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Abstract

Single-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and
organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression
of specific marker genes. Since manual annotation is labor-intensive and does not scale to large
datasets, several methods for automated cell-type annotation have been proposed based on supervised
learning. However, these methods generally require feature extraction and batch alignment prior to
classification, and their performance may become unreliable in the presence of cell-types with very
similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated
cell-type identification based on neural networks that directly learns a low-dimensional representation
(latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs
a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the
previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset
becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells
that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies
cells more accurately than previously proposed methods while rejecting only a small proportion of cells.
Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat

integration. Availability: https://github.com/mohit1997/JIND.
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Introduction

Recent developments in single-cell RNA sequencing (scRNA-seq) technologies have made it possible to
profile the transcriptome of thousands of single cells in parallel. Massive amounts of single-cell RNA-seq
data can now be generated enabling data-driven studies of gene expression at the single-cell resolution.
Applications of this technology include the discovery of new cell-types'-2, identifying potential cellular
targets for diseases’ and the analysis of cell developmental stages through time*.

An important step in single-cell genomic data analysis is the characterization of cell-types in a large
mixture of cells. Traditionally, this is done by probing specific marker genes. Thus, a typical pipeline
starts with a clustering algorithm to group cells with similar transcriptomic profiles, followed by manual
labeling of the clusters based on appropriate biological markers identified in prior studies. However, the
variability in clustering methods, the lack of standardized ontologies of cell labels, and the reliance on
time-consuming manual annotations make this approach not scalable and creates a bottleneck in single-cell
genomics pipelines>®.

The gain in popularity of single-cell RNA sequencing has led to the creation of very large reference
datasets, such as the Human Cell Atlas (HCA) or the Mouse Cell Atlas (MCA)®?. These datasets, which are
meticulously annotated and extensively validated by researchers, when combined with supervised machine
learning techniques, present a natural framework for automating the cumbersome cell annotation process.
Based on this idea, several methods have been proposed to transfer labels from an annotated scRNA-seq
dataset (source batch) to an unannotated dataset (target batch)> 61015,

Two questions naturally arise regarding the fundamental limitations of such supervised learning ap-
proaches to cell-type identification. First, the source and target batches may exhibit technical variability,
generally referred to as batch effects, due to differences on data collection or sample preparation. How
do these batch effects, which confound true biological differences'®, affect the reliability of the prediction
models that are trained on a source batch and used on a target batch? Second, unlike standard classification

tasks where each data point distinctly lies in one and only one class, cells can exist in intermediate states

during the process of differentiation'’. How can these automatic annotation models avoid misclassifying cells
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that are in transitioning states or cells that are outliers'®, exhibiting abnormal patterns of gene expression due
to the inherent noise in the dataset?

Previously proposed solutions for automated cell identification do not fully address these two fundamental
questions. Off-the-shelf classifiers are not well suited for this task as the distribution of the gene expression
data can significantly differ between source and target batches. Thus, to handle batch effects, previously
proposed solutions either (i) employ classification algorithms that are empirically shown to generalize to
datasets with batch effects,'® 2714 or (ii) transform the data in both batches onto a common latent space
through dedicated batch alignment methods'>!° (hereafter referred to as symmetric alignment methods)
prior to training the classifier''*!>. On one hand, approach (i) cannot guarantee that the classifier will be
robust against arbitrary types of technical variability between the batches. On the other hand, with approach
(ii), when new data becomes available, all existing batches must be re-aligned and the prediction model
retrained before annotating the new target batch. This significantly increases the computational overhead,
and potentially alters previous classification results.

Regarding the classification of cells that lay on intermediate states or at the intersection between different
cell-types, previous approaches use a fixed confidence threshold (e.g., 0.9) on the maximum probability
across all cell-types, and assign an “unassigned” label to the cells with a lower confidence prediction!® !,
However, this does not take into account the variability in the ease of classification across different cell-types,
potentially resulting in the filtering (that is, labelling as unassigned) of a large number of cells.

To overcome these issues, we propose a new framework for cell-type identification called JIND. JIND is
based on neural networks (NNs) and automatically learns a low-dimensional representation (latent space)
from the source batch that is well suited for cell-type classification. To deal with batch effects, JIND projects
the target batch onto the previously learned latent space, leading to an asymmetric approach that eliminates
the need to retrain the NN-based prediction model. Previously proposed asymmetric batch alignment
techniques®’, such as Mutual Nearest Neighbours (MNN)?!, make stringent assumptions on the nature of
batch effects, such as orthogonality between technical variability and biological variability in the data. While
these assumptions allow batch alignment through a simple subtraction operation, they do not generalize in
the many cases where these assumptions are invalid. In contrast, JIND does not require such assumptions to
perform the asymmetric alignment. In addition, JIND estimates cell-type-specific confidence levels during
training, which capture the ease to distinguish each type from the rest. These confidence levels are then used

to filter out (that is, label as unassigned) cells that cannot be classified with high confidence. Finally, the
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JIND framework allows the refinement of the parameters of the prediction model via self-training®>23, by
treating the high confidence predictions on the target batch as new labeled data. In what follows, we refer to
this extension as JIND+.

In summary, JIND is the first automated cell-identification method that provides a scalable framework
for accurate label transfer from an annotated source batch to an unannotated target batch, while accounting
for existing variability among the two batches. We show that JIND outperforms state-of-the-art methods
on most datasets, achieving approximately 97% classification accuracy on average. We also show that the
proposed thresholding scheme is robust to datasets of varying difficulties, rejecting only about 4% of cells,
while state-of-the-art methods reject considerably higher proportion of cells on average. The misclassification

rate can be further reduced with JIND+.

Results

JIND tackles the problem of supervised cell-type annotation of single-cell RNA sequencing data. The label
information comes from a source batch dataset: a gene expression matrix with Ny cells (rows) and M genes
(columns), and the corresponding cell-type annotations (Figure 1(al)). The goal is to label another dataset,
referred to as the target batch, which contains the gene expression of V; cells for the same M genes, but no
cell-type information. While existing methods require separate batch alignment techniques to be performed
prior to classification, JIND trains a NN-based prediction model on the annotated source batch and then uses
adversarial training to align the target batch onto the latent space learned by the NN. Thus, JIND is able
to compensate for batch effects while avoiding the need for retraining the model when new data becomes

available.
Overview of the method

The NN used by JIND consists of two subnetworks, an encoder and a classifier. First, the encoder network
maps the input gene expression vector onto a 256-dimensional latent space via a one-layer NN. We refer to
the resulting 256-dimensional vector as the latent code, which is then fed into the classifier subnetwork to
finally predict the cell-type (Figure 1(a2), Supplementary Figure S5). These two subnetworks are trained
jointly on the source batch by minimizing a weighted categorical cross entropy loss (see Methods). Since the
target batch can have, in general, a different gene expression distribution than the source batch, the latent

code (i.e., the encoder output) for both batches will likely have different distributions. Therefore, the latent
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Figure 1: Overview of JIND. al) We assume access to a source batch containing the gene expression matrix
accompanied with the corresponding cell-types. a2) A Neural Network-based prediction model, consisting of an
encoder and a classifier, is trained on the source batch. The low-dimensional representation output by the encoder
subnetwork is denoted as the latent code. Note that this prediction model should not be directly used to annotate the
target batch due to batch effects. b) To account for the technical variability across batches, batch alignment is required
to align the source and target latent codes. ¢) JIND uses adversarial training via a generator and discriminator pair to
align the source and target latent codes. The discriminator is trained to classify an input latent code either as a latent
code produced by the generator (negative label) or as the source latent code produced by the encoder (positive label). In
contrast, the generator is trained to fool the discriminator into misclassifying the generator’s output as source latent
code. Finally, the output of the trained generator (the aligned latent code) is used by the classifier subnetwork to infer
the cell-types of the target batch.

code from the target batch needs to be modified so that the classifier subnetwork—which was trained on the
source batch—can reliably predict the true cell-type (Figure 1(b)).

The proposed alignment technique, which aims at removing batch effects while maintaining useful
biological variability for classification, is inspired by both Generative Adversarial Networks (GANs)** and
methods developed for the Machine Learning problem known as domain adaptation?. More precisely, JIND
uses adversarial training to correct the latent code from the target batch by learning a generator function to
transform the distribution of the target latent code to that of the source latent code. To learn this generator

function, a binary discriminator function is simultaneously learned. While the discriminator function aims
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at distinguishing between the generator’s output and the source latent code, the generator function aims at
fooling the discriminator into misclassifying the generator’s output as source latent code. The output of the
trained generator function is the aligned latent code, and it is later used for cell-type inference (Figure 1(c),
Methods).

Since it is possible that some cells in the target batch might be undergoing cell differentiation, or that their
gene expression might have abnormal patterns, JIND provides a structured way to reject (that is, label them
as unassigned) some of the predictions made by the aforementioned prediction model. Specifically, JIND
estimates cell-type-specific confidence thresholds from the source batch such that the overall misclassification
rate is minimized. This is in comparison to other fixed-threshold-based rejection schemes used in existing
methods which do not take into account the variability in ease of classification across different cell-types and
datasets (see Methods).

Finally, an extension to the JIND framework based on self-training?* %3

, coined JIND+, is proposed. In
JIND+, additionally, the confident predictions made on the target batch post alignment are used to further

fine-tune the parameters of the encoder and classifier subnetworks (see Methods).

Datasets
Name [Batches] Cells x Genes Cell-types Batches Complexity (kNN)
Human-Hemato*® 35582 x 20287 26 X 0.85
Mouse Cortex®” 3005 x 19972 7 X 0.97
Mouse Atlas® 267690 x 2797 13 X 091
PBMC [10x_v3, 10x_v5]* 15476 x 1199 9 2 0.95
Pancreas [Bar16%°, Murl6>°, Seg1631] 14058 x 2448 22 3 0.88

Table 1: scRNA-seq datasets used for evaluation. The kNN score indicates the proportion of cells correctly classified
using k-nearest-neighbour classifier (with & = 3), and it serves as an indicator of the dataset complexity (higher KNN
score means that cells are easier to classify). For datasets with multiple batches, we report the average kNN score across
all batches.

In order to assess the performance of the proposed method JIND, we consider five scRNA-seq datasets
(Table 1). Specifically, we consider three single-batch datasets: (i) Human-Hemato*® (GEO Accession ID
GSE139369) with 26 annotated cell-types collected from Human blood; (ii) Mouse Cortex*’ (GEO Accession
ID GSE60361) with 7 annotated cell-types collected from the mouse brain cortex; and (iii) the Mouse Cell
Atlas® dataset with 13 annotated cell-types and more than 250 thousand cells.

We also consider the following batched datasets: (i) PBMC (Peripheral Blood Mononuclear Cells)

dataset®®, containing two batches ‘10x_v3’ and ‘10x_v5’ which differ in the type of assay used during library
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preparation; and (ii) a Pancreas dataset, a collection of three different human pancreas datasets, namely
‘Bar16’ (Baron16%?), ‘Mur16’ (Muraro16°°) and ‘Seg16’ (Segerstolpe163!). These three pancreas datasets
were collected using different sequencing protocols and hence exhibit significant technical variability. As
such, they are widely used to benchmark batch correction methods>.

We remark that the Mouse Atlas, PBMC and Pancreas datasets were already library-normalized and
filtered?®, and only the most informative genes (~3,000) were available at the time of acquisition from
ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN. The Human-Hemato and Mouse
Cortex datasets were further processed as described in Methods (Data Preprocessing).

Since most cell-type classification methods have been shown to benefit from external batch correction
tools>, we integrate the batched datasets using Seurat!, obtaining three more datasets, namely, PBMC Intg,
Pancreas Bar-Mur Intg, and Pancreas Bar-Seg Intg.

For every dataset, we also report a kNN score that determines the proportion of cells that are correctly
classified in the source batch using a k-nearest-neighbour classifier (wth & = 3) applied to a 20-dimensional
representation of the data (obtained via UMAP reduction?). This kNN score is an indicator of the dif-
ficulty/complexity of the dataset and a higher kNN score depicts a lower difficulty (Table 1). Note that
this score does not take into account the batch effects and therefore does not perfectly correlate with the

performance of cell-type identification methods across different datasets (Table 2).
Evaluation Metrics

Cell identification methods are commonly benchmarked based on the classification accuracy on the target
batch!'® 214 However, most current methods incorporate an option to reject cells with low-confidence
predictions. Thus, it becomes essential to also quantify the proportion of rejected cells, together with the
accuracy on the remaining ones. In this context, we use “raw accuracy” (raw) to refer to the accuracy of the
classifier on the target batch prior to any rejection; “rejection rate” (rej) to refer to the percentage of cells
rejected by the classification method; and “effective accuracy” (eff) to refer to the accuracy of the classifier

on the cells that were not rejected by the method.
Experimental setup

We compare JIND and JIND+ with SVMg;°, scPred!!, Seurat-LT (Seurat Label Transfer)'> and ACTINN!C.
These methods were selected as representatives as in a recent study’ SVMRgej was shown to perform better

than most existing automated cell identification methods as well as methods incorporating prior knowledge in
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the form of marker genes, and ACTINN'? and scPred'! were among the best performing methods.

SVMRe; uses a linear Support Vector Machine (SVM) classifier followed by probability calibration using
Platt’s method??, and sets a confidence threshold of 0.7 to reject cells. scPred also uses a linear SVM classifier
but uses only a few PCA (Principal Component Analysis) components with high variance as input features.
scPred uses a confidence threshold of 0.9 for rejecting low confidence predictions. Seurat-LT projects the
PCA structure (instead of learning a joint CCA structure) of the source batch onto the target batch so as
to transfer labels'>. Seurat-LT does not use any rejection scheme and therefore ‘rej” and ‘eff’ metrics are
not reported for this method. Finally, ACTINN uses a 3 hidden layer NN as the base classifier. We use the
confidence threshold of 0.9 for rejecting ACTINN predictions.

In comparison to these methods, JIND is unique in the sense that it learns a low-dimensional representation
suitable for cell classification directly from the gene expression data, incorporates a novel asymmetric batch
alignment method that projects the unseeen cells into the low-dimensional representation learnt during
training, and includes cell-type specific capabilities to detect—and reject—ambiguous cells.

For the datasets that do not contain batch effects, we randomly split the dataset into a 7:3 ratio to generate
source and target batches. For the datasets containing batches, we specify the source and the target batch. For
example, Pancreas Bar16-Murl6 denotes that Pancreas Bar16 is the source batch and Pancreas Murl6 is
the target batch. We note that in Pancreas data, there is a wide variation in the set of cell types among the
three batches (Bar16, Murl6 and Seg16). Hence for the Pancreas-based benchmark experiments on accuracy,
and following what was done in the recent review by Abdelaal et al., while generating the source and target

batches we only retained cells whose cell-type is present in both batches.
JIND achieves low rejection rates with high accuracy on non-batched datasets

While the main benefit of JIND is in the presence of batch effects between the source and target batches,
we first perform an assessment on non-batched data. When applied to datasets without a discerning batch
effect, JIND and JIND+ achieve a rejection rate of less than 6% for all tested datasets, while maintaining an
effective accuracy ranging from 0.945 to 0.99 (Table 2). In addition, they obtain the highest raw accuracy in
all cases. On the other hand, previously proposed methods reject a varying proportion of cells. Specifically,
on Human-Hemato dataset, SVMRge; rejects 24% of cells, scPred 54% and ACTINN 18% (Table 2). In
comparison, on the other two datasets, Mouse Cortex and Mouse Atlas, these methods reject a much lower

fraction of cells (between 5% and 12%). We were unable to run scPred on the Mouse Atlas dataset (which
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contains more than 250 thousand cells) and hence no results are reported in this case.

While there is a natural trade-off between rejection rate and effective accuracy on the filtered cells, JIND
provides an efficient way of controlling the rejection rate. Specifically, the outlier fraction specified during
training (set to 0.05 by default) to estimate the cell-type specific thresholds coincides approximately with
the percentage of rejected cells from the target batch, which is on average 5% in all tested datasets. This
percentage is further reduced to 3.6% with JIND+. Lastly, Seurat-LT achieves approximately an average raw
accuracy that is 4% lower than JIND+ and 3% lower than ACTINN and SVMge;j. In comparison to scPred,

the performance of Seurat-LT is 8% higher on Human-Hemtao dataset and 2% lower on Mouse Cortex.

Datasets Metrics JIND JIND+ Seurat-LT SVMRe; scPred ACTINN
Human raw | 0.927 | 0.931 0.873 0.904 0.796 0.922
Hematopoiesis rej 0.06 | 0.04 - 0.24 0.54 0.18
P eff 10947 | 0.943 - 0.966 0.952 0.974
Mouse raw | 0.982 | 0.977 0.948 0.976 0.969 0.969
Cortex rej 0.05 | 0.04 - 0.05 0.12 0.07
eff 10991 | 0.984 - 0.997 0.996 0.991
Mouse raw | 0.984 | 0.983 0.953 0.977 - 0.984
Atlas rej 0.04 | 0.03 - 0.05 - 0.07
eff 10993 | 0.991 - 0.994 - 0.998

Batched | Integrated | Batched | Integrated | Batched ‘ Integrated

PBMC raw |0971| 0974 0.981 0.956 0.962 0.931 0.946 0.956 0.965
10x v3-10x v5| 'Y 0.07 | 0.03 - 0.99 0.05 0.10 0.10 0.37 0.05
=Y - eff |0.986 | 0.985 - 1.000 0.975 0.957 0.971 0.990 0.980
Pancreas raw | 0.958 | 0.959 0.868 0.894 0.921 0.729 0.870 0.874 0.923
Bar16-Murl6 rej 0.05 | 0.03 - 1.00 0.04 0.45 0.18 0.99 0.07
eff 10974 0971 - NA 0.939 0.726 0.931 1.000 0.953

Pancreas raw | 0.987 | 0.992 0.923 0.925 0.953 0.819 0.898 0.930 0.952
Barl6-Ses16 rej 0.05 | 0.02 - 0.99 0.04 0.41 0.18 0.99 0.08
g eff 10.997 | 0.997 - 1.000 0.963 0.868 0.951 1.000 0.971

Table 2: Comparison of different cell classification methods. raw is the inital accuracy of the classifier, rej is the
percentage of cells rejected by the classifier and eff is the effective accuracy after rejecting unconfident predictions. For
SVMRgej, scPred and ACTINN, we report results without any batch alignment (Batched) and with batch alignment prior
to classification using Seurat (Integrated), for the batched datasets PBMC and Pancreas. Best raw accuracy rates are
bold faced and rejection rates above 0.1 are colored red.

JIND can accurately annotate scRNA-seq datasets with batch effects

In order to assess the classification performance on batched data, we experiment with three pairs of source
and target batches: PBMC 10x_v3-10x_v5, Pancreas Bar16-Mur16 and Pancreas Bar16-Seg16, and compare
JIND, JIND+, SVMge;j, Seurat-LT, scPred, and ACTINN on these datasets. Since SVMge;j, scPred and

ACTINN do not internally perform any batch alignment, these methods may benefit from external integration
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tools’. Therefore, we also report their performance after aligning source and target batches using Seurat
integration'”. Table 2 summarizes the results for these experiments. We observe that JIND+ consistently
achieves slightly better performance than JIND in all cases. Moreover, JIND+ reduces the rejection rates of
JIND by a factor of 2 while keeping the effective accuracy almost identical. We also observe that JIND and
JIND+ outperform previously proposed methods in raw accuracy in all cases, except for the PBMC dataset in
which Seurat-LT achieves a raw accuracy 0.8% higher than JIND+. Nonetheless, in the Pancreas datasets,
JIND+ outperforms Seurat-LT by 9% on average. When no external alignment is performed the rejection
rates with SVMRge;j, scPred and ACTINN, for all three datasets, are significantly higher than with JIND+.
Notably, SVMRgej and ACTINN reject almost all cells in some cases. It should be noted however that scPred
is supposed to be used in conjunction with a batch alignment tool when used on datasets with batch effects'!.
When SVMRe;, scPred and ACTINN were evaluated after using Seurat batch alignment, we observe that their
rejection rates are significantly reduced. However, scPred still rejects more than 10% of cells even after batch
alignment in all three experiments. Our results are in agreement with the review conducted by Abdelaal et
al.>, which concludes that SVMRe;j, scPred and ACTINN benefit from batch alignment tools. However, JIND+
still outperforms ACTINN and SVMge;, achieving approximately 3% higher raw accuracy. In comparison to
scPred, JIND+ achieves more than 7% percent higher raw accuracy on average.

To further demonstrate the benefits of JIND cell identification and visualize the asymmetric batch
alignment, we consider the Pancreas Bar16-Murl6 dataset, where Pancreas Barl6 is the source batch and
Pancreas Mur16 the target batch, and retain only the cells with cell-types Alpha, Beta, Gamma and Delta.
The considered source and target batches exhibit profound batch effects, and their latent codes on the tSNE
space after JIND’s prediction model is trained on the source batch appear completely segregated (Figure 2(a)).
As aresult, when used without any batch alignment, JIND’s prediction model achieves an effective accuracy
close to 98.7%, but rejects approximately 50% of the cells due to low confidence in the predictions (Figure
2(b)). Running JIND’s asymmetric alignment results in a partial mapping of the latent space between the
distinct clusters of the target batch and those of the source batch in the tSNE space (Figure 2(c)). Despite not
observing a perfect overlap between the two batches, JIND still rejects less than 5% of the cells and obtains
high accuracy on all four cell-types (Figure 2(d)).

While most batch correction methods!3-2%-34

aim at achieving perfect overlap between source and target
batches, our results demonstrate that JIND does not necessarily require overlap to accomplish the task

of classification (Figure 2(c) and Figure 2(d)). For completeness, we also ran JIND and JIND+ after

10


https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327601; this version posted October 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

60
Batch Batch
40 1 ® Source ® Source
o Target 401
20 -
5 0
Z
4]
_20 4
_40 4
_60 4
—-60 -40 -20 0 20 40 60 60 -40 -20 0 20 40 60
tSNE_X tSNE x
a) tSNE reduction in the latent ¢) tSNE reduction in the latent space post
space learned by JIND encoder batch alignment using JIND
beta
beta
g alpha alpha s
= delta I 5 s
——— 2 2
2 Idelta Qué a é
S = S k=
= = 5 £
e Z é Unassigned [l i
= =] — =
< g < ‘ s
= Unassigned S = N o
5 E 8 bet: h E
= eta =
i & ¢ beta =
a) N a
& ‘ &
- . — - =
/ . i I I delta /// deh:l
. gamma gamma .Emma gamma .
b) Evaluation before alignment d) Evaluation after alignment

Figure 2: JIND’s asymmetric alignment leads to accurate annotations on batched data. We consider a subset of
cell-types (Alpha, Beta, Gamma and Delta) from Pancreas Barl6 (source batch) and Murl6 (target batch). a) tSNE
reduction in the latent space shows significant distributional mismatch due to batch effects. b) As a result, the alluvial
plot shows that the prediction model (without alignment) makes a large number of "unassigned" predictions. ¢) JIND
batch alignment removes these batch effects using adversarial training (learning the Generator and Discriminator
parameters), which minimizes the distributional discrepancies among the two batches in the latent space learned by the
encoder subnetwork. d) The alluvial plot thus obtained after performing batch alignment on target batch shows accurate
classification performance per cell-type.

11


https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327601; this version posted October 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Seurat integration and observed that using Seurat integration actually deteriorates classification performance
(Supplementary Table S1). This further shows that JIND is more effective than all existing methods for

cell-type identification.

Runtime comparison: Since the JIND framework is based on NN that are inherently parallelizable, JIND
can exploit multiple CPU cores for faster runtime and can also be run on GPUs. We compared the runtime for
Seurat integration and JIND asymmetric alignment on PBMC 10cx_v3-10x_v5 experiment. JIND was able to
complete the batch alignment roughly 7 times faster than Seurat on 40 CPU cores (Intel(R) Xeon(R) CPU E5-
2698 v4 @ 2.20GHz). Seurat was parallelized using the future package (htt /CRAN.R-project.org/
package=future) and was run on 40 cores as well. Note that, besides faster alignment, JIND framework
(being asymmetric) can also amortize prediction model training time in the sSCRNA-seq dataset annotation
pipeline across multiple batches. We also compared the running time of JIND+ including classifier training,
batch alignment and self training with scPred, ACTINN, SVMge;j and Seurat-LT under same hardware settings
on the PBMC 10x_v3-10x_v5 experiment. We observed that both SVMgj and ACTINN are roughly 2-3
times faster than JIND+ since there is no batch alignment or self-training phase. Seurat-LT was observed to
be 75% slower than JIND+ and it includes a batch alignment phase. Lastly, scPred (on one CPU core) was
observed to be approximately 3-4 times slower than JIND+. The implementation provided by the authors does
not support multithreading. Therefore, JIND is a fast and more accurate alternative for existing automated
cell annotation tools.

Since JIND+ either outperforms JIND or achieves similar performance, in the remainder of the paper we

will only discuss the performance and results for JIND+.
JIND+ rejection filters ambiguous cells and improves annotation accuracy

When automatically annotating a target batch using a previously trained classification model, the classification
of a cell from the target batch may be ambiguous. Classification ambiguity happens mostly when either the
cell lies in a transitioning state, which is usually depicted as the intersection of two clusters of cells in the
tSNE-reduced space; or it lies at the boundary of its corresponding cluster (i.e., far from the cluster centroid)
in the tSNE-reduced space. Since cells in either of these cases are prone to misclassification, it is important
to reject (or flag) them during the annotation process, as manual annotation of such cells may be preferred.
Otherwise, wrong annotation of cells might hamper the downstream analysis of sScCRNA-seq data.

In order to assess JIND+ rejection performance, we consider two datasets, namely Pancreas Bar16-Murl6
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Figure 3: Visualization of cells rejected by JIND+. Cells with their corresponding raw predictions (specified by
different colors) in the tSNE space are shown for a) Pancreas Bar16-Murl6 and b) PBMC 10x_v3-10x_v5 datasets.
Incorrect predictions are denoted with a cross, and correctly ones with a filled circle. Many of the rejected cells (specified
by a bigger marker size) lay at the intersection of two or more clusters or at the boundary of their corresponding cluster,
far away from the centroid. This suggest that they are either transitioning cells, noisy cells (outliers) or mislabeled cells.
¢) Comparison of the percentage of cells rejected by each method over all considered datasets. We also include in the
comparison the batched datasets after integration with Seural (denoted by Intg.).
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and PBMC 10x_v3-10x_v5. In the case of Pancreas Bar16-Murl6 dataset, we observe that most of the
unassigned cells are at the intersection of either one of the Alpha, Delta and Gamma clusters in the tSNE
reduced space (Figure 3(a)). Moreover, there exists some Acinar and Delta cells on the left side of the Alpha
cluster which were at first misclassified (prior to the rejection step) but later assigned an “unassigned” label.
We also observe some outliers such as Delfa cells in the Beta cluster or Ductal cells in the Acinar cluster,
which were originally correctly classified but were later rejected and appear to be outliers in the tSNE space
(due to potential mislabeling). In summary, out of 61 cells that were rejected (i.e., labeled as “unassigned”),
26 of those cells were originally misclassified raising the 95.9% raw accuracy to an effective accuracy of
97.1%.

When using the PBMC 10x_v3-10x_v5, we observe that a large number of rejected cells lie at the
intersection of Monocyte FCGR3A and Monocyte CD14 clusters or the CD4 and CDS8 T cell clusters. We
also observe that many CD8 T cells that lie inside the CD4 cluster were rejected and initially misclassified
by JIND+. This set of CD8 T cells lying inside the CD4 cluster explains why many CD4 T cells inside the
CDA4 cluster are rejected, as some CDS T cells exist on the left of the CD4 cluster. Moreover, many of the B
cells lying on the boundary of the B cluster were rejected including an outlier Hematopoietic stem cell and an
outlier Monocyte_CD14 cell (Figure 3(b)). In summary, out of a total of 240 cells that are rejected by JIND+,
85 are misclassifications which raises the 97.4% raw accuracy to an effective accuracy of 98.5%.

Finally, we analyze the percentage of rejected cells by each of the considered methods on the datasets
without batch effects (Human-Hemato, Mouse Cortex) and the datasets with batch effects (PBMC 10x_v3-
10x_v5, Pancreas Bar16-Mur16, Pancreas Bar16-Seg16), the latter ones with and without batch integration
(Figure 3(c)). As already mentioned, JIND and JIND+ reject a nearly constant small percentage of cells
across all datasets (below 10%), with JIND+ having lower rejection rates (about 5%). On the contrary, we
observe that on datasets with batch effects, scPred, SVMgj and ACTINN reject a large fraction of cells,
ranging from 10% to 100%. On datasets without batch effects and on the Seurat-aligned datasets, SVMRge;
and ACTINN reject less than 10% of cells except on Human-Hemato dataset. Since the number of cell-types
in Human-Hemato is 26, this result is not surprising, as the predicted probability vectors are expected to have
high entropy, which translates into the highest probability being below the fixed threshold of 0.9. Finally,
scPred rejects a large proportion of cells on all datasets except on PBMC 10x_v3-10x_v5 (integrated using
Seurat) where it rejects 10% of cells. In conclusion, the rejection mechanism of JIND is superior to the fixed

threshold used by previously proposed methods.
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Figure 4: Performance evaluation and differential expression analysis on two datasets. The alluvial plots (top)
reflect the performance of JIND+ on a) PBMC 10x_v3-10x_v5 and b) Pancreas Bar16-Murl6 datasets. The tSNE
plots (middle) illustrate the cell-type clusters of the target batch, and highlight the two cell-types with the highest
misclassification rates: a) Monocyte_FCGR3A and Monocyte_CD14 and b) Acinar and Ductal. The heatmaps (bottom)
show the top 20 differentially expressed genes between a) Monocyte_ FCGR3A cells classified as Monocyte_ FCGR3A
(G1) and Monocyte_FCGR3A classified as Monocyte_CD14 (G2), and between b) Ductal cells classified as Ductal (G1)
and Ductal cells classified as Acinar (G2). The shown hierarchical clustering is performed using all the differentially
expressed genes.
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JIND+ misclassified cells exhibit differentially expressed genes

To better understand the misclassifications made by JIND+, we further analyze the results obtained from
Pancreas Bar16-Murl6 and PBMC 10x_v3-10x_v5 datasets. When using the PBMC 10x_v3-10x_v5
dataset, we observe that JIND+ misclassifies approximately 1.5% cells after rejection (Figure 4(a)-top). To
identify which cell-types can result in misclassifications due to cluster overlaps, we also visualize the target
batch (PBMC 10x_v5) using tSNE dimensionality reduction (Figure 4(a)-middle). We observe that two
subpopulations of Monocytes, namely, Monocyte FCGR3A and Monocyte CD14, lie close to each other with
a noticeable overlap in the tSNE-reduced space. Since some of the Monocyte FCGR3A cells are misclassified
by JIND+ as Monocyte CD14, we conduct a differential expression (DE) analysis using Limma>> between
the misclassified (Monocyte FCGR3A predicted as Monocyte CD14) and the correctly classified (Monocyte
FCGR3A predicted as Monocyte FCGR3A) Monocyte FCGR3A cells.

We identify 117 significantly differentially expressed (p < 0.001) genes between correctly predicted
Monocyte FCGR3A cells and Monocyte FCGR3A cells predicted as CD14 (Figure 4(a)-bottom, Figure S2,
Supplementary Excel File). Furthermore, we observe that the gene marker FCGR3A is clearly overexpressed
on the group of cells classified by JIND as Monocyte FCGR3A. Similarly, we can observe the overexpression
of the CD14 gene on the cells classified as Monocytes_CDI14 and an underexpression on the ones classi-
fied as Monocytes_FCGR3A. This suggests that the cells misclassified by JIND+ are actually outliers (or
possibly mislabelled in the original dataset), thus being intrinsically difficult to classify. Therefore, these
misclassifications do not correspond to arbitrary mistakes made by the prediction model.

We perform a similar analysis on the Pancreas Bar16-Murl6 dataset. We observe that JIND+ misclassifies
roughly 2.9% of cells from the Pancreas Murl6 dataset after rejection (Figure 4(b)-top). We again visualize
the target batch using tSNE dimensionality reduction to identify cells that are hard to classify. Interestingly,
JIND+ misclassifies about 5% of the Ductal cells as Acinar, even though the clusters do not overlap in the
tSNE space (Figure 4(b)-middle). On close observation, we find that some of the Ductal cells actually lay
closer to the Acinar cluster centroid than the Ductal centroid. Hence, we perform a DE analysis between the
misclassified (Ductal predicted as Acinar) and correctly classified Ductal cells (Ductal predicted as Ductal).
The analysis reveals that 444 genes are differentially expressed (p < 0.001), among which we also find
biomarkers for the two cell-types (Figure 4(b)-bottom, Figure S1, Supplementary Excel File). Specifically,

KRT19, a positive biomarker gene*® for Ductal cell-type, is significantly underexpressed on the misclassified
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group and CTRC, a positive biomarker for Acinar cells*®, is differentially expressed but with a very low
expression pattern. These findings suggest that the Ductal cells classified as Acinar are indeed not Ductal,
and that further analysis is needed to confirm their true identity.

We observe that the number of misclassifications is less than 50 for both experiments in total. Therefore,
we also conduct a DE analysis by randomly selecting a subset of cells (of the same size) from Monocyte
FCGR3A cells as well as Ductal cells. We observe that any two random subsets of cells do not exhibit
differentially expressed genes and therefore cannot be distinguished based on gene expression profiles
(Supplementary Figure S3 and S4, Supplementary Excel File). We conclude that some misclassifications

made by JIND+ are explainable and likely due to issues with the data labels.
JIND batch alignment learns a meaningful mapping in extreme cases

One of the inherent limitations in transferring cell-type information from a source batch to a target batch
under significant batch effects is that batch alignment or integration becomes extremely hard when the cell
composition of the two batches is different. Specifically, if there exist cell-types in the target batch that are
not present in the source batch, then alignment in general becomes an ill-defined problem. Moreover, without
a priori knowledge, the new cell-type in the target batch would likely be misclassified, as the alignment
method in such a scenario might result in a false positive matching of cell-types*.

To investigate this point, we analyze how JIND asymmetric alignment (in the latent space) maps the
clusters in a controlled setting with new cell types in the target batch. We consider the Pancreas Bar16-Murl6
dataset and select from Bar16 the Alpha, Beta, Gamma and Delta cell-types to generate the source batch, and
from Mur16 the Acinar cell-type along with the four cell-types in the source batch to generate the target batch.
As expected, after training JIND’s prediction model on the source batch, the latent codes for the target and
source batches in the tSNE space reveal four and five clusters in the source and target batches, respectively
(Figure 5(a)). Moreover, due to batch effects, no overlap between any of the clusters is observed. We then
run JIND’s asymmetric alignment and infer cell-types for the target batch. Interestingly, while many Acinar
cells are rejected, most of them are classified as Beta (Figure 5(b)). Visualizing the aligned latent codes for
the source and target batches using tSNE dimensionality reduction shows that three target batch clusters are
clearly mapped to three source batch clusters (Figure 5(c)). We enumerate the remaining two clusters from
the target batch as Cluster 1 and Cluster 2. In the source batch, only the Beta cluster is not mapped to any

one cluster of the target batch. Therefore, we compute the average Euclidean distances in the latent space
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Figure 5: Analysis of the JIND asymmetric integration when a novel cell-type is present in the target batch. We
consider the Pancreas Bar16-Mur16 dataset, but select only the cells in the source and target batches that are annotated
as Alpha, Beta, Gamma or Delta and additionally the Acinar cells in the target batch. a) Before alignment, the four
cell-types from the source batch and the five cell-types from the target batch are shows as isolated clusters in the
tSNE-reduced space. b) After JIND’s asymmetric alignment and classification, we observe that most of the novel Acinar
cells are labeled as Beta, but a significant fraction of them is labeled as “unassigned”. c¢) After JIND’s asymmetric
alignment, three of the clusters in the target batch are properly aligned in the tSNE space to the source batch clusters,
while the remaining two are not. By computing the distance between these two target batch clusters (denoted as Cluster
1 and Cluster 2) and the unmapped cluster in the source batch, we notice that Cluster 2 is much closer to the unmapped
cluster. d) We observe that the unmapped source cluster corresponds to Beta cells, and that the target Cluster 1, which is
further from the Beta cluster is indeed the novel cell-type Acinar introduced in the target batch. This suggests that a
careful distance analysis in the JIND latent space can help disambiguate the mapping between source and target batches
in the presence of new cell-types.
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from Cluster 1 and Cluster 2 to the Beta cluster in the source batch. We observe that Beta cells from the
source batch are actually twice as close in the latent space to Cluster 2 than to Cluster 1, implying higher
biological similarity between Cluster 2 and Beta cells. Cross-checking with cell annotations, we find that
Cluster 1 corresponds to Acinar cells and Cluster 2 to Beta cells (Figure 5(d)). This shows that even in cases
with new cell-types in the target batch, the mapping learned by JIND’s asymmetric alignment is meaningful
and captures biological similarity between cells. It must be noted however that it is very hard in general to
detect novel cell-(sub)types present in the target batch, as in most cases the clusters are not well separated in

the latent space, making such analysis much more difficult.

Discussion

In this work we introduced JIND, an automated cell-type identification tool that utilizes pre-annotated
scRNA-seq data to reliably annotate unseen sequenced data. Depending on the differences in sequencing
protocols or data preparation, there typically exists significant technical variability between these datasets,
which confounds real biological variability. To accurately predict cell-types while dealing with potential batch
effects, JIND uses supervised learning in addition to adversarial training to train a prediction model as well as
learn a mapping to align these datasets. The prediction model and the mapping are then used in conjunction
to infer cell-types of unseen data. The mapping is learned after training the prediction model and hence any
unseen dataset can be annotated directly without the need of retraining the prediction model. This is in contrast
to other cell-type identification methods that rely on symmetric batch integration tools and require training the
prediction model after performing batch alignment. In addition, the prediction model used by JIND is based
on neural networks (NN) and directly learns the most informative features for cell classification from the
scRNA-seq data, eliminating the need of prior feature extraction. JIND also incorporates a robust rejection
scheme which filters out low-confidence predictions to avoid the misclassification of cells in ambiguous
states or that have highly noisy gene expressions. This is done by estimating cell-type-specific confidence
thresholds which are determined using the annotated data, and therefore adapt to the dataset complexity.
Lastly, we presented JIND+, and extension of JIND that uses the confident predictions made on the unseen
data to further fine-tune the parameters of the prediction model.

We demonstrate that both JIND and JIND+ achieve higher accuracy on cell-type identification for
datasets containing batch effects as compared to existing state-of-the-art methods. This is accomplished

while maintaining a constant rejection rate (about 5%) which can be easily controlled by the user. We
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investigated the misclassifications made by JIND+ on two datasets and observed that they can be explained by
variabilities on the expressions of the cell-type biomarkers (genes). We also showed that the cells rejected by
JIND generally correspond to misclassified cells, improving the effective classification accuracy by reducing
the misclassification rate. In conclusion, the observed improvements in the performance on cross-batch

annotation demonstrate that JIND is highly effective at aligning batches and discriminating cell-types.

Methods

JIND is a framework for automatic cell identification based on supervised learning. Given a scRNA-seq
dataset with annotated cells (denoted as the source batch), the goal is to train a model that can then be used to
predict the cell annotations of an independently generated scRNA-seq dataset for which cell annotations are
not available (denoted as the target batch). We assume that both datasets contain roughly the same set of
cell-types.

Next we outline the different components of JIND, and describe JIND+, an extension of JIND that

additionally employs self-training to fine-tune the model parameters.
Data preprocessing

scRNA-seq data can be expressed as a matrix X of dimension N x M, with N and M denoting the number
of cells and genes, respectively. We denote the source batch used for training the prediction model by X*
(Ns x M), and the corresponding cell annotations by Y*. We assume the cell annotations are represented
as hot-encoded K -dimensional vectors, where K is the number of cell-types in the source batch, such that
YS € {0,1}Vs*K_ For example, if K = 5 and a given cell belongs to the third class, the corresponding row
of Y® is encoded as (0,0, 1,0,0). At the prediction step, we denote the gene expression matrix for the target
batch by X* (V; x M). No cell annotations are available for the target batch.

The neural-network-based prediction model implicitly learns the appropriate representations®’ relevant for
performing the classification task directly from X®. Nevertheless, since sScRNA-seq data is high-dimensional
(it may contain the expression of approximately 20k-40k genes’®) and most counts are near zero, some
preprocessing is needed. In particular, we first apply the standard log-transform to the source expression

matrix using log,(1 + X®), as done in related works!'%!!

. Then, we select the top 5000 genes exhibiting
the highest cell to cell variation, similar to what is done by Seurat'>. In the case when fewer than 5000
genes are available, all genes are selected for training. JIND selects 5000 genes by default, as it provides

a good trade-off between complexity and classification accuracy (Supplementary Table S2). Note that this
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hyperparameter can be easily modified in the JIND framework. The log-transformed values of the selected
genes are used to train the prediction model, together with the cells’ annotation information Y*. With some
abuse of notation, in the rest of this manuscript, we refer to the log-transformed values of the selected genes
as X5, Similarly, during inference, X* will denote the log-transformed expressions of the same subset of

genes that were selected during training.
Training stage

Prediction model: The prediction model used in JIND is based on NNs and consists of two subnetworks
(Supplementary Figure S5): (i) an encoder, which contains one hidden layer with 256 neurons, and (ii) a
classifier consisting of one hidden layer with 256 neurons followed by a softmax layer which outputs K
probabilities (with K being the number of distinct cell-types in the source batch). Both subnetworks employ
ReLU* (Rectified Linear Unit) non-linearity as the activation function, which is typically used in deep
NNs. The output of the encoder prior to the ReLLU activation function is referred to as the latent code. The
hidden layer in the encoder subnetwork uses dropout*’ to avoid over-fitting while training, with a dropout
probability of 0.2, as in other cell-type identification methods'®#!'. The output of the prediction model is a
K -dimensional vector ¢ representing the probabilities of the cell belonging to each of the cell-types.

The network parameters are trained by minimizing the weighted categorical cross-entropy loss. We
denote the expression data for one cell by the vector = containing the expression for M genes (5000 by
deafult); and the corresponding cell annotation, encoded as a one-hot encoded K-dimensional vector, by y.

For input x, the weighted categorical cross-entropy loss is defined as

K

L(y,9) =Y wk -y 1og G (1)
k=1

where y; and ¢, denote the kth entry of the vectors y and g, respectively, and wy, is a constant scalar
determined as a function of the proportion of cells annotated as the kth type. A weighted loss is used to
account for a potential class imbalance in the dataset. The weights in the objective function are inversely
proportional to the number of cells in the training dataset belonging to that cell-type. If n; denotes the

fraction of the kth cell-type in the dataset, then the weights can be calculated as

2

K(E i nk;) ’ (2)

Wg =
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where € is added to the denominator to avoid assignment of an exceedingly high weight to a cell-type, and is

set to 0.01 by default.

Training Details: We split the source dataset (X®, Y*®) into training (70%) and validation sets, and then
train the NN model for 30 epochs on the training dataset. After each epoch, the resulting model is evaluated
on the validation set, and the corresponding validation accuracy is recorded. At the end of the training process,
the model parameters corresponding to the highest validation accuracy (i.e., the smallest misclassification
rate) across all epochs are selected and saved. Although the training loss is expected to decrease as more
epochs are completed, the validation accuracy may decrease, for example if over-fitting occurs. An Adam
optimizer*? with an initial learning rate of 0.001 is used to optimize the network parameters. The learning

rate is reduced by a factor of two if the training loss saturates for more than 5 epochs.

Filtering: To make the misclassification rate minimal, JIND uses K confidence thresholds, one per cell-type,
denoted by 7, with k& € [1 : K|. At inference time, before mapping a cell to the kth cell-type corresponding
to the highest probability, we cross check whether the probability is greater than the corresponding threshold
Tk, resulting in an “unassigned” label upon failure. The thresholds are determined as a part of the training
process. We use the validation dataset to select a threshold for each cell-type based on an outlier fraction
0 (set to 0.05 by default). Specifically, the threshold 73 is the highest predicted probability of the bottom

f-quantile of the cells assigned to kth cell-type.
Inference stage

Once the training of the prediction model has been completed, the next step is to use it to classify the cells of
an independent scRNA-seq dataset, referred to as the target batch X*, for which the cell annotations are not
available. In most practical scenarios, however, the target batch may exhibit batch effects, which translate
into differences between the distributions of X® and X*. To account for these potential differences and to
avoid misclassification, JIND uses a novel and scalable asymmetric alignment technique based on adversarial

training that aligns the target batch onto the source batch.

Asymmetric integration: JIND aligns the target batch onto the source batch in the latent space learned
by the encoder subnetwork after training the NN-based prediction model (Supplementary Figure S5). This
alignment is attained by transforming the latent code obtained from the encoder subnetwork to the target
batch so that it is indistinguishable from the latent code obtained from the source batch.

Let the function learned by the encoder subnetwork (prior to applying ReLU activation) be represented
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Figure 6: Asymmetric integration used by JIND: A generator scales and shifts the latent code of the target batch,
via the NN-based models S and B, to make it indistinguishable from the latent code of the source batch. To find
the optimal parameters, adversarial training is used, in which the generator and a discriminator are jointly trained to
minimize their respective losses. The goal of the discriminator is to detect whether the latent code was produced with
the source batch (positive examples) or from the target batch (negative examples).

by F' and the one learned by the classifier subnetwork by P (which includes the ReLLU activations after the
encoder subnetwork). Thus, the predictions are produced as P(F'(x)), where h = F'(x) are the corresponding
hidden representations obtained from F (the latent code). Our task is to learn a function G(x, h) such that
h = F(x) with 2z ~ X® (source batch), is indistinguishable from h = G(z, F(z)) with 2 ~ X* (target
batch). Once such function G is found, we expect P( ﬁ) to produce accurate cell-type predictions. We perform
the asymmetric integration in the latent code prior to ReLLU activation as we observed that this choice led to
improved performance (Supplementary Table S3). We assume the following functional form for the function

G, referred to as the generator, that shifts and scales A to obtain the modified latent code h:

h =Gz, F(z)) = S(z) o F(z) + B(x)

= G(z,h) = S(x) o h+ B(x),

23


https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327601; this version posted October 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

where o indicates element-wise multiplication, and .S and B are two different NNs jointly parameterized by
O that scale and shift &, respectively. This mapping is motivated by residual connections*?, which have
been shown to be extremely successful at learning deep NNs. Since the latent code h produced by the encoder

subnetwork is a 256-dimensional vector, the outputs of the NNs .S and B are also of dimension 256.

Adversarial training: To learn the generator (G, we employ adversarial training where a discriminator
function D parameterized by ©p is trained to distinguish between h = F'(x), with z ~ X5, and h =
G(z, F(z)), with z ~ X*® (Figure 6). D is a NN-based classifier which estimates the probability of the
input latent code coming from the source batch. Therefore, an ideal discriminator would produce D(h) ~ 1
and D(ﬂ) ~ (. Simultaneously, G is optimized to fool the discriminator into misinterpreting h as h. The two
models GG and D are jointly trained to learn parameters O and © p by parallely minimising the corresponding

generator and discriminator losses £ (©p) and £p(©) given as,

£(Op) = — E,ox log D(G(z, F(x))) = — E,xe log D(R) 3)

Lp(Og) =—0.5-E;xslog D(F(x)) —0.5-E,xt log(1 — D(G(z, F(x))))
4)
=—0.5-Epoxslog D(h) — 0.5 - E,_xt log(1 — D(h))

While minimizing £4(Op) and Lp(O¢), ©p and O¢ are kept fixed, respectively. Note that the generator’s
objective function only depends on h, whereas the discriminator’s objective function depends on both h and
h (Figure 6). JIND’s asymmetric integration requires solving a competitive optimization problem in which
two networks with opposite objectives are trained against each other and a saddle point needs to be achieved.
This makes the optimization of the generator and discriminator pair challenging. To make the optimization
more stable, we regularize the generator’s objective by forcing S(x) to be approximately 1. More precisely,

we update the generator’s loss function as

Le(Op) = —Exth(logD(ﬁ) FA-|IS(x) — 1||2), )

where A is a hyperparameter (set to 0.001 by default). The goal of this regularization is to prevent the
transformation on the target batch from being very complex. Notice that, a more complex generator could
learn an incorrect mapping by aligning different cell-types together, which would translate into incorrect

predictions for those cells.
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Network architectures: The generator is composed of S(x) and B(z), both with the same network
architecture consisting of two fully connected layers containing 512 neurons each (with ReLLU activation
function) and a fully connected layer at the end which produces a 256-dimensional output. S(x) and B(z)
each have their own network parameters (contained in © ), and both take as input the cell’s gene expression
vector x (of dimension 5000 by default).

The network for the discriminator consists of three fully connected layers containing 512, 256 and 256
neurons, respectively (each with Leaky ReLU** activation function), followed by a fully connected layer
with one neuron which produces a one-dimensional output between zero and one through sigmoid activation

function. The input to the discriminator is a 256-dimensional vector representing the latent code.

Training details: We use both the source batch X® and the target batch X* for training, with no cell
annotations. The generator’s parameters © are initialized such that initially G is an identity mapping, with
h = h,ie., S(z) ~1and B(x) ~ 0. For the generator model, we use RMSProp*> optimizer with a learning
rate of 0.0001 and a weight decay of 0.01. Similarly, for the discriminator model, we use RMSProp optimizer
with a learning rate of 0.0001 and a weight decay of 1e-6. Note that weight decay is equivalent to penalty on
the magnitude of the network parameters, which is required to prevent over-fitting. Both architectures use a
mini-batch size of 512 samples for the optimization via gradient descent. Since the task of the generator is
only to learn the residual, i.e., modify the latent code, for every iteration of the generator the discriminator

undergoes two training iterations.

Final prediction model: After the asymmetric integration is performed, the final prediction model is as
follows. First, the encoder subnetwork takes as input the cell’s gene expression vector « and produces the
latent code h. Both x and h are then input to the generator, which produces the corrected latent code h.
Finally, the corrected latent code h goes through ReLLU activation, and then to the classifier subnetwork,
which produces the final probabilities of the cell belonging to each of the considered K cell-types (Figure
1c). JIND labels the cell with the cell-type having highest probability, or with an “unassigned” label if the

threshold constraint is not satisfied.
JIND+

JIND+ is an extension of JIND that uses self-training to improve its performance. Self-training involves
the use of unlabelled data, in our case the target batch with unknown cell-type annotations, to improve

the classification model by using the predictions as pseudo labels. The distribution of the unlabelled data
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might differ slightly from that of the training data, and hence self-training becomes an efficient way of
transferring classifiers across domains®>23. In our case, even after asymmetric integration in the latent space,
the distribution of the modified latent code for the target batch may still differ from that of the latent code for
the source batch. Therefore, in JIND+ we use the confident predictions made on the target batch to further
fine-tune (train) the encoder and the classifier subnetworks. We minimize weighted categorical cross entropy,
and reuse the weights determined using source batch cell composition (Eq. 1). To identify the confident
predictions, we calculate thresholds for each cell-type as outlined in subsection (filtering) using the validation
dataset (from the source batch) with an outlier fraction § = 0.3. Then, only the cells with predictions above
the corresponding threshold are used for the fine tuning, using the predicted cell-type as the label. Note
that JIND+ performs self-training after training the generator and discriminator networks, after which their

parameters remain unchanged. Only the parameters of the prediction model are modified.

Training Details: We use Adam optimizer*? with a learning rate of 0.0001 for 10 epochs and a mini-batch
size of 32. The rest of the hyperparameters are the same as the ones used for training the prediction model.
To obtain training and validation datasets, we choose 70% of the confident predictions for training and the
rest for validation. Then, we save the parameters across all epochs with the highest accuracy on the validation

set (as done in the parameter selection for the prediction model).
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