
JIND: Joint Integration and Discrimination

for Automated Single-Cell Annotation

Mohit Goyal1, Guillermo Serrano2, Ilan Shomorony1, Mikel Hernaez2,3,*,†, and Idoia Ochoa1,4,†

1Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801
2Center for Applied Medical Research (CIMA), University of Navarra, Spain

3Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
4Department of Electrical Engineering, University of Navarra, Spain

*Correspondence: mhernaez@unav.es
†Equal contributor

Abstract

Single-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and

organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression

of specific marker genes. Since manual annotation is labor-intensive and does not scale to large

datasets, several methods for automated cell-type annotation have been proposed based on supervised

learning. However, these methods generally require feature extraction and batch alignment prior to

classification, and their performance may become unreliable in the presence of cell-types with very

similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated

cell-type identification based on neural networks that directly learns a low-dimensional representation

(latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs

a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the

previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset

becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells

that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies

cells more accurately than previously proposed methods while rejecting only a small proportion of cells.

Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat

integration. Availability: https://github.com/mohit1997/JIND.

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://github.com/mohit1997/JIND
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

Keywords: Single-cell Genomics, cell annotation, adversarial training, batch alignment, supervised

learning

Introduction

Recent developments in single-cell RNA sequencing (scRNA-seq) technologies have made it possible to

profile the transcriptome of thousands of single cells in parallel. Massive amounts of single-cell RNA-seq

data can now be generated enabling data-driven studies of gene expression at the single-cell resolution.

Applications of this technology include the discovery of new cell-types1, 2, identifying potential cellular

targets for diseases3 and the analysis of cell developmental stages through time4.

An important step in single-cell genomic data analysis is the characterization of cell-types in a large

mixture of cells. Traditionally, this is done by probing specific marker genes. Thus, a typical pipeline

starts with a clustering algorithm to group cells with similar transcriptomic profiles, followed by manual

labeling of the clusters based on appropriate biological markers identified in prior studies. However, the

variability in clustering methods, the lack of standardized ontologies of cell labels, and the reliance on

time-consuming manual annotations make this approach not scalable and creates a bottleneck in single-cell

genomics pipelines5, 6.

The gain in popularity of single-cell RNA sequencing has led to the creation of very large reference

datasets, such as the Human Cell Atlas (HCA)7 or the Mouse Cell Atlas (MCA)8, 9. These datasets, which are

meticulously annotated and extensively validated by researchers, when combined with supervised machine

learning techniques, present a natural framework for automating the cumbersome cell annotation process.

Based on this idea, several methods have been proposed to transfer labels from an annotated scRNA-seq

dataset (source batch) to an unannotated dataset (target batch)5, 6, 10–15.

Two questions naturally arise regarding the fundamental limitations of such supervised learning ap-

proaches to cell-type identification. First, the source and target batches may exhibit technical variability,

generally referred to as batch effects, due to differences on data collection or sample preparation. How

do these batch effects, which confound true biological differences16, affect the reliability of the prediction

models that are trained on a source batch and used on a target batch? Second, unlike standard classification

tasks where each data point distinctly lies in one and only one class, cells can exist in intermediate states

during the process of differentiation17. How can these automatic annotation models avoid misclassifying cells

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

that are in transitioning states or cells that are outliers18, exhibiting abnormal patterns of gene expression due

to the inherent noise in the dataset?

Previously proposed solutions for automated cell identification do not fully address these two fundamental

questions. Off-the-shelf classifiers are not well suited for this task as the distribution of the gene expression

data can significantly differ between source and target batches. Thus, to handle batch effects, previously

proposed solutions either (i) employ classification algorithms that are empirically shown to generalize to

datasets with batch effects,10, 12–14 or (ii) transform the data in both batches onto a common latent space

through dedicated batch alignment methods15, 19 (hereafter referred to as symmetric alignment methods)

prior to training the classifier11, 15. On one hand, approach (i) cannot guarantee that the classifier will be

robust against arbitrary types of technical variability between the batches. On the other hand, with approach

(ii), when new data becomes available, all existing batches must be re-aligned and the prediction model

retrained before annotating the new target batch. This significantly increases the computational overhead,

and potentially alters previous classification results.

Regarding the classification of cells that lay on intermediate states or at the intersection between different

cell-types, previous approaches use a fixed confidence threshold (e.g., 0.9) on the maximum probability

across all cell-types, and assign an “unassigned” label to the cells with a lower confidence prediction10, 11.

However, this does not take into account the variability in the ease of classification across different cell-types,

potentially resulting in the filtering (that is, labelling as unassigned) of a large number of cells.

To overcome these issues, we propose a new framework for cell-type identification called JIND. JIND is

based on neural networks (NNs) and automatically learns a low-dimensional representation (latent space)

from the source batch that is well suited for cell-type classification. To deal with batch effects, JIND projects

the target batch onto the previously learned latent space, leading to an asymmetric approach that eliminates

the need to retrain the NN-based prediction model. Previously proposed asymmetric batch alignment

techniques20, such as Mutual Nearest Neighbours (MNN)21, make stringent assumptions on the nature of

batch effects, such as orthogonality between technical variability and biological variability in the data. While

these assumptions allow batch alignment through a simple subtraction operation, they do not generalize in

the many cases where these assumptions are invalid. In contrast, JIND does not require such assumptions to

perform the asymmetric alignment. In addition, JIND estimates cell-type-specific confidence levels during

training, which capture the ease to distinguish each type from the rest. These confidence levels are then used

to filter out (that is, label as unassigned) cells that cannot be classified with high confidence. Finally, the

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

JIND framework allows the refinement of the parameters of the prediction model via self-training22, 23, by

treating the high confidence predictions on the target batch as new labeled data. In what follows, we refer to

this extension as JIND+.

In summary, JIND is the first automated cell-identification method that provides a scalable framework

for accurate label transfer from an annotated source batch to an unannotated target batch, while accounting

for existing variability among the two batches. We show that JIND outperforms state-of-the-art methods

on most datasets, achieving approximately 97% classification accuracy on average. We also show that the

proposed thresholding scheme is robust to datasets of varying difficulties, rejecting only about 4% of cells,

while state-of-the-art methods reject considerably higher proportion of cells on average. The misclassification

rate can be further reduced with JIND+.

Results

JIND tackles the problem of supervised cell-type annotation of single-cell RNA sequencing data. The label

information comes from a source batch dataset: a gene expression matrix with Ns cells (rows) and M genes

(columns), and the corresponding cell-type annotations (Figure 1(a1)). The goal is to label another dataset,

referred to as the target batch, which contains the gene expression of Nt cells for the same M genes, but no

cell-type information. While existing methods require separate batch alignment techniques to be performed

prior to classification, JIND trains a NN-based prediction model on the annotated source batch and then uses

adversarial training to align the target batch onto the latent space learned by the NN. Thus, JIND is able

to compensate for batch effects while avoiding the need for retraining the model when new data becomes

available.

Overview of the method

The NN used by JIND consists of two subnetworks, an encoder and a classifier. First, the encoder network

maps the input gene expression vector onto a 256-dimensional latent space via a one-layer NN. We refer to

the resulting 256-dimensional vector as the latent code, which is then fed into the classifier subnetwork to

finally predict the cell-type (Figure 1(a2), Supplementary Figure S5). These two subnetworks are trained

jointly on the source batch by minimizing a weighted categorical cross entropy loss (see Methods). Since the

target batch can have, in general, a different gene expression distribution than the source batch, the latent

code (i.e., the encoder output) for both batches will likely have different distributions. Therefore, the latent

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

Cell
Genes

Cell-type
Gene 1 Gene M

#1 1 .. 2 alpha
..
#Ns 0 .. 3 gamma

a1) Source batch with cell-type annotations

c) JIND Batch Alignment; 1) Training: Discriminator and Generator are learned to minimise and maximise the classification loss respectively; 2)
Inference: Target batch uses the encoder and the generator to obtain the aligned latent code which is used by the classifier to predict the cell-type.

Encoder
Positives

Discr iminator Loss
Latent
Code

Source
Batch

Target Batch

Latent
Code

Aligned
Latent Code

Classifier

Training

Inference

Encoder

Discriminator

Generator

Update

Shared

Negatives

Encoder Classifier

Latent
Code

a2) Prediction model consisiting of encoder and
classifier jointly trained on source batch

Source Batch
Training Objectives:
1) Discriminator: Distinguish between generator's output
(Positives) and latent code for source batch (Negatives).
2) Generator: Fool the discriminator to misclassify the
generator's output as Positive.

b) Illustration demonstrating the JIND batch alignment in the latent space learnt by the
classifier. JIND learns the underlying mapping between the source batch and the target batch
clusters in an unsupervised manner (without any knowledge of cell-types in the target batch)

Generator Loss

Update

Cell-type

Cell-type

Figure 1: Overview of JIND. a1) We assume access to a source batch containing the gene expression matrix
accompanied with the corresponding cell-types. a2) A Neural Network-based prediction model, consisting of an
encoder and a classifier, is trained on the source batch. The low-dimensional representation output by the encoder
subnetwork is denoted as the latent code. Note that this prediction model should not be directly used to annotate the
target batch due to batch effects. b) To account for the technical variability across batches, batch alignment is required
to align the source and target latent codes. c) JIND uses adversarial training via a generator and discriminator pair to
align the source and target latent codes. The discriminator is trained to classify an input latent code either as a latent
code produced by the generator (negative label) or as the source latent code produced by the encoder (positive label). In
contrast, the generator is trained to fool the discriminator into misclassifying the generator’s output as source latent
code. Finally, the output of the trained generator (the aligned latent code) is used by the classifier subnetwork to infer
the cell-types of the target batch.

code from the target batch needs to be modified so that the classifier subnetwork–which was trained on the

source batch–can reliably predict the true cell-type (Figure 1(b)).

The proposed alignment technique, which aims at removing batch effects while maintaining useful

biological variability for classification, is inspired by both Generative Adversarial Networks (GANs)24 and

methods developed for the Machine Learning problem known as domain adaptation25. More precisely, JIND

uses adversarial training to correct the latent code from the target batch by learning a generator function to

transform the distribution of the target latent code to that of the source latent code. To learn this generator

function, a binary discriminator function is simultaneously learned. While the discriminator function aims

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

at distinguishing between the generator’s output and the source latent code, the generator function aims at

fooling the discriminator into misclassifying the generator’s output as source latent code. The output of the

trained generator function is the aligned latent code, and it is later used for cell-type inference (Figure 1(c),

Methods).

Since it is possible that some cells in the target batch might be undergoing cell differentiation, or that their

gene expression might have abnormal patterns, JIND provides a structured way to reject (that is, label them

as unassigned) some of the predictions made by the aforementioned prediction model. Specifically, JIND

estimates cell-type-specific confidence thresholds from the source batch such that the overall misclassification

rate is minimized. This is in comparison to other fixed-threshold-based rejection schemes used in existing

methods which do not take into account the variability in ease of classification across different cell-types and

datasets (see Methods).

Finally, an extension to the JIND framework based on self-training22, 23, coined JIND+, is proposed. In

JIND+, additionally, the confident predictions made on the target batch post alignment are used to further

fine-tune the parameters of the encoder and classifier subnetworks (see Methods).

Datasets

Name [Batches] Cells ⇥ Genes Cell-types Batches Complexity (kNN)
Human-Hemato26 35582 ⇥ 20287 26 7 0.85
Mouse Cortex27 3005 ⇥ 19972 7 7 0.97
Mouse Atlas9 267690 ⇥ 2797 13 7 0.91
PBMC [10x_v3, 10x_v5]28 15476 ⇥ 1199 9 2 0.95
Pancreas [Bar1629, Mur1630, Seg1631] 14058 ⇥ 2448 22 3 0.88

Table 1: scRNA-seq datasets used for evaluation. The kNN score indicates the proportion of cells correctly classified
using k-nearest-neighbour classifier (with k = 3), and it serves as an indicator of the dataset complexity (higher kNN
score means that cells are easier to classify). For datasets with multiple batches, we report the average kNN score across
all batches.

In order to assess the performance of the proposed method JIND, we consider five scRNA-seq datasets

(Table 1). Specifically, we consider three single-batch datasets: (i) Human-Hemato26 (GEO Accession ID

GSE139369) with 26 annotated cell-types collected from Human blood; (ii) Mouse Cortex27 (GEO Accession

ID GSE60361) with 7 annotated cell-types collected from the mouse brain cortex; and (iii) the Mouse Cell

Atlas9 dataset with 13 annotated cell-types and more than 250 thousand cells.

We also consider the following batched datasets: (i) PBMC (Peripheral Blood Mononuclear Cells)

dataset28, containing two batches ‘10x_v3’ and ‘10x_v5’ which differ in the type of assay used during library

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

preparation; and (ii) a Pancreas dataset, a collection of three different human pancreas datasets, namely

‘Bar16’ (Baron1629), ‘Mur16’ (Muraro1630) and ‘Seg16’ (Segerstolpe1631). These three pancreas datasets

were collected using different sequencing protocols and hence exhibit significant technical variability. As

such, they are widely used to benchmark batch correction methods5.

We remark that the Mouse Atlas, PBMC and Pancreas datasets were already library-normalized and

filtered28, and only the most informative genes (⇠3,000) were available at the time of acquisition from

ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN. The Human-Hemato and Mouse

Cortex datasets were further processed as described in Methods (Data Preprocessing).

Since most cell-type classification methods have been shown to benefit from external batch correction

tools5, we integrate the batched datasets using Seurat15, obtaining three more datasets, namely, PBMC Intg,

Pancreas Bar-Mur Intg, and Pancreas Bar-Seg Intg.

For every dataset, we also report a kNN score that determines the proportion of cells that are correctly

classified in the source batch using a k-nearest-neighbour classifier (wth k = 3) applied to a 20-dimensional

representation of the data (obtained via UMAP reduction32). This kNN score is an indicator of the dif-

ficulty/complexity of the dataset and a higher kNN score depicts a lower difficulty (Table 1). Note that

this score does not take into account the batch effects and therefore does not perfectly correlate with the

performance of cell-type identification methods across different datasets (Table 2).

Evaluation Metrics

Cell identification methods are commonly benchmarked based on the classification accuracy on the target

batch10, 12, 14. However, most current methods incorporate an option to reject cells with low-confidence

predictions. Thus, it becomes essential to also quantify the proportion of rejected cells, together with the

accuracy on the remaining ones. In this context, we use “raw accuracy” (raw) to refer to the accuracy of the

classifier on the target batch prior to any rejection; “rejection rate” (rej) to refer to the percentage of cells

rejected by the classification method; and “effective accuracy” (eff) to refer to the accuracy of the classifier

on the cells that were not rejected by the method.

Experimental setup

We compare JIND and JIND+ with SVMRej
5, scPred11, Seurat-LT (Seurat Label Transfer)15 and ACTINN10.

These methods were selected as representatives as in a recent study5 SVMRej was shown to perform better

than most existing automated cell identification methods as well as methods incorporating prior knowledge in

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

%20ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

the form of marker genes, and ACTINN10 and scPred11 were among the best performing methods.

SVMRej uses a linear Support Vector Machine (SVM) classifier followed by probability calibration using

Platt’s method33, and sets a confidence threshold of 0.7 to reject cells. scPred also uses a linear SVM classifier

but uses only a few PCA (Principal Component Analysis) components with high variance as input features.

scPred uses a confidence threshold of 0.9 for rejecting low confidence predictions. Seurat-LT projects the

PCA structure (instead of learning a joint CCA structure) of the source batch onto the target batch so as

to transfer labels15. Seurat-LT does not use any rejection scheme and therefore ‘rej’ and ‘eff’ metrics are

not reported for this method. Finally, ACTINN uses a 3 hidden layer NN as the base classifier. We use the

confidence threshold of 0.9 for rejecting ACTINN predictions.

In comparison to these methods, JIND is unique in the sense that it learns a low-dimensional representation

suitable for cell classification directly from the gene expression data, incorporates a novel asymmetric batch

alignment method that projects the unseeen cells into the low-dimensional representation learnt during

training, and includes cell-type specific capabilities to detect–and reject–ambiguous cells.

For the datasets that do not contain batch effects, we randomly split the dataset into a 7:3 ratio to generate

source and target batches. For the datasets containing batches, we specify the source and the target batch. For

example, Pancreas Bar16-Mur16 denotes that Pancreas Bar16 is the source batch and Pancreas Mur16 is

the target batch. We note that in Pancreas data, there is a wide variation in the set of cell types among the

three batches (Bar16, Mur16 and Seg16). Hence for the Pancreas-based benchmark experiments on accuracy,

and following what was done in the recent review by Abdelaal et al.5, while generating the source and target

batches we only retained cells whose cell-type is present in both batches.

JIND achieves low rejection rates with high accuracy on non-batched datasets

While the main benefit of JIND is in the presence of batch effects between the source and target batches,

we first perform an assessment on non-batched data. When applied to datasets without a discerning batch

effect, JIND and JIND+ achieve a rejection rate of less than 6% for all tested datasets, while maintaining an

effective accuracy ranging from 0.945 to 0.99 (Table 2). In addition, they obtain the highest raw accuracy in

all cases. On the other hand, previously proposed methods reject a varying proportion of cells. Specifically,

on Human-Hemato dataset, SVMRej rejects 24% of cells, scPred 54% and ACTINN 18% (Table 2). In

comparison, on the other two datasets, Mouse Cortex and Mouse Atlas, these methods reject a much lower

fraction of cells (between 5% and 12%). We were unable to run scPred on the Mouse Atlas dataset (which

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

contains more than 250 thousand cells) and hence no results are reported in this case.

While there is a natural trade-off between rejection rate and effective accuracy on the filtered cells, JIND

provides an efficient way of controlling the rejection rate. Specifically, the outlier fraction specified during

training (set to 0.05 by default) to estimate the cell-type specific thresholds coincides approximately with

the percentage of rejected cells from the target batch, which is on average 5% in all tested datasets. This

percentage is further reduced to 3.6% with JIND+. Lastly, Seurat-LT achieves approximately an average raw

accuracy that is 4% lower than JIND+ and 3% lower than ACTINN and SVMRej. In comparison to scPred,

the performance of Seurat-LT is 8% higher on Human-Hemtao dataset and 2% lower on Mouse Cortex.

Datasets Metrics JIND JIND+ Seurat-LT SVMRej scPred ACTINN

Human
Hematopoiesis

raw
rej
eff

0.927
0.06
0.947

0.931
0.04
0.943

0.873
-
-

0.904
0.24
0.966

0.796
0.54

0.952

0.922
0.18
0.974

Mouse
Cortex

raw
rej
eff

0.982
0.05
0.991

0.977
0.04
0.984

0.948
-
-

0.976
0.05
0.997

0.969
0.12

0.996

0.969
0.07
0.991

Mouse
Atlas

raw
rej
eff

0.984
0.04
0.993

0.983
0.03
0.991

0.953
-
-

0.977
0.05
0.994

-
-
-

0.984
0.07
0.998

Batched Integrated Batched Integrated Batched Integrated

PBMC
10x_v3-10x_v5

raw
rej
eff

0.971
0.07
0.986

0.974
0.03
0.985

0.981
-
-

0.956
0.99

1.000

0.962
0.05

0.975

0.931
0.10
0.957

0.946
0.10
0.971

0.956
0.37

0.990

0.965
0.05

0.980

Pancreas
Bar16-Mur16

raw
rej
eff

0.958
0.05
0.974

0.959
0.03
0.971

0.868
-
-

0.894
1.00
NA

0.921
0.04

0.939

0.729
0.45
0.726

0.870
0.18
0.931

0.874
0.99

1.000

0.923
0.07

0.953

Pancreas
Bar16-Seg16

raw
rej
eff

0.987
0.05
0.997

0.992
0.02
0.997

0.923
-
-

0.925
0.99

1.000

0.953
0.04

0.963

0.819
0.41
0.868

0.898
0.18
0.951

0.930
0.99

1.000

0.952
0.08

0.971

Table 2: Comparison of different cell classification methods. raw is the inital accuracy of the classifier, rej is the
percentage of cells rejected by the classifier and eff is the effective accuracy after rejecting unconfident predictions. For
SVMRej, scPred and ACTINN, we report results without any batch alignment (Batched) and with batch alignment prior
to classification using Seurat (Integrated), for the batched datasets PBMC and Pancreas. Best raw accuracy rates are
bold faced and rejection rates above 0.1 are colored red.

JIND can accurately annotate scRNA-seq datasets with batch effects

In order to assess the classification performance on batched data, we experiment with three pairs of source

and target batches: PBMC 10x_v3-10x_v5, Pancreas Bar16-Mur16 and Pancreas Bar16-Seg16, and compare

JIND, JIND+, SVMRej, Seurat-LT, scPred, and ACTINN on these datasets. Since SVMRej, scPred and

ACTINN do not internally perform any batch alignment, these methods may benefit from external integration

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

tools5. Therefore, we also report their performance after aligning source and target batches using Seurat

integration15. Table 2 summarizes the results for these experiments. We observe that JIND+ consistently

achieves slightly better performance than JIND in all cases. Moreover, JIND+ reduces the rejection rates of

JIND by a factor of 2 while keeping the effective accuracy almost identical. We also observe that JIND and

JIND+ outperform previously proposed methods in raw accuracy in all cases, except for the PBMC dataset in

which Seurat-LT achieves a raw accuracy 0.8% higher than JIND+. Nonetheless, in the Pancreas datasets,

JIND+ outperforms Seurat-LT by 9% on average. When no external alignment is performed the rejection

rates with SVMRej, scPred and ACTINN, for all three datasets, are significantly higher than with JIND+.

Notably, SVMRej and ACTINN reject almost all cells in some cases. It should be noted however that scPred

is supposed to be used in conjunction with a batch alignment tool when used on datasets with batch effects11.

When SVMRej, scPred and ACTINN were evaluated after using Seurat batch alignment, we observe that their

rejection rates are significantly reduced. However, scPred still rejects more than 10% of cells even after batch

alignment in all three experiments. Our results are in agreement with the review conducted by Abdelaal et

al.5, which concludes that SVMRej, scPred and ACTINN benefit from batch alignment tools. However, JIND+

still outperforms ACTINN and SVMRej, achieving approximately 3% higher raw accuracy. In comparison to

scPred, JIND+ achieves more than 7% percent higher raw accuracy on average.

To further demonstrate the benefits of JIND cell identification and visualize the asymmetric batch

alignment, we consider the Pancreas Bar16-Mur16 dataset, where Pancreas Bar16 is the source batch and

Pancreas Mur16 the target batch, and retain only the cells with cell-types Alpha, Beta, Gamma and Delta.

The considered source and target batches exhibit profound batch effects, and their latent codes on the tSNE

space after JIND’s prediction model is trained on the source batch appear completely segregated (Figure 2(a)).

As a result, when used without any batch alignment, JIND’s prediction model achieves an effective accuracy

close to 98.7%, but rejects approximately 50% of the cells due to low confidence in the predictions (Figure

2(b)). Running JIND’s asymmetric alignment results in a partial mapping of the latent space between the

distinct clusters of the target batch and those of the source batch in the tSNE space (Figure 2(c)). Despite not

observing a perfect overlap between the two batches, JIND still rejects less than 5% of the cells and obtains

high accuracy on all four cell-types (Figure 2(d)).

While most batch correction methods15, 20, 34 aim at achieving perfect overlap between source and target

batches, our results demonstrate that JIND does not necessarily require overlap to accomplish the task

of classification (Figure 2(c) and Figure 2(d)). For completeness, we also ran JIND and JIND+ after

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

a) tSNE reduction in the latent
space learned by JIND encoder

c) tSNE reduction in the latent space post
batch alignment using JIND

d) Evaluation after alignmentb) Evaluation before alignment

Figure 2: JIND’s asymmetric alignment leads to accurate annotations on batched data. We consider a subset of
cell-types (Alpha, Beta, Gamma and Delta) from Pancreas Bar16 (source batch) and Mur16 (target batch). a) tSNE
reduction in the latent space shows significant distributional mismatch due to batch effects. b) As a result, the alluvial
plot shows that the prediction model (without alignment) makes a large number of "unassigned" predictions. c) JIND
batch alignment removes these batch effects using adversarial training (learning the Generator and Discriminator
parameters), which minimizes the distributional discrepancies among the two batches in the latent space learned by the
encoder subnetwork. d) The alluvial plot thus obtained after performing batch alignment on target batch shows accurate
classification performance per cell-type.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

Seurat integration and observed that using Seurat integration actually deteriorates classification performance

(Supplementary Table S1). This further shows that JIND is more effective than all existing methods for

cell-type identification.

Runtime comparison: Since the JIND framework is based on NNs that are inherently parallelizable, JIND

can exploit multiple CPU cores for faster runtime and can also be run on GPUs. We compared the runtime for

Seurat integration and JIND asymmetric alignment on PBMC 10cx_v3-10x_v5 experiment. JIND was able to

complete the batch alignment roughly 7 times faster than Seurat on 40 CPU cores (Intel(R) Xeon(R) CPU E5-

2698 v4 @ 2.20GHz). Seurat was parallelized using the future package (htt/CRAN.R-project.org/

package=future) and was run on 40 cores as well. Note that, besides faster alignment, JIND framework

(being asymmetric) can also amortize prediction model training time in the scRNA-seq dataset annotation

pipeline across multiple batches. We also compared the running time of JIND+ including classifier training,

batch alignment and self training with scPred, ACTINN, SVMRej and Seurat-LT under same hardware settings

on the PBMC 10x_v3-10x_v5 experiment. We observed that both SVMRej and ACTINN are roughly 2-3

times faster than JIND+ since there is no batch alignment or self-training phase. Seurat-LT was observed to

be 75% slower than JIND+ and it includes a batch alignment phase. Lastly, scPred (on one CPU core) was

observed to be approximately 3-4 times slower than JIND+. The implementation provided by the authors does

not support multithreading. Therefore, JIND is a fast and more accurate alternative for existing automated

cell annotation tools.

Since JIND+ either outperforms JIND or achieves similar performance, in the remainder of the paper we

will only discuss the performance and results for JIND+.

JIND+ rejection filters ambiguous cells and improves annotation accuracy

When automatically annotating a target batch using a previously trained classification model, the classification

of a cell from the target batch may be ambiguous. Classification ambiguity happens mostly when either the

cell lies in a transitioning state, which is usually depicted as the intersection of two clusters of cells in the

tSNE-reduced space; or it lies at the boundary of its corresponding cluster (i.e., far from the cluster centroid)

in the tSNE-reduced space. Since cells in either of these cases are prone to misclassification, it is important

to reject (or flag) them during the annotation process, as manual annotation of such cells may be preferred.

Otherwise, wrong annotation of cells might hamper the downstream analysis of scRNA-seq data.

In order to assess JIND+ rejection performance, we consider two datasets, namely Pancreas Bar16-Mur16

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

htt/CRAN.R-project.org/package=future
htt/CRAN.R-project.org/package=future
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

a

b

c

Figure 3: Visualization of cells rejected by JIND+. Cells with their corresponding raw predictions (specified by
different colors) in the tSNE space are shown for a) Pancreas Bar16-Mur16 and b) PBMC 10x_v3-10x_v5 datasets.
Incorrect predictions are denoted with a cross, and correctly ones with a filled circle. Many of the rejected cells (specified
by a bigger marker size) lay at the intersection of two or more clusters or at the boundary of their corresponding cluster,
far away from the centroid. This suggest that they are either transitioning cells, noisy cells (outliers) or mislabeled cells.
c) Comparison of the percentage of cells rejected by each method over all considered datasets. We also include in the
comparison the batched datasets after integration with Seural (denoted by Intg.).

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

and PBMC 10x_v3-10x_v5. In the case of Pancreas Bar16-Mur16 dataset, we observe that most of the

unassigned cells are at the intersection of either one of the Alpha, Delta and Gamma clusters in the tSNE

reduced space (Figure 3(a)). Moreover, there exists some Acinar and Delta cells on the left side of the Alpha

cluster which were at first misclassified (prior to the rejection step) but later assigned an “unassigned” label.

We also observe some outliers such as Delta cells in the Beta cluster or Ductal cells in the Acinar cluster,

which were originally correctly classified but were later rejected and appear to be outliers in the tSNE space

(due to potential mislabeling). In summary, out of 61 cells that were rejected (i.e., labeled as “unassigned”),

26 of those cells were originally misclassified raising the 95.9% raw accuracy to an effective accuracy of

97.1%.

When using the PBMC 10x_v3-10x_v5, we observe that a large number of rejected cells lie at the

intersection of Monocyte FCGR3A and Monocyte CD14 clusters or the CD4 and CD8 T cell clusters. We

also observe that many CD8 T cells that lie inside the CD4 cluster were rejected and initially misclassified

by JIND+. This set of CD8 T cells lying inside the CD4 cluster explains why many CD4 T cells inside the

CD4 cluster are rejected, as some CD8 T cells exist on the left of the CD4 cluster. Moreover, many of the B

cells lying on the boundary of the B cluster were rejected including an outlier Hematopoietic stem cell and an

outlier Monocyte_CD14 cell (Figure 3(b)). In summary, out of a total of 240 cells that are rejected by JIND+,

85 are misclassifications which raises the 97.4% raw accuracy to an effective accuracy of 98.5%.

Finally, we analyze the percentage of rejected cells by each of the considered methods on the datasets

without batch effects (Human-Hemato, Mouse Cortex) and the datasets with batch effects (PBMC 10x_v3-

10x_v5, Pancreas Bar16-Mur16, Pancreas Bar16-Seg16), the latter ones with and without batch integration

(Figure 3(c)). As already mentioned, JIND and JIND+ reject a nearly constant small percentage of cells

across all datasets (below 10%), with JIND+ having lower rejection rates (about 5%). On the contrary, we

observe that on datasets with batch effects, scPred, SVMRej and ACTINN reject a large fraction of cells,

ranging from 10% to 100%. On datasets without batch effects and on the Seurat-aligned datasets, SVMRej

and ACTINN reject less than 10% of cells except on Human-Hemato dataset. Since the number of cell-types

in Human-Hemato is 26, this result is not surprising, as the predicted probability vectors are expected to have

high entropy, which translates into the highest probability being below the fixed threshold of 0.9. Finally,

scPred rejects a large proportion of cells on all datasets except on PBMC 10x_v3-10x_v5 (integrated using

Seurat) where it rejects 10% of cells. In conclusion, the rejection mechanism of JIND is superior to the fixed

threshold used by previously proposed methods.

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

a b

Monocyte_FCGR3A cells classified as:
Monocyte_FCGR3A (G1) or Monocyte_CD14 (G2)

Ductal cells classified as:
Ductal (G1) or Acinar (G2)

Figure 4: Performance evaluation and differential expression analysis on two datasets. The alluvial plots (top)
reflect the performance of JIND+ on a) PBMC 10x_v3-10x_v5 and b) Pancreas Bar16-Mur16 datasets. The tSNE
plots (middle) illustrate the cell-type clusters of the target batch, and highlight the two cell-types with the highest
misclassification rates: a) Monocyte_FCGR3A and Monocyte_CD14 and b) Acinar and Ductal. The heatmaps (bottom)
show the top 20 differentially expressed genes between a) Monocyte_FCGR3A cells classified as Monocyte_FCGR3A
(G1) and Monocyte_FCGR3A classified as Monocyte_CD14 (G2), and between b) Ductal cells classified as Ductal (G1)
and Ductal cells classified as Acinar (G2). The shown hierarchical clustering is performed using all the differentially
expressed genes.

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

JIND+ misclassified cells exhibit differentially expressed genes

To better understand the misclassifications made by JIND+, we further analyze the results obtained from

Pancreas Bar16-Mur16 and PBMC 10x_v3-10x_v5 datasets. When using the PBMC 10x_v3-10x_v5

dataset, we observe that JIND+ misclassifies approximately 1.5% cells after rejection (Figure 4(a)-top). To

identify which cell-types can result in misclassifications due to cluster overlaps, we also visualize the target

batch (PBMC 10x_v5) using tSNE dimensionality reduction (Figure 4(a)-middle). We observe that two

subpopulations of Monocytes, namely, Monocyte FCGR3A and Monocyte CD14, lie close to each other with

a noticeable overlap in the tSNE-reduced space. Since some of the Monocyte FCGR3A cells are misclassified

by JIND+ as Monocyte CD14, we conduct a differential expression (DE) analysis using Limma35 between

the misclassified (Monocyte FCGR3A predicted as Monocyte CD14) and the correctly classified (Monocyte

FCGR3A predicted as Monocyte FCGR3A) Monocyte FCGR3A cells.

We identify 117 significantly differentially expressed (p < 0.001) genes between correctly predicted

Monocyte FCGR3A cells and Monocyte FCGR3A cells predicted as CD14 (Figure 4(a)-bottom, Figure S2,

Supplementary Excel File). Furthermore, we observe that the gene marker FCGR3A is clearly overexpressed

on the group of cells classified by JIND as Monocyte FCGR3A. Similarly, we can observe the overexpression

of the CD14 gene on the cells classified as Monocytes_CD14 and an underexpression on the ones classi-

fied as Monocytes_FCGR3A. This suggests that the cells misclassified by JIND+ are actually outliers (or

possibly mislabelled in the original dataset), thus being intrinsically difficult to classify. Therefore, these

misclassifications do not correspond to arbitrary mistakes made by the prediction model.

We perform a similar analysis on the Pancreas Bar16-Mur16 dataset. We observe that JIND+ misclassifies

roughly 2.9% of cells from the Pancreas Mur16 dataset after rejection (Figure 4(b)-top). We again visualize

the target batch using tSNE dimensionality reduction to identify cells that are hard to classify. Interestingly,

JIND+ misclassifies about 5% of the Ductal cells as Acinar, even though the clusters do not overlap in the

tSNE space (Figure 4(b)-middle). On close observation, we find that some of the Ductal cells actually lay

closer to the Acinar cluster centroid than the Ductal centroid. Hence, we perform a DE analysis between the

misclassified (Ductal predicted as Acinar) and correctly classified Ductal cells (Ductal predicted as Ductal).

The analysis reveals that 444 genes are differentially expressed (p < 0.001), among which we also find

biomarkers for the two cell-types (Figure 4(b)-bottom, Figure S1, Supplementary Excel File). Specifically,

KRT19, a positive biomarker gene36 for Ductal cell-type, is significantly underexpressed on the misclassified

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

group and CTRC, a positive biomarker for Acinar cells36, is differentially expressed but with a very low

expression pattern. These findings suggest that the Ductal cells classified as Acinar are indeed not Ductal,

and that further analysis is needed to confirm their true identity.

We observe that the number of misclassifications is less than 50 for both experiments in total. Therefore,

we also conduct a DE analysis by randomly selecting a subset of cells (of the same size) from Monocyte

FCGR3A cells as well as Ductal cells. We observe that any two random subsets of cells do not exhibit

differentially expressed genes and therefore cannot be distinguished based on gene expression profiles

(Supplementary Figure S3 and S4, Supplementary Excel File). We conclude that some misclassifications

made by JIND+ are explainable and likely due to issues with the data labels.

JIND batch alignment learns a meaningful mapping in extreme cases

One of the inherent limitations in transferring cell-type information from a source batch to a target batch

under significant batch effects is that batch alignment or integration becomes extremely hard when the cell

composition of the two batches is different. Specifically, if there exist cell-types in the target batch that are

not present in the source batch, then alignment in general becomes an ill-defined problem. Moreover, without

a priori knowledge, the new cell-type in the target batch would likely be misclassified, as the alignment

method in such a scenario might result in a false positive matching of cell-types34.

To investigate this point, we analyze how JIND asymmetric alignment (in the latent space) maps the

clusters in a controlled setting with new cell types in the target batch. We consider the Pancreas Bar16-Mur16

dataset and select from Bar16 the Alpha, Beta, Gamma and Delta cell-types to generate the source batch, and

from Mur16 the Acinar cell-type along with the four cell-types in the source batch to generate the target batch.

As expected, after training JIND’s prediction model on the source batch, the latent codes for the target and

source batches in the tSNE space reveal four and five clusters in the source and target batches, respectively

(Figure 5(a)). Moreover, due to batch effects, no overlap between any of the clusters is observed. We then

run JIND’s asymmetric alignment and infer cell-types for the target batch. Interestingly, while many Acinar

cells are rejected, most of them are classified as Beta (Figure 5(b)). Visualizing the aligned latent codes for

the source and target batches using tSNE dimensionality reduction shows that three target batch clusters are

clearly mapped to three source batch clusters (Figure 5(c)). We enumerate the remaining two clusters from

the target batch as Cluster 1 and Cluster 2. In the source batch, only the Beta cluster is not mapped to any

one cluster of the target batch. Therefore, we compute the average Euclidean distances in the latent space

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

a b

c d

D1

D2
Cluster 1

Cluster 2 Cluster 2

Cluster 1

Figure 5: Analysis of the JIND asymmetric integration when a novel cell-type is present in the target batch. We
consider the Pancreas Bar16-Mur16 dataset, but select only the cells in the source and target batches that are annotated
as Alpha, Beta, Gamma or Delta and additionally the Acinar cells in the target batch. a) Before alignment, the four
cell-types from the source batch and the five cell-types from the target batch are shows as isolated clusters in the
tSNE-reduced space. b) After JIND’s asymmetric alignment and classification, we observe that most of the novel Acinar
cells are labeled as Beta, but a significant fraction of them is labeled as “unassigned”. c) After JIND’s asymmetric
alignment, three of the clusters in the target batch are properly aligned in the tSNE space to the source batch clusters,
while the remaining two are not. By computing the distance between these two target batch clusters (denoted as Cluster
1 and Cluster 2) and the unmapped cluster in the source batch, we notice that Cluster 2 is much closer to the unmapped
cluster. d) We observe that the unmapped source cluster corresponds to Beta cells, and that the target Cluster 1, which is
further from the Beta cluster is indeed the novel cell-type Acinar introduced in the target batch. This suggests that a
careful distance analysis in the JIND latent space can help disambiguate the mapping between source and target batches
in the presence of new cell-types.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

from Cluster 1 and Cluster 2 to the Beta cluster in the source batch. We observe that Beta cells from the

source batch are actually twice as close in the latent space to Cluster 2 than to Cluster 1, implying higher

biological similarity between Cluster 2 and Beta cells. Cross-checking with cell annotations, we find that

Cluster 1 corresponds to Acinar cells and Cluster 2 to Beta cells (Figure 5(d)). This shows that even in cases

with new cell-types in the target batch, the mapping learned by JIND’s asymmetric alignment is meaningful

and captures biological similarity between cells. It must be noted however that it is very hard in general to

detect novel cell-(sub)types present in the target batch, as in most cases the clusters are not well separated in

the latent space, making such analysis much more difficult.

Discussion

In this work we introduced JIND, an automated cell-type identification tool that utilizes pre-annotated

scRNA-seq data to reliably annotate unseen sequenced data. Depending on the differences in sequencing

protocols or data preparation, there typically exists significant technical variability between these datasets,

which confounds real biological variability. To accurately predict cell-types while dealing with potential batch

effects, JIND uses supervised learning in addition to adversarial training to train a prediction model as well as

learn a mapping to align these datasets. The prediction model and the mapping are then used in conjunction

to infer cell-types of unseen data. The mapping is learned after training the prediction model and hence any

unseen dataset can be annotated directly without the need of retraining the prediction model. This is in contrast

to other cell-type identification methods that rely on symmetric batch integration tools and require training the

prediction model after performing batch alignment. In addition, the prediction model used by JIND is based

on neural networks (NN) and directly learns the most informative features for cell classification from the

scRNA-seq data, eliminating the need of prior feature extraction. JIND also incorporates a robust rejection

scheme which filters out low-confidence predictions to avoid the misclassification of cells in ambiguous

states or that have highly noisy gene expressions. This is done by estimating cell-type-specific confidence

thresholds which are determined using the annotated data, and therefore adapt to the dataset complexity.

Lastly, we presented JIND+, and extension of JIND that uses the confident predictions made on the unseen

data to further fine-tune the parameters of the prediction model.

We demonstrate that both JIND and JIND+ achieve higher accuracy on cell-type identification for

datasets containing batch effects as compared to existing state-of-the-art methods. This is accomplished

while maintaining a constant rejection rate (about 5%) which can be easily controlled by the user. We

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

investigated the misclassifications made by JIND+ on two datasets and observed that they can be explained by

variabilities on the expressions of the cell-type biomarkers (genes). We also showed that the cells rejected by

JIND generally correspond to misclassified cells, improving the effective classification accuracy by reducing

the misclassification rate. In conclusion, the observed improvements in the performance on cross-batch

annotation demonstrate that JIND is highly effective at aligning batches and discriminating cell-types.

Methods

JIND is a framework for automatic cell identification based on supervised learning. Given a scRNA-seq

dataset with annotated cells (denoted as the source batch), the goal is to train a model that can then be used to

predict the cell annotations of an independently generated scRNA-seq dataset for which cell annotations are

not available (denoted as the target batch). We assume that both datasets contain roughly the same set of

cell-types.

Next we outline the different components of JIND, and describe JIND+, an extension of JIND that

additionally employs self-training to fine-tune the model parameters.

Data preprocessing

scRNA-seq data can be expressed as a matrix X of dimension N ⇥M , with N and M denoting the number

of cells and genes, respectively. We denote the source batch used for training the prediction model by Xs

(Ns ⇥M), and the corresponding cell annotations by Ys. We assume the cell annotations are represented

as hot-encoded K-dimensional vectors, where K is the number of cell-types in the source batch, such that

Ys 2 {0, 1}Ns⇥K . For example, if K = 5 and a given cell belongs to the third class, the corresponding row

of Ys is encoded as (0, 0, 1, 0, 0). At the prediction step, we denote the gene expression matrix for the target

batch by Xt (Nt ⇥M). No cell annotations are available for the target batch.

The neural-network-based prediction model implicitly learns the appropriate representations37 relevant for

performing the classification task directly from Xs. Nevertheless, since scRNA-seq data is high-dimensional

(it may contain the expression of approximately 20k-40k genes38) and most counts are near zero, some

preprocessing is needed. In particular, we first apply the standard log-transform to the source expression

matrix using log2(1 +Xs), as done in related works10, 11. Then, we select the top 5000 genes exhibiting

the highest cell to cell variation, similar to what is done by Seurat15. In the case when fewer than 5000

genes are available, all genes are selected for training. JIND selects 5000 genes by default, as it provides

a good trade-off between complexity and classification accuracy (Supplementary Table S2). Note that this

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

hyperparameter can be easily modified in the JIND framework. The log-transformed values of the selected

genes are used to train the prediction model, together with the cells’ annotation information Ys. With some

abuse of notation, in the rest of this manuscript, we refer to the log-transformed values of the selected genes

as Xs. Similarly, during inference, Xt will denote the log-transformed expressions of the same subset of

genes that were selected during training.

Training stage

Prediction model: The prediction model used in JIND is based on NNs and consists of two subnetworks

(Supplementary Figure S5): (i) an encoder, which contains one hidden layer with 256 neurons, and (ii) a

classifier consisting of one hidden layer with 256 neurons followed by a softmax layer which outputs K

probabilities (with K being the number of distinct cell-types in the source batch). Both subnetworks employ

ReLU39 (Rectified Linear Unit) non-linearity as the activation function, which is typically used in deep

NNs. The output of the encoder prior to the ReLU activation function is referred to as the latent code. The

hidden layer in the encoder subnetwork uses dropout40 to avoid over-fitting while training, with a dropout

probability of 0.2, as in other cell-type identification methods10, 41. The output of the prediction model is a

K-dimensional vector ŷ representing the probabilities of the cell belonging to each of the cell-types.

The network parameters are trained by minimizing the weighted categorical cross-entropy loss. We

denote the expression data for one cell by the vector x containing the expression for M genes (5000 by

deafult); and the corresponding cell annotation, encoded as a one-hot encoded K-dimensional vector, by y.

For input x, the weighted categorical cross-entropy loss is defined as

L(y, ŷ) =
KX

k=1

wk · yk log ŷk, (1)

where yk and ŷk denote the kth entry of the vectors y and ŷ, respectively, and wk is a constant scalar

determined as a function of the proportion of cells annotated as the kth type. A weighted loss is used to

account for a potential class imbalance in the dataset. The weights in the objective function are inversely

proportional to the number of cells in the training dataset belonging to that cell-type. If nk denotes the

fraction of the kth cell-type in the dataset, then the weights can be calculated as

wk =
2

K(✏+ nk)
, (2)

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

where ✏ is added to the denominator to avoid assignment of an exceedingly high weight to a cell-type, and is

set to 0.01 by default.

Training Details: We split the source dataset (Xs,Ys) into training (70%) and validation sets, and then

train the NN model for 30 epochs on the training dataset. After each epoch, the resulting model is evaluated

on the validation set, and the corresponding validation accuracy is recorded. At the end of the training process,

the model parameters corresponding to the highest validation accuracy (i.e., the smallest misclassification

rate) across all epochs are selected and saved. Although the training loss is expected to decrease as more

epochs are completed, the validation accuracy may decrease, for example if over-fitting occurs. An Adam

optimizer42 with an initial learning rate of 0.001 is used to optimize the network parameters. The learning

rate is reduced by a factor of two if the training loss saturates for more than 5 epochs.

Filtering: To make the misclassification rate minimal, JIND uses K confidence thresholds, one per cell-type,

denoted by ⌧k, with k 2 [1 : K]. At inference time, before mapping a cell to the kth cell-type corresponding

to the highest probability, we cross check whether the probability is greater than the corresponding threshold

⌧k, resulting in an “unassigned" label upon failure. The thresholds are determined as a part of the training

process. We use the validation dataset to select a threshold for each cell-type based on an outlier fraction

✓ (set to 0.05 by default). Specifically, the threshold ⌧k is the highest predicted probability of the bottom

✓-quantile of the cells assigned to kth cell-type.

Inference stage

Once the training of the prediction model has been completed, the next step is to use it to classify the cells of

an independent scRNA-seq dataset, referred to as the target batch Xt, for which the cell annotations are not

available. In most practical scenarios, however, the target batch may exhibit batch effects, which translate

into differences between the distributions of Xs and Xt. To account for these potential differences and to

avoid misclassification, JIND uses a novel and scalable asymmetric alignment technique based on adversarial

training that aligns the target batch onto the source batch.

Asymmetric integration: JIND aligns the target batch onto the source batch in the latent space learned

by the encoder subnetwork after training the NN-based prediction model (Supplementary Figure S5). This

alignment is attained by transforming the latent code obtained from the encoder subnetwork to the target

batch so that it is indistinguishable from the latent code obtained from the source batch.

Let the function learned by the encoder subnetwork (prior to applying ReLU activation) be represented

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

Encoder
Positives

Discr iminator Loss

Latent
Code

Target Batch
Latent
Code

Encoder

Discriminator
Update

Shared

Source Batch

Generator Loss

Discriminator

Negatives

Positives

Shared

Update

Corrected
Latent
Code

Update

Figure 6: Asymmetric integration used by JIND: A generator scales and shifts the latent code of the target batch,
via the NN-based models S and B, to make it indistinguishable from the latent code of the source batch. To find
the optimal parameters, adversarial training is used, in which the generator and a discriminator are jointly trained to
minimize their respective losses. The goal of the discriminator is to detect whether the latent code was produced with
the source batch (positive examples) or from the target batch (negative examples).

by F and the one learned by the classifier subnetwork by P (which includes the ReLU activations after the

encoder subnetwork). Thus, the predictions are produced as P (F (x)), where h = F (x) are the corresponding

hidden representations obtained from F (the latent code). Our task is to learn a function G(x, h) such that

h = F (x) with x ⇠ Xs (source batch), is indistinguishable from ĥ = G(x, F (x)) with x ⇠ Xt (target

batch). Once such function G is found, we expect P (ĥ) to produce accurate cell-type predictions. We perform

the asymmetric integration in the latent code prior to ReLU activation as we observed that this choice led to

improved performance (Supplementary Table S3). We assume the following functional form for the function

G, referred to as the generator, that shifts and scales h to obtain the modified latent code ĥ:

ĥ = G(x, F (x)) = S(x) � F (x) +B(x)

= G(x, h) = S(x) � h+B(x),

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

where � indicates element-wise multiplication, and S and B are two different NNs jointly parameterized by

⇥G that scale and shift h, respectively. This mapping is motivated by residual connections43, which have

been shown to be extremely successful at learning deep NNs. Since the latent code h produced by the encoder

subnetwork is a 256-dimensional vector, the outputs of the NNs S and B are also of dimension 256.

Adversarial training: To learn the generator G, we employ adversarial training where a discriminator

function D parameterized by ⇥D is trained to distinguish between h = F (x), with x ⇠ Xs, and ĥ =

G(x, F (x)), with x ⇠ Xt (Figure 6). D is a NN-based classifier which estimates the probability of the

input latent code coming from the source batch. Therefore, an ideal discriminator would produce D(h) ⇡ 1

and D(ĥ) ⇡ 0. Simultaneously, G is optimized to fool the discriminator into misinterpreting ĥ as h. The two

models G and D are jointly trained to learn parameters ⇥G and ⇥D by parallely minimising the corresponding

generator and discriminator losses LG(⇥D) and LD(⇥) given as,

LG(⇥D) =� Ex⇠Xt logD(G(x, F (x))) = �Ex⇠Xt logD(ĥ) (3)

LD(⇥G) =� 0.5 · Ex⇠Xs logD(F (x))� 0.5 · Ex⇠Xt log(1�D(G(x, F (x))))

=� 0.5 · Ex⇠Xs logD(h)� 0.5 · Ex⇠Xt log(1�D(ĥ))
(4)

While minimizing LG(⇥D) and LD(⇥G), ⇥D and ⇥G are kept fixed, respectively. Note that the generator’s

objective function only depends on ĥ, whereas the discriminator’s objective function depends on both ĥ and

h (Figure 6). JIND’s asymmetric integration requires solving a competitive optimization problem in which

two networks with opposite objectives are trained against each other and a saddle point needs to be achieved.

This makes the optimization of the generator and discriminator pair challenging. To make the optimization

more stable, we regularize the generator’s objective by forcing S(x) to be approximately 1. More precisely,

we update the generator’s loss function as

LG(⇥D) = �Ex⇠Xt

⇣
logD(ĥ) + � · kS(x)� 1k2

⌘
, (5)

where � is a hyperparameter (set to 0.001 by default). The goal of this regularization is to prevent the

transformation on the target batch from being very complex. Notice that, a more complex generator could

learn an incorrect mapping by aligning different cell-types together, which would translate into incorrect

predictions for those cells.

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

Network architectures: The generator is composed of S(x) and B(x), both with the same network

architecture consisting of two fully connected layers containing 512 neurons each (with ReLU activation

function) and a fully connected layer at the end which produces a 256-dimensional output. S(x) and B(x)

each have their own network parameters (contained in ⇥G), and both take as input the cell’s gene expression

vector x (of dimension 5000 by default).

The network for the discriminator consists of three fully connected layers containing 512, 256 and 256

neurons, respectively (each with Leaky ReLU44 activation function), followed by a fully connected layer

with one neuron which produces a one-dimensional output between zero and one through sigmoid activation

function. The input to the discriminator is a 256-dimensional vector representing the latent code.

Training details: We use both the source batch Xs and the target batch Xt for training, with no cell

annotations. The generator’s parameters ⇥G are initialized such that initially G is an identity mapping, with

h = ĥ, i.e., S(x) ⇡ 1 and B(x) ⇡ 0. For the generator model, we use RMSProp45 optimizer with a learning

rate of 0.0001 and a weight decay of 0.01. Similarly, for the discriminator model, we use RMSProp optimizer

with a learning rate of 0.0001 and a weight decay of 1e-6. Note that weight decay is equivalent to penalty on

the magnitude of the network parameters, which is required to prevent over-fitting. Both architectures use a

mini-batch size of 512 samples for the optimization via gradient descent. Since the task of the generator is

only to learn the residual, i.e., modify the latent code, for every iteration of the generator the discriminator

undergoes two training iterations.

Final prediction model: After the asymmetric integration is performed, the final prediction model is as

follows. First, the encoder subnetwork takes as input the cell’s gene expression vector x and produces the

latent code h. Both x and h are then input to the generator, which produces the corrected latent code ĥ.

Finally, the corrected latent code ĥ goes through ReLU activation, and then to the classifier subnetwork,

which produces the final probabilities of the cell belonging to each of the considered K cell-types (Figure

1c). JIND labels the cell with the cell-type having highest probability, or with an “unassigned” label if the

threshold constraint is not satisfied.

JIND+

JIND+ is an extension of JIND that uses self-training to improve its performance. Self-training involves

the use of unlabelled data, in our case the target batch with unknown cell-type annotations, to improve

the classification model by using the predictions as pseudo labels. The distribution of the unlabelled data

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

might differ slightly from that of the training data, and hence self-training becomes an efficient way of

transferring classifiers across domains22, 23. In our case, even after asymmetric integration in the latent space,

the distribution of the modified latent code for the target batch may still differ from that of the latent code for

the source batch. Therefore, in JIND+ we use the confident predictions made on the target batch to further

fine-tune (train) the encoder and the classifier subnetworks. We minimize weighted categorical cross entropy,

and reuse the weights determined using source batch cell composition (Eq. 1). To identify the confident

predictions, we calculate thresholds for each cell-type as outlined in subsection (filtering) using the validation

dataset (from the source batch) with an outlier fraction ✓ = 0.3. Then, only the cells with predictions above

the corresponding threshold are used for the fine tuning, using the predicted cell-type as the label. Note

that JIND+ performs self-training after training the generator and discriminator networks, after which their

parameters remain unchanged. Only the parameters of the prediction model are modified.

Training Details: We use Adam optimizer42 with a learning rate of 0.0001 for 10 epochs and a mini-batch

size of 32. The rest of the hyperparameters are the same as the ones used for training the prediction model.

To obtain training and validation datasets, we choose 70% of the confident predictions for training and the

rest for validation. Then, we save the parameters across all epochs with the highest accuracy on the validation

set (as done in the parameter selection for the prediction model).

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

References

[1] Jindal, A., Gupta, P., Jayadeva & Sengupta, D. Discovery of rare cells from voluminous single cell

expression data. Nature Communications 9, 4719 (2018). URL https://doi.org/10.1038/

s41467-018-07234-6.

[2] Andrews, T. S. & Hemberg, M. Identifying cell populations with scrnaseq. Molecular Aspects

of Medicine 59, 114 – 122 (2018). URL http://www.sciencedirect.com/science/

article/pii/S0098299717300493. The emerging field of single-cell analysis.

[3] Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets

of kidney disease. Science 360, 758–763 (2018). URL https://science.sciencemag.

org/content/360/6390/758. https://science.sciencemag.org/content/360/

6390/758.full.pdf.

[4] Trapnell, C. Defining cell types and states with single-cell genomics. Genome Research 25, 1491–1498

(2015).

[5] Abdelaal, T. et al. A comparison of automatic cell identification methods for single-cell rna

sequencing data. Genome Biology 20, 194 (2019). URL https://doi.org/10.1186/

s13059-019-1795-z.

[6] Diaz-Mejia, J. J. et al. Evaluation of methods to assign cell type labels to cell clusters from single-cell

rna-sequencing data. F1000Research 8, ISCB Comm J–296 (2019). URL https://pubmed.ncbi.

nlm.nih.gov/31508207. 31508207[pmid].

[7] Regev, A. et al. Science forum: The human cell atlas. eLife 6 (2017).

[8] Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091 – 1107.e17 (2018). URL

http://www.sciencedirect.com/science/article/pii/S0092867418301168.

[9] Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a tabula muris. Nature 562,

367–372 (2018). URL https://doi.org/10.1038/s41586-018-0590-4.

[10] Ma, F. & Pellegrini, M. Automated identification of cell types in single cell rna sequenc-

ing. bioRxiv (2019). URL https://www.biorxiv.org/content/early/2019/01/28/

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1038/s41467-018-07234-6
http://www.sciencedirect.com/science/article/pii/S0098299717300493
http://www.sciencedirect.com/science/article/pii/S0098299717300493
https://science.sciencemag.org/content/360/6390/758
https://science.sciencemag.org/content/360/6390/758
https://science.sciencemag.org/content/360/6390/758.full.pdf
https://science.sciencemag.org/content/360/6390/758.full.pdf
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.1186/s13059-019-1795-z
https://pubmed.ncbi.nlm.nih.gov/31508207
https://pubmed.ncbi.nlm.nih.gov/31508207
http://www.sciencedirect.com/science/article/pii/S0092867418301168
https://doi.org/10.1038/s41586-018-0590-4
https://www.biorxiv.org/content/early/2019/01/28/532093
https://www.biorxiv.org/content/early/2019/01/28/532093
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

532093. https://www.biorxiv.org/content/early/2019/01/28/532093.full.

pdf.

[11] Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scpred: accurate supervised

method for cell-type classification from single-cell rna-seq data. Genome Biology 20, 264 (2019). URL

https://doi.org/10.1186/s13059-019-1862-5.

[12] Boufea, K., Seth, S. & Batada, N. N. scid: Identification of equivalent transcriptional cell populations

across single cell rna-seq data using discriminant analysis. bioRxiv (2019). URL https://www.

biorxiv.org/content/early/2019/01/31/470203. https://www.biorxiv.org/

content/early/2019/01/31/470203.full.pdf.

[13] Li, C. et al. Scibet as a portable and fast single cell type identifier. Nature Communications 11, 1818

(2020). URL https://doi.org/10.1038/s41467-020-15523-2.

[14] Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell rna-seq data across data sets.

Nature Methods 15, 359–362 (2018). URL https://doi.org/10.1038/nmeth.4644.

[15] Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

[16] Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Scientific

Reports 7, 39921 (2017). URL https://doi.org/10.1038/srep39921.

[17] Grün, D. Revealing routes of cellular differentiation by single-cell rna-seq. Current Opinion in Systems

Biology 11, 9 – 17 (2018). URL http://www.sciencedirect.com/science/article/

pii/S2452310018300131. • Big data acquisition and analysis • Development and differentiation.

[18] Norton, S. S., Vaquero-Garcia, J., Lahens, N. F., Grant, G. R. & Barash, Y. Out-

lier detection for improved differential splicing quantification from RNA-Seq experiments

with replicates. Bioinformatics 34, 1488–1497 (2017). URL https://doi.org/10.

1093/bioinformatics/btx790. https://academic.oup.com/bioinformatics/

article-pdf/34/9/1488/25417002/btx790.pdf.

[19] Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data

using empirical Bayes methods. Biostatistics 8, 118–127 (2006). URL https://doi.org/

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://www.biorxiv.org/content/early/2019/01/28/532093
https://www.biorxiv.org/content/early/2019/01/28/532093
https://www.biorxiv.org/content/early/2019/01/28/532093.full.pdf
https://www.biorxiv.org/content/early/2019/01/28/532093.full.pdf
https://doi.org/10.1186/s13059-019-1862-5
https://www.biorxiv.org/content/early/2019/01/31/470203
https://www.biorxiv.org/content/early/2019/01/31/470203
https://www.biorxiv.org/content/early/2019/01/31/470203.full.pdf
https://www.biorxiv.org/content/early/2019/01/31/470203.full.pdf
https://doi.org/10.1038/s41467-020-15523-2
https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1038/srep39921
http://www.sciencedirect.com/science/article/pii/S2452310018300131
http://www.sciencedirect.com/science/article/pii/S2452310018300131
https://doi.org/10.1093/bioinformatics/btx790
https://doi.org/10.1093/bioinformatics/btx790
https://academic.oup.com/bioinformatics/article-pdf/34/9/1488/25417002/btx790.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/9/1488/25417002/btx790.pdf
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

10.1093/biostatistics/kxj037. https://academic.oup.com/biostatistics/

article-pdf/8/1/118/25435561/kxj037.pdf.

[20] Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes

using scanorama. Nature Biotechnology 37, 685–691 (2019). URL https://doi.org/10.1038/

s41587-019-0113-3.

[21] Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell rna-sequencing

data are corrected by matching mutual nearest neighbors. Nature Biotechnology 36, 421–427 (2018).

URL https://doi.org/10.1038/nbt.4091.

[22] Lee, D.-H. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural

networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL) (2013).

[23] Zou, Y., Yu, Z., Liu, X., Kumar, B. V. K. V. & Wang, J. Confidence regularized self-training (2019).

1908.09822.

[24] Goodfellow, I. J. et al. Generative adversarial networks (2014). 1406.2661.

[25] Zhu, J., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent

adversarial networks. CoRR abs/1703.10593 (2017). URL http://arxiv.org/abs/1703.

10593. 1703.10593.

[26] Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype

acute leukemia. Nature Biotechnology 37, 1458–1465 (2019). URL https://doi.org/10.1038/

s41587-019-0332-7.

[27] Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science

347, 1138–1142 (2015). URL https://science.sciencemag.org/content/347/6226/

1138. https://science.sciencemag.org/content/347/6226/1138.full.pdf.

[28] Park, J.-E., Polański, K., Meyer, K. & Teichmann, S. A. Fast batch alignment of single cell tran-

scriptomes unifies multiple mouse cell atlases into an integrated landscape. bioRxiv (2018). URL

https://www.biorxiv.org/content/early/2018/08/22/397042. https://www.

biorxiv.org/content/early/2018/08/22/397042.full.pdf.

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://academic.oup.com/biostatistics/article-pdf/8/1/118/25435561/kxj037.pdf
https://academic.oup.com/biostatistics/article-pdf/8/1/118/25435561/kxj037.pdf
https://doi.org/10.1038/s41587-019-0113-3
https://doi.org/10.1038/s41587-019-0113-3
https://doi.org/10.1038/nbt.4091
1908.09822
1406.2661
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
1703.10593
https://doi.org/10.1038/s41587-019-0332-7
https://doi.org/10.1038/s41587-019-0332-7
https://science.sciencemag.org/content/347/6226/1138
https://science.sciencemag.org/content/347/6226/1138
https://science.sciencemag.org/content/347/6226/1138.full.pdf
https://www.biorxiv.org/content/early/2018/08/22/397042
https://www.biorxiv.org/content/early/2018/08/22/397042.full.pdf
https://www.biorxiv.org/content/early/2018/08/22/397042.full.pdf
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

[29] Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and

intra-cell population structure. Cell Systems 3, 346–360.e4 (2016). URL https://doi.org/10.

1016/j.cels.2016.08.011.

[30] Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Systems 3, 385–394.e3

(2016). URL https://doi.org/10.1016/j.cels.2016.09.002.

[31] Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type

2 diabetes. Cell Metabolism 24, 593–607 (2016). URL https://doi.org/10.1016/j.cmet.

2016.08.020.

[32] McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for

dimension reduction (2020). 1802.03426.

[33] Niculescu-Mizil, A. & Caruana, R. Predicting good probabilities with supervised learning. In Proceed-

ings of the 22nd International Conference on Machine Learning, ICML ’05, 625–632 (Association

for Computing Machinery, New York, NY, USA, 2005). URL https://doi.org/10.1145/

1102351.1102430.

[34] Johansen, N. & Quon, G. scalign: a tool for alignment, integration, and rare cell identification

from scrna-seq data. Genome Biology 20, 166 (2019). URL https://doi.org/10.1186/

s13059-019-1766-4.

[35] Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis

tools for rna-seq read counts. Genome biology 15, R29 (2014).

[36] Baldan, J., Houbracken, I., Rooman, I. & Bouwens, L. Adult human pancreatic acinar cells dedif-

ferentiate into an embryonic progenitor-like state in 3d suspension culture. Scientific reports 9, 1–12

(2019).

[37] Bengio, Y., Courville, A. C. & Vincent, P. Unsupervised feature learning and deep learning: A review

and new perspectives. CoRR abs/1206.5538 (2012). URL http://arxiv.org/abs/1206.5538.

1206.5538.

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.09.002
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1016/j.cmet.2016.08.020
1802.03426
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1186/s13059-019-1766-4
https://doi.org/10.1186/s13059-019-1766-4
http://arxiv.org/abs/1206.5538
1206.5538
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

[38] Yates, A. D. et al. Ensembl 2020. Nucleic Acids Research 48, D682–D688 (2019). URL https://

doi.org/10.1093/nar/gkz966. https://academic.oup.com/nar/article-pdf/

48/D1/D682/31697830/gkz966.pdf.

[39] Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings

of the 27th International Conference on International Conference on Machine Learning, ICML’10,

807–814 (Omnipress, Madison, WI, USA, 2010).

[40] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

[41] Xie, P. et al. Superct: a supervised-learning framework for enhanced characterization of single-cell

transcriptomic profiles. Nucleic acids research 47, e48–e48 (2019). URL https://pubmed.ncbi.

nlm.nih.gov/30799483. 30799483[pmid].

[42] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. & LeCun, Y. (eds.)

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings (2015). URL http://arxiv.org/abs/1412.6980.

[43] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. CoRR

abs/1512.03385 (2015). URL http://arxiv.org/abs/1512.03385. 1512.03385.

[44] Xu, B., Wang, N., Chen, T. & Li, M. Empirical evaluation of rectified activations in convolutional

network. CoRR abs/1505.00853 (2015). URL http://arxiv.org/abs/1505.00853. 1505.

00853.

[45] Hinton, G. E., Srivastava, N. & Swersky, K. Neural networks for machine learning, lecture 6a (2014).

URL https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf.

31

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327601doi: bioRxiv preprint

https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1093/nar/gkz966
https://academic.oup.com/nar/article-pdf/48/D1/D682/31697830/gkz966.pdf
https://academic.oup.com/nar/article-pdf/48/D1/D682/31697830/gkz966.pdf
https://pubmed.ncbi.nlm.nih.gov/30799483
https://pubmed.ncbi.nlm.nih.gov/30799483
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1512.03385
1512.03385
http://arxiv.org/abs/1505.00853
1505.00853
1505.00853
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1101/2020.10.06.327601
http://creativecommons.org/licenses/by-nc/4.0/

