

Global prevalence and phylogeny of hepatitis B virus (HBV) drug and vaccine resistance mutations

Jolynne Mokaya¹, Tetyana I Vasylyeva², Eleanor Barnes^{1,3,4},
M. Azim Ansari^{1,5}, Oliver G Pybus², Philippa C Matthews^{1,4,6}

¹Nuffield Department of Medicine, Medawar Building, South Parks Road, Oxford OX1 3SY, UK

²Department of Zoology, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK

³Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK

⁴National Institutes of Health Research Health Informatics Collaborative, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK

⁵Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK

⁶Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK

Correspondence: philippa.matthews@ndm.ox.ac.uk

RUNNING TITLE: Global prevalence of HBV resistance mutations

KEYWORDS: HBV, tenofovir, TDF, lamivudine, entecavir, NAs, NUCs, HBV vaccine, resistance, RAMs, Africa, therapy, prevention, epidemiology

26 ABSTRACT

27 **Introduction:** Vaccination and anti-viral therapy with nucleos(t)ide analogues (NAs) are key
28 approaches to reducing the morbidity, mortality and transmission of hepatitis B virus (HBV)
29 infection. However, the efficacy of these interventions may be reduced by the emergence of
30 drug resistance-associated mutations (RAMs) and/or vaccine escape mutations (VEMs). We
31 have assimilated data on the global prevalence and distribution of HBV RAMs/VEMs from
32 publicly available data and explored the evolution of these mutations.

33 **Methods:** We analysed sequences downloaded from the Hepatitis B Virus Database, and
34 calculated prevalence of 41 RAMs and 38 VEMs catalogued from published studies. We
35 generated maximum likelihood phylogenetic trees and used treeBreaker to investigate the
36 distribution of selected mutations across tree branches. We performed phylogenetic
37 molecular clock analyses using BEAST to estimate the age of mutations.

38 **Results:** RAM M204I/V had the highest prevalence, occurring in 3.8% (109/2838) of all HBV
39 sequences in our dataset, and a significantly higher rate in genotype C sequence at 5.4%
40 (60/1102, $p=0.0007$). VEMs had an overall prevalence of 1.3% (37/2837) and had the
41 highest prevalence in genotype C and in Asia at 2.2% (24/1102; $p=0.002$) and 1.6%
42 (34/2109; $p=0.009$) respectively. Phylogenetic analysis suggested that most RAM/VEMs
43 arose independently, however RAMs including A194T, M204V and L180M formed clusters
44 in genotype B. We show evidence that polymorphisms associated with drug and vaccine
45 resistance may have been present in the mid 20th century suggesting that they can arise
46 independently of treatment/ vaccine exposure.

47 **Discussion:** HBV RAMs/VEMs have been found globally and across genotypes, with the
48 highest prevalence observed in genotype C variants. Screening for the genotype and for
49 resistant mutations may help to improve stratified patient treatment. As NAs and HBV
50 vaccines are increasingly being deployed for HBV prevention and treatment, monitoring for
51 resistance and advocating for better treatment regimens for HBV remains essential.

52 INTRODUCTION

53

54 Anti-viral therapy with nucleos(t)ide analogue (NA) agents is a central approach to reducing
55 morbidity, mortality and transmission of hepatitis B virus (HBV) infection. NAs are used to
56 suppress viraemia, thus reducing inflammatory liver damage (1). However, the efficacy of
57 widespread deployment of NAs, both for individual patients and at a public health level, may
58 be affected by the emergence of drug resistance (2,3). Resistance-associated mutations
59 (RAMs) can arise as a result of the low fidelity of the HBV reverse transcriptase (RT) enzyme
60 which lacks transcriptional proofreading activity, especially in the setting of high viral
61 replication rates (estimated at up to ~10¹² virions/day (2)). Lamivudine (3TC) and entecavir
62 (ETV) were licensed in 1986 and 2005, respectively, but their ongoing role has been limited
63 by the occurrence of anti-viral drug resistance (4–6). Tenofovir (TFV), most commonly
64 prescribed as tenofovir disoproxil fumarate (TDF), was licensed in 2008 and is now the
65 favoured choice as it has a higher genetic barrier to resistance, as well as being cheap, well-
66 tolerated, and safe, including in pregnancy (4). However, there are now emerging data that
67 show the potential for selection of TDF drug resistance mutations (7), albeit with limited
68 insights into their prevalence or clinical impact (8). Importantly, as well as being selected in
69 individuals on therapy, RAMs have been reported among treatment-naïve individuals (1,9).
70 Whether these mutations occur without exposure to antivirals, or are exclusively as result of
71 prior drug exposure, is uncertain.

72

73 Reports of resistance to the HBV vaccine raise concerns about the extent to which vaccine-
74 mediated immunity will remain robust. The vaccine, licensed for use in 1981, is administered
75 to infants as part of WHO expanded programme for immunization (10). HBV vaccination
76 induces the production of neutralising antibodies that mainly target the second hydrophilic loop
77 (amino acids (aa) 139 to 147 or 149) of the major antigenic determinant (aa 99 to 169) of the
78 HBV surface protein (HBsAg) (11,12). Strong immune pressure can lead to the selection of
79 mutations within HBsAg, resulting in variants resistant to HBV vaccine and/or HBV
80 immunoglobulin (HBIG) (2). G145A/R is the best described mutation associated with
81 resistance to HBV vaccine/HBIG (11–13). Several other mutations across the entire antigenic
82 determinant have been reported, which also have associations with vaccine resistance
83 (11,14–16).

84

85 Genetic differences among the ten HBV genotypes (A–J) and numerous sub-genotypes may
86 influence the likelihood of acquisition of drug or vaccine resistance (17). Genotypes have
87 different geographical distributions, for example genotypes A, D and E are predominant in

88 Africa, and B and C in Asia (18,19). In genotypes in which the wild type amino acid at a specific
89 position is part of a sequence motif associated with drug or vaccine resistance, the barrier to
90 resistance is likely to be inherently lower. This phenomenon has been described in hepatitis
91 C virus (HCV) infection, explaining why some sub-genotypes are intrinsically resistant to the
92 most widely used direct acting antiviral drugs (20–22). In addition, genotype-specific
93 differences in mutation rates and host population dynamics have an influence on virus
94 evolutionary rates, which directly affects the probability of appearance of RAMs/VEMs. For
95 HBV, the rate of molecular evolution is estimated to be between 7.9×10^{-5} and 3.2×10^{-4}
96 substitutions per site per year (23,24).

97 A number of studies have reported the frequencies of RAMs in HBV from different
98 populations (1,25–27); however, the global prevalence, geographic distribution, time of
99 origins, and their association with different HBV genotypes remain unknown. We therefore
100 set out to assimilate data on the global prevalence and distribution of HBV RAMs from public
101 sequence databases, and to explore the genetic relatedness of viruses bearing these
102 mutations.

103

104 **METHODS**

105

106 **HBV sequences curation process**

107 We analysed sequences downloaded from a publicly available database (Hepatitis B Virus
108 Database - <https://hbvdb.ibcp.fr/HBVdb/> (28)), accessed on 20th November 2018. We
109 downloaded a total of 6,219 full length genome sequences (**Suppl Figure 1**). Using MEGA7
110 software (29), we generated neighbour joining phylogenetic trees to validate the HBV
111 genotype assignment, discarding sequences that had been incorrectly classified. We then
112 generated pairwise distances for aligned sequences within each genotype using the
113 dist.alignment function of the R package seqinr (30), and excluded sequences with >99.5%
114 similarity in order to remove closely related isolates for instance duplicates and/or isolates
115 derived from the same individual. For the remaining sequences, we obtained sample
116 collection date and sampling country from GenBank. A total of 2938 sequences had
117 geographical data and 2167 had both sample collection date and geographical data. **Suppl**
118 **Figure 1** shows the data curation process.

119

120 **Drug resistance associated mutations**

121 We worked from a list of pre-existing drug RAMs identified from published studies
122 (1,2,8,9,25,31) (**Suppl Table 1**), and stratified them according to the NA to which they cause
123 resistance, as described below:

- 124
- 125 a. We classified RAMs associated with 3TC into three categories: (i) primary RAMs,
126 which are well known to cause resistance to 3TC in isolation; (ii) compensatory
127 RAMs, which by themselves do not confer resistance but when combined with
128 primary RAMs enhance resistance and viral functional capacity (2); and (iii) putative
129 RAMs for which there is limited clinical/phenotypic evidence for 3TC resistance.
- 130 b. Two or more amino acid substitutions are required across the HBV RT protein to
131 confer resistance to ETV which could occur as a combination of M204I/V with one
132 or more of the following substitutions L80I/V, I163V, I169T, V173L, L180M,
133 A181S/T/V, T184X, A186T, S202C/G/I/R, M250I/V and/or C256S/G.
- 134 c. We classified RAMs associated with TFV into three categories: those with both clinical
135 and *in vitro* evidence; those with only phenotypic evidence; and those with only
136 experimental evidence, as described in a systematic literature review (8).
- 137

138 **Vaccine escape mutations**

139 All pre-existing VEMs included in this study were identified from published studies (1,14–
140 16,32–39) (**Suppl Table 2**). G145A/R and K141E/I/R have the strongest evidence base of
141 clinical and *in vitro* data to support HBV vaccine resistance (33), while other VEMs are
142 considered putative, as they are supported by less robust data.

143

144 **Prevalence analyses**

145 For the global prevalence analysis, we included HBV sequences with known country of
146 origin from genotypes A - E; we excluded genotypes F, G & H from this analysis because
147 of low sample size (<100), resulting in a total of 2,838 sequences. For all polymorphisms
148 that have been reported in association with resistance listed in **Suppl Table 1 and 2**, we
149 calculated the prevalence as total number of sequences with a specified mutation out of
150 the total number of sequences in each genotype/continent.

151

152 We carried out prevalence analysis reporting confidence intervals and p-values for
153 individual RAMs common to 3TC, ETV and TFV, for individual or combined RAMs associated
154 with ETV and TFV resistance, and for individual VEMs. We calculated confidence intervals
155 using an online software Epi tools (<http://epitools.ausvet.com.au>). We used Chi square test to
156 compare the prevalence of RAMs/VEMs between different genotypes and between different
157 continents

158

159 We used GraphPad Prism v7.0 for data visualisation and statistical analyses.

160

161 **Distribution of selected RAMs and VEMs on maximum likelihood phylogenetic trees**

162 We generated maximum likelihood (ML) phylogenetic trees for HBV genotype A (n=290), B
163 (n=730), C (n=1102), D (n=565) and E (n=150) sequences for which geographic information
164 was available. We used the general time reversible nucleotide substitution model with gamma-
165 distributed among-site rate variation (GTR + G) in IQ-TREE (40). We chose this model as it
166 incorporates different rates for every nucleotide change and different nucleotide frequencies,
167 thus allowing for most flexibility allowing us to avoid a model-selection step (41). We rooted
168 the trees using the mid.point function of the R package phangorn (42).

169

170 For this analysis, we considered a total of 12 RAMs (S106C/G, D134E, R153W/Q, V173L,
171 L180M, A181T/V, A194T, A200V, M204I/V, L217R, L229V/W, I269L). These RAMs were
172 selected because they are primary RAMs or have robust evidence in causing resistance to
173 3TC, ETV and/or TFV. We also considered eight VEMs (C139S, S/T140I, P142S, S/T143L/M,
174 D144A/E/G/N, G145A/E/R, K141A/I/R and C147S) which are located within the epitope
175 (aa139 – 147) which is a neutralising epitope for the HBV vaccine.

176

177 We used treeBreaker (43) to test if sequences with individual mutations were randomly
178 distributed across the branches of the phylogenetic trees reconstructed for each genotype.
179 The program calculates per-branch posterior probability of having a change in the distribution
180 of a discrete character and gives a Bayes factor to show the strength of this evidence (43). A
181 Bayes factor of >30 indicates strong evidence that sequences with RAMs/VEMs are not
182 randomly distributed on a phylogenetic tree. We performed this analysis for each mutation
183 separately.

184

185 **Phylogenetic dating**

186 We performed phylogenetic dating to estimate the times of emergence of mutations of
187 interest, focused on RAMs V173L, L180M and M204I/V as they are well known to cause
188 (individually or synergistically) resistance to 3TC, ETV and TDF (8), and VEMs G145A/R and
189 K141E/I/R as they have been best described to cause HBV vaccine resistance (11–13). In
190 this analysis we included genotypes that had >50 sequences with associated sampling date
191 information: genotype A (n=170), B (n=594), C (n=906), D (n=336) and E (n=88). We manually
192 inspected sequences for misalignments in AliView program (43) and then excluded codon
193 positions associated with resistance (we excluded all sites listed in **Suppl Tables 1 and 2**) to
194 ensure that parallel evolution RAMs/VEMs does not affect the phylogeny (44). We used ML
195 phylogenetic trees generated for each genotype as described above and then dated these
196 phylogenetic trees using IQ-TREE v2.0.3 (45). We resampled the trees 100 times and chose
197 lognormal relaxed molecular clock model because it has performed best in other studies of

198 HBV evolution (46,47). We used TempEst to estimate the molecular clock signal in our
199 datasets by regressing the root-to-tip genetic distance of each sequence in the tree and its
200 sampling date (48). Based on application of TempEst, we estimated the correlation between
201 the dates of the tips of the sequences and the divergence from the root to be 7.8×10^{-2} , 3.9
202 $\times 10^{-1}$, 4.3×10^{-2} , 2.3×10^{-2} and 2.1×10^{-1} for genotypes A, B, C, D and E, respectively. Due
203 to the lack of correlation, we used the substitution rate estimated before (24,49) and
204 therefore we thus fixed the mean substitution rate to 5.0×10^{-5} (SD 4.12×10^{-6})
205 subs/site/year for all genotypes in all subsequent analyses. We reported the time to most
206 recent common ancestor (TMRCA) of two or more sequences that clustered together
207 having the same mutation as this TMRCA likely corresponds to the lower bound of the age
208 of the mutation.

209

210 We also performed molecular clock phylogenetic analyses using Bayesian Evolutionary
211 Analysis Sampling Trees (BEAST). This method has been described in **Suppl Methods**.

212

213 **RESULTS**

214 **i. Global prevalence of HBV drug RAMs**

215 We assessed the prevalence of polymorphisms associated with drug resistance across 48
216 different sites within RT protein in a total of 2838 full length HBV sequences, **Suppl Table**
217 **1.** 90% (43/48) of the sites had polymorphisms associated with drug resistance, **Suppl Fig**
218 **2.** 60% of the sites had polymorphisms associated with drug resistance occurring at the
219 prevalence of between 0-10% in both genotypes and continents. Genotypes A and C, as well
220 as Europe had the highest number of sites (nine sites for genotype A and C, and 11 sites for
221 Europe) with polymorphisms associated with drug resistance occurring at a prevalence of
222 >20%, **Suppl Fig 2**.

223

224

225 **RAMs common to 3TC, ETV and/or TDF**

226 RAMs L80I/M/V, V173L, L180M, A181T/V, T184X are common to 3TC, ETV and/or TDF.
227 M204I/V had the highest prevalence at 3.8% (109/2838) (**Figure 1A**). Genotype C had the
228 highest prevalence of all of these mutations, apart from L80I/M/V which is most common in
229 Genotype D (although not statistically significant) (**Figure 1B**). L180M and M204I/V were
230 both present in all genotypes and continents analysed in this manuscript (**Figure 1B, C**).
231 However, there were no significant differences in prevalence of these RAMs across
232 continents.

233

234 **RAMs associated with ETV resistance**

235 The overall prevalence of ETV resistance in this dataset, determined by the presence of
236 RAMs M204I/V+L180M, was 2.4% (67/2838); other combinations of ETV drug resistant
237 mutations were uncommon (all <0.6%); **Suppl Fig 3**. As previously, the most common
238 resistance mutations were seen in genotype C at 3.5% (39/1102 vs 28/1736 in other
239 genotypes; p=0.001).

240 **RAMs associated with TFV resistance**

241 The prevalence of individual mutations that have been associated with TFV resistance
242 ranged between 0.2 – 19.5%. Compared to all other genotypes, genotype C had the highest
243 prevalence of individual RAMs S106C/G, DH/N134E and I269L; and Asia had the highest
244 prevalence of these individual RAMs S106C/G, DH/N134E and I269L compared to other
245 continents, **Suppl Fig 4**.

246

247 Sequences with certain combinations of RAMs are likely to have the highest probability of
248 clinically significant TFV resistance (8). We therefore sought evidence of these combinations
249 of mutations in our sequence database (n=2838). In each case, we only identified between
250 one and three sequences with each combination of RAMs giving an overall prevalence of
251 between 0.04% - 0.1% (**Suppl Table 3**), suggesting these arise infrequently and are currently
252 unlikely to be of significance at a population level. The majority of sequences carrying these
253 drug resistance motifs were again in genotype C.

254

255 **ii. Global prevalence of VEMs**

256 We assessed for the prevalence of polymorphisms associated with vaccine/HB Ig escape
257 across 33 different sites within surface protein in a total of 2838 full length HBV sequences,
258 **Suppl Table 2**. 78% (25/33) sites had polymorphisms associated with vaccine/HB Ig
259 escape, **Suppl Fig 5**. 52% (12/23) of the sites had polymorphisms associated with vaccine
260 escape occurring at the prevalence of between 0 - 9% in both genotypes and continents.
261 Genotype C and Asia had the highest number of sites with polymorphisms associated with
262 vaccine escape occurring at the prevalence of >20%, compared to other genotypes and
263 continents, **Suppl Fig 5**.

264

265 VEM K141E/I/R was not present in our dataset. G145A/R had an overall prevalence of
266 1.3% (37/2837) and had the highest prevalence in genotype C at 2.2% (24/1102; p=0.002),
267 and in Asia at 1.6% (34/2109; p=0.009); this is the best recognised VEM (**Figure 2A**). Other
268 VEMs that had an overall prevalence of >1% were T118A/R/V, M133I/L/T, A128V,

269 Q129H/N/R, G145A/R, P120S/T and S/T143L/M (**Figure 2A**). T118A/R/V, A128V and
270 S/T143L/M had the highest prevalence in genotype D and in Europe, being present >3% of
271 the sequences; whereas VEMs M133I/L/T and Q129H/N/R had the highest prevalence in
272 genotype B and M133I/L/T had the highest prevalence in Asia, also being present in >3%
273 of the sequences (**Figure 2B and 2C**).

274

275 **RAMs/VEMs as wildtype amino acid**

276 Determining the clinical significance of individual RAMs/VEMs in HBV sequences is difficult
277 because some of the mutations that have been described occur at consensus level in some
278 genotypes. For example, 11 polymorphisms associated with drug resistance and nine
279 polymorphisms associated with vaccine escape had a prevalence of >50% in ≥ 1 genotype
280 (s), **Suppl Table 4** and **Suppl Table 5**. RAM H/Y9H is wildtype in genotypes A-E. This
281 mutation is most likely to add to resistance as flexible positions in the protein, in which
282 compensatory change is easily incorporated. RAMs H126Y and R/W153W, which contribute
283 to TFV resistance when combined with ≥ 3 other RAMs (8), are wildtype in genotype A. This
284 shows that resistance to different drugs or HBV vaccine might be more easily selected in
285 certain populations or regions, based on the global distribution of HBV genotypes.

286

287 **Distribution of selected RAMs and VEMs on maximum likelihood phylogenetic trees**

288 We considered the distribution of 12 RAMs (S106C/G, D134E, R153W/Q, V173L, L180M,
289 A181T/V, A194T, A200V, M204I/V, L217R, L229V/W, I269L) and eight VEMs (C139S,
290 S/T140I, P142S, S/T143L/M, D144A/E/G/N, G145A/E/R, K141A/I/R and C147S) across the
291 branches of ML phylogenetic trees. Most of these RAMs and all VEMs were randomly
292 distributed across the branches of phylogenetic trees reconstructed from genotypes A-E
293 sequences, suggesting parallel evolution.

294

295 However, there were several RAMs that clustered within genotype B, C and D sequences
296 (**Figures 3**). In genotype B, all sequences containing the A194T variant clustered together
297 (Bayes factor, BF, support >100; n=4 sequences). Sequences with this RAM were all from
298 Indonesia, reported by a study exploring HBV genetic diversity (50). Some sequences
299 containing both M204V and L180M formed a cluster in genotype B (BF = 54.99, n=4
300 sequences) and some with M204I formed a cluster in genotype D (BF >100, n=3
301 sequences). In genotype C, there were clusters of RAMs S106C (BF >100, n=5
302 sequences), R153Q (BF >100, n=3 sequences), and I129L (BF >100, n=34 sequences).
303 Clustering of sequences with RAMs might suggest an emerging sublineage of treatment
304 resistant virus.

305

306 **Evolution of sequences with RAMs/VEMs**

307 Most sequences with RAMs/VEMs in our analysis were published after the approval of
308 NAs/HBV vaccine, as a result of widespread improvements and availability of sequencing that
309 have arisen in parallel with roll out of drugs and vaccine. However, four sequences (KF214668,
310 KF214671, KF214673 and KF214676) with RAM I269L and one sequence (KF214659) with
311 VEM S/T143M were sampled from Asia in 1963, and one sequence (HQ700441) with RAM
312 L180M was sampled from Oceania in 1984, demonstrating that mutations can arise without
313 exposure to treatment or vaccination.

314

315 We performed ML molecular clock analysis for full datasets of sequences of genotypes A – E.
316 However, only genotype C had clusters that had at least two isolates with the same resistant
317 mutations with a single common ancestor as shown in **Table 1**. The estimated time of
318 emergence of branches with RAMs M204V+L180M was around year 1945 (95% HPD 1897
319 - 1971); and branches with VEM G145R was estimated to emerge around year 1930 (95%
320 HPD 1866 - 1958). Importantly, in both cases the higher bound of the 95% HPD interval of
321 the TMRCA of these clusters, which likely correspond to the lower bound of the estimate of
322 the age of these mutations, precedes the introduction of NAs and the HBV vaccine. The
323 results we obtained from ML molecular clock analysis and BEAST analysis were consistent.

324

325 **DISCUSSION**

326 **Novel findings and comparison with previous literature**

327 We describe the global prevalence of drug and vaccine resistance in HBV across genotypes
328 and geographical regions and explore the evolution of these mutations using phylogenetic
329 analysis, in order to provide a high-resolution picture of the origins and distribution of drug
330 resistance. From this analysis, HBV drug and vaccine resistance are not common, with the
331 highest frequency of individual or combined mutations that are well known to cause resistance,
332 being ~4% and the majority being <1%. These mutations are distributed across various
333 continents and genotypes, with the most frequent RAMs/VEMs identified in genotype C,
334 concordant with previous studies from China (51,52). We show that these mutations are not
335 only driven by exposure to drug or vaccine but are likely to have been present in some
336 sequences for hundreds of years. More studies representing all genotypes are needed,
337 alongside careful correlation with clinical evidence of drug resistance.

338

339 M204I/V is one of the best recognised drug resistance motifs in HBV and had the highest
340 overall prevalence of 3.8% within our whole sequence database. A previous meta-analysis

341 estimated the prevalence of M204I/V as 4.9% among >12,000 treatment-naïve individuals
342 (25), and another review reported a prevalence of M204I/V of 5.9% among 8,435
343 treatment-naïve individuals (9). These reviews reported prevalence as the proportion of
344 individuals with mutations within the total number of treatment naïve individuals, without
345 accounting for closely related sequences (thus may include multiple sequences from a
346 single individual). In contrast, we used full length HBV sequences and excluded identical
347 sequences, which might explain the lower prevalence we report.

348

349 We reported the prevalence of ETV resistance as 2.4%, which is slightly higher than the
350 prevalence of 1.7% reported from a large survey carried out in China among 1223 treatment
351 experienced patients and also a prevalence of 1.2% reported from a longitudinal study that
352 followed 108 HBV infected treatment naïve individuals for five years (26,53). Unlike these
353 two studies, we took a lenient approach by reporting the overall prevalence of ETV
354 resistance considering sequences with RAMs M204I/V+L180M, with or without an
355 additional compensatory mutation. These two are always present in ETV resistant variants,
356 and are the main ETV RAMs reported in published HBV treatment guidelines (10,54).

357

358 We estimated the overall prevalence of TFV resistance to be between 0.04 - 0.2%. There
359 have been few studies that have reported on TFV resistance (8) and more robust data are
360 still needed to define HBV resistance in order to guide better estimation of the prevalence
361 of relevant RAMs.

362

363 The global prevalence of the VEM G145A/R in our data was 1.3%, which is comparable to
364 that be 0.3 - 1% previously reported across genotypes A-F (55). A study carried out in Italy
365 reported a higher prevalence of 3.1%, in a cohort dominated by genotype D infection (56).
366 Regional differences might explain the difference in prevalence. However, the majority of
367 individuals with this mutation from the Italian study were immunocompromised and it was
368 not clear if they had been vaccinated prior to becoming infected.

369

370 **Relationship between genotype and drug or vaccine resistance**

371 The prevalence of RAMs/VEMs across different regions is influenced by the predominant
372 genotype, but may also relate to different patterns of drug or vaccine exposure in the
373 population. For example, T118A/R/V, A128V and D144A/E/G/N variants are more common
374 in Europe, which may relate to better vaccine coverage (57) that drives the selection of
375 resistant variants. Some polymorphisms that have been described in association with
376 resistance are wildtype in certain genotypes, which might indicate that these genotypes are
377 more susceptible to the development of clinically significant drug resistance. For example,

378 TFV resistance might be selected more easily in genotype A given that RAMs H126Y and
379 R/W153W are wildtype in this genotype (58).

380

381 **Phylogenetic analysis of selected RAMs and VEMs**

382 We provide evidence that RAMs can arise without exposure to treatment/vaccine, showing
383 that certain RAMs emerged prior to the NAs and vaccine era. Using phylogenetic dating, we
384 estimate that RAMs M204V and L180M, and VEM G145R were already present around the
385 mid 20th century. Although these estimates have wide confidence intervals, their upper
386 bounds precede the time of introduction of NAs and the HBV vaccine. A previous study
387 estimated the origin date of HBV genotype D in Iran as 1894 (95% HPD 1701 – 1957)(47),
388 and the root age of genotype A polymerase sequences is estimated as the year 955 (95%
389 HPD 381 – 1482); (46). A study that analysed 167 full length genotype E sequences,
390 estimated the TMRCA to be 174 years (95% HPD 36 – 441); (59). Similar to our analysis,
391 these studies used an uncorrelated relaxed lognormal clock which is reported to the best
392 fitting clock (46,47,59). However, given the differences in the substitution models, and with
393 some studies using sequences for just a single gene, direct comparison of the estimated
394 TMRCA generated by these studies and our analysis is challenging.

395

396 **Selection vs transmission of drug resistance**

397 Most RAMs were randomly distributed across the branches of HBV phylogenetic trees, which
398 suggests that these polymorphisms are being selected independently in individual hosts
399 (parallel evolution (60)) rather than becoming fixed and disseminated from a founder strain.
400 The high viral replication and mutation rate of HBV can result in amino acid substitutions at
401 sites of resistance, leading to the stochastic emergence of drug RAMs even in individuals who
402 have not been exposed to treatment (61–63). Individuals can also be infected with HBV strains
403 containing drug RAMs which could significantly comprise virological response to therapy, as
404 has been shown in HIV (64).

405

406 **Caveats and limitations**

407 The major constraint in this work is the relative lack of HBV sequence data; given the huge
408 global burden of infection there is a striking lack of high-quality sequence data available in the
409 public domain. As our sequences were obtained from GenBank, metadata on individual
410 characteristics and treatment exposure were not available. Our analyses may not be
411 representative, given the biased nature of sequence data that are available, disproportionately
412 representing certain populations and regions, and samples containing high viral load (65).
413 Drug resistant sequences may be over-represented, given that virus suppressed by drug

414 therapy is not accessible for sequencing and individuals with break-through viraemia on
415 treatment are more likely to have samples submitted for sequence analysis.

416

417 Phylogenetic dating in HBV is challenging. Its overlapping reading frame raises controversies
418 around its evolution rates. HBV sequences lack temporal signal thus making it challenging to
419 reliably date HBV evolution using molecular clock methods. In addition, estimation of TMRCA
420 uses sample collection dates obtained from GenBank, which may not be accurate.

421

422 While Asia and Africa are known to have the highest prevalence of chronic HBV infection
423 worldwide at 6.2 and 6.1% respectively (66), 74% (2109/2838) of sequences included in this
424 analysis were from Asia and only 10% (277/2838) published from Africa. This low
425 representation of sequences highlights HBV as a neglected disease, with very few individuals
426 diagnosed and linked to care (67). In addition, the influence of the widespread use of
427 antiretroviral drugs containing 3TC and TFV, on suppression and/or emergence of drug
428 resistance is not yet understood.

429

430

431 **Conclusions**

432 Despite the availability of effective prevention and treatment strategies for HBV infection,
433 emergence of RAMs and VEMs may pose a challenge to the achievement of the United
434 Nations sustainable development goals for elimination by 2030. Going forward, enlarged
435 sequencing datasets, collected together with treatment histories and clinical data, will be
436 essential to develop an understanding of the distribution, nature and significance of drug
437 resistance at an individual and population level.

438

439 **COMPETING INTERESTS**

440 No competing interests were disclosed.

441

442 **GRANT INFORMATION**

443 This work was supported by the Leverhulme Trust to JM, the Wellcome Trust [110110] to
444 PCM, the Medical Research Council UK to EB, the Oxford NIHR Biomedical Research Centre
445 to EB. EB is an NIHR Senior Investigator. The views expressed in this article are those of the
446 author and not necessarily those of the NHS, the NIHR, or the Department of Health. MAA is
447 Wellcome Trust Sir Henry Dale Fellow (220171/Z/20/Z).

448 *The funders had no role in study design, data collection and analysis, decision to publish, or*
449 *preparation of the manuscript.*

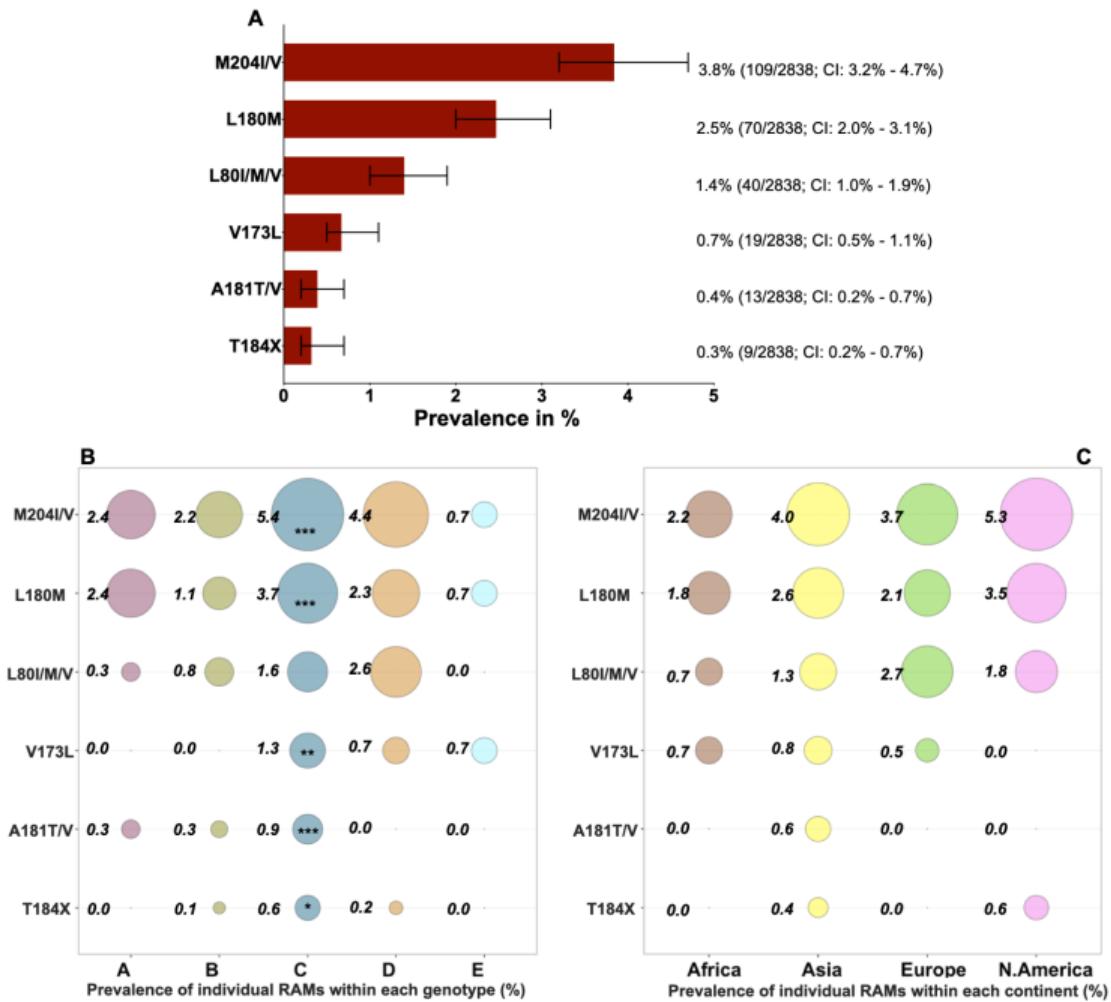
450

451 **AUTHOR CONTRIBUTIONS**

452 Conceived the study: JM, PCM. Assimilated data: JM, MAA. Analysed the data: JM, TIV, MAA.
453 Wrote the manuscript: JM, TIV, PCM. Revised the manuscript: JM, TIV, EB, MAA, OP, PCM.
454 All authors have read and approved the manuscript.

455 REFERENCES

- 456 1. Mokaya J, McNaughton AL, Hadley MJ, Beloukas A, Geretti A-M, Goedhals D, et al.
457 A systematic review of hepatitis B virus (HBV) drug and vaccine escape mutations in
458 Africa: A call for urgent action. Schibler M, editor. PLoS Negl Trop Dis. 2018 Aug
459 6;12(8):e0006629.
- 460 2. Beloukas A, Geretti AM. Hepatitis B Virus Drug Resistance. In: Antimicrobial Drug
461 Resistance. Cham: Springer International Publishing; 2017. p. 1227–42.
- 462 3. Fung J, Lai C-L, Seto W-K, Yuen M-F. Nucleoside/nucleotide analogues in the
463 treatment of chronic hepatitis B. J Antimicrob Chemother. 2011;66(12):2715–25.
- 464 4. Clements CJ, Coghlan B, Creati M, Locarnini S, Tedder RS, Torresi J. Global control
465 of hepatitis B virus: Does treatment-induced antigenic change affect immunization?
466 Vol. 88, Bulletin of the World Health Organization. 2010. p. 66–73.
- 467 5. Pol S, Lampertico P. First-line treatment of chronic hepatitis B with entecavir or
468 tenofovir in “real-life” settings: From clinical trials to clinical practice. Vol. 19, Journal
469 of Viral Hepatitis. 2012. p. 377–86.
- 470 6. World Health Organisation. Application for WHO Model List of Essential Medicines:
471 Entecavir.
472 https://www.who.int/selection_medicines/committees/expert/20/applications/Entecavir.pdf?ua=1
- 474 7. Park E-S, Lee AR, Kim DH, Lee J-H, Yoo J-J, Ahn SH, Sim H, Park S, Kang HS, Won
475 J, et al. (2019). Identification of a quadruple mutation that confers tenofovir resistance
476 in chronic hepatitis B patients. *J Hepatol.* **70**:1093–1102.
- 477 8. Mokaya J, McNaughton AL, Bester PA, Goedhals D, Barnes E, Marsden BD, et al.
478 Hepatitis B virus resistance to tenofovir: fact or fiction? A synthesis of the evidence to
479 date. medRxiv. 2019 Oct 18;19009563.
- 480 9. Choi Y-M, Lee S-Y, Kim B-J. Naturally occurring hepatitis B virus reverse transcriptase
481 mutations related to potential antiviral drug resistance and liver disease progression.
482 World J Gastroenterol. 2018;24(16):1708–24.
- 483 10. World Health Organisation. WHO issues its first hepatitis B treatment guidelines. 2015.
484 <http://www.who.int/mediacentre/news/releases/2015/hepatitis-b-guideline/en/>
- 485 11. Romanò L, Paladini S, Galli C, Raimondo G, Pollicino T, Zanetti AR. Hepatitis B
486 vaccination. Hum Vaccin Immunother. 2015;11(1):53–7.
- 487 12. Ahmed Said ZN, Abdelwahab KS. Induced immunity against hepatitis B virus. World
488 Journal of Hepatology. 2015;7:1660–70.
- 489 13. Zanetti AR, Tanzi E, Manzillo G, Maio G, Sbreglia C, Caporaso N, et al. Hepatitis B
490 variant in Europe. Lancet. 1988;2:1132–3.

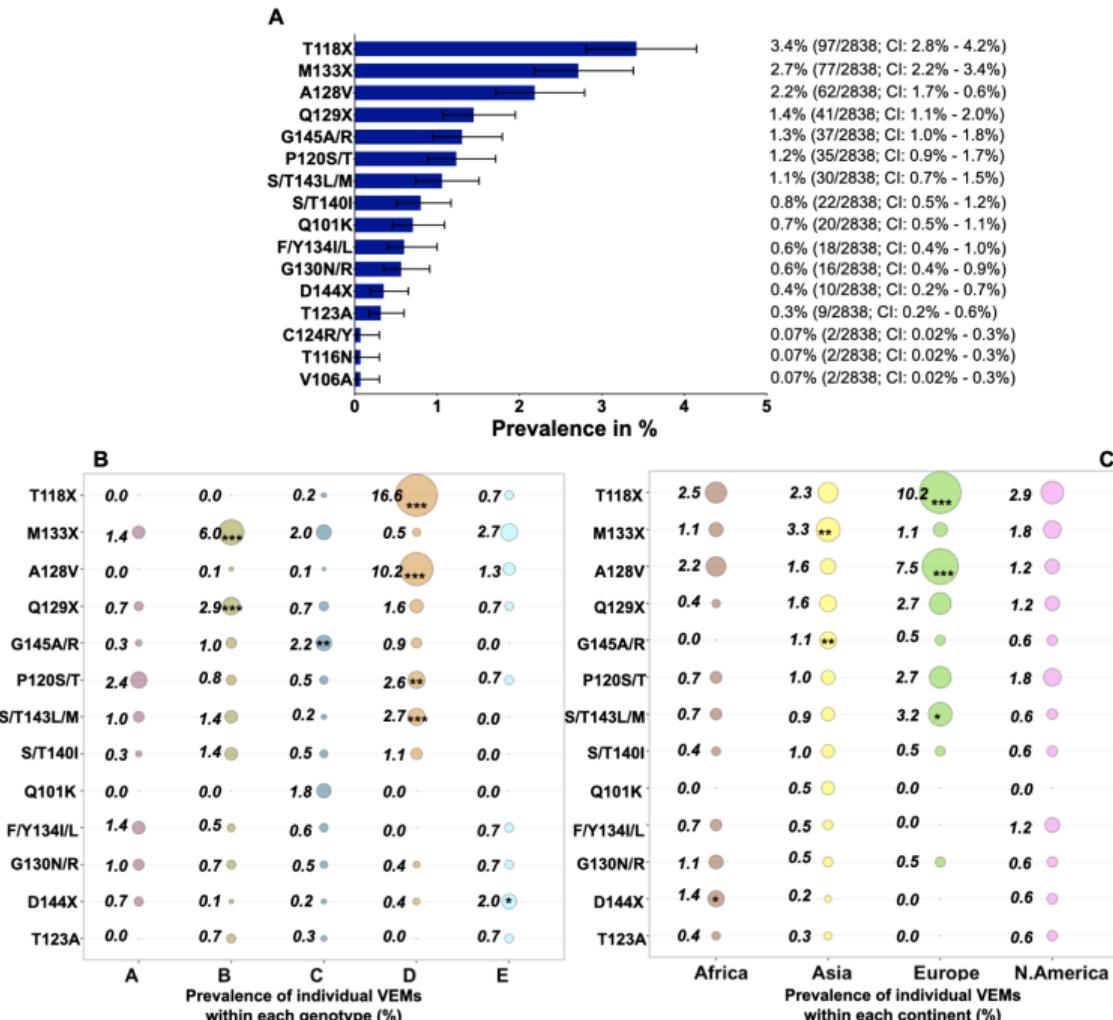

- 491 14. Lazarevic I. Clinical implications of hepatitis B virus mutations: recent advances. *World*
492 *J Gastroenterol.* 2014;20(24):7653–64.
- 493 15. Colagrossi L, Hermans LE, Salpini R, Di Carlo D, Pas SD, Alvarez M, et al. Immune-
494 escape mutations and stop-codons in HBsAg develop in a large proportion of patients
495 with chronic HBV infection exposed to anti-HBV drugs in Europe. *BMC Infect Dis.*
496 2018;18(1):251.
- 497 16. Coppola N, Onorato L, Minichini C, Di Caprio G, Starace M, Sagnelli C, et al. Clinical
498 significance of hepatitis B surface antigen mutants. *World Journal of Hepatology.*
499 2015;7:2729–39.
- 500 17. Kramvis A. Genotypes and Genetic Variability of Hepatitis B Virus. *Intervirology.* 2014;57(3–4):141–50.
- 502 18. Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. *World J Gastroenterol.* 2014;20(18):5427–34.
- 504 19. Rajoriya N, Combet C, Zoulim F, Janssen HLAA. How viral genetic variants and
505 genotypes influence disease and treatment outcome of chronic hepatitis B. Time for
506 an individualised approach?. *Elsevier B.V.* 2017;1281–97.
- 507 20. Davis C, Mgomella GS, da Silva Filipe A, Frost EH, Giroux G, Hughes J, et al. Highly
508 Diverse Hepatitis C Strains Detected in Sub-Saharan Africa Have Unknown
509 Susceptibility to Direct-Acting Antiviral Treatments. *Hepatology.* 2019;69(4):1426–41.
- 510 21. Fourati S, Rodriguez C, Hézode C, Soulier A, Ruiz I, Poiteau L, et al. Frequent Antiviral
511 Treatment Failures in Patients Infected With Hepatitis C Virus Genotype 4, Subtype
512 4r. *Hepatology.* 2019;69(2):513–23.
- 513 22. Rose R, Markov P V., Lam TT, Pybus OG. Viral evolution explains the associations
514 among hepatitis C virus genotype, clinical outcomes, and human genetic variation. *Infect Genet Evol.* 2013 Dec 1;20:418–21.
- 516 23. Bouckaert R, Alvarado-Mora MVM V., Pinho JRR, Rebello Pinho JR. Evolutionary
517 rates and HBV: Issues of rate estimation with Bayesian molecular methods. *Antivir
518 Ther.* 2013;18:497–503.
- 519 24. Osiowy C, Giles E, Tanaka Y, Mizokami M, Minuk GY. Molecular Evolution of Hepatitis
520 B Virus over 25 Years. *J Virol.* 2006 Nov 1;80(21):10307–14.
- 521 25. Zhang Q, Liao Y, Cai B, Li Y, Li L, Zhang J, et al. Incidence of natural resistance
522 mutations in naive chronic hepatitis B patients: A systematic review and meta-analysis. *J Gastroenterol Hepatol.* 2015;30(2):252–61.
- 524 26. Meng T, Shi X, Gong X, Deng H, Huang Y, Shan X, et al. Analysis of the prevalence
525 of drug-resistant hepatitis B virus in patients with antiviral therapy failure in a Chinese
526 tertiary referral liver centre (2010–2014). *J Glob Antimicrob Resist.* 2017;8:74–81.
- 527 27. Hermans LE, Svicher V, Pas SD, Salpini R, Alvarez M, Ben Ari Z, et al. Combined

- 528 analysis of the prevalence of drug-resistant Hepatitis B virus in antiviral therapy-
529 experienced patients in Europe (CAPRE). *J Infect Dis.* 2016;213(1):39–48.
- 530 28. Hayer J, Jadeau F, Deléage G, Kay A, Zoulim F, Combet C. HBVdb: A knowledge
531 database for Hepatitis B Virus. *Nucleic Acids Res.* 2013 Jan 1;41(D1).
- 532 29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis
533 Version 7.0 for Bigger Datasets. *Mol Biol Evol.* 2016;33(7):1870–4.
- 534 30. Package “seqinr” Encoding UTF-8. 2017. <http://seqinr.r-forge.r-project.org/>
- 535 31. Caligiuri P, Cerruti R, Icardi G, Bruzzone B. Overview of hepatitis B virus mutations
536 and their implications in the management of infection. Vol. 22, *World Journal of*
537 *Gastroenterology*. Baishideng Publishing Group Co., Limited; 2016. p. 145–54.
- 538 32. Waters JA, Kennedy M, Voet P, Hauser P, Petre J, Carman W, et al. Loss of the
539 common “A” determinant of hepatitis B surface antigen by a vaccine-induced escape
540 mutant. *J Clin Invest.* 1992;90(6):2543–7.
- 541 33. Carman WF. The clinical significance of surface antigen variants of hepatitis B virus.
542 *Journal of viral hepatitis.* 1997;4(1):11–20.
- 543 34. Steward MW, Partidos CD, D'Mello F, Howard CR. Specificity of antibodies reactive
544 with hepatitis B surface antigen following immunization with synthetic peptides.
545 *Vaccine.* 1993;11(14):1405–14.
- 546 35. Protzer-Knolle U, Naumann U, Bartenschlager R, Berg T, Hopf U, Zum Buschenfelde
547 KHM, et al. Hepatitis B virus with antigenically altered hepatitis B surface antigen is
548 selected by high-dose hepatitis B immune globulin after liver transplantation.
549 *Hepatology.* 1998;27(1):254–63.
- 550 36. Ngui SL, O'Connell S, Eglin RP, Heptonstall J, Teo CG. Low Detection Rate and
551 Maternal Provenance of Hepatitis B Virus S Gene Mutants in Cases of Failed Postnatal
552 Immunoprophylaxis in England and Wales. *J Infect Dis.* 1997;176(5):1360–5.
- 553 37. Roznovsky L, Harrison TJ, Fang ZL, Ling R, Lochman I, Orsagova I, et al. Unusual
554 hepatitis B surface antigen variation in a child immunised against hepatitis B. *J Med*
555 *Virol.* 2000;61(1):11–4.
- 556 38. Chang MH. Breakthrough HBV infection in vaccinated children in Taiwan: Surveillance
557 for HBV mutants. *Antiviral Therapy.* 2010;15:463–9.
- 558 39. Howard CR. The structure of hepatitis B envelope and molecular variants of hepatitis
559 B virus. *Journal of Viral Hepatitis.* 1995;2:165–70.
- 560 40. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective
561 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol Biol Evol.*
562 2015;32(1):268–74.
- 563 41. Abadi S, Azouri D, Pupko T, Mayrose I. Model selection may not be a mandatory step
564 for phylogeny reconstruction. *Nat Commun.* 2019;10(1):1–11.

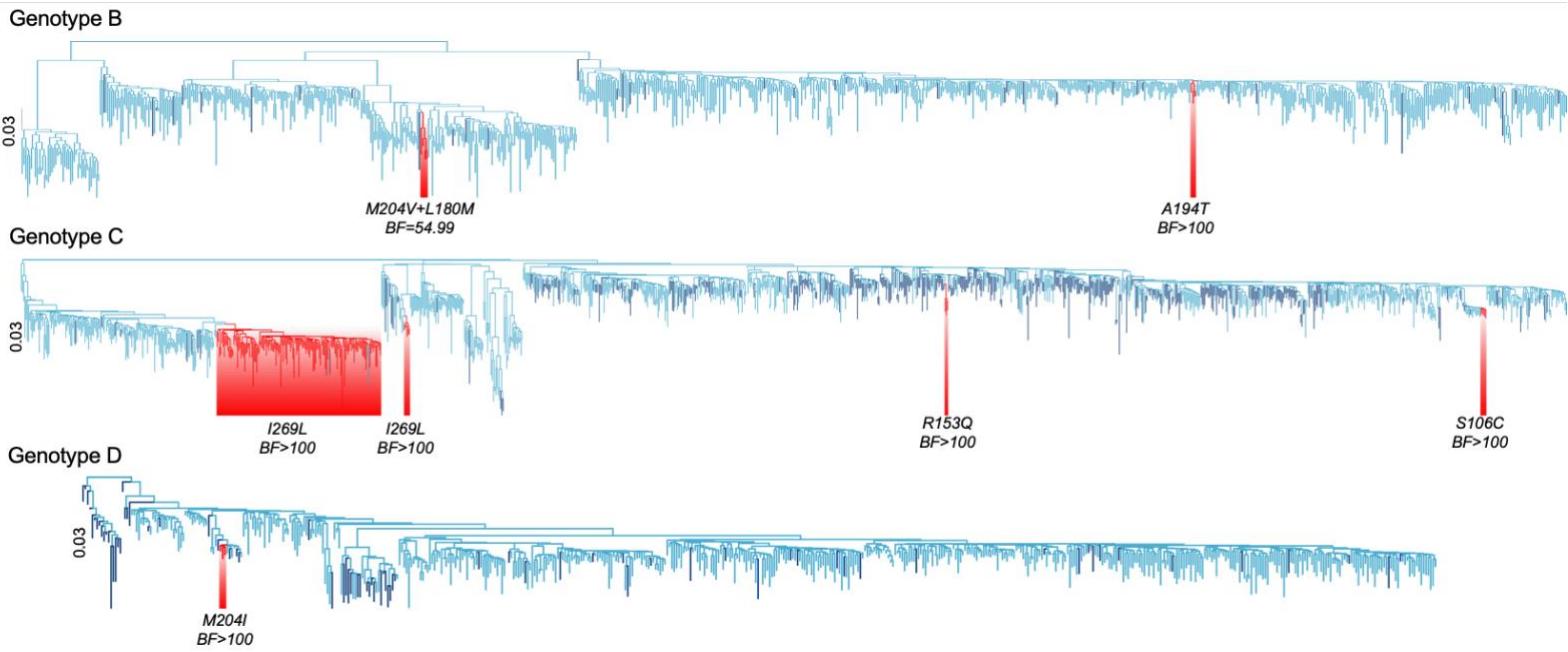
- 565 42. Package “phangorn” Title Phylogenetic Reconstruction and Analysis. 2019.
566 <https://github.com/KlausVigo/phangorn>
- 567 43. Azim Ansari M, Didelot X. Bayesian inference of the evolution of a phenotype
568 distribution on a phylogenetic tree. *Genetics*. 201;204(1):89–98.
- 569 44. Matthews PC, Leslie AJ, Katzourakis A, Crawford H, Payne R, Prendergast A, et al.
570 HLA Footprints on Human Immunodeficiency Virus Type 1 Are Associated with
571 Interclade Polymorphisms and Intraclade Phylogenetic Clustering. *J Virol*.
572 2009;83(9):4605–15.
- 573 45. To TH, Jung M, Lycett S, Gascuel O. Fast Dating Using Least-Squares Criteria and
574 Algorithms. *Syst Biol*. 2016;65(1):82–97.
- 575 46. Zehender G, Svicher V, Gabanelli E, Ebranati E, Veo C, Lo Presti A, et al. Reliable
576 timescale inference of HBV genotype A origin and phylodynamics. *Infect Genet Evol*.
577 2015;32:361–9.
- 578 47. Mozhgani S-HH, Malekpour SA, Norouzi M, Ramezani F, Rezaee SA, Poortahmasebi
579 V, et al. Molecular evolution and phylodynamics of hepatitis B virus infection circulating
580 in Iran. *Arch Virol*. 2018;163(6):1479–88.
- 581 48. Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. Posterior summarisation
582 in Bayesian phylogenetics using Tracer 1.7. *Systematic Biology*. 2018; **syy032**.
- 583 49. Littlejohn M, Locarnini S, Yuen L. Origins and Evolution of Hepatitis B Virus and
584 Hepatitis D Virus. *Cold Spring Harb Perspect Med*. 2016 Jan 1;6(1):a021360.
- 585 50. Thedja MD, Muljono DH, Nurainy N, Sukowati CHC, Verhoef J, Marzuki S.
586 Ethnogeographical structure of hepatitis B virus genotype distribution in Indonesia and
587 discovery of a new subgenotype, B9. *Arch Virol*. 2011;156(5):855–68. 55.
- 588 51. Zhang X, Chen X, Wei M, Zhang C, Xu T, Liu L, et al. Potential resistant mutations
589 within HBV reverse transcriptase sequences in nucleos(t)ide analogues-experienced
590 patients with hepatitis B virus infection. *Sci Rep*. 2019 Dec 1;9(1).
- 591 52. Li X, Liu Y, Xin S, Ji D, You S, Hu J, et al. Comparison of Detection Rate and Mutational
592 Pattern of Drug-Resistant Mutations Between a Large Cohort of Genotype B and
593 Genotype C Hepatitis B Virus-Infected Patients in North China. *Microb Drug Resist*.
594 2017;23(4):516–22.
- 595 53. Tenney DJ, Rose RE, Baldick CJ, Pokornowski KA, Eggers BJ, Fang J, et al. Long-
596 term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve
597 patients is rare through 5 years-of therapy. *Hepatology*. 2009;49(5):1503–14.
- 598 54. EASL. Clinical Practice Guidelines on the management of hepatitis B virus infection.
599 2017. <http://www.easl.eu/medias/cpg/management-of-hepatitis-B-virus-infection/English-report.pdf>
- 600 55. Q. M, Ma Q, Wang Y. Comprehensive analysis of the prevalence of hepatitis B virus

- 602 escape mutations in the major hydrophilic region of surface antigen. *J Med Virol.*
603 2012;84(2):198–206.
- 604 56. Sticchi L, Caligiuri P, Cacciani R, Alicino C, Bruzzone B. Epidemiology of HBV S-gene
605 mutants in the Liguria Region, Italy. *Hum Vaccin Immunother.* 2013;9(3):568–71.
- 606 57. World Health Organisation. Global hepatitis report, 2017.
607 <https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/>
- 608 58. Lee HW, Chang HY, Yang SY, Kim HJ. Viral evolutionary changes during tenofovir
609 treatment in a chronic hepatitis B patient with sequential nucleos(t)ide therapy. *J Clin*
610 *Virol.* 2014;60(3):313–6.
- 611 59. Andernach IE, Hunewald OE, Muller CP. Bayesian inference of the evolution of HBV/E.
612 *PLoS One.* 2013;8(11):e81690.
- 613 60. Gutierrez B, Escalera-Zamudio M, Pybus OG. Parallel molecular evolution and
614 adaptation in viruses. *Current Opinion in Virology.* 2019;34:90–6.
- 615 61. Khudyakov Y. Coevolution and HBV drug resistance. *Antivir Ther.* 2010;15:505–1
- 616 62. Thai H, Campo DS, Lara J, Dimitrova Z, Ramachandran S, Xia G, et al. Convergence
617 and coevolution of hepatitis B virus drug resistance. *Nat Commun.* 2012;3:789.
- 618 63. Zoulim F, Locarnini S. Hepatitis B Virus Resistance to Nucleos(t)ide Analogues.
619 *Gastroenterology.* 2009;137(5):1593-1608.e2.
- 620 64. Hong SY, Nachega JB, Kelley K, Bertagnolio S, Marconi VC, Jordan MR. The Global
621 Status of HIV Drug Resistance: Clinical and Public-Health Approaches for Detection,
622 Treatment and Prevention. *Infect Disord Drug Targets.* 2011;11(2):124. 68.
- 623 65. McNaughton AL, Roberts HE, Bonsall D, de Cesare M, Mokaya J, Lumley SF, et al.
624 Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus
625 (HBV). *Sci Rep.* 2019;9(1):7081.
- 626 66. World Health Organisation. Combating hepatitis B and C to reach elimination by 2030
627 may 2016 advocacy brief
628 http://apps.who.int/iris/bitstream/10665/206453/1/WHO_HIV_2016.04_eng.pdf
- 629 67. O'Hara GAGA, McNaughton ALAL, Maponga T, Jooste P, Ocama P, Chilengi R, et al.
630 Hepatitis B virus infection as a neglected tropical disease. Beasley DWC, editor.
631 2017;11(10):e0005842.
- 632 68. McNaughton AL, Revill PA, Littlejohn M, Matthews PC, Azim Ansari M. Analysis of
633 genomic-length HBV sequences to determine genotype and subgenotype reference
634 sequences. *J Gen Virol.* 2020;101(3):271–83.
- 635

636 **Figures**



637


638 **Figure 1: Global prevalence of hepatitis B virus (HBV) drug resistance associated mutations**
639 **(RAMs) obtained from analysing 2838 HBV sequences with information on country of**
640 **origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>).** A. Overall
641 **prevalence of RAMs common to 3TC, ETV and TFV. B. A bubble plot showing the overall**
642 **prevalence of RAMs common to 3TC, ETV and TFV within each genotype (genotype A n=290;**
643 **Genotype B n=730; Genotype C n=1102; Genotype D n=566; Genotype E n=150). C. A bubble**
644 **plot showing the overall prevalence of RAMs common to 3TC, ETV and TFV within each continent**
645 **(Africa n=277; Asia n=2109; Europe n=187; North America n=170).**

646 Numbers next to the circles are prevalence (%) of individual RAMs in each genotype/continent.
647 The asterisks (***/**/*) within certain circles indicate RAMs that have a higher prevalence within
648 the specified genotype/continent compared to the prevalence of that RAM in other
649 genotypes/continents and is statistically significant.

650 *** p value <0.001; **p value < 0.005; *p value <0.05. Bars show 95% confidence intervals. T184X
651 represents T184A/C/F/G/I/L/M/S.

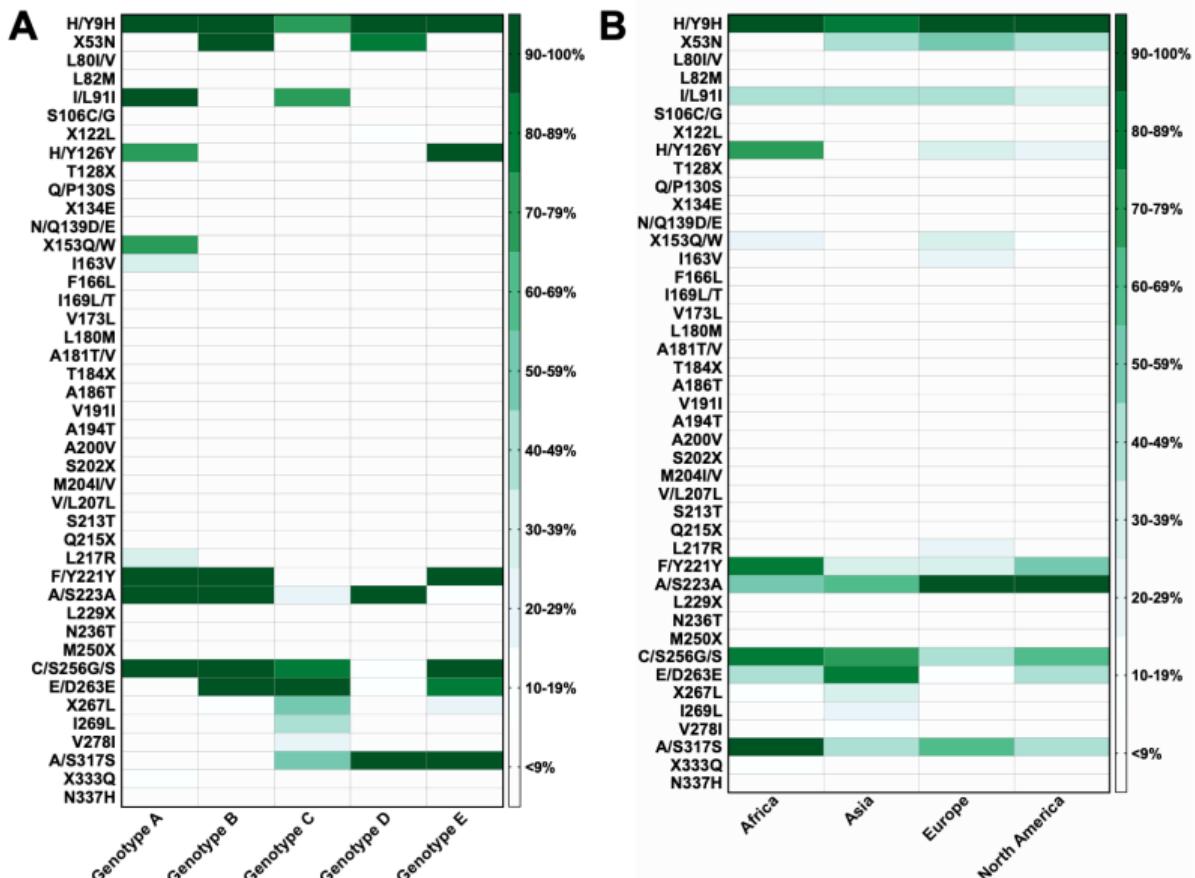
652
653 **Figure 2: Global prevalence of hepatitis B virus (HBV) vaccine escape mutations (VEMs)**
654 obtained from analysing 2838 HBV sequences with information on country of origin,
655 downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>). **A.** Overall prevalence of
656 putative VEMs and/or VEMs with only clinical or *in vitro* evidence. **B.** A bubble plot showing the overall
657 prevalence of putative VEMs and/or VEMs with only clinical or *in vitro* evidence within each genotype
658 (genotype A n=290; Genotype B n=730; Genotype C; n=1102; Genotype D n=566 and Genotype E
659 n=150), with a prevalence of >0.1%. **C.** A bubble plot showing the overall prevalence of putative VEMs
660 and/or VEMs with only clinical or *in vitro* evidence within each continent (Africa n=277; Asia n=2109;
661 Europe; n=187 and North America n=170), with a prevalence of >0.1%. Numbers next to the circles
662 are prevalence (%) of individual RAMs in each genotype/continent. The asterisks (***/**/*) within
663 certain circles indicate RAMs that have a higher prevalence within the specified genotype/continent
664 compared to the prevalence of that RAM in other genotypes/continents and is statistically significant.
665 *** p value <0.001; **p value <0.005; *p value < 0.05. T118X represents T118A/R/V; M133X represents
666 M133I/L/T; Q129X represents Q129A/R; D144X represents D144A/E/G/N.

667
668
669
670
671
672
673

Figure 3: HBV RAMs/VEMs distribution on rooted maximum likelihood phylogenetic trees for genotype B, C and D. Branches in dark blue represent sequences with one or more RAMs/VEMs. Branches in light blue have no specified RAMs/VEMs. Branches highlighted in red indicate clustered sequences with a RAM with Bayes factor of >30, suggesting strong evidence of clustering. ML trees for genotype A and E were not displayed because they had no sequences with specified RAM/VEM which formed clusters.

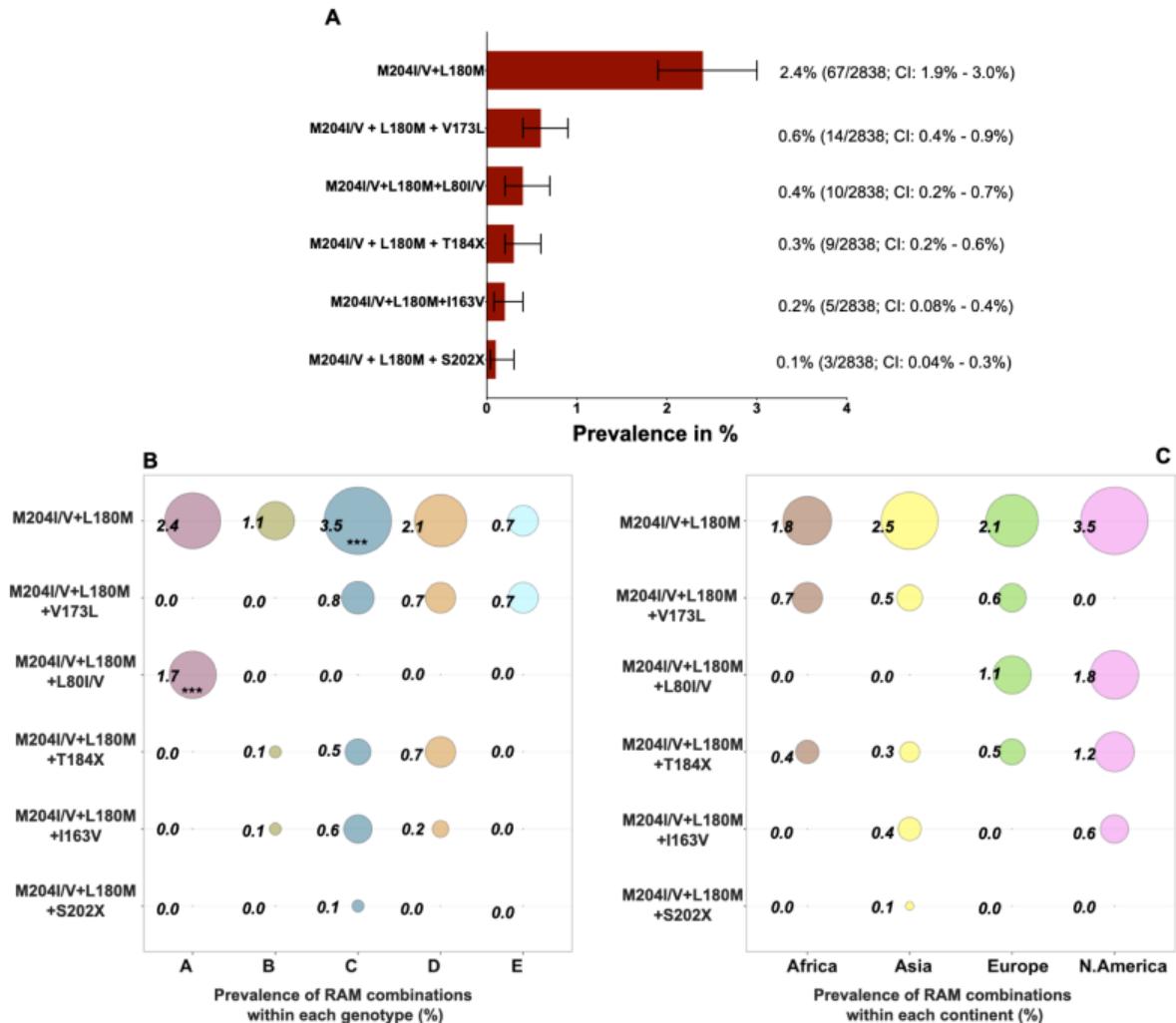
674 **Tables**

675 **Table 1: Estimated time of the most common recent ancestor (TMRCA) (and 95% HPD)**
676 **of branches with specific RAMs/VEMs on molecular clock trees.** HPD: Highest Posterior
677 Density. Only genotype C is displayed because it had at least two isolates with the same
678 resistant mutations with a single common ancestor.

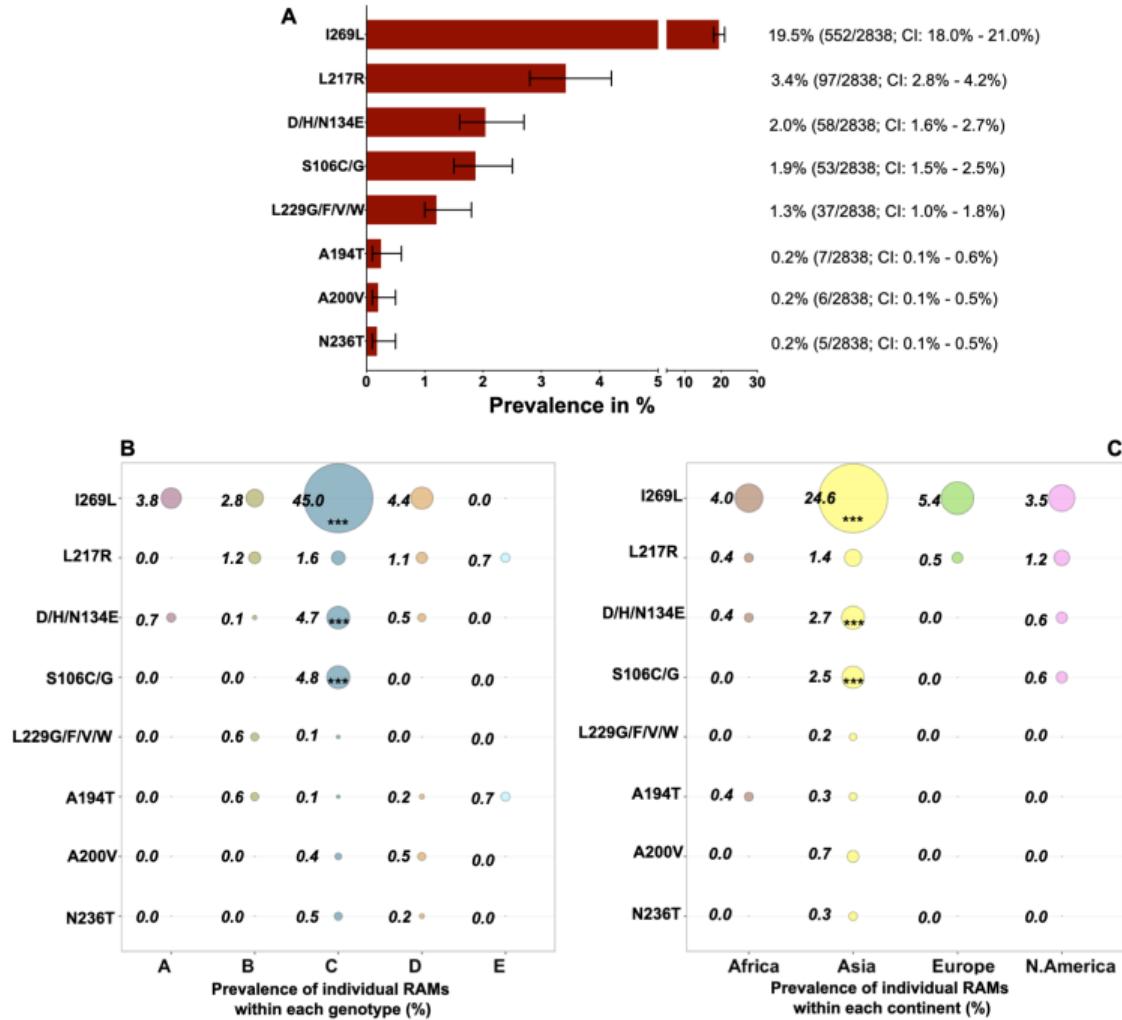

Genotype	RAMs/VEMs	Cluster of isolates with specified RAMs/VEMs	Estimated TMRCA (95%HPD)
C	M204V+L180M	FJ032355	1945 (1897, 1971)
		FJ386620	
	G145R	KU964229	1930 (1866,1958)
		KU964230	

679

680 **Supplementary Figures**

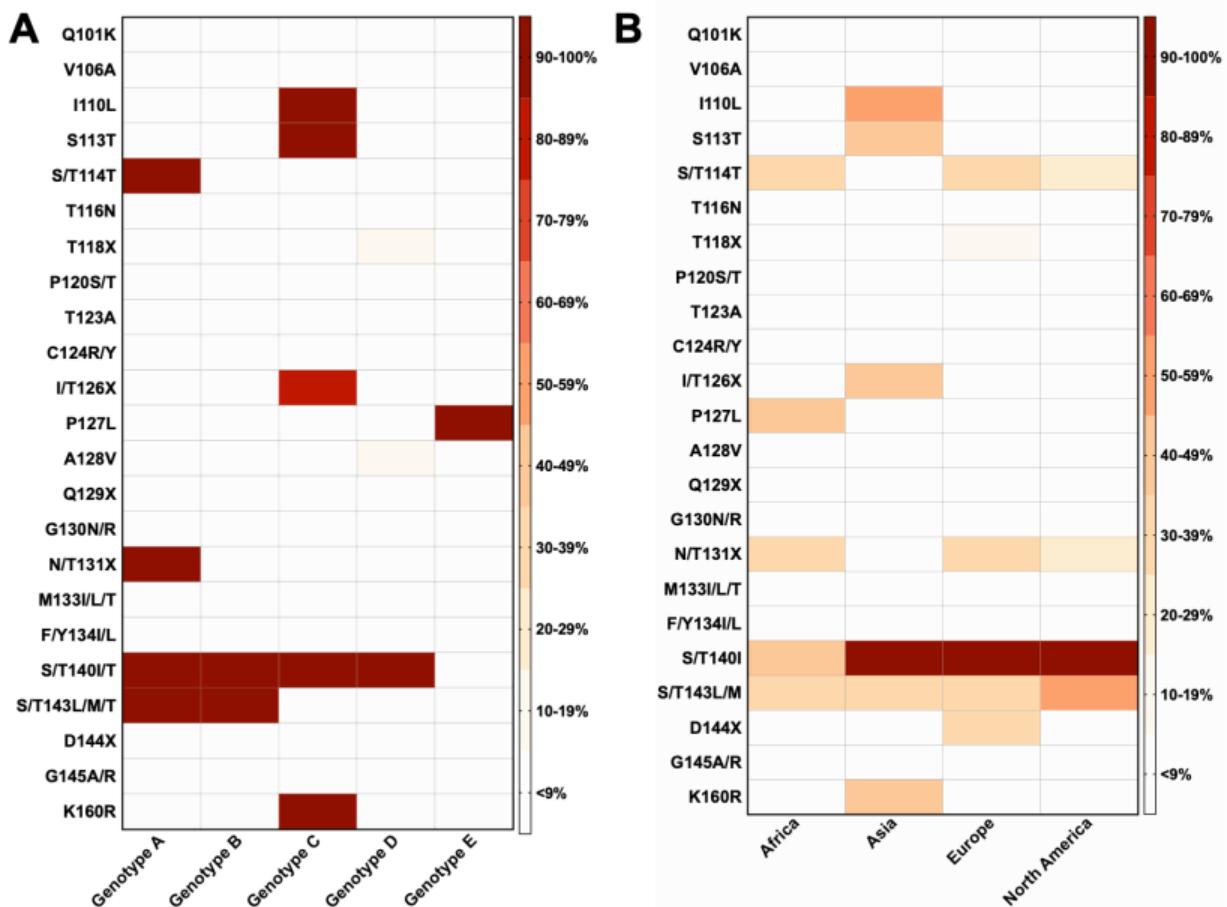


681
682 **Suppl Fig 1: Flow diagram showing data curation process of sequences downloaded from a**
683 **public database (<https://hbvdb.ibcp.fr/HBVdb/>) included in the analysis of the global**
684 **prevalence and evolution of hepatitis B virus (HBV) drug resistance associated mutation**
685 **(RAMs) and vaccine escape mutations (VEMs).**
686


687
688
689
690
691
692
693
694
695
696

Suppl Fig 2: Global prevalence of hepatitis B virus (HBV) drug resistance associated mutations (RAMs) obtained from analysing 2838 HBV sequences with information on country of origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>). A. Prevalence of polymorphisms across genotypes; B. Prevalence of polymorphisms across continents.
 X53N represents V/N/S/T53N; X122L represents I/F/H/L/N/Y122L; T128X represents T128A/I/N; X134E represents D/H/N134E; X153Q/W represents Q/R/W153Q/W; T184X represents T184A/C/F/G/I/L/M/S; S202X represents S202C/G/I; Q215X represents Q215E/H/P/S; L229X represents L229G/F/V/W; M250X represents M250I/L/V; X267L represents H/L/M/Q267L.

697
698 **Suppl Fig 3: Global prevalence of hepatitis B virus (HBV) entecavir (ETV) resistance associated**
699 **mutations (RAMs) obtained from analysing 2838 HBV sequences with information on country**
700 **of origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>).** A. Overall
701 prevalence of ETV RAMs. B. A bubble plot showing the prevalence of ETV RAMs within each
702 genotype (genotype A n=290; Genotype B n=730; Genotype C; n=1102; Genotype D n=566 and
703 Genotype E n=150). C. A bubble plot showing the prevalence of ETV RAMs within each continent
704 (Africa n=277; Asia n=2109; Europe; n=187 and North America n=170). Numbers next to the circles
705 are prevalence (%) of individual RAMs in each genotype/continent. The asterisks (***/**/*) within
706 certain circles indicate RAMs that have a higher prevalence within the specified genotype/continent
707 compared to the prevalence of that RAM in other genotypes/continents and is statistically significant.
708 *** p value <0.001; **p value < 0.005; *p value <0.05. Bars show 95% confidence intervals. T184X
709 represents T184A/C/F/G/I/L/M/S and S202X represents S202C/G/I/R


710
711

712

713 **Suppl Fig 4: Global prevalence of hepatitis B virus (HBV) tenofovir (TFV) resistance associated**
714 **mutations (RAMs) obtained from analysing 2838 HBV sequences with information on country**
715 **of origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>).** A. Overall
716 prevalence of TFV RAMs. B. A bubble plot showing the overall prevalence of TFV RAMs within each
717 genotype (genotype A n=290; Genotype B n=730; Genotype C; n=1102; Genotype D n=566 and
718 Genotype E n=150). C. A bubble plot showing the overall prevalence of TFV RAMs within each
719 continent (Africa n=277; Asia n=2109; Europe; n=187 and North America n=170). Numbers next to
720 the circles are prevalence (%) of individual RAMs in each genotype/continent. The asterisks (***/**/*)
721 within certain circles indicate RAMs that have a higher prevalence within the specified
722 genotype/continent compared to the prevalence of that RAM in other genotypes/continents and is
723 statistically significant. *** p value <0.001; **p value < 0.005; *p value <0.05. Bars show 95%
724 confidence intervals.

725

726
727 **Suppl Fig 5: Global prevalence of hepatitis B virus (HBV) vaccine escape mutations (VEMs)**
728 **across genotypes, obtained from analysing 2838 HBV sequences with information on country**
729 **of origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>)** A. Showing
730 **prevalence of polymorphisms across genotypes; B. Showing prevalence of polymorphisms across**
731 **continents.**

732 **Supplementary Tables**

733 **Suppl Table 1: Hepatitis B virus drug resistance associated mutations (RAMs).** Data obtained from
 734 published systematic reviews (1,2,8,9,25,31). Amino acid positions listed in HBV reverse transcriptase
 735 protein. 3TC: Lamivudine; ETV: Entecavir; TFV: Tenofovir

RAMs	3TC			ETV	TFV		
	Primary	Compensatory	Putative		Clinical and <i>in vitro</i> evidence	Only clinical evidence	Only <i>in vitro</i> evidence
H/Y9H						✓	
V/N/S/T53N			✓				
S78T					✓		
L80I/M/V		✓		✓		✓	
L82M			✓				
I/L91I/L			✓			✓	
S106C/G					✓		
T118C/G						✓	
I/F/H/L/N/Y122L						✓	
H/Y126Y					✓		
T128A/I/N			✓				
Q/P130S						✓	
D/H/N134E					✓		
N/Q139D/E			✓				
Q/R/W153Q/R/W			✓		✓		
I163V				✓		✓	
F166L			✓				
I169L/T		✓		✓			
V173L		✓		✓	✓		
P177G							✓
L180M		✓		✓	✓		
A181T/V	✓			✓	✓		
T184A/C/F/G/I/L/M/S		✓		✓		✓	
A186T				✓			
V191I			✓			✓	
R192P						✓	
A194T					✓		
A200V			✓			✓	
S202C/G/I		✓		✓			
M204I/V/S/Q	✓			✓	✓		
V/L207I/L			✓			✓	
S213T			✓	✓			
Q215E/H/P/S			✓				
L217R					✓		
F/Y221Y						✓	
A/S223A						✓	
L229G/F/V/W			✓		✓		
N236T					✓		
F249A							✓
M250I/L/V				✓			
C/S256G/S			✓	✓		✓	
E/D263E						✓	
H/L/M/Q267L						✓	
I269L					✓		
V278I						✓	
A/S317S						✓	

K/Q/T333Q						✓	
N337H						✓	
RAMs common to 3TC & ETV		I169L/T; S202C/G/I; S213T					
RAMs common to 3TC & TFV		I/L91I/L; Q/R/W153Q/R/W; V191I; A200V; V/L207I/L; L229G/F/V/W					
RAMs common to ETV & TFV		I163V					
RAMs common to 3TC & ETV&TFV		L80I/V/M; V173L; L180M; A181T/V; T184A/C/F/G/I/L/M; M204I/V/S/Q; C/S256G/S					

737 **Suppl Table 2: Hepatitis B virus vaccine escape mutations (VEMs).** Data obtained from published
738 studies (1,14–16,32–39). Amino acid positions listed in HBV surface protein. VEM: Vaccine escape
739 mutation. HBsAg: Hepatitis B surface antigen.

VEMs	HBIG	VEMs	Immune escape
Q101K			✓
V106A			✓
I110L			✓
S113T			✓
S/T114F/R/T	✓		✓
T116A/N		✓	
T118A/R/V	✓		
P120A/E/N/Q/S/T	✓	✓	✓
R/K122S			
T123A/N	✓		✓
C124R/Y	✓		
I/T126A/H/I/N/R/S	✓	✓	✓
P/T127L/P		✓	✓
A128V			✓
Q129H/N/R/P	✓	✓	✓
G130N/R	✓		✓
N/T131I/N/S	✓	✓	✓
M133I/L/T	✓	✓	✓
F/Y134I/L	✓	✓	✓
C137R/Y	✓		
C138Y			✓
C139S	✓		
S/T140I	✓		✓
K141E/I/R	✓	✓	
P142S	✓	✓	✓
S/T143M/L		✓	
D144A/E/G/H/N	✓	✓	✓
G145A/K/R	✓	✓	✓
N146S	✓		✓
C147S	✓		
K160R			✓

VEMs with both phenotypic and experimental evidence	K141E/I/R; G145A/K/R
--	----------------------

740

741 **Suppl Table 3: Description of sequences with individual or combination of RAMs that are highly**
742 **likely to cause resistance to TFV obtained from analysing 2838 HBV sequences with information**
743 **on country of origin, downloaded from a public database (<https://hbvdb.ibcp.fr/HBVdb/>).** These
744 RAMs combination include ≥ 1 RAMs from the 'short list' in combination with ≥ 3 other RAMs from the 'long
745 list' as described (8).

746

Sequence ID	Individual and combination of mutations that are highly likely to cause resistance to TFV	No. of sequences with RAM (%)	Continent and number of sequences	Genotype and number of sequences
GQ358144-7; GQ377536; KT366495; GQ161771	A194T*	7 (0.2)	Asia n=6; Africa n=1	B, n=4; C, n=1; D, n=1, E, n=1,
FJ386681	A181T/V*+N236T	1 (0.04)	Asia n=1	B n=1
KJ803809	S106C*+D134E*+Q267L+I269L*+K333Q	1 (0.04)	Asia n=1	C n=1
FJ386579; FJ787470; FJ787471	S106C*+V173L*+L180M*+M204I/V*+Q267L	3 (0.1)	Asia n=3	C n=3
EU939588	S106C*+L180M*+A200V+M204I*+Q267L	1 (0.04)	Asia n=1	C n=1
FJ386623	S106C*+L180M*+ M204I/V*+Q267L	1 (0.04)	Asia n=1	C n=1
FJ386620; JX026877	S106C*+L180M*+ M204I/V*+I269L	2 (0.07)	Asia n=2	C n=2
AB182589	S106C*+D134E*+Q267L+I269L*+K333Q+N337H	1 (0.04)	Asia n=1	C n=1
JQ040132	D134E*+L180M*+M204I*I267L+N337H	1 (0.04)	Asia n=1	C n=1
AY641561	D134E*+I267*L+K333Q+N337H	1 (0.04)	Asia n=1	C n=1
EU560439	D134E*+Q267L+I269L*+K333Q	1 (0.04)	Asia n=1	C n=1
JN827423	R153Q*+V173L*+L180M*+M204V*+I269L*+V278I	1 (0.04)	Asia n=1	C n=1
JQ707346	R153W*+L180M*+M204V*+V207L+L217R*	1 (0.04)	North America n=1	A n=1
FJ899789	R153Q*+Q267L+I269L*+V173L*+N337H	1 (0.04)	Asia n=1	C n=1
MF772345	R153W*+L217R*+V278I+K333Q	1 (0.04)	Africa n=1	A n=1
JN257203	R153Q*+F122L+V278I+K333Q	1 (0.04)	Africa n=1	D n=1
KX357637	V173L*+L180M*+M204V*+V207L	1 (0.04)	Asia n=1	D n=1
FJ032355	V137L+L180M+M204V+Q267L+I269L*	1 (0.04)	Asia n=1	C n=1
JN827418; JN827421; MF925409	V137L*+L180M*+M204V*+I269L*+V278I	3 (0.1)	Asia n=3	C n=3
AB697490	V137L*+L180M*+M204V*+N337H	1 (0.04)	Asia n=1	C n=1
FJ787453	V137L*+ M204V*+ Q267L+I269L*	1 (0.04)	Asia n=1	C n=1
FJ386604	L180M*+A181V*+M204V*+I269L*	1 (0.04)	Asia n=1	C n=1
JF828921	L180M*+T184L+M204V*+L229V*+Q267L+K333Q+N337H	1 (0.04)	Asia n=1	C n=1
JF828923; JF828937	L180M*+T184A/L+M204V*+ Q267L+K333Q+N337H	2 (0.07)	Asia n=2	C n=2
EU939564;	L180M*+A200V+M204I*+Q267L	1 (0.04)	Asia n=1	C n=1
FJ386653; FJ787455; FJ787456	L180M*+M204I/V*+L229V*+Q267L	3 (0.1)	Asia n=3	C n=2
JN827422; JN827424	L180M*+M204I/V*+I269L*+V278I	2 (0.07)	Asia n=2	C n=2
DQ246215	L180M*+M204I*+V278I+N337H	1 (0.04)	Asia n=1	C n=1

747 * RAMs provided in 'short list' described in (8); these RAMs are supported by the highest quality evidence
748 (i.e. isolated from treatment compliant individuals in whom viraemia was not suppressed by TFV and these
749 RAMs were also tested in *in vitro* assays to measure the effect of TFV on viral replication in cell lines)

750 **Suppl Table 4: Global prevalence of hepatitis B virus (HBV) drug resistance associated**
 751 **mutations (RAMs) that are wildtype amino acid. Prevalence rates were obtained from analysing**
 752 **2838 HBV sequences with information on country of origin, downloaded from a public**
 753 **database (<https://hbvdb.ibcp.fr/HBVdb/>).** **A.** Identification of RAMs as wildtype in certain genotypes
 754 using HBV reference sequences for genotypes A-J. **B.** Prevalence of RAMs that are wildtype amino
 755 acid across genotypes. **C.** Prevalence of RAMs that are wildtype amino acid across continents. HBV
 756 reference sequences were obtained from a published manuscript (68).
 757

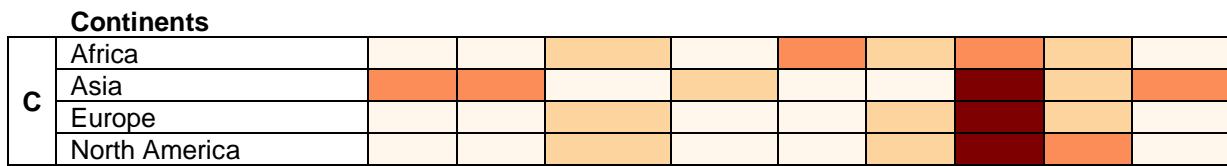
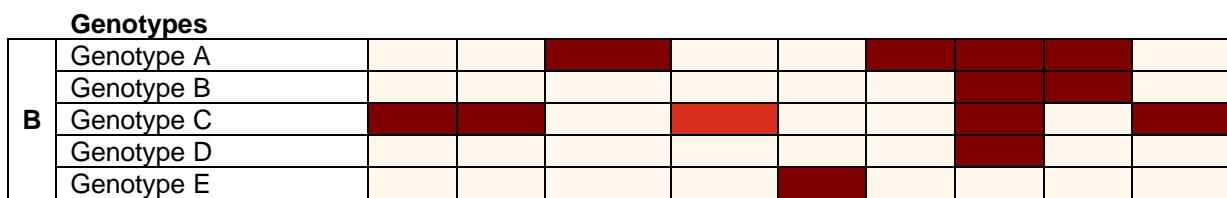
HBV RAMs that are wildtype in certain genotypes														
	Genotype	Reference sequence accession number	H/Y9H	X53N	I/L91	H/Y126Y	X153X	F/Y221Y	A/S223S	C/S256S	E/D263E	X267L	A/S317S	X333Q
A	A	FJ692557	H	-	I	Y	W	Y	A	S	-	-	-	-
	B	GU815637	H	N	-	-	-	Y	A	S	E	-	-	-
	C	GQ377617	H	-	I	-	-	-	-	S	E	L	S	-
	D	KC875277	H	N	-	-	-	-	A	-	-	-	S	-
	E	GQ161817	H	-	-	Y	-	Y	-	S	E	-	S	-
	F	HM585194	H	N	-	-	-	Y	A	S	-	-	-	Q
	G	AB056513	H	-	I	Y	-	Y	A	S	E	-	-	-
	H	FJ356715	H	-	-	-	-	Y	A	S	E	-	-	-
	I	AB562463	H	-	-	Y	Q	Y	A	S	-	-	-	Q
	J	AB486012	-	-	-	-	-	Y	A	S	-	-	-	-

Genotypes

B	Genotype A	Dark Green	White	Dark Green	White	White	White	White	White				
	Genotype B	Dark Green	Dark Green	White	White	White	White	Dark Green					
	Genotype C	Dark Green	White	Dark Green	White	White	White	Light Blue	Dark Green	Dark Green	Light Blue	Light Blue	Light Blue
	Genotype D	Dark Green	Dark Green	White	White	White	White	Dark Green	White	White	White	White	Dark Green
	Genotype E	Dark Green	White	White	Dark Green	Dark Green	Light Blue	Light Blue	Dark Green	Dark Green	Light Blue	Light Blue	Dark Green

Continents

C	Africa	Dark Green	White	Light Blue	Dark Green	Light Blue	Dark Green	Dark Green	Dark Green	Dark Green	White	Light Blue	Dark Green
	Asia	Dark Green	Light Blue	Light Blue	White	White	Light Blue	Dark Green	Dark Green	Dark Green	Light Blue	Light Blue	Dark Green
	Europe	Dark Green	Light Blue	Dark Green	White	Light Blue	Light Blue	Dark Green	Light Blue				
	North America	Dark Green	Light Blue	Dark Green	Dark Green	Dark Green	Light Blue	Light Blue	Light Blue				



Key

81-100%	Dark Green
61-80%	Dark Green
41-60%	Light Blue
21-40%	Light Blue
0-20%	White

758 X153Q/W represents Q/R/W153Q/W; X53N represents V/N/S/T53N; X333Q represents K/Q/T333Q.

759 **Suppl Table 5: Global prevalence of hepatitis B virus (HBV) vaccine escape mutations (VEMs)**
 760 **that are wildtype amino acid. Prevalence rates were obtained from analysing 2838 HBV**
 761 **sequences with information on country of origin, downloaded from a public database**
 762 **(<https://hbvdb.ibcp.fr/HBVdb/>).** **A.** Identification of VEMs as wildtype in certain genotypes using HBV
 763 **reference sequences for genotypes A-J. B.** Prevalence of VEMs that are wildtype amino acid across
 764 **genotypes. C.** Prevalence of VEMs that are wildtype amino acid across continents.

HBV RAMs that are wildtype in certain genotypes											
	Genotype	Reference sequence accession number	I110L	S113T	S/T114T	I/T126I	P/L127L	N/T131N	S/T140T	S/T143T	X160R
A	A	FJ692557	I	-	T	-	-	N	T	T	-
	B	GU815637	I	-	-	-	-	-	T	T	-
	C	GQ377617	L	T	-	I	-	-	T	-	R
	D	KC875277	I	-	-	-	-	-	T	-	-
	E	GQ161817	I	-	-	-	L	-	-	-	-
	F	HM585194	L	-	T	-	L	-	-	-	-
	G	AB056513	I	-	-	-	-	N	T	-	-
	H	FJ356715	L	-	T	-	L	-	T	-	-
	I	AB562463	I	-	-	-	-	N	T	-	-
	J	AB486012	L	-	T	I	-	-	T	-	-

765 X160R represents K/R160R.

766

767 **Suppl Methods: Phylogenetic dating using Bayesian Evolutionary Analysis Sampling Trees**
768 **(BEAST).**

769
770 We performed molecular clock phylogenetic analyses to estimate the times of emergence
771 of mutations of interest, focussed on RAMs V173L, L180M and M204I/V as they are well
772 known to cause (individually or synergistically) resistance to 3TC, ETV and TDF (8), and VEMs
773 G145A/R and K141E/I/R as they have been best described to cause HBV vaccine resistance
774 (11–13). In this analysis we included genotypes that had >50 sequences with associated
775 sampling date information: genotype A (n=170), B (n=594), C (n=906), D (n=336) and E
776 (n=88). We manually inspected sequences for misalignments in AliView program (43) and
777 then excluded codon positions associated with resistance (we excluded all sites listed in
778 **Suppl Tables 1 and 2**) to ensure that parallel evolution RAMs/VEMs does not affect the
779 phylogeny (44). We first identified sequences containing these mutations on the molecular
780 clock tree and then only focused on reporting the time to most recent common ancestor
781 (TMRCA) of two or more sequences that clustered together having the same mutation.

782
783 We performed Bayesian Markov chain Monte Carlo (MCMC) analyses using BEAST v.1.10
784 (69). We used a GTR+G nucleotide substitution model, a coalescent Bayesian Skygrid
785 model with 50 points (70) and the uncorrelated lognormal relaxed molecular clock model.
786 These models were selected because they have performed best in other studies estimating
787 HBV evolution (46,47). TempEst allows quantification of temporal signal by estimating
788 regressing the root-to-tip genetic distance of each sequence in the tree and its sampling
789 date (48). Based on application of TempEst, we estimated the correlation between the
790 dates of the tips of the sequences and the divergence from the root to be 7.8×10^{-2} , $3.9 \times$
791 10^{-1} , 4.3×10^{-2} , 2.3×10^{-2} and 2.1×10^{-1} for genotypes A, B, C, D and E, respectively, and
792 thus we elected not to estimate the molecular clock rate as there was insufficient signal in
793 our data. We thus fixed the mean substitution rate to 5.0×10^{-5} (SD 4.12×10^{-6}) and a mean
794 standard deviation of 2.0×10^{-5} (SD 4.96×10^{-7}) subs/site/year, for all genotypes in all
795 subsequent BEAST analyses, as this rate has been estimated before and applied in
796 phylodynamic analyses of HBV (24,49).

797
798 To avoid convergence issues, we selected smaller subsamples from each of our
799 alignments, depending on their size, to ensure that alignments used in BEAST analyses
800 were <200 sequences. Thus, Genotype B (total n=564) was split into 3 subsamples,
801 genotype C (total n=906) into 6 subsamples and genotype D (total n=336) into 2
802 subsamples. We used stratified random sampling, ensuring equal representation of

803 sequences with mutations in each subsample. We ran one BEAST analysis for Genotypes
804 A and E since their full alignments contained <200 sequences.
805

806 Two MCMC chains of 100×10^6 generations (10% burn-in) were run with sampling every
807 10,000th generation for genotypes A and E, and for each subsample of genotypes B, C and
808 D separately. The MCMC chains for analyses of the same genotype were combined using
809 LogCombiner v1.10.4 (69). We inspected convergence of the MCMC analyses using Tracer
810 v.1.7.1 (71) to ensure effective sample size (ESS) >200 for all model parameters. We
811 inferred maximum clade credibility trees using TreeAnnotator v.1.10.0 (69) and visualised
812 them using FigTree v.1.4.4 (69).