

The transcription factor BCL11A defines a distinctive subset of dopamine neurons in the developing and adult midbrain

Marianna Tolve¹, Ayse Ulusoy², Khondker Ushna Sameen Islam¹, Gabriela O. Bodea^{1§}, Ece Öztürk¹, Bianca Broske¹, Astrid Mentani¹, Antonia Wagener¹, Karen van Loo^{3§}, Stefan Britsch⁴, Pengtao Liu⁵, Walid Khaled⁶, Stephan Baader⁷, Donato A. Di Monte², Sandra Blaess^{1*}

¹Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany

²German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

³Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany

⁴ Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany

⁵ School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China

⁶ Department of Pharmacology, University of Cambridge, Cambridge, UK

⁷ Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Bonn, Germany

*corresponding author

§ Current address:

GB: Mater Research Institute-University of Queensland, Brisbane, Queensland, Australia
Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.

KvL: Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany

Abstract

Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, impact on behavior and susceptibility to neurodegeneration. Little is known about the molecular mechanisms that establish this diversity in mDA neurons during development. We find that the transcription factor Bcl11a defines a subset of mDA neurons in the developing and adult murine brain. By combining intersectional labeling and viral-mediated tracing we show that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the dopaminergic system. We demonstrate that Bcl11a-expressing mDA neurons in the substantia nigra (SN) are particularly vulnerable to neurodegeneration in an α -synuclein overexpression model of Parkinson's disease. Inactivation of Bcl11a in developing mDA neurons results in anatomical changes, deficits in motor learning and a dramatic increase in the susceptibility to α -synuclein-induced degeneration in SN-mDA neurons. In summary, we identify an mDA subpopulation with highly distinctive characteristics defined by the expression of the transcription factor Bcl11a already during development.

1 **Introduction**

2 Midbrain dopaminergic neurons (mDA) are anatomically organized into the substantia nigra,
3 ventral tegmental area (VTA) and retro-rubral field (RRF). These anatomically defined areas
4 contain subpopulations of mDA neurons that are characterized by distinct molecular profiles,
5 distinct connectivity and distinct impacts on dopamine-modulated behavior (Engelhard et al.,
6 2019; Poulin et al., 2018; Poulin et al., 2020). The SN consists of the pars compacta (SNc),
7 pars lateralis (SNI) and pars reticulata (SNr). The majority of SN-mDA neurons is located in
8 the SNc, a smaller population forms the SNI and only few mDA neurons are found in the SNr.
9 SNI mDA neurons project to the tail of the striatum (TS) and have been shown to reinforce the
10 avoidance of threatening stimuli (Menegas et al., 2018; Menegas et al., 2015). According to
11 projection targets and functional output, the SNc is divided into a medial and lateral part. Medial
12 SNc mDA neurons send their axons to the dorsomedial striatum (DMS) whereas projections
13 of the lateral SNc target the dorsolateral striatum (DLS). Functionally, the firing of the DMS
14 projecting mDA population may signal the valence of the outcome, while mDA neurons
15 projecting to the DLS may signal a salience signal (appetitive or aversive) (Lerner et al., 2015).
16 mDA neurons in the VTA project to the Nucleus accumbens (NAc), the olfactory tubercle (OT),
17 prefrontal cortex (PFC) and amygdala. Similar to the SN, the VTA is anatomically divided into
18 smaller domains, but here there is no clear relationship between the anatomical location of
19 mDA cell bodies and the projection targets of VTA mDA neurons (Morales and Margolis, 2017).
20 In addition to these anatomical mDA subgroups, mDA neurons have been defined based on
21 their molecular profile. A comparative analysis of the currently available single cell gene
22 expression studies led to the proposal that there are at least 7 molecularly-defined mDA
23 subgroups. These do not necessarily correspond to mDA populations distinct by anatomical
24 location, projection target and functional output (Poulin et al., 2020) and thus it is not clear to
25 what extent these different levels of diversity can be reduced to a common denominator to
26 define mDA diversity. Since anatomical position, molecular profile and connectivity are largely
27 determined during development, a better understanding of the developmental factors that
28 determine mDA subpopulations could deliver important new insights on how to define mDA
29 subpopulations.

30 mDA neurons in the SNc degenerate in Parkinson's disease (PD), leading to the cardinal motor
31 symptoms of the disease. mDA neurons in the VTA are much less affected by the
32 neurodegeneration in PD, but even within the SNc, neurons are not homogenous in their
33 vulnerability: SNc-mDA neurons in the ventral tier appear to be more vulnerable than the ones
34 in the dorsal tier. This selective vulnerability is found both in humans and in various PD models
35 in rodents (Kordower et al., 2013). In mouse, the more vulnerable population has been shown
36 to express the enzyme ALDH1A1 (Aldehyde Dehydrogenase 1 Family Member A1), while the
37 less vulnerable subpopulation expresses the Calcium-binding protein Calbindin1 (CALB1) (Liu

38 et al., 2014; Poulin et al., 2014). Since loss of ALDH1A1 function makes SNC-mDA neurons
39 even more prone to neurodegeneration, ALDH1A1 seems unlikely to be the functionally
40 decisive factor in the increased vulnerability (Liu et al., 2014). Nevertheless, these insights
41 suggest that susceptibility to neurodegeneration in mDA subgroups could be genetically and
42 developmentally pre-determined (Schwamborn, 2018).

43 Since transcription factors are key regulators of cell specification programs, we set out to
44 identify transcription factors that are expressed in subpopulations of mDA neurons in the
45 developing and adult brain. We discovered that the C2H2 zinc finger transcription factor
46 BCL11A (B cell CLL/lymphoma) is expressed in a subpopulation of mDA neurons from
47 embryogenesis to adulthood. BCL11A, also known as CTIP1 (Chicken ovalbumin upstream
48 promoter transcription factor-interacting proteins 1), is a transcriptional repressor and a
49 dedicated subunit of the mammalian SWI/SNF complex, a polymorphic assembly of at least
50 14 subunits (encoded by 28 genes) that functions as an ATP-dependent chromatin remodeler
51 (Kadoch et al., 2013; Simon et al., 2020). In the mouse, BCL11A regulates neuronal fate
52 determination during cortex and spinal cord development (Simon et al., 2020). In humans,
53 BCL11A haploinsufficiency results in neurodevelopmental disorders characterized by
54 developmental delay, mild to severe intellectual disability and behavioral problems (Basak et
55 al., 2015; Deciphering Developmental Disorders Study, 2015; Dias et al., 2016; Peron et al.,
56 2019). While these studies point to the importance of BCL11A in the development of the central
57 nervous system (CNS), the function of BCL11A in development and maintenance of the
58 dopaminergic system has not been examined.

59 We show here that the *Bcl11a*-expressing mDA neurons represent a previously
60 uncharacterized subpopulation of mDA neurons, which does not correspond to any of the
61 previously defined anatomical and molecular mDA subgroups but forms a highly distinct
62 subcircuit within the dopaminergic system. Moreover, we demonstrate that *Bcl11a* appears to
63 be required for the normal function of these mDA neurons, since conditional inactivation of
64 *Bcl11a* in mDA neurons leads to deficits in motor learning in the conditional knock-out mice,
65 although no significant loss of SN-mDA neurons or mDA projections could be detected in the
66 mutant animals. Moreover, we find that *Bcl11a* expression characterizes a subpopulation of
67 SNC neurons highly vulnerable to α -synuclein-induced neurodegeneration and that, within
68 these neurons, *Bcl11a*-mediated transcription is likely to activate or modulate neuroprotective
69 pathways. In summary, our data demonstrate that *Bcl11a* expression defines a subset of mDA
70 neurons with highly specific projection targets and that loss of BCL11A interferes with the
71 functional integrity and resilience to injury of these neurons.

72
73

74 **Results**

75 **Bcl11a is expressed in a subset of mDA neurons in the SN, VTA and RRF**

76 We initially identified *Bcl11a* as a potential mDA-subset marker based on the expression
77 pattern available on the Allen Brain Atlas (Developing Mouse Brain). To examine whether
78 *Bcl11a* is indeed expressed in a subset of mDA neurons, we analyzed the expression of *Bcl11a*
79 mRNA and BCL11A protein in combination with tyrosine hydroxylase (TH), the rate limiting
80 enzyme in dopamine synthesis. In the neonatal and adult brain, *Bcl11a* mRNA was expressed
81 in a subset of SN, VTA, RRF and caudal linear nucleus (CLi) neurons. In the SN, *Bcl11a*-
82 expressing mDA neurons were localized to the SNI and the medial and dorsal SNC. In the VTA,
83 *Bcl11a*-positive neurons were found throughout the VTA (**Figure 1A-F**, data not shown). The
84 distribution of neurons positive for BCL11A protein and TH was comparable to the distribution
85 of *Bcl11a*/TH positive neurons in the neonatal brain and in the VTA of adult brains (**Figure 1G-L**),
86 but we could not detect BCL11A protein in mDA neurons in the SNC and SNI in the P30
87 brain (**Figure 1J,L**). Since *Bcl11a* mRNA is expressed in SN-mDA neurons at P30, albeit at
88 lower levels than in the VTA, this may indicate that SN-mDA express BCL11A protein at lower
89 levels than VTA-mDA and that these low protein levels are not detected by the anti-BCL11A
90 antibody used in our study.

91 Next, we analyzed the distribution of *Bcl11a*-expressing cells using *Bcl11a*^{lacZ} mice. In this
92 mouse line, the *lacZ* allele is knocked into the endogenous *Bcl11a* locus and β-gal expression
93 is restricted to cells that express *Bcl11a* (Dias et al., 2016). Indeed, the distribution of β-gal
94 positive mDA neurons in neonatal and adult brain was comparable to the one of mDA neurons
95 expressing *Bcl11a* mRNA (**Figure 1A-F, M-R, Supplemental Figure 1**). To test whether β-gal
96 reliably marks BCL11A-expressing neurons, we performed double labeling for β-gal and
97 BCL11A protein in neonatal and adult sections of the midbrain and found that the expression
98 pattern of β-gal and BCL11A was largely overlapping in the VTA and in the cerebral cortex
99 (**Supplemental Figure 2**). We then quantified the percentage of mDA neurons that express
100 *Bcl11a* by counting β-gal and TH double-positive cells in *Bcl11a-lacZ* mice. β-gal was
101 expressed in more than 40% of VTA-mDA neurons (neonatal: 45.84% +/- 4.467, adult: 42.84%
102 +/- 1.326), in about one fourth of SN-mDA neurons (neonatal: 32.07% +/- 3.395, adult: 22.63%
103 +/- 2.179) and in a third of RRF- and caudal linear nucleus (CLi)-mDA neurons (RRF: 30.97%
104 +/- 2.757; CLi: 32.61% +/- 1.933, only analyzed in adult brain) (**Figure 1S,T**). Additionally, non-
105 dopaminergic neurons expressing β-gal were found in the ventral midline of the midbrain,
106 dorsal to the SN and within the VTA and SN area (**Supplemental Figure 1**).

107 To investigate the developmental time course of BCL11A expression in the ventral midbrain,
108 we used immunostaining to analyze BCL11A protein expression between embryonic day

109 (E)12.5 and E15.5. BCL11A was first expressed in the ventral midbrain at E12.5. At E12.5
110 and E13.5, BCL11A was mainly localized in the area just below the mDA progenitor domain
111 and in a few differentiated TH-expressing mDA neurons. At E14.5 and E15.5, expression was
112 found in a larger subset of mDA neurons, both in the forming SN and VTA (**Supplemental**
113 **Figure 3**). These data demonstrate that *Bcl11a*-expressing mDA neurons constitute a subset
114 of mDA neurons in the SN, VTA, RRF and CLI in the developing and adult brain.

115 ***Bcl11a*-expressing mDA neurons contribute to several known subpopulations of mDA
116 neurons**

117 A number of recent studies have described several subtype markers for mDA neurons, such
118 as ALDH1A1, CALB1 and SOX6 (SRY-Box Transcription Factor 6). ALDH1A1 and CALB1
119 define complementary domains in the SNc (see introduction). In addition, ALDH1A1 is
120 expressed in the ventral VTA while CALB1 shows a wide-spread expression in the VTA
121 (Thompson et al., 2005; Wu et al., 2019). SOX6 expression is restricted to SN-mDA neurons
122 and to neurons of the lateral VTA (Panman et al., 2014; Poulin et al., 2018). Since *Bcl11a*-
123 expressing mDA neurons are broadly distributed within the mDA neuron-containing regions,
124 we next asked whether the *Bcl11a* positive mDA population falls in one of these characterized
125 subclasses. We used *Bcl11a-lacZ* mice for this analysis and performed triple immunostaining
126 for β -gal, TH and the respective subset marker (ALDH1A1, CALB1 or SOX6) in the neonatal
127 (**Figure 2A,B**) and adult brain (**Figure 2C,D**). Triple labeling for β -gal, TH and CALB1 or β -gal,
128 TH and SOX6 at P0 showed that 24.33% +/- 3.810% of *Bcl11a*+ mDA neurons co-expressed
129 CALB1 and 41.53% +/- 4.591% co-expressed SOX6 in the SN. In the VTA, 37.13% +/-
130 3.883% of mDA neurons co-expressed CALB1 and 14.09% +/- 1.771% co-expressed SOX6
131 at P0 (**Figure 2E,F**). At P30, triple labeling for β -gal, TH and CALB1 or ALDH1A1 showed that
132 45.18% +/- 5.903% of *Bcl11a* positive mDA neurons co-expressed CALB1 and 19.76% +/-
133 1.342% co-expressed ALDH1A1 in the SN, while 71.09% +/- 6.018% co-expressed CALB1
134 and 20.70% +/- 3.337% co-expressed ALDH1A1 in the VTA (**Figure 2G,H**). Thus, the *Bcl11a*-
135 expressing mDA neurons do not clearly fall within one of these previously characterized mDA
136 subpopulations. Of note, even though *Bcl11a*-expressing mDA neurons are mainly localized
137 to the dorsal tier of the SNc and the SNI, which is typically characterized as CALB1-positive,
138 only about half of them express CALB1 in the adult brain.

139

140 ***Bcl11a*-expressing mDA neurons form a subcircuit in the dopaminergic system**

141 Next, we examined whether the *Bcl11a*-expressing subclass of mDA neurons contributes to
142 specific subcircuits in the mDA system. To investigate projection targets of *Bcl11a*-expressing
143 mDA neurons we used an intersectional genetic approach. This method combines a reporter

144 allele or viral construct in which expression of a fluorescent reporter protein is driven by a
145 tetracycline response element (TRE) in a Cre-dependent manner (Madisen et al., 2015; Poulin
146 et al., 2018). To achieve specific activation of the reporter allele in mDA neurons we used a
147 *Dat*^{TA} (tetracycline trans-activator driven by the *Dat* promoter) mouse line in conjunction with
148 the *Bcl11a*^{CreER} mouse line (Chen et al., 2015; Poulin et al., 2018) and the intersectional
149 reporter mouse line Ai82D (Madisen et al., 2015) (**Figure 3A,B**). Since *Bcl11a* expression is
150 already restricted to subsets of mDA neurons in the developing brain (**Supplemental Figure**
151 **3B-E**), CreER was activated during embryogenesis by administering Tamoxifen to pregnant
152 females at E15.5. Distribution of the recombined (EGFP+) neurons in the adult brain was
153 similar to the distribution of *Bcl11a*-mRNA expressing mDA neurons or β-gal-expressing cells
154 in *Bcl11a-lacZ* mice at P0 and at P30 (**Supplemental Figure 4**; compare with **Figure 1 and**
155 **Supplemental Figure 1**). Analysis of the projection pattern established by the EGFP positive
156 fibers showed that the recombined mDA neurons establish a highly specific innervation pattern
157 in dopaminergic forebrain target areas. In target areas of VTA-mDA neurons (Morales and
158 Margolis, 2017), *Bcl11a*-expressing mDA neurons strongly innervated the OT and the ventral
159 and lateral shell of the NAc, but not the NAc core or the prefrontal cortex (**Figure 3C-E** and
160 data not shown). Moreover, *Bcl11a*-expressing mDA neurons showed a highly specific
161 projection pattern to the TS and the caudal DMS (**Figure 3C-F**). The TS is a known target of
162 mDA neurons in the SNI, while the DMS is innervated by mDA neurons in the medial SNC
163 (Lerner et al., 2015; Menegas et al., 2018; Poulin et al., 2018). Within these SN target areas,
164 the densest innervation originating from recombined mDA neurons was observed in the ventral
165 TS. Very sparse innervation was observed in the dorsolateral or rostral striatum.

166 In a next step, we investigated the projections of mDA neurons that express *Bcl11a* in the adult
167 brain to (1) clarify whether *Bcl11a*-expression defines the same subset of mDA neurons in the
168 embryonic and adult brain and (2) to clearly delineate the projection targets of *Bcl11a*-
169 expressing neurons in the SN versus *Bcl11a*-expressing neurons in the VTA. To restrict the
170 reporter activation to only *Bcl11a*-expressing neurons in either the SN or VTA, we introduced
171 reporter constructs by injecting recombinant adeno associated viruses (rAAV) into the SN or
172 VTA of adult animals. CreER was subsequently activated by the administration of Tamoxifen
173 to achieve recombination (**Figure 4A,B; Supplemental Figure 5A,B**). Here we took both an
174 intersectional approach, in which we introduced an intersectional reporter construct into
175 *Bcl11a*^{CreER}, *Dat*^{TA} mice (**Figure 4A,B**) and a non-intersectional approach in which we
176 delivered a Cre-dependent reporter construct in *Bcl11a*^{CreER} mice (**Supplemental Figure**
177 **5A,B**). Characterization of the VTA projection targets showed strong innervation of the OT and
178 the ventral and lateral shell of the NAc (**Figure 4G-J, Supplemental Figure 5G-J**), consistent
179 with the innervation pattern observed with the embryonic intersectional labeling (**Figure 3**). In
180 some animals (n=7/10) in which VTA neurons were labeled more sparsely, the innervation

181 pattern of *Bcl11a*-expressing VTA-mDA neurons in the OT showed a stripe-like pattern,
182 indicating that axons from single neurons might innervate specific domains within the OT
183 (**Supplemental Figure 5I**). Labeling of *Bcl11a*-expressing mDA neurons was scarcer in the
184 SN compared to the VTA (**Figure 4C,D; Supplemental Figure 5C,D**), consistent with a lower
185 percentage of *Bcl11a*-expressing mDA neurons in the SN than in the VTA (**Figure 1; Figure**
186 **5**). The sparse labeling allowed us to visualize patches of innervation likely derived from single
187 SN axons (Brignani et al., 2020). These patches were restricted to the DMS and ventral TS,
188 consistent with the findings obtained with the embryonically-induced intersectional labeling of
189 *Bcl11a*-expressing neurons (**Figure 3, Figure 4E,F; Supplemental Figure 5E,F**). In
190 conclusion, these results show that *Bcl11a* expression defines a subset of mDA neurons in
191 embryogenesis and adulthood, which forms a highly specific subcircuit within the mDA system,
192 despite a broad anatomical distribution of this subset within the mDA territory.

193 **Conditional gene inactivation of *Bcl11a* in mDA neurons results in a rostral-to-caudal
194 shift of *Bcl11a*-mDA neurons from the VTA to the CLi**

195 Since BCL11A is a transcription factor that has been shown to influence neuronal fate,
196 neuronal morphology and migration (Simon et al., 2020), we investigated whether BCL11A is
197 necessary for establishing and/or maintaining *Bcl11a*-expressing mDA neurons and their cell
198 fate as well as their particular projection pattern. We generated a specific knock-out for *Bcl11a*
199 in mDA neurons by crossing *Bcl11a*^{flx} mice with *Dat*^{lRES-Cre} mice (*Bcl11a* cko^{flx}; Genotype:
200 *Dat*^{lRES-Cre/+}, *Bcl11a*^{flx/flx}) (Bäckman et al., 2006; John et al., 2012). In a subset of mice, we
201 introduced the *Bcl11a*^{lacZ} allele (a null allele, (Dias et al., 2016)) into the conditional knock-out
202 model (*Bcl11a* cko^{lacZ}; Genotype: *Dat*^{lRES-Cre/+}, *Bcl11a*^{flx/lacZ}) (**Figure 5A**). In *Bcl11a* cko^{lacZ}
203 mice, the *Bcl11a* expressing mDA population expresses β-gal even after inactivation of *Bcl11a*,
204 giving us the possibility to analyze the effect of *Bcl11a* inactivation specifically in mDA neurons
205 that would normally express BCL11A (termed: *Bcl11a*-mDA neurons) (**Figure 5B**). To confirm
206 that *Bcl11a* expression was indeed absent in mDA neurons of *Bcl11a* cko^{flx} mice, we
207 performed immunostaining and RNAScope experiments showing that BCL11A protein
208 (**Supplemental Figure 6**) and *Bcl11a* mRNA (**Supplemental Figure 7**) were no longer
209 expressed in mDA neurons. On the other hand, as expected, *Bcl11a* was still expressed in
210 non-mDA neurons in the midbrain and the cerebral cortex (**Supplemental Figure 6 and 7**).

211 Despite the loss of BCL11A expression in mDA neurons, the anatomical organization of the
212 mDA area in *Bcl11a* cko (both in *Bcl11a* cko^{flx} and *Bcl11a* cko^{lacZ}) mice was comparable to
213 controls (**Figure 5C, D** and data not shown). Quantification of the percentage of β-gal positive
214 TH neurons in the SN and VTA in P0 *Bcl11a* cko^{lacZ} and *Bcl11-lacZ* mice showed no significant
215 change in the number of *Bcl11a*-mDA neurons between mutant and control animals (**Figure**

216 5E). However, at P30, the percentage of β -gal positive TH neurons was significantly decreased
217 in the VTA (average of three rostro-caudal levels corresponding to the levels in Supplemental
218 Figure 1A,C,D) and significantly increased in the CLi (**Figure 5F**). When combining the
219 numbers of β -gal positive TH neurons for the CLi level and the three VTA levels, no significant
220 difference in the percentage of β -gal positive TH neurons could be detected between *Bcl11a*
221 *cko*^{lacZ} and *Bcl11a*-*lacZ* animals (**Supplemental Figure 8A**), indicating that the reduction of β -
222 gal positive TH neurons in the VTA is likely due to a rostral-caudal shift in the position of
223 *Bcl11a*-mDA neurons rather than a loss of cells. To examine this further, we compared the
224 percentages of β -gal positive TH neurons at four rostral-caudal levels (three levels with VTA,
225 one level with CLi). In addition to the significant increase in β -gal positive TH neurons in the
226 CLi, we found that the percentage of β -gal positive TH neurons at the two rostral VTA levels
227 (level 1 and 2) was significantly decreased in *Bcl11a* *cko*^{lacZ} compared to control mice
228 (**Supplemental Figure 8B**). This resulted in a significant, systematic increase in the
229 percentage of β -gal positive TH neurons from rostral-to-caudal in *Bcl11a* *cko*^{lacZ} mice, while
230 there was a systematic decrease in β -gal positive TH neurons from rostral-to-caudal in control
231 animals (**Supplemental Figure 8C**). The overall number of mDA neurons at the analyzed VTA
232 and CLi levels was not significantly different between *Bcl11a* *cko*^{lacZ} and control mice (data not
233 shown). No significant change in the percentage of β -gal positive TH neurons could be
234 detected when comparing the rostral SN levels in control and *Bcl11a* *cko*^{lacZ} animals (data not
235 shown), suggesting that the rostro-caudal shift of *Bcl11a*-mDA neurons in *Bcl11a* *cko*^{lacZ}
236 animals is restricted to the VTA. Finally, stereological analysis of the total number of TH-
237 positive mDA neurons or Nissl-stained neurons in the SNC of 12 months old *Bcl11a* *cko* and
238 control mice did not show any evidence for cell loss in the *Bcl11a* *cko* mice (data not shown).
239 These data indicate that the specific inactivation of *Bcl11a* in mDA neurons does not interfere
240 with the generation or the survival of the *Bcl11a*-mDA neuronal population, but that it results
241 in altered rostral-caudal positioning of *Bcl11a*-mDA neurons in the VTA.
242 If BCL11A is important for determining the localization of mDA neurons, it may also influence
243 cell fate by regulating the expression of subset markers or the target specificity of *Bcl11a*-mDA
244 projections. Triple labeling for β -gal, TH and CALB1 at P0 and P30, for β -gal, TH and SOX6
245 at P0 and for β -gal, TH and ALDH1A1 at P30 and quantification of triple labeled cells in *Bcl11a*
246 *cko*^{lacZ} and control mice did not however reveal a significant change in the number of *Bcl11a*-
247 mDA neurons co-expressing these markers in *Bcl11a* *cko*^{lacZ} mice as compared to *Bcl11a*-*lacZ*
248 mice (**Figure 6**, compare with **Figure 2**). Next, we investigated whether inactivation of *Bcl11a*
249 affects the targeting of projections arising from *Bcl11a*-mDA neurons. To this end, we
250 examined the density of TH innervation in control and *Bcl11a* *cko* mice in the two areas with
251 the highest innervation density from *Bcl11a*-mDA neurons, the ventral TS and the OT. In
252 addition, we analyzed innervation density in the dorsal striatum and the dorsal TS. We found

253 no significant difference in the density of the TH innervation in any of these areas when
254 comparing control and *Bcl11a* cko mice (**Supplemental Figure 8D-J**). Taken together, these
255 data suggest that the inactivation of *Bcl11a* and the resulting rostro-caudal shift in *Bcl11a*-mDA
256 VTA neurons have no overt effect on the expression of known subset markers or the
257 anatomical arrangement of *Bcl11a*-mDA projections.

258 **Inactivation of *Bcl11a* in mDA neurons results in motor learning deficits**

259 Inactivation of *Bcl11a* results in a rostral-to-caudal shift of the anatomical position of *Bcl11a*-
260 mDA neurons in the VTA, but not in the SN. To investigate whether the loss of *Bcl11a* leads
261 to functional impairment in the mDA system, either as a consequence of the subtle anatomical
262 changes in the VTA or by a direct impact on mDA function, we examined a range of behaviors
263 in *Bcl11a* cko and control mice. We chose tests to assess potential mDA neuronal functions
264 associated with VTA- and/or SN. In the open field, distance moved was not altered in *Bcl11a*
265 cko mice as compared to controls, indicating that spontaneous motor behavior was not
266 affected in the mutant mice (**Figure 7A**). Decreased dopamine release from the VTA is
267 associated with anxiety- and depressive-like behavior, which can be assessed by monitoring
268 the activity in the center of an open field (Yacoubi et al., 2003; Tye et al., 2013). *Bcl11a* cko
269 mice did not show a change in the frequency of crossing into the center and time spent in
270 center or border area in the open field, indicating that the *Bcl11a* cko mice did not have an
271 increased level of anxiety or depressive behavior (**Figure 7B,C**). Since inhibition of VTA-mDA
272 neurons has been shown to lead to a decreased preference for social novelty (Bariselli et al.,
273 2018), we used a social recognition test to examine the ability of the *Bcl11a* cko mice to
274 distinguish familiar and unfamiliar mice. We did not find a significant alteration in the behavior
275 of *Bcl11a* cko mice as compared to control mice (data not shown). Next, we focused on tasks
276 in which dopamine release from SN-mDA neurons is thought to play a prominent role.
277 Dopamine release in the striatum is crucial for voluntary movement and motor skill learning
278 (Dodson et al., 2016; Wu et al., 2019). Motor coordination and balance were examined by
279 monitoring the ability of mice to cross a balance beam (Luong et al., 2011) and we found no
280 difference in the performance of *Bcl11a* cko mice and control mice in this task (**Figure 7 D**).
281 To examine whether motor skill learning is altered in *Bcl11a* cko mice, mice had to perform an
282 accelerating rotarod test (Costa et al., 2004). In this task, control mice improved their
283 performance over time, as reflected in a continuous increase in the time to fall over a 5-day
284 training period. In contrast, *Bcl11a* cko mice did not show any improvement in their
285 performance over time, indicating that they were not able to learn this motor task within the
286 trial period (**Figure 7E**). These results show that inactivation of *Bcl11a* in mDA neurons results
287 in defects in skilled motor learning suggesting that mDA neurons may be functionally impaired
288 in the absence of *Bcl11a*.

289 **Loss of *Bcl11a* enhances neuronal vulnerability to α -synuclein toxicity**

290 The next set of experiments was aimed at elucidating the role of BCL11A expression in the
291 context of neuronal challenges and neurodegenerative processes affecting mDA neurons in
292 the SNC. The protein α -synuclein plays a key role in the pathogenesis of Parkinson's and other
293 human neurodegenerative diseases (Goedert et al., 2013). Its overexpression in animal
294 models is associated with Parkinson-like pathology, including the degeneration of SNC-mDA
295 neurons (Ulusoy and Di Monte, 2012). Here, adult control (n=5) and *Bcl11a* cko (n=5) mice
296 were challenged with a single intraparenchymal injection of rAAVs carrying the DNA for human
297 α -synuclein (**Figure 8A**). The unilateral injection targeted the right SNC where it caused robust
298 overexpression of human α -synuclein within SNC-mDA neurons. No difference in
299 overexpression was observed between control and *Bcl11a* cko mice after staining of SN-
300 containing midbrain sections with a specific antibody against human α -synuclein (**Figure 8B**).

301 Midbrain sections were stained with a TH antibody, and immunoreactivity was compared in
302 the left (intact side) and right (injected side) SNC of animals sacrificed 8 weeks after the rAAV
303 injection. Labeling was overtly less robust in the lesioned right SNC of both control and *Bcl11a*
304 cko mice. This loss of TH immunoreactivity appeared to be more pronounced, however, in
305 sections from *Bcl11a* cko animals (**Figure 8C**). The number of TH⁺ neurons was then counted
306 using a stereological method. Consistent with our previous quantification of *Bcl11a*-mDA
307 neurons in *Bcl11a* cko and control animals (**Figure 5**), counts in the left (intact) SNC were
308 similar between control and *Bcl11a* cko mice and were therefore averaged together as normal
309 values ($5,988 \pm 79.4$). Overexpression of α -synuclein caused a 15% reduction of TH⁺ cells in
310 the lesioned right SNC of control mice, with cell counts averaging $5,086 \pm 292.8$. This loss was
311 significantly more pronounced ($4,231 \pm 208.2$ cells) in *Bcl11a* cko mice (**Figure 8D**). The
312 possibility that the decrease in neuronal counts after rAAV injection may reflect a down-
313 regulation of the phenotypic marker used for cell identification (i.e. TH) rather than actual cell
314 degeneration was ruled out by counting the total number of Nissl-stained neurons. This number
315 declined by 12% (from $9,185 \pm 141.4$ to $8,070 \pm 525.6$) and 27% (to $6,741 \pm 326.1$) in the
316 lesioned SNC of control and *Bcl11a* cko mice, respectively (**Figure 8E**). These findings reveal
317 that vulnerability to α -synuclein toxicity is markedly enhanced in the absence of *Bcl11a*,
318 supporting the notion that *Bcl11a* expression is associated with transcription of genetic
319 information involved in neuroprotective pathways.

320 Additional experiments using the same paradigm of rAAV-induced α -synuclein overexpression
321 were carried out in *Bcl11a* cko^{lacZ} (n=4) and *Bcl11a*^{fl/fl}^{lacZ} control (n=4) mice. Similar to the
322 results in *Bcl11a* animals without the lacZ allele, α -synuclein toxicity caused a more severe
323 loss of TH-immunoreactive neurons in the SNC of *Bcl11a* cko^{lacZ} mice (from $5,906 \pm 64.4$ to

324 3,349 ± 193.3 cells) as compared to *Bcl11a*^{fl/fl} controls (from 5,906 to 5,114 ± 47.9 cells)
325 (**Figure 8F**, “total” values). In *Bcl11a*^{fl/fl} mice, confocal stereological counts were able to
326 distinguish the effects of α-synuclein overexpression on Bcl11a-expressing SNC-mDA neurons
327 (i.e. neurons that were both TH⁺ and β-gal⁺) vs. SNC-mDA devoid of Bcl11a (i.e. neurons that
328 were TH⁺ but β-gal⁻). In these animals, counts of β-gal-positive and β-gal-negative mDA cells
329 revealed that 29% (from 1,919 ± 78.3 to 1,365 ± 113.1 cells) of Bcl11a-expressing cells
330 degenerated (**Figure 8F**, “β-gal(+)” values), whereas only 6% (from 3,986 ± 111.5 to 3,748 ±
331 95.1 cells) of β-gal-negative neurons were lost as a result of α-synuclein overexpression
332 (**Figure 8F**, “β-gal(-)” values). These data indicate that *Bcl11a* expression characterizes a
333 subpopulation of nigral DA neurons highly susceptible to α-synuclein-induced damage.
334 The number of β-gal-positive and β-gal-negative neurons was then counted in SNC of *Bcl11a*
335 cko^{lacZ} animals. Results showed more dramatic toxic effects, since α-synuclein toxicity killed
336 almost 65% (from 1,919 to 664 ± 117.0 cells) of β-gal-positive (**Figure 8F**, “β-gal(+)” values)
337 and 33% (from 3,986 to 2,685 ± 91.4 cells) of β-gal-negative cells (**Figure 8F**, “β-gal(-)”
338 values). Thus, in the absence of *Bcl11a* expression, β-gal-positive cells became even more
339 vulnerable to neurodegeneration, consistent with a protective role of *Bcl11a*-mediated
340 transcription. Interestingly, in *Bcl11a* cko^{lacZ} mice, a more severe neurodegenerative effect was
341 observed not only on β-gal-positive but also β-gal-negative neurons. This latter finding
342 suggests that inactivation of *Bcl11a* expression may have cell non-autonomous effects and
343 result in widespread deleterious consequences for nigral tissue integrity.

344

345 **Discussion**

346 **Expression of Bcl11a defines a previously uncharacterized subset of mDA neurons**

347 mDA neurons are diverse in their gene expression, their anatomical location, their projection
348 targets, their electrophysiological and functional properties (Farassat et al., 2019; Morales and
349 Margolis, 2017; Poulin et al., 2020; Roeper, 2013). The link between anatomical position, gene
350 expression, projection target and function has come more and more into focus in recent years.
351 Several studies have shown that subsets of mDA neurons that share the expression of specific
352 markers have also specific projection targets in the forebrain (Bimpisidis et al., 2019; Khan et
353 al., 2017; Kramer et al., 2018; Poulin et al., 2018). Based on the currently available single-cell
354 gene expression studies, it has been proposed that there are at least 7 molecularly defined
355 mDA subgroups. Two of these subgroups are restricted to the SN, one encompasses cells in
356 the SNC, RRF and lateral VTA, one is restricted to the linear nucleus and the remaining three
357 are distributed in the medioventral VTA (Poulin et al., 2020). How and whether such subsets
358 are already defined during development remains however unclear. Here we show that the
359 transcription factor BCL11A defines a subpopulation of mDA neurons starting in

360 embryogenesis and throughout adulthood. Bcl11a-mDA neurons are widely distributed within
361 the anatomically defined mDA nuclei, comprising about 40% of the VTA-mDA neurons and
362 about 25% of the SN-mDA neurons. The Bcl11a-mDA population does not clearly fall into one
363 of the molecularly defined populations described above (Poulin et al., 2020). Strikingly, despite
364 the broad distribution of Bcl11a-mDA neurons across different anatomical and molecularly
365 defined mDA subpopulations, Bcl11a-mDA neurons establish a highly selective innervation
366 pattern within the mDA projection targets.

367

368 **Bcl11a-mDA neurons form a highly specific subset in the midbrain dopaminergic
369 system**

370 Dopaminergic subcircuits may encode a precise behavioral output by targeting a set of
371 substructures within the classical dopaminergic projection targets and a number of studies
372 have shown that specific subcircuits within the mDA system regulate very specific aspects of
373 behavior (Engelhard et al., 2019; Heymann et al., 2020; Menegas et al., 2018). Whether such
374 behavioral modules are consistent with genetically determined populations is just starting to
375 be examined (Heymann et al., 2020).

376 Bcl11a-mDA of the VTA project to the medial and ventral shell of the NAc and the OT while
377 Bcl11a-mDA of the SN show a highly selective innervation of the ventral TS and the caudal
378 DMS. This specific innervation pattern suggests that this genetically defined subpopulation
379 may modulate a specific subset of dopamine-influenced behaviors.

380 From an evolutionary standpoint, the mDA system may consist of different modules with
381 different functions that were built on top of a basic DA system mainly concerned with basic
382 behavior just as food-seeking and reward behavior (Schultz, 2019). If there are such modules
383 one would expect that they are genetically defined by the expression of specific transcription
384 factors or sets of transcription factors. Bcl11a could potentially define such a behavioral-
385 anatomical module and it will be interesting to investigate in the future whether mDA neurons
386 that are characterized by *Bcl11a*-expression in the SN and VTA form such a functional module
387 within the mDA system.

388

389 **Function of BCL11A in developing and mature mDA neurons**

390 BCL11A is a zinc finger transcription factor that acts mainly as a repressor but it is also part of
391 an ATP dependent chromatin remodeling complex in neural tissue. *Bcl11a* is expressed in
392 many types of neurons in almost every region of the CNS (Allen Brain Atlas), but its molecular
393 function has only been studied in a few regions so far (Simon et al., 2020). In the cortex,
394 BCL11A is important for the specification of cortical neurons that project to subcerebral areas
395 (Canovas et al., 2015; Woodworth et al., 2016) and it controls the acquisition of sensory area
396 identity and the establishment of sensory input fields (Greig et al., 2016). Moreover, BCL11A

397 regulates the migration of cortical projecting neurons (Wiegreffe et al., 2015). In the dorsal
398 spinal cord, BCL11A is required for neuronal morphogenesis and sensory circuit formation
399 (John et al., 2012). Whether it functions purely as a transcriptional repressor or also as part of
400 the chromatin remodeling complex in these neurons remains to be investigated. In mDA
401 neurons, the inactivation of *Bcl11a* resulted in a rostral-to-caudal shift of Bcl11a-mDA cell
402 bodies, suggesting that BCL11A might play a role in regulating the expression of factors that
403 control the migration of VTA-mDA neurons. In the cerebral cortex, BCL11A regulates cortical
404 neuron migration by controlling the expression of the cell adhesion molecule Semaphorin 3c
405 (Wiegreffe et al., 2015), but Semaphorin 3c is not expressed in mDA neurons (Kolk et al.,
406 2009). Thus, it will be of great interest to investigate which other molecules are regulated by
407 BCL11A in developing mDA neurons, in particular because little is known about the
408 mechanisms underlying the migration of VTA-mDA neurons (Brignani and Pasterkamp, 2017).
409 While the changes in cell body positioning appear to be restricted to the VTA, the loss of
410 BCL11A results in SN-mDA neurons, which are functionally compromised and are more
411 susceptible to neurodegeneration in the absence of BCL11A as evident from the results of the
412 behavioral analysis and the α -synuclein overexpression experiments. The deficits in SN-mDA
413 neurons demonstrate a novel role for BCL11A in regulating neuronal function and vulnerability
414 that appears to be independent of its previously characterized role in cell fate specification.
415 Whether the effect of BCL11A on SN-mDA neurons is a consequence of BCL11A acting during
416 the development of mDA neurons by altering their molecular and functional profile and/or
417 whether BCL11A regulates the function and vulnerability of mDA neurons acutely in the adult
418 brain cannot be discerned from the current study. Given that BCL11A appears to be
419 continuously expressed in the same mDA subpopulation starting soon after mDA
420 differentiation and throughout adulthood, a role of BCL11A during mDA development seems
421 likely. However, only the analysis of a mouse model, in which *Bcl11a* is inactivated in mDA
422 neurons during adulthood, will address this point conclusively.
423 In humans, pathogenic variants of BCL11A (mostly *de novo* mutations) result in
424 neurodevelopmental disorders that have recently been classified as BCL11A-related
425 intellectual disability (Peron et al., 2019). This syndrome is characterized by general
426 developmental delay, microcephaly, speech delay and behavioral problems as well as a
427 number of non-CNS related phenotypes. In some affected individuals, seizures or autism
428 spectrum disorder have been reported (Peron et al., 2019). Given the widespread expression
429 of BCL11A in the brain, it is unclear if any of these neurological symptoms in patients are
430 associated with functional deficits in the dopaminergic system. Moreover, there are no reports
431 of neurodegenerative phenotypes, but long-term observations of patients or case studies in
432 adult or aged patients are not available, due to the limited number of cases reported and the
433 bias towards diagnosis in childhood (Peron et al., 2019).

434

435 **Consequences of *Bcl11a*-inactivation in mDA neurons on behavior**

436 *Bcl11a* cko mice show a defect in the learning of skilled motor behavior while spontaneous
437 motor behavior or motor coordination is not affected. Since *Bcl11a* is specifically inactivated in
438 mDA neurons in our mouse model, this particular behavioral phenotype must be caused by
439 functional changes in mDA neurons (rather than by deficits in the cerebellum or motor cortex
440 (Hikosaka et al., 2002; Li et al., 2017). Due to the highly specific innervation pattern of *Bcl11a*-
441 mDA neurons in the forebrain and the fact that *Bcl11a*-mDA neurons comprise only a subset
442 of mDA neurons, we were not able to address the nature of these functional changes, but we
443 assume that they ultimately result in altered dopamine release in the target areas of *Bcl11a*-
444 mDA neurons and that these alterations are severe enough to elicit a behavioral phenotype.
445 Learning of motor skills is thought to be mediated by dopamine release in the dorsal striatum.
446 It has been proposed that the plasticity in striatal medium spiny neurons that underlies initial
447 skill learning during goal-directed actions requires dopamine release in the DMS, while
448 dopamine release in the dorsolateral striatum (DLS) is important for optimal skill learning (the
449 learning of sequential actions until a point is reached at which they can be performed with little
450 effort or attention (Durieux et al., 2012; Graybiel, 2008). Based on this model and our
451 observation that *Bcl11a*-mDA neurons in the SNC project to the DMS but not the DLS, the
452 deficit in motor learning should have its origin in the inability of the mice to initiate the learning
453 of skilled motor behavior. Interestingly, the ablation of *Aldh1a1*-expressing mDA neurons leads
454 to an impairment in motor skill learning on the rotarod that is similar to the one observed in
455 *Bcl11a* cko mice even though *Aldh1a1*-expressing neurons project almost exclusively to the
456 DLS (Wu et al., 2019). Thus, it is possible that reduced dopamine release in both DMS and
457 DLS and thus defects in both phases of learning lead to a similar overall defect in the
458 acquisition of skill learning.

459 Finally, we cannot completely exclude that impaired dopamine release from *Bcl11a*-mDA
460 neurons in the VTA may play a role in the inability of the *Bcl11a* cko mice to perform on the
461 rotarod since they might be less motivated to perform the task. However, the mice did not show
462 any deficits in any of the other tasks (balance beam, social recognition, open field) suggesting
463 that a deficit in motivated behavior is unlikely to be the cause of the inability to learn the rotarod
464 task.

465

466 **Vulnerability of *Bcl11a* neurons to degeneration**

467 The mDA neurons in the ventral tier of the SNC is the one most vulnerable to
468 neurodegeneration in Parkinson's disease and animal models of the disease (Kordower et al.,
469 2013). Based on studies in rodents, this population appears to coincide with ALDH1A1-

470 expressing mDA neurons (Poulin et al., 2014). Here we demonstrate that BCL11A neurons
471 are highly susceptible to neurodegeneration in an α -synuclein overexpression model, even
472 though only a small percentage overlaps with ALDH1A1-expressing mDA neurons. Our data
473 suggest that BCL11A serves as a marker of highly vulnerable mDA neurons, which are located
474 primarily in the dorsal tier of the SNc and project to the caudal DMS. The DMS corresponds
475 roughly to the caudate nucleus in the human brain (Burton et al., 2015). Dopaminergic deficits
476 within the striatum are unevenly distributed in Parkinson's disease patients and in general,
477 neuroimaging studies show that the posterior putamen (corresponding to the DLS in rodents)
478 has a more severe dopamine dysfunction than the caudate nucleus (Kish et al., 1988). This
479 gradient of dopaminergic deficiency has been reported to be already apparent at early disease
480 stages and to be largely maintained over the course of the disease (Nandhagopal et al., 2009).
481 Nevertheless, some of the early symptoms associated with Parkinson's disease are assumed
482 to be based on functional deficits of the caudate nucleus (REM sleep disorder, gait problems)
483 and the most dorsorostral part of the caudate nucleus has been reported to have a strong
484 reduction in dopamine levels in Parkinson's disease patients. A recent study thus re-examined
485 the involvement of dopamine deficiencies in the early stage of Parkinson's disease and found
486 a significant dopaminergic de-innervation of the caudate nucleus in about half of the patients
487 (Pasquini et al., 2019). BCL11A is expressed in human mDA neurons (La Manno et al., 2016),
488 but further studies will be necessary to evaluate which subpopulations express this
489 transcription factor and whether the reduced dopaminergic innervation of the caudate nucleus
490 in Parkinson's disease may be associated with a specific loss of BCL11A-expressing mDA
491 neurons in patients.

492 While *Bcl11a*-mDA neurons are more susceptible to α -synuclein induced degeneration,
493 BCL11A also acts as a neuroprotective factor in this population, since the loss of *Bcl11a*-mDA
494 neurons is significantly more severe in *Bcl11a cko^{lacZ}* mice than in *Bcl11a-lacZ* mice. A similar
495 phenomenon has been observed for the ALDH1A1 expressing population: inactivation of
496 ALDH1A1 increases the vulnerability of this population to neurodegeneration (Liu et al., 2014).
497 This could be due to the particularly high vulnerability of these populations rather than to a
498 specific function of these factors: any additional insult (i.e. loss of ALDH1A1 or BCL11A
499 function) during development or in the adult brain increases their vulnerability even further.
500 Alternatively, BCL11A could be modulating cell survival more directly, since it has been shown
501 to regulate expression of the anti-apoptotic factor Bcl2 in early B-lymphocytes and inactivation
502 of *Bcl11a* in cortical projections neurons results in increased cell death in addition to deficits in
503 migration and cell fate specification (Yu et al., 2012; Wiegrefe et al., 2015).

504

505 **Material and Methods**

506 **Mouse lines**

507 *Bcl11a^{lacZ}* mice (Dias et al., 2016) were kindly provided by Pengtao Liu, School of Biomedical
508 Sciences, The University of Hong Kong, China. *Bcl11a^{flx}* mice (Wiegreffe et al., 2015) were
509 kindly provided by Pengtao Liu, School of Biomedical Sciences, The University of Hong Kong,
510 China; and Neal Copeland, Institute for Academic Medicine, Houston Methodist and obtained
511 from Stefan Britsch, University of Ulm. *Bcl11a^{CreER}* mice (Pensa et al., under revision) were
512 kindly provided by Walid Khaled, Department of Pharmacology, University of Cambridge.
513 *Bcl11a* cko mice were generated by crossing *Dat^{IRES-Cre}* mice (Bäckman et al., 2006) with
514 *Bcl11a^{flx}* mice (Genotype: *Dat^{IRES-Cre/+}*, *Bcl11a^{flx/flx}*). In a subset of *Bcl11a* cko mice, the
515 *Bcl11a^{lacZ}* null allele was introduced by crossing *Dat^{IRES-Cre}* mice with *Bcl11a^{flx/lacZ}* mice
516 (Genotype: *Dat^{IRES-Cre/+}*, *Bcl11a^{flx/lacZ}*). Intersectional fate mapping experiments were
517 performed by crossing *Bcl11a^{CreER}* mice with the *Dat^{TA}* (tetracycline trans-activator driven by
518 the *Dat* promoter) mouse line (Chen et al., 2015) and the intersectional reporter mouse line
519 Ai82D (Ai82(TITL-GFP)-D (Madisen et al., 2015)) (Genotype: *Bcl11a^{CreER/+}*, *Dat^{TA/+}*, *Ai82D^{TITL-}*
520 *GFP⁺*). For viral tracings, *Bcl11a^{CreER/+}* or *Bcl11a^{CreER/+}*, *Dat^{TA/+}* (intersectional) were used. Mice
521 were housed in a controlled environment, with 12 hr light/night cycles and ad libitum availability
522 of food and water. Day of vaginal plug was recorded as E0.5. All experiments were performed
523 in strict accordance with the regulations for the welfare of animals issued by the Federal
524 Government of Germany, European Union legislation and the regulations of the University of
525 Bonn. The protocol was approved by the Landesamt für Natur, Umwelt und Verbraucherschutz
526 Nordrhein-Westfalen (Permit Number: 84-02.04.2014.A410, 84-02.04.2016.A238 and 84-
527 12.04.2015.A550).

528

529 **Tamoxifen administration**

530 Tamoxifen was administered by oral gavage to pregnant dams at E15.5 (0.05 ml/10g body
531 weight) or to adult mice (0.075 ml/10g body weight) to label *Bcl11a*-expressing neurons.
532 Tamoxifen (Sigma Aldrich) was prepared as a 20 mg/mL solution in corn oil (Sigma Aldrich).

533

534 **Tissue processing**

535 Pregnant females were sacrificed by cervical dislocation. Embryos were transferred into ice
536 cold PBS, decapitated and dissected. P0 pups were decapitated and their brain dissected in
537 ice cold PBS. Heads (E12.5 – E15.5) or brains (P0) were fixed in 4% paraformaldehyde (PFA)
538 overnight at 4°C. Adult mice were anesthetized with an intraperitoneal injection of
539 Ketanest/Rampun or pentobarbital and subsequently perfused transcardially with phosphate
540 buffered saline (PBS), followed by 4% PFA. The tissue was cryopreserved in OCT Tissue Tek
541 (Sakura). Embryonic and P0 tissue was cryosectioned at 14 µm thickness and collected on

542 glass slides, adult brains were cryosectioned at 40 μ m thickness and free-floating sections
543 were collected in anti-freeze solution.
544 For immunofluorescent staining, sections were re-fixed in 4% PFA for 10 min at room
545 temperature (RT) and incubated in 10% NDS in PBS plus 0.2% Triton X-100 (Sigma-Aldrich)
546 (0.2% PBT, used for embryonic and P0 tissue) or in 10% NDS in 0.5% PBT (adult tissue) for
547 1 hr at RT. Sections were incubated with primary antibody overnight at 4°C in 3% NDS in 0.2%
548 PBT (embryonic and P0 tissue) or in 3% NDS in 0.3% PBT (adult tissue). For staining with the
549 guinea pig anti-BCL11A antibody and in some cases for rabbit anti-TH antibody (**Table 1**)
550 sections were incubated in the primary antibody for 72 hr at RT (guinea pig anti-BCL11A) or
551 at 4°C (rabbit anti-TH antibody). Sections were washed 3 times for 5-10 min in 0.2% PBT
552 (embryonic and P0 tissue) or in 0.3% PBT (adult tissue) and incubated for 2 hr at RT in
553 secondary antibody in 3% NDS in 0.2% PBT (embryonic and P0 tissue) or in 3% NDS in 0.3%
554 PBT (adult tissue). Sections were washed 3 times for 5-10 min in 0.2% PBT (embryonic and
555 P0 tissue) or in 0.3% PBT (adult tissue) and mounted with Aqua Polymount (Polysciences
556 Inc.). For the detection of BCL11A, biotinylated donkey anti-guinea pig antibody followed by
557 Cy3-Streptavidin was used.
558 Processing of tissue from mice overexpressing α -synuclein involved post-fixation with 4% PFA
559 for 24 hr followed by cryopreservation in 30% sucrose solution. Sections were cut at 35 μ m
560 thickness using a freezing microtome. Staining of these sections followed previously described
561 protocols (Helwig et al. 2016).

562 A list of primary and secondary antibodies is provided in **Table 1**.

563

564 **Table1**

Antibody	Source	Identifier	Dilution
goat anti- β -gal	Biogenesis, Kinsgton,NH, USA	Validated in (Alvarez-Bolado et al., 2012)	IHC: 1:2000
guinea pig anti-BCL11A	First described in John et al. 2012		IHC: 1:2500
mouse anti-human α -synuclein	Merck, Darmstadt, DE	RRID: AB_310817	IHC: 1:20,000
mouse anti-TH	Merck, Darmstadt, DE	RRID: AB_2201528	IHC: 1:500
rabbit anti-ALDH1A1	Sigma-Aldrich, St. Louis, MO, USA	RRID: AB_1844722	IHC: 1:1000
rabbit anti-Calbindin	Swant, Herford, DE	RRID: AB_2314067	IHC: 1:5000
rabbit anti-RFP	Rockland-inc, Hamburg, DE	RRID: AB_2209751	IHC: 1:1000

rabbit anti-SOX6	Abcam, Cambridge, UK	RRID: AB_1143033	IHC: 1:500
rabbit anti-TH	Merck, Darmstadt, DE	RRID: AB_390204	IHC: 1:500-1:1000
rat anti-GFP	Nalacai Tesque, Kyoto, JP	RRID: AB_10013361	IHC: 1:2000
Cy3-Streptavidin	Jackson ImmunoResearch, Ely, Cambridgeshire, UK	RRID: AB_2337244	IHC: 1:1000
donkey anti-goat Cy3	Jackson ImmunoResearch, Ely, Cambridgeshire, UK	RRID: AB_2307351	IHC: 1:500
donkey anti-guinea pig Biotin	Jackson ImmunoResearch, Ely, Cambridgeshire, UK	RRID: AB_2340451	IHC: 1:200
donkey anti mouse-Alexa 488	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_141607	IHC: 1:500
donkey anti mouse-Alexa 647	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_162542	IHC: 1:500
donkey anti rabbit-Alexa 488	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_2535792	IHC: 1:500
donkey anti rabbit-Alexa 546	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_2534016	IHC: 1:500
donkey anti rabbit-Alexa 647	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_2536183	IHC: 1:500
donkey anti rat-Alexa 488	Thermo Fischer Scientific, Waltham, MA, USA	RRID: AB_2535794	IHC: 1:500

565

566 **RNAScope**

567 RNA in situ hybridization on frozen sections from P0 and adult mice was performed using
568 RNAScope Fluorescent Multiplex Detection Reagents (323110, ACDBio, Newark, CA, USA)
569 according to the instructions provided by the manufacturer for frozen tissue (User Manual:
570 323100-USM). Hybridized probe was detected with TSA Plus Cyanine 3 (NEL760001KT,
571 Perkin Elmer, Waltham, MA, USA). The probe for Bcl11a was designed by ACDBio (Cat No.

572 563701-C3). Sections were counterstained with TH and Hoechst, then mounted with Aqua
573 Polymount (Polysciences Inc., Warrington, PA, USA).

574

575 **Stereotactic viral vector injection**

576 *Viral tracing*

577 *Bcl11a*^{CreER} and *Bcl11a*^{CreER}, *Dat*^{tTA} mice (4-20 weeks old) were anesthetized with
578 Fentanyl/Midazolam/Medetomidin and placed into a stereotaxic apparatus. 1 μ l of virus
579 solution (AAV1/2-EF1 α -pTRE-FLEX-ChETA-eYFP or AAV1/2-EF1 α -DIO-ChR2-eYFP (both
580 from UKB viral core facility, Bonn, DE) or AAV1/2-EF1 α -DIO-ChR2-mCherry (Addgene,
581 Watertown, MA, USA)) was injected unilaterally into the SNc (from Bregma: anteroposterior
582 (AP), -2.3 mm; mediolateral (ML), -1.1 mm; dorsoventral (DV), -4.1 mm) or into the VTA (from
583 Bregma: AP, -3.44 mm; ML, -0.48 mm; DV, -4.4mm) by. A 34g beveled needle (WPI) and a
584 microinjection pump (WPI) were used to control the injection speed (100 nl/min). After the
585 injection, the syringe was kept in place for 3 min and slowly retracted over 1 min. 8 days after
586 viral injections, Tamoxifen was administered to the mice by oral gavage (0.075 ml/10 body
587 weight) for 3 consecutive days. Two weeks after the last Tamoxifen administration, mice were
588 perfused.

589

590 *Alpha-Synuclein overexpression*

591 Recombinant adeno-associated viral particles (serotype 2 genome and serotype 6 capsid)
592 were used to express human α -synuclein in the mouse substantia nigra. Gene expression was
593 controlled by the human Synapsin 1 promoter and enhanced using a woodchuck hepatitis virus
594 post-transcriptional regulatory element and a polyA signal downstream to the α -synuclein
595 sequence. AAV-vector production, purification, concentration, and titration were performed by
596 Sirion Biotech (Martinsried, Germany). Mice were treated with a single 1.5 μ l injection of
597 4.0 \times 10¹² genome copies/ml using a stereotaxic frame with a mouse adapter (Stoelting, Wood
598 Dale, IL, USA) under isoflurane anesthesia. Stereotaxic coordinates were 2.3 mm posterior
599 and 1.1 mm lateral to bregma; injection depth was 4.1 mm relative to dura mater. The injection
600 was made at a rate of 0.4 μ l/min using a Hamilton syringe fitted to a glass capillary. The capillary
601 was left in position for an additional 5 mins before being retracted.

602

603 **Image acquisition**

604 Images of fluorescently stained images were acquired at an inverted Zeiss AxioObserver Z1
605 equipped with structured illumination (ApoTome) and a Zeiss AxioCam MRm (Carl Zeiss,
606 Oberkochen, DE). At 10X (EC PInN 10x/0.3, Carl Zeiss, Oberkochen, DE) magnification, tile
607 images were acquired with conventional epifluorescence. At 20X (EC PInN 20x/0.5, Carl Zeiss,
608 Oberkochen, DE), 40X (PIn Apo 40x/1.3 Oil, Carl Zeiss, Oberkochen, DE) and 63X (PIn Apo

609 63x/1.4 Oil, Carl Zeiss, Oberkochen, DE) magnifications, structured illumination was used to
610 acquire tile images and z-stacks. Some of the images taken with the 20X objective and all the
611 images taken with the 40X and 63X objective are maximum intensity projections of z-stacks.
612 Tile images were stitched with Zen blue software (Zeiss, 2012).
613 Brightfield images were visualized with a Zeiss Axio Scope.A1 microscope, collected using
614 AxioCam 503 Color and processed with Zen blue software (Zen lite, 2019).
615 In situ hybridized sections at adult stages were imaged at an inverted Zeiss AxioObserver
616 equipped with a CSU-W1 Confocal scanner unit (50 μ m pinhole disk, Yokogawa, Tokyo, JP).
617 At 40X (C-Apochromat, 40x/1.2 water, Zeiss) magnification, tile images and z-stacks were
618 acquired with laser lines 405 nm, 488 nm and 561 nm. Images taken with the 40X objective
619 are maximum intensity projections of z-stacks. Tile images were stitched with VisiView
620 software (Visitron Systems, Puchheim, DE).

621 **Quantification of cell numbers**

622 *TH⁺ β-gal⁺ neurons and additional subset markers*

623 The percentage of *Bcl11a*-expressing mDA neurons in SN or VTA at P0 and P30 was
624 determined by quantifying TH⁺ β-gal⁺ neurons at four (P0) or three (P30) rostrocaudal midbrain
625 levels (Franklin and Paxinos, 2007). TH⁺ β-gal⁺ neurons in CLi and RRF in the adult brain
626 were analyzed separately from neurons in the SN or VTA. The number of TH⁺ β-gal⁺ neurons
627 was counted unilaterally in the SN, VTA, RRF and CLi and normalized for the total number of
628 mDA neurons per region separately. The analysis was performed on n=5 *Bcl11a-lacZ* control
629 mice and n=5 *Bcl11a cko^{lacZ}* mice at P0, and on n=6 *Bcl11a-lacZ* (control) mice and n=6 *Bcl11a*
630 *cko^{lacZ}* mice at P30. The percentage of *Bcl11a*-expressing mDA neurons co-expressing
631 additional subtype markers (SOX6 and CALB1 at P0; CALB1 and ALDH1A1 at P30) in SN or
632 VTA was determined by quantifying TH⁺ β-gal⁺ neurons at four rostrocaudal midbrain levels
633 (Franklin and Paxinos, 2007). The number of TH⁺ β-gal⁺ neurons co-expressing the respective
634 subset marker in these regions was counted unilaterally and the numbers were normalized for
635 the total number of TH⁺ β-gal⁺ mDA neurons in each region (SN or VTA). This analysis was
636 performed for n=5 *Bcl11a-lacZ* mice and n=5 *Bcl11a cko^{lacZ}* mice at P0 and for n=3 *Bcl11a-*
637 *lacZ* mice and n=3 *Bcl11a cko^{lacZ}* mice at P30.

638

639 **Stereology**

640 Analyses were performed on SNC samples by an investigator blinded to the sample codes.
641 Unbiased stereological estimates of the number of nigral neurons were obtained by counting
642 under brightfield or confocal microscopy. Samplings were performed on every fifth section
643 throughout the entire SNC. Delineations were made using a 4x objective, and counting was
644 performed using a 63x Plan-Apo oil objective (Numerical aperture=1.4). A guard zone
645 thickness of 1 μ m was set at the top and bottom of each section. Cells were counted using the

646 optical fractionator technique (Stereo Investigator software version 9, MBF Biosciences,
647 Williston, VTA, USA) using a motorized Olympus microscope (IX2 UCB) equipped with an
648 Olympus disk spinning unit (DSU) and a light sensitive EM-CCD camera. Coefficient of error
649 was calculated according to (Gundersen and Jensen, 1987); values <0.10 were accepted.

650

651 **Analysis of TH fiber density**

652 40 µm sections of 3 to 6 rostrocaudal levels of the striatum were stained for TH and
653 epifluorescence images were taken using and inverted Z1 Axioobserver microscope with 10X
654 objective. The mean grey value of the TH⁺ striatal projections was calculated in the dorsal
655 striatum, OT and TS (divided into ventral and dorsal TS) with Fiji/ImageJ and normalized for
656 background fluorescence (corpus callosum which is devoid of TH⁺ fibers or neurons). This
657 analysis was performed for =3 control mice and n=3 Bcl11a cko^{lacZ} mice at P30.

658

659 **Behavioral tests**

660 Male mice were kept ad libitum in groups of 2-3 animals in a 12-hour day/night rhythm on a
661 normal diet. The animals were transferred to the examination room for experimental purposes
662 and each one was housed in a separate cage. After a one-week acclimatization period in the
663 examination room, mice performed the rotarod test and beam walking assay (both tests in one
664 day) for five consecutive days, followed by the social recognition test and finally by the open-
665 field test.

666

667 *RotaRod*

668 The animals were taken out of the cage and were acclimated to the rotarod apparatus (Ugo
669 Basile, Gemonio, IT; Code no. 47600) in a 5-minute run on a rod rotating at a constant speed
670 of 8 rpm. Afterwards the animals went through three test runs per day, with a break of 30 min
671 between each run. In each test run, the animals had to balance on the rotating rod for 5 min,
672 whereby the torque increased from 4 to 40 rpm within 5 min. The duration that each mouse
673 was able to stay on the rotating rod in each trial was recorded as the latency to fall. The three
674 test runs per day were repeated on 5 consecutive days. During the test, the rod was kept clean
675 and dry by wiping the mouse urine and feces off.

676 *Beam Walking Assay*

677 To examine fine motor skills independent of rotational movement (Luong et al., 2011), the
678 beam walking assay (balanced beam test) was used (Carter et al., 1999). Animals had to
679 balance from one platform over a 12 mm wide and 1 m long rod made of synthetic material to
680 another platform that held a box with a food reward. Beams were placed 50 cm above the
681 table. The time taken for the animals to cross the bar was measured. If animals did not reach

682 the safety platform or took longer than 60 s to cross the beam, a maximum of 60 s was
683 assigned. The test was run for a period of 5 consecutive days.

684

685 ***Open-field test***

686 In the open-field test, the mice were placed in an open arena (30 x 30 x 30 cm). They were
687 allowed to move freely for 5 minutes. The animals were recorded by Video (EthovisionXT,
688 Noldus, Wageningen, NL) and the running distance, the time spent in the border area, the
689 corners and the centre of the cage as well as crossings from the border to the center area
690 were measured. This test was initially run for a training period of 1 day, then after a 30-day
691 rest period another test run was performed. This test was run twice with a 30-day rest period
692 in between. Since both runs showed comparable results, the results were combined for the
693 final analysis.

694 **Statistical analysis**

695 Statistical analyses of cell numbers were done with GraphPad Prism (8.0) software using
696 unpaired t-test, Welch's t-test, one-way ANOVA followed by test for linear trend or one-way
697 ANOVA followed by Tukey's *post hoc* test for multiple comparisons.

698 Open field tests were evaluated by one-way analysis followed by Tukey's *post hoc* test for
699 multiple comparisons. Differences in the balanced beam test and rotarod were assessed by
700 two-way ANOVA taking time and genotype as numerical and categorical variables.

701 P values of less than 0.05 were considered statistically significant. Data are reported as mean
702 values \pm standard error of the mean (SEM).

703

704

705 **References**

706

707 **Alvarez-Bolado, G., Paul, F. A. and Blaess, S.** (2012). Sonic hedgehog lineage in the mouse
708 hypothalamus: From progenitor domains to hypothalamic regions. *Neural development* **7**,
709 4.

710 **Bariselli, S., Hörnberg, H., Prévost-Solié, C., Musardo, S., Hatstatt-Burklé, L., Scheiffele,
711 P. and Bellone, C.** (2018). Role of VTA dopamine neurons and neuroligin 3 in sociability
712 traits related to nonfamiliar conspecific interaction. *Nat Commun* **9**, 3173–15.

713 **Bäckman, C. M., Malik, N., Zhang, Y., Shan, L., Grinberg, A., Hoffer, B. J., Westphal, H.
714 and Tomac, A. C.** (2006). Characterization of a mouse strain expressing Cre recombinase
715 from the 3' untranslated region of the dopamine transporter locus. *genesis* **44**, 383–390.

716 **Bimpidis, Z., König, N., Stagkourakis, S., Zell, V., Vlcek, B., Dumas, S., Giros, B.,
717 Broberger, C., Hnasko, T. S. and Wallén-Mackenzie, Å.** (2019). The NeuroD6 Subtype
718 of VTA Neurons Contributes to Psychostimulant Sensitization and Behavioral
719 Reinforcement. *eNeuro* **6**, ENEURO.0066–19.2019–31.

720 **Brignani, S. and Pasterkamp, R. J.** (2017). Neuronal Subset-Specific Migration and Axonal
721 Wiring Mechanisms in the Developing Midbrain Dopamine System. *Front Neuroanat* **11**,
722 494–18.

723 **Brignani, S., Raj, D. D. A., Schmidt, E. R. E., Düdükcü, Ö., Adolfs, Y., De Ruiter, A. A.,
724 Rybiczka-Tesulov, M., Verhagen, M. G., van der Meer, C., Broekhoven, M. H., et al.**
725 (2020). Remotely Produced and Axon-Derived Netrin-1 Instructs GABAergic Neuron
726 Migration and Dopaminergic Substantia Nigra Development. *Neuron* **107**, 684–702.

727

728 **Burton, A. C., Nakamura, K. and Roesch, M. R.** (2015). From ventral-medial to dorsal-lateral
729 striatum: Neural correlates of reward-guided decision-making. *Neurobiol Learn Mem* **117**,
730 51–59.

731 **Canovas, J., Berndt, F. A., Sepulveda, H., Aguilar, R., Veloso, F. A., Montecino, M., Oliva,
732 C., Maass, J. C., Sierralta, J. and Kukuljan, M.** (2015). The Specification of Cortical
733 Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by
734 CTIP1/BCL11a. *J Neurosci* **35**, 7552–7564.

735 **Carter, R. J., Lione, L. A., Humby, T., Mangiarini, L., Mahal, A., Bates, G. P., Dunnett, S.
736 B. and Morton, A. J.** (1999). Characterization of progressive motor deficits in mice
737 transgenic for the human Huntington's disease mutation. *J Neurosci* **19**, 3248–3257.

738 **Chen, L., Xie, Z., Turkson, S. and Zhuang, X.** (2015). A53T human α -synuclein
739 overexpression in transgenic mice induces pervasive mitochondria macroautophagy
740 defects preceding dopamine neuron degeneration. *J Neurosci* **35**, 890–905.

741 **Costa, R. M., Cohen, D. and Nicolelis, M. A. L.** (2004). Differential Corticostriatal Plasticity
742 during Fast and Slow Motor Skill Learning in Mice. *Curr Biol* **14**, 1124–1134.

743 **Dias, C., Estruch, S. B., Graham, S. A., McRae, J., Sawiak, S. J., Hurst, J. A., Joss, S. K.,
744 Holder, S. E., Morton, J. E. V., Turner, C., et al.** (2016). BCL11A Haploinsufficiency
745 Causes an Intellectual Disability Syndrome and Dysregulates Transcription. *Am J Hum
746 Genet* **99**, 253–274.

747 **Dodson, P. D., Dreyer, J. K., Jennings, K. A., Syed, E. C. J., Wade-Martins, R., Cragg, S.
748 J., Bolam, J. P. and Magill, P. J.** (2016). Representation of spontaneous movement by

749 dopaminergic neurons is cell-type selective and disrupted in parkinsonism. *Proc Natl Acad
750 Sci USA* **113**, E2180–E2188.

751 **Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., Koay, S. A.,
752 Thibierge, S. Y., Daw, N. D., Tank, D. W., et al.** (2019). Specialized coding of sensory,
753 motor and cognitive variables in VTA dopamine neurons. *Nature* **570**, 509–513.

754 **Franklin, K. B. J. and Paxinos, G.** (2007). *The Mouse Brain in Stereotaxic Coordinates, Third
755 Edition*. 3rd ed. Academic Press.

756 **Goedert, M., Spillantini, M. G., Del Tredici, K. and Braak, H.** (2013). 100 years of Lewy
757 pathology. *Nat Rev Neurosci* **9**, 13–24.

758 **Greig, L. C., Woodworth, M. B., Greppi, C. and Macklis, J. D.** (2016). Ctip1 Controls
759 Acquisition of Sensory Area Identity and Establishment of Sensory Input Fields in the
760 Developing Neocortex. *Neuron* **90**, 261–277.

761 **Gundersen, H. J. and Jensen, E. B.** (1987). The efficiency of systematic sampling in
762 stereology and its prediction. *J Microsc* **147**, 229–263.

763 **Heymann, G., Jo, Y. S., Reichard, K. L., McFarland, N., Chavkin, C., Palmiter, R. D.,
764 Soden, M. E. and Zweifel, L. S.** (2020). Synergy of Distinct Dopamine Projection
765 Populations in Behavioral Reinforcement. *Neuron* **105**, 909–920.e5.

766 **Hikosaka, O., Nakamura, K., Sakai, K. and Nakahara, H.** (2002). Central mechanisms of
767 motor skill learning. *Curr Opin Neurobiol* **12**, 217–222.

768 **John, A., Brylka, H., Wiegreffe, C., Simon, R., Liu, P., Jüttner, R., Crenshaw, E. B., Luyten,
769 F. P., Jenkins, N. A., Copeland, N. G., et al.** (2012). Bcl11a is required for neuronal
770 morphogenesis and sensory circuit formation in dorsal spinal cord development.
771 *Development* **139**, 1831–1841.

772 **Kadoch, C., Hargreaves, D. C., Hodges, C., Elias, L., Ho, L., Ranish, J. and Crabtree, G.
773 R.** (2013). Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes
774 identifies extensive roles in human malignancy. *Nat Genet* **45**, 592–601.

775 **Khan, S., Stott, S. R. W., Chabrat, A., Truckenbrodt, A. M., Spencer-Dene, B., Nave, K.
776 A., Guillemot, F., Lévesque, M. and Ang, S.-L.** (2017). Survival of a Novel Subset of
777 Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on
778 NeuroD Proteins. *J Neurosci* **37**, 2305–2316.

779 **Kish, S. J., Shannak, K. and Hornykiewicz, O.** (1988). Uneven Pattern of Dopamine Loss in
780 the Striatum of Patients with Idiopathic Parkinson's Disease. *N Engl J Med* **318**, 876–880.

781 **Kolk, S. M., Gunput, R.-A. F., Tran, T. S., Van den Heuvel, D. M. A., Prasad, A. A.,
782 Hellemons, A. J. C. G. M., Adolfs, Y., Ginty, D. D., Kolodkin, A. L., Burbach, J. P. H.,
783 et al.** (2009). Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and
784 controls their fasciculation, channeling, rostral growth, and intracortical targeting. *J
785 Neurosci* **29**, 12542–12557.

786 **Kordower, J. H., Olanow, C. W., Dodiya, H. B., Chu, Y., Beach, T. G., Adler, C. H., Halliday,
787 G. M. and Bartus, R. T.** (2013). Disease duration and the integrity of the nigrostriatal
788 system in Parkinson's disease. *Brain* **136**, 2419–2431.

789 **Kramer, D. J., Risso, D., Kosillo, P., Ngai, J. and Bateup, H. S.** (2018). Combinatorial
790 Expression of Grpnd Neurod6Defines Dopamine Neuron Populations with Distinct
791 Projection Patterns and Disease Vulnerability. *eNeuro* **5**, ENEURO.0152–18.2018–16.

792 **La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Saltó, C., Zeisel, A., Borm, L.**
793 **E., Stott, S. R. W., Toledo, E. M., Villaescusa, J. C., et al.** (2016). Molecular Diversity of
794 Midbrain Development in Mouse, Human, and Stem Cells. *Cell* **167**, 566–580.e19.

795 **Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Zalocusky, K. A.,**
796 **Crow, A. K., Malenka, R. C., Luo, L., Tomer, R., et al.** (2015). Intact-Brain Analyses
797 Reveal Distinct Information Carried by SNc Dopamine Subcircuits. *Cell* **162**, 635–647.

798 **Li, Q., Ko, H., Qian, Z.-M., Yan, L. Y. C., Chan, D. C. W., Arbuthnott, G., Ke, Y. and Yung,**
799 **W.-H.** (2017). Refinement of learned skilled movement representation in motor cortex deep
800 output layer. *Nat Commun* **8**, 8:15834.

801

802 **Liu, G., Yu, J., Ding, J., Xie, C., Sun, L., Rudenko, I., Zheng, W., Sastry, N., Luo, J., Rudow,**
803 **G., et al.** (2014). Aldehyde dehydrogenase 1 defines and protects a nigrostriatal
804 dopaminergic neuron subpopulation. *J Clin Invest* **124**, 3032–3046.

805 **Luong, T. N., Carlisle, H. J., Southwell, A. and Patterson, P. H.** (2011). Assessment of
806 Motor Balance and Coordination in Mice using the Balance Beam. *J Vis Exp* **49**, 2376.

807 **Madisen, L., Garner, A. R., Shimaoka, D., Chuong, A. S., Klapoetke, N. C., Li, L., van der**
808 **Bourg, A., Niino, Y., Egolf, L., Monetti, C., et al.** (2015). Transgenic mice for
809 intersectional targeting of neural sensors and effectors with high specificity and
810 performance. *Neuron* **85**, 942–958.

811 **Menegas, W., Akiti, K., Amo, R., Uchida, N. and Watabe-Uchida, M.** (2018). Dopamine
812 neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. *Nat*
813 *Neurosci* **21**, 1421–1430.

814 **Menegas, W., Bergan, J. F., Ogawa, S. K., Isogai, Y., Umadevi Venkataraju, K., Osten, P.,**
815 **Uchida, N. and Watabe-Uchida, M.** (2015). Dopamine neurons projecting to the posterior
816 striatum form an anatomically distinct subclass. *eLife* **4**, e10032.

817 **Morales, M. and Margolis, E. B.** (2017). Ventral tegmental area: cellular heterogeneity,
818 connectivity and behaviour. *Nat Rev Neurosci* **18**, 73–85.

819 **Nandhagopal, R., Kuramoto, L., Schulzer, M., Mak, E., Cragg, J., Lee, C. S., McKenzie,**
820 **J., McCormick, S., Samii, A., Troiano, A., et al.** (2009). Longitudinal progression of
821 sporadic Parkinson's disease: a multi-tracer positron emission tomography study. *Brain*
822 **132**, 2970–2979.

823 **Panman, L., Papathanou, M., Laguna, A., Oosterveen, T., Volakakis, N., Acampora, D.,**
824 **Kurtsdotter, I., Yoshitake, T., Kehr, J., Joodmardi, E., et al.** (2014). Sox6 and Otx2
825 control the specification of substantia nigra and ventral tegmental area dopamine neurons.
826 *Cell Reports* **8**, 1018–1025.

827 **Pasquini, J., Durcan, R., Wiblin, L., Gersel Stokholm, M., Rochester, L., Brooks, D. J.,**
828 **Burn, D. and Pavese, N.** (2019). Clinical implications of early caudate dysfunction in
829 Parkinson's disease. *J Neurol Neurosurg Psychiatry* **90**, 1098–1104.

830 **Peron, A., Bradbury, K., Viskochil, D. H. and Dias, C.** (2019). BCL11A-Related Intellectual
831 Disability - GeneReviews® - NCBI Bookshelf. 1–18.

832 **Poulin, J.-F., Caronia, G., Hofer, C., Cui, Q., Helm, B., Ramakrishnan, C., Chan, C. S.,**
833 **Dombeck, D. A., Deisseroth, K. and Awatramani, R.** (2018). Mapping projections of
834 molecularly defined dopamine neuron subtypes using intersectional genetic approaches.
835 *Nat Neurosci* **21**, 1260–1271.

836 **Poulin, J.-F., Gaertner, Z., Moreno-Ramos, O. A. and Awatramani, R.** (2020). Classification
837 of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches.
838 *Trends Neurosci* **43**, 155–169.

839 **Poulin, J.-F., Zou, J., Drouin-Ouellet, J., Kim, K.-Y. A., Cicchetti, F. and Awatramani, R.**
840 **B.** (2014). Defining Midbrain Dopaminergic Neuron Diversity by Single-Cell Gene
841 Expression Profiling. *Cell Reports* **9**, 930–943.

842 **Schultz, W.** (2019). Recent advances in understanding the role of phasic dopamine activity.
843 *F1000Res* **8**, 1680–12.

844 **Schwamborn, J. C.** (2018). Is Parkinson's Disease a Neurodevelopmental Disorder and Will
845 Brain Organoids Help Us to Understand It? *Stem Cells Dev* **27**, 968–975.

846 **Simon, R., Wiegreffe, C. and Britsch, S.** (2020). Bcl11 Transcription Factors Regulate
847 Cortical Development and Function. *Front Mol Neurosci* **13**, 51.

848 **Thompson, L., Barraud, P., Andersson, E., Kirik, D. and Björklund, A.** (2005). Identification
849 of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal
850 ventral mesencephalon based on cell morphology, protein expression, and efferent
851 projections. *J Neurosci* **25**, 6467–6477.

852 **Tye, K. M., Mirzabekov, J. J., Warden, M. R., Ferenczi, E. A., Tsai, H.-C., Finkelstein, J.,**
853 **Kim, S.-Y., Adhikari, A., Thompson, K. R., Andalman, A. S., et al.** (2013). Dopamine
854 neurons modulate neural encoding and expression of depression-related behaviour.
855 *Nature* **493**, 537–541.

856 **Ulusoy, A. and Di Monte, D. A.** (2012). α -Synuclein Elevation in Human Neurodegenerative
857 Diseases: Experimental, Pathogenetic, and Therapeutic Implications. *Mol Neurobiol* **47**,
858 484–494.

859 **Wiegreffe, C., Simon, R., Peschkes, K., Kling, C., Strehle, M., Cheng, J., Srivatsa, S., Liu,**
860 **P., Jenkins, N. A., Copeland, N. G., et al.** (2015). Bcl11a (Ctip1) Controls Migration of
861 Cortical Projection Neurons through Regulation of Sema3c. *Neuron* **87**, 311–325.

862 **Woodworth, M. B., Greig, L. C., Liu, K. X., Ippolito, G. C., Tucker, H. O. and Macklis, J. D.**
863 **(2016). Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron**
864 **Subtypes in Deep Cortical Layers.** *Cell Reports* **15**, 999–1012.

865 **Wu, J., Kung, J., Dong, J., Chang, L., Xie, C., Habib, A., Hawes, S., Yang, N., Chen, V.,**
866 **Liu, Z., et al.** (2019). Distinct Connectivity and Functionality of Aldehyde Dehydrogenase
867 1a1-Positive Nigrostriatal Dopaminergic Neurons in Motor Learning. *Cell Reports* **28**,
868 1167–1181.e7.

869 **Yacoubi, El, M., Bouali, S., Popa, D., Naudon, L., Leroux-Nicollet, I., Hamon, M.,**
870 **Costentin, J., Adrien, J. and Vaugeois, J.-M.** (2003). Behavioral, neurochemical, and
871 electrophysiological characterization of a genetic mouse model of depression. *Proc Natl*
872 *Acad Sci USA* **100**, 6227–6232.

873 **Yu, Y., Wang, J., Khaled, W., Burke, S., Li, P., Chen, X., Yang, W., Jenkins, N. A.,**
874 **Copeland, N. G., Zhang, S., et al.** (2012). Bcl11a is essential for lymphoid development
875 and negatively regulates p53. *J Exp Med* **209**, 2467–2483.

876

877

878 **Figure Legends**

879 **Figure 1** *Bcl11a* is expressed in a subset of SN, VTA, RRF and CLi neurons. **(A-F')**
880 Immunofluorescent staining for TH and RNAscope for *Bcl11a* mRNA on P0 **(A-C')** and P30
881 **(D-F')** coronal sections. **(B,C)** Higher magnification of the boxed areas in A; **(E,F)** Higher
882 magnification of the boxed areas in D. **(B',C',E',F')** Higher magnification of the boxed area in
883 B,C,E,F. Note that SN-mDA neurons express lower levels of *Bcl11a* mRNA than VTA-mDA
884 neurons as evident by the density of fluorescent dots within the TH positive cell. **(G-L)**
885 Immunofluorescent staining for BCL11A and TH on P0 **(G-I)** and P30 **(J-L)** coronal sections.
886 **(H,I)** Higher magnification of the boxed area in G; **(K,L)** higher magnification of the boxed area
887 in J. The immunostaining for BCL11A failed to detect the protein in the SN at P30. **(M-R)**
888 Immunofluorescent staining for β -gal and TH on coronal sections of P0 **(M-O)** and P30 **(P-R)**
889 *Bcl11a-lacZ* mice. **(N,O)** Higher magnification of the boxed area in M; **(Q,R)** higher
890 magnification of the boxed area in P. Filled arrowheads indicate cells that are double positive
891 for TH and BCL11A/*Bcl11a*/ β -gal, empty arrowheads indicate cells that express
892 BCL11A/*Bcl11a*/ β -gal but are TH negative. **(S,T)** Percentage of TH-expressing neurons that
893 are positive for β -gal in *Bcl11a-lacZ* mice at P0 **(S; n=5 mice)** and P30 **(T; n=6 mice)**. Error
894 bars indicate mean +/- SEM. Scale bars: 200 μ m **(A,G-G',M-M')**, 500 μ m **(D,J-J',P-P')**, 25 μ m
895 **(B,C,E,E',F,F',H,I,K,L,N,O,Q,R)**, 10 μ m **(B',C')**.

896 **Figure 2** *Bcl11a*-expressing mDA neurons are a distinct mDA subset that does not correspond
897 to previously defined mDA neuronal subpopulations. **(A,B)** Triple immunostaining for TH
898 (blue), β -gal (red) and CALB1 (green) **(A)** or SOX6 (green) **(B)** in P0 *Bcl11a-lacZ* mice. **(A'-**
899 **A''',B'-B'''')** Higher magnification of the boxed area in A,B. **(C,D)** Triple immunostaining for TH
900 (blue), β -gal (red) and CALB1 (green) **(C)** or ALDH1A1 (green) **(D)** in P30 *Bcl11a-lacZ* mice.
901 **(C'-C''',D'-D''')** Higher magnification of the boxed area in C, D. Filled arrowheads indicate TH⁺
902 β -gal⁺ cells expressing the respective subset markers, unfilled arrowheads indicate TH⁺ β -gal⁺
903 cells negative for the respective subset marker. **(E-H)** Percentage of TH⁺ β -gal⁺ neurons that
904 are positive for the respective subset marker at P0 **(E,F n=5 mice)** and at P30 **(G,H, n=3 mice)**.
905 Scale bars: 200 μ m **(A,B)**, 500 μ m **(C,D)**, 25 μ m **(A'-A''',B'-B''',C'-C''',D'-D''')**.

906 **Figure 3** *Bcl11a*-expressing mDA neurons contribute projections to subcircuits of the
907 dopaminergic system. **(A)** Schematic showing the intersectional fate mapping strategy to label
908 *Bcl11a*-expressing mDA neurons and their projections. A *Bcl11a*^{CreER} mouse line was used in
909 combination with *Dat*^{TA} mice and an intersectional reporter mouse line (*Ai82D*). EGFP is
910 expressed only in cells positive for both CreER and tTa and only after CreER is activated by
911 administration of Tamoxifen. **(B)** Schematic showing the experimental timeline. **(C-F')**
912 Immunostaining for TH and EGFP in rostrocaudal levels of the striatal region showing that
913 *Bcl11a*-expressing mDA neurons innervate specific subdomains of dopaminergic projection

914 targets including the olfactory tubercle (OT, **C-E''**), the Nucleus Accumbens (NAc)shell (**C-D''**)
915 the dorsomedial striatum (DMS, **C-E''**) and the tail of the striatum (TS) (**F-F''**). Note that the
916 most ventral part of the TS shows the highest density of EGFP positive fibers (**F-F''**). Mice
917 analysed (n= 8 mice). Scale bar: 500 μ m (**C-F''**).

918 **Figure 4** *Bcl11a*-expressing mDA neurons of the VTA and SN show a specific innervation
919 pattern of forebrain targets. **(A)** Schematic showing injection of rAAV with an intersectional
920 reporter construct into the SN or VTA of *Bcl11a*^{CreER/+}; *Dat*^{tTA/+} mice. **(B)** Schematic showing the
921 experimental timeline. Tamoxifen administration 8 days after the virus injection results in
922 expression of the reporter protein (EGFP) in *Bcl11a*-expressing mDA neurons. **(C-F')**
923 Immunostaining for TH and EGFP in the SN (**C-D'**) and the striatum (**E-F'**). **(E-F')** EGFP⁺ fibers
924 in the TS. **(F,F')** Higher magnification of the boxed area in E. **(G-J)** Immunostaining for TH and
925 the reporter protein in the VTA (**G-H'**) and NAc and OT (**I-J**). Yellow arrows indicate TH⁺
926 reporter protein⁺ neurons. Mice analyzed (n=2 mice for SN injections, n=3 mice for VTA
927 injections). Scale bars: 500 μ m (**C,G,I**), 250 μ m (**E,F,J**), 25 μ m (**D,D',H,H'**).

928 **Figure 5** BCL11A is necessary for establishing the correct rostro-caudal position of *Bcl11a*-
929 expressing mDA neurons in the VTA and CLi. **(A)** Conditional gene inactivation of *Bcl11a* in
930 mDA neurons. *Bcl11a* cko mice were generated by crossing *Dat*^{RES-Cre} mice either with
931 *Bcl11a*^{fl/fl} mice (Genotype: *Dat*^{RES-Cre/+}, *Bcl11a*^{fl/fl}, termed *Bcl11a* cko^{fl}) or with
932 *Bcl11a*^{fl/flacZ} mice (Genotype: *Dat*^{RES-Cre/+}, *Bcl11a*^{fl/flacZ}, termed: *Bcl11a* cko^{lacZ}). **(B)** In *Bcl11a*
933 cko^{lacZ} mice, β -gal is a marker for Bcl11a-mDA neurons even after BCL11A expression is
934 abolished. **(C-D'')** Immunofluorescent staining for β -gal and TH on coronal sections of P0 (**C-**
935 **C''**) and P30 (**D-D''**) *Bcl11a* cko^{lacZ} mice. **(E-F)** Quantification of TH⁺ β -gal⁺ neurons, expressed
936 as percentage of control (*Bcl11a-lacZ* mice, control values are shown in Figure 1S,T). **(E)**
937 There is no significant difference in the percentage of mDA neurons expressing β -gal in *Bcl11a*
938 cko^{lacZ} mice (n=5) compared to *Bcl11a-lacZ* mice (n=5) at P0, indicating that Bcl11a-mDA
939 neurons are established even in absence of BCL11A. **(F)** At P30, Bcl11a-mDA neurons are
940 significantly decreased in the VTA and significantly increased in the CLi of *Bcl11a* cko^{lacZ} mice
941 (n=6) as compared to *Bcl11a-lacZ* (n=6) indicating a shift in the distribution of Bcl11a-mDA
942 neurons in absence of BCL11A (**F-G**). Significance was determined by Welch's t-test. *p <
943 0.05, ** p < 0.01. Error bars indicate mean +/- SEM. Scale bars: 200 μ m (**C-C''**) and 500 μ m
944 (**D-D''**).

945

946 **Figure 6** Expression of mDA subset markers in *Bcl11a*-expressing mDA neurons is not altered
947 in absence of BCL11A. **(A,B)** Triple immunostaining for TH (blue), β -gal (red) and CALB1
948 (green) (**A**) or SOX6 (green) (**B**) in P0 *Bcl11a* cko^{lacZ} mice. **(C,D)** Triple immunostaining for TH
949 (blue), β -gal (red) and CALB1 (green) (**C**) or ALDH1A1 (green) (**D**) in P30 *Bcl11a* cko^{lacZ} mice.

950 **(E,F)** Quantification of triple positive neurons, expressed as percentage of control (*Bcl11a-lacZ*
951 mice, control values are shown in Figure 2E-H). There is no significant difference in the
952 percentage of TH⁺ β-gal⁺ mDA neurons expressing the analyzed subset markers in *Bcl11a*
953 cko^{lacZ} mice compared to *Bcl11a-lacZ* mice at P0 or P30. N=5 cko and n=5 control mice were
954 analyzed at P0, n=3 cko and n= 3 control mice were analyzed at P30. Significance was
955 determined by Welch's t-test. Error bars indicate mean +/- SEM. Scale bars: 200 μm **(A,B)** ;
956 500 μm **(E-F)**.

957 **Figure 7** Inactivation of *Bcl11a* in mDA neurons results in specific defects in motor behavior.
958 **(A-C)** Open field test (5-minute time window) revealed no significant difference between
959 *Bcl11a* cko^{flx} (cko) and control mice (ctr) in distance moved **(A)**, in time spent in the center or
960 border area **(B)** or the frequency of entering the center **(C)**. **(D)** Mice had to balance on a beam
961 towards a food reward. The test was performed on 5 consecutive days. There was no
962 significant difference between *Bcl11a* cko and control mice in their ability to cross a balance
963 beam in any of the trials. **(E)** The rotarod test revealed that *Bcl11a* cko mice were not able to
964 learn the motor task, since unlike in control mice the time to fall did not increase in *Bcl11a* cko
965 mice within the 5 days of the trial period. *Bcl11a* cko (n= 12) and control mice (n= 13).
966 Significance was determined by two-way ANOVA. ***p < 0.001, **** p < 0.0001. p=7.226e-10
967 for genotype, p=0.0002017 for days and p=0.0076354 for interdependence between days and
968 genotypes. Error bars indicate mean +/- SEM.

969 **Figure 8** *Bcl11a* cko mice show increased neuronal vulnerability to α-synuclein toxicity. **(A)**
970 Mice received a unilateral intraparenchymal injection of adeno-associated viral vectors (AAVs)
971 carrying the DNA for human α-synuclein (hα-syn) into the SNc. Animals were sacrificed 8
972 weeks after this treatment. **(B)** Midbrain coronal sections comprising the SNc (delineated with
973 dotted lines at low magnification) were immunostained with anti-human α-synuclein.
974 Representative images from a control and a *Bcl11a* cko animal show neuronal expression of
975 the transduced protein at low magnification (left panels). The right panels show a higher
976 magnification of the boxed areas. **(C)** Midbrain sections were immunostained with anti-TH and
977 counterstained with cresyl violet. Representative images from a control and a *Bcl11a* cko
978 animal show TH-positive nigral neurons on right side of the brain lesioned with hα-syn-AAVs
979 and on the contralateral intact side. **(D,E)** TH-immunoreactive (D) and Nissl-stained (E)
980 neurons were counted stereologically in the intact (left) and lesioned (right) SNc of control
981 (n=5) and *Bcl11a* cko (n=5) mice. Intact side values from control and cko animals were pooled
982 together (dark gray bars). Light gray and empty bars show average values from the lesioned
983 side of control (ctr) and cko mice, respectively. **(F)** Midbrain sections from *Bcl11a-lacZ* control
984 (n=4) and *Bcl11a* cko^{lacZ} (n=4) mice were stained with anti-TH and anti-β-gal. Total neurons
985 (β-gal negative and β-gal positive TH cells), β-gal(-) neurons (TH cells devoid of β-gal

986 immunoreactivity) and β -gal(+) neurons (cells immunoreactive for both TH and β -gal) were
987 counted using confocal stereology. Counts made in the intact SNC showed no difference
988 between the two groups of animals. They were therefore pooled together (blue bars). Red and
989 yellow bars show average values from the lesioned side of *Bcl11a-lacZ* and *Bcl11a cko^{lacZ}*
990 mice, respectively. Significance was determined by one-way ANOVA followed by Tukey's *post*
991 *hoc* test for multiple comparisons. Error bars indicate mean +/- SEM. Scale bars: 100 μ m (low
992 magnification panels in **B**; **C**); 20 μ m (higher magnification panels in **B**).

993

994

995 **Supplemental Figure Legends**

996 **Supplemental Figure 1** *Bcl11a* is expressed in a subset of neurons in the SN, VTA, caudal
997 linear nucleus (CLi) and retrorubral field (RRF) of the adult mouse brain. **(A-E')**
998 Immunofluorescent staining for TH and β -gal on coronal sections at different rostrocaudal
999 levels of P30 *Bcl11a-lacZ* mice. *Bcl11a*-expressing mDA neurons are found throughout the
1000 VTA, except for the most medial regions **(A-D'')**. *Bcl11a*-expressing mDA neurons of the SN
1001 are mainly located in the medial SNc (rostral levels) and the dorsal tier of the SNc (more caudal
1002 sections) and the SNI **(A-D'')**. *Bcl11a*-expressing mDA neurons are also located in the CLi and
1003 RRF **(E-E'')**. Scale bar: 500 μ m **(A-E'')**.

1004 **Supplemental Figure 2** Overlap of BCL11A and β -gal expression in the ventral midbrain and
1005 cerebral cortex. **(A-B'')** Triple immunofluorescent staining for TH (blue), BCL11A (red) and β -
1006 gal (green) in the ventral midbrain of P0 **(A-A'')** and P30 **(B-B'')** *Bcl11a-lacZ* mice. **(A'-A''',**
1007 **B'-B'')** Higher magnification of the boxed area in A,B. **(C-D'')** Triple immunofluorescent
1008 staining for Hoechst (blue), BCL11A (red) and β -gal (green) in cerebral cortex of P0 **(C-C'')**
1009 and P30 **(D-D'')** *Bcl11a-lacZ* mice. **(C'-C''', D'-D'')** Higher magnification of the boxed area
1010 in C,D. Scale bars: 200 μ m **(A,C)**, 500 μ m **(B,D)** and 25 μ m **(A'-A''', B'-B''', C'-C''', D'-D'')**.

1011 **Supplemental Figure 3** BCL11A expression in the ventral midbrain starts at E12.5. **(A-E'')**
1012 Immunofluorescent staining for TH and BCL11A on E12.5 **(A-A'')**, E14.5 **(B-C'')** and E15.5 **(D-**
1013 **E'')** coronal sections. At E12.5, BCL11A is mainly expressed in differentiated neurons just
1014 below the mDA progenitor domain and in a few TH-expressing mDA neurons **(A-A'')**. At E14.5
1015 and E15.5, BCL11A expression is found in a larger subset of mDA neurons, both in the forming
1016 VTA and SN **(B-E'')**. **(C-C'', E-E'')** Higher magnification of the boxed area in B-B'', D-D''. Scale
1017 bar: 100 μ m **(A-E'')**.

1018 **Supplemental Figure 4** Distribution of recombined neurons in the ventral midbrain using the
1019 intersectional fate mapping approach. **(A)** Schematic showing the intersectional fate mapping
1020 strategy to label *Bcl11a*-expressing mDA neurons and their projections. **(B)** Schematic of a
1021 sagittal section through the adult mouse brain. Red lines indicate the rostrocaudal levels of the
1022 coronal sections shown in B-F''. **(C-G'')** Immunofluorescent staining for TH and EGFP.
1023 Recombined neurons positive for EGFP were found in the SN and VTA **(C-F'')** as well as in
1024 the CLi and RRF **(G-G'')**. Distribution of recombined cells is comparable to the distribution of
1025 β -gal positive cells in *Bcl11a-lacZ* mice (compare with Suppl. Figure 1). n= 8 mice. Scale bar:
1026 500 μ m **(B-F'')**.

1027 **Supplemental Figure 5** *Bcl11a*-expressing neurons of the VTA and SN show a specific
1028 innervation pattern of forebrain targets. **(A)** Schematic showing injection of rAAV:double floxed

1029 Channelrhodopsin2 (ChR2)-mCherry or rAAV:double floxed ChR2-EYFP into the SN or VTA
1030 of *Bcl11a*^{CreER/+} mice. **(B)** Schematic showing the experimental timeline. Tamoxifen
1031 administration 8 days after the virus injection leads to sparse expression of the reporter protein
1032 (mCherry or EYFP) in *Bcl11a*-expressing neurons. **(C-F')** Immunofluorescent staining for TH
1033 and mCherry in the SN **(C-D')** and the striatum **(E-F')**. **(E-F')** A cluster of mCherry⁺-fibers in the
1034 dorsomedial striatum (DMS). **(F-F')** Higher magnification of the boxed area in E. **(G-J)**
1035 Immunofluorescent staining for TH and EYFP in the VTA **(G-H')** and in the nucleus accumbens
1036 (NAc) and the olfactory tubercle (OT) **(I-J)**. **(J)** Higher magnification of the boxed area in I.
1037 Yellow arrows indicate TH⁺ reporter protein⁺ neurons, white arrows indicate TH⁻ reporter
1038 protein⁺ neurons **(D,H)**. n=7 mice for VTA injections, n=1 mouse for SN injection. Scale bars:
1039 500 µm **(C,E,I)**, 250 µm **(G)** and 25 µm **(F-F',J)**.

1040 **Supplemental Figure 6** BCL11A expression is absent in mDA neurons of *Bcl11a* cko mice.
1041 **(A)** Schematic showing conditional gene inactivation of *Bcl11a* in mDA neurons. Conditional
1042 knock-out mice were generated by crossing *Bcl11a*^{fl/fl} mice with *Dat1*^{lRES-Cre/+} mice (*Bcl11a*
1043 cko^{fl/fl}). **(B)** In *Bcl11a* cko^{fl/fl} mice, BCL11A expression is absent in mDA neurons. **(C-H'')**
1044 Immunofluorescent staining for BCL11A and TH on control **(C-D'')** and *Bcl11a* cko^{fl/fl} **(E-F'')**
1045 coronal sections of the adult brain. BCL11A expression is present in mDA neurons of control
1046 mice **(C-D'')**, **G**, yellow arrowheads), but it is absent in mDA neurons of *Bcl11a* cko^{fl/fl} mice **(E-**
1047 **F'')**. BCL11A is still expressed in non-dopaminergic neurons of the *Bcl11a* cko^{fl/fl} mice
1048 midbrain **(E-F'')**, **G**, white arrowheads). **(D-D'',F-F'')** Higher magnification of the boxed area in
1049 C,E. **(G-G'',H-H'')** Higher magnification of the boxed area in D,F. Yellow arrowheads indicate
1050 cells that are double positive for BCL11A and TH **(D,D'',G,G'')**, white arrowheads indicate cells
1051 that are BCL11A positive but TH negative **(F,F'',G,G'',H,H'')**. **(I-J)** Immunofluorescent staining
1052 for BCL11A and Hoechst in control **(I)** and *Bcl11a* cko^{fl/fl} **(J)** cerebral cortex. As expected,
1053 BCL11A is still expressed in cerebral cortex neurons of *Bcl11a* cko^{fl/fl} mice **(J)**. Scale bars: 500
1054 µm **(C-C'',E-E'')**, 250 µm **(D-D'',F-F'')** and 25 µm **(G-J)**.

1055 **Supplemental Figure 7** *Bcl11a* mRNA is no longer expressed in mDA neurons of *Bcl11a* cko
1056 mice. **(A-D)** Immunofluorescent staining for TH and RNAscope for *Bcl11a* on *Bcl11a* cko^{fl/fl}
1057 coronal sections of the adult brain. *Bcl11a* mRNA expression is still expressed in non-
1058 dopaminergic neurons of the *Bcl11a* cko^{fl/fl} mice VTA **(A-A'',C)** and SN **(B-B'',D)**. **(C-D)** Higher
1059 magnification of the boxed area in A,B. White arrowheads indicate cells that are expressing
1060 *Bcl11a* mRNA but that are TH negative. **(E,E')** Immunofluorescent staining for Hoechst and
1061 RNAscope for *Bcl11a* in *Bcl11a* cko^{fl/fl} cerebral cortex. As expected, cerebral cortex neurons
1062 of *Bcl11a* cko^{fl/fl} mice are still expressing *Bcl11a* mRNA. **(E')** Higher magnification of the boxed
1063 area in E. Scale bars: 250 µm **(A-B'')**, 200 µm **(E)** and 25 µm **(C,D,E')**.

1064 **Supplemental Figure 8** *Bcl11a* inactivation does affect rostro-caudal position of *Bcl11a*-mDA
1065 neurons but not the targeting of projections to areas innervated by *Bcl11a*-expressing mDA
1066 neurons. **(A)** Quantification combining three rostrocaudal VTA levels and the CLi. No
1067 significant difference in the percentage of β -gal positive TH neurons could be detected
1068 between *Bcl11a* cko^{lacZ} and *Bcl11a*-*lacZ* animals. Statistical significance was determined by
1069 unpaired t-test. **(B)** Percentage of β -gal positive TH neurons normalized to control three
1070 rostrocaudal VTA levels and the CLi (the CLi data are included for easier comparison the same
1071 values are also shown in Figure 5F). The percentage of β -gal positive TH neurons at the two
1072 rostral VTA levels (level 1 and 2) was significantly decreased in *Bcl11a* cko^{lacZ} compared to
1073 control mice, while there was a significant increase in the CLi. Statistical significance was
1074 determined by Welch's t-test. **(C)** In control animals, there is a systematic decrease in β -gal
1075 positive TH neurons from rostral-to-caudal (level1 to CLi), while there is a systematic increase
1076 in the percentage of β -gal positive TH neurons from rostral-to-caudal in *Bcl11a* cko^{lacZ} mice
1077 Statistical significance was determined by one-way ANOVA followed by a test for linear trend.
1078 **(D-G)** Immunofluorescent staining for TH on striatal sections of control **(D,F)** and *Bcl11a* cko^{lacZ}
1079 **(E,G)** mice. **(H-J)** Quantification of TH-positive fiber density in dorsal striatum (DS) **(H)**,
1080 olfactory tubercle (OT) **(I)** and ventral (v) and dorsal (d) TS **(J)** of control (n=3 mice) and *Bcl11a*
1081 cko mice (n=3 mice) shows no difference in the density of TH innervation between the two
1082 groups. Statistical significance was determined by unpaired t-test. Error bars indicate mean +/-
1083 SEM. Scale bar: 500 μ m **(A-D)**.

1084

1085 **Acknowledgment:**

1086 This work was supported by the German Research Foundation (BL 767/2-1, BL 767/3-1, BL
1087 767/4-1, 417960915 to Sandra Blaess), the SFB 1089 (to MT and Sandra Blaess), the Maria
1088 von Linden-Program (University of Bonn, to Sandra Blaess), and the Ministerium für Kultur und
1089 Wissenschaft des Landes Nordrhein-Westfalen (Rückkehrer-Programm to Sandra Blaess).
1090 Stefan Britsch has been supported by grants from the DFG (BR 2215/1-1, 2215/1-2). We thank
1091 Neal Copeland and Nancy Jenkins for agreeing to provide the *Bcl11a* floxed mouse line; the
1092 UKB microscopy core facility for support with imaging, the UKB virus core for providing AAVs;
1093 Milan Pabst and Heinz Beck for support with stereotactical injections, Alesja Dernst, Philipp
1094 Grunwald and Julian Wirtz for technical support and Norisa Meli for critical reading of the
1095 manuscript.

1096

1097 **Contributions to the paper:**

1098 **Marianna Tolve**, Data curation, Formal analysis, Validation, Investigation, Visualization,
1099 Methodology, Writing—original draft, Writing—review and editing; **Ayse Ulusoy**, Data

1100 curation, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—
1101 review and editing; **Khondker Ushna Sameen Islam**; Investigation, Visualization,
1102 Methodology, Writing—review and editing; **Gabriela O. Bodea**, Investigation, Visualization,
1103 Methodology, Writing—review and editing; **Ece Öztürk, Bianca Broske, Astrid Mentani,**
1104 **Antonia Wagener**, Investigation, Writing—review and editing; **Stefan Britsch, Pengtao Liu,**
1105 **Walid Khaled, Karen van Loo**, Resources, Writing—review and editing; **Stephan Baader,**
1106 Data curation, Formal analysis, Validation, Resources, Methodology, Writing—review and
1107 editing; **Donato A. Di Monte**, Data curation, Formal analysis, Validation, Resources, Writing—
1108 review and editing; **Sandra Blaess** Conceptualization, Resources, Data curation, Formal
1109 analysis, Supervision, Funding acquisition, Validation, Methodology, Project administration,
1110 Writing- original draft, Writing—review and editing

1111

1112

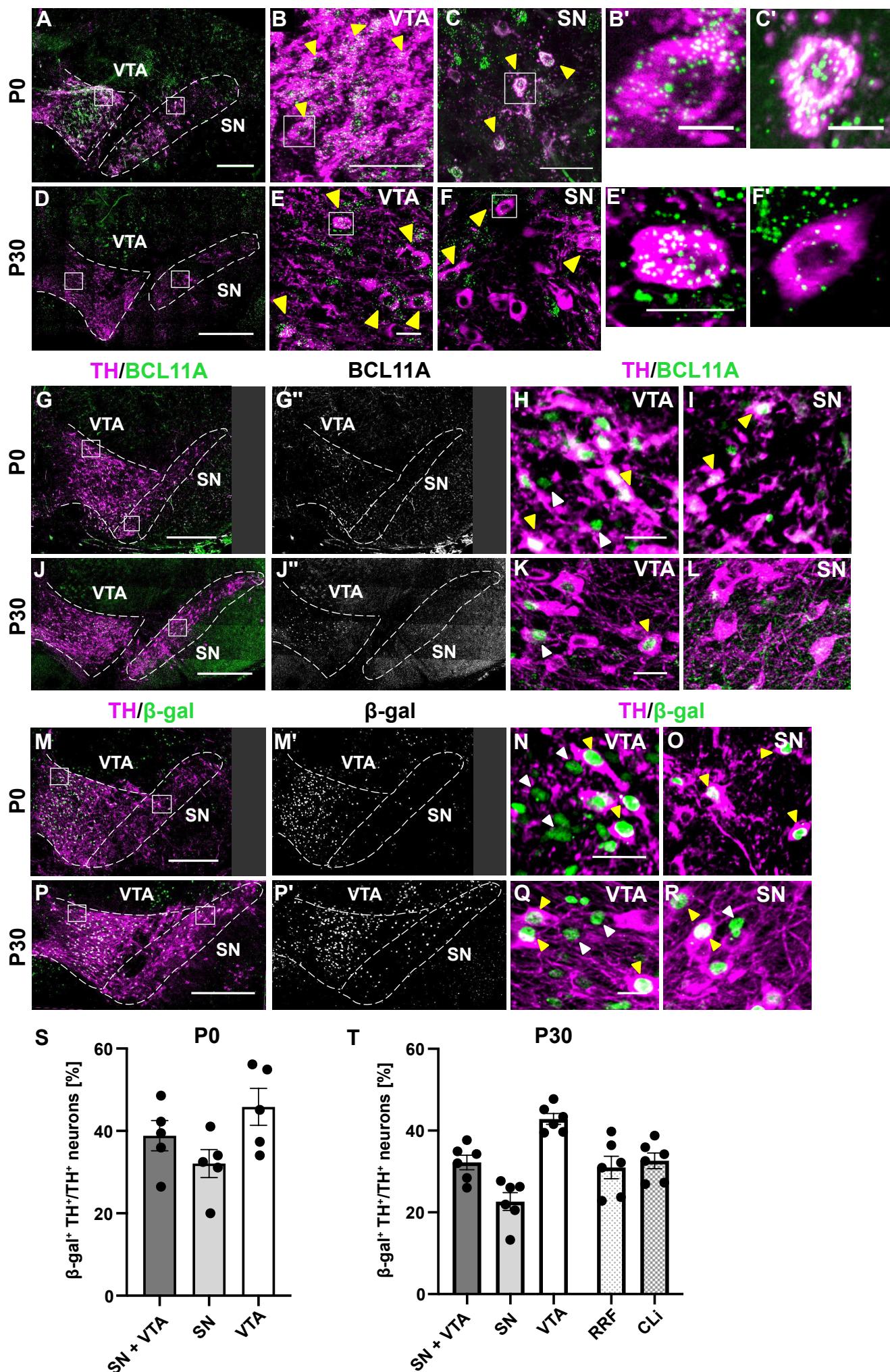
1113

1114

1115

1116

1117


1118

1119

1120

1121

1122

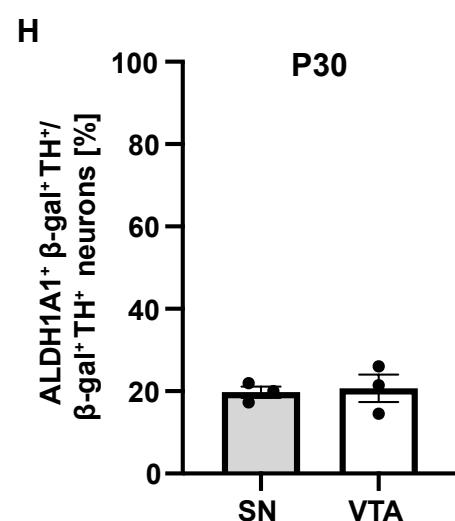
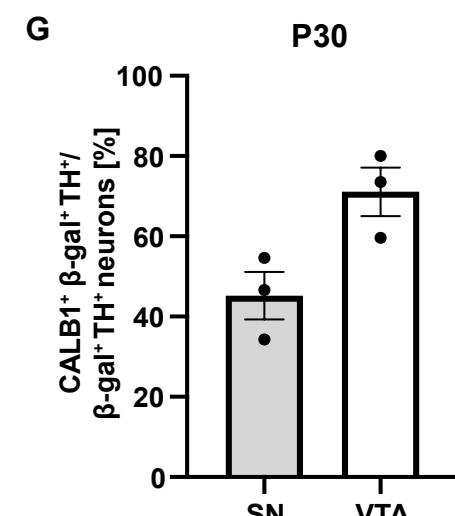
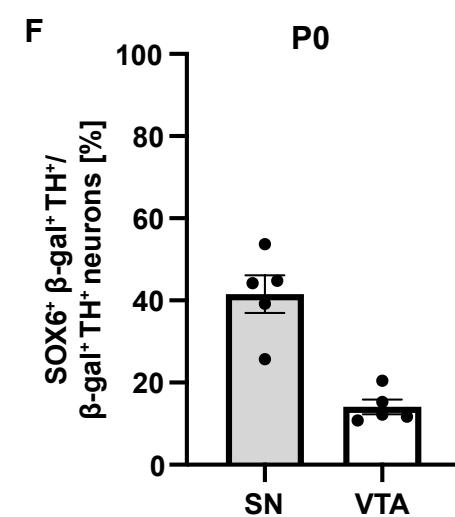
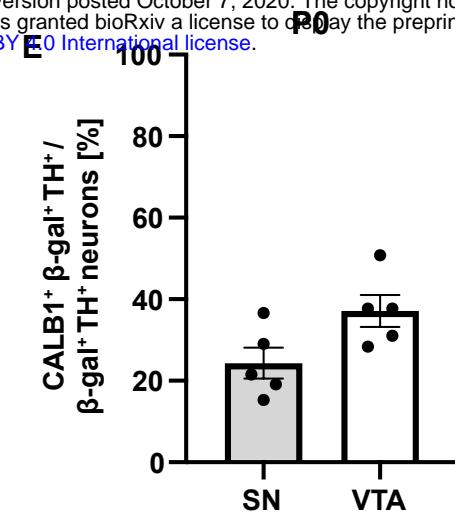
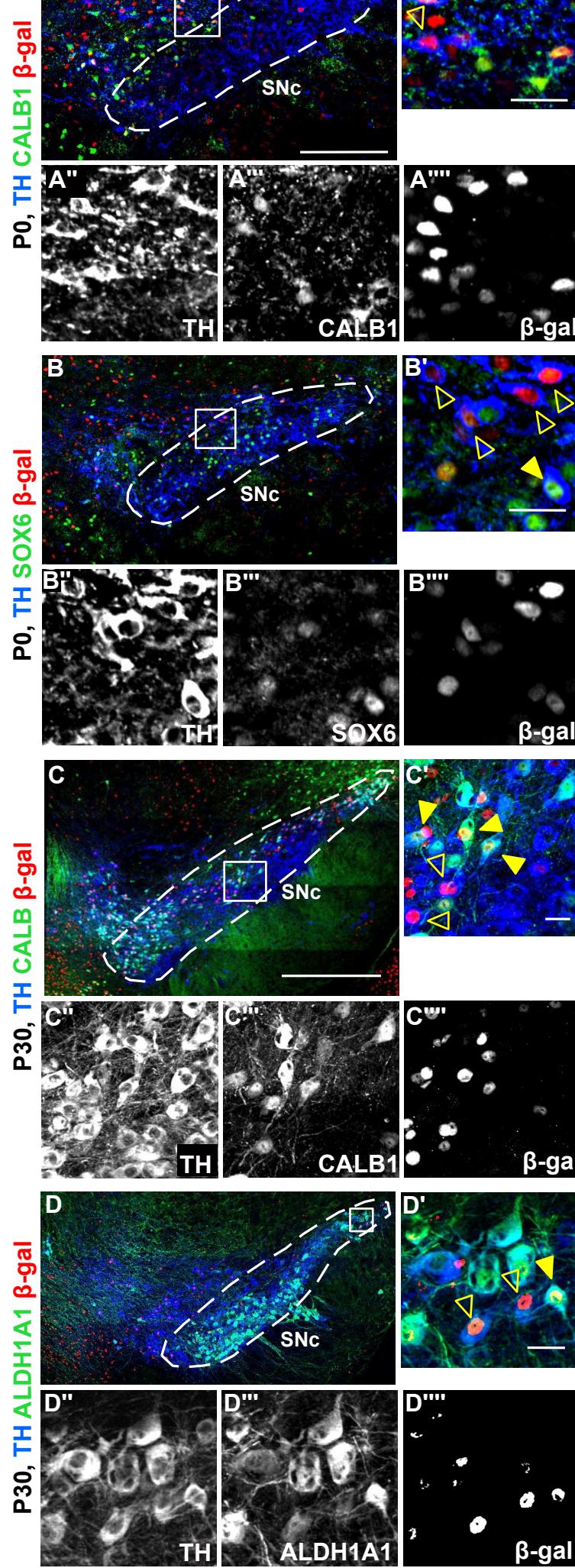






Figure 2

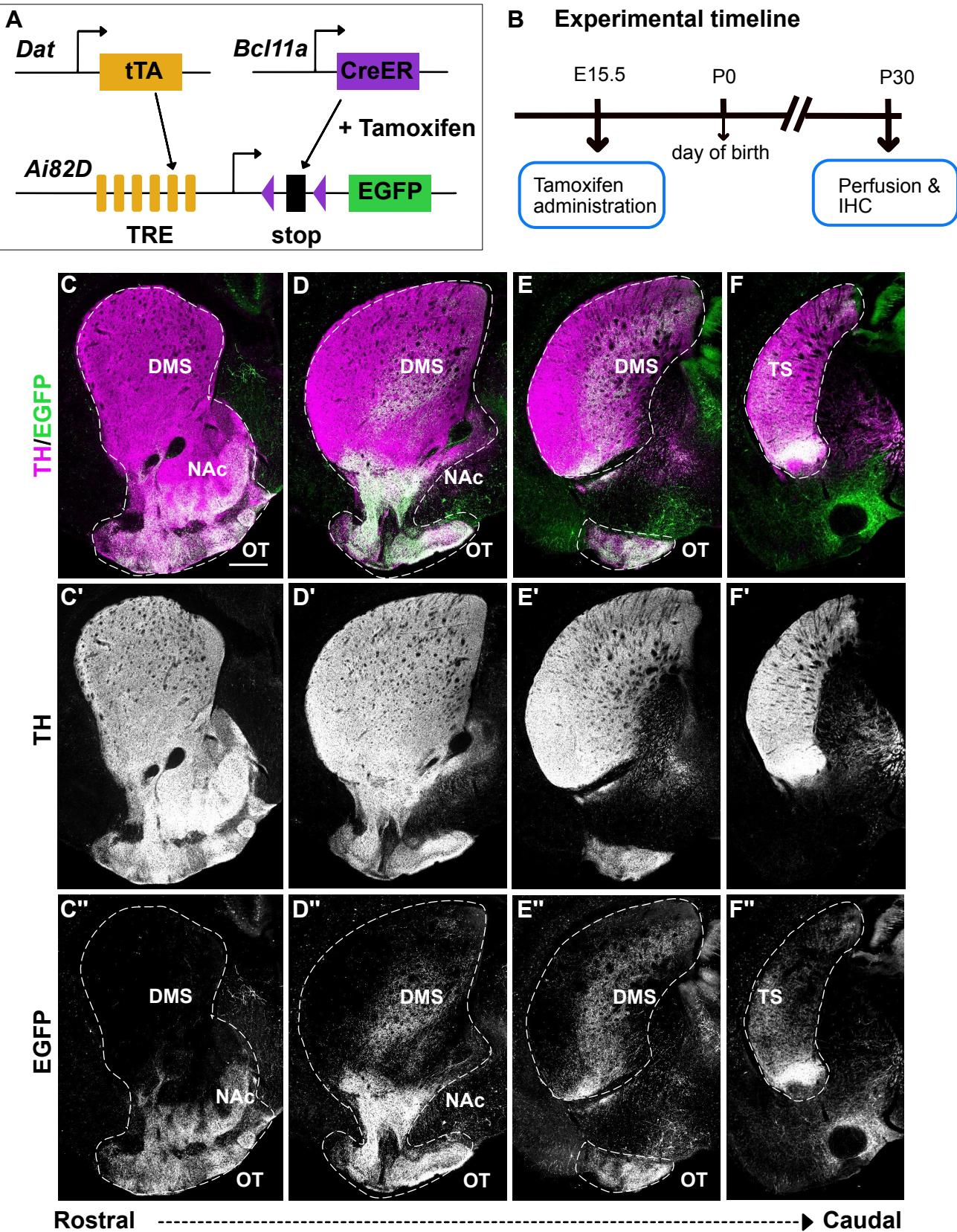


Figure 3

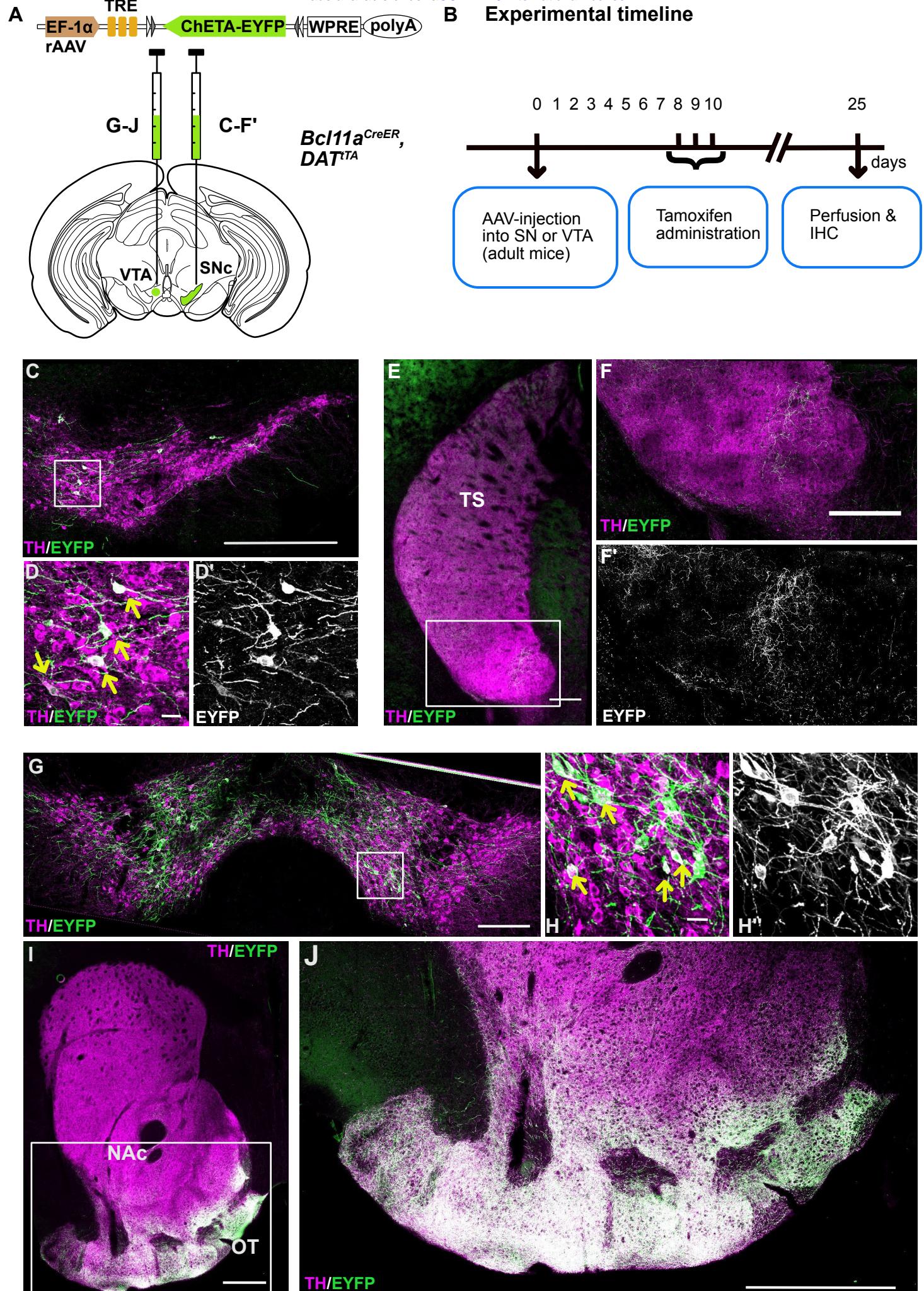


Figure 4

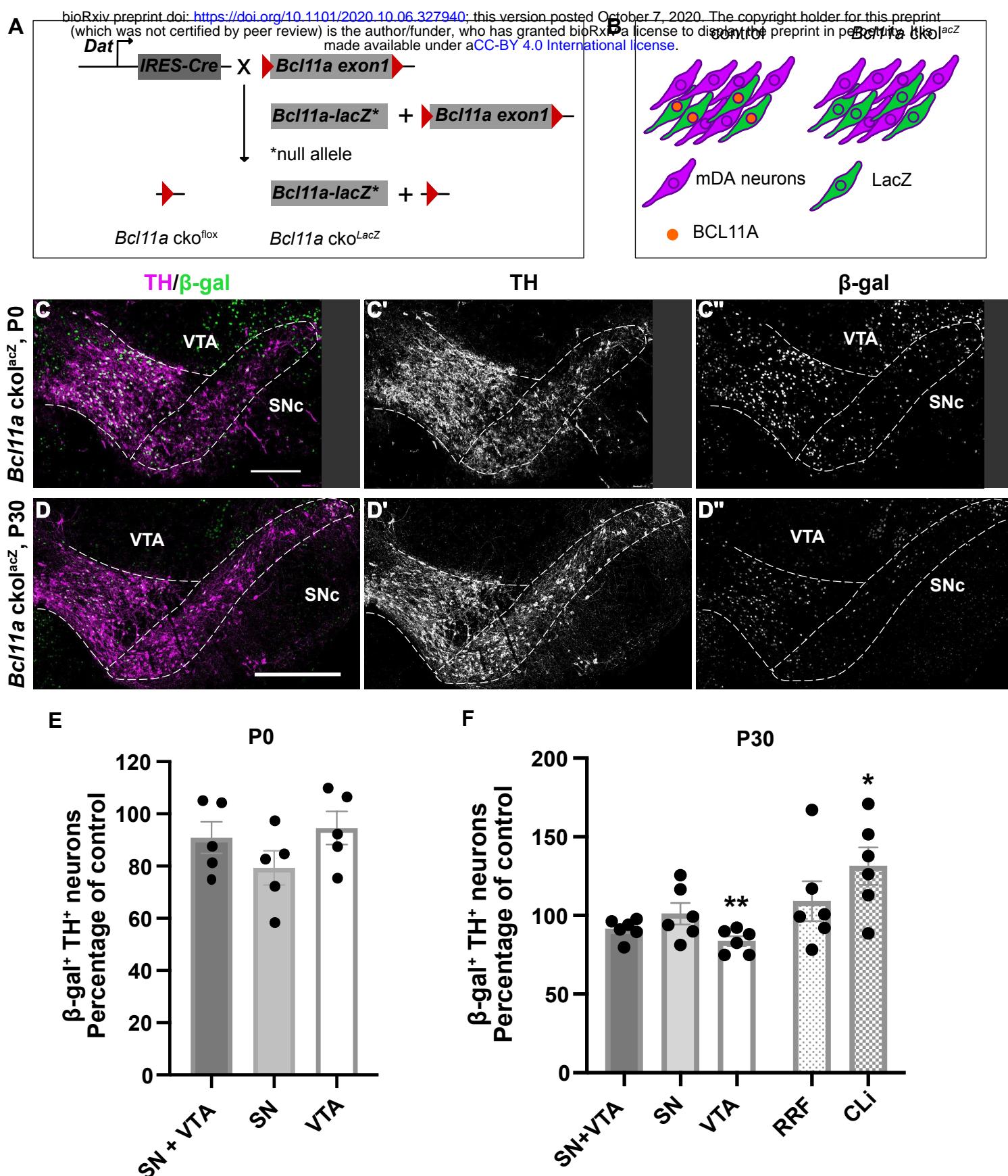


Figure 5

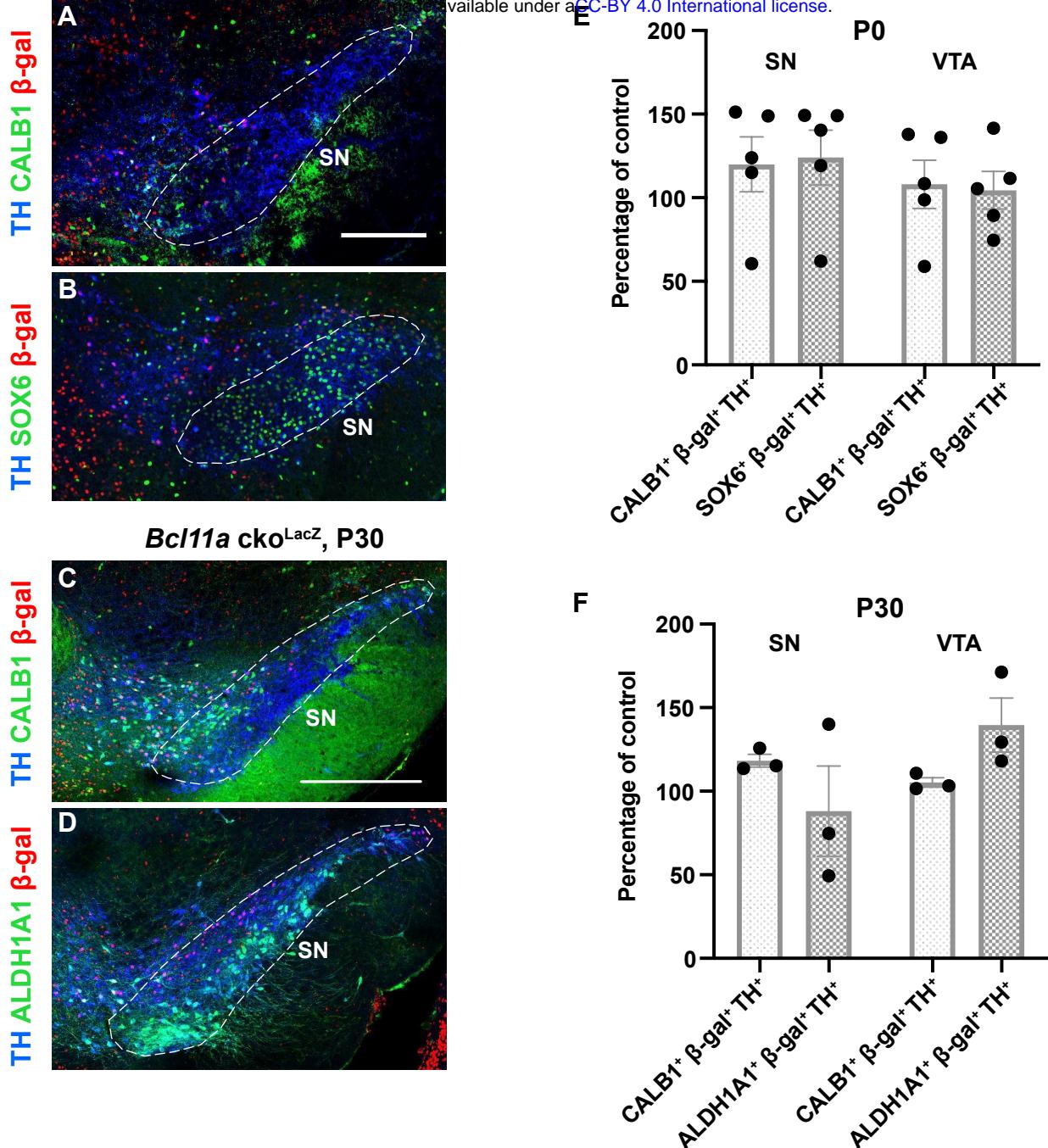


Figure 6

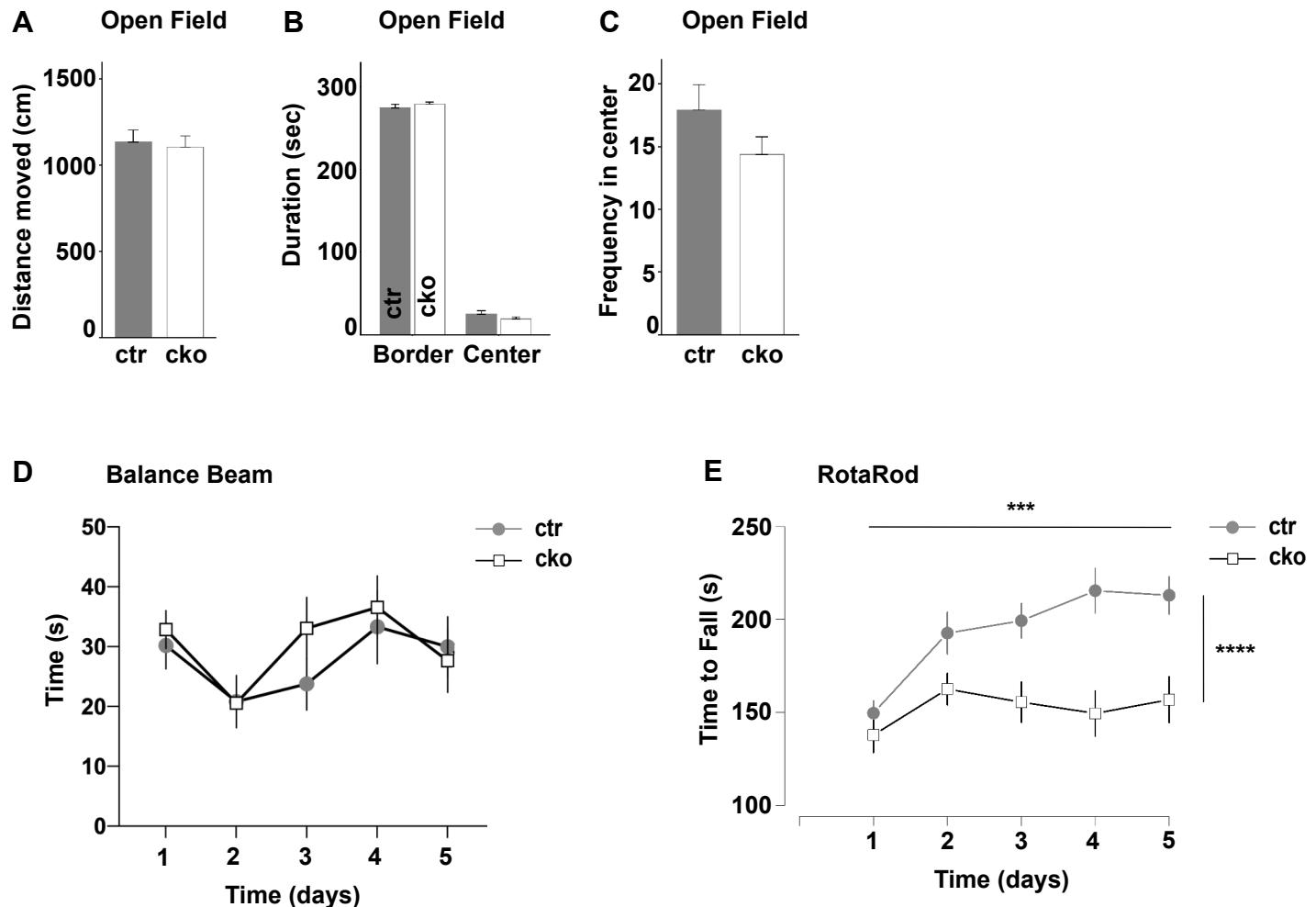


Figure 7

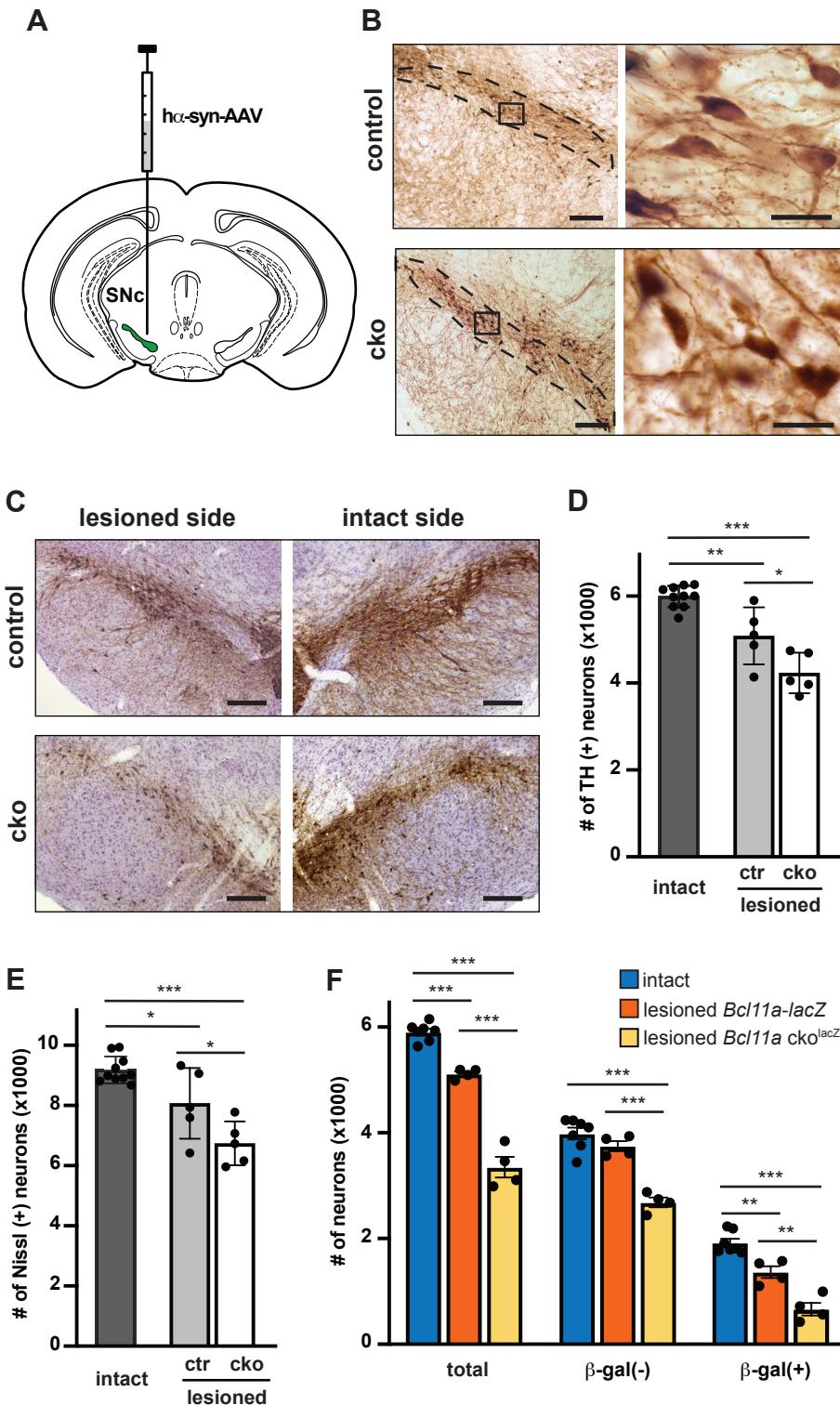
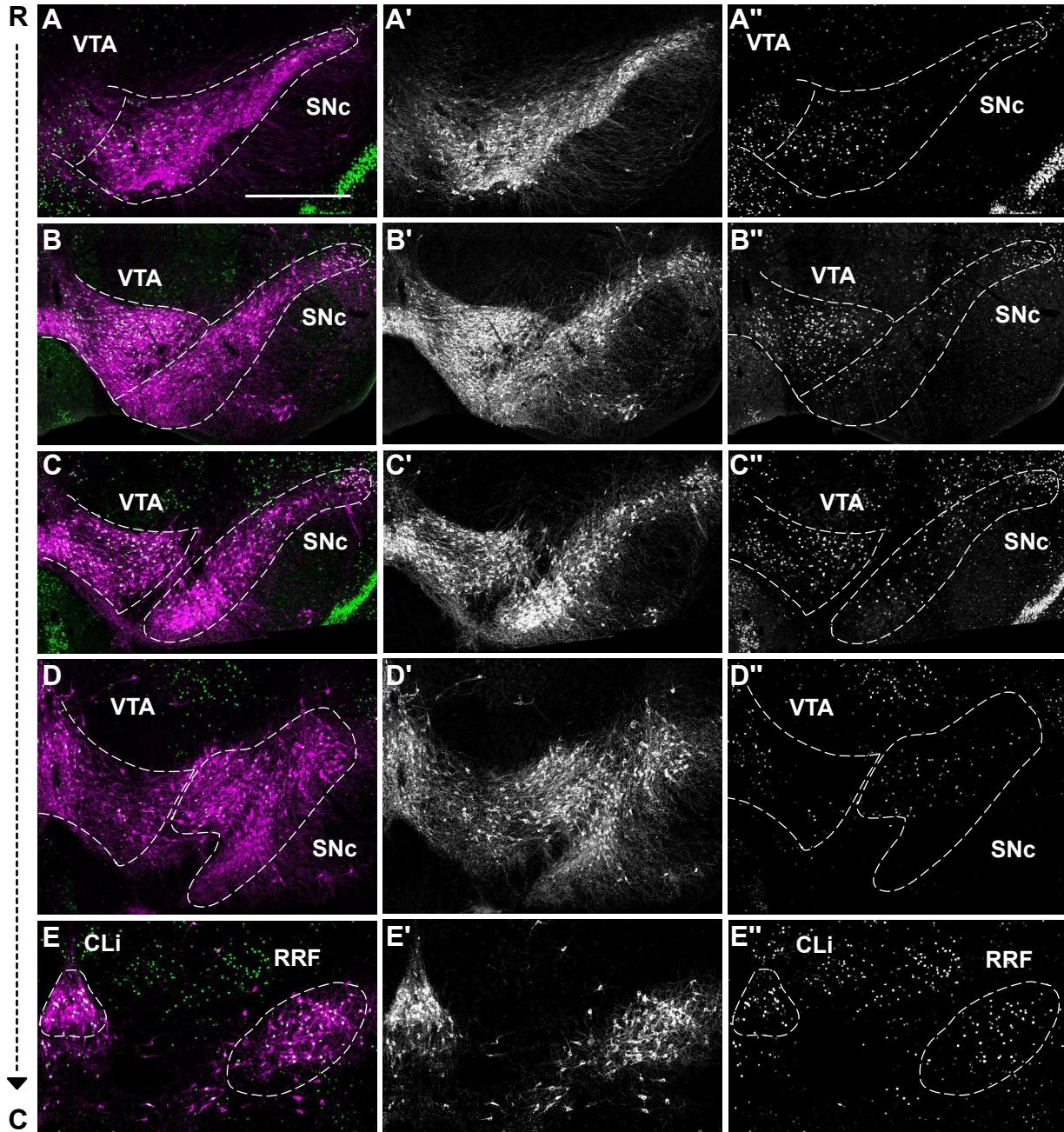
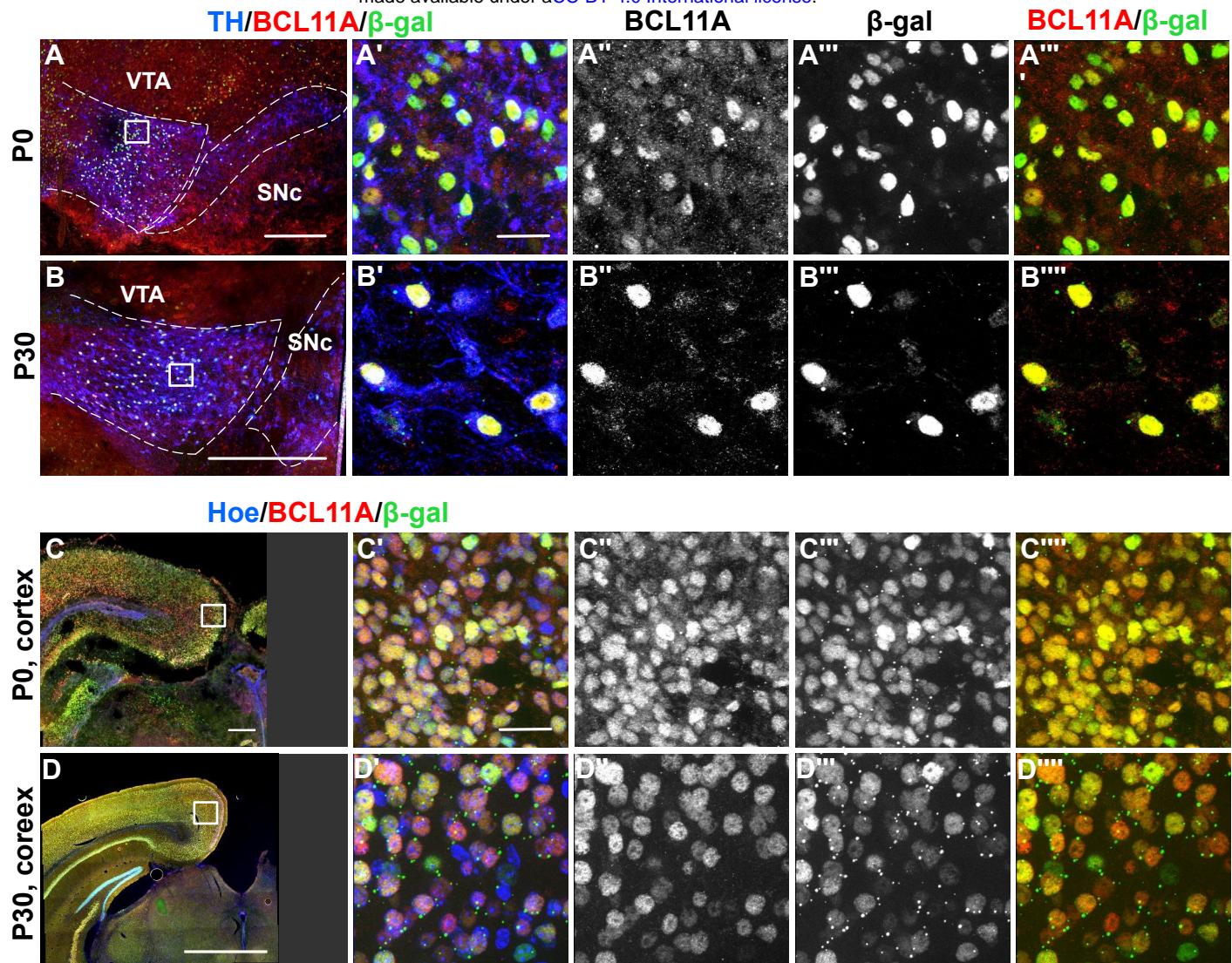
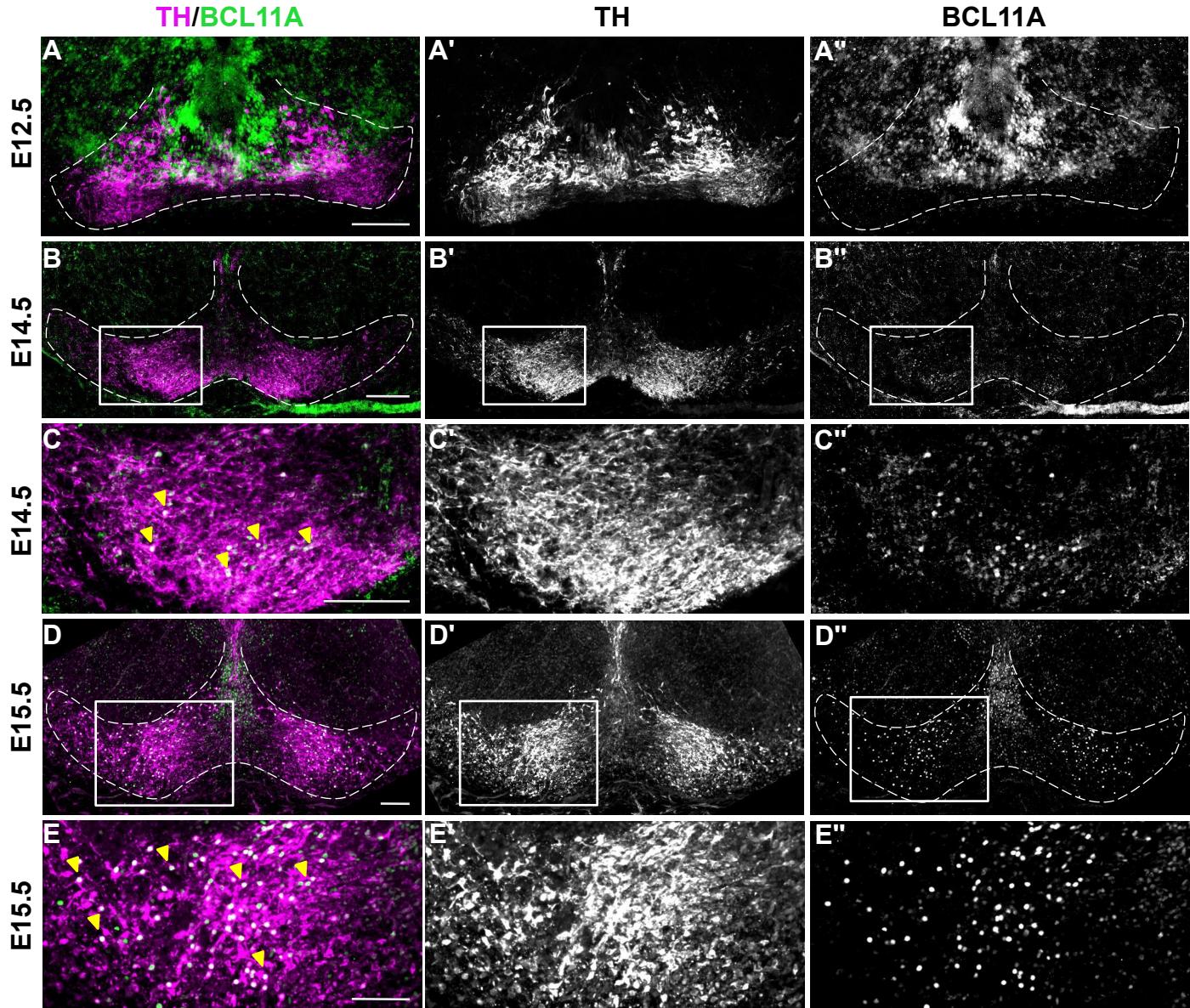
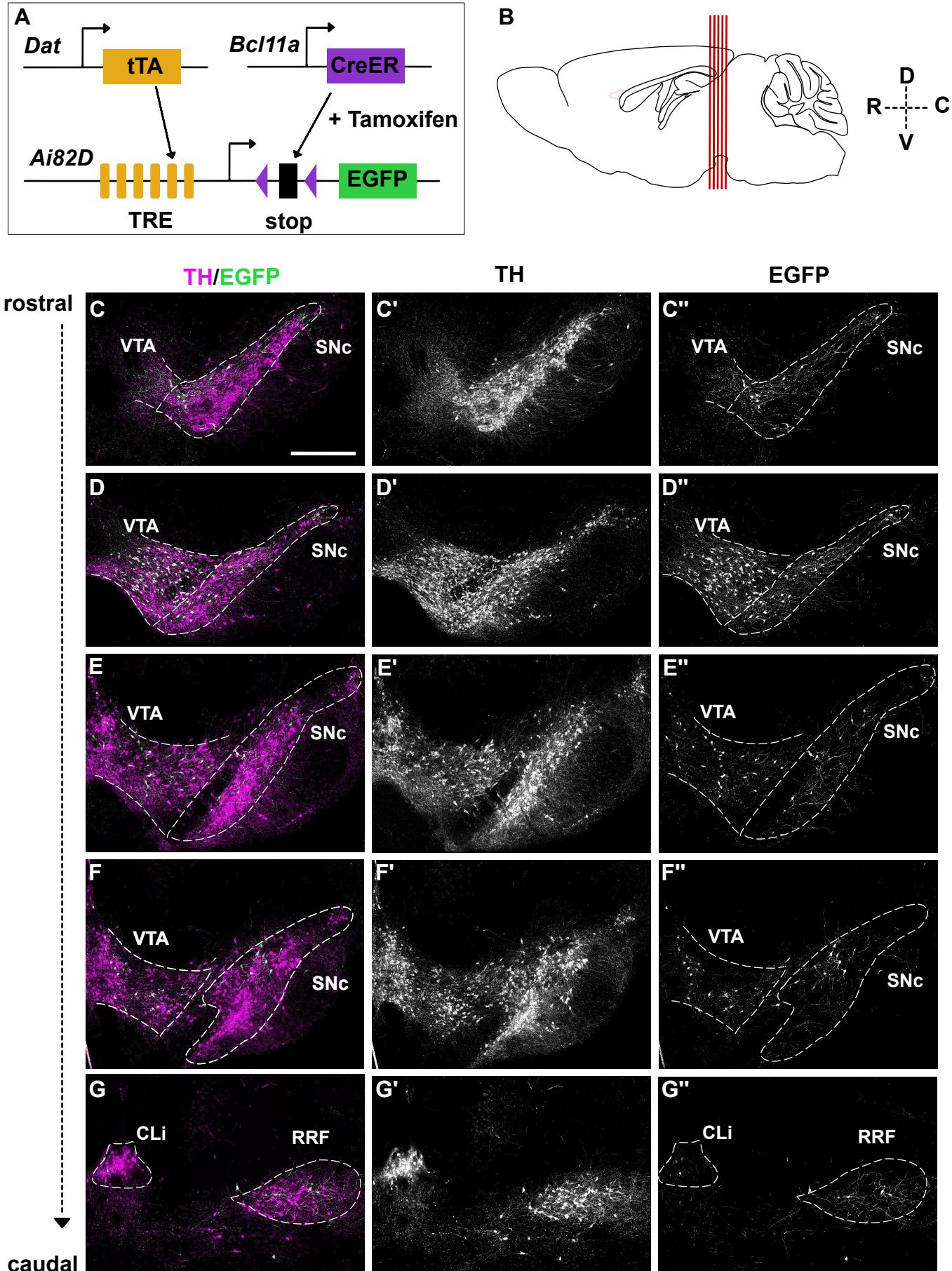



Figure 8

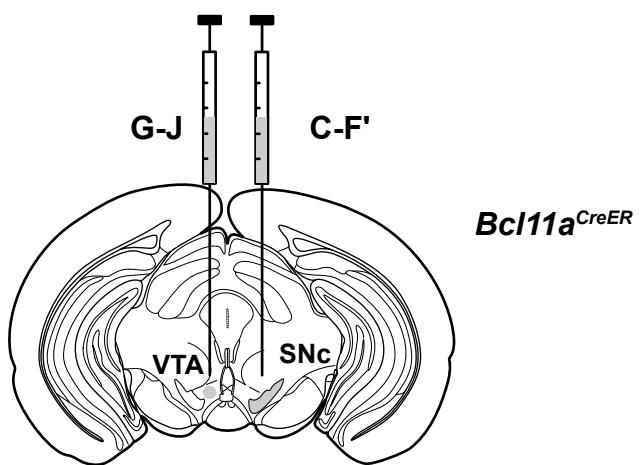

TH/β-gal

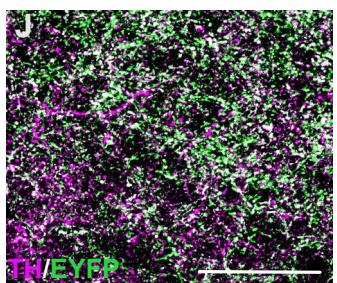
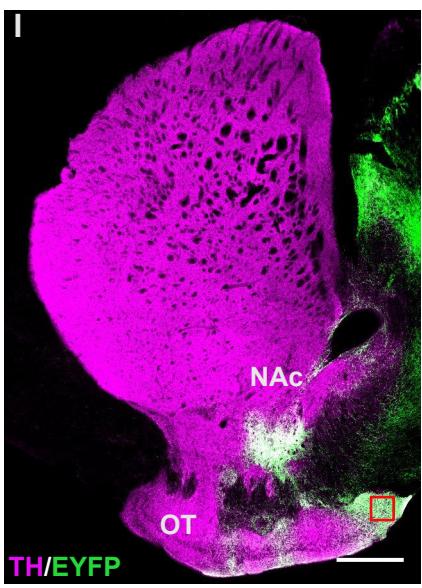
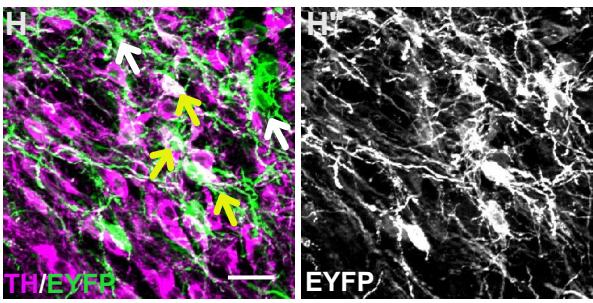
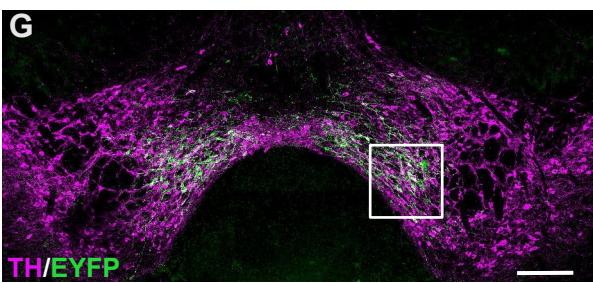
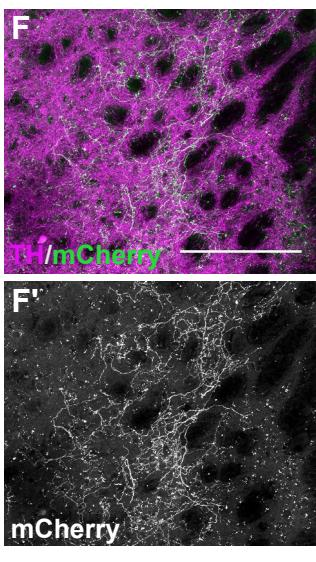
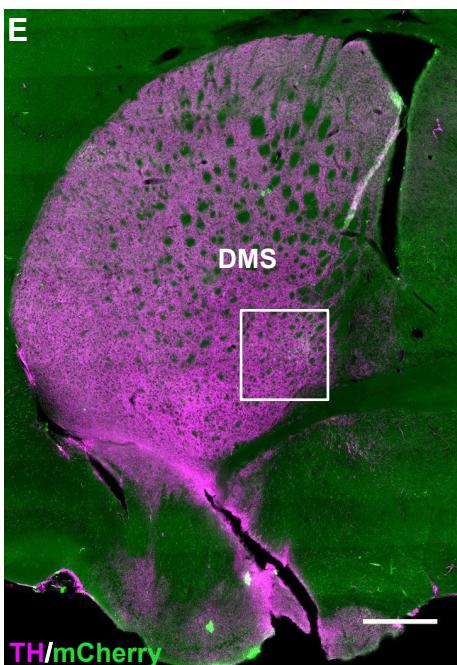
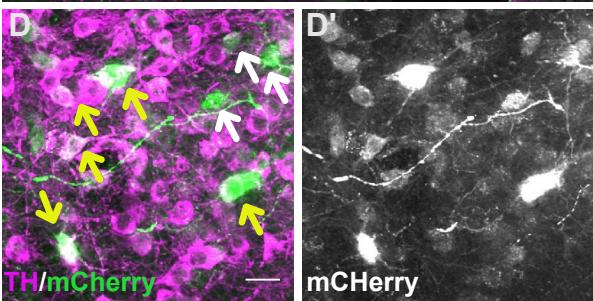
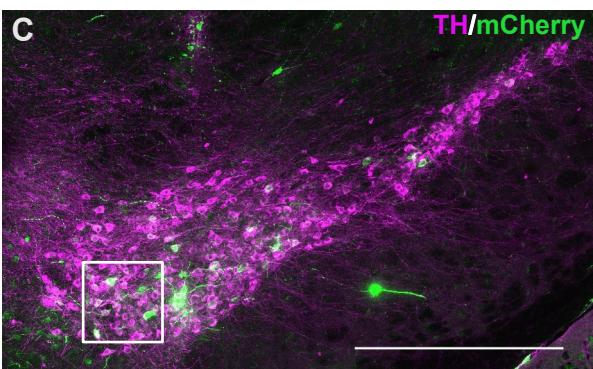
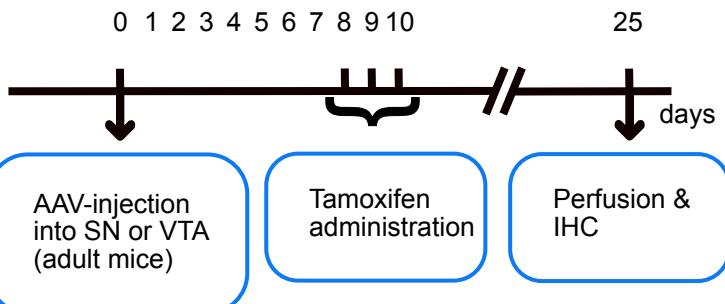
TH


β-gal

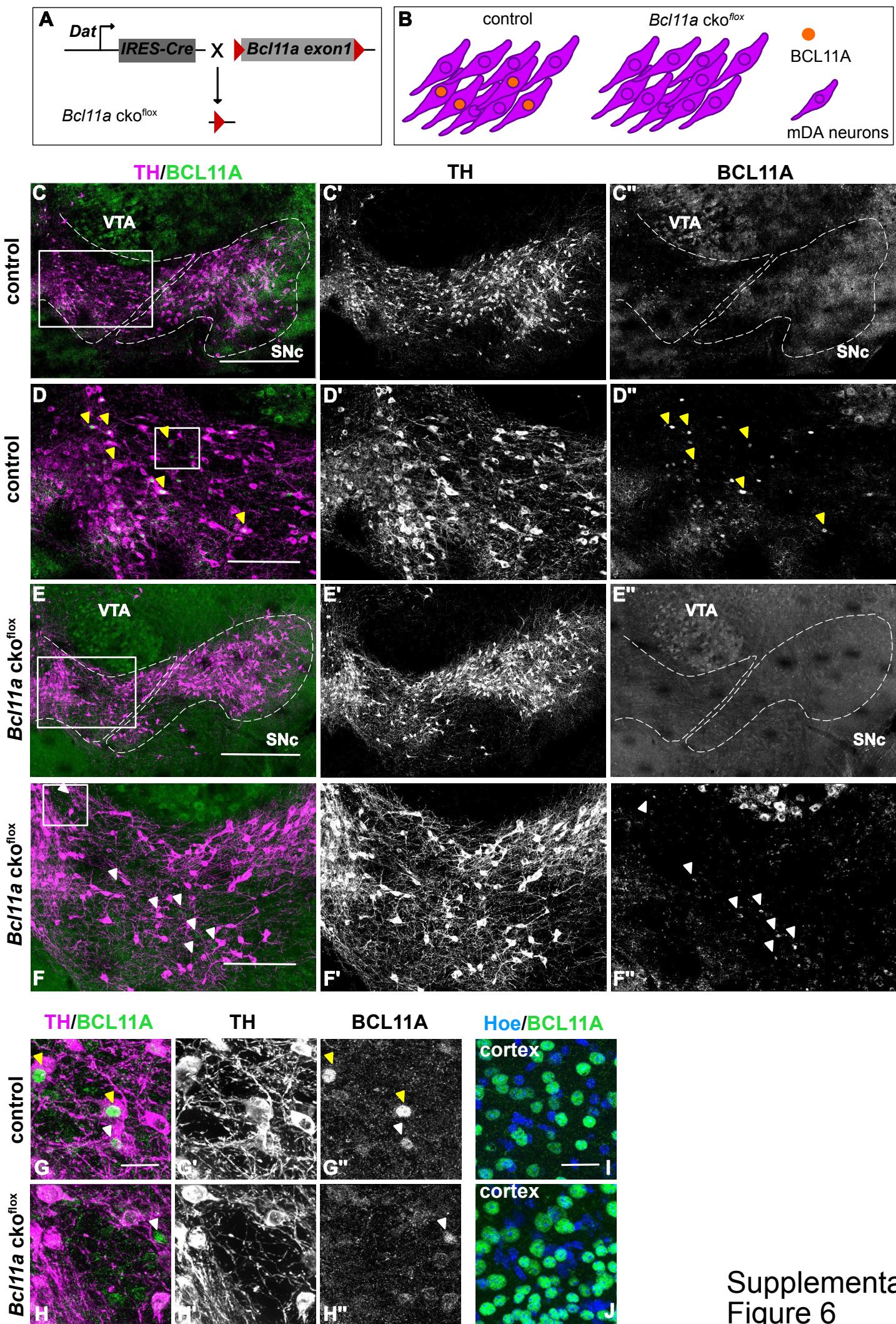

Supplemental Figure 1

Supplemental Figure 2


Supplemental Figure 3

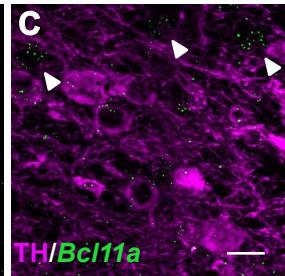
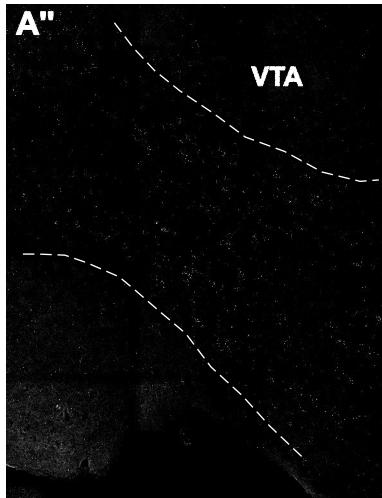
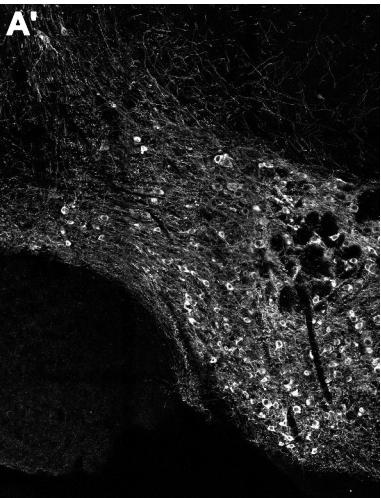
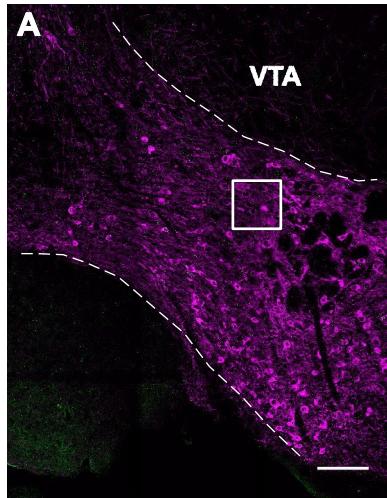









Supplemental Figure 4

rAAV

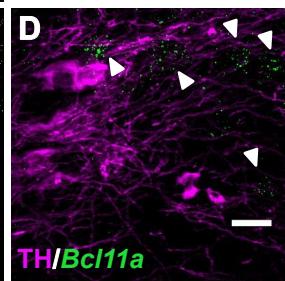

A rAAV-ChR2-mCherry or -EYFP-WPRE-polyA

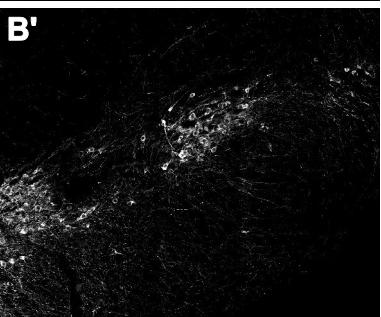
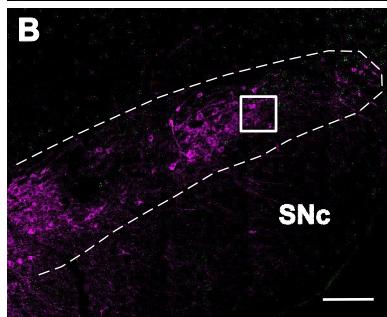
B Experimental timeline

Supplemental Figure 5

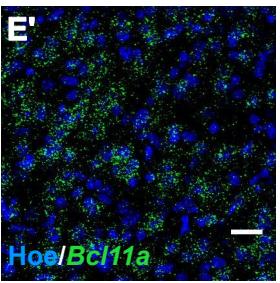
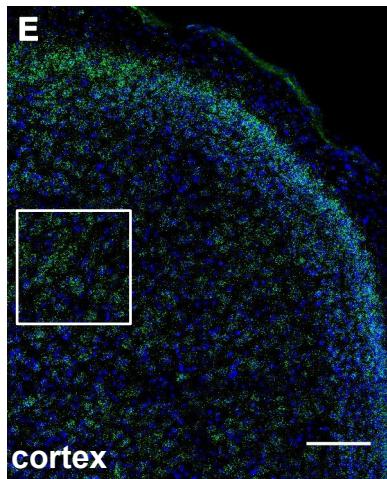
TH/Bcl11a



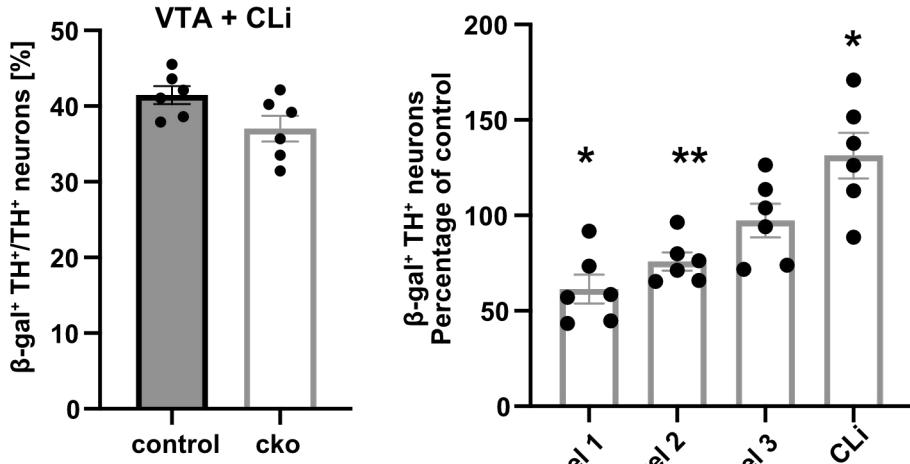


TH

Bcl11a

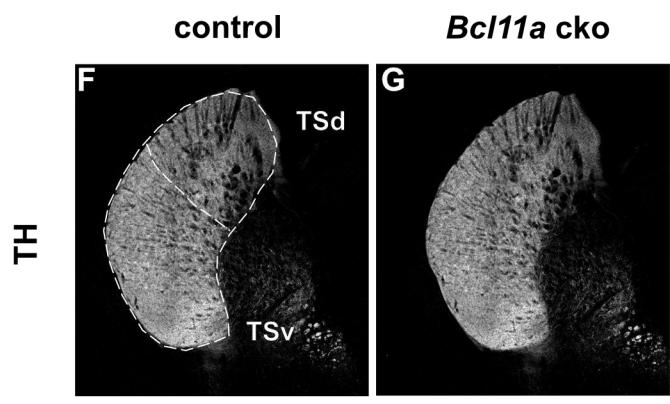
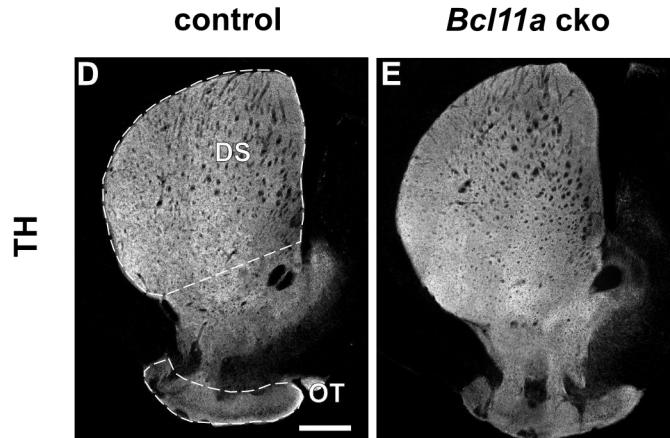
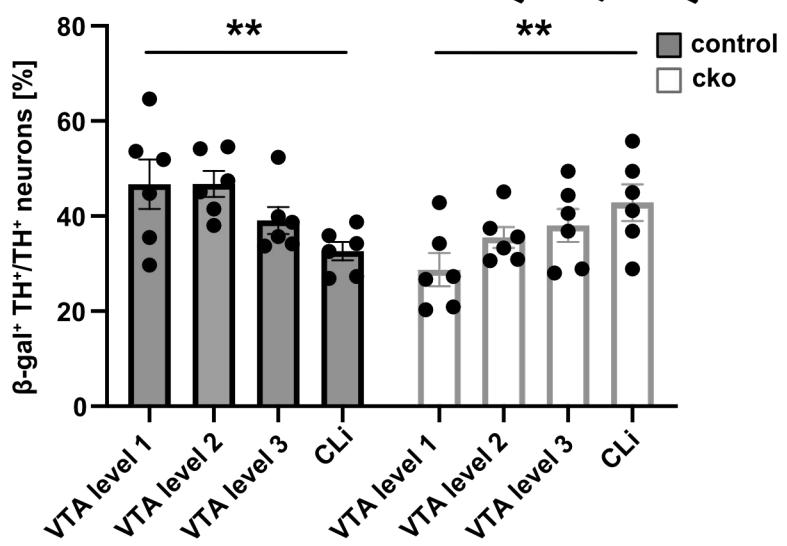
Bcl11a cko^{flx}

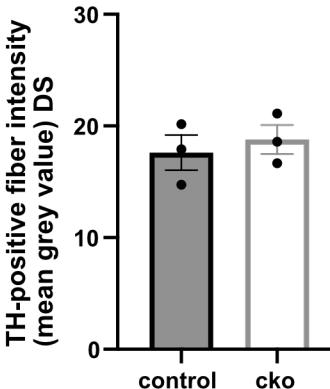
Bcl11a cko^{flx}

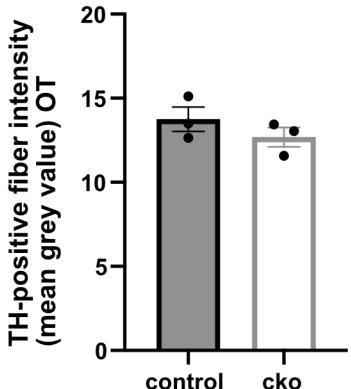

Hoe/Bcl11a

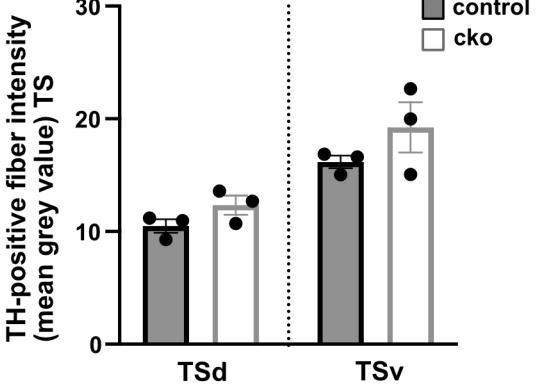
Bcl11a cko^{flx}

Supplemental Figure 7


A


C


H

I

J

