

1 **Molecular basis for *B. pertussis* interference with complement, coagulation, fibrinolytic**
2 **and contact activation systems: The cryo-EM structure of the Vag8-C1 inhibitor complex.**

3

4

5 **Arun Dhillon¹, Justin C. Deme^{1,2}, Emily Furlong¹, Dorina Roem³, Ilse Jongerius^{3,4}, Steven**
6 **Johnson^{1*}, Susan M. Lea^{1,2*}**

7

1. Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
2. Central Oxford Structural Molecular Imaging Centre, South Parks Road, Oxford, OX1
3RE, UK
3. Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory,
Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute,
Amsterdam, the Netherlands
4. Department of Pediatric Immunology, Rheumatology, and Infectious Diseases,
Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the
Netherlands

17 *to whom correspondence should be addressed, steven.johnson@path.ox.ac.uk,
18 susan.lea@path.ox.ac.uk

19

20 **Abstract**

21 Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that
22 need strict regulation to maintain human health. Serum glycoprotein, C1-inhibitor (C1-INH) is
23 a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently,
24 an autotransporter protein, Virulence Associated Gene 8 (Vag8) produced by the whooping
25 cough causing pathogen, *Bordetella pertussis* has been shown to bind and interfere with C1-
26 INH function. Here we present the structure of Vag8: C1-INH complex determined using cryo-
27 electron microscopy at 3.6 Å resolution. The structure shows a unique mechanism of C1-INH
28 inhibition not employed by other pathogens where Vag8 sequesters the Reactive Centre Loop
29 of the C1-INH preventing its interaction with the target proteases.

30 **Importance**

31 The structure 105 kDa protein complex is one of the smallest to be determined using cryo-
32 electron microscopy at high resolution. The mechanism of disrupting C1-INH revealed by the

33 structure is crucial to understand how pathogens by producing a single virulence factor can
34 disturb several homeostasis pathways. Virulence mechanisms such as the one described here
35 assume more importance given the emerging evidence about dysregulation of contact
36 activation, coagulation and fibrinolysis leading to COVID-19 pneumonia.

37 **Keywords:** *Bordetella pertussis*, immune evasion, complement system, SERPIN,
38 autotransporters, C1-INH.

39

40

41 **Introduction**

42 Protein cascades coordinate key processes for health within human serum, in particular
43 immune and inflammatory responses (complement and contact activation) and control of
44 clotting (contact activation, coagulation and fibrinolysis) (1–3). Although independent
45 processes, coordination between the pathways occurs by shared regulation, particularly by C1-
46 inhibitor (C1-INH) (4). C1-INH inhibits serine proteases involved in activation and control of
47 these systems by formation of protease-C1-INH complexes such that the level of these
48 complexes is directly proportional to the level of *in vivo* activation of all four systems (5). C1-
49 INH is established as a key regulator of complement via inhibition of the activation proteases
50 C1r, C1s, MASP-1 and MASP-2 and is the dominant inhibitor of plasma kallikrein (contact
51 activation system), coagulation factors XIIa and XIa and thrombin (6–10). The mode of
52 inhibition of these proteases involves interaction between the Reactive Centre Loop (RCL) of
53 the C-terminal Serpin domain of C1-INH to form a covalently linked acyl-enzyme complex
54 that distorts the enzyme active site and is irreversibly bound (11–13). Additionally, C1-INH
55 has been implicated in regulation of fibrinolysis via action against tissue-type plasminogen
56 activator (tPA) and plasmin – although study of this is complicated by the fact that both these
57 enzymes will also cleave C1-INH (14, 15).

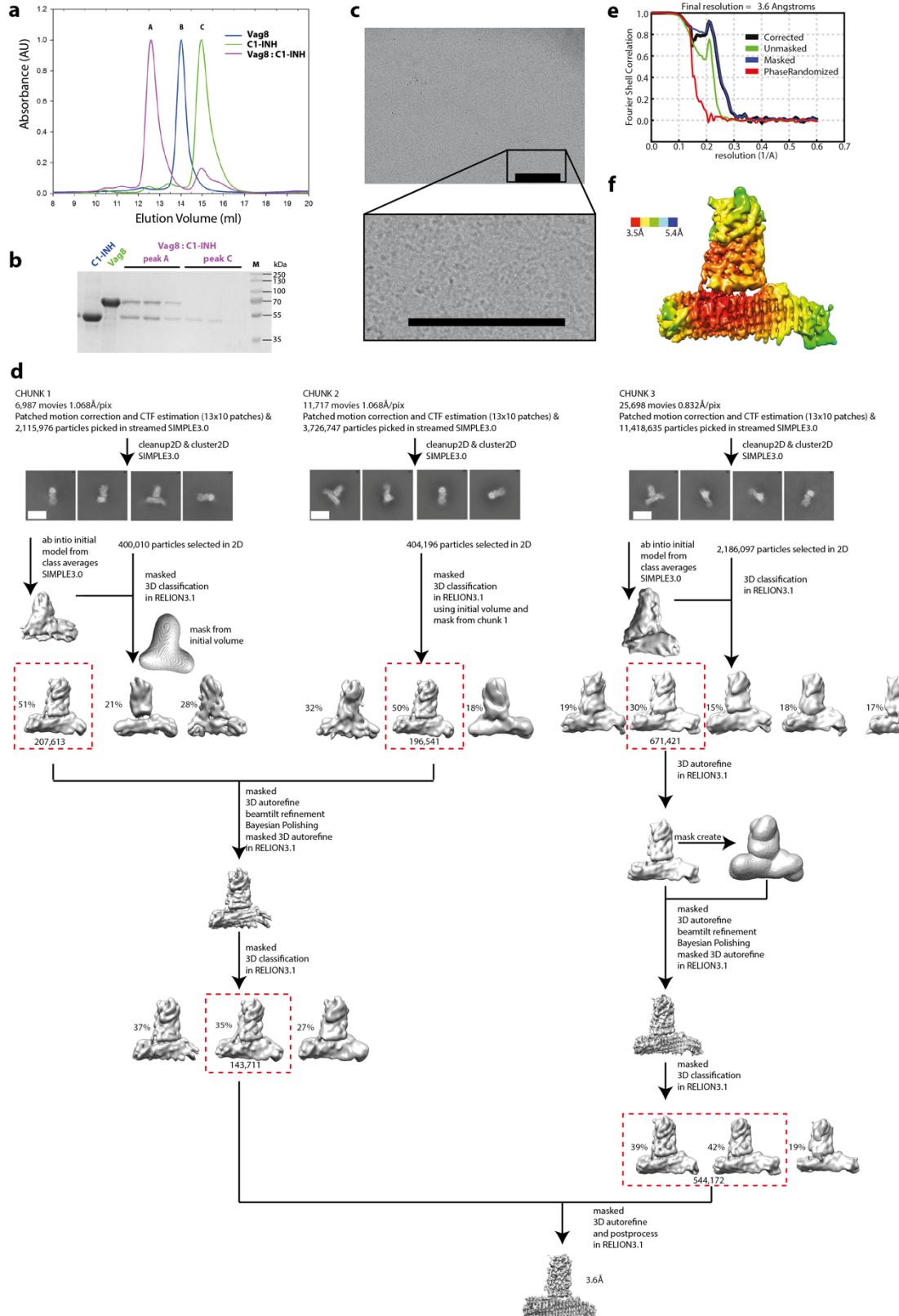
58

59 Whooping cough (pertussis) is an infectious disease of the respiratory system caused
60 by the Gram-negative bacterium *Bordetella pertussis* (16). *B. pertussis* employs a range of
61 virulence factors to colonise the human host and evade immune responses (17). Some of these
62 factors e.g. Virulence associate gene 8 (Vag8), *Bordetella* Resistance to Killing A (BrkA),
63 Filamentous hemagglutinin (FHA) and *B. pertussis* autotransporter protein C (BapC) have been
64 implicated in evasion of the complement system (18–21). While the mechanisms of action of
65 BrkA, BapC, FHA are still unclear, Vag8, a 95 kDa auto-transporter protein was recently

66 shown to interfere with the complement and contact systems by binding to C1-INH leading to
67 bacterial complement evasion (22, 23). Auto-transporters represent the type V bacterial
68 secretion system and possess a C-terminal membrane embedded β -barrel domain that facilitates
69 the translocation of the N-terminal passenger domain, responsible for effector functions, across
70 the outer membrane (24). In case of Vag8 the cleaved N-terminal domain has been detected in
71 bacterial culture supernatant in addition to the full length Vag8 being presented on outer
72 membrane vesicles (OMVs), and on the cell surface (22). Deletion of the gene encoding Vag8
73 predisposes *B. pertussis* to complement mediated killing (18, 22).

74 Although C1-INH is an inhibitor of complement activation, targeting C1-INH activity
75 is used as a strategy for complement evasion by a range of different pathogens. *Streptococcus*
76 *pyogenes*, and *Legionella pneumophila* use enzymes, SpeB and ChiA respectively, to cleave
77 C1-INH (25, 26), while *Plasmodium falciparum*, *Borrelia recurrentis* and *Salmonella*
78 *typhimurium* depend on *PfMSP3.1*, CihC, and lipopolysaccharide (27–29), respectively to
79 capture C1-INH on the cell surface. A hybrid of the above two strategies of C1-INH targeting
80 has been proposed to be used by *E. coli O157:H7* involving capture of C1-INH on the cell
81 surface followed by an enzymatic cleavage (30). Whilst targeting an inhibitor to the pathogen
82 surface is a self-evident way of enhancing immune evasion, the utility of destruction of C1-
83 INH is less obvious but occurs due to the fact that removal of C1-INH from serum leads to
84 rapid, catastrophic activation of complement, leading to depletion of activity and so,
85 perversely, less complement attack on the pathogen (22).

86 Globally, pertussis is responsible for a large number of infant deaths, especially in low
87 income countries and is a financial burden even in developed economies (31, 32). Despite
88 extensive vaccination programs *B. pertussis* infections are on the rise again (33). Reasons to
89 explain the rising infections have been contentious and include waning of immunity generated
90 by acellular pertussis vaccines, and evolution of more pathogenic strains (34–37) therefore, a
91 molecular understanding of the mode of action of *B. pertussis* virulence factors such as Vag8
92 is desirable. More broadly, with evidence mounting that activation of coagulation and
93 excessive cytokine release are key drivers of COVID-19 pneumonia and mortality with contact
94 activation appearing particularly important in driving pathologic upregulation of inflammatory
95 mediators and coagulation, interest in pathogenic mechanisms acting on these systems is
96 further increased (38–41).

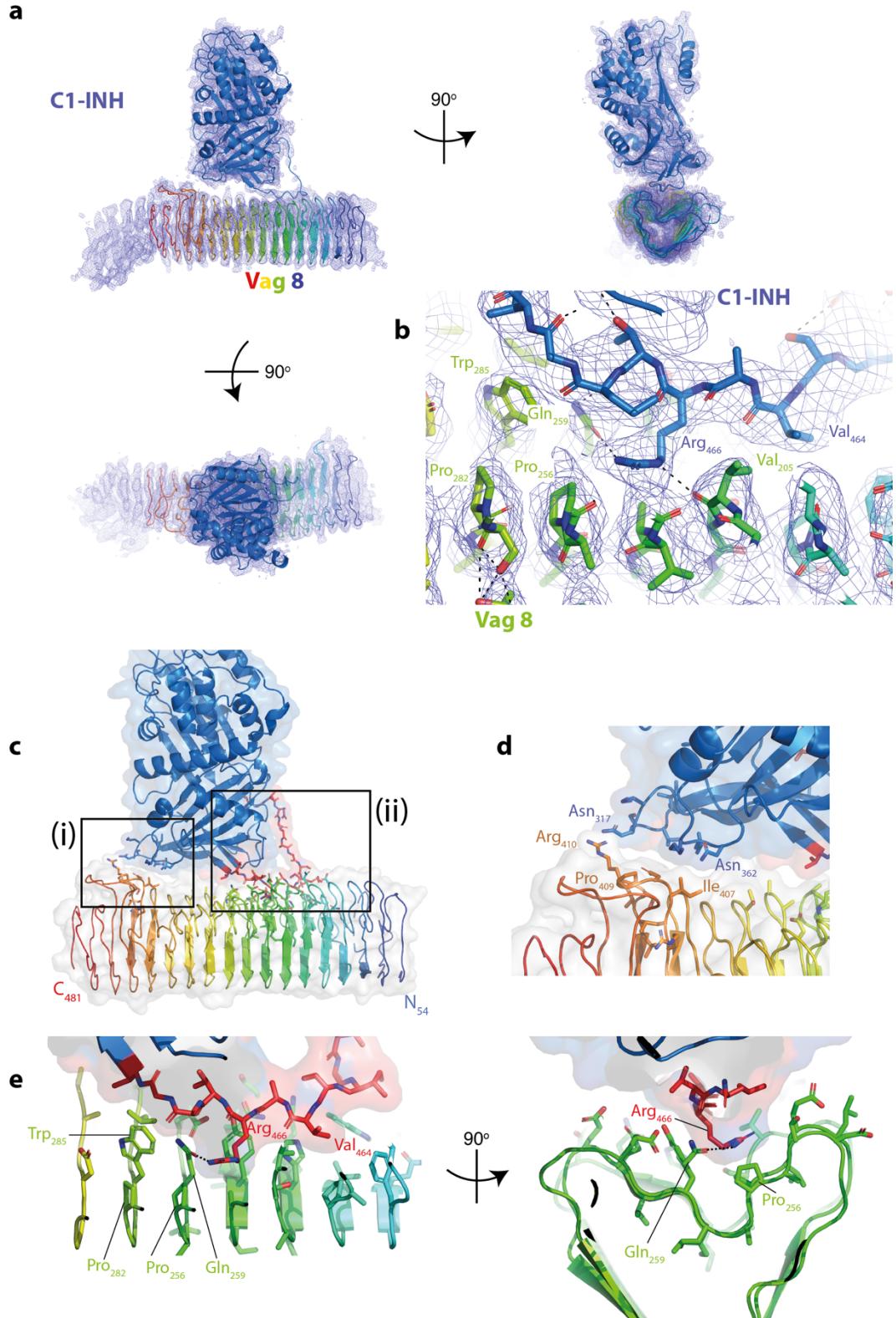

97 To that end, we have determined the structure of the Vag8 passenger domain in complex
98 with the C1-INH Serpin domain using single particle cryo-electron (cryo-EM) microscopy to
99 3.6 Å resolution. The Cryo-EM structure of this complex reveals that Vag8 non-covalently

100 sequesters the reactive centre loop (RCL) of C1-INH in the groove of the elongated passenger
101 domain so preventing C1-INH/protease interactions and regulation. Thus *B. pertussis* overrides
102 complement regulatory control by a unique mechanism not previously seen in other pathogens.
103 Sequestration of C1-INH in this manner not only leads to complement evasion but also
104 promotes kallikrein activation, leading to increased levels of the vasoactive bradykinin,
105 increased fibrinolysis, and coagulation. Thus *B. pertussis* widely perturbs serum activities
106 across a broad spectrum by production of a single protein molecule.

107

108 **Results**

109 To better understand how *B. pertussis* subverts C1-INH function we heterologously expressed
110 and purified both the passenger domain of Vag8 and the Serpin domain of C1-INH (Figure 1a,
111 b). When mixed at an approximately equimolar ratio the proteins formed a complex that could
112 be separated from a small amount of residual isolated C1-INH by size-exclusion
113 chromatography (Figure 1a, b). This Vag8:C1-INH complex was then concentrated to 0.5
114 mg/ml and applied to Quantifoil R1.2/1.3 carbon-coated grids before blotting using a Mark IV
115 Vitrobot and plunge freezing in liquid ethane. Single particle cryoEM data were collected using
116 a Titan Krios at 300kV equipped with a Gatan BioQuantum and K3 detector as described in
117 the methods. The small size of the complex (~100 kDa) meant that individual particles were
118 difficult to discern at the micrograph level (Figure 1c), however manual picking of ~1000
119 particles followed by 2D classification generated 2D averages that were used for automated
120 picking of more than 40,000 movies, collected from three grids (Figure 1d). Data were
121 processed as shown in the workflow (Figure 1d) using both SIMPLE3.0 (42) and RELION3.1
122 (43) to yield a final volume based on 687,883 particles with an estimated resolution (by gold-
123 standard FSC, 0.143 criterion) of 3.6 Å (Figure 1e). Calculation of a local resolution filtered
124 volume (Figure 1f; RELION 3.1, (43)) demonstrates that the core of Vag8 and size of
125 interaction with C1-INH is well defined, with a resolution estimate of 3.5 Å despite the small
126 size of this complex placing it amongst the ten smallest structures determined to date using this
127 method (44).



128

129 **Figure 1**Determination of the single particle CryoEM structure of the Vag8:C1-INH complex at 3.6 Å (a) Size exclusion
 130 chromatography analysis shows that Vag8 binds C1-INH to form a complex (purple). 100μl of an approximately 1:2 molar
 131 ratio of Vag8 : C1-INH were mixed and purified using a S200 increase chromatography column. A, B and C denote the locations
 132 at which Vag8:C1-INH complex, Vag8 and C1-INH respectively elute. (b) Fractions under peaks A & C from Vag8:C1-INH
 133 purification when run on 15% (w/v) SDS-PAGE gel confirm that the peak at location A contains Vag8 bound to C1-INH while
 134 unbound C1-INH elutes in peak C. (c) A representative micrograph of Vag8:C1-INH complex on a carbon-coated grid. Scale
 135 bar 200 Å (d) cryo-EM data of Vag8:C1-INH complex were collected and initially processed as 3 different chunks (Chunk 1, 2

136 and 3) and combined at later stages during processing using SIMPLE 3.0 and RELION 3.1. Masked 3D classification of chunk
137 2 data was done using the initial volume and mask from chunk 1. Subsequently, selected particles from chunk 1 and 2 were
138 combined and masked 3D classification was performed. Selected particles from this data set were combined with selected
139 particles from chunk 3 data obtained after masked 3D auto-refine and masked 3D classification. This final combined data set
140 was then auto-refined and postprocessed in RELION 3.1 resulting in 3.6 Å volume. Scale bar on 2D averages is 50 Å (e) Gold-
141 standard Fourier Shell Corelation curves of Vga8:C1-INH complex volumes postprocessed in RELION 3.1. Curves: red, phase-
142 randomized; green, unmasked; blue, masked; black, corrected (f) Volume coloured by estimated Local resolution (Å).

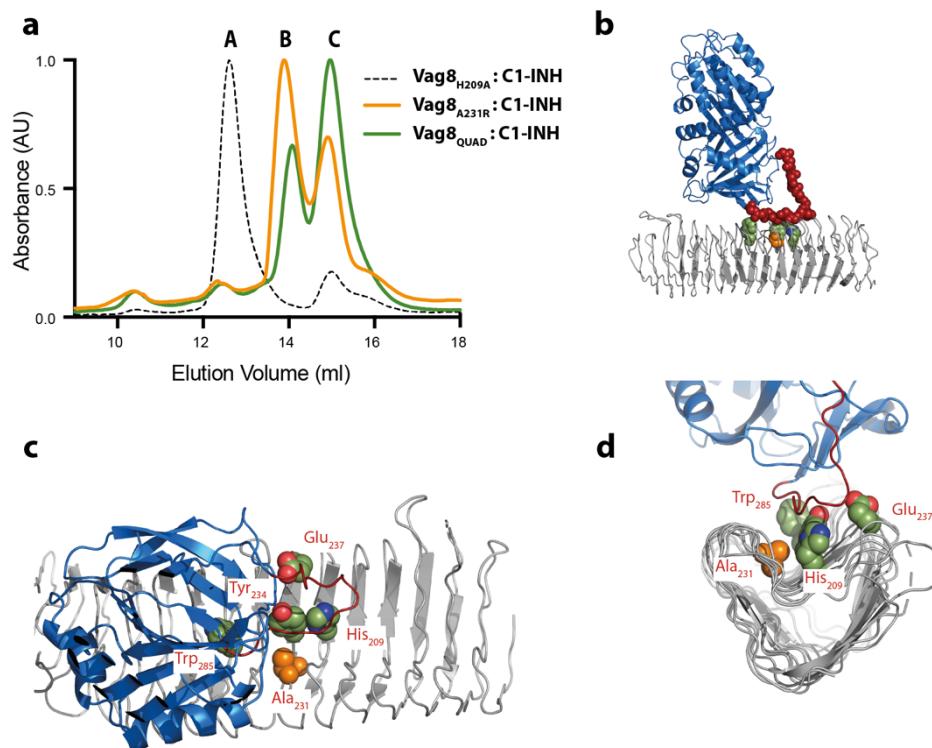

143
144 A *de novo* model was built manually using program COOT (45) for the region 54-481 of Vag8.
145 Although residual density could be seen in the volume both N- and C-terminal to this region
146 (Figure 2a), it was not possible to build an atomic model for residues 40-53 and 482-610. The
147 model of the active form of the C1-INH Serpin domain (46) was placed and remodelled to fit
148 the volume, with the only major changes in conformation being within the RCL which is seen
149 to be sequestered within the cleft of the Vag8 beta-barrel fold. Figure 2b shows the quality of
150 the volume around key-side chains within the binding site. Following further cycles of manual
151 rebuilding and real-space refinement in PHENIX (47) lead to the generation of the model
152 presented in Figure 2 and described in Table 1.

Figure 2 Structure of Vag8:C1-INH complex (a) Views of the model of Vag8:C1-INH in the experimental volume. Both proteins are shown in a cartoon representation, Vag8 coloured from blue at the N-terminus to red at the C-terminus and C1-INH coloured blue. Volume is contoured at 3σ . Figure drawn using PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC) (b) shows a closeup of the central portion of the C1-INH RCL in the Vag8 cleft with key residue interactions highlighted. (c) an overview of the complex with the two points of contact boxed (d) shows a closeup of the interactions in the smaller contact site boxed and labelled (i) in panel (c), (e) shows two views from the top and end of the complex of the larger interaction site boxed and labelled (ii) in panel (c).

154

155 The model for the complex reveals that C1-INH associates with the cleft within the Vag8
156 passenger domain beta-barrel, with two contact sites (Figure 2c). The first involves contacts
157 between two loops at the base of the C1-INH Serpin domain (around residues 317 and 362)
158 and one of the longer loops incorporated in the Vag8 beta barrel (residues 407-410) (Figure
159 2d). This is a fairly small contact area burying approximately 100 Å² on each protein. The other
160 point of contact is a much more significant interaction which buries the side chains of the
161 majority of the RCL residues between 461 and 474 within the Vag8 beta-barrel cleft burying
162 ~600 Å² on both components (Figure 2e).

164

165 **Figure 3 Mutation of residues within the interface abolishes complex formation** (a) 100µl of an approximately 1:2 molar
166 ratio of Vag8 : C1-INH were mixed and purified using a S200 increase chromatography column. A,B and C denote the locations
167 at which Vag8:C1-INH complex, Vag8 and C1-INH respectively elute. Vag8H209A (dashed black line) is one of the mutations
168 that make up the Vag8_{QUAD} set and is still capable of forming a complex with C1-INH (as are the other mutations that form
169 the Vag8_{QUAD} set in isolation, data not shown), whereas both Vag8_{QUAD} (green) and Vag8_{A231R} (orange) do not form any
170 complex with C1-INH under these conditions and the two mixed components elute independently in peaks B and C (b-d)
171 Views of the Vag8:C1-INH complex with Vag8 shown as grey cartoon, C1-INH as blue cartoon, residues mutated shown as
172 space-filling spheres with carbons coloured to reflect colour scheme of panel (a). The C1-INH RCL loop is coloured dark red
173 and the main chain atoms shown as spheres in panel (b). Panels (b-d) drawn using PyMOL (The PyMOL Molecular Graphics
174 System, Version 2.0 Schrodinger, LLC)

175 To further probe the interactions seen in the complex we designed single and multiple point
176 mutations in Vag8 to test their effect on complex formation. Mutant forms of Vag8 were
177 expressed and purified then mixed with the C1-INH Serpin domain and complex formation
178 was assayed by size-exclusion chromatography (Figure 3a, Table 2). With the exception of a

179 mutation designed to sterically block binding of the RCL loop in the cleft by replacement of a
180 small alanine side chain with a very large arginine side chain (A231R; Figure 3, Supplementary
181 Table 1), mutation of multiple residues within the cleft to alanine was required to prevent
182 formation of the complex emphasising the extended nature of the interaction site (Figures 2,
183 3).

184

185

186 **Discussion**

187 *B. pertussis* targets regulation of immune, inflammatory and clotting processes by scavenging
188 C1-INH using the passenger domain of Vag8. Our structure reveals that formation of this
189 complex directly impacts on the physiological systems by masking the RCL required for C1-
190 INH to fulfil its inhibitory activities within the bacterial protein. Unlike the native function of
191 C1-INH, which results in formation of a covalent link between the RCL and the target, the
192 inhibitor complex buries the RCL loop within the cleft of the bacterial protein via non-covalent
193 interactions. Formation of a stable complex involving the RCL loop sterically occludes C1-
194 INH interactions with its physiological partners.

195 *B. pertussis* is not the only organism that acts on these systems via scavenging C1-INH and it
196 remains to be seen if other organisms use similar structural strategies to achieve inhibition.

197

198 **Materials and Methods**

199 *Expression and purification of Vag8*

200 Cloning of Vag8 passenger domain (residues 40-610) into a modified pRSETb plasmid
201 has been reported previously (22). The recombinant plasmid was transformed into *Escherichia*
202 *coli* C41 (DE3) cells which were then plated on LB-agar plates supplemented with 50µg/ml
203 ampicillin. Protein production was carried by growing *E. coli* C41 (DE3) cells expressing
204 Vag8pd in LB medium supplemented with 50µg/ml ampicillin at 37°C and 180 rpm until A₆₀₀
205 reached 0.5-0.6. At this point, the culture was induced with 1 mM Isopropyl β-D-1-
206 thiogalactopyranoside (IPTG) and further grown for 20 h at 24°C and 180 rpm. Cells were
207 harvested by centrifugation at 5000 g for 10 min at 4°C. The cell pellet was resuspended in
208 buffer A (50 mM Tris-HCl pH 8.0, 20 mM imidazole and 500 mM NaCl containing DNAase
209 I and lysozyme). The cells were lysed using a Emulsiflex C5 homogeniser (Avestin) and the
210 lysate cleared by centrifugation at 18000 g, 4°C for 45 min. The filtered supernatant was loaded
211 onto a Ni-affinity chromatography column pre-equilibrated with buffer B (50 mM Tris-HCl
212 pH 8.0, 20 mM imidazole and 500 mM NaCl). The Vag8 was eluted with a linear gradient of

213 imidazole on an FPLC system (ÄKTA pure, GE Healthcare) using buffer B and buffer C (50
214 mM Tris-HCl pH 8.0, 500 mM imidazole and 500 mM NaCl). The eluted protein was dialysed
215 overnight into buffer D (50 mM Tris-HCl pH 8.0 and 30 mM NaCl). The dialysed protein was
216 subject to anion exchange chromatography and eluted by a linear gradient of NaCl using buffer
217 D and buffer E (50 mM Tris-HCl pH 8.0, 1 M NaCl). Purified Vag8 was concentrated and the
218 buffer was exchanged to buffer F (50 mM Tris-HCl pH 8.0, 150 mM NaCl) by ultrafiltration
219 (Amicon Ultra, Merck-Millipore).

220 *Site-directed mutagenesis of Vag8*

221 Single mutations in Vag8 (H209A, Y234A, E237A, and W285A) were introduced using Q5
222 Site-directed mutagenesis (NEB). The Vag8 quadruple mutant (H209A Y234A E237A
223 W285A) was produced by Gibson Assembly of overlapping fragments containing the desired
224 mutations using NEBuilder HiFi Master Mix (NEB). Purification of Vag8 mutants was done
225 as described above for wild type Vag8.

226 *Expression and purification of C1-INH*

227 A synthesised nucleotide fragment (codon optimised for *Saccharomyces cerevisiae*)
228 encoding C1-INH amino acid residues 98-500 with Kozak and BiP signal sequence at 5' end
229 (GeneArt, ThermoScientific) was cloned using Gibson assembly (New England Biolabs) into
230 pExpreS2-1 (ExpreS²ion Biotechnologies) plasmid, for protein production in *Drosophila* S2
231 cells, such that the mature recombinant protein had a His₆ -tag followed by a 3C protease
232 cleavage site at the N terminus. The recombinant plasmid was transfected into S2 cells
233 following manufacturer's protocol (ExpreS²ion Biotechnologies). Briefly, the recombinant
234 plasmid was transfected into S2 cells and a stable cell line was selected over a period of four
235 weeks while culturing the cells in EX-CELL420 medium (Sigma-Aldrich) supplemented with
236 10% (v/v) Fetal Bovine Serum (FBS) and 4 mg/ml zeocin. The stable cell line was maintained
237 in EX-CELL420 medium supplemented with 10% (v/v) FBS, penicillin-streptomycin and
238 amphotericin B, and cultured at 25°C, 110 rpm. For protein purification the stable cell line was
239 split to a final cell density of 8 x 10⁶ cells /ml and cultured in EX-CELL420 medium,
240 supplemented with penicillin-streptomycin and amphotericin B only, at 25°C, 110 rpm. The
241 culture was centrifuged at 4500 g, 4°C for 30 min to collect the supernatant containing the
242 recombinant protein four days after the split. The supernatant was filtered and incubated with
243 His-tag purification resin (Roche) overnight at 4°C while mixing gently. The supernatant was
244 then passed through a low pressure gravity flow column to collect the resin, which was then
245 washed with buffer F. The protein was eluted using buffer G (50 mM Tris-HCl, pH 8.0, 150

246 mM NaCl, and 500 mM imidazole) followed by dialysis into buffer D. The dialysed protein
247 was further purified using a MonoQ 10/30GL anion exchange chromatography column (GE
248 Healthcare) by a linear gradient of NaCl with buffer D and buffer E. Purified C1-INH protein
249 was concentrated and the buffer exchanged to buffer F, 50 mM Tris-HCl pH 8.0, 150 mM NaCl
250 by ultrafiltration (Amicon Ultra, Merck-Millipore).

251 *Preparation of C1-INH and Vag8 complex*

252 The Vag8:C1-INH complex was prepared *in vitro* by incubating C1-INH in ~1.5 molar excess
253 with Vag8 at room temperature for 10 min followed by purification using size exclusion
254 chromatography on a S200pg 16/600 column (GE Healthcare). The eluted fractions were
255 analysed by SDS-PAGE followed by ultrafiltration to concentrate the protein complex.

256 *Size exclusion chromatography to assay the binding of Vag8 mutants to C1-INH*

257 A 100 μ L mixture of C1-INH (20 mM) and Vag8 WT or mutant (10 mM) was prepared at
258 room temperature and injected onto a S200 Increase 10/300GL column pre-equilibrated with
259 50 Mm Tris-HCl 150 mM NaCl pH 8.0. The samples were eluted at 0.4 mL/min and 0.5 mL
260 fractions were collected.

261 *Preparation of Cryo-EM grids*

262 Four microliters of purified Vag8:C1-INH complex (0.5 mg/ml) was adsorbed to glow-
263 discharged holey carbon-coated grids (Quantifoil 300 mesh, Au R1.2/1.3) for 10 s. Grids were
264 then blotted for 3 s at 100% humidity at 8°C and frozen in liquid ethane using a Vitrobot Mark
265 IV (FEI).

266 *Cryo-EM data collection, processing and analysis*

267 Data were collected in counted super-resolution mode on a Titan Krios G3 (FEI) operating at
268 300 kV with a BioQuantum imaging filter (Gatan) and K3 direct detection camera (Gatan)
269 using either a) a physical pixel size of 1.068 \AA , a dose rate of 15 e $^-$ /pix/s, and an exposure of
270 4.23 s, corresponding to a total dose of 55.6 e $^-$ / \AA^2 or b) physical pixel size of 0.832 \AA , a dose
271 rate of 13.9 e $^-$ /pix/s, and an exposure of 2.97 s, corresponding to a total dose of 59.6 e $^-$ / \AA^2 .
272 All movies were collected over 40 fractions.

273 Motion correction, dose weighting, CTF estimation, particle picking and extraction were
274 performed in streaming mode during collection using SIMPLE3.0 (42) as was 2D
275 classification (42). *Ab initio* models were created in SIMPLE3.0 using particles selected from
276 the chunks 1 & 2 further processing was performed in RELION 3.1 (43). The full workflow is
277 described in Figure 1 but briefly, each data set underwent an initial round of 3D classification
278 before 3D autorefine steps, beamtilt refinement, Bayesian polishing and further rounds of 3D

279 classification (43) . Chunks of data were combined as described in Figure 1 with the final
280 volume calculated from 6 87,883 particles in C1. The resolution of the final volume is estimated
281 as 3.6 based on FSC=0.143 criterion with the Local Resolution volume (calculated in
282 RELION3.1 (43)) demonstrating that much of the core of the complex is at a resolution of 3.5
283 or better.

284 *Data availability*

285 Coordinates and Volumes have been deposited in the PDB and EMDB respectively with
286 accession codes 7KAV and 11814

287

288 **Acknowledgements**

289 We thank the staff of the Central Oxford Structural Microscopy and Imaging Centre, Adam
290 Costin and Errin Johnson and other members of the Lea group for assistance with various stages
291 of the project. This work was funded by grants from the Wellcome Trust #219477, #209194
292 and #100298 and the Medical Research Council #S007474

293

294 **Author Contributions**

295 AD cloned, expressed and purified complexes, performed binding studies. JCD prepared grids
296 and collected single particle cryo EM data. EF screened cryo EM grids. DR cloned initial
297 constructs. IJ, SJ & SML conceived study. AD, SJ & SML analysed data and wrote first draft
298 of manuscript. SML processed cryoEM data and built models. All authors commented on final
299 drafts of manuscript.

300

301

302 **References**

- 303 1. Dunkelberger JR, Song W-C. 2010. Complement and its role in innate and adaptive
304 immune responses. *Cell Res* 20:34–50.
- 305 2. Weidmann H, Heikaus L, Long AT, Naudin C, Schlüter H, Renné T. 2017. The plasma
306 contact system, a protease cascade at the nexus of inflammation, coagulation and
307 immunity. *Biochim Biophys Acta - Mol Cell Res*. Elsevier B.V.
- 308 3. Chapin JC, Hajjar KA. 2015. Fibrinolysis and the control of blood coagulation. *Blood*
309 *Rev* 29:17–24.
- 310 4. Davis 3rd AE, Mejia P, Lu F. 2008. Biological activities of C1 inhibitor. *Mol*
311 *Immunol* 2008/07/31. 45:4057–4063.
- 312 5. Kajdács E, Jandrasics Z, Veszeli N, Makó V, Koncz A, Gulyás D, Köhalmi KV,

313 Temesszentandrás G, Cervenak L, Gál P, Dobó J, de Maat S, Maas C, Farkas H, Varga
314 L. 2020. Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans
315 and in Hereditary Angioedema Patients. *Front Immunol* 11:794.

316 6. Sim RB, Reboul A, Arlaud GJ, Villiers CL, Colomb MG. 1979. Interaction of 125I-
317 labelled complement subcomponents C-1r and C-1s with protease inhibitors in plasma.
318 *FEBS Lett* 97:111–115.

319 7. Gigli I, Mason JW, Colman RW, Austen KF. 1970. Interaction of Plasma Kallikrein
320 with the C1 Inhibitor. *J Immunol* 104:574 LP – 581.

321 8. Schreiber AD, Kaplan AP, Austen KF. 1973. Inhibition by CaINH of Hageman Factor
322 Fragment Activation of Coagulation, Fibrinolysis, and Kinin Generation. *J Clin Invest*
323 52:1402–1409.

324 9. Wuillemin W, Minnema M, Meijers J, Roem D, Eerenberg A, Nuijens J, ten Cate H,
325 Hack C. 1995. Inactivation of factor XIa in human plasma assessed by measuring factor
326 XIa-protease inhibitor complexes: major role for C1-inhibitor. *Blood* 85:1517–1526.

327 10. Van Nostrand WE, McKay LD, Baker JB, Cunningham DD. 1988. Functional and
328 structural similarities between protease nexin I and C1 inhibitor. *J Biol Chem* 263:3979–
329 83.

330 11. Bock SC, Skriver K, Nielsen E, Thøgersen HC, Wiman B, Donaldson VH, Eddy RL,
331 Marrinan J, Radziejewska E, Huber R, Shows TB, Magnusson S. 1986. Human C1*
332 Inhibitor: Primary Structure, cDNA Cloning, and Chromosomal Localization.
333 *Biochemistry*.

334 12. Beinrohr L, Harmat V, Dobó J, Lörincz Z, Gál P, Závodszky P. 2007. C1 inhibitor serpin
335 domain structure reveals the likely mechanism of heparin potentiation and
336 conformational disease. *J Biol Chem* 282:21100–21109.

337 13. Huntington JA, Read RJ, Carrell RW. 2000. Structure of a serpin-protease complex
338 shows inhibition by deformation. *Nature* 407:923–926.

339 14. Thorsen S, Philips M. 1984. Isolation of tissue-type plasminogen activator-inhibitor
340 complexes from human plasmaEvidence for a rapid plasminogen activator inhibitor.
341 *Biochim Biophys Acta - Gen Subj* 802:111–118.

342 15. Ratnoff OD, Pensky J, Ogston D, Naff GB. 1969. The inhibition of plasmin, plasma
343 kallikrein, plasma permeability factor, and the C'1r subcomponent of the first
344 component of complement by serum C'1 esterase inhibitor. *J Exp Med* 129:315–31.

345 16. Kilgore PE, Salim AM, Zervos MJ, Schmitt H-J. 2016. Pertussis: Microbiology,
346 Disease, Treatment, and Prevention. *Clin Microbiol Rev* 29:449 LP – 486.

347 17. Melvin JA, Scheller E V, Miller JF, Cotter PA. 2014. *Bordetella pertussis* pathogenesis:
348 current and future challenges. *Nat Rev Microbiol* 12:274–288.

349 18. Marr N, Shah NR, Lee R, Kim EJ, Fernandez RC. 2011. *Bordetella pertussis*
350 autotransporter Vag8 binds human C1 esterase inhibitor and confers serum resistance.
351 *PLoS One* 6:e20585.

352 19. Barnes MG, Weiss AA. 2001. BrkA protein of *Bordetella pertussis* inhibits the classical
353 pathway of complement after C1 deposition. *Infect Immun* 69:3067–3072.

354 20. Berggård K, Johnsson E, Mooi FR, Lindahl G. 1997. *Bordetella pertussis* binds the
355 human complement regulator C4BP: role of filamentous hemagglutinin. *Infect Immun*
356 65:3638–3643.

357 21. Noofeli M, Bokhari H, Blackburn P, Roberts M, Coote JG, Parton R. 2011. BapC
358 autotransporter protein is a virulence determinant of *Bordetella pertussis*. *Microb Pathog*
359 51:169–177.

360 22. Hovingh ES, van den Broek B, Kuipers B, Pinelli E, Rooijakkers SHM, Jongerius I.
361 2017. Acquisition of C1 inhibitor by *Bordetella pertussis* virulence associated gene 8
362 results in C2 and C4 consumption away from the bacterial surface. *PLOS Pathog*
363 13:e1006531.

364 23. Hovingh ES, de Maat S, Cloherty APM, Johnson S, Pinelli E, Maas C, Jongerius I. 2018.
365 Virulence associated gene 8 of *Bordetella pertussis* enhances contact system activity by
366 inhibiting the regulatory function of complement regulator C1 inhibitor. *Front Immunol*.

367 24. Bernstein HD. 2010. Type V Secretion: the Autotransporter and Two-Partner Secretion
368 Pathways. *EcoSal Plus* 4.

369 25. Honda-Ogawa M, Ogawa T, Terao Y, Sumitomo T, Nakata M, Ikebe K, Maeda Y,
370 Kawabata S. 2013. Cysteine proteinase from *Streptococcus pyogenes* enables evasion
371 of innate immunity via degradation of complement factors. *J Biol Chem* 288:15854–
372 15864.

373 26. Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ,
374 Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. 2020. Structure and
375 functional analysis of the *Legionella pneumophila* chitinase ChiA reveals a novel
376 mechanism of metal-dependent mucin degradation. *PLOS Pathog* 16:e1008342.

377 27. Kennedy AT, Wijeyewickrema LC, Huglo A, Lin C, Pike R, Cowman AF, Tham W-H.
378 2017. Recruitment of Human C1 Esterase Inhibitor Controls Complement Activation on
379 Blood Stage *Plasmodium falciparum* Merozoites. *J Immunol* 198:4728–4737.

380 28. Grosskinsky S, Schott M, Brenner C, Cutler SJ, Simon MM, Wallich R. 2010. Human

381 complement regulators C4b-binding protein and C1 esterase inhibitor interact with a
382 novel outer surface protein of *Borrelia recurrentis*. PLoS Negl Trop Dis 4:e698.

383 29. Liu D, Cramer CC, Scafidi J, Davis AE 3rd. 2005. N-linked glycosylation at Asn3 and
384 the positively charged residues within the amino-terminal domain of the c1 inhibitor
385 are required for interaction of the C1 Inhibitor with *Salmonella enterica* serovar
386 typhimurium lipopolysaccharide and lipid A. Infect Immun 73:4478–4487.

387 30. Lathem WW, Bergsbaken T, Welch RA. 2004. Potentiation of C1 esterase inhibitor by
388 StcE, a metalloprotease secreted by *Escherichia coli* O157:H7. J Exp Med 199:1077–
389 1087.

390 31. Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global
391 burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect
392 Dis 17:974–980.

393 32. Masseria C, Martin CK, Krishnarajah G, Becker LK, Buikema A, Tan TQ. 2017.
394 Incidence and Burden of Pertussis Among Infants Less Than 1 Year of Age. Pediatr
395 Infect Dis J 36:e54–e61.

396 33. Jackson DW, Rohani P. 2014. Perplexities of pertussis: recent global epidemiological
397 trends and their potential causes. Epidemiol Infect 142:672–684.

398 34. Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. 2018. The impact of
399 past vaccination coverage and immunity on pertussis resurgence. Sci Transl Med
400 10:eaaj1748.

401 35. Winter K, Klein NP, Ackley S, Cherry JD. 2018. Comment on “The impact of past
402 vaccination coverage and immunity on pertussis resurgence.” Sci Transl Med
403 10:eaau0548.

404 36. Klein NP, Bartlett J, Rowhani-Rahbar A, Fireman B, Baxter R. 2012. Waning protection
405 after fifth dose of acellular pertussis vaccine in children. N Engl J Med 367:1012–1019.

406 37. Williams MM, Sen K, Weigand MR, Skoff TH, Cunningham VA, Halse TA, Tondella
407 ML. 2016. *Bordetella pertussis* Strain Lacking Pertactin and Pertussis Toxin. Emerg
408 Infect Dis 22:319–322.

409 38. Tang N, Li D, Wang X, Sun Z. 2020. Abnormal coagulation parameters are associated
410 with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost
411 18:844–847.

412 39. Merad M, Martin JC. 2020. Pathological inflammation in patients with COVID-19: a
413 key role for monocytes and macrophages. Nat Rev Immunol 20:355–362.

414 40. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. 2020. The COVID-19

415 Cytokine Storm; What We Know So Far. *Front Immunol* 11:1446.

416 41. Shatzel JJ, DeLoughery EP, Lorentz CU, Tucker EI, Aslan JE, Hinds MT, Gailani D,
417 Weitz JI, McCarty OJT, Gruber A. 2020. The contact activation system as a potential
418 therapeutic target in patients with COVID-19. *Res Pract Thromb Haemost* 4:500–505.

419 42. Reboul CF, Eager M, Elmlund D, Elmlund H. 2018. Single-particle cryo-EM-Improved
420 ab initio 3D reconstruction with SIMPLE/PRIME. *Protein Sci* 27:51–61.

421 43. Zivanov J, Nakane T, Scheres SHW. 2020. Estimation of high-order aberrations and
422 anisotropic magnification from cryo-EM data sets in RELION -3.1. *IUCrJ* 7:253–267.

423 44. Wu M, Lander GC. 2020. How low can we go? Structure determination of small
424 biological complexes using single-particle cryo-EM. *Curr Opin Struct Biol* 64:9–16.

425 45. Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot.
426 *Acta Crystallogr Sect D Biol Crystallogr* 66:486–501.

427 46. Dijk M, Holkers J, Voskamp P, Giannetti BM, Waterreus W-J, van Veen HA, Pannu
428 NS. 2016. How Dextran Sulfate Affects C1-inhibitor Activity: A Model for
429 Polysaccharide Potentiation. *Structure* 24:2182–2189.

430 47. Afonine P V., Poon BK, Read RJ, Sobolev O V., Terwilliger TC, Urzhumtsev A, Adams
431 PD. 2018. Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta*
432 *Crystallogr Sect D, Struct Biol* 74:531–544.

433

<i>Human C1inhibitor complex with B. pertussis Vag 8 (EMD-11814) (PDB 7AKV)</i>		
Data collection and processing		
Magnification	81,000	105,000
Voltage (kV)	300	300
Electron exposure (e-/Å ²)	55.6	59.6
Defocus range (μm)	0.5-2.5	0.5-2.5
Pixel size (Å)	1.068 physical pixel (0.534 super resolution)	0.832 physical pixel (0.416 super resolution)
Symmetry imposed	C1	C1
Initial particle images (no.)	5,842,723	11,418,635
Final combined particle images on 0.832 Å pixel scale (no.)	687,883	3.6
Map resolution (Å)	0.143	0.143
FSC threshold	3.5-5.4	3.5-5.4
Map resolution range (Å)		
Refinement		
Initial model used (PDB code)	C1-INH - 5du3; Vag8 - none	
Model resolution (Å)	3.6	
FSC threshold	0.143	
Model resolution range (Å)	3.5-5.4	
Map sharpening B factor (Å ²)	-107	

Model composition	
Non-hydrogen atoms	6203
Protein residues	799
Ligands	0
B factors (Å ²)	
Protein	49
Ligand	NA
R.M.S. Deviations	
Bond lengths (Å)	0.004
Bond angles (°)	0.631
Validation	
MolProbit score	3.05
Clashscore	74.5
Poor rotamers (%)	0.16
Ramachandran plot	
Favored (%)	82.2
Allowed (%)	17.8
Disallowed (%)	0.0
Map to Model FSC	
0.5 criterion (Å)	3.8
0.143 criterion (Å)	2.9

434 **Table 1. Structure solution and model quality**

435

436

437

438

439

440 **Table 2.** Binding analysis of Vag8 mutants by size exclusion chromatography. '+' indicates
441 Vag8:C1-INH complex peak seen, '-' indicates proteins elute separately and no complex peak
442 observed.

Vag8 Mutation	Phenotype/C1-INH binding activity
H209A	+
A231R	-
Y234A	+
E237A	+
W285A	+
H209A Y234A E237A W285A	-

443

444

445

446