation of
301 the CSD as previously reported (14, 18) and importantly that CS lignin does not participate in
302 anchoring the CSD to the CW. Other CW compounds might be involved in that process.
303 The absence of PM attachment to the site of cell-corner lignification is likely to affect the
304 permeability of the apoplast of the endodermal cells. This can consequently affect the transport
305 of water and solutes to the shoot.

306

307 **Total absence of an endodermal apoplastic barrier triggers major ionomic changes.**

308 We then investigated how the different types of endodermal lignification control nutrient
309 homeostasis in the plant. The *sgn3-3* (delayed CS barrier, no cell-corner lignin), *myb36-2* (no
310 CS lignin, has cell-corner lignin) and *sgn3-3 myb36-2* (no CS or cell-corner lignin) mutants
311 were grown using different growth conditions (agar plate, hydroponic, and natural soil) and
312 leaves were analysed for their elemental composition (ionome) using inductively coupled-mass
313 spectrometry (ICP-MS; Fig. 5A and Sup. Table 3). A Principal Component Analysis (PCA) of
314 the ionome of leaves reveals that all the mutants have different leaf ionomes compared to WT
315 when grown on plates (Fig. 5B), in hydroponic and to a lesser extent in natural soil (Sup. Fig.
316 5 A-B). Based on the PC1 axis, the double mutant *sgn3-3 myb36-2* displayed the most distinct

317 ionomic phenotype (Fig 5B, Sup. Fig 5 A-B). In line with our previous results (Fig. 1D), this
318 effect indicates an additivity of the two mutations on the leaf ionome. Importantly, this result
319 also supports that cell-corner stress lignin in the single mutant *myb36* can act as an apoplastic
320 barrier to mineral nutrients.

321 We next tested the correlation between the gradient of root apoplastic permeability across WT,
322 *myb36-2*, *sgn3-3* and *sgn3-3 myb36-2* determined in Fig. 1D with their elemental content in
323 leaves (Fig 5C). We observed that the *myb36-2* mutant does not fit into this correlation analysis
324 as well as the other genotypes. This is likely due to the activation of the Schengen-pathway
325 leading to the deposition of endodermal cell-corner stress-lignin, early suberisation, reduced
326 root hydraulic conductivity, activation of ABA signalling in the shoot, and stomata closure (9,
327 24). Additionally, the *myb36-2* mutation interferes with overall root development (Sup. Fig. 5
328 C-E) as previously reported (52). This is due to the over-activation of the Schengen-pathway
329 as the double *sgn3-3 myb36-2* mutant shows normal root development. Removal of *myb36-2*
330 from the correlation analysis, leaving just lines with an inactive Schengen-pathway, improved
331 the Pearson correlation coefficient for almost all the elements, and we observed a strong
332 correlation ($r \geq 0.5$ or $r \leq -0.5$) for 15 out of 20 elements. We observed a strong positive
333 correlation between an increased CS permeability and leaf accumulation of lithium (Li),
334 arsenic (As), manganese (Mn), sodium (Na), strontium (Sr), sulphur (S), copper (Cu), calcium
335 (Ca), boron (B), and a strong negative correlation with iron (Fe), cadmium (Cd), phosphorus
336 (P), zinc (Zn), rubidium (Rb) and potassium (K). This suggests that a functional apoplastic
337 barrier is required to limit the loss of essential elements such as K, Zn, Fe and P. Conversely,
338 a defective apoplastic barrier allows increased leaf accumulation of the essential nutrients Mn,
339 S, Cu, Ca, and B. These gradients of higher and lower accumulations of mineral nutrients and
340 trace elements illustrate the bidirectional nature of the CS barrier, by blocking some solutes
341 from entering the vasculature and by facilitating the accumulation of other solutes in the stele
342 for translocation.

343

344 **Root hydraulic conductivity is reduced by the activation of the Schengen-pathway and it
345 is not affected by the absence of endodermal lignification.**

346 We then measured the capacity of the root to transport water, also called root hydraulic
347 conductivity (L_p), in 3-week-old plants grown hydroponically. We observed that the root
348 hydraulic conductivity remains unchanged in the mutants *sgn3-3* and *sgn3-3 myb36-2* in
349 comparison with WT (Fig. 6A). In contrast, the *myb36-2* mutant showed a strong reduction of
350 root hydraulic conductivity. These results established that the CS-based endodermal apoplastic

351 seal does not control root water transport capacity, as in the absence of any barriers in *sgn3-3*
352 *myb36-2* (Fig. 1D) root hydraulic conductivity is the same as WT. This is consistent with water
353 transport occurring mainly via the transcellular pathway, with a major contribution via
354 aquaporins (53). The reduced hydraulic conductivity observed in *myb36-2* is consistent with
355 that previously observed in *esb1* which also has an activated Schengen-pathway (24). The
356 reduced hydraulic conductivity in *esb1* originates mainly from a reduction in aquaporin-
357 mediated water transport as determined using an pharmacological approach (24). Here, our
358 RNA-seq experiment revealed a GO-term enrichment in cluster C2 (genes repressed by the
359 Schengen-pathway, Fig. 3A) relating to water deprivation (Sup Fig 3B) and importantly, 10
360 aquaporin genes are down regulated by activation of the Schengen-pathway (Fig 6B). This set
361 of aquaporin genes contains several highly expressed aquaporins in root, including *PIP2,2*
362 known to significantly contribute to root hydraulic conductivity (54, 55). This would provide
363 an explanation for the reduction in root hydraulic conductivity observed in both *myb36* and
364 *esb1*.

365

366 **Endodermal lignification is required for plant growth and survival in low humidity.**

367 Given the significant impacts that CS and Schengen-pathway activation have on mineral
368 nutrient homeostasis (Fig. 5) and water transport (Fig. 6A-B), we further investigated their
369 impact on growth and development. The double mutant *sgn3-3 myb36-2* displayed a severe
370 dwarf phenotype when grown hydroponically or in natural soil but not on agar plates in
371 comparison with WT and the single mutants (Supp. Fig. 5 C-G). This indicates a critical role
372 of CS for maintaining normal plant growth and development. However, this is conditioned by
373 the growth environment. The high humidity environment and consequently reduced
374 transpiration of plants on agar plates in comparison with the other growth environments could
375 explain these phenotypical differences. Indeed, reduced leaf transpiration is a key part of the
376 compensation mechanisms mitigating the loss of CS integrity allowing relatively normal
377 growth as reported in (24). We then tested if differences in relative humidity (RH) can affect
378 plant growth in the absence of an endodermal root barrier. For this, we used *sgn3-3* (delayed
379 CS barrier, no cell-corner lignin), *myb36-2* (no CS lignin, has cell-corner lignin) and *sgn3-3*
380 *myb36-2* (no CS or cell-corner lignin). Additionally, we tested if the presence of endodermal
381 suberin can affect plant growth by using lines expressing the Cutinase DEstruction Factor
382 (CDEF) under the control of an endodermis specific promoter (pELTP::CDEF) in a WT and
383 *sgn3-3 myb36-2* background and showing a strong reduction of endodermal suberin deposition
384 (Supp. Fig. 6A). Seedlings were germinated in soil in a high humidity environment (80% RH)

385 for 7 days and transferred to an environment with the same (80% RH) or lower (60% RH)
386 humidity. We measured the leaf surface area as a proxy of plant growth (56) at 0, 2, 5 and 8
387 days after transfer (Fig. 6C and Supp. Fig. 6B). In a high and low humidity environment, all
388 mutants with reduced CS functionality (*sgn3-3*, *myb36-2*, *sgn3-3 myb36-2* and *sgn3-3 myb36-*
389 *2-pELTP::CDEF*) show a reduction of leaf surface in comparison with WT. Importantly, the
390 growth reduction observed in the absence of endodermal lignification (*sgn3-3 myb36-2*) is
391 severe, specifically in low humidity conditions, in comparison with all other genotypes and
392 high humidity conditions. The *sgn3-3 myb36-2* plants with no growth after 9 days started to
393 display necrosis over all the leave surface and were considered dead as quantified in Fig. 6D.
394 Low humidity triggers a high percentage of mortality in *sgn3-3 myb36-2* and to a lesser extent
395 in *sgn3-3* compared to WT and to the other genotypes in which no mortality is observed when
396 grown in low humidity conditions. Such mortality was not observed if *sgn3-3 myb36-2* was
397 grown in high humidity. This highlights that endodermal lignification is required for
398 maintaining plant growth and survival under low humidity. However, this is not the case for
399 endodermal suberisation because the removal of suberin by expressing CDEF in WT and *sgn3-*
400 *3 myb36-2* did not affect mortality and leaf surface area after 8 days at a lower humidity in
401 comparison with their respective backgrounds (Fig.6 C,D, Supp. Fig. 6B).

402 The strong growth reduction observed in *sgn3-3 myb36-2* in comparison with WT and the
403 single mutants could be associated with the lack of root selectivity leading to major ionic
404 changes as shown in Fig. 5. The low humidity would generate a higher transpiration stream
405 and consequently leads to a more uncontrolled and detrimental accumulation of mineral
406 nutrient and trace elements in the leaves in comparison with high humidity. Alternatively, a
407 high humidity environment would slow the transpiration rate, allowing plants to better control
408 nutrient acquisition (24).

409 We then measured the impact of the absence of CS, suberin or of the constitutive activation of
410 the Schengen-pathway on plant fitness. For this, we determined the number of seed-containing
411 siliques per plant as an estimation of fitness (Fig. 6E). A significant reduction of siliques
412 numbers is observed in all the genotypes in comparison to WT with the exception of
413 *pELTP::CDEF*. The mutant *sgn3-3* displaying partial root apoplastic barrier defects showed a
414 decrease in siliques number in comparison with WT. A similar decrease was observed for
415 *myb36-2* displaying also a partial root apoplastic barrier defect with cell-corner stress lignin
416 deposition. Complete disruption of endodermal lignification strongly affects siliques production
417 as observed for *sgn3-3 myb36-2* and *sgn3-3 myb36-2 - pELTP::CDEF*. These results establish
418 that the CS is essential for plant fitness. Further, activation of the Schengen-pathway helps

419 protect the plant from this detrimental impact on fitness when the barrier function of the CS is
420 compromised. The *sgn3-3 myb36-2 - pELTP::CDEF* line reported here, with its complete lack
421 of endodermal lignin and suberin extracellular barriers and Schengen-dependent signaling, is
422 a powerful tool for studying the role of endodermal barriers in a range of processes such as
423 nutrient, hormone and water transport and biotic interaction with soil microorganisms.

424

425 The data presented here revealed that the Schengen-pathway is involved in the deposition of
426 two chemically distinct types of lignin. The Schengen-pathway with MYB36 are required for
427 the deposition of CS lignin. Constitutive activation of the Schengen-pathway leads to the
428 deposition of a chemically distinct stress-like type of lignin. This deposition of stress-lignin
429 contributes to sealing the apoplast maintaining ion homeostasis in the absence of CS integrity.
430 However, no PM attachment to the CW is observed at the site of stress-lignin deposition as
431 seen for the CS, suggesting an inferior seal is formed.

432

433 MATERIALS & METHODS

434

435 Plant material

436 *Arabidopsis thaliana* accession Columbia-0 (Col-0) was used for this study. The following
437 mutants and transgenic lines were used in this study: *sgn3-3* (SALK_043282) (9), *myb36-2*
438 (GK-543B11) (17), *pCASP1::CASP1-GFP* (12), *ahp6-1* (26), *esb1-1* (10), *pELTP::CDEF*(57),
439 *pELTP::SYP122-mCitrine*.

440 The corresponding gene numbers are: *SGN3*, At4g20140; *MYB36*, At5g57620; *CASP1*,
441 At2g36100; *AHP6*, At1g80100; *ESB1*, At2g28670; *ELTP*, At2g48140; *CDEF*, At4g30140;
442 *SYP122*, At3g52400.

443

444 Generation of transgenic lines

445 The *pELTP::mCitrine-SYP122* construct was obtained by recombining three previously generated
446 entry clones for *pELTP*(58), *mCITRINE* and *SYP122* cDNA(59) using LR clonase II
447 (Invitrogen). This construct was independently transformed into WT, *sgn3-3*, *myb36-2*, or
448 *sgn3-3 myb36-2* using the floral dip method (60).

449

450 Growth Conditions

451 For agar plates assays, seeds were surface sterilized, sown on plates containing ½ MS
452 (Murashige and Skoog) with 0.8% agar, stratified for two days at 4°C and grown vertically in

453 growth chamber under long day condition (16h light 100 μ E 22°C/8h dark 19°C) and observed
454 after 6 days. Piperonylic acid was used from germination at 10 μ M as described in (7). The
455 CIF2 peptide treatment (DY(SO3H)GHSSPKPKLVRPPFKLIPN) were applied from
456 germination at a concentration of 100 nM. The CIF2 peptide was synthetized by Cambridge
457 Peptided Ltd.

458 For ionic analysis, plants were grown using three growth conditions:

459 - Sterile ½ MS agar plate. Seeds were surface sterilized and sown on plates containing ½ MS
460 (Murashige and Skoog) with 0.8% agar, stratified for two days at 4°C and grown vertically in
461 growth chamber under long day condition (16h light 100 μ E 22°C/8h dark 19°C). Shoots were
462 collected two weeks after germination.

463 - Hydroponic. Plants were grown for 5 weeks under short day condition (8h light 100 μ E
464 21°C/16h dark 18°C) at 20°C with a relative humidity of 65% RH in a media at pH 5.7
465 containing 250 μ M CaCl₂, 1 mM KH₂PO₄, 50 μ M KCl, 250 μ M K₂SO₄, 1 mM MgSO₄, 100
466 μ M NaFe-EDTA, 2 mM NH₄NO₃, 30 μ M H₃BO₃, 5 μ M MnSO₄, 1 μ M ZnSO₄, 1 μ M CuSO₄,
467 0.7 μ M NaMoO₄, 1 μ M NiSO₄. Media was changed weekly.

468 - Natural soil. Plants were grown for 9 weeks in a growth chamber under short day condition
469 (8h light 100 μ E 19°C/16h dark 17°C) at 18°C with a relative humidity of 70% in a soil
470 collected in the Sutton Bonington campus of the university of Nottingham (GPS coordinate:
471 52°49'59.7"N 1°14'56.2"W).

472

473 **Fluorescence microscopy**

474 For lignin staining with basic fuchsin, CASP1-GFP visualisation and calclofluor white M2R
475 staining, 6-day-old roots were fixed in paraformaldehyde and cleared in ClearSee as described
476 (61) and using confocal microscopes (Zeiss LSM500 and Leica SP8). Fluorol yellow 088
477 staining for visualization of suberin was performed and quantified as described in (7, 58) using
478 a fluorescent microscope Leica DM 5000.

479

480 **Plasmolysis**

481 Plasmolysis was induced by mounting 6-day-old seedlings in 0.8 M mannitol on microscope
482 slides and directly observed using confocal microscopy (Leica SP8). The proportion of the cell
483 wall length in direct contact with the plasma membrane marker SYP122-mCitrine after
484 plasmolysis was measured using Fiji after plasmolysis. This measurement was done on a
485 maximum projection of the top endodermal cells as seen on Supp. Fig 1B. The quantification
486 represents the percentage of cell wall length in direct contact with the plasma membrane marker

487 SYP122-mCitrine after plasmolysis. Plasmolysis events were imaged and quantified at 15 cells
488 after the onset of elongation.

489 For the observation of CASP1-GFP and Lignin staining with basic fuchsin, the seedlings were
490 incubated in 0.8 M mannitol for 5 min. and then fixed and cleared as described above.

491

492 **Thioacidolysis**

493 The plants were grown for 6 days on $\frac{1}{2}$ MS plates supplemented with 10 nM 6-
494 Benzylaminopurine (BA) and 0.1 % sucrose. Seeds were sown in three parallel lines per square
495 plates (12*12 cm) at high density. Six plates were combined to obtain one replicate. The first
496 3 mm of root tips as this zone contains no xylem pole were collected in order to obtain 7 to 15
497 mg of dry weight. The samples were washed twice with 1 mL methanol, rotated for 30 minutes
498 on a carousel and centrifuged to eliminate the methanol supernatant. This washing step was
499 repeated once and the final methanol-extracted samples were then dried for 2 days at 40°C
500 (oven) before thioacidolysis.

501 The thioacidolyses were carried out in a glass tube with a Teflon-lined screwcap, from about 5
502 mg sample (weighted at the nearest 0.01 mg) put together with 0.01 mg C21 and 0.01 mg C19
503 internal standard (50 μ L of a 0.2 mg/ml solution) and with 2 ml freshly prepared thioacidolysis
504 reagent. The tightly closed tubes were then heated at 100°C for 4 hours (oil bath), with gentle
505 occasional shaking. After cooling and in each tube, 2 ml of aqueous NaHCO3 0.2M solution
506 were added (to destroy the excess of BF3) and then 0.1 ml HCl 6M (to ensure that the pH is
507 acidic before extraction). The reaction medium was extracted with 2 ml methylene chloride (in
508 the tube) and the lower phase was collected (Pasteur pipette) and dried over Na₂SO₄ before
509 evaporation of the solvent (rotoevaporator). The final sample was redissolved in about 2 mL
510 of methylene chloride and 15 μ L of this solution were trimethylsilylated (TMS) with 50 μ L
511 BSTFA + 5 μ L pyridine. The TMS solution was injected (1 μ L) into a GC-MS Varian 4000
512 instrument fitted with an Agilent combiPAL autosampler, a splitless injector (280 °C), and an
513 ion-trap mass spectrometer (electron impact mode, 70 eV), with a source at 220 °C, a transfer
514 line at 280 °C, and an m/z 50–800 scanning range. The GC column was a Supelco SPB1
515 column (30 m \times 0.25 mm i.d., film thickness 0.25 μ m) working in the temperature program
516 mode from 45 to 160 °C at +30 °C/min and then 160 to 260 °C at +5 °C/min, with helium as
517 the carrier gas (1 mL/min). The GC-MS determinations of the H, G, and S lignin-derived
518 monomers were carried out on ion chromatograms respectively reconstructed at m/z 239, 269,
519 and 299, as compared to the internal standard hydrocarbon evaluated on the ion chromatogram

520 reconstructed at m/z (57 + 71 + 85).. Each genotype was analyzed as biological triplicates and
521 each biological triplicate was subjected to two different silylations and GC-MS analyses.

522

523 **Raman microscopy**

524 Six-day-old seedling were fixed in PBS buffer containing 4% formaldehyde and 1%
525 glutaraldehyde at 4°C overnight, then washed twice with PBS 30 min. Samples were
526 progressively dehydrated in ethanol (30%, 50%, 70%, 100% ethanol). Samples were aligned
527 and embedded in Leica historesin using the protocol described in Beeckman and Viane. 1999.

528 Sections of 5 μ m at 4mm from the root tip were generated using a Leica microtome.

529 The different samples were embedded in resin and cut at 4mm from the root tip using a
530 microtome with a thickness of 15 μ m. Sections were mounted on superfrost glass slides. The
531 samples were then mapped in a grid over the region of interest. The Raman imaging was
532 performed with a Horiba LabRAM HR spectroscope equipped with a piezoelectric scan stage
533 (Horiba Scientific, UK) using a 532 nm laser, a 100x air objective (Nikon, NA = 0.9) and 600g
534 mm⁻¹ grating. Maps were collected for the regions of interest by setting equidistant points along
535 the sample to ensure maximum coverage. The main regions covered in the analysis were the
536 endodermal cell-cell junction, the endodermal cell corners towards the endodermal-cortical
537 junction and the xylem poles (Figure S1). The maps were acquired with 2 accumulations and
538 30s integration time. The spectra were acquired in the range 300-3100cm⁻¹. The spectra were
539 processed using MATLAB and eigenvector software. Firstly, the spectra were trimmed (500-
540 1800 cm⁻¹), smoothed and then baseline corrected using an automatic least squares algorithm.
541 This was followed by a percentile mean subtraction (10-20%) to remove signal from the resin.
542 Finally, Gaussian image smoothing was performed to improve signal to noise of the Raman
543 maps. Multivariate Curve Resolution (MCR) analysis was performed on the maps containing
544 the specific ROIs and the corresponding lignin spectra were extracted. These lignin spectra
545 were then used as bounds for the MCR analysis of the large maps where the concentration of
546 these spectra are determined, with a high intensity indicating a high concentration of the
547 specific lignin (Fig. 2C).

548

549 **RNA-seq**

550 The plants were grown for 6 days on 1/2 M/S plates. Seeds were sown in three parallel lines per
551 square plates (12*12 cm) at high density. The first 5 mm of root tips were collected. One plate
552 was used as a biological replicate. The samples were snap-frozen at harvest and ground into
553 fine powder in a 2 mL centrifuge tube. Total RNA was extracted according to Logemann et al.,

554 1987. Samples were homogenized in 400 μ L of Z6-buffer containing 8 M guanidine-HCl, 20
555 mM MES, 20 mM EDTA pH 7.0. After the addition of 400 μ l
556 phenol:chloroform:isoamylalcohol, 25:24:1, samples were vortexed and centrifuged (15,000g
557 10 min.) for phase separation. The aqueous phase was transferred to a new 1.5 mL tube and
558 0.05 volumes of 1 N acetic acid and 0.7 volumes 96% ethanol was added. The RNA was
559 precipitated at -20°C overnight. Following centrifugation (15,000g 10 min, 4°C), the pellet was
560 washed with 200 μ L 3M sodium acetate at pH 5.2 and 70% ethanol. The RNA was dried and
561 dissolved in 30 μ L of ultrapure water and store at -80°C until use. DNase treatment (DNase I,
562 Amplification Grade, 18068015, Invitrogen) was carried out on the samples to remove genomic
563 DNA. The RNA Concentration and quality were determined using Qubit (Invitrogen; Q10210)
564 and TapeStation (Agilent; G2991A) protocols. Librairies were generated using the Lexogen
565 Quant Seq 3' mRNA Seq (FWD) Library Prep Kit (Lexogen; 015) which employs polyA
566 selection to enrich for mRNA. Library yield was measured by Qubit (Invitrogen; Q10210) and
567 TapeStation (Agilent; G2991A) systems. protocols to determine concentration and library size,
568 these are then pooled together in equimolar concentrations. The concentration of the pool of
569 libraries were confirmed using the Qubit and qPCR and then loaded onto an Illumina NextSeq
570 500/550 High Output Kit v2.5 (75 Cycles) (Illumina; 20024906), to generate approximately 5
571 million 75bp single-end reads per sample.

572 Trimmomatic v0.36 was used to identify and discard reads containing the Illumina adaptor
573 sequence. Then, we mapped the resulting high-quality filtered reads against the TAIR10
574 Arabidopsis reference genome using HISAT2 v.2.1.0 with default parameters. Afterwards, we
575 applied the featureCounts function from the Subread package to count reads that mapped to
576 each one of the 27,206 nuclear protein-coding genes.

577 We used the R package DESeq2 v.1.24.0 to identify differentially expressed genes (DEGs)
578 between each genotype (*sgn3-3*, *sgn3-3 myb36-2*, *sgn3-3 (+CIF2)*, *esb1-1*, *esb1-1 sgn3-3* and
579 *WT (+CIF2)* against *WT* (Col-0). To do so we fitted the following generalized linear model
580 (GLM).

$$581 \quad \text{Gene abundance} \sim \text{Rep} + \text{Genotype}$$

582 A gene was considered statistically differentially expressed if it had a false discovery rate
583 (FDR) adjusted p-value < 0.1.

584 For visualization purposes we created a standardized gene matrix. To do so, we applied a
585 variance stabilizing transformation to the raw count gene matrix followed up by standardizing
586 the expression of each gene along the samples. We used this standardized gene matrix to

587 perform principal coordinate (PC) analysis using the prcomp function in R. We displayed the
588 results of the PC analysis using ggplot2.

589 Additionally, we subset the 3266 statistically significant DEGs from the standardized gene
590 matrix. Then, for each DEG we calculated its mean expression across each genotype followed
591 up by hierarchical clustering (R function hclust method ward.D2) using the euclidean distance
592 for the genotypes and the correlation dissimilarity for the genes. To define the 7 clusters of
593 cohesively expressed genes, we cut the gene dendrogram from the hierarchical clustering using
594 the R function cutree. We visualized the expression of the 3266 DEGs and the result of the
595 clustering approach using ggplot2. We used the compareCluster function from the
596 clusterProfiler R package to perform gene ontology (GO) analysis for the 7 clusters of
597 cohesively expressed DEGs.

598 We constructed individual heatmaps for the phenylpropanoid pathway and the aquaporin genes
599 by subsetting the corresponding curated gene ids from the standardized gene matrix and
600 procedure described above.

601 Raw sequence data and read counts are available at the NCBI Gene Expression Omnibus
602 accession number (GEO: GSE158809). Additionally, the scripts created to analyse the RNA-
603 Seq data can be found at <https://github.com/isaig/schengenlignin>

604

605 Extraction and profiling of metabolites

606 The plants (WT, *esb1-1*, *sgn3-3* and *esb1-1 sgn3-3*) were grown for 6 days on ½ M/S plates
607 supplemented with 0.1% sucrose. Seeds were sown in three parallel lines per square plates
608 (12*12 cm) at high density. The first 5 mm of root tips were collected in order to obtain 10 to
609 20 mg of dry weight per replicate. Eight plates were combined to obtain one replicate. Eight
610 replicates per genotypes were harvested. The samples were snap-frozen at harvest and ground
611 into fine powder in a 2 mL centrifuge tube then homogenized in liquid nitrogen and extracted
612 with 1 ml methanol. The methanol extract was then evaporated, and the pellet dissolved in 200
613 µl water / cyclohexane (1/1, v/v). 10 µl of the aqueous phase was analyzed via reverse phase
614 UltraHigh Performance Liquid Chromatography (UHPLC; Acquity UPLC Class 1 systems
615 consisting of a Sample Manager-FTN, a Binary Solvent Manager and a Column Manager,
616 Waters Corporation, Milford, MA) coupled to negative ion Electrospray Ionization-
617 Quadrupole-Time-of-Flight Mass Spectrometry (ESI-Q-ToF-MS; Vion IMS QToF, Waters
618 Corporation) using an Acquity UPLC BEH C18 column (1.7 µm, 2.1 x 150 mm; Waters
619 Corporation). Using a flow rate of 350 µl/min and a column temperature of 40 °C, a linear
620 gradient was run from 99% aqueous formic acid (0.1%, buffer A) to 50% acetonitrile (0.1%

621 formic acid, buffer B) in 30 min, followed by a further increase to 70% and then to 100% buffer
622 B in 5 and 2 min, respectively. Full MS spectra (m/z 50 – m/z 1,500) were recorded at a scan
623 rate of 10 Hz. The following ESI parameters were used: capillary voltage 2.5 kV, desolvation
624 temperature 550 °C, source temperature 120 °C, desolvation gas 800 L/h and cone gas 50 L/h.
625 Lock correction was applied. In addition to full MS analysis, a pooled sample was subjected to
626 data dependent MS/MS analysis (DDA) using the same separation conditions as above. DDA
627 was performed between m/z 50 and m/z 1,200 at a scan rate of 5 Hz and MS -> MS/MS
628 transition collision energy of 6 eV. The collision energy was ramped from 15 to 35 eV and
629 from 35 to 70 eV for the low and high mass precursor ions, respectively.

630 Integration and alignment of the m/z features were performed via Progenesis QI software
631 version 2.1 (Waters Corporation). The raw data were imported in this software using a filter
632 strength of 1. A reference chromatogram was manually chosen for the alignment procedure
633 and additional vectors were added in chromatogram regions that were not well aligned. Peak
634 picking was based on all runs with a sensitivity set on ‘automatic’ (value = 5). The
635 normalization was set on ‘external standards’ and was based on the dry weight of the samples
636 (62). In total, 13,091 m/z features were integrated and aligned across all chromatograms.
637 Structural annotation was performed using a retention time window of 1 min, and using both
638 precursor ion and MS/MS identity searches. The precursor ion search (10 ppm tolerance) was
639 based on a compound database constructed via instant JChem (ChemAxon, Budapest,
640 Hungary), whereas MS/MS identities were obtained by matching against an in-house mass
641 spectral database (200 ppm fragment tolerance).

642 Using R vs 3.4.2., m/z features representing the same compound were grouped following the
643 algorithm in (63). Of the 13,091 m/z features, 12,326 were combined into 2,482 m/z feature
644 groups, whereas 765 remained as m/z feature singlets (i.e. low abundant features). All
645 statistical analyses were performed in R vs. 3.4.2 (64). Including all m/z features and upon
646 applying a prior inverted hyperbolic sine transformation (65), the data were analyzed via both
647 Principal Component Analysis (PCA) and one-way analysis of variance (ANOVA; lm()
648 function) followed by Tukey Honestly Significant Difference (Tukey HSD; TukeyHSD()
649 function) post hoc tests. For PCA, the R packages FactoMineR (66) and factoextra
650 (<https://CRAN.R-project.org/package=factoextra>) were employed:
651 PCA(scale.unit=T,graph=F), fviz_pca_ind() and fviz_pca_biplot(). Following ANOVA
652 analysis, experiment-wide significant models were revealed via a false discovery rate (FDR)
653 correction using the p.adjust(method="fdr") function. Using a FDR-based Q value < 0.05,
654 4,244 of the 13,091 m/z features were significantly changed in abundance corresponding to

655 123 m/z feature singlets and 1,158 of the 2,482 compounds. Using a minimum abundance
656 threshold of 500 in at least one of the lines, further analysis was performed on 411 of the 1,158
657 compounds and 11 of the 123 m/z feature singlets (411 compounds and 11 singlets representing
658 together 889 m/z features).

659

660 **Root Hydraulic conductivity**

661 The procedure was exactly identical to the one described in (24). Root hydrostatic conductance
662 (K_r) was determined in freshly detopped roots using a set of pressure chambers filled with
663 hydroponic culture medium. Excised roots were sealed using dental paste (Coltène/Whaledent
664 s.a.r.l., France) and were subjected to 350 kPa for 10 min to achieve flow stabilization, followed
665 by successive measurements of the flow from the hypocotyl at pressures 320, 160, and 240
666 kPa. Root hydrostatic conductance (K_r) was calculated by the slope of the flow (J_v) to pressure
667 relationship. The hydrostatic water conductivity (L_{pr-h} , ml H₂O g⁻¹ h⁻¹ MPa⁻¹) was calculated
668 by dividing K_r by the root dry weight.

669

670 **Determination of the leaf surface area, mortality and siliques number**

671 For the determination of the leaf surface and mortality, the seeds were stratified for two days
672 at 4°C and the plants were grown in Levington M3 compost in a growth chamber under long
673 day condition (16h light 100μE 21°C/8h dark 19°C). The plants were grown for 7 days with
674 high relative humidity (80%) and then half of the plants were transferred at a lower humidity
675 (65%). Leaf surface was determined at 6, 9, 12 and 15 days after germination using the
676 threshold command of the Fiji software (Schindelin et al., 2012). The plants displaying no
677 growth after 9 days and showing necrosis in all the leave surface were considered as dead
678 plants.

679 For the determination of the siliques number, the plants were cultivated in a high humidity
680 environment for 10 days after germination and then transferred to a greenhouse. After siliques
681 ripening, only the seeds containing siliques were counted.

682

683 **Ionomics analysis with ICP-MS**

684 Ionomics analysis of plants grown in soil (or on plate, hydroponically) was performed as
685 described (67). Briefly, samples (leaf, shoot, root or seed) were harvested into Pyrex test tubes
686 (16 x 100 mm) and dried at 88°C for 20h. After weighing the appropriate number of samples
687 (these masses were used to calculate the rest of the sample masses; alternatively, all samples
688 were weighed individually—usually for small set of samples), the trace metal grade nitric acid

689 Primar Plus (Fisher Chemicals) spiked with indium internal standard was added to the tubes (1
690 mL per tube). The samples were then digested in dry block heater (DigiPREP MS, SCP
691 Science; QMX Laboratories, Essex, UK) at 115°C for 4 hours. The digested samples were
692 diluted to 10 mL with 18.2 MΩcm Milli-Q Direct water (Merck Millipore). Elemental analysis
693 was performed with an inductively coupled plasma-mass spectrometry (ICP-MS), PerkinElmer
694 NexION 2000 equipped with Elemental Scientific Inc. autosampler, in the collision mode (He).
695 Twenty elements (Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo and
696 Cd) were monitored. Liquid reference material composed of pooled samples was prepared
697 before the beginning of sample run and was used throughout the whole samples run. It was run
698 after every ninth sample to correct for variation within ICP-MS analysis run (67). The
699 calibration standards (with indium internal standard and blanks) were prepared from single
700 element standards (Inorganic Ventures; Essex Scientific Laboratory Supplies Ltd, Essex, UK)
701 solutions. Sample concentrations were calculated using external calibration method within the
702 instrument software. Further data processing was performed using Microsoft Excel
703 spreadsheet.

704

705 **Acknowledgements**

706 We thank Deep Seq (Next Generation Sequencing Facility of the University of Nottingham,
707 UK), the nmRC (Nanoscale and Microscale Research Centre of the University of Nottingham,
708 UK), the Microscopy and Histology Facility of the University of Aberdeen (UK), the VIB
709 Metabolomics Core (VIB-UGent, Belgium). This work was supported by grants from the UK
710 Biotechnology and Biological Sciences Research Council Grant (grant no. BB/N023927/1 to
711 D.E.S.), the Coordinating Action in Plant Sciences Promoting sustainable collaboration in plant
712 sciences (grant no. ERACAPS13.089_RootBarriers to DES), the Engineering and Physical
713 Sciences Research Council (grant no. EP/R025282/1) and the Future Food Beacon of
714 Excellence at the University of Nottingham (Nottingham Research Fellowship to GC, and
715 Postdoctoral Research Fellowship to GR)

716

717

718 **FIGURES LEGEND**

719 **Figure 1. Disruption of *MYB36* and *SGN3* abolish endodermal lignification and root**

720 apoplastic barrier.

721 (A) Maximum projection of lignin staining at the 6th and 10th endodermal cell after the onset
722 of elongation. Spiral structures in the centre of the root are xylem. Scale bar = 10 μ m. Median
723 (B) and surface (C) view of an endodermal cell at 10 cells after the onset of elongation. Scale
724 bar = 5 μ m. The roots were cleared and stained with basic fuchsin (yellow) for lignin and with
725 Calcofluor white (blue) for cellulose. (D) Boxplot showing the percentage of the root length
726 permeable to propidium iodide. n=18 from two independent experiments. Different letters
727 represent significant differences between genotypes using a Mann-Whitney test (p<0.01). (E)
728 Quantification of suberin staining along the root. The results are expressed in percentage of
729 root length divided in three zones: unsuberised (white), discontinuously suberised (yellow),
730 continuously suberised (orange). n = 6, error bars: SD. Individual letters show significant
731 differences using a Mann-Whitney test between the same zones (p<0.01).

732

733 **Figure 2. Activation of the Schengen-pathway triggers the deposition of a distinct “stress”**

734 lignin in the endodermis.

735 (A) Raman spectra of lignin of the different regions of interest presented in Sup. Fig. 1 and
736 determined using a Multivariate Curve Resolution (MCR) analysis. The MCR analysis was
737 performed on small Raman maps from independent plants containing CS lignin of WT (n = 8),
738 cell-corner lignin of WT treated with CIF2 (+CIF2; n = 5) and for xylem lignin of WT (n = 2)
739 and xylem lignin of WT treated with CIF2 (n = 2). (B) Close view of Raman spectra presented
740 in (A) in the lignin aromatic region between 1550cm⁻¹ and 1700 cm⁻¹. (C) Large Raman maps
741 of roots of WT and WT treated with CIF2 (+CIF2). The intensity of the different lignin spectra
742 presented in (A) was mapped onto large Raman maps containing xylem and endodermal lignin.
743 (D) Lignin staining with basic fuchsin at a distance of 3 mm from the root tip in WT, *ahp6-1*,
744 *ahp6-1esb1-1*, *ahp6-1esb1-1sgn3-3*, *ahp6-1myb36-2* and *ahp6-1* treated with CIF2. The plants
745 were grown for 6 days in presence of 10 nM 6-Benzylaminopurine (BA). Upper panel shows
746 a maximum projection of the root (Scale bar = 10 μ m). Spiral structures in the centre only
747 observed in the WT root are protoxylem. Lower panel shows surface view of endodermal cells
748 (Scale bar = 5 μ m). White arrows indicate ectopic lignification. (E) Relative abundance of the
749 lignin monomers released by thioacidolysis (*p*-hydroxyphenyl (H), guaiacyl (G), and syringyl
750 (S) units) in root tips of *ahp6-1* (n=9), *ahp6-1* treated with CIF2 (+CIF2; n = 3), *ahp6-1esb1-1*
751 n = 6, *ahp6-1 myb36-2* (n = 6) and *ahp6-1 esb1-1 sgn3-3* (n = 6). Asterisks represent significant
752 differences from the *ahp6-1* control for each individual monomer using a Mann-Whitney U
753 test (p-value < 0.01).

754

755 **Figure 3. Modulation of the phenylpropanoid pathway by the Schengen-pathway.**

756 (A) Heatmap of the 3266 differentially expressed genes identified in the RNA-seq in root tips
757 of wild-type (WT), *sgn3-3*, *esb1-1*, *myb36-2*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* plants. Treatment
758 with 100 nM CIF2 was applied as indicated (+CIF2) for WT and *sgn3-3* plants. Clusters (C)
759 are designated with numbers (n = 6). Genes belonging to each cluster are listed in Sup. Table
760 1. (B) Phenylpropanoid pathway leading to the lignin monomers and scopoletin biosynthesis
761 (adapted from and (68)). Solid arrows represent enzymatic steps. Gene expression from the
762 genes selected in Sup. Fig. 3C were mapped on the pathway according to their KEGG enzyme
763 nomenclature. Only the genes with a demonstrated function in lignin biosynthesis as listed in
764 Sup. Fig. 3C were mapped. PAL, PHENYLALANINE AMMONIA-LYASE; C4H,
765 CINNAMATE 4-HYDROXYLASE; 4CL, 4-COUMARATE:CoA LIGASE; HCT, *p*-
766 HYDROXYCINNAMOYL-CoA:QUINATE/SHIKIMATE *p*-
767 HYDROXYCINNAMOYLTRANSFERASE; C3H, *p*-COUMARATE 3'-HYDROXYLASE;

768 C3H, COUMARATE 3-HYDROXYLASE; CSE, CAFFEOYL SHIKIMATE ESTERASE;
769 CCoAOMT, CAFFEOYL-CoA O-METHYLTRANSFERASE; CCR, CINNAMOYL-CoA
770 REDUCTASE; F5H, FERULATE 5-HYDROXYLASE; COMT, CAFFEIC ACID O-
771 METHYLTRANSFERASE; CAD, CINNAMYL ALCOHOL DEHYDROGENASE;
772 HCALDH, HYDROXYCINNAMALDEHYDE DEHYDROGENASE; COSY, COUMARIN
773 SYNTHASE; F6'H1 FERULOYL COA ORTHO-HYDROXYLASE 1.
774

775 **Figure 4. PM attachment to the CW is MYB36-dependent but does not rely on lignin
776 deposition.**

777 (A) Median and surface view of the endodermal plasma membrane using the marker line
778 pELTP::SYP122mCitrine before plasmolysis (+H₂O) and after plasmolysis (+Mannitol) at 15
779 cells after the onset of elongation. WT plants were treated or not from germination with 10 μM
780 piperonylic acid (+PA). White asterisks show the exclusion domain at the CSD. The dashed
781 line represents the contours of the cells before plasmolysis. Arrows show the plasma membrane
782 attachment to the cell wall. Blue asterisks show the plasmolysis generated space where no
783 attachment is observed. Scale bar = 5 μm. “inner” designates the stele-facing endodermal
784 surface, “outer”, the cortex-facing surface. (B) Maximum projection of CASP1-GFP and lignin
785 staining with basic fuchsin in cleared roots from plants grown with or without 10 μM
786 piperonylic acid and subjected to plasmolysis with Mannitol. Scale bar = 10 μm.
787

788 **Figure 5. Absence of endodermal apoplastic barrier triggers major ionomic changes.**

789 (A) Overview of ions accumulation in shoot of *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* mutants
790 compared to WT using different growth conditions in agar plates (long day, n=10), in
791 hydroponics (short day, n=6) and natural soil (short day, n≥13). Elements concentration were
792 determined by ICP-MS and are available in the Sup. Table 3. Colour code indicates significant
793 changes in accumulation compared with the WT using a *t* test (p<0.01). (B) Principal
794 component analysis (PCA) based on the concentration of 20 elements in shoots of plants grown
795 in agar plates. Ellipses show confidence level at a rate of 90%. n=10 (C) Plots presenting the
796 correlation between the z-scores of elements content in shoots of plants grown in agar plates
797 of WT, *myb36-2*, *sgn3-3* and *sgn3-3 myb36-2* against the portion of root length permeable to
798 propidium iodide as determined in Fig. 1D. The black lines show the average and the grey area
799 show the 95% confidence interval (n = 10).
800

801 **Figure 6. Activation of the Schengen-pathway represses water transport and maintains
802 plant growth, survival and fitness under fluctuating environment**

803 (A) Hydrostatic root hydraulic conductivity (*L*_{Pr-h}) in WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2*
804 grown hydroponically for 19-21 days under environmental controlled conditions. Hydraulic
805 conductivity was measured using pressure chambers (*L*_{Pr-h}) (means ± SE, n≥3). (B) Heatmap
806 of aquaporins expression across the different genotypes and treatments used in the RNAseq
807 experiment. (C) Representative pictures of WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2*, WT -
808 *pELTP::CDEF* and *sgn3-3 myb36-2 - pELTP::CDEF* plants germinated in soil with a high
809 humidity (80%) for 7 days and then transferred in an environment with a lower (60% RH) or
810 with constant humidity (80% RH). Pictures were taken 0, 2, 5 and 8 days after the transfer.
811 Scale bar = 1 cm. (D) Boxplots showing the proportion of dead plants after transfer in an
812 environment with constant humidity (80% RH, blue) or with a lower (60% RH, red). The plants
813 displaying no growth after 9 days and showing necrosis in all the leave surface were considered
814 as dead plants. Each point represents the proportion of dead plants in a cultivated pot compared
815 to the total number of plants for one genotype in the same pot. Pots were containing at least 8
816 plants of each genotypes, n=10 pots. Different letters represent significant differences between
817 genotypes using a Mann-Whitney test (p<0.01). (E) Boxplots showing the number of siliques

818 produced per plants. Plants were cultivated in a high humidity environment for 10 days after
819 germination and then transferred to a greenhouse. Each point represents the total number of
820 seeds containing siliques per plant (n≥12). Different letters represent significant differences
821 between genotypes using a Mann-Whitney test (p<0.01).
822

823 SUPPLEMENTARY FIGURES LEGEND

824

825 **Supplemental Figure 1. Activation of the Schengen-pathway triggers the deposition of a** 826 **distinct “stress” lignin in the endodermis.**

827 Examples of small Raman maps for endodermal cells of WT(Ø) and WT(+CIF2) and for xylem
828 of WT(Ø) and WT(+CIF2) used for determining the lignin spectra using Multivariate Curve
829 Resolution (MCR) presented in Fig. 2 C-D. The colour code represents the intensity of the
830 lignin factor presented in Fig. 2 C-D.
831

832 **Supplemental Figure 2. Gene expression profiling in response to the activation of the** 833 **Schengen-pathway.**

834 (A) Principal component analysis (PCA) of the differentially expressed genes identified in root
835 tips of wild-type (WT), *sgn3-3*, *esb1-1*, *myb36-2*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* plants.
836 Treatment with 100 nM CIF2 was applied as indicated (+CIF2) for WT and *sgn3-3* plants (n =
837 6). (B) Gene ontology enrichment in the different gene clusters from Fig. 3A. The colour of
838 each point represents the p-value adjusted using the Benjamin-Hochberg procedure, and the
839 size of each point denotes the percentage of total differential expressed genes in the given gene
840 ontology term (Gene Ratio). (C) Heatmap of gene expression of genes related to the
841 phenylpropanoid pathway (black) (69) and their transcriptional regulators (grey) (43, 70).
842 Genes names are given according to (71) for genes related to the phenylpropanoid pathway.
843 Asterisks indicate demonstrated function in lignin biosynthesis with an activity demonstrated
844 *in vitro* or *in vivo* according to (72) for *PAL1-4*, to for (73) *C4H*, (74, 75) for *4CL1-4*, (76, 77)
845 for *CCR1* and 2, (78, 79) for *CAD1*, 2 and 6, (80) for *C3'H*, (81) for *C3H*, (82) for *COMT* and
846 *CCoAOMT1*, (83) for *HCT*, (84) for *CSE*, (85) for *ALDH1A*, (45) for *F6'H1*, (46) for *COSY*
847 and (86) for *F5H1*.
848

849 **Supplemental Figure 3. Metabolite profiling in response to the activation of the Schengen-** 850 **pathway.**

851 Heatmaps of metabolite profiling determined using Ultra High Performance Liquid
852 Chromatography (UHPLC) in 5 mm roots tips of wild-type (WT), *sgn3-3*, *esb1-1 sgn3-3* and
853 *esb1-1*. The heatmaps show all the compounds (2497, left) and characterised compounds (52,
854 right) that are differentially accumulated (q-value < 0.01, left; q-value < 0.1, right n = 8).
855 Underlined names are for compounds that are only differentially accumulated (q-value < 0.1)
856 in *esb1-1* and not changed in *sgn3-3* and *esb1-1 sgn3-3* in comparison with WT. Data for the
857 known compounds are presented in Sup. Table 3.
858

859 **Supplemental Figure 4. Plasma membrane attachment to the cell wall.**

860 (A) Maximum projection of the top endodermal cells as shown in the schematic view. The
861 observations were done in lines expressing the plasma membrane marker line
862 pELTP::SYP122mCitrine before plasmolysis (+H₂O) and after plasmolysis (+Mannitol) at 15
863 cells after the onset of elongation. The dashed line represents the contours of the cells. Asterisks
864 show the plasmolysis generated space where no attachment is observed. Scale bar = 5 μm.
865 Representative pictures are shown.
866

867 **Supplemental Figure 5. Absence of endodermal apoplastic barrier triggers major**
868 **ionomic changes in different growth conditions.**

869 Principal component analysis (PCA) based on the concentration of 20 elements in shoots of
870 WT, *sgn3-3*, *myb36-3* and *sgn3-3 myb36-2* plants grown in (A) hydroponics (short day, n=6)
871 and (B) natural soil (short day, n≥13). Ellipses show confidence level at a rate of 90%. (C)
872 Pictures of 2-week-old wild-type (WT), *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in
873 agar plates. (D-E) Boxplots showing the primary root length (D) and lateral roots density (E)
874 of 2-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in agar plates. Letters
875 show significantly different groups according to a Tukey's test as post hoc analyses (n≥41,
876 P<0.01). (F) Pictures of 5-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown
877 in hydroponics. Scale bar = 1 cm. (G) Pictures of 9-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3*
878 *myb36-2* plants grown in natural soil. Scale bar = 3 cm.

879

880 **Supplemental Figure 6. Activation of the Schengen-pathway maintains plant growth**
881 **under fluctuating environment.**

882 (A) Quantification of suberin staining along the root of 6 days-old plants. The results are
883 expressed in percentage of root length divided in three zones: unsuberised (white),
884 discontinuously suberised (yellow), continuously suberised (orange). n = 7, error bars: SD.
885 Individual letters show significant differences using a Mann-Whitney test between the same
886 zones (p<0.01). (B) Graphs showing leaf surface area of WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2*,
887 WT-*pELTP::CDEF* and *sgn3-3 myb36-2-pELTP::CDEF* plants germinated in soil with a
888 high humidity (80%) for 7 days and then transferred in an environment with constant (80%
889 RH, blue) or with a lower humidity (60% RH, red). Data were collected 0, 2, 5 and 8 days after
890 the transfer. Each point is the average leave surface per plant from a singles pot (n ≥ 6 pots).
891 Each pot contained at least 6 plants for each genotype. The line shows the average value for
892 each measured time points. Black asterisk indicates a significant difference between high and
893 low humidity for a same genotype at one time point. Blue and red asterisk indicate a significant
894 difference in comparison with WT at the same time point respectively for the high and low
895 humidity environment. The significant differences were calculated using a Tukey's test as post
896 hoc analyses (p < 0.01).

897

898 **Supplemental Table 1. List of the differentially expressed genes in the RNA-seq**
899 **experiment.**

900 List of the differentially expressed genes identified in the RNA-seq in root tips of wild-type
901 (WT), *sgn3-3*, *esb1-1*, *myb36-2*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* plants. Treatment with 100
902 nM CIF2 was applied as indicated (+CIF2) for WT and *sgn3-3* plants.

903

904 **Supplemental Table 2. Metabolite profiling in response to the activation of the Schengen-**
905 **pathway.**

906

907 **Supplemental Table 3. Absence of endodermal apoplastic barrier triggers major ionomic**
908 **changes.**

909 Elemental content in shoot of *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* mutants compared to WT
910 using different growth conditions in agar plates (long day, n=10), in hydroponics (short day,
911 n=6) and natural soil (short day, n≥13). Elements concentration were determined by ICP-MS.
912 Data are presented as mean ± standard deviation (SD). *t* tests were performed to determine the
913 significant differences to WT and the corresponding p-values are presented.

914

915

916 **References**

- 917 1. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. *Annu Rev Plant Biol* 54:519–546.
- 918 2. Lee MH, et al. (2019) Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. *The EMBO Journal* 38(23):e1745–17.
- 919 3. Vanholme R, De Meester B, Ralph J, Boerjan W (2019) Lignin biosynthesis and its integration into metabolism. *Current Opinion in Biotechnology* 56:230–239.
- 920 4. Tobimatsu Y, Schuetz M (2018) Lignin polymerization: how do plants manage the chemistry so well? *Current Opinion in Biotechnology* 56:75–81.
- 921 5. Schuetz M, et al. (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. *PLANT PHYSIOLOGY* 166(2):798–807.
- 922 6. Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. *Annals of Botany*:mcv046.
- 923 7. Naseer S, et al. (2012) Caspary strip diffusion barrier in *Arabidopsis* is made of a lignin polymer without suberin. *Proc Natl Acad Sci USA* 109(25):10101–10106.
- 924 8. Geldner N (2013) The endodermis. *Annu Rev Plant Biol* 64(1):531–558.
- 925 9. Pfister A, et al. (2014) A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. *eLife* 3. doi:10.7554/eLife.03115.
- 926 10. Baxter I, et al. (2012) Biodiversity of Mineral Nutrient and Trace Element Accumulation in *Arabidopsis thaliana*. *PLoS ONE* 7(4):e35121.
- 927 11. Barbosa ICR, Rojas-Murcia N, Geldner N (2018) The Caspary strip—one ring to bring cell biology to lignification? *Current Opinion in Biotechnology* 56:121–129.
- 928 12. Roppolo D, et al. (2011) A novel protein family mediates Caspary strip formation in the endodermis. *Nature* 473(7347):380–383.
- 929 13. Rojas-Murcia N, et al. (2020) High-order mutants reveal an essential requirement for peroxidases but not laccases in Caspary strip lignification. *bioRxiv*:2020.06.17.154617.
- 930 14. Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A Mechanism for Localized Lignin Deposition in the Endodermis. *Cell* 153(2):402–412.
- 931 15. Hosmani PS, et al. (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Caspary strip in the root. *Proc Natl Acad Sci USA* 110(35):14498–14503.
- 932 16. Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN (2015) MYB36 regulates the transition from proliferation to differentiation in the *Arabidopsis* root. *Proc Natl Acad Sci USA*:201515576.
- 933 17. Kamiya T, et al. (2015) The MYB36 transcription factor orchestrates Caspary strip formation. *Proc Natl Acad Sci USA*:201507691.
- 934 18. Fujita S, et al. (2020) SCHENGEN receptor module drives localized ROS production and lignification in plant roots. *The EMBO Journal*:e103894.
- 935 19. Nakayama T, et al. (2017) A peptide hormone required for Caspary strip diffusion barrier formation in *Arabidopsis* roots. *Science* 355(6322):284–286.
- 936 20. Doblas VG, et al. (2017) Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. *Science* 355(6322):280–284.
- 937 21. Alassimone J, et al. (2016) Polarly localized kinase SGN1 is required for Caspary strip integrity and positioning. *Nature Plants*:1–10.
- 938 22. Li B, et al. (2017) Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. *Curr Biol*:1–9.
- 939 23. Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. *Proc Natl Acad Sci USA* 107(11):5214–5219.
- 940 24. Wang P, et al. (2019) Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. *Scientific Reports* 9(1):4227.
- 941 25. Agarwal UP, McSweeney JD, Ralph SA (2011) FT-Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins. *Journal of Wood Chemistry and Technology* 31(4):324–344.
- 942 26. Mahonen AP (2006) Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate During Vascular Development. *Science* 311(5757):94–98.
- 943 27. Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-Induced Spruce Stress Lignin (Structural Similarity to Early Developmental Lignins). *Plant Physiol* 108(3):1277.
- 944 28. Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin. *Wood Science and Technology* 25(5):371–381.
- 945 29. Westermark U (1985) The occurrence of p-hydroxyphenylpropane units in the middle-lamella lignin of spruce (*Picea abies*). *Wood Science and Technology* 19(3):223–232.
- 946 30. Lapierre C (1995) Application of New Methods for the Investigation of Lignin Structure. *Forage Cell Wall Structure and Digestibility* (John Wiley & Sons, Ltd), pp 133–166.
- 947 31. Ride JP (1975) Lignification in wounded wheat leaves in response to fungi and its possible rôle in resistance. *Physiological Plant Pathology* 5(2):125–134.
- 948 32. Hammerschmidt R, Bonnen AM, Bergstrom GC, Baker KK (1985) Association of epidermal lignification with nonhost resistance of cucurbits to fungi. *Can J Bot* 63(12):2393–2398.
- 949 33. Doster MA, Bostock RM (1988) Quantification of lignin formation in almond bark in response to wounding and infection by *Phytophthora* species. *Phytopathology* 78(4):473–477.

982 34. Lange BM, Lapierre C, (null) HSJP (1995) Elicitor-induced spruce stress lignin (structural similarity to early
983 developmental lignins). *PLANT PHYSIOLOGY*. doi:10.1007/BF00029715.

984 35. Campbell MM, Ellis BE (1992) Fungal elicitor-mediated responses in pine cell cultures: cell wall-bound
985 phenolics*. *The International Journal of Plant Biochemistry* 31(3):737–742.

986 36. Bonawitz ND, et al. (2014) Disruption of Mediator rescues the stunted growth of a lignin-deficient *Arabidopsis*
987 mutant. *Nature* 509(7500):376–380.

988 37. Franke R, et al. (2002) Changes in secondary metabolism and deposition of an unusual lignin in the *ref8* mutant of
989 *Arabidopsis*. *Plant J* 30(1):47–59.

990 38. Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA
991 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. *Proc Natl Acad Sci
992 USA* 105(11):4501–4506.

993 39. Ralph J, Akiyama T, Coleman HD, Mansfield SD (2012) Effects on Lignin Structure of Coumarate 3-Hydroxylase
994 Downregulation in Poplar. *Bioenerg Res* 5(4):1009–1019.

995 40. Rogers LA, et al. (2005) Comparison of lignin deposition in three ectopic lignification mutants. *New Phytol*
996 168(1):123–140.

997 41. Hématy K, et al. (2007) A Receptor-like Kinase Mediates the Response of *Arabidopsis* Cells to the Inhibition of
998 Cellulose Synthesis. *Current Biology* 17(11):922–931.

1000 42. Cheung AY, Wu H-M (2011) THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?
Current Opinion in Plant Biology 14(6):632–641.

1001 43. Liu J, Osbourn A, Ma P (2015) MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in
1002 Plants. *Molecular Plant* 8(5):689–708.

1003 44. Chezem WR, Memon A, Li F-S, Weng J-K, Clay NK (2017) SG2-Type R2R3-MYB Transcription Factor MYB15
1004 Controls Defense-Induced Lignification and Basal Immunity in *Arabidopsis*. *THE PLANT CELL ONLINE*
1005 29(8):1907–1926.

1006 45. Kai K, et al. (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-
1007 dependent dioxygenase in *Arabidopsis thaliana*. *The Plant Journal* 55(6):989–999.

1008 46. Vanholme R, et al. (2019) COSY catalyses trans–cis isomerization and lactonization in the biosynthesis of
1009 coumarins. *Nature Plants*:1–12.

1010 47. Stringlis IA, et al. (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote
1011 plant health. *Proc Natl Acad Sci USA* 115(22):E5213.

1012 48. Zhelnina K, et al. (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in
1013 rhizosphere microbial community assembly. *Nature Microbiology* 3(4):470–480.

1014 49. König S, et al. (2014) Soluble phenylpropanoids are involved in the defense response of *Arabidopsis* against
1015 *Verticillium longisporum*. *New Phytol* 202(3):823–837.

1016 50. Kroemer K (1903) *Wurzelhaut, Hypodermis und Endodermis der Angiospermenwurzel* (Bibl Bot).

1017 51. Behrisch R (1926) Zur Kenntnis der Endodermiszelle. *Berichte der Deutschen Botanischen Gesellschaft* 44(3):162–
1018 164.

1019 52. Fernández-Marcos M, et al. (2016) Control of *Arabidopsis* lateral root primordium boundaries by MYB36. *New
1020 Phytol*:1–8.

1021 53. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. *Annals of Botany* 90(3):301–313.

1022 54. Javot H, et al. (2003) Role of a single aquaporin isoform in root water uptake. *Plant Cell* 15(2):509–522.

1023 55. Alexandersson E, et al. (2005) Whole gene family expression and drought stress regulation of aquaporins. *Plant
1024 Mol Biol* 59(3):469–484.

1025 56. Olas JJ, Fichtner F, Apelt F (2019) All roads lead to growth: imaging-based and biochemical methods to measure
1026 plant growth. *Journal of Experimental Botany* 71(1):11–21.

1027 57. Andersen TG, et al. (2018) Diffusible repression of cytokinin signalling produces endodermal symmetry and
1028 passage cells. *Nature*:1–20.

1029 58. Barberon M, et al. (2016) Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal
1030 Differentiation. *Cell*:1–35.

1031 59. Vermeer JEM, et al. (2014) A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in
1032 *Arabidopsis*. *Science* 343(6167):178–183.

1033 60. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium -mediated transformation of
1034 *Arabidopsis thaliana*. *Plant J* 16(6):735–743.

1035 61. Ursache R, Andersen TG, Marhavy P, Geldner N (2018) A protocol for combining fluorescent proteins with
1036 histological stains for diverse cell wall components. *The Plant Journal* 93(2):399–412.

1037 62. Morreel K, et al. (2006) Genetical metabolomics of flavonoid biosynthesis in *Populus*: a case study. *The Plant
1038 Journal* 47(2):224–237.

1039 63. Morreel K, et al. (2014) Systematic structural characterization of metabolites in *Arabidopsis* via candidate
1040 substrate-product pair networks. *THE PLANT CELL ONLINE* 26(3):929–945.

1041 64. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
1042 (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
1043 Austria. *R Core Team*. Available at: <https://www.R-project.org/>.

1044 65. Burbidge JB, Magee L, Robb AL (1988) Alternative Transformations to Handle Extreme Values of the Dependent
1045 Variable. *Journal of the American Statistical Association* 83(401):123–127.

1046 66. Lê S, Josse J, Husson F (2008) FactoMineR: An R Package for Multivariate Analysis. *Journal of Statistical
1047 Software; Vol 1, Issue 1* (2008).

1048 67. Danku JMC, Lahner B, Yakubova E, Salt DE (2013) Large-scale plant ionomics. *Methods Mol Biol* 953(Chapter 1049 17):255–276.

1050 68. Vanholme B, Houari El I, Boerjan W (2018) Bioactivity: phenylpropanoids' best kept secret. *Current Opinion in 1051 Biotechnology* 56:156–162.

1052 69. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for *Arabidopsis*. *PLANT 1053 PHYSIOLOGY* 132(2):453–460.

1054 70. Ohtani M, Demura T (2018) The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene 1055 regulatory network model. *Current Opinion in Biotechnology* 56:82–87.

1056 71. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the 1057 lignification toolbox in *Arabidopsis*. *PLANT PHYSIOLOGY* 133(3):1051–1071.

1058 72. Huang J, et al. (2010) Functional Analysis of the *Arabidopsis* PAL Gene Family in Plant 1059 Growth, Development, and Response to Environmental Stress. *Plant Physiol* 153(4):1526.

1060 73. Schilmiller AL, et al. (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and 1061 development in *Arabidopsis*. *The Plant Journal* 60(5):771–782.

1062 74. Costa MA, et al. (2005) Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase 1063 network in *Arabidopsis*: syringyl lignin and sinapate/sinapyl alcohol derivative formation. *The International 1064 Journal of Plant Biochemistry* 66(17):2072–2091.

1065 75. Li Y, Kim JI, Pysh L, Chapple C (2015) Four Isoforms of *Arabidopsis* 4-Coumarate:CoA Ligase Have Overlapping 1066 yet Distinct Roles in Phenylpropanoid Metabolism. *PLANT PHYSIOLOGY* 169(4):2409–2421.

1067 76. Lauvergeat V, et al. (2001) Two cinnamoyl-CoA reductase (CCR) genes from *Arabidopsis thaliana* are 1068 differentially expressed during development and in response to infection with pathogenic bacteria. *The 1069 International Journal of Plant Biochemistry* 57(7):1187–1195.

1070 77. Baltas M, et al. (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from *Arabidopsis thaliana*. 1071 *Plant Physiology and Biochemistry* 43(8):746–753.

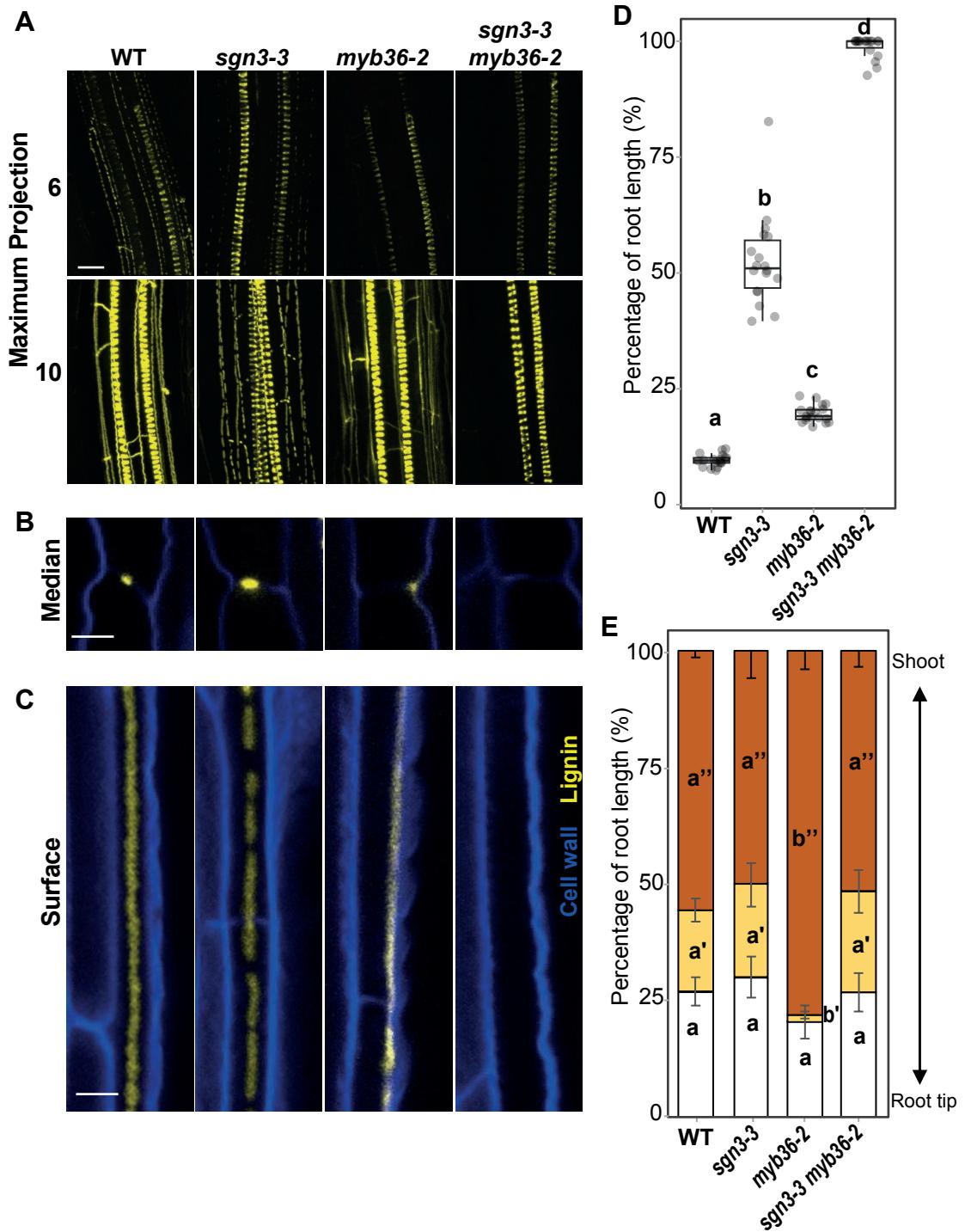
1072 78. Sibout R, et al. (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in 1073 lignin biosynthesis in the floral stem of *Arabidopsis*. *THE PLANT CELL ONLINE* 17(7):2059–2076.

1074 79. Eudes A, et al. (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of *Arabidopsis thaliana*. 1075 *Planta* 225(1):23–39.

1076 80. Franke R, et al. (2002) The *Arabidopsis* REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. 1077 *Plant J* 30(1):33–45.

1078 81. Barros J, et al. (2019) 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate 1079 peroxidase. *Nature Communications*:1–11.

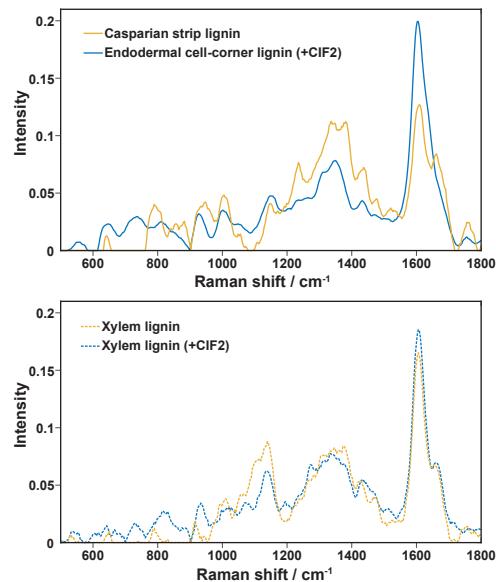
1080 82. Do C-T, et al. (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 1081 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in *Arabidopsis*. *Planta* 1082 226(5):1117–1129.

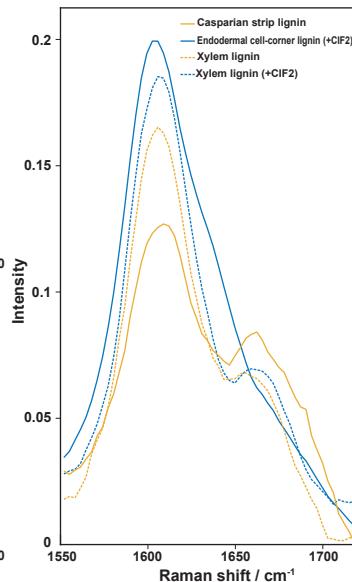

1083 83. Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an 1084 acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. *J Biol Chem* 1085 278(1):95–103.

1086 84. Vanholme R, et al. (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in 1087 *Arabidopsis*. *Science* 341(6150):1103–1106.

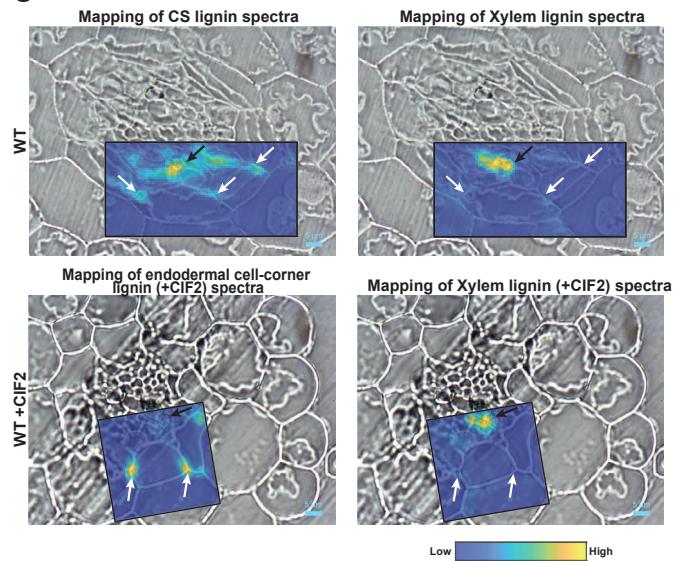
1088 85. Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The *Arabidopsis thaliana* REDUCED 1089 EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic 1090 acid biosynthesis. *THE PLANT CELL ONLINE* 16(2):544–554.

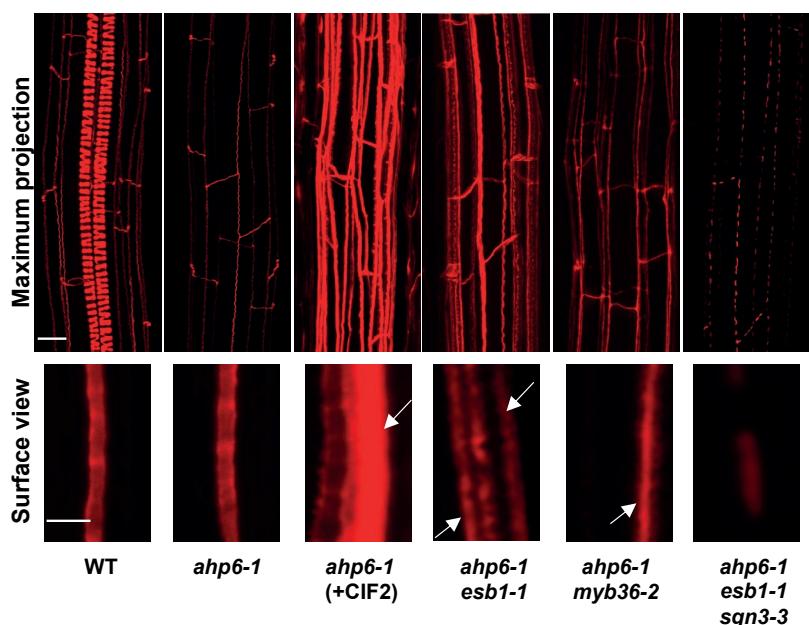
1091 86. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is 1092 determined by the expression of a cytochrome P450-dependent monooxygenase in *Arabidopsis*. *Proceedings of the 1093 National Academy of Sciences* 95(12):6619–6623.

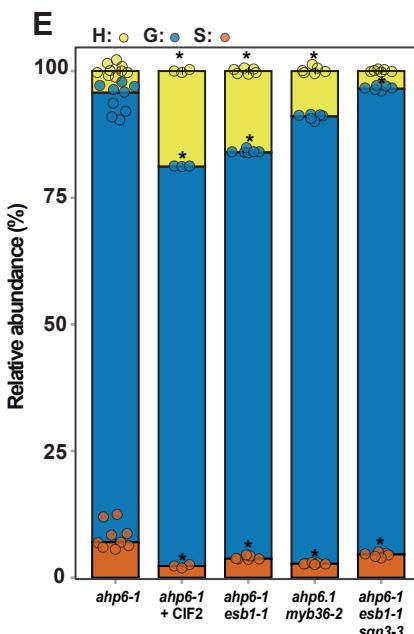

1094


Figure 1. Disruption of *MYB36* and *SGN3* abolish endodermal lignification and root apoplastic barrier.

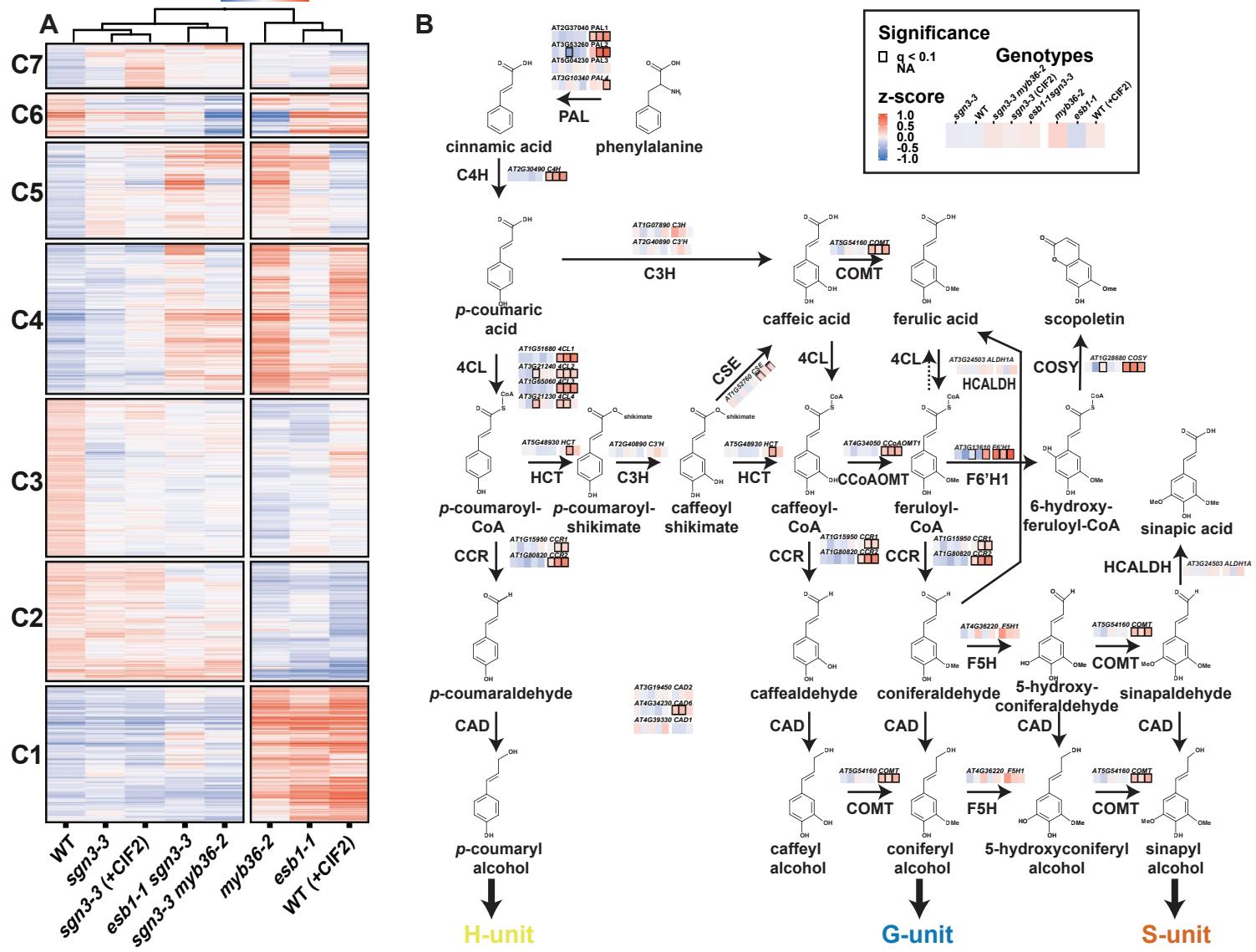
(A) Maximum projection of lignin staining at the 6th and 10th endodermal cell after the onset of elongation. Spiral structures in the centre of the root are xylem. Scale bar = 10 μ m. Median **(B)** and surface **(C)** view of an endodermal cell at 10 cells after the onset of elongation. Scale bar = 5 μ m. The roots were cleared and stained with basic fuchsin (yellow) for lignin and with Calcofluor white (blue) for cellulose. **(D)** Boxplot showing the percentage of the root length permeable to propidium iodide. n=18 from two independent experiments. Different letters represent significant differences between genotypes using a Mann-Whitney test ($p<0.01$). **(E)** Quantification of suberin staining along the root. The results are expressed in percentage of root length divided in three zones: unsuberised (white), discontinuously suberised (yellow), continuously suberised (orange). n = 6, error bars: SD. Individual letters show significant differences using a Mann-Whitney test between the same zones ($p<0.01$).


A

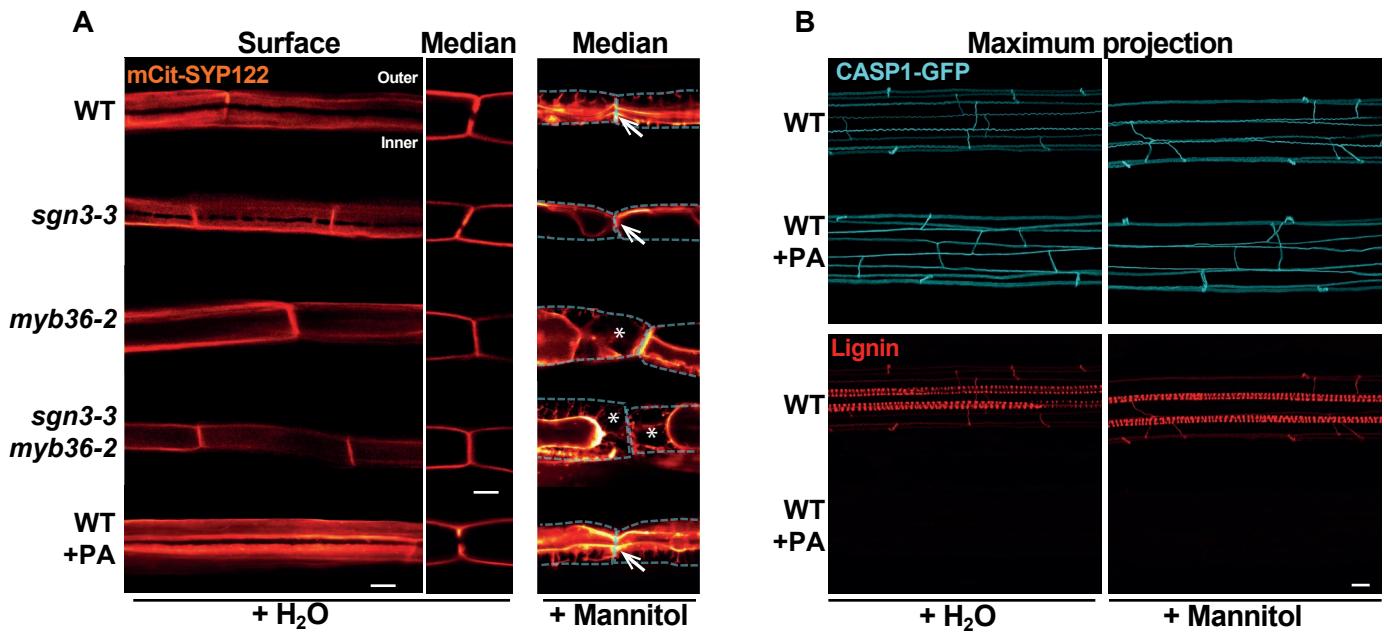

B


C

D

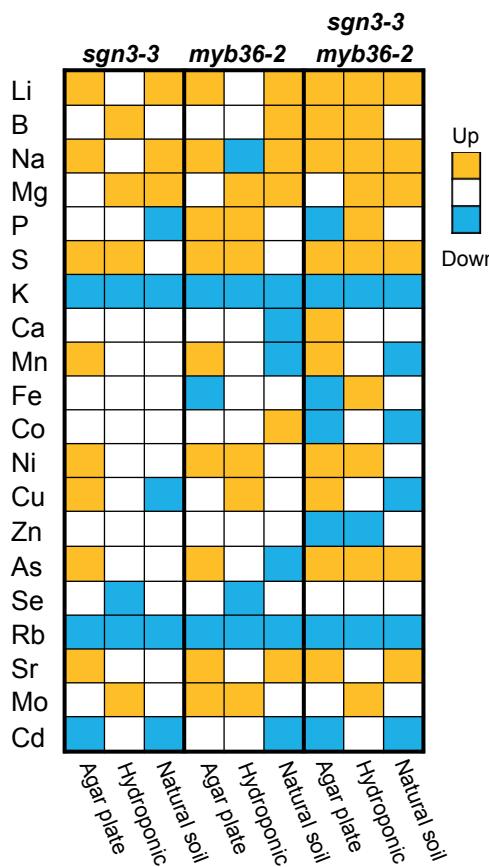


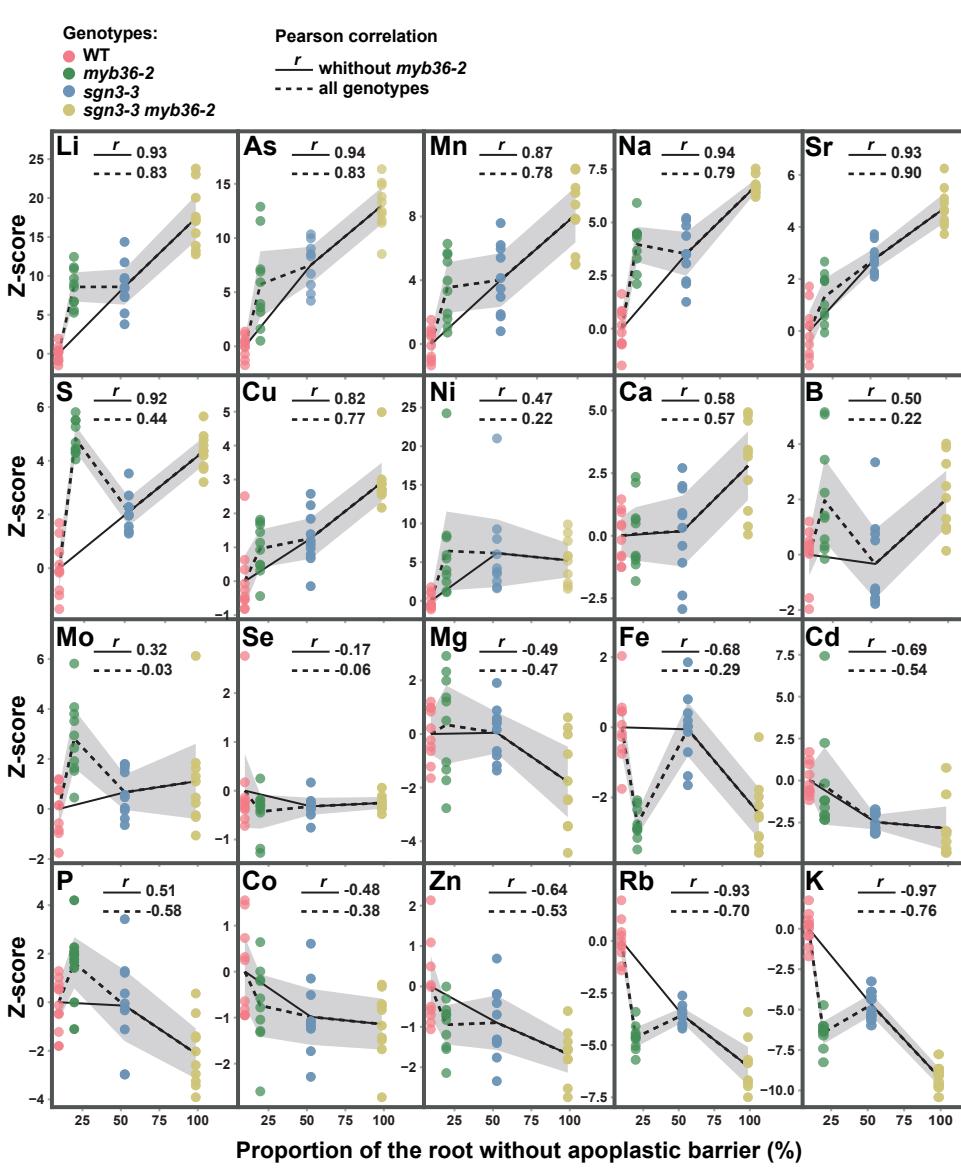
E


Figure 2. Activation of the Schengen-pathway triggers the deposition of a distinct “stress” lignin in the endodermis.

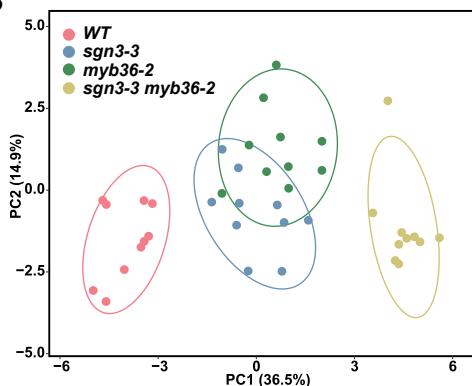
(A) Raman spectra of lignin of the different regions of interest presented in Sup. Fig. 1 and determined using a Multivariate Curve Resolution (MCR) analysis. The MCR analysis was performed on small Raman maps from independent plants containing CS lignin of WT (n = 8), cell-corner lignin of WT treated with CIF2 (+CIF2; n = 5) and for xylem lignin of WT (n = 2) and xylem lignin of WT treated with CIF2 (n = 2). (B) Close view of Raman spectra presented in (A) in the lignin aromatic region between 1550cm⁻¹ and 1700 cm⁻¹. (C) Large Raman maps of roots of WT and WT treated with CIF2 (+CIF2). The intensity of the different lignin spectra presented in (A) was mapped onto large Raman maps containing xylem and endodermal lignin. (D) Lignin staining with basic fuchsin at a distance of 3 mm from the root tip in WT, *ahp6-1*, *ahp6-1**esb1-1*, *ahp6-1**esb1-1**sgn3-3*, *ahp6-1**myb36-2* and *ahp6-1* treated with CIF2. The plants were grown for 6 days in presence of 10 nM 6-Benzylaminopurine (BA). Upper panel shows a maximum projection of the root (Scale bar = 10 µm). Spiral structures in the centre only observed in the WT root are protoxylem. Lower panel shows surface view of endodermal cells (Scale bar = 5 µm). White arrows indicate ectopic lignification. (E) Relative abundance of the lignin monomers released by thioacidolysis (*p*-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units) in root tips of *ahp6-1* (n=9), *ahp6-1* treated with CIF2 (+CIF2; n = 3), *ahp6-1**esb1-1* n = 6, *ahp6-1* *myb36-2* (n = 6) and *ahp6-1**esb1-1**sgn3-3* (n = 6). Asterisks represent significant differences from the *ahp6-1* control for each individual monomer using a Mann-Whitney U test (p-value < 0.01).

Figure 3. Modulation of the phenylpropanoid pathway by the Schengen-pathway.

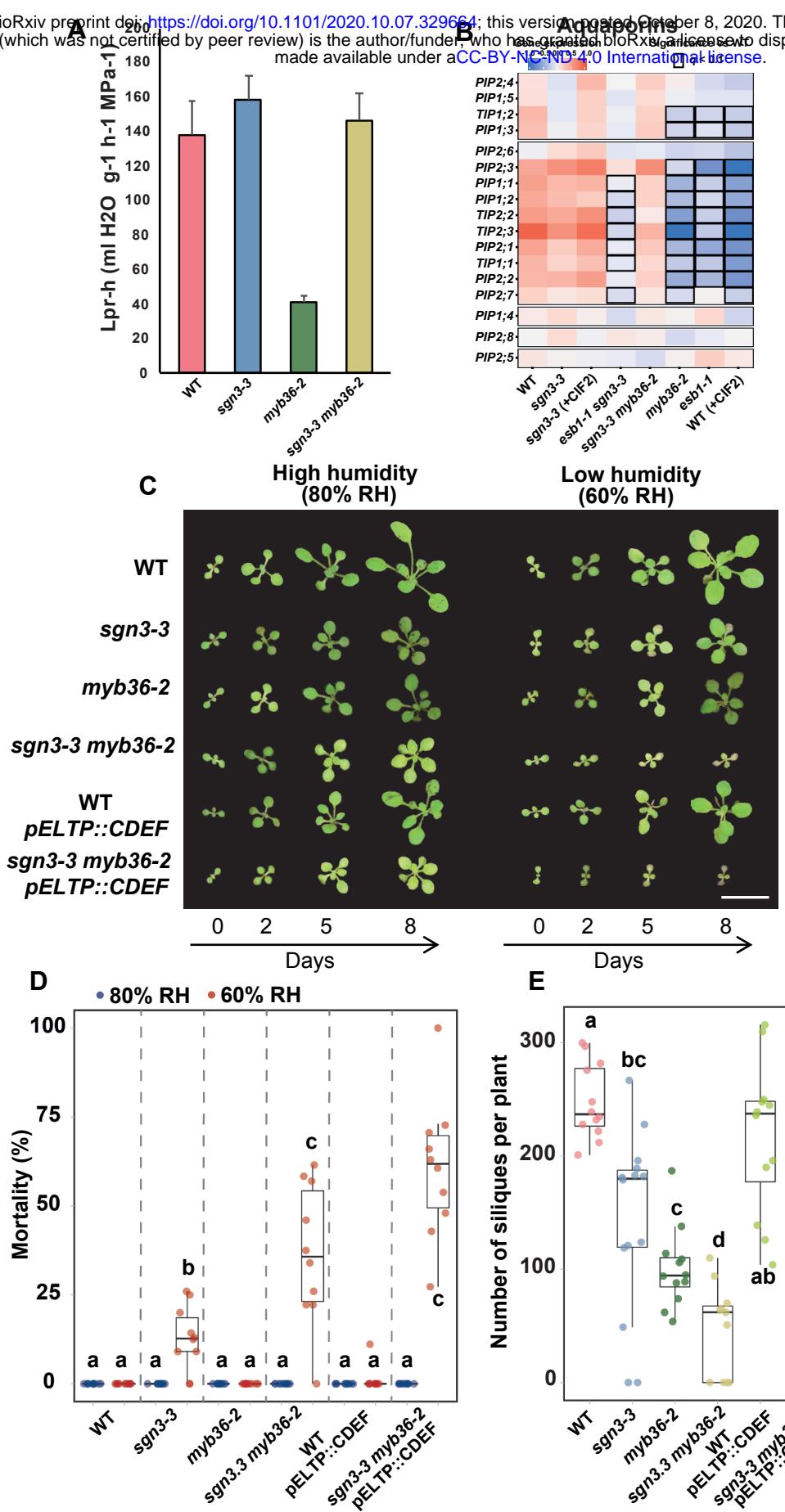

(A) Heatmap of the 3266 differentially expressed genes identified in the RNA-seq in root tips of wild-type (WT), *sgn3-3*, *esb1-1*, *myb36-2*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* plants. Treatment with 100 nM CIF2 was applied as indicated (+CIF2) for WT and *sgn3-3* plants. Clusters (C) are designated with numbers (n = 6). Genes belonging to each cluster are listed in Sup. Table 1. (B) Phenylpropanoid pathway leading to the lignin monomers and scopoletin biosynthesis (adapted from and (68)). Solid arrows represent enzymatic steps. Gene expression from the genes selected in Sup. Fig. 3C were mapped on the pathway according to their KEGG enzyme nomenclature. Only the genes with a demonstrated function in lignin biosynthesis as listed in Sup. Fig. 3C were mapped. PAL, PHENYLALANINE AMMONIA-LYASE; C4H, CINNAMATE 4-HYDROXYLASE; 4CL, 4-COUMARATE:CoA LIGASE; HCT, *p*-HYDROXYCINNAMOYL-CoA:QUINATE/SHIKIMATE *p*-HYDROXYCINNAMOYLTRANSFERASE; C3H, *p*-COUMARATE 3'-HYDROXYLASE; C3H, COUMARATE 3-HYDROXYLASE; CSE, CAFFEOYL SHIKIMATE ESTERASE; CCoAOMT, CAFFEOYL-CoA O-METHYLTRANSFERASE; CCR, CINNAMOYL-CoA REDUCTASE; F5H, FERULATE 5-HYDROXYLASE; COMT, CAFFEIC ACID O-METHYLTRANSFERASE; CAD, CINNAMYL ALCOHOL DEHYDROGENASE; HCALDH, HYDROXYCINNAMALDEHYDE DEHYDROGENASE; COSY, COUMARIN SYNTHASE; F6'H1 FERULOYL COA ORTHO-HYDROXYLASE 1.


Supplemental Figure 4. Plasma membrane attachment to the cell wall.

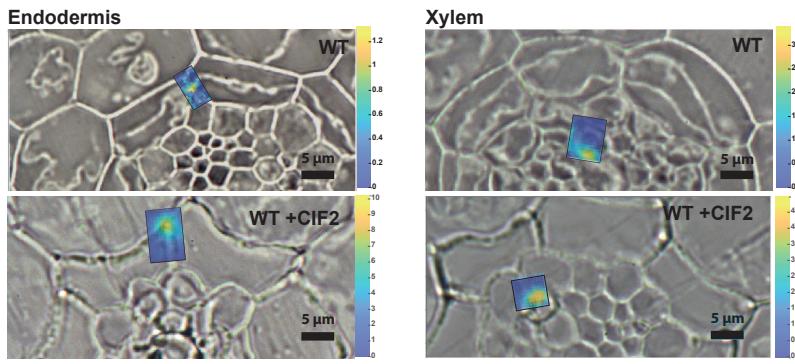
(A) Maximum projection of the top endodermal cells as shown in the schematic view. The observations were done in lines expressing the plasma membrane marker line PELTP::SYP122mCitrine before plasmolysis (+H₂O) and after plasmolysis (+Mannitol) at 15 cells after the onset of elongation. The dashed line represents the contours of the cells. Asterisks show the plasmolysis generated space where no attachment is observed. Scale bar = 5 μ m. Representative pictures are shown.


A

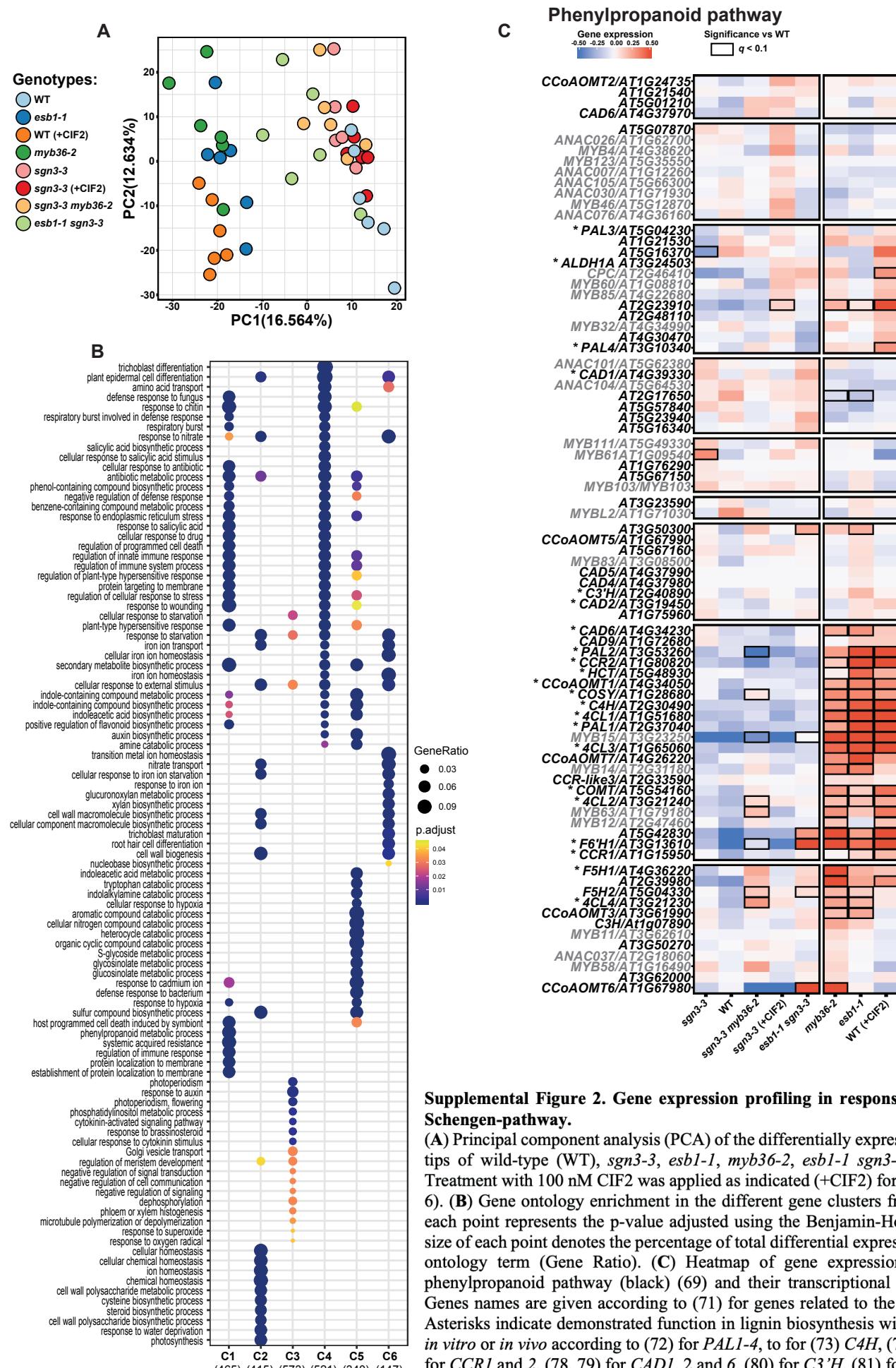
C



B

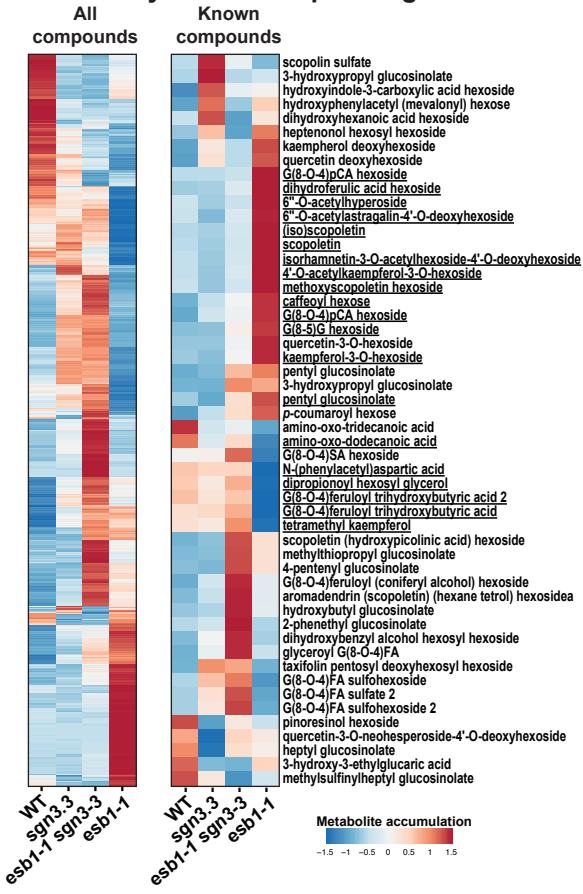

Figure 5. Absence of endodermal apoplastic barrier triggers major ionomic changes.

(A) Overview of ions accumulation in shoot of *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* mutants compared to WT using different growth conditions in agar plates (long day, n=10), in hydroponics (short day, n=6) and natural soil (short day, n≥13). Elements concentration were determined by ICP-MS and are available in the Sup. Table 3. Colour code indicates significant changes in accumulation compared with the WT using a *t* test (p<0.01). **(B)** Principal component analysis (PCA) based on the concentration of 20 elements in shoots of plants grown in agar plates. Ellipses show confidence level at a rate of 90%. n=10 **(C)** Plots presenting the correlation between the z-scores of elements content in shoots of plants grown in agar plates of WT, *myb36-2*, *sgn3-3* and *sgn3-3 myb36-2* against the portion of root length permeable to propidium iodide as determined in Fig. 1D. The black lines show the average and the grey area show the 95% confidence interval (n = 10).

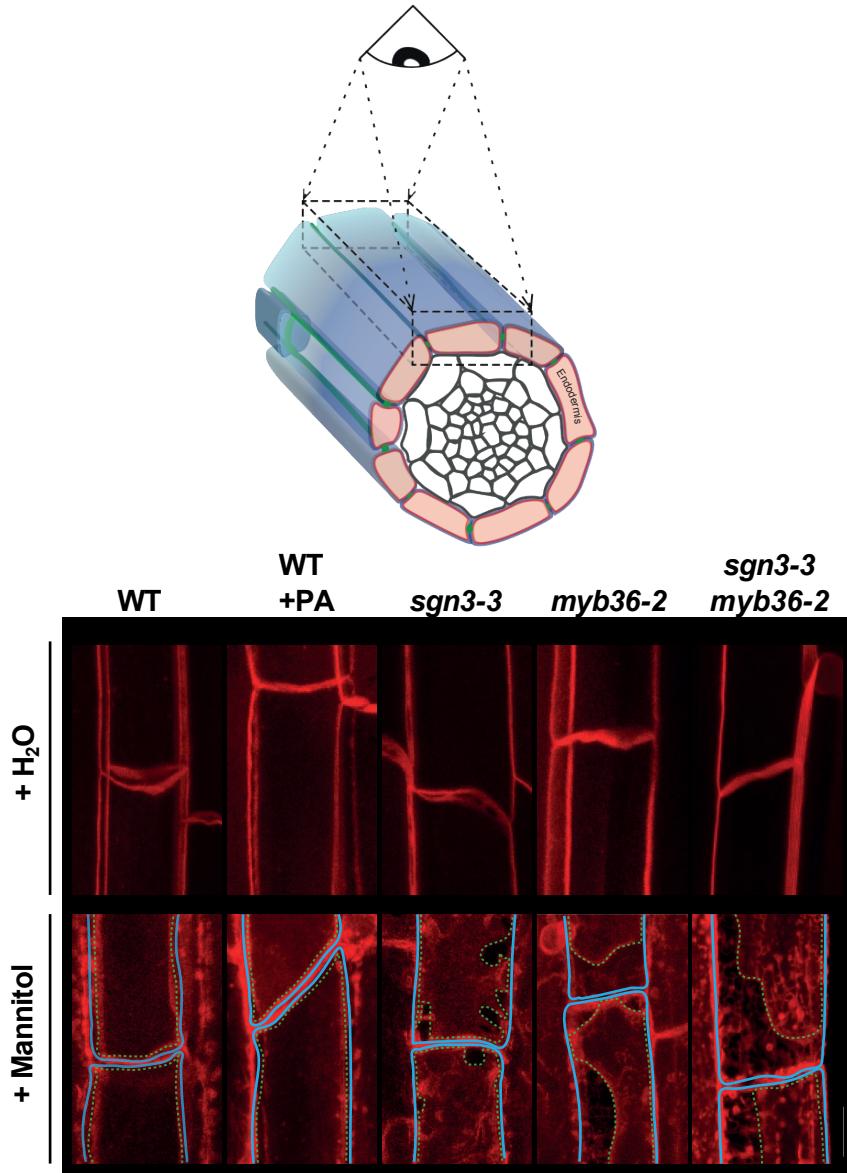

Figure 6. Activation of the Schengen-pathway represses water transport and maintains plant growth, survival and fitness under fluctuating environment

(A) Hydrostatic root hydraulic conductivity (L_{pr-h}) in WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2* grown hydroponically for 19-21 days under environmental controlled conditions. Hydraulic conductivity was measured using pressure chambers (L_{pr-h}) (means \pm SE, $n \geq 3$). (B) Heatmap of aquaporins expression across the different genotypes and treatments used in the RNAseq experiment. (C) Representative pictures of WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2*, WT - *pELTP::CDEF* and *sgn3-3 myb36-2 - pELTP::CDEF* plants germinated in soil with a high humidity (80%) for 7 days and then transferred in an environment with a lower (60% RH) or with constant humidity (80% RH). Pictures were taken 0, 2, 5 and 8 days after the transfer. Scale bar = 1 cm. (D) Boxplots showing the proportion of dead plants after transfer in an environment with constant humidity (80% RH, blue) or with a lower (60% RH, red). The plants displaying no growth after 9 days and showing necrosis in all the leave surface were considered as dead plants. Each point represents the proportion of dead plants in a cultivated pot compared to the total number of plants for one genotype in the same pot. Pots were containing at least 8 plants of each genotypes, $n=10$ pots. Different letters represent significant differences between genotypes using a Mann-Whitney test ($p < 0.01$). (E) Boxplots showing the number of siliques produced per plants. Plants were cultivated in a high humidity environment for 10 days after germination and then transferred to a greenhouse. Each point represents the total number of seeds containing siliques per plant ($n \geq 12$). Different letters represent significant differences between genotypes using a Mann-Whitney test ($p < 0.01$).

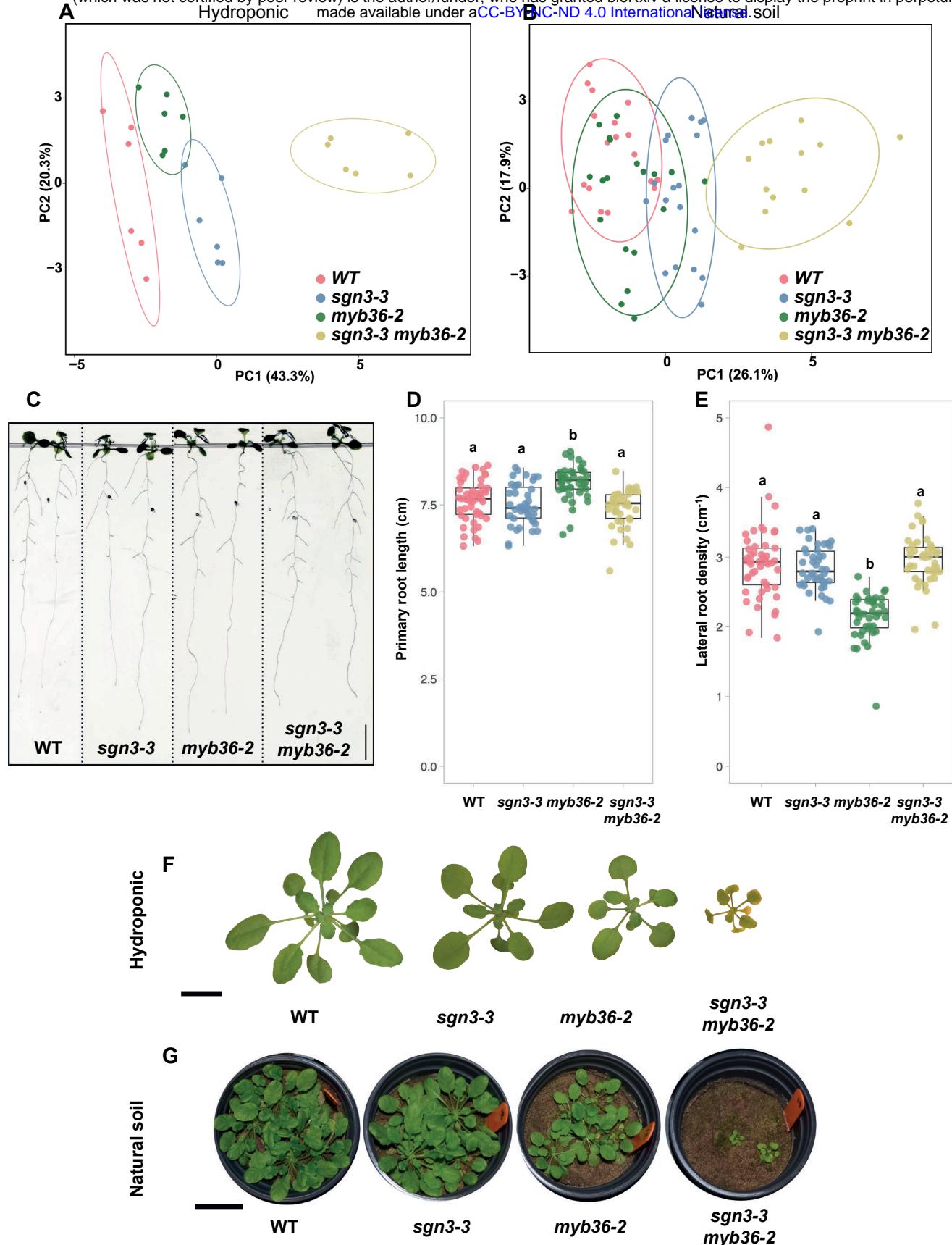
Supplemental Figure 1. Activation of the Schengen-pathway triggers the deposition of a distinct “stress” lignin in the endodermis.


Examples of small Raman maps for endodermal cells of WT(\emptyset) and WT(+CIF2) and for xylem of WT(\emptyset) and WT(+CIF2) used for determining the lignin spectra using Multivariate Curve Resolution (MCR) presented in Fig. 2 C-D. The colour code represents the intensity of the lignin factor presented in Fig. 2 C-D.

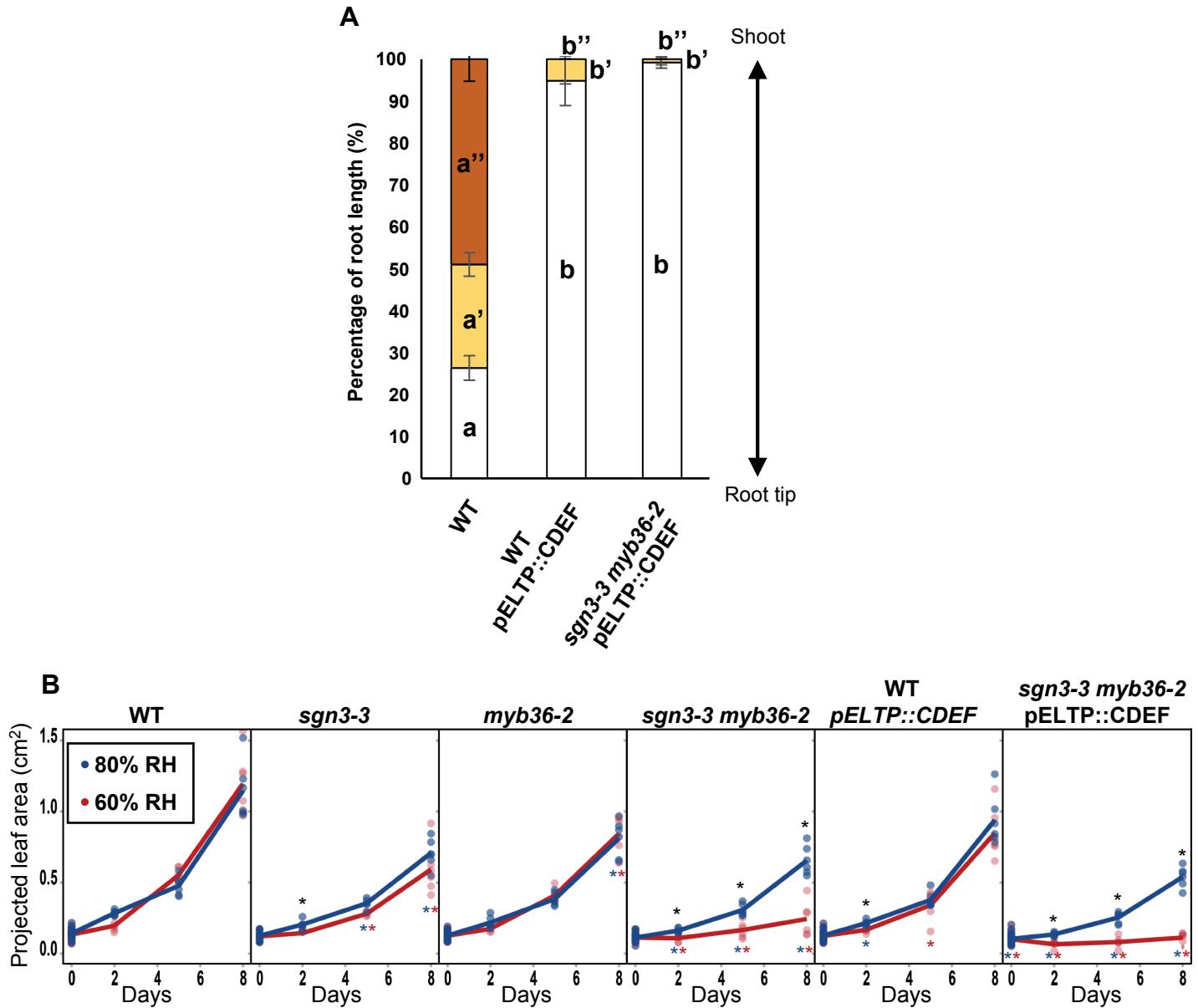
Supplemental Figure 2. Gene expression profiling in response to the activation of the Schengen-pathway.


(A) Principal component analysis (PCA) of the differentially expressed genes identified in root tips of wild-type (WT), *sgn3-3*, *esb1-1*, *myb36-2*, *esb1-1 sgn3-3*, *sgn3-3 myb36-2* plants. Treatment with 100 nM CIF2 was applied as indicated (+CIF2) for WT and *sgn3-3* plants ($n = 6$). (B) Gene ontology enrichment in the different gene clusters from Fig. 3A. The colour of each point represents the p-value adjusted using the Benjamini-Hochberg procedure, and the size of each point denotes the percentage of total differential expressed genes in the given gene ontology term (Gene Ratio). (C) Heatmap of gene expression of genes related to the phenylpropanoid pathway (black) (69) and their transcriptional regulators (grey) (43, 70). Genes names are given according to (71) for genes related to the phenylpropanoid pathway. Asterisks indicate demonstrated function in lignin biosynthesis with an activity demonstrated *in vitro* or *in vivo* according to (72) for *PAL1-4*, to for (73) *C4H*, (74, 75) for *4CL1-4*, (76, 77) for *CCR1* and 2, (78, 79) for *CAD1*, 2 and 6, (80) for *C3'H*, (81) for *C3H*, (82) for *COMT* and *CCoAOMT1*, (83) for *HCT*, (84) for *CSE*, (85) for *ALDH1A*, (45) for *F6'H1*, (46) for *COSY* and (86) for *F5H1*.

Secondary metabolite profiling


Supplemental Figure 3. Metabolite profiling in response to the activation of the Schengen-pathway.

Heatmaps of metabolite profiling determined using Ultra High Performance Liquid Chromatography (UHPLC) in 5 mm roots tips of wild-type (WT), *sgn3-3*, *esb1-1 sgn3-3* and *esb1-1*. The heatmaps show all the compounds (2497, left) and characterised compounds (52, right) that are differentially accumulated (*q*-value < 0.01, left; *q*-value < 0.1, right *n* = 8). Underlined names are for compounds that are only differentially accumulated (*q*-value < 0.1) in *esb1-1* and not changed in *sgn3-3* and *esb1-1 sgn3-3* in comparison with WT. Data for the known compounds are presented in Sup. Table 3.


Supplemental Figure 4. Plasma membrane attachment to the cell wall.

(A) Maximum projection of the top endodermal cells as shown in the schematic view. The observations were done in lines expressing the plasma membrane marker line pELTP::SYP122mCitrine before plasmolysis (+H₂O) and after plasmolysis (+Mannitol) at 15 cells after the onset of elongation. The dashed line represents the contours of the cells. Asterisks show the plasmolysis generated space where no attachment is observed. Scale bar = 5 μ m. Representative pictures are shown.

Supplemental Figure 5. Absence of endodermal apoplastic barrier triggers major ionomic changes in different growth conditions.

Principal component analysis (PCA) based on the concentration of 20 elements in shoots of WT, *sgn3-3*, *myb36-3* and *sgn3-3 myb36-2* plants grown in (A) hydroponics (short day, n=6) and (B) natural soil (short day, n≥13). Ellipses show confidence level at a rate of 90%. (C) Pictures of 2-week-old wild-type (WT), *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in agar plates. (D-E) Boxplots showing the primary root length (D) and lateral roots density (E) of 2-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in agar plates. Letters show significantly different groups according to a Tukey's test as post hoc analyses (n≥41, P<0.01). (F) Pictures of 5-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in hydroponics. Scale bar = 1 cm. (G) Pictures of 9-week-old WT, *sgn3-3*, *myb36-2* and *sgn3-3 myb36-2* plants grown in natural soil. Scale bar = 3 cm.

Supplemental Figure 6. Activation of the Schengen-pathway maintains plant growth under fluctuating environment.

(A) Quantification of suberin staining along the root of 6 days-old plants. The results are expressed in percentage of root length divided in three zones: unsuberised (white), discontinuously suberised (yellow), continuously suberised (orange). $n = 7$, error bars: SD. Individual letters show significant differences using a Mann-Whitney test between the same zones ($p < 0.01$). (B) Graphs showing leaf surface area of WT, *sgn3-3*, *myb36-2*, *sgn3-3 myb36-2*, WT-*pELTP::CDEF* and *sgn3-3 myb36-2-pELTP::CDEF* plants germinated in soil with a high humidity (80%) for 7 days and then transferred in an environment with constant (80% RH, blue) or with a lower humidity (60% RH, red). Data were collected 0, 2, 5 and 8 days after the transfer. Each point is the average leave surface per plant from a singles pot ($n \geq 6$ pots). Each pot contained at least 6 plants for each genotype. The line shows the average value for each measured time points. Black asterisk indicates a significant difference between high and low humidity for a same genotype at one time point. Blue and red asterisk indicate a significant difference in comparison with WT at the same time point respectively for the high and low humidity environment. The significant differences were calculated using a Tukey's test as post hoc analyses ($p < 0.01$).