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ABSTRACT

The sequence content of the 3′ UTRs of many mRNA transcripts is regulated through alternative 
polyadenylation (APA). The study of this process using RNAseq data, though, has been historically 
challenging. To combat this problem, we developed LABRAT, an APA quantification method. LABRAT 
takes advantage of newly developed transcriptome quantification techniques to accurately 
determine relative APA site usage and how it varies across conditions. Using LABRAT, we found 
consistent relationships between gene-distal APA and subcellular RNA localization in multiple cell 
types. We also observed connections between transcription speed and APA site choice as well as 
tumor-specific transcriptome-wide shifts in APA in hundreds of patient-derived tumor samples that 
were associated with patient prognosis. We investigated the effects of APA on transcript expression 
and found a weak overall relationship, although many individual genes showed strong correlations 
between APA and expression. We interrogated the roles of 191 RNA-binding proteins in the 
regulation of APA, finding that dozens promote broad, directional shifts in relative APA isoform 
abundance both in vitro and in patient-derived samples. Finally, we find that APA site shifts in the 
two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across many 
contexts, suggesting that they are coregulated.


INTRODUCTION 

During the co-transcriptional processing of a pre-
mRNA, the 3′ end of the transcript is cleaved and a 
polyadenine tail is added that promotes the stability 
and translation of the resulting message (Beilharz 
and Preiss, 2007; Shi et al., 2009). The site where 
this cleavage occurs determines the sequence 
content of the 3′ UTR of the transcript. Regulatory 
cis-element sequences can therefore be either 

included or excluded from the 3′ UTR of the 
transcript through modulation of where the 
cleavage and polyadenylation event happens.  This 
regulation of transcript sequence content through 
alternative polyadenylation (APA) occurs in the 
majority of genes in yeast, plant, and mammalian 
genomes (Derti et al., 2012; Ozsolak et al., 2010; 
Sherstnev et al., 2012; Wu et al., 2011). 
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The cleavage and polyadenylation reaction is 
performed by the core CSTF and CPSF complexes 
and CFIm which associate with RNA polymerase II 
(Pol II) transcription complexes (Glover-Cutter et al., 
2008; Venkataraman et al., 2005) and together 
recognize specific sequence elements within 3′ 
UTRs to determine sites of 3′ end processing (Tian 
and Manley, 2017). The abundance of these general 
CPA factors as well as several other RBPs have 
been found to regulate the relative usage of 
alternative polyadenylation sites within a transcript 
(Gruber et al., 2012; Li et al., 2015; Martin et al., 
2012; Masamha et al., 2014; Takagaki et al., 1996; 
Zhu et al., 2018). 


Regulation by these factors results in the large 
variation in 3′ UTR content seen across tissues and 
developmental stages (Lianoglou et al., 2013).  
Specific tissues, most notably neuronal tissues, are 
associated with preferential use of gene-distal or 
downstream APA sites (Miura et al., 2013). Similarly, 
the broad use of gene-proximal or distal APA sites 
can be developmentally regulated.  
Undifferentiated, proliferating cells generally display 
enriched usage of proximal APA sites while more 
differentiated cells show shifts towards increased 
usage of distal APA sites (Ji et al., 2009; Sandberg 
et al., 2008). This phenomenon has also been 
connected to cancer progression where increased 
usage of proximal APA sites in key oncogenes was 
associated with elevated cell proliferation and 
oncogenic transformation (Mayr and Bartel, 2009; 
Sandberg et al., 2008). 


Alternative polyadenylation exists in two structurally 
distinct forms. The first, which we will refer to as 
“tandem UTRs” occurs when multiple APA sites are 
found within the same terminal exon (Figure 1B, 
top). The second, which we will refer to as 
“alternative last exons” or “ALEs”, occurs when 
multiple APA sites are found within different terminal 
exons (Figure 1B, bottom).  Regulation of the 
choice between alternative tandem UTRs can be 
viewed as a competition between a proximal 
upstream poly(A) site that is transcribed first with a 
distal downstream site that is transcribed second. 
Similarly the choice between ALE’s can be viewed 
as a competition between recognition of a proximal 
5’ splice site and a distal poly(A) site (Peterson and 
Perry, 1989). It is not known whether the two forms 

of APA are subject to common regulatory 
mechanisms but in this regard it is interesting to 
note that transcription speed has been reported to 
influence the competition between alternative splice 
sites and tandem poly(A) sites (Liu et al., 2017).


The study of APA using high-throughput RNA 
sequencing has been facilitated through a handful 
of software packages aimed at quantifying changes 
in relative APA site usage across conditions (Grassi 
et al., 2016; Ha et al., 2018; Xia et al., 2014). 
However, quantifying APA from transcriptomic 
alignments can be difficult. Due to their shared 
isoform structure, different APA isoforms often 
contain a considerable amount of sequence in 
common.  If the APA quantification software relies 
on these transcriptomic alignments (Grassi et al., 
2016; Xia et al., 2014), this can make assigning 
reads to a specific isoform challenging.  Newer 
transcriptome quantification techniques that assign 
reads to transcripts by comparing their sequence 
contents are better equipped to handle this 
problem. (Bray et al., 2016; Ha et al., 2018; Patro et 
al., 2017). 


To take advantage of this advance in isoform 
quantification and apply it to the analysis of APA, 
we developed LABRAT (Lightweight Alignment-
Based Reckoning of Alternative Three-prime ends). 
A particular advantage of our approach is that it 
permits rapid analysis of large numbers of publically 
available RNA-seq data sets including patient 
samples. Here, we applied this approach to tens of 
thousands of RNAseq samples to study processes 
and factors that regulate APA as well as the 
consequences of APA site choice on transcript fate.


RESULTS 

Quantification of alternative polyadenylation with 
LABRAT 

To quantify relative alternative polyadenylation site 
usage from RNAseq data, LABRAT takes a genome 
annotation file and first searches the annotation for 
tags that define transcripts with ill-defined 3′ ends 
in order to filter and remove them from further 
analysis (Figure 1A).  Because annotations are 
isoform-based, they are often rigid in their explicit 
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connection of upstream alternative splicing events 
to downstream APA sites, even though this 
connection may not be accurate. Therefore, to 
exclude spurious contributions of upstream 
alternative splicing events to APA site quantification, 
we extracted the final two exons of every transcript 
and the expression of these transcript “terminal 
fragments” was quantified using Salmon (Patro et 
al., 2017). 


For each gene, alternative polyadenylation sites are 
then defined using terminal fragments.  Terminal 
fragments with 3′ ends within 25 nt of other 3′ ends 
are grouped together to define a single 
polyadenylation site, and the sites are ordered from 

most gene-proximal to most gene-distal. Each APA 
site within a gene is assigned a value, m, which is 
defined as it’s position within this proximal-to-distal 
ordering, beginning with 0.  Each gene is assigned a 
value, n, which is defined as the number of distinct 
APA sites that it contains. The expression (TPM) of 
every terminal fragment belonging to a given APA 
site is then summed to define the expression level 
of the APA site, and this process is repeated for 
every APA site within a gene.  The expression level 
of each APA site is then scaled according to the 
following formula:
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Figure 1. Quantifying changes in alternative polyadenylation with LABRAT.  (A) LABRAT computational pipeline. (B) Explanation of 𝜓 as a metric of 
polyadenylation site choice.  Genes that exclusively use upstream or gene-proximal sites have 𝜓 values of 0 while those that exclusively use 
downstream or gene-distal sites have 𝜓 values of 1. The two transcript structures associated with alternative polyadenylation, tandem UTRs and 
alternative last exons, are diagrammed. (C) Comparison of 𝜓 values in mouse brain and liver RNA for genes whose 𝜓 value was significantly different 
between these tissues. (D-E) RNA coverage profiles of two genes with differential polyadenylation site usage in mouse brain and liver tissues.  Dots 
represent 𝜓 values calculated in each of 8 replicates. (F) Benchmarking of LABRAT performance against other widely used software package for 
quantification of alternative polyadenylation from RNAseq data.
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To quantify a gene’s relative APA site usage, we 
defined a term, 𝜓.  Scaled and unscaled TPM 
values are summed across all APA sites within a 
gene, and 𝜓 is defined as the ratio between these 
summed values:





With this strategy, genes that show exclusive usage 
of the most gene-proximal APA site will be assigned 
a 𝜓 value of 0, while those that show exclusive 
usage of the most gene-distal APA site will be 
assigned a 𝜓 value of 1 (Figure 1B). Usage of both 
sites will result in a 𝜓 value between 0 and 1 
depending on the relative usage of the sites.  
Importantly, this strategy also applies to genes with 
more than 2 APA sites. In these cases, one 𝜓 value 
is assigned to the entire gene without the need to 
do multiple pairwise comparisons between APA 
sites. 


After calculating 𝜓 values for genes in all samples, 
LABRAT compares 𝜓 values of experimental 
replicates across experimental conditions to identify 
genes with statistically significantly different 𝜓 
values between conditions.  This is done using a 
mixed linear effects model that tests the relationship 
between 𝜓 values and experimental condition. A 
null model is also created in which the term 
denoting the experimental condition has been 
removed.  A likelihood ratio test compares the 
goodness of fit of these two models to the observed 
data and assigns a p value for the probability that 
the real model is a better fit than the null model. In 
simple comparisons between two conditions, this 
approach mimics a t-test.  However, this technique 
has the advantage of being able to easily 
incorporate covariates into significance testing.  
After performing this test on all genes, the raw p 
values are corrected for multiple hypothesis testing 
using a Benjamini-Hochsberg correction (Benjamini 
and Hochberg, 1995).


In addition, LABRAT determines whether a gene’s 
APA sites conform to either the tandem UTR or ALE 

structures (Figure 1B) and designates the gene 
accordingly. For genes with more than 2 APA sites, 
it is possible to contain both tandem UTR and ALE 
structures. These genes are designated as having a 
“mixed” APA structure.


Identifying tissue-specific differences in APA with 
LABRAT 

To demonstrate the ability of LABRAT to identify 
and quantify differences in APA, we analyzed 
RNAseq data from mouse brain and liver tissues (Li 
et al., 2017). Because neuronal tissues are known to 
be highly enriched for the use of distal APA sites 
(Miura et al., 2013), we reasoned that comparison of 
these two tissues might provide a positive control 
for LABRAT’s ability to identify differential APA.


We found 470 genes that displayed differential APA 
site usage between the tissues (FDR < 0.05) (Figure 
1C). As expected, 68% of these genes showed 
increased usage of distal APA sites in brain, 
indicating a significant enrichment for the use of 
downstream APA sites in this tissue (binomial p = 
3.2e-15). To further explore changes in 𝜓 value for 
specific genes, we plotted read coverages over two 
genes that showed significantly more downstream 
APA site usage in brain tissue: Slc16a7 and Elavl1 
(Figure 1D, E).  For both genes, we observed 
significantly lower read coverages corresponding to 
usage of the distal APA site in the liver samples 
relative to the brain samples. Accordingly, LABRAT 
assigned these genes to have low 𝜓 values in the 
liver samples, and high 𝜓 values in the brain 
samples, indicating that LABRAT can accurately 
quantify APA.


To perform similar analyses in human samples, we 
analyzed over 5000 RNAseq samples from over 30 
different human tissues produced as part of the 
Genotype-Tissue Expression (GTEx) project (GTEx 
Consortium, 2013). We quantified APA in these 
samples and observed relationships between tissue 
APA using PCA analysis (Figure S1A). In this 
analysis, brain and testis samples were clear 
outliers. Interestingly, performing the PCA analysis 
using only tandem UTR (Figure S1B) or ALE (Figure 
S1C) genes produced very similar results, 
suggesting that these two forms of APA are broadly 
coregulated across many tissues. 


TPMscaled = TPMunscaled ( m
(n − 1) )

ψ =
Σ TPMscaled

Σ TPMunscaled
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To understand more about APA in human brain and 
testis, we compared their APA profiles to those 
observed in human liver samples. As expected, we 
observed that brain samples exhibited a significant 
bias for the use of downstream APA sites (p < 
2.2e-16) (Figure S1D). Conversely, testis samples 
exhibited a similar bias for the use of upstream APA 
sites (p < 2.2e-16) (Figure S1E). The propensity of 
testis to use upstream APA sites has been 
previously observed (Liu et al., 2007; Wang et al., 
2008; Zhang et al., 2005) and is likely a key feature 
of spermatogenesis (Li et al., 2016). Overall, these 
results demonstrate the ability of LABRAT to 
recapitulate previously reported observations and 
gave us confidence in its results moving forward.


Comparison of LABRAT to similar methods of APA 
quantification 

To compare LABRAT with other APA analysis tools, 
we generated a synthetic RNAseq dataset 
containing 50 million reads in which 1250 genes 
displayed increased distal APA site usage, 1250 
genes displayed increased proximal APA site usage, 
and 2500 genes displayed no change in APA site 
usage (Frazee et al., 2015).  We used the software 
packages QAPA (Ha et al., 2018), DaPars (Xia et al., 
2014), and Roar (Grassi et al., 2016) in addition to 
LABRAT to quantify APA in these data.


QAPA, like LABRAT, uses lightweight alignments to 
quantify APA.  Reassuringly, we found that 𝜓 values 
calculated by LABRAT were highly correlated to the 
analogous metric used by QAPA, PPAU (R = 0.81) 
(Figure S1F). In comparing the four methods, 
LABRAT was the best suited to accurately identify 
differential APA in the simulated data (Figure 1F). 
We further found that the accuracy of LABRAT was 
not noticeably affected by read depth down to one 
million reads (Figure S1G).


Alternative polyadenylation isoforms are differentially 
localized in cell bodies and projections 

Multiple studies have found that alternative 
polyadenylation decisions made during nuclear 
processing can influence the subcellular localization 
of the resulting transcript, particularly in neuronal 
cells (Ciolli Mattioli et al., 2019; Taliaferro et al., 
2016; Tushev et al., 2018). However, it has been 

unclear how widespread this effect is and whether it 
was driven primarily by tandem UTRs or ALEs.  To 
address this, we used LABRAT to analyze the 
relative APA status of 26 paired transcriptomic 
datasets from cell body and projection samples 
from neuronal cells, NIH 3T3 cells, and MDA-
MB231 cells (Farris et al., 2019; Goering et al., 
2019; Hudish et al., 2020; Mardakheh et al., 2015; 
Minis et al., 2013; Taliaferro et al., 2016; Tushev et 
al., 2018; Wang et al., 2017; Zappulo et al., 2017).


For all samples, we identified genes whose 𝜓 value 
was significantly different between subcellular 
compartments (FDR < 0.05), finding between 10 
and 740 genes that fit this criterion in each sample 
(Figure 2A). For these genes, we then compared 
their 𝜓 values across compartments by subtracting 
the 𝜓 value in the cell body from the 𝜓 in the 
projection to define 𝛥𝜓.  Genes with positive 𝛥𝜓 
values therefore had their distal APA isoform 
enriched in projections while those with negative 𝛥𝜓 
values had their proximal APA isoform enriched in 
projections.


We found that for 19 of these 26 samples, over 50% 
of significant genes had positive 𝛥𝜓 values, 
indicating a broad connection between the use of 
distal APA sites and localization of the resulting 
transcript to cell projections (Figure 2A).  Further, 
we observed a relationship between the amount of 
time that the projection had been allowed to grow 
and the fraction of genes with positive 𝛥𝜓 values. 
Of the samples in which the projections had grown 
for 2 days or less, 15 out of 20 showed a significant 
bias for the association of distal APA sites with 
projections.  Conversely, of the samples in which 
the projections had grown for 6 days or more, 0 out 
of 6 showed a significant bias for the association of 
distal APA sites with projections.  This suggests that 
distal APA transcripts may play a role in early 
projection outgrowth but may be less important in 
mature projections.


Given the conflicting reports about the relative 
contributions of distal APA produced by tandem 
UTR and ALEs to the transcriptomes of cell 
projections (Ciolli Mattioli et al., 2019; Taliaferro et 
al., 2016; Tushev et al., 2018), we analyzed these 
two classes of APA isoforms separately.  Across the 
26 subcellular comparisons, we found a strong, 
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Figure 2. Alternative polyadenylation is associated with RNA localization in a variety of cell types. (A) Comparison of 𝜓 values for RNA isolated from cell 
projections and cell bodies. 𝜓 values for all genes were calculated using RNA collected from cell projection and cell body compartments, and genes with 
significantly different 𝜓 values across compartments were identified (FDR < 0.05). 𝛥𝜓 values (cell projection - cell body) for these genes are indicated by 
boxplots.  P values in blue represent binomial p values for deviations from the expected 50% chance for a gene to have a positive 𝛥𝜓 value. Samples were 
also separated according to the amount of time that projections were allowed to grow before their RNA content was analyzed.  This is represented by the 
long (at least 6 days) and short (2 days or less) categories colored in red.  (B) As in A, 𝜓 values for all genes were calculated using RNA collected from cell 
projection and cell body compartments, and genes with significantly different 𝜓 values across compartments were identified (FDR < 0.05).  The fraction of 
significant tandem UTR and ALE genes with positive 𝛥𝜓 values were plotted on the x and y axes, respectively.  (C) Simplex plot indicating 𝜓 values 
calculated from RNA isolated from biochemically defined cytosolic, membrane-associated, and insoluble fractions of HepG2 cells.  Genes with equal 𝜓 
values in all three fractions are represented by dots equidistant from each vertex (at the intersection of the dotted lines). Genes that displayed higher 𝜓 
values in a given fraction than the others are represented by dots placed closer to that fraction’s vertex.  Red lines indicate the density of dots. (D) 
Comparison of 𝜓 values in HepG2 cytosolic and membrane fractions  for genes whose 𝜓 value was significantly different between these compartments 
(FDR < 0.01).  (E) Correlation of 𝛥𝜓 values (membrane - cytosol) for all genes expressed in both HepG2 and K562 cells.  (F) Fraction of genes with 
nonsignificant 𝛥𝜓 values (membrane vs. cytosol, gray) and those with significant 𝛥𝜓 values (red) that encode peptides that have ER signal sequences as 
defined by SignalP.  Distributions of this fraction were created through bootstrapping in which 40% of the genes were sampled 100 times. P values were 
calculated using a Wilcoxon rank sum test.
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significant correlation (R = 0.58, p = 0.0024) 
between the fraction of ALE genes with positive 𝛥𝜓 
values and the fraction of tandem UTR genes with 
positive 𝛥𝜓 values (Figure 2B). This indicates that 
both classes of genes are preferentially contributing 
their distal APA isoforms to projections and 
suggests that these two classes of alternative 
poly(A) site selection  may be regulated by a 
common mechanism.


Alternative polyadenylation isoforms are differentially 
localized in biochemically defined cytosolic and 
membrane fractions 

To further explore connections between APA and 
RNA localization beyond cell projections, we used 
LABRAT to analyze RNAseq data from a 
biochemical fractionation of 3 cell types, Drosophila 
DM-D17-C3 (D17) cells, human HepG2 cells, and 
human K562 cells (Benoit Bouvrette et al., 2018). In 
these data, cells were fractionated into nuclear, 
cytosolic, membrane-associated and insoluble 
fractions.  RNA was isolated from each of these 
fractions and prepared for high-throughput 
sequencing using either polyA-selection-based or 
ribosomal RNA-depletion-based library preparation. 
For each fraction, two replicates of each library 
preparation method were sequenced. 


As with the projection data, we compared 𝜓 values 
for genes across cellular compartments.  
Hierarchical clustering of samples based on 𝜓 
values revealed that samples from the same fraction 
generally clustered with each other, indicating the 
high quality of the data. indicating the quality of the 
data (Figure S2A-C). To minimize the effect of 
library preparation on the identification of genes 
with significantly different 𝜓 values across 
compartments, we included the library preparation 
method as a covariate in LABRAT’s linear model.  
This allowed us to pool all of the samples for a 
given compartment in order to identify genes with 
significantly different 𝜓 values between 
compartments regardless of library preparation 
method.


We first identified genes with significantly different 𝜓 
values across any pairwise comparison between 
cytosolic, membrane-associated, and insoluble 
fractions (FDR < 0.05). Based on our observations 

relating distal APA and RNA localization to 
projections, we then asked if any of these fractions 
were associated with higher 𝜓 values than the other 
two. We visualized these comparisons using 
simplex plots (Figure 2C).  In these plots, each dot 
represents a gene, and its position is determined by 
the relative 𝜓 values in each fraction. A gene with a 
𝜓 value of 1 in a fraction and 𝜓 values of 0 in the 
other two would be placed at that fraction’s vertex 
while a gene with equal 𝜓 values in all 3 fractions 
would be placed equidistant from each vertex at the 
intersection of the dotted lines.  We found that 
genes tended to have higher 𝜓 values in the 
membrane fraction (Figure 2C, S2D, E), indicating a 
preferential association of downstream APA 
isoforms with that fraction.


Because of this observation, we then focused on 
comparing the cytosolic and membrane fractions.  
When comparing the cytosolic and membrane 
fractions of HepG2 cells, we identified 552 genes 
that had significantly different 𝜓 values between the 
fractions (FDR < 0.01). Of these, 492 (89%) had a 𝜓 
value that was higher in the membrane fraction than 
the cytosolic fraction, indicating a broad association 
between transcripts produced using distal APA sites 
and the membrane fraction (Figure 2D). We 
observed highly similar results when comparing the 
cytosolic and membrane fractions from K562 cells 
and D17 cells (Figure S2F, G).


We then queried whether the same genes had 
differential APA isoform associations with the 
cytosolic and membrane fractions in the HepG2 
and K562 samples. To test this, we calculated 𝛥𝜓 
values (membrane - cytosol) for all genes expressed 
in both cell lines.  We observed a strong correlation 
(R = 0.73) between 𝛥𝜓 values in the two cell lines 
(Figure 2E), suggesting that the effects of APA on 
transcript membrane association are shared 
between cell lines and are therefore likely transcript-
specific with a conserved mechanistic basis.


The ER comprises a large fraction of cellular 
membranes, and RNA localization to the ER is 
important for cotranslational access to the secretory 
pathway. We therefore asked whether transcripts 
with significant membrane vs. cytosol 𝛥𝜓 values 
were more or less likely than expected to encode 
the peptide-based signal sequences required for 
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RNA transport to the ER through cotranslational 
targeting. We identified ER signal sequences using 
SignalP (Almagro Armenteros et al., 2019). 
Interestingly, we found that in both the HepG2 and 
K562 samples, genes that had significant 
membrane vs. cytosol 𝛥𝜓 values were significantly 
less likely to contain an ER signal sequence than 
other genes (Figure 2F).  This observation therefore 
suggests two alternative modes of RNA localization 
to the ER: one for transcripts that encode signal 
peptides and another for those that do not. 
Specifically, mRNAs that are not cotranslationally 
targeted by signal peptide recognition appear to be 
targeted by a mechanism involving distal APA use.


The transcription speed of 
RNA polymerase II 
regulates alternative 
polyadenylation site 
choice 

The speed of transcription 
by RNA Polymerase II (Pol 
II) regulates multiple co-
transcriptional processes, 
including alternative 
splicing, and  termination 
that is coupled to poly(A) 
site cleavage (Cortazar et 
al., 2019; Dujardin et al., 
2014; Fong et al., 2014; 
Jonkers et al., 2014; de la 
Mata et al., 2003). To 
assess how changes in 
Pol II speed can affect 
APA, we used LABRAT to 
analyze RNAseq samples 
from HEK293 cells that 
expressed either wildtype 
or slow Pol II (Fong et al., 
2014). The slow Pol II 
mutant used in these 
studies is a single amino 
acid substitution in the 
funnel domain of the Pol II 
large subunit Rpb1 
(R749H).  


During transcription, a 
gene-proximal APA site is 

necessarily transcribed before a gene-distal APA 
site. There exists a time, therefore, during which the 
proximal site is the only APA site that exists on the 
transcript. Reducing the speed of Pol II transcription 
would increase this time in which the proximal site 
is free from competition with the distal site. We 
hypothesized that this would lead to an increase in 
usage of the proximal APA site (Figure 3A). Indeed, 
we found that for many genes, proximal APA site 
usage was increased in slow Pol II samples (Figure 
3B), and that overall there was a shift towards 
increased usage of the proximal site (Figure 3C).
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Figure 3. The speed of RNA polymerase II influences APA. (A) Model for how polymerase speed can affect 
alternative polyadenylation.  During the time between transcription of proximal and distal polyadenylation sites, 
the proximal site can be recognized and used but the proximal site cannot.  Increasing this time of proximal site 
exclusivity by decreasing the speed of RNA polymerase may increase the likelihood of the proximal site being 
used. (B) Read coverage and 𝜓 values for the gene PAFAH1B1 in cells expressing wildtype (orange) and slow 
(purple) RNA polymerase II. (C) Comparison of 𝜓 values in cells expressing wildtype and slow RNA polymerase II 
for genes whose 𝜓 value was significantly different between these samples (FDR < 0.05). (D) Distance between 
alternative polyadenylation sites for genes that displayed increased upstream APA (orange), increased 
downstream APA (purple), or whose APA did not change (gray) in cells expressing a slow RNA polymerase II 
compared to cells expressing wildtype RNA polymerase II. (E-F) As in D, comparison of 𝜓 values in cells 
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If the shift in APA was related to the amount of time 
during which the proximal site was exclusive, then 
the shift should be most pronounced in genes in 
which the distance between proximal and distal 
sites is large. Consistent with this hypothesis, we 
found that this “inter-polyA distance” for genes that 
displayed increased proximal APA was significantly 
longer than expected (Figure 3D), further 
suggesting that changes in Pol II kinetics can 
predictably alter APA.


If alternative polyadenylation of tandem UTRs and 
ALEs were generally coregulated, then it would be 
expected that changes in Pol II speed would affect 
both classes of genes. To test this, we examined 
the increase in proximal APA site usage caused by 
slow transcription in the context of tandem UTR 
and ALE genes separately. We found that proximal 
APA usage was increased for both tandem UTR and 
ALE genes (Figure 3E, F), indicating that the two 
classes of genes are similarly affected by changes 
in Pol II speed and consistent with the idea that 
they are coregulated by a common mechanism.


Dozens of RNA-binding proteins (RBPs) regulate 
relative APA isoform abundance across many genes 

To investigate the contributions that individual RBPs 
can have to the regulation of APA isoform 
abundance, we analyzed the ENCODE RBP 
knockdown RNAseq datasets with LABRAT 
(Consortium, ENCODE Project et al., 2012; Davis et 
al., 2018). This resource contains 523 shRNA-
mediated RBP knockdown RNAseq experiments 
spread across human HepG2 and K562 cell lines. 
We compared 𝜓 values for all expressed genes 
between RBP knockdown and control knockdown 
samples for 191 RBPs that were expressed in both 
cell lines.  To identify genes that had significantly 
different 𝜓 values (FDR < 0.05) between RBP 
knockdown and control knockdown samples, we 
incorporated the cell line of the experiment as a 
covariate in LABRAT’s linear model.


We began by assessing the reproducibility of 
changes in APA isoform abundance upon RBP 
knockdown between the two cell lines. To do this, 
we correlated 𝛥𝜓 values (control knockdown - RBP 
knockdown) for all expressed genes in a given RBP 
knockdown in HepG2 cells with their 𝛥𝜓 values 

upon knockdown of the same RBP in K562 cells.  
We therefore end up with one correlation coefficient 
per RBP knockdown. As a control, we compared 
these values to correlations of 𝛥𝜓 values where the 
RBP that was knocked down was different between 
the cell lines (Figure 4A). Reassuringly, we found 
that correlations between experiments in which the 
expression of the same RBP was knockdown were 
significantly higher than those in which the 
expression different RBPs were knocked down (p = 
1.5e-19, Wilcoxon ranksum test).  When we 
restricted the comparison to genes that had 
significantly different 𝜓 values between RBP and 
control knockdowns (FDR < 0.05), we observed a 
much higher correlation of 𝛥𝜓 values between cell 
lines (Figure 4A).  These results gave us confidence 
that we could accurately quantify APA isoform 
abundance in the ENCODE datasets.


For each RBP knockdown experiment, we then took 
the genes with significantly different 𝜓 values 
between RBP and control knockdowns and 
analyzed the distribution of their 𝛥𝜓 values (control 
knockdown - RBP knockdown) (Figure 4B).  We 
observed that many RBP had distributions of 𝛥𝜓 
values that were skewed towards being mostly 
positive or mostly negative. We defined a term, 𝛼, 
as the fraction of these genes with positive 𝛥𝜓 
values. RBPs with 𝛼 values greater than 0.5 
therefore were broadly associated with increased 
distal APA isoform abundance while those with 𝛼 
values less than 0.5 were associated with increased 
proximal APA isoform abundance.  94 RBPs had 𝛼 
values that were significantly skewed from the 
expected value of 0.5 (binomial p < 0.01), and of 
these 52 had 𝛼 values of greater than 0.5 while 42 
had 𝛼 values less than 0.5 (Figure 4C).  


For each RBP knockdown experiment we then 
calculated 𝛼 values for tandem UTR and ALE genes 
separately.  𝛼 values for these two APA types were 
highly correlated (R = 0.62), further indicating that 
these two mechanisms of APA regulation are not 
independent and share elements in common 
(Figure 4D, Figure S3A).


If changes in APA isoform abundance upon RNAi 
were directly due to loss of the RBP, then we would 
expect that the RBP would directly bind the 3′ 
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UTRs of the genes whose APA it regulates. To test 
this, we analyzed RBP/RNA interactions as 
measured by the eCLIP experiments performed as 

part of the ENCODE 
project (Van 
Nostrand et al., 
2016). We observed 
that some RBPs 
displayed highly 
promiscuous 3′ 
UTR binding while 
others bound very 
few 3′ UTRs 
(Figures S3B, C). 


In HepG2 cells, 84 
RBPs had both 
RNAseq data from 
RNAi experiments 
and eCLIP data. For 
each RBP, we 
calculated how 
many of the genes 
with significant 
changes in 𝜓 value 
upon RBP 
knockdown also 
contained an eCLIP 
peak for that RBP in 
their 3′ UTR. We 
then calculated 
whether this overlap 
of RBP binding and 
function was 
statistically 
significant (binomial 
p < 0.05). For 21 of 
these RBPs, we 
observed a 
significant overlap 
between the RBPs 
functional APA 
targets and the 3′ 
UTRs it bound 
(Figure 4E). To 
assess whether this 
was more or less 
than the number of 
expected significant 
RBPs, we shuffled 

the relationships between RBPs and their lists of 
APA targets and bound 3′ UTRs and again 
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calculated the number of RBPs that showed 
significant overlap between APA and eCLIP data. 
Repeating this process 1000 times gave us a null 
distribution of the expected number of RBPs with 
significant overlaps and indicated that the observed 
number of overlaps was significant in HepG2 cells 
(p = 0.006).


Although we did not observe a similar significant 
relationship between APA and eCLIP data in K562 
cells (p = 0.4) (Figure S3D), overall, these results 
indicate that many of the RBPs tested are 
modulating relative APA isoform abundance through 
direct interactions.


Misregulation of alternative polyadenylation is 
cancer type specific and correlates with patient 
survival 

Changes APA have long been known to be 
associated with cancer (Masamha and Wagner, 
2018; Yuan et al., 2019).  Most often, APA is thought 
to contribute to cancer phenotypes through a 
general increased usage of proximal APA sites, 
which are thought to be associated with increased 
expression of oncogenes and proliferation of cell 
lines (Mayr and Bartel, 2009; Sandberg et al., 2008). 
To further explore this phenomenon, we used 
LABRAT and data from The Cancer Genome Atlas 
(TCGA) (Cancer Genome Atlas Research Network et 
al., 2013) to examine changes in APA between 
matched tumor and normal samples from 671 
patients across 21 different cancers. 


For each cancer, we identified between 130 and 
3043 genes that displayed significant differences in 
𝜓 values (FDR < 0.05) between tumor and normal 
samples.  We then defined 𝛥𝜓 values (tumor - 
normal) to ask whether proximal or distal sites 
showed increased usage in tumor samples. For 
some cancers, including Lung Squamous Cell 
Carcinoma (LUSC), Urothelial Bladder Carcinoma 
(BLCA) and Lung Adenocarcinoma (LUAD), tumors 
displayed the expected pattern of increased 
proximal APA in tumors (Figure 5A). Conversely, 
Thyroid Cancer (THCA) and Kidney Renal Clear Cell 
Carcinoma (KIRC) showed strong biases in the 
opposite direction with increased distal APA in 
tumors.  Mechanisms that drive APA dysregulation 
are therefore likely specific to different cancer types, 

and it is not true that increased proximal APA is a 
general feature of cancer cells.


We then compared 𝜓 values in the TCGA data for 
tandem UTR genes and ALE genes separately. For 
each pair of tumor and normal samples, we 
calculated the fraction of genes with significantly 
different 𝜓 values across conditions (FDR < 0.05) in 
which the 𝜓 value was greater in the tumor sample 
than the normal sample. Put another way, for each 
patient, we calculated the fraction of significant 
tandem UTR and ALE genes with positive 𝛥𝜓 
(tumor - normal) values (Figure 5B). The tandem 
UTR- and ALE-derived fractions were strongly 
correlated with each other (R = 0.74), again 
suggesting that these two modes of APA may be 
coregulated.


We wondered if APA was misregulated in the same 
genes across many different cancer types or 
whether the set of genes with misregulated  APA 
was cancer type specific. Although many APA 
misregulated genes were specific to certain 
cancers, we did observe that hundreds of genes 
repeatedly showed misregulation across multiple 
cancers (Figure 5C). We defined a set of genes that 
repeatedly showed increased proximal APA usage 
in BLCA, LUAD, and LUSC tumors. Using gene 
ontology analysis, we found that these genes were 
significantly enriched for those encoding single-
stranded RNA binding proteins (Eden et al., 2009). 
Similarly, we defined a set of genes that repeatedly 
showed increased distal APA usage in THCA and 
KIRC. These genes were enriched for being 
involved in programmed cell death and responses 
to stress.


We enquired whether transcripts we identified 
whose APA status correlates with  membrane 
association (Figure 2C, D) are among those subject 
to misregulation in tumors. Many of these 
membrane associated mRNAs showed significantly 
different 𝜓 values between tumor and normal 
samples, suggesting that the subcellular localization 
of these transcripts may be altered in cancerous 
cells.


To determine if the degree of APA misregulation was 
related to patient prognosis, we performed survival 
analyses for patients from the TCGA dataset. In 
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figure 5A, we defined 
genes with tumor-
specific APA 
misregulation by 
comparing 𝜓 values 
in tumor and 
matched normal 
patient samples. For 
each tumor, we then 
calculated a median 
𝜓 value across these 
genes in thousands 
of tumor RNAseq 
samples. Using this 
median 𝜓 of 
misregulated genes, 
we ranked patients 
and separated them 
into quartiles. The 
extreme quartiles 
(patients with the 
highest and lowest 𝜓 
values for 
misregulated genes) 
for each cancer were 
compared.  We 
found that for head 
and neck squamous 
cell carcinoma 
(HNSC), a cancer 
that typically exhibits 
increased proximal 
APA, patients with 
lower 𝜓 values in 
misregulated genes 
had poorer 
prognoses (p = 
0.0069) compared to 
patients with higher 
𝜓 values for the 
same genes (Figure 
5D). Conversely, for kidney renal clear cell 
carcinoma (KIRC), a cancer that typically exhibits 
increased distal APA, we found the opposite. 
Patients with lower 𝜓 values in misregulated genes 
had better outcomes compared to patients with 
higher 𝜓 values (p < 0.0001) (Figure 5E).  Therefore, 
the direction of APA misregulation is cancer-

specific, and both increased proximal and distal 
APA are associated with poor patient prognosis, 
depending on the cancer type. 


Usage of distal APA sites is broadly but weakly 
associated with decreased RNA expression 

Some of the original studies on the relationship 
between APA and RNA expression reported that 
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Figure 5. Misregulation of alternative polyadenylation in primary tumors. (A) Comparison of 𝜓 values in matched patient 
tumor and control samples for genes whose 𝜓 value was significantly different between these samples (FDR < 0.05).  The 
number of genes with significant 𝛥𝜓 values in each comparison is indicated by the bar graph. (B) As in A, 𝜓 values for all 
genes were calculated in matched patient tumor and normal tissue samples, and genes with significantly different 𝜓 
values across samples within a cancer type were identified (FDR < 0.05).  The fraction of significant tandem UTR and ALE 
genes with positive 𝛥𝜓 values were plotted on the x and y axes, respectively. Each dot represents one patient sample 
pair. (C) Genes with significantly different 𝜓 values across samples within a cancer type (FDR < 0.05) are colored 
according to their 𝛥𝜓 value (tumor - control).  Columns represent matched patient samples while rows represent genes. 
Black ticks (right) represent whether or not the gene displayed a significantly different 𝜓 value (FDR < 0.05) between 
biochemically defined cytosolic and membrane-associated fractions in HepG2 and K562 cells (Figure 2D).  Genes were 
further separated into classes of those with increased 𝜓 values in KIRC and THCA tumor samples (red ticks, right) and 
those with decreased 𝜓 values in BRCA, LUAD and LUSC tumor samples (blue ticks, right). (D-E) Survival analysis for 
APA misregulation in head and neck squamous cell carcinoma and kidney renal clear cell carcinoma, respectively. 
Patients were grouped into extreme quartiles by ranked median 𝜓 values for misregulated genes as defined in Figure 5A 
for the respective tumors. In figure 5A, HNSC tumors were associated with decreased 𝜓 values. Here, lower 𝜓 values are 
associated with poor prognosis.  Conversely, in figure 5A KIRC tumors were associated with increased 𝜓 values, and 
here, increased 𝜓 values are associated with poor prognosis.
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distal APA is associated with a decrease in RNA 
levels (Mayr and Bartel, 2009) while more recent 
genome-wide studies have reported that the 
relationship is less clear (Spies et al., 2013; Venkat 
et al., 2020). To comprehensively examine the 
relationship between APA and gene expression, we 
compared changes in 𝜓 and changes in RNA levels 
across the 191 ENCODE RBP knockdown sample 
pairs and the 671 TCGA tumor/normal sample 
pairs.  To do so, we defined a term, rho (𝜌), as the 
correlation between changes in 𝜓 and changes in 
gene expression across two samples (Figure 6A). 
Sample comparisons where 𝛥𝜓 and gene 
expression changes are positively correlated 
indicate that distal APA and increased RNA levels 
were associated, and these comparisons will have 
positive 𝜌 values.  Conversely, sample comparisons 
where 𝛥𝜓 and gene expression changes are 
negatively correlated indicate that distal APA and 
decreased RNA levels were associated, and these 
comparisons will have negative 𝜌 values.


We calculated 𝜌 values across all genes for each 
RBP knockdown in the ENCODE data. In both the 
HepG2 and K562 samples, these 𝜌 values 
overwhelmingly tended to be negative, but weakly 
so (Figure 6B).  We similarly calculated 𝜌 values 
across all genes for every patient-derived tumor/
normal pair in the TCGA data (Figure 6C).  Again, 
these 𝜌 values were consistently but weakly 
negative.  These results indicate that although distal 
APA is generally associated with decreased gene 
expression, its contribution to changes in RNA 
levels is modest when comparing all genes in 
aggregate.


It could be the case, though, that for specific genes, 
APA and gene expression may be more strongly 
linked. To explore this, we calculated 𝜌 values for 
each gene individually across all of the ENCODE 
and TCGA sample pairs (Figure 6D, E).  The median 
genes again had weakly negative 𝜌 values (-0.12 in 
the ENCODE data, -0.20 in the TCGA data). 
ENCODE- and TCGA-derived 𝜌 values for genes 
were correlated with each other (Figure 6F). 
Tandem UTR genes and ALE genes displayed 
similar distributions of 𝜌 values, indicating that 
relationships between gene expression and APA are 

of approximately equal strength in these two APA 
classes (Figure S4A-D).


The tails of the 𝜌 value distributions were long, 
indicating that there were genes whose changes in 
𝜓 value and changes in expression were highly 
correlated across conditions.  We selected three of 
these, RPLP1, NOLC1, and UBE2G1, for further 
analysis.  Given that each of these genes had 
strong negative 𝜌 values in both the ENCODE and 
TCGA data (Figure 6G), we reasoned that there 
may be elements in their distal UTRs downstream 
of the proximal APA site that confer reduced 
steady-state RNA levels. To test this experimentally, 
we fused the proximal and distal UTRs of each of 
these genes to the coding region of Firefly 
luciferase. Each construct was then site-specifically 
incorporated into the genome of HeLa cells through 
Cre-mediated recombination (Khandelia et al., 
2011). The Firefly luciferase transcripts were 
coexpressed from a bidirectional tet-On promoter 
with unmodified Renilla luciferase. The RNA level of 
each Firefly-UTR fusion was measured using 
Taqman qRT-PCR with the Renilla luciferase 
transcript as a normalizing control.  For all three 
tested genes, fusion of the distal UTR to Firefly 
luciferase significantly reduced the steady-state 
level of the RNA relative to a fusion with the 
proximal UTR, indicating that sequence elements 
downstream of the proximal APA sites likely have a 
role in reducing RNA expression (Figure 6H). We 
conclude that by comparing changes in gene 
expression and APA, we can identify functional 
elements within 3′ UTRs that regulate mRNA 
abundance.


Features enriched in UTRs associated with gene 
expression changes 

To better understand sequence elements 
downstream of proximal APA sites that may reduce 
RNA expression, we used the 𝜌 values calculated 
for individual genes using ENCODE and TCGA 
sample sets to assign genes to positively 
correlated, negatively correlated or not correlated 
(control) gene sets (Figure 6I, Figure S4E). These 
gene sets behave differently: positively correlated 
genes are more highly expressed when downstream 
PAS are used (increased 𝜓) while negatively 
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Figure 6. Comprehensive analyses of connections between alternative polyadenylation and transcript expression. (A) Diagram of correlation between 
APA and transcript expression. Rho (𝜌) is defined as the correlation between changes in gene expression and changes in 𝜓 value across two 
conditions. In the scenario described in the top row, the overall RNA expression level for the gene is high in sample A but low in sample B while the 
gene’s 𝜓 value is low in sample A and high in sample B. Changes in gene expression and 𝛥𝜓 are therefore negatively correlated, giving 𝜌 a negative 
value.  Conversely, in the scenario described in the bottom row, changes in gene expression and 𝜓 are positively correlated. (B) 𝜌 values across all 
expressed genes within a comparison for the ENCODE RBP knockdown data. Each dot represents a single comparison (RBP knockdown vs control 
knockdown).  P values for the correlation between gene expression and APA are indicated by dot shape and color. (C) 𝜌 values across all expressed 
genes with a comparison for the TCGA paired tumor/control sample data. Each dot represents a single patient’s tumor and control samples. P values 
for the correlation between gene expression and APA are indicated by dot shape and color. (D) Gene-level 𝜌 values across all ENCODE RBP 
knockdown experiments. (E) Gene-level 𝜌 values across all TCGA tumor/control sample pairs. (F) Correlation of gene-level 𝜌 values derived from the 
ENCODE and TCGA datasets (D and E). Red lines indicate the density of points, and the locations of three genes selected for further study are 
indicated by labels.  (G) Correlation between gene expression changes and 𝛥𝜓 for three genes. Orange dots represent ENCODE sample pairs (RBP 
knockdown vs. control knockdown) while purple dots represent TCGA sample pairs (tumor vs. control samples). Legend continues on next page 
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correlated genes become less highly expressed as 
they utilize more downstream PAS.


This analysis was simplified by only considering 
genes with two APA isoforms such that RNA 
expression could be explained by proximal or distal 
UTR usage. The analyzed UTR sequences were 
unique, meaning that tandem UTRs were separated 
into proximal and distal UTRs such that distal UTRs 
lacked their shared 5’ sequence (Figure 6H). This 
allowed us to identify sequence characteristics of 
distal UTRs that explain the differences in RNA 
expression of the positively correlated and 
negatively correlated gene sets.


Negatively correlated genes were found to have 
longer distal UTRs with lower GC content than 
expected (Figure 6J, 6K). Additionally, they were 
generally enriched for AU rich five-mers including 
the canonical AU rich element (ARE) 
“AUUUA” (Figure 6L, Figure S4F). Conversely the 
distal UTRs of positively correlated genes were 
depleted for AU-rich five-mers (Figure S4G). 
Unsurprisingly given their AU-richness, negatively 
correlated genes were enriched for ARE binding 
protein motifs in their distal UTRs and contained 
more AREs as scored by AREScore (Spasic et al., 
2012) (Figure 6M, 6N). AREs are destabilizing RNA 
elements bound by several ARE binding proteins 
that facilitate RNA degradation. The presence of 
AREs in distal UTRs of negatively correlated genes 
is consistent with lower RNA expression when 
downstream PAS are utilized. It is important to note 
that the distal UTRs of positively correlated genes 
are depleted for AREs consistent with their higher 
expression. These results suggest that APA can 
regulate gene expression through the inclusion of 
destabilizing AREs in a transcript’s 3’UTR. 


Regulatory effects of RBPs on APA isoform 
abundance inferred from ENCODE data can be 
observed in TCGA data 

The relation between RBP expression and the 
widespread misregulation of APA in cancer cells is 
poorly understood. We investigated this problem by 
examining expression in patient samples of the 191 
RBPs that potentially influence APA isoform 
abundance revealed by our analysis of ENCODE 
knockdown RNAseq results (Figure 4B, C). Based 
on the ENCODE RBP knockdown data, we defined 
𝛼 values for RBPs where values of greater than 0.5 
indicated an RBP that promoted distal APA isoform 
abundance while values of less than 0.5 indicated 
an RBP that promoted proximal APA isoform 
abundance.  To compare 𝛼 values to RBP effects on 
APA isoform abundance observed in the TCGA 
data, we defined another term, 𝛽, as the correlation 
between the change in RNA expression of an RBP 
between tumor and matched normal TCGA samples 
and the median 𝛥𝜓 of genes with significantly 
different APA between the samples (FDR < 0.05) 
(Figure 7A). RBPs with positive 𝛽 values are 
therefore associated with increased distal APA 
isoform abundance while those with negative 𝛽 
values are associated with increased proximal APA 
isoform abundance.


If ENCODE-derived effects of RBPs on APA isoform 
abundance were recapitulated in the TCGA data, 
we would expect to see a positive correlation 
between the 𝛼 and 𝛽 values for RBPs. We restricted 
this comparison to the 94 RBPs that had 𝛼 values 
significantly different from the expected value of 0.5 
(p < 0.01, binomial test). For these RBPs, 𝛼 and 𝛽 
values were positively correlated (R = 0.23, p = 
0.03).  RBPs with 𝛼 values greater than 0.5 had 
significantly higher 𝛽 values than those with 𝛼 
values less than 0.5 (Figure 7B). Further, when we 
correlated 𝛼 and 𝛽 values across all RBPs for all 
sample pairs within a cancer type, we observed 
positive correlations in all 12 cancers tested (Figure 
7C). These results further suggest that dozens of 
RBPs have the ability to regulate relative APA 
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(H) Top: illustration of the UTR fragments fused to the Firefly luciferase gene. Bottom: RT-qPCR-derived relative levels of firefly luciferase mRNA 
expression when the proximal and distal UTR fragments of the indicated genes were fused. Values indicate ratios between the abundances of Firefly 
and Renilla luciferase mRNAs with this ratio in the proximal UTR comparison set to 1. P values were calculated using a Wilcoxon ranksum test. (I) 
Correlation between gene expression changes and 𝛥𝜓 was used to define positively correlated, negatively correlated and control genes with two APA 
isoforms. Correlations are calculated for ENCODE and TCGA separately. (J) Distal UTR lengths of each gene set. P values were calculated using a 
Wilcoxon ranksum test. (K) Distal UTR GC content of each gene set.  P values were calculated using a Wilcoxon ranksum test. (L) Five-mer 
enrichments in the distal 3′ UTRs of positively and negatively correlated gene sets vs control. Five-mers are significantly enriched (BH-adjusted p<0.05, 
Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a circle plus, open circle or closed dot respectively. 
Five-mers are colored by their AU content as ranked 0-5. Canonical AU rich element (ARE)  “AUUUA” is highlighted as enriched in negatively 
correlated distal UTRs. (M) RBP motif enrichments in the distal 3′ UTRs of positively and negatively correlated gene sets vs control. RBP motifs are 
significantly enriched (BH-adjusted p<0.05, Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a green 
circle plus, blue open circle or purple dot respectively. Canonical ARE binding protein motifs are highlighted as enriched in negatively correlated distal 
UTRs. (N) Distal UTR AREScores of each gene set as calculated by AREScore software. P values were calculated using a Wilcoxon ranksum test.
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isoform abundance of many genes in a coordinated, 
directional manner and that the misregulation of 
APA seen in many cancers may be due to altered 
expression of specific RBPs.


DISCUSSION 

Alternative polyadenylation is a key step in control 
of mRNA function, and its misregulation can have 
large effects on cellular and even organismal 
phenotype including major effects on the 
transcriptome of diseased cells including tumors  
(Berkovits and Mayr, 2015; Grassi et al., 2018; Mayr 
and Bartel, 2009; Shi and Manley, 2015; Tian and 

Manley, 2017; Ulitsky et al., 
2012; Zhou et al., 2019). 
Advances in RNA sequencing 
and methods of profiling APA 
from high-throughput data 
have illuminated the 
prevalence of APA and its 
regulation across many cell 
types and physiological 
conditions (Ha et al., 2018; Xia 
et al., 2014). Still, the broad 
effects of APA on mRNA 
metabolism, especially 
beyond changes in mRNA 
abundance, are not very well 
understood.  Further, the 
contribution of individual 
RBPs to the regulation of this 
process is similarly poorly 
defined.


To address these challenges, 
we developed software to 

accurately quantify 
alternative polyadenylation 
and changes in its regulation 
across conditions from 
standard RNAseq data.  
LABRAT builds upon 
advances in transcriptome 
quantification using 
lightweight alignments (Patro 
et al., 2017) to determine the 
relative usage of APA sites 
within genes. This strategy 
of using fast, accurate, 
isoform-level quantification 

has previously been successfully used to study 
differential isoform regulation (Alamancos et al., 
2015; Ha et al., 2018). Here, we have used LABRAT 
to explore the regulation and consequences of APA 
in a variety of contexts using thousands of data 
sets.


The subcellular localization of specific transcripts 
has been known to be regulated by APA.  For 
example, the dendritic localization of BDNF mRNA 
depends on the content of the transcript’s 3′UTR as 
determined by APA (An et al., 2008). More recent 
transcriptome-wide studies have shown that this 
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Figure 7. APA is regulated by RBP expression in ENCODE and TCGA data. (A) Diagram depicting 
connections between changes in RBP expression between condition and widespread, global in changes in 
𝜓. Left: In figure 4, RBPs were assigned a value, 𝛼,  based on the effect that their knockdown had on the 𝛥𝜓 
values for all genes. 𝛼 was defined as the fraction of genes that displayed increased 𝜓 values in control 
knockdown samples compared to RBP knockdown samples. The expression of RBPs with high 𝛼 values 
was therefore associated with increased 𝜓 values transcriptome-wide (top) while expression of RBPs with 
low 𝛼 values was correlated with decreased 𝜓 values transcriptome-wide (bottom).  Similar RBP effects were 
calculated in TCGA data (right) by comparing the change in RBP expression between two matched samples 
with transcriptome-wide changes in 𝜓 values. A value, 𝛽, was defined as the correlation between changes in 
RBP expression and the median 𝛥𝜓 across all genes with significant 𝛥𝜓 values (FDR < 0.05).  𝛼 and 𝛽 are 
therefore comparable in relating RBP expression and transcriptome wide changes in 𝜓 with the former 
designed for ENCODE RBP knockdown data and the latter designed for TCGA paired sample data. (B) 𝛽 
values for RBPs with low 𝛼 values (𝛼 < 0.5, blue) and high 𝛼 values (a > 0.5, red). Here, an RBP’s 𝛽 value 
considers the correlation between its expression and global 𝜓 across all TCGA sample pairs. The p value 
was calculated using a Wilcoxon ranksum test.  (C) Correlation between 𝛼 and 𝛽 values across all RBPs for 
all TCGA sample pairs, separated by cancer type.  The p value was calculated using a binomial test for 
deviation from the expected 0.5 probability that a cancer’s correlation between 𝛼 and 𝛽 would be positive.
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phenomenon is widespread, as hundreds of genes 
display differential enrichments of APA isoforms 
across cell body and projection compartments 
(Ciolli Mattioli et al., 2019; Taliaferro et al., 2016; 
Tushev et al., 2018). Still, there has been confusion 
as to the relative contributions of tandem UTR- and 
ALE-mediated APA to this effect, perhaps due to 
inefficiencies in studying APA with software that 
uses genomic alignments. LABRAT is the only 
currently available APA software that explicitly 
separates and labels these two classes of genes.  
We took advantage of this to quantify the 
distribution of tandem UTR and ALE isoforms 
across subcellular compartments and found that 
both classes of APA contribute approximately 
equally to differences in RNA localization.  We 
further found that differential APA isoform 
localization is most prevalent in young cellular 
projections that are less than 3 days old, suggesting 
that this effect may be important for the initiation of 
projection outgrowth but less significant for the 
maintenance of established projections.


Although RNA localization is most heavily studied in 
polarized cell types like neurons, transcripts are 
asymmetrically distributed in essentially all cells. 
LABRAT identified hundreds of genes with 
differential APA isoform enrichment between 
biochemically defined cytosolic and membrane 
fractions in nonpolarized D17, HepG2, and K562 
cells. These results indicate that APA may play a 
broad role in subcellular localization to membranes 
in multiple cell types. The consequences of this 
localization remain unknown, but given that a large 
fraction of cellular membrane belongs to the ER, 
modulation of membrane association may be a way 
to tune the ER association and therefore translation 
status of a transcript. Further, given the broad 
misregulation of APA in many cancers, this may 
mean that the membrane association of many 
transcripts changes upon transformation. We further 
found that genes whose APA isoforms are 
differentially associated with membranes are less 
likely to encode ER-targeting signal peptides, 
suggesting that RNA localization to the ER can 
occur using mechanisms that are independent of 
the cotranslational targeting. This phenomenon and 
its misregulation in specific contexts like cancer 
needs more study.


The abundance of several CPSF and CstF subunits 
can have important effects on alternative polyA site 
choice (Schönemann et al., 2014; Shi et al., 2009; 
Sun et al., 2018; Takagaki and Manley, 1998). Other 
RBPs, including CFIm25, have also been shown to 
strongly directionally regulate APA through 
activation or repression of specific cleavage events 
(Masamha et al., 2014; Zhu et al., 2018). Using RBP 
knockdown followed by high-throughput RNA 
sequencing experiments performed by the 
ENCODE consortium (Consortium, ENCODE Project 
et al., 2012; Davis et al., 2018) we interrogated the 
regulatory effects of 191 RBPs on APA isoform 
abundance. In this analysis, the knockdown of 
dozens of RBPs promoted widespread, coordinated 
directional shifts in relative APA isoform abundance 
for hundreds to thousands of genes, suggesting 
that the repertoire of RBPs that can differentially 
regulate APA isoforms is quite large.  It is important 
to note, though, that not all of these RBPs may be 
directly regulating APA. For example, many may be 
differentially regulating stability of 3′ UTR isoforms.


The CPA apparatus processes nascent Pol II 
transcripts at the ends of genes in the context of 
complexes with Pol II. According to the “window of 
opportunity” model (Bentley, 2014), the decision 
between alternative polyA sites can be influenced 
by the delay between synthesis of upstream and 
downstream sites which is determined by the speed 
of transcription. Consistent with this model, we 
found using LABRAT that slow transcription caused 
by a mutation in the Pol II large subunit causes a 
significant shift in favor of upstream polyA sites and 
that this effect is true for both the ALE and tandem 
3’ UTR classes of APA. Moreover, as predicted by 
the “window of opportunity” model the mRNAs with 
the greatest upstream shift in APA correspond to 
those with the greatest distance between alternative 
tandem 3’UTR sites (Figure 3D). In summary, these 
results show that Pol II speed can significantly 
modulate alternative polyA site choice. They further 
suggest the possibility that regulation of 
transcription elongation could contribute to 
changes in APA under normal and pathological 
conditions.  


Connections between APA and cancer have been 
well established (Masamha and Wagner, 2018; 
Masamha et al., 2014; Xia et al., 2014). Generally, 
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conclusions regarding this relationship have been 
focused on the idea of increased proximal APA in 
cancerous samples (Masamha et al., 2014; Mayr 
and Bartel, 2009; Xia et al., 2014) with the idea that 
proximal APA of oncogenic transcripts particular 
removes repressive regulatory elements in the distal 
UTR that might otherwise keep the expression of 
these genes low. However, our results using 
LABRAT to assess APA changes in 671 paired 
tumor and normal samples indicate that broad, 
directional shifts in APA are specific to the type of 
cancer being studied.  Some cancers, including 
lung cancers and head-neck squamous cell 
carcinoma, display the canonical increased use of 
proximal APA sites, while others, including kidney 
renal clear cell carcinoma and thyroid cancers, 
show strong shifts in the opposite direction toward 
distal APA sites. Further, increased proximal and 
distal APA is associated with poor patient prognosis 
in head-neck squamous cell carcinoma (HNSC) and 
kidney renal clear cell carcinoma (KIRC), 
respectively. Critically, this indicates that increased 
proximal APA is not a general signature of cancer, 
but rather that the direction of APA misregulation is 
cancer-specific.


Relationships between APA and gene expression 
have also been well documented (Mayr and Bartel, 
2009; Sandberg et al., 2008). Early studies of this 
connection indicated that distal APA was generally 
associated with a decrease in gene expression.  
Later studies, though, indicated that this 
relationship was less clear (Spies et al., 2013).  To 
investigate how APA affects gene expression, we 
compared changes in 𝜓 values and changes in 
gene expression for all genes in over 1000 pairs of 
RNAseq samples. We found that within a sample, 
correlations between gene expression and APA 
were weak, but were consistently in the canonical, 
expected direction where distal APA leads to lower 
expression. Reorienting the analysis to interrogate 
the relationship within single genes but across 
samples again revealed that the average gene has 
only a very weak connection between APA and 
gene expression. Still, some genes had remarkable 
correlations (R ~ 0.7-0.8) between these two 
measurements, indicating that changes in their 
expression across diverse samples are controlled in 
large part by modulation of APA site choice.


Across over a thousand pairs of samples, we 
observed strong correlations between APA changes 
in genes with tandem UTRs and those with ALEs. If 
a particular condition promoted increased distal 
APA in tandem UTR genes, it overwhelmingly also 
promoted increased distal APA in ALE genes and 
vice versa. This strongly indicates that the two may 
be regulated by similar mechanisms. Tandem UTRs 
are regulated solely at the level of cleavage/
polyadenylation. The simplest interpretation of our 
results is therefore that the contribution of regulated 
splicing to ALE control is minor compared to that of 
regulated cleavage/polyadenylation, perhaps 
because splicing kinetics are slower.  For ALEs, 
proximal cleavage events obviate potential 
regulation of the ALE by splicing since the distal 
ALE is removed from the transcript. If recognition of 
the proximal APA site by the cleavage and 
polyadenylation machinery is inhibited, this may 
provide time for splicing to distal ALEs to occur, and 
this decision could be affected by the speed of 
transcription. In this model, splicing acts on ALEs 
only if given the chance to do so through inhibition 
of kinetically favored cleavage events.


Overall, the results presented here shed light on the 
molecular consequences of APA and make 
predictions about the proteins and mechanisms 
involved in its regulation. Further experimental 
studies are needed to fully understand these 
processes. We envision LABRAT as an important 
tool in deriving meaningful insights from those 
experiments.
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METHODS 

General LABRAT usage 

LABRAT is freely available for download here: https://github.com/TaliaferroLab/LABRAT/. LABRAT searches 
for specific tags in the annotation associated with transcripts with ill-defined 3′ ends. These tags are present 
in Gencode (www.gencodegenes.org) gff annotations but may not be present in annotations from other 
sources.  For this reason, we strongly suggest using Gencode annotations for use with LABRAT.  For analysis 
of Drosophila data, we modified LABRAT to perform similar filtering on Ensembl annotations for the dm6 
Drosophila genome build.  This version of LABRAT is also available at the above GitHub address.


Genes that did not pass an expression filter (TPM ≥ 5) were removed from further analysis. This gene 
expression was defined as the sum of the expression values for all valid, filter-passing transcripts for the 
gene.  LABRAT reports these genes as having a 𝜓 value of NA.


Identification of genes with significantly different 𝜓 values across conditions was done using a linear mixed 
effects model with the Python package statsmodels (Seabold and Perktold, 2010). For simple comparisons 
involving two conditions, a simple model relating conditions and 𝜓 values was used (𝜓 values ~ condition).  
For analysis of the CeFra and ENCODE data, slightly more complex models were used.  In the CeFra data, 
the method of library preparation, polyA-enrichment or ribosomal RNA depletion, was added as a covariate (𝜓 
values ~ condition + libprep). In the ENCODE data, the cell line, K562 or HepG2, was added as a covariate (𝜓 
values ~ condition + cell line). These models were then compared to null models where the effect of the 
condition was removed.  For simple comparisons, the null models were specified as (𝜓 values ~ 1).  For the 
CeFra and ENCODE comparisons, these were specified as (𝜓 values ~ libprep) and (𝜓 values ~ cell line), 
respectively.  A likelihood ratio test was then used to evaluate the relative fit between the experimental and 
null models.  P values were derived from the likelihood ratio test and then corrected for multiple hypothesis 
testing using a Benjamini-Hochberg correction (Benjamini and Hochberg, 1995).  𝛥𝜓 values are defined as 
differences in mean 𝜓 across conditions.


To define tandem UTR and ALE structures, LABRAT observes the isoform structures at the 3′ end of a gene.  
If all APA sites are contained within the same exon, then the structure in tandem UTR.  If all APA sites are 
contained within different exons, then the structure is ALE.  If a gene has only two APA sites, then its structure 
must be either tandem UTR or ALE.  If a gene has more than two APA sites, it is possible for the gene to fit 
into neither classification. For example, in a gene with three APA sites, it is possible to have two of them 
contained within one exon and the third by itself in another exon. In these cases, LABRAT assigns the gene to 
have a “mixed” structure. 


Comparison of APA in mouse brain and liver tissues 

RNAseq data for mouse brain and liver tissues was downloaded from (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA375882) (Li et al., 2017). Each tissue sample contained 8 replicates.  Genes with 
significantly different 𝜓 values were identified as those with an FDR of less than 0.05.


Analysis of APA in GTEx RNAseq data 

RNAseq data from the Genotype-Tissue Expression (GTEx) project (BioProject PRJNA75899) were 
downloaded from the NCBI Sequence Read Archive (SRA) via dbGaP-authenticated access and quantified 
using salmon (Patro et al., 2017) as described elsewhere in this manuscript. 𝜓 values were calculated for each 
gene in each sample using LABRAT.  LABRAT employs an expression level cutoff, returning a 𝜓 value of NA if 
the sum of expression of all isoforms for a gene is not at least 5 TPM. There were many genes in this analysis 
of tissue-specific RNAseq that therefore had 𝜓 values of NA in at least one sample. To facilitate PCA analysis, 
these missing 𝜓 values were imputed using the R package missMDA (Josse and Husson, 2016).
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The data used for the analyses described in this manuscript were obtained from dbGaP accession number 
phs000424.vN.pN between 07/16/2020 and 08/31/2020.


APA analysis of simulated RNAseq data 

To compare the performance of LABRAT to QAPA (Ha et al., 2018), DaPars (Xia et al., 2014) and Roar (Grassi 
et al., 2016), we generated a synthetic RNAseq dataset.  In this dataset, 5000 genes with only two alternative 
polyadenylation sites were analyzed.  1250 were randomly assigned to have positive 𝛥𝜓 values, 1250 were 
assigned to have negative 𝛥𝜓 values, and 2500 were assigned to have no significant change in 𝜓 between 
conditions. Each gene was then randomly assigned a TPM expression value using a Dirichlet distribution with 
numpy.random.dirichlet.


The simulation was performed by comparing three replicates each from two conditions. For the positive 𝛥𝜓 
genes, the minimum 𝜓 from condition B was required to be at least 0.1 greater than the maximum 𝜓 from 
condition A. Conversely, for the negative 𝛥𝜓 genes, the maximum 𝜓 from condition B was required to be at 
least 0.1 less than the minimum 𝜓 from condition A. For control genes, the difference between any two 𝜓 
values both within and across conditions was required to be less than 0.25.


Given a gene’s overall expression and its 𝜓 value, TPM values were then relatively split between 
polyadenylation sites such that the desired 𝜓 value was achieved. TPM values for individual transcripts within 
polyadenylation sites were then assigned. If a polyadenylation site was only supported by a single transcript, 
that transcript was given the site’s entire TPM value.  If a polyadenylation site was supported by multiple 
transcripts, the site’s TPM allotment was randomly distributed among the transcripts.


Given a transcript’s assigned TPM value and its length, the desired number of counts for each transcript was 
then computed by multiplying the TPM value by the length of the transcript.  The sequence of each transcript 
and the desired number of counts were then given to the R package polyester (Frazee et al., 2015) to create 
synthetic, 100 nucleotide, paired-end RNAseq reads.


In analyzing the reads with each package, gene assignments (positive 𝛥𝜓, negative 𝛥𝜓, or control) made by 
the software were compared to the assignments made during preparation of the synthetic dataset. For 
analysis of these reads with LABRAT, genes with FDR values of less than 0.05 were called as affected genes 
(either positive or negative 𝛥𝜓 depending on the reported 𝛥𝜓 value) while those with values of 0.05 or greater 
were called as control genes.  For analysis with QAPA, genes with differences in PPAU values of at least 10 
were called as affected genes while those with differences in PPAU values of less than 10 were called as 
control genes.  For analysis with DaPars, genes with adjusted p values of less than 0.05 were called as 
affected genes while those with adjusted p values of 0.05 or greater were called as control genes.  For 
analysis with Roar, genes with p values less than 0.05 and roar values greater than 1.1 were called as positive 
𝛥𝜓 genes, genes with p values less than 0.05 and roar values less than 0.9 were called as negative 𝛥𝜓 genes, 
while genes with p values of 0.05 or greater were called as control genes.


Analysis of differential APA isoform enrichment across subcellular compartments 

𝜓 values for each subcellular compartment were quantified using LABRAT, and genes with significant changes 
in 𝜓 values across compartments were identified using an FDR cutoff of 0.05. The fraction of these significant 
genes with greater 𝜓 values in the projections than cell bodies was calculated. Binomial p values were 
calculated for deviations from the expected fraction of 50%. Times of projection growth were manually 
curated from the methods description of each study.


Analysis of differential APA isoform enrichment across biochemically defined subcellular fractions 
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𝜓 values for each subcellular fraction were quantified using LABRAT, and genes with significant changes in 𝜓 
values across compartments were identified using an FDR cutoff of 0.05. FDRs were calculated using a linear 
model that incorporated the method of library preparation (polyA-enrichment or ribosomal RNA depletion) as 
a covariate.


Quantification of ER signal sequence abundance 

For each gene, the translation of its longest CDS sequence was given to the signal sequence prediction 
program SignalP (Almagro Armenteros et al., 2019). For a set of genes, the fraction of genes within the set 
that contained at least one SignalP-defined ER signal sequence was calculated.  For comparing these 
fractions across sets of genes, a distribution of fractions was created by bootstrapping where 40% of the 
genes were sampled 100 times.


Analysis of APA changes induced by changes in RNA Polymerase II speed 

RNAseq data from HEK293 cells expressing slow (R749H) and wildtype RNA polymerase II (Fong et al., 2014) 
were downloaded from the Gene Expression Omnibus (GSE63375). Using an FDR cutoff of 0.1, genes with 
significantly different 𝜓 values between wildtype and R749H samples were identified using LABRAT.


Analysis of ENCODE RBP RNAi knockdown RNAseq samples 

In this dataset, each RBP was associated with two RBP RNAi samples and two control RNAi samples.  We 
limited analyses to RBPs that had knockdown samples in both K562 and HepG2 cell lines.  𝜓 values were 
calculated comparing RBP knockdown and control knockdown samples, and genes with significant 𝜓 
differences between RBP RNAi and control RNAi samples were identified using an FDR cutoff of 0.05. FDRs 
were calculated using a linear model that incorporated the cell line (HepG2 or K562) as a covariate.


For each RBP, the fraction of these significant genes with greater 𝜓 values in the control RNAi than RBP RNAi 
was calculated. These fractions were defined as a value, 𝛼, where 𝛼 ranged from 0 to 1. 𝛼 values greater than 
0.5 were therefore associated with larger 𝜓 values (and therefore more distal APA) in the control RNAi sample. 
Conversely, 𝛼 values less than 0.5 were therefore associated with smaller 𝜓 values (and therefore more 
proximal APA) in the control RNAi sample. Each RBP was therefore assigned one 𝛼 value from the ENCODE 
data. Binomial p values were calculated for deviations from the expected fraction of 50%. 


Comparison of ENCODE RBP RNAi knockdowns and eCLIP RBP binding data 

The eCLIP narrowpeak bed files for isogenic replicates aligned to GRCh38 for each RBP measured in both 
HepG2 (103 RBPs) and K562 (120 RBPs) were downloaded from www.encodeproject.org. Analyses were 
restricted for within each line and not combined. For each individual RBP data set, overlapping peaks were 
merged using bedtools v2.29.2 (Quinlan and Hall, 2010). These peaks were then intersected with the longest 
3’UTR of genes whose polyA sites were both affected and unaffected by RBP knockdown (as measured by 
LABRAT described above). RBP occupancy was scored for each 3’UTR as either present or not. The 
statistical significance of a given RBPs occupancy within the subset of genes whose polyA site choice was 
affected by knockdown of any RBP was determined using a binomial test. 


The number of RBPs that were ‘self significant’, i.e. the occupancy of a specific RBP was significant for the 
genes whose polyA site choice was affected by knockdown of that same RBP, was determined for both 
HepG2 and K562. To determine if that number was greater than what was expected by chance, relationships 
between RBPs and the genes they bind were shuffled, and the analysis was repeated to identify the number 
of ‘self significant’ RBPs. This process was repeated 1000 times to generate a null distribution of the number 
of ‘self significant’ RBPs. The number of actual ‘self significant’ RBPs was then compared to the null 
distribution and an empirical p value was calculated. 
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Analysis of APA in TCGA matched tumor/normal tissue samples 

In this dataset, each patient is associated with a pair of samples, one from a tumor and another from matched 
normal tissue. 𝜓 values were calculated for each sample, and genes with significant 𝜓 differences between all 
tumor samples and all normal samples within a cancer type were identified using an FDR cutoff of 0.05. 


Using the TCGA data, the effect of an RBP’s expression on 𝜓 was inferred by correlating changes in the 
RBP’s expression across samples with changes in 𝜓 values of genes that passed the FDR cutoff of 0.05.  For 
each tumor/normal pair, the change in RBP expression was calculated by comparing TPM expression values, 
and changes in 𝜓 were calculated by finding the median 𝛥𝜓 value across genes with significant changes in 𝜓. 
The spearman correlation coefficient of this comparison across all tumor/normal pairs was defined as 𝛽. Each 
RBP was therefore assigned one 𝛽 value from the TCGA data.


Analysis of survival data in TCGA samples 

Using the tumor and matched normal tissue samples from the TCGA dataset, genes with significant 𝜓 
differences (FDR < 0.05) were identified for each tumor type as misregulated genes. The median 𝜓 of 
misregulated genes was then calculated for each patient in samples without matched normal tissue controls. 
Patients were then ranked by their median 𝜓 of misregulated genes and separated into quartiles. Only 
patients within the most extreme quartiles were plotted for each tumor type. 


Clinical data for each patient was obtained from cbioportal (Gao et al., 2013). Survival analysis and plotting 
was performed with R packages survival (version=3.1-8) (Therneau and Grambsch, 2000) and survminer 
(version=0.4.8) (Alboukadel Kassambara, 2020). Log-rank tests for significance were calculated to compare 
extreme quartiles for each tumor type and were considered significant if less than 0.05.


Analysis of relationship between APA and RNA expression 

For every pair of samples (Control and RBP RNAi in ENCODE and tumor/normal samples in TCGA), the 
change in RNA expression and 𝜓 value for every gene was calculated. Gene expression filters (TPM ≥ 5) were 
applied, but FDR cutoffs for 𝛥𝜓 were not. These two values were then compared to each other, and the 
resulting Spearman correlation coefficient was defined as rho (𝜌). If distal APA (i.e. increases in 𝜓) was 
associated with decreases in RNA expression, the resulting 𝜌 value would be negative.  


𝜌 was calculated in two different ways.  In the first way, changes in expression and 𝜓 for all genes within a 
sample were correlated.  In this comparison, each sample pair ends up with a single 𝜌 value.  In the second 
way, changes in expression and 𝜓 for a single gene across all sample pairs were correlated.  In this 
comparison, each gene ends up with a single 𝜌 value in each sample set (ENCODE and TCGA). 


The second 𝜌 calculations were used to categorize genes as being either positively or negatively correlated. 
To achieve similar numbers of genes in each category, a positive 𝜌 in either sample set was considered as 
positively correlated while a 𝜌 less than -0.15 in either sample set was considered negatively correlated. 
Genes behaving inconsistently between sample sets were removed from these categories and placed in the 
control gene category(25% of positively correlated and 14% or negatively correlated). For simplicity, genes 
with only two APA isoforms were considered during this categorization resulting in 316 positively correlated 
genes, 313 negatively correlated genes and 1466 control genes used in UTR sequence analysis. 


Quantifying effects on RNA expression due to UTR content with qRT-PCR 

Proximal and distal UTR regions were cloned onto the coding sequence of Firefly luciferase.  In this plasmid, 
Firefly luciferase is driven by a bidirectional tet-On promoter.  This promoter also drives Renilla luciferase, 
which served as a control in these experiments.  The resulting plasmids were transfected into HeLa cells 
using Lipofectamine 2000 (Life Technologies).  These cells were engineered to contain a single loxP-flanked 
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cassette within their genome (Khandelia et al., 2011). The plasmid was site-specifically integrated into the 
genome of the HeLa cells by cotransfecting it with a plasmid expressing Cre recombinase. Recombinants 
were then selected using 1 µg / mL puromycin for 2 weeks.


The expression of Firefly and Renilla luciferase transcripts was induced by incubating cells with 1 µg / mL 
doxycycline for 48 hours. Total RNA was then isolated using a Quick RNA Isolation Mini Kit (Zymo Research).  
1 µg of total RNA was reverse transcribed using iScript Reverse Transcriptase Supermix (BioRad). The relative 
levels of Firefly and Renilla luciferase transcripts in the sample were then quantified using Taqman qPCR. For 
each gene, the ratio of Firefly to Renilla luciferase in the case where the proximal UTR was fused to Firefly 
luciferase was set to 1.


Identifying features enriched in UTRs associated with gene expression changes 

For each gene considered in this analysis (positively correlated, negatively correlated and control genes), 
proximal and distal UTR sequences were extracted in such a way that they contained unique sequences only. 
This means that the distal UTRs of genes with tandem UTR models lacked the beginning of their sequence 
which is unique to the proximal UTR as illustrated in Figure 6H.


UTR sequence features of either positively or negatively correlated genes were always compared to the 
control gene set. Enrichment analyses were performed using a custom R package (FeatureReachR) publicly 
available here: https://github.com/TaliaferroLab/FeatureReachR. This R package utilizes wilcoxon ranksum 
tests to compare length and GC contents of the three gene sets. Motif and five-mer enrichment significance is 
calculated with a Fisher’s exact test and corrected using the Benjamini & Hochberg method (Benjamini and 
Hochberg, 1995). RBP binding motifs are represented as a sequence match > 80% with position weight 
matrices sourced from the CISBP-RNA database (http://cisbp-rna.ccbr.utoronto.ca/) (Ray et al., 2013) or RNA 
bind-N-seq results (Dominguez et al., 2018). AREScore (Spasic et al., 2012) was utilized to determine the 
presence of AU rich elements within the UTRs and compared again using wilcoxon rank-sum tests (http://
arescore.dkfz.de/arescore.pl). 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Figure S1. (A) PCA analysis of 𝜓 values calculated from human tissues. Data was produced as part of the GTEx project. (B) As in A, but only using genes 
that have a tandem UTR APA structure. (C) As in A, but using only genes that have an ALE APA structure. (D) Comparison of 𝜓 values from human brain 
and liver samples. Delta 𝜓 values for genes with FDR values less than 0.01 are plotted. (E) Comparison of 𝜓 values from human testis and liver samples. 
Delta 𝜓 values for genes with FDR values less than 0.01 are plotted. (F) Comparison of APA quantifications produced by LABRAT (𝜓) and QAPA (PPAU). 
(G) Benchmarking of APA software performance at a range of sequence read depths.
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Figure S2. Hierarchical clustering of 𝜓 values from biochemically fractionated Drosophila DM-D17-C3 cells (A), HepG2 cells (B), and K562 cells (C). 
(D-E) Simplex plots relating relative 𝜓 values for genes between the cytosolic, membrane-associated, and insoluble fractions of DM-D17-C3 cells (D) 
and K562 cells (E). A dot that is equidistant from all three vertices had equal 𝜓 values in each fraction while a dot that is closer to one vertex had a 
higher 𝜓 value in that fraction relative to the other two fractions. (F-G) Comparison of 𝜓 values in K562 (F) and DM-D17-C3 (G) cytosolic and 
membrane fractions  for genes whose 𝜓 value was significantly different between these compartments (FDR < 0.01).
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Figure S3. (A) 𝛼 values for each RBP knockdown in K562 cells were calculated using tandem UTR and ALE genes independently.  These were then 
plotted and correlated. Each dot in this plot represents one RBP knockdown experiment. (B) Binomial p values for overlaps between genes whose 
APA was sensitive to RBP knockdown and genes whose 3′ UTRs were bound by an RBP in eCLIP experiments. Data taken from ENCODE HepG2 
experiments. (C) As in B, but using data from ENCODE K562 experiments. (D) As in Figure 4E. Among 102 RBPs expressed in K562 cells, overlaps 
between the genes whose APA was sensitive to RBP knockdown and the genes whose 3′ UTRs were bound by the RBP in eCLIP experiments 
were calculated. The significance of this overlap was calculated using a binomial test. 14 RBPs bound the 3′ UTRs of their APA targets more often 
than expected (binomial p < 0.05). To assess whether this was more than the expected number of significant RBPs, relationships between RBPs 
and their lists of APA and eCLIP targets were shuffled 1000 times, and the analysis was repeated after each shuffle to create a null distribution 
(blue). 
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Figure S4. (A-B)  Histogram of gene-wise correlations between changes in 𝜓 and changes in gene expression (𝜌) derived from TCGA tumor and 
matched normal samples for tandem UTR (A) genes and ALE (B) genes. (C-D)  Histogram of gene-wise correlations between changes in 𝜓 and changes 
in gene expression (𝜌) derived from ENCODE RBP knockdown and control samples for tandem UTR (C) genes and ALE (D) genes. (E) Binned scatter 
plot comparing changes in 𝜓 and changes in gene expression for genes with negative 𝜌 values (blue), positive 𝜌 values (purple) and control genes (gray). 
(F) Enrichment of 5mers in the distal UTRs of negatively correlated genes compared to the distal UTRs of control genes. (G) Enrichment of 5mers in the 
distal UTRs of positively correlated genes compared to the distal UTRs of control genes.
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