

1 Meta-transcriptomic identification of divergent 2 *Amnoonviridae* in fish

3 Olivia M. H. Turnbull^{1*}, Ayda Susana Ortiz-Baez^{2*}, John-Sebastian Eden^{2,3}, Mang Shi^{2,4}, Jane E.
4 Williamson¹, Troy F. Gaston⁵, Yong-Zhen Zhang⁶, Edward C. Holmes^{2*}, Jemma L. Geoghegan^{7,8*}

5 ¹Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
6 olivia.turnbull@hdr.mq.edu.au (O.M.H.T.); jane.williamson@mq.edu.au (J.E.W.)

7 ²Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and
8 School of Medical Sciences, University of Sydney, NSW 2006, Australia; susana.ortiz@sydney.edu.au
9 (A.S.O.B); mang.shi@sydney.edu.au (M.S); edward.holmes@sydney.edu.au (E.C.H)

10 ³Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia;
11 js.eden@sydney.edu.au

12 ⁴School of Medicine, Sun Yat-sen University, Guangzhou, China; mang.shi@sydney.edu.au

13 ⁵Troy Gaston: School of Life and Environmental Sciences, University of Newcastle, Ourimbah, NSW 2258,
14 Australia; troy.gaston@newcastle.edu.au

15 ⁶Shanghai Public Health Clinic Center & Institutes of Biomedical Sciences, Fudan University, Shanghai,
16 China; zhangyongzhen@shphc.org.cn

17 ⁷Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
18 jemma.geoghegan@otago.ac.nz

19 ⁸Institute of Environmental Science and Research, Wellington 5018, New Zealand;
20 jemma.geoghegan@otago.ac.nz

21 *authors contributed equally

22 * Correspondence: edward.holmes@sydney.edu.au (E.C.H.); jemma.geoghegan@otago.ac.nz (J.L.G.)

23 Received: date; Accepted: date; Published: date

24 **Abstract:** Tilapia lake virus (TiLV) has caused mass mortalities in farmed and wild tilapia with
25 serious economic and ecological consequences. Until recently, this virus was the sole member of the
26 *Amnoonviridae*, a family within the order *Articulavirales* comprising segmented negative-sense RNA
27 viruses. We sought to identify additional viruses within the *Amnoonviridae* through total RNA
28 sequencing (meta-transcriptomics) and data mining of published transcriptomes. Accordingly, we
29 sampled marine fish species from both Australia and China and discovered two new viruses within
30 the *Amnoonviridae*, tentatively called *Flavolineata virus* and *Piscibus virus*, respectively. In addition,
31 by mining vertebrate transcriptome data we identified nine additional virus transcripts matching to
32 multiple genomic segments of TiLV in both marine and freshwater fish. These new viruses retained
33 sequence conservation with the distantly related *Orthomyxoviridae* in the RdRp subunit PB1, but
34 formed a distinct and diverse phylogenetic group. These data suggest that the *Amnoonviridae* have
35 a broad host range within fish and that greater animal sampling will identify additional divergent
36 members of the *Articulavirales*.

37

38 **Keywords:** meta-transcriptomics; virus discovery; *Amnoonviridae*; *Articulavirales*; fish; tilapia lake
39 virus; evolution; phylogeny

40

41 1. Introduction

42 The *Amnoonviridae* are a recently described family of segmented and enveloped negative-sense
43 RNA viruses associated with disease in fish. Until recently, the *Amnoonviridae* comprised only a
44 single species, *tilapinevirus* or tilapia lake virus (TiLV) [1, 2], that is associated with high rates of
45 morbidity and mortality in both farmed and wild tilapia (*Oreochromis niloticus* and *Oreochromis*
46 *niloticus* x *O. aureus* hybrid). As the second most farmed fish globally [3] and an important

47 subsistence for farmers and high value markets [4], tilapia contribute \$7.5 billion annually to the
48 aquaculture industry. Outbreaks of TiLV have resulted in significant economic and ecological loss.
49 The virus causes gross lesions of the eyes and skin, while also impacting brain, liver and kidney
50 tissue [2], with associated mortality rates up to 90% [5, 6]. While ongoing surveillance has detected
51 the virus across numerous countries in Asia, Africa and South America [7], the identity of potential
52 reservoir hosts remains unclear.

53 The *Amnoonviridae* are members of the order *Articulavirales* that also includes the *Orthomyxoviridae*
54 [8] that are particularly well-known because they contain the mammalian and avian influenza
55 viruses. Unlike the *Amnoonviridae*, the *Orthomyxoviridae*, and closely related but unclassified
56 orthomyxo-like viruses, infect a broad range of host species comprising both invertebrates and
57 vertebrates. Notably, a divergent member of the *Amnoonviridae*, *Lauta virus*, was recently identified
58 in an Australian gecko [9], strongly suggesting that members of this family are present in a wider
59 range of vertebrate hosts. In addition, the large phylogenetic distance between *Lauta virus* and TiLV
60 suggests that the former may even constitute a new genus within the *Amnoonviridae*, with the long
61 branches throughout the *Articulavirales* phylogeny likely indicative of very limited sampling.

62 To help address whether the *Amnoonviridae* might be present in a wider range of vertebrate taxa we
63 screened for their presence using a meta-transcriptomic analysis of marine fish sampled in
64 Australia and China, combined with transcriptome mining.

65

66 2. Materials and Methods

67 2.1 *Fish collection in Australia*. Fish samples were collected from Bass Strait (40°15'S–42°20'S,
68 147°05'E–148°35'E), Australia in November 2018. The fish species collected included *Rhombosolea*
69 *tapirina*, *Platycephalus bassensis*, *Platycephalus speculator*, *Trachurus declivis*, *Trachurus novaezelandiae*,
70 *Scorpaena papillosa*, *Pristiophorus nudipinnis*, *Pentaceropsis recurvirostris* and *Meuschenia flavolineata*.
71 Fish were caught via repeated research trawls on the fisheries training vessel, *Bluefin*, following the
72 methodology outlined in [10]. Ten individuals from each species were caught and stored separately.
73 Gill tissues were dissected and snap frozen at -20°C on the vessel, and then stored in a -80°C freezer
74 at Macquarie University, Sydney. Sampling was conducted under the approval of the University of
75 Tasmania Animal Ethics Committee, approval number A0015366.

76 2.2 *Fish collection in China*. Fish samples were collected from South China Sea as reported previously
77 [11]. Fish species that were sampled and subsequently pooled included *Proscyllium habereri*,
78 *Urolophus aurantiacus*, *Rajidae* sp., *Eptatretus burgeri*, *Heterodontus zebra*, *Dasyatis bennetti*,
79 *Acanthopagrus latus*, *Epinephelus awoara*, *Conger japonicus*, *Siganus canaliculatus*, *Glossogobius*
80 *circumspectus*, *Halichoeres nigrescens*, and *Boleophthalmus pectinirostris*. Liver samples from each
81 species were pooled and stored in a -80°C freezer. The procedures for sampling and sample
82 processing were approved by the ethics committee of the National Institute for Communicable
83 Disease Control and Prevention of the China CDC.

84 2.3 *RNA sequencing*. For RNA extraction, frozen tissue was partially thawed and submerged in lysis
85 buffer containing 1% β -mercaptoethanol and 0.5% Reagent DX before tissues were homogenized
86 together with TissueRupture (Qiagen). The homogenate was centrifuged to remove any potential
87 tissue residues, and RNA from the clear supernatant was extracted using the Qiagen RNeasy Plus

88 Mini Kit. RNA was quantified using NanoDrop (ThermoFisher). RNA isolated from the Australian
89 samples was pooled for each host species, whereas RNA isolated from the Chinese samples was
90 pooled from all species, resulting in 3 μ g per pool (250ng per individual). Libraries were constructed
91 using the TruSeq Total RNA Library Preparation Protocol (Illumina) and host ribosomal RNA
92 (rRNA) was depleted using the Ribo-Zero-Gold Kit (Illumina) to facilitate virus discovery. Fish
93 caught in Australia were subject to paired-end (100 bp) sequencing performed on the NovaSeq 500
94 platform (Illumina) carried out by the Australian Genome Research Facility (AGRF). RNA
95 sequencing of the pooled fish sampled from China were sequenced on the HiSeq 2500 platform
96 (Illumina) at BGI Tech (Shenzhen).

97 2.4 *Transcript sequence similarity searching for novel amnoonviruses*. Sequencing reads were first quality
98 trimmed then assembled *de novo* using Trinity RNA-Seq (v.2.11.0) [12]. The assembled contigs were
99 annotated based on similarity searches against the National Center for Biotechnology Information
100 (NCBI) nucleotide (nt) and non-redundant protein (nr) databases using BLASTn and Diamond
101 BLASTX (v.2.0.2) [13]. To infer the evolutionary relationships of the amnoonviruses newly
102 discovered the translated viral contigs were combined with representative protein sequences from
103 TiLV and *Lauta virus* obtained from NCBI GenBank. The sequences retrieved were then aligned
104 with those generated here using MAFFT (v7.4) employing the E-INS-i algorithm. Ambiguously
105 aligned regions were removed using trimAl (v.1.2) [14]. To estimate phylogenetic trees, we utilized
106 the maximum likelihood approach available in IQ-TREE (v 1.6.8) [15], selecting the best-fit model of
107 amino acid substitution with ModelFinder [16], and using 1000 bootstrap replicates. Phylogenetic
108 trees were annotated with FigTree (v.1.4.2).

109 2.5 *PCR confirmation*. To further confirm the presence of *Flavolineata virus* in the yellow-striped
110 leatherjacket collection, 10 μ l of extracted RNA was transcribed into cDNA using SuperScript®
111 VILO™ reverse transcriptase (Invitrogen, CA USA). PCR amplification was performed using
112 Platinum™ II Hot-Start PCR Master Mix (2X) (Invitrogen, CA, USA) and 3 sets of primers (Table S1)
113 designed to cover different regions of the virus sequence. PCR products were visualized on 2%
114 agarose gel stained with SYBR® Safe (Invitrogen, CA USA).

115 2.6 *TSA mining*. To identify additional novel vertebrate viruses within the *Amnoonviridae* we
116 screened *de novo* transcriptome assemblies available at the NCBI Transcriptome Shotgun Assembly
117 (TSA) database (<https://www.ncbi.nlm.nih.gov/genbank/tsa/>). Amino acid sequences of *Flavolineata*
118 *virus*, *Piscibus virus* and TiLV were queried against the assemblies using the translated Basic Local
119 Alignment Search Tool (tBLASTn) algorithm. We restricted the search to transcriptomes within the
120 Vertebrata (taxonomic identifier: 7742). Putative virus contigs were subsequently queried using
121 BLASTx against the non-redundant virus database.

122 2.7 *Virus naming*. New viruses identified in this study are tentatively named by drawing from their
123 host species' names.

124 2.8 *Data availability*. Sequencing reads are available at the NCBI Sequence Read Archive (SRA). For
125 *Piscibus virus* see Bioproject PRJNA418053 (BioSample: SAMN08013970; Library name: BHFishG)
126 and for *Flavolineata virus* see Bioproject: PRJNA667570. Alignments with new virus transcripts are
127 available at <https://github.com/jemmageoghegan/Amnoonviridae-in-fish>.

128

129 **3. Results**

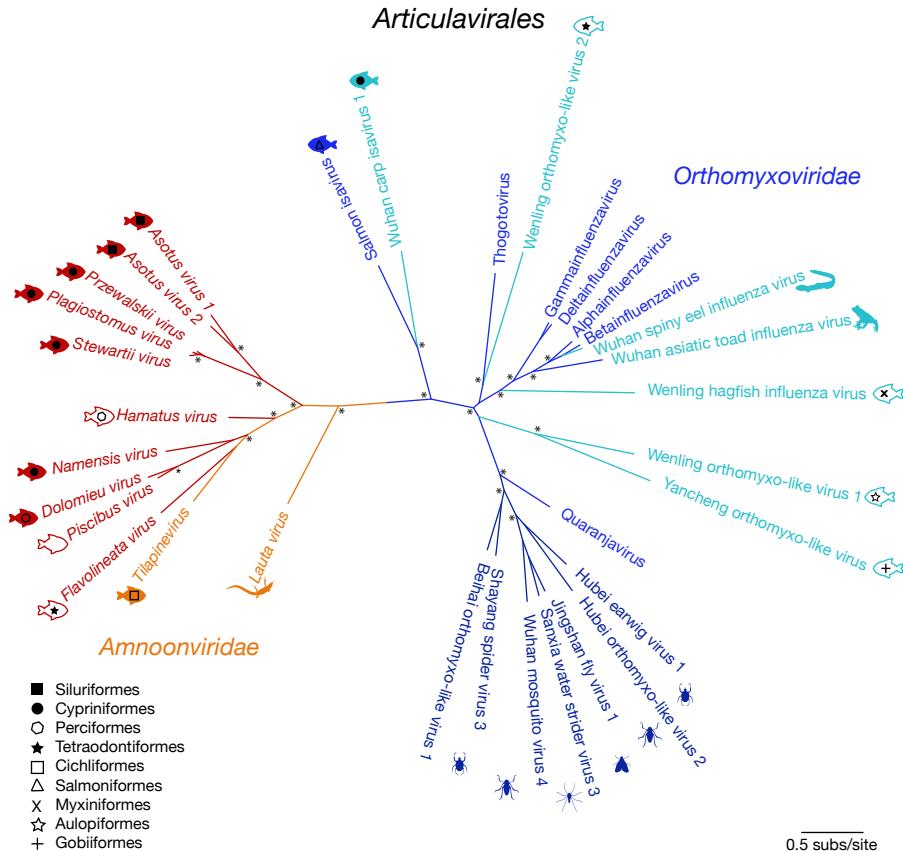
130 *3.1 Identification of a novel Amnoonviridae in yellow-striped leatherjacket.* As part of a large virological
131 survey on nine species of marine fish our meta-transcriptomic analysis identified a novel member
132 of the *Amnoonviridae*, tentatively named *Flavolineata virus*, in a sequencing library of 10 pooled
133 individuals of yellow-striped leatherjacket (*Meuschenia flavolineata*) sampled from the Bass Strait off
134 the coast of Tasmania, Australia. No amnoonviruses were identified in the remaining eight fish
135 species. We identified a complete, highly divergent protein in which a Diamond BLASTx analysis
136 revealed 37% amino acid identity to TiLV segment 1, characterized as the PB1 subunit (Genbank
137 accession: QJD15207.1, e-value: 2.0×10^{-80} , query coverage 95%), with a GC composition of 48.2% and
138 a standardised abundance of 0.00004% of the total non-rRNA library. The presence of *Flavolineata*
139 *virus* was further confirmed in the unpooled samples using RT-PCR (Figure S1).

140 *3.2 Identification of a novel Amnoonviridae in pooled marine fish from the South China Sea.* An additional
141 novel member of the *Amnoonviridae*, in which we have termed *Piscibus virus*, was identified in a
142 pool of various marine species (including sharks, eels, stingrays, jawless fish and perch-like fish)
143 sampled in the South China Sea as described previously [11]. Specifically, we identified a short
144 contig (270 nucleotides) that shared highest amino acid sequence similarity (48.8%, e-value: 1.5×10^{-15})
145 to *Flavolineata virus* using a custom database including the known members of the family
146 *Amnoonviridae*. In addition, a comparison to the NCBI nr database showed that *Piscibus virus* had
147 48.5% amino acid similarity (e-value: 2.0×10^{-67}) to the PB1 subunit of the TiLV RdRp. The GC
148 composition of the assembled sequence was 49.2% and it had a standardized abundance of 0.0001%
149 of the total non-rRNA library. Despite the limited contig length, we identified conserved motifs
150 within the PB1 subunit (see below).

151 *3.3 Identification of novel Amnoonviridae in published transcriptomes.* To identify additional novel
152 vertebrate viruses within the *Amnoonviridae* we screened *de novo* transcriptome assemblies available
153 at NCBI's TSA database. In doing so we identified nine further potentially novel viruses in fish
154 (Table 1).

155 Relatives of the *Amnoonviridae* were identified in ray-finned fish species (Actinopterygii) from
156 marine (*Lepidonotothen nudifrons* and *Chionodraco hamatus*) and freshwater ecosystems (*Gymnocypris*
157 *przewalskii*, *Gymnocypris namensis*, *Micropterus dolomieu*, *Oxygymnocypris stewartia*, *Schizothorax*
158 *plagiostomus* and *Silurus asotus*) (Table 1). All viral sequences corresponded to segments 1-4 and
159 ranged from 209-1784 nucleotides in length. The putative segments shared 26-51% sequence
160 identity with TiLV. Most of the identified viral sequences corresponded to segment 1, containing
161 the RdRp and covered motifs II and III (Figure 2). Notably, no other vertebrate class within the TSA
162 were identified as potential hosts of these viruses.

163 *3.4 Evolutionary relationships of novel Amnoonviridae.* We next performed phylogenetic analysis of the
164 RdRp subunit (segment 1) across the order *Articulavirales* (Figure 1). This revealed two distinct
165 clades of fish viruses within the *Amnoonviridae* (with 83% bootstrap support). The original member
166 of this virus family, TiLV, grouped with *Flavolineata virus*, *Piscibus virus*, *Dolomieu virus*, *Namensis*
167 *virus* and *Hamatus virus* in one clade. The second fish virus clade comprised the newly identified
168 *Stewartii virus*, *Plagiostomus virus*, *Przewalskii virus*, *Asotus virus 1*, and *Asotus virus 2*. *Lauta virus*,
169 identified in a native Australian gecko, appears to form a distinct lineage, suggestive of a separate

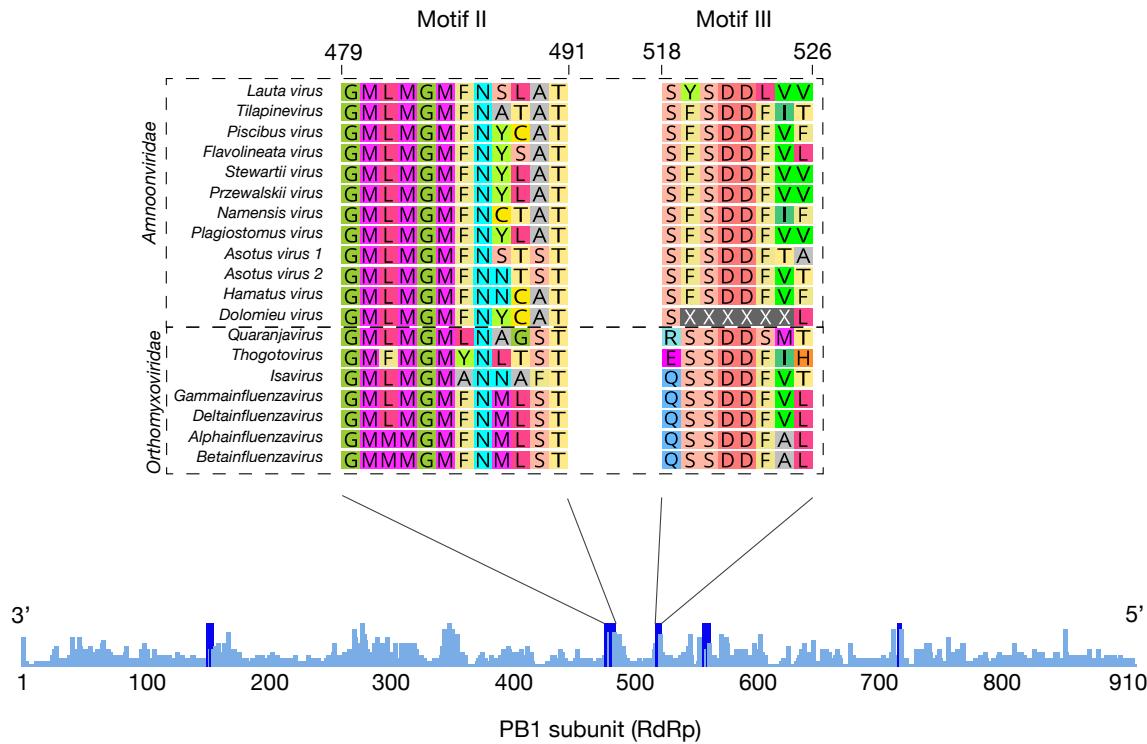

170 genus. This phylogenetic analysis clearly illustrates the diversity of these viruses within both
171 marine and freshwater fish, with no apparent host taxonomic structure (Figure 1).

172 **Table 1.** Novel viruses identified in this study.

Virus name	Host	Detection method (NCBI accession of TSA data)	Contig length matching segment 1 of TiLV (nt)	Closest amino acid match to segment 1 (GenBank accession)
<i>Flavolineata virus</i>	<i>Meuschenia flavolineata</i>	Fish sampling + meta-transcriptomics	1536	37% TiLV (QJD15207.1)
<i>Piscibus virus</i>	Pooled marine fish (see methods)	Fish sampling + meta-transcriptomics	270	49% TiLV (QJD15207.1)
<i>Dolomieu virus</i>	<i>Micropterus dolomieu</i>	TSA search (GDQU01066121.1, GDQU01106321.1, GDQU01283605.1, GDQU01532168.1)	1440	34% TiLV (QJD15204.1)
<i>Namensis virus</i>	<i>Gymnocypris namensis</i>	TSA search (GHYH01080462.1, GHYH01005036.1, GHYH01084204.1)	1503	35% TiLV (AOE22913.1)
<i>Hamatus virus</i>	<i>Chionodraco hamatus</i>	TSA search (GFMN01088333.1)	321	51% TiLV (QJD15205.1)
<i>Stewartii virus</i>	<i>Oxygymnocypris stewartii</i>	TSA search (GIBO01031171.1, GIBO01013027.1)	1743	28% TiLV (QJD15204.1)
<i>Plagiostomus virus</i>	<i>Schizothorax plagiostomus</i>	TSA search (GHXZ01024367.1, GHXZ01079240.1)	366	39% TiLV (AOE22912.1)
<i>Przewalskii virus</i>	<i>Gymnocypris przewalskii</i>	TSA search (GHYJ01002273.1, GHYJ01008047.1, GHYJ01010906.1)	1761	26% TiLV (QJD15208.1)
<i>Asotus virus 1</i>	<i>Silurus asotus</i>	TSA search (GHGF01026383.1, GHGF01034639.1, GHGF01033499.1, GHGF01028660.1, GHGF01037407.1)	1710	32% TiLV (QMT29723.1)
<i>Asotus virus 2</i>	<i>Silurus asotus</i>	TSA search (GHGF01016319.1, GHGF01027066.1, GHGF01047620.1)	1719	29% TiLV (QJD15204.1)

<i>Nudifrons virus</i>	<i>Lindbergichthys nudifrons</i>	HACN01008153.1	1032 (segment 4)	44% <i>Flavolineata virus</i> (segment 4)
------------------------	----------------------------------	----------------	------------------	---

173



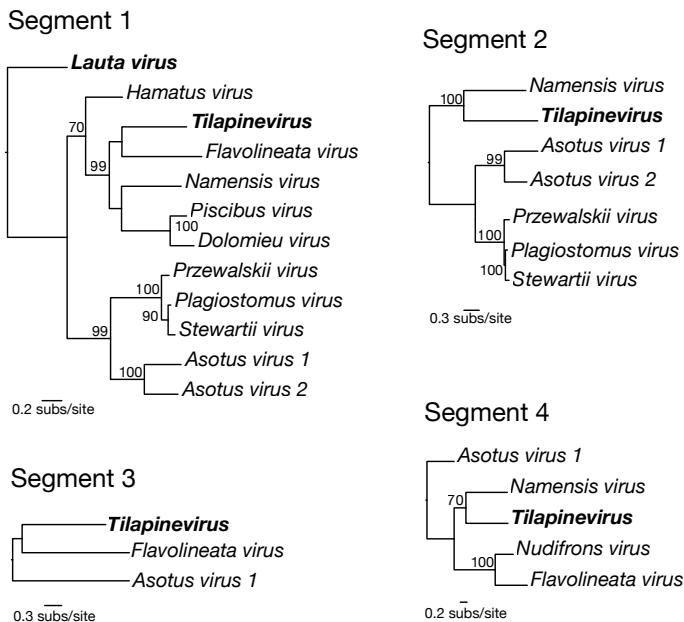
174

175 **Figure 1.** Unrooted maximum likelihood phylogenetic tree of the PB1 subunit showing the topological
176 position of ten of the 11 newly discovered viruses (red) that shared sequence similarity to segment 1
177 within the order Articulavirales (Ammoonviridae: orange; Orthomyxoviridae: shades of blue). Tilapinevirus
178 (TiLV) and the recently discovered *Lauta virus* were the only viruses previously identified in this family.
179 Fish viruses are annotated with fish symbols (filled: freshwater; outline: marine) and fish order
180 corresponds to shapes illustrated by the key. All branches are scaled according to the number of amino
181 acid substitutions per site. An asterisk (*) illustrates nodes with bootstrap support >70%.

182

183 **3.5 Genome composition of the novel Amnoonviridae.** Ten of the novel viruses identified included
184 segment 1, corresponding to the RdRp subunit PB1, and sharing clear sequence homology with
185 different members of the Articulavirales including the Orthomyxoviridae (Figure 2). These viruses had
186 a closest genetic match to TiLV, ranging from 28-51% sequence similarity at the amino acid level to
187 segment 1 (Table 1). Segment 4 was the only segment found from the tentatively named nudifrons
188 virus (Table 1).

189
190 **Figure 2.** Alignment of viruses within the order *Articulavirales*, highlighting conserved motifs in the RdRp
191 subunit PB1. The sequences of two motifs (II and III) are shown where all sequences overlapped.
192


193 Despite the lack of genomic characterization of TiLV, a sequence comparison across the
194 *Articulavirales* revealed conserved PB1 motifs (Figure 2). Sequence similarities with other viral
195 RNA-dependent RNA polymerases suggest that motif III plays a key functional role at the core of
196 the transcriptase-replicase activity [17, 18]. Defined by the consensus serine-aspartic acid-aspartic
197 acid (SDD) sequence in the *Articulavirales*, this motif is highly conserved and is critical for protein
198 stability and function.

199 In contrast to the six to eight genomic coding segments that comprise viruses within the
200 *Orthomyxoviridae*, TiLV contains 10 segments with open reading frames, of which only segment 1
201 has been functionally characterized to date [19]. While we were able to distinguish virus transcripts
202 with sequence similarity to segments 1 – 4 of TiLV (Figure 3), it is possible that the other segments
203 are present but too divergent in sequence to be detected. Indeed, the remaining segments of TiLV
204 exhibit no sequence similarity to any other known viruses [1, 2] or eukaryotic genes.

205 Also of note was that we found some evidence for phylogenetic incongruence between the
206 topologies of the different gene segments, although this analysis is complicated by the differing
207 numbers of viruses available for each segment, the short sequence alignments, and the highly
208 divergent nature of the sequences being analyzed. For example, *Flavolineata virus* and TiLV appear as
209 sister taxa in segment 1 yet are seemingly more divergent in segment 4 (Figure 3). Hence, this
210 phylogenetic pattern tentatively suggests that ammonooviruses may have undergone reassortment in
211 similar manner to influenza A viruses in the *Orthomyxoviridae*, although this will need to be
212 confirmed with the addition of longer sequences and more taxa. Reassortment has previously been

213 observed within circulating TiLV strains, which has added complexity to inferring its evolutionary
214 history [20].

215

216

217 **Figure 3.** Maximum likelihood phylogenetic trees of genomic segments 1-4 for the new virus transcripts
218 identified in this study within the *Amnoonviridae*. Viruses previously identified in this family are in bold.
219 Bootstrap values >70% are shown. The segment 1 phylogeny was rooted using *Lauta virus* as the outgroup
220 (as suggested by the tree in Figure 1). The remaining three segment phylogenies were then rooted to
221 match the segment 1 tree. Branch scale bars are shown for each, representing the number of substitutions
222 per site.

223

224 4. Discussion

225 Through both sampling marine fish and mining publicly available sequence data, we discovered 11
226 new viruses, all of which are the closest genetic relatives of TiLV. These viruses fall within the
227 *Amnoonviridae*, which currently comprises only two viruses: TiLV and *Lauta virus*. The discovery of
228 these new viruses expands our understanding of the host range of the *Amnoonviridae* to include host
229 species across multiple taxonomic orders of freshwater and marine fish, including Cypriniformes,
230 Siluriformes, Perciformes and Tetraodontiformes, and includes animals sampled in a range of
231 geographic localities (Australia, China, North America, Antarctica and Japan). Not only does the
232 identification of these new viruses greatly increase the phylogenetic diversity in this newly
233 identified group of viruses, but it may also provide insight into the potential origins and host range
234 of TiLV, a virus that has major economic and ecological impacts on fisheries and aquaculture.

235 The viruses discovered here were highly divergent in sequence, likely limiting our ability to detect
236 all genome segments present in the data. Nevertheless, sequence conservation within segment 1
237 across the entire taxonomic order strongly supports the inclusion of these new viruses within the
238 *Amnoonviridae*. While we only found new viruses in fish and no other vertebrate classes, it is
239 important to note that fish comprise 44% of currently available vertebrate transcriptomes (as of

240 September 2020). With the expansion of these databases, it is likely we will identify additional
241 highly divergent viruses within the *Amnoonviridae* and hence of the *Articulavirales* as a whole. The
242 discovery of these 11 viruses invites further research into the true diversity and evolutionary
243 origins of the *Amnoonviridae*.

244

245 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1: Table S1: List of
246 primer sets used for the RT-PCR confirmation of *Flavolineata* virus in specimens of *Meuschenia flavolineata*; Table
247 S2: All virus transcripts identified in this study that fell across genomic segments within the *Amnoonviridae*;
248 Figure S1: Agarose gels electrophoresis showing PCR products from three sets of primers that target a region
249 in the PB1 gene segment (RdRp) for ten individuals of *Meuschenia flavolineata*.

250 **Author Contributions:** Conceptualization, E.C.H. and J.L.G.; formal analysis, O.M.H.T, A.S.O.B. J.S.E, J.L.G;
251 resources, J.E.W., T.F.G., M.S., Y.Z.Z, E.C.H and J.L.G.; writing—original draft preparation, O.M.H.T, A.S.O.B.,
252 J.S.E., E.C.H. and J.L.G.; writing—review and editing, all authors; funding acquisition, E.C.H. and J.L.G. All
253 authors have read and agreed to the published version of the manuscript.

254 **Funding:** This work was partly funded by ARC Discovery grant DP200102351 awarded to E.C.H. and J.L.G. and
255 a Macquarie University grant awarded to J.L.G.

256

257 References

1. Bacharach, E.; Mishra, N.; Briese, T.; Zody, M. C.; Kembou Tsofack, J. E.; Zamostiano, R.; Berkowitz, A.; Ng, J.; Nitido, A.; Corvelo, A.; Toussaint, N. C.; Abel Nielsen, S. C.; Hornig, M.; Del Pozo, J.; Bloom, T.; Ferguson, H.; Eldar, A.; Lipkin, W. I., Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia. *mBio* **2016**, *7*, (2), e00431-16.
2. Eyangor, M.; Zamostiano, R.; Kembou Tsofack, J. E.; Berkowitz, A.; Bercovier, H.; Tinman, S.; Lev, M.; Hurvitz, A.; Galeotti, M.; Bacharach, E.; Eldar, A., Identification of a novel RNA virus lethal to tilapia. *J Clin Microbiol* **2014**, *52*, (12), 4137-4146.
3. Fishery and aquaculture statistics; <http://www.fao.org/3/i3507t/i3507t.pdf> (accessed Sept 2020 2011).
4. Fitzsimmons, K., *Global tilapia market update 2015*. DOI: 10.13140/RG.2.1.2848.9448 **2015**.
5. Behera, B. K.; Pradhan, P. K.; Swaminathan, T. R.; Sood, N.; Paria, P.; Das, A.; Verma, D. K.; Kumar, R.; Yadav, M. K.; Dev, A. K.; Parida, P. K.; Das, B. K.; Lal, K. K.; Jena, J. K., Emergence of tilapia lake virus associated with mortalities of farmed Nile tilapia *Oreochromis niloticus* (Linnaeus 1758) in India. *Aquaculture* **2018**, *484*, 168-174.
6. Surachetpong, W.; Janetanakit, T.; Nonthabenjawan, N.; Tattiayapong, P.; Sirikanchana, K.; Amonsin, A., Outbreaks of tilapia lake virus infection, Thailand, 2015-2016. *Emerg Infect Dis* **2017**, *23*, (6), 1031-1033.
7. Jansen, M. D.; Dong, H. T.; Mohan, C. V., Tilapia lake virus: a threat to the global tilapia industry? *Rev Aquac* **2019**, *11*, (3), 725-739.
8. Virus Taxonomy: 2018a Release. <https://ictv.global/taxonomy>
9. Ortiz-Baez, A. S.; Eden, J.-S.; Moritz, C.; Holmes, E. C., A divergent articulavirus in an Australian gecko identified using meta-transcriptomics and protein structure comparisons. *Viruses* **2020**, *12*.
10. Park, J. M.; Coburn, E.; Platell, M. E.; Gaston, T. F.; Taylor, M. D.; Williamson, J. E., Diets and resource partitioning among three sympatric gurnards in northeastern Tasmanian waters, Australia. *Mar Coast Fish* **2017**, *9*, (1), 305-319.

283 11. Shi, M.; Lin, X.-D.; Chen, X.; Tian, J.-H.; Chen, L.-J.; Li, K.; Wang, W.; Eden, J.-S.; Shen, J.-J.; Liu, L.;
284 Holmes, E. C.; Zhang, Y. Z., The evolutionary history of vertebrate RNA viruses. *Nature* **2018**, 556,
285 197-202.

286 12. Haas, B. J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P. D.; Bowden, J.; Couger, M. B.;
287 Eccles, D.; Li, B.; Lieber, M.; MacManes, M. D.; Ott, M.; Orvis, J.; Pochet, N.; Strozzi, F.; Weeks, N.;
288 Westerman, R.; William, T.; Dewey, C. N.; Henschel, R.; LeDuc, R. D.; Friedman, N.; Regev, A., *De*
289 *novo* transcript sequence reconstruction from RNA-Seq: reference generation and analysis with
290 Trinity. *Nat Protoc* **2013**, 8, (8), 10.1038/nprot.2013.084.

291 13. Buchfink, B.; Xie, C.; Huson, D. H., Fast and sensitive protein alignment using DIAMOND. *Nat*
292 *Methods* **2015**, 12, (1), 59-60.

293 14. Capella-Gutierrez, S.; Silla-Martinez, J. M.; Gabaldon, T., trimAl: a tool for automated alignment
294 trimming in large-scale phylogenetic analyses. *Bioinformatics* **2009**, 25, (15), 1972-3.

295 15. Nguyen, L.-T.; Schmidt, H. A.; von Haeseler, A.; Minh, B. Q., IQ-TREE: a fast and effective stochastic
296 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **2015**, 32, (1), 268-274.

297 16. Kalyaanamoorthy, S.; Minh, B. Q.; Wong, T. K. F.; von Haeseler, A.; Jermiin, L. S., ModelFinder: fast
298 model selection for accurate phylogenetic estimates. *Nat Methods* **2017**, 14, (6), 587-589.

299 17. Chu, C.; Fan, S.; Li, C.; Macken, C.; Kim, J. H.; Hatta, M.; Neumann, G.; Kawaoka, Y., Functional
300 analysis of conserved motifs in influenza virus PB1 protein. *PLoS One* **2012**, 7, (5), e36113-e36113.

301 18. Biswas, S. K.; Nayak, D. P., Mutational analysis of the conserved motifs of influenza A virus
302 polymerase basic protein 1. *J Virol* **1994**, 68, (3), 1819-26.

303 19. Taengphu, S.; Sangsuriya, P.; Phiwsaiya, K.; Debnath, P. P.; Delamare-Deboutteville, J.; Mohan, C. V.;
304 Dong, H. T.; Senapin, S., Genetic diversity of tilapia lake virus genome segment 1 from 2011 to 2019
305 and a newly validated semi-nested RT-PCR method. *Aquaculture* **2020**, 526, 735423.

306 20. Chaput, D. L.; Bass, D.; Alam, M. M.; Hasan, N. A.; Stentiford, G. D.; Aerle, R. v.; Moore, K.; Bignell, J.
307 P.; Haque, M. M.; Tyler, C. R., The segment matters: probable reassortment of tilapia lake virus (TiLV)
308 complicates phylogenetic analysis and inference of geographical origin of new isolate from
309 Bangladesh. *Viruses* **2020**, 12, (3), 258.

310