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Abstract

Standard workflows for analyzing microbiomes often include the creation and curation of
phylogenetic trees. Here we present EMPress, an interactive tool for visualizing trees in the
context of microbiome, metabolome, etc. community data scalable beyond modern large
datasets like the Earth Microbiome Project. EMPress provides novel functionality—including
ordination integration and animations—alongside many standard tree visualization features, and
thus simplifies exploratory analyses of many forms of ‘omic data.
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Main Text

The increased availability of sequencing technologies and automation of molecular methods
have enabled studies of unprecedented scale [1] prompting the creation of tools better suited to
store, analyze [2], and visualize [3] studies of this magnitude. Many of these tools, such as [4, 5,
6, 7], use phylogenies detailing the evolutionary relationships among features or dendrograms
that organize features in a hierarchical structure (e.g. clustering of mass spectra) [8]. The
challenge of enabling fully interactive analyses stems from the disconnect between feature-level
tools and dataset-level tools; few can interactively integrate multiple representations of the data
[9], and to our knowledge none scale to display large datasets. This is a key unresolved
challenge for the field: to allow researchers to contextualize community-level patterns
(groupings of samples) together with feature-level structure, i.e. which features lead to the
groupings explained in a given sample set.

Here, we introduce EMPress (https://github.com/biocore/empress), an open-source (BSD 3-
clause), interactive and scalable phylogenetic tree viewer accessible as a QIIME 2 [2] plugin.
EMPress is built around the high-performance balanced parentheses tree data structure [10],
and uses a hardware-accelerated WebGL-based rendering engine that allows EMPress to
visualize trees with hundreds of thousands of nodes using a laptop’s web browser (Methods).
By integrating EMPress with the widely-used EMPeror software [3] within QIIME 2, EMPress
can simultaneously visualize a phylogenetic tree of features in a study coupled with an
ordination of the same study’s samples. User actions in one visualization, such as selecting a
set of samples in the ordination, update the other, providing context that would not be easily
accessible with independent visualizations. This tight integration between displays streamlines
several use-cases elaborated below that previously required manual investigation or writing
custom scripts.

EMPress visualizations can be created solely from a tree, or users can provide additional
metadata files and a feature table to augment the tree. Using these common data files,users
can interactively configure many visual attributes in the tree (see Methods and Figures for
examples).

Rather than providing a programmatic interface for the procedural generation of styled
phylogenetic trees [11, 12, FigTree (http://tree.bio.ed.ac.uk/software/figtree/)], EMPress
provides an interactive environment to support exploratory feature- and sample-level tree-based
analyses. Many use-cases supported in EMPress accommodate community analysis tasks; this
differs from Anvi’o [13] which is centered on the analysis of metagenomic assembled-genomes,
pangenomes, etc.. PHYLOViZ [9], SigTree [14], and iTOL [15] are similar to EMPress in terms
of their implementation (PHYLOViZ Online also uses WebGL), and/or use-cases (SigTree is
mostly used to visualize differential abundance patterns, and iTOL supports the visualization of
QIIME 2 tree artifacts). EMPress stands out in its scalability: iTOL claims trees with more than


https://doi.org/10.1101/2020.10.06.327080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327080; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

82 10,000 tips to be “very large” (https://itol.embl.de/help.cqi), while EMPress readily supports trees
83  with over hundreds of thousands of tips, as shown in Fig. 1. Many visualization customization
84  options available in EMPeror, iTOL [15] and Anvi'o [13] are immediately accessible in EMPress’
85 interface. Continuous feature metadata can be visualized in tip-level barplots as a color gradient
86  and/or by adjusting the lengths of individual tips’ barplots; categorical sample metadata
87 information can be visualized using a stacked barplot showing—for each tip—the proportion of
88  samples containing that tip stratified by category. These options are available on the user
89 interface and do not require programming or configuration files.
90
91 Ordination plots computed from UniFrac distances are often used to visualize sample clustering
92  patterns in microbiome studies. However, interpreting the patterns in these plots—and
93 determining which features influence sample group separation—is not always straightforward.
94  While biplots show information about influential features alongside samples, the phylogenetic
95 relationships of these features are not immediately obvious. EMPress aids interpretation of
96 these plots by optionally providing a unified interface where the tree and ordination
97  visualizations are displayed side-by-side and “linked” through sample and feature identifiers
98 [16]. This combination allows for novel exploratory data analysis tasks. For example, selecting a
99  group of samples in the ordination highlights nodes in the tree present in those samples, and
100 vice versa (see Methods). This integration extends to biplots: clicking feature arrows in the
101  ordination highlights their placement in the tree. Lastly, EMPress allows visualizing longitudinal
102  studies by simultaneously showing the tree nodes unique to groups of samples at each
103 individual time point during an EMPeror animation (see Methods).
104
105  Using the first data release of the Earth Microbiome Project (EMP), we demonstrate EMPress’
106  scalability by rendering a 26,035 sample ordination and a 756,377 node tree (Figure 1A). To
107  visualize the relative proportions of taxonomic groups at the phylum level, we use EMPress’
108 feature metadata coloring to highlight the top 5 most prevalent phyla (see Methods). Next, we
109 add a barplot layer showing, for each tip in the tree, the proportions of samples containing each
110  tip summarized by level 2 of the EMP ontology (Animal, Plant, Non-Saline, and Saline). Paired
111 visualizations allow us to click on a tip in the tree and view the samples that contain that feature
112  in the ordination. This functionality is useful when analyzing datasets with outliers or mislabeled
113  metadata. Tip-aligned barplots summarize environmental metadata: for example, Figure 1B
114  shows the subset of samples (4,002) with recorded pH information and a barplot layer with the
115  mean pH where each feature was found. The barplot reveals a relatively dark section near
116  many Firmicutes-classified features on the tree; in concert with histograms showing mean pH
117  for each phylum (Figure 1C), we can confirm that Firmicutes-classified features are more
118  commonly found in higher pH environments.
119
120 EMPress can be applied to various ‘omic datasets. To illustrate this versatility we reanalyzed a
121 COVID-19 metatranscriptome sequencing dataset [17], a liquid chromatography mass-
122  spectrometry (LC-MS) untargeted metabolomic food-associated dataset [8], and a 16S rRNA
123  sequencing oral microbiome dataset [18]. Despite the vastly different natures of these datasets,
124  EMPress provides meaningful functionality for their analysis and visualization. Supplemental
125  Video 1 (supplementary-video-1.mp4) shows a longitudinal exploratory analysis using EMPress
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126  and EMPeror representing a subset of SARS-CoV-2 genome data from GISAID. This paired
127  visualization emphasizes the relationships in time and space among “community samples” and
128 the convergence of locales in the United States with the outbreak in Italy (See Methods). The
129 interactive nature of EMPress allows rapid visualization of strains observed in a collection of
130 samples from different geographical locations.

131

132  Figure 2A showcases Empress’ ability to identify feature clusters that are differentially abundant
133  in COVID-19 patients compared to community-acquired pneumonia patients and healthy

134  controls [17]. Clades showing KEGG enzyme code (EC) [19] annotations are collapsed at level
135  two except for lyases, highlighting feature 4.1.1.20 (carboxy-lyase diaminopimelate

136  decarboxylase) that was more abundant in COVID-19 here and in an independent

137  metaproteomic analysis of COVID-19 respiratory microbiomes [20].

138

139  Recent developments in cheminformatics enabled the analysis and visualization of small

140  molecules in the context of a cladogram [8]. Using a tree that links molecules by their structural
141  relatedness, we analyzed untargeted LC-MS/MS data from 70 food samples (see Methods).
142  With EMPress’ sample metadata barplots, we can inspect the relationship between chemical
143  annotations and food types. Figure 2B shows a tree where each tip is colored by its chemical
144  super class, and where barplots show the proportion of samples in the study containing each
145 compound by food type. This representation reveals a clade of lipids and lipid-like molecules
146  that are well represented in animal food types and seafoods. In contrast, salads and fruits are
147  broadly spread throughout the cladogram.

148

149  Lastly, in Figure 2C, we compare three differential abundance methods in an oral microbiome
150 dataset [18] as separate barplot layers on a tree. This dataset includes samples (n=32) taken
151  before and after subjects brushed their teeth (see Methods). As observed across the three

152  differential abundance tools’ outputs, all methods agree broadly on which features are

153  particularly “differential” (for example, the cluster of Firmicutes-classified sequences in the

154  bottom-right of the tree; see Methods), although there are discrepancies due to different

155  methods’ assumptions and biases.

156  Conclusions

157 By providing an intuitive interface supporting both categorically new and established

158  functionality, EMPress complements and extends the available range of tree visualization

159  software. EMPress can perform community analyses across distinct “omics” types, as

160 demonstrated here. Moving forward, facilitating the integration of multiple orthogonal views of a
161  dataset at a more generalized framework level (for example, using QIIMEZ2’s [2] visualization
162  API) will be important as datasets continue to grow in complexity, size, and heterogeneity.
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a EMPress and EMPeror are dynamically linked together. For example, clicking on a tip reveals the node’s
inspection menu, and highlights the 2 samples in the ordination that contain that microbial feature.
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Figure 1. Earth Microbiome Project paired phylogenetic tree (including 756,377 nodes) and
unweighted UniFrac ordination (including 26,035 samples) . (a) Graphical depiction of Empress’
unified interface with fragment insertion tree (left), and unweighted UniFrac sample ordination (right). Tips
are colored by their phylum-level taxonomic assignment; the barplot layer is a stacked barplot describing
the proportions of samples containing each tip summarized by level 2 of the EMP ontology. Inset shows
summarized sample information for a selected feature. The ordination highlights the two samples
containing the tip selected in the tree enlarged to show their location. (b) Subset of EMP samples with pH
information: the inner barplot ring shows the phylum-level taxonomic assignment, and the outer barplot
ring represents the mean pH of all the samples where each tip was observed (c) pH distributions
summarized by phylum-level assignment with median pH indicated by dotted lines. Interactive figures can
be accessed here.
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Differential Microbial Functionality in Community Analysis of Food-Derived Compounds Comparison of Oral Microbiomes Before and
COVID-19 Patients (Metatranscriptomics) (LC-MS untargeted metabolomics) After Toothbrushing (16S rRNA sequencing)
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199 Figure 2. EMPress is a versatile exploratory analysis tool adaptable to various -omics data types.

200 (a) RoDEO differential abundance scores of microbial functions from metatranscriptomic sequencing of
201 COVID-19 patients (n=8), community-acquired pneumonia patients (n=25), and healthy control subjects
202  (n=20). The tree represents the four-level hierarchy of the KEGG enzyme code. The barplot colors

203  significantly differentially abundant features (p<0.05) in COVID-19 patients. Clicking on a tip produces a
204 pop-up insert tabulating the name of the feature, its hierarchical ranks, and any feature annotations.
205  (b) Global FoodOmics Project LC-MS data. Stacked barplots indicate the proportions of samples (n=70)
206  (stratified by food) containing the tips in an LC-MS Qemistree of food-associated compounds, with tip
207  nodes colored by their chemical superclass.

208 (c) de novo tree constructed from 16S rRNA sequencing data from 32 oral microbiome samples. Samples
209  were taken before (n=16) and after (n=16) subjects (n=10) brushed their teeth; each barplot layer

210 represents a different differential abundance method’s measure of change between before- and after-
21 brushing samples. The innermost layer shows estimated log-fold changes produced by Songbird; the
212  middle layer shows effect sizes produced by ALDEx2; and the outermost layer shows the W-statistic
213  values produced by ANCOM (see Methods). The tree is colored by tip nodes’ phylum-level taxonomic
214  classifications. Interactive figures can be accessed here.
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