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ABSTRACT

The sequence content of the 3’ UTRs of many mRNA transcripts is regulated through alternative
polyadenylation (APA). The study of this process using RNAseq data, though, has been historically
challenging. To combat this problem, we developed LABRAT, an APA quantification method. LABRAT
takes advantage of newly developed transcriptome quantification techniques to accurately
determine relative APA site usage and how it varies across conditions. Using LABRAT, we found
consistent relationships between gene-distal APA and subcellular RNA localization in multiple cell
types. We also observed connections between transcription speed and APA site choice as well as
tumor-specific transcriptome-wide shifts in APA in hundreds of patient-derived tumor samples that
were associated with patient prognosis. We investigated the effects of APA on transcript expression
and found a weak overall relationship, although many individual genes showed strong correlations
between APA and expression. We interrogated the roles of 191 RNA-binding proteins in the
regulation of APA, finding that dozens promote broad, directional shifts in relative APA isoform
abundance both in vitro and in patient-derived samples. Finally, we find that APA site shifts in the
two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across many
contexts, suggesting that they are coregulated.

INTRODUCTION

During the co-transcriptional processing of a pre-
mMRNA, the 3’ end of the transcript is cleaved and a
polyadenine tail is added that promotes the stability
and translation of the resulting message (Beilharz
and Preiss, 2007; Shi et al., 2009). The site where
this cleavage occurs determines the sequence
content of the 3’ UTR of the transcript. Regulatory
cis-element sequences can therefore be either

included or excluded from the 3’ UTR of the
transcript through modulation of where the
cleavage and polyadenylation event happens. This
regulation of transcript sequence content through
alternative polyadenylation (APA) occurs in the
majority of genes in yeast, plant, and mammalian
genomes (Derti et al., 2012; Ozsolak et al., 2010;
Sherstnev et al., 2012; Wu et al., 2011).
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The cleavage and polyadenylation reaction is
performed by the core CSTF and CPSF complexes
and CFIm which associate with RNA polymerase |l
(Pol 1) transcription complexes (Glover-Cutter et al.,
2008; Venkataraman et al., 2005) and together
recognize specific sequence elements within 3’
UTRs to determine sites of 3’ end processing (Tian
and Manley, 2017). The abundance of these general
CPA factors as well as several other RBPs have
been found to regulate the relative usage of
alternative polyadenylation sites within a transcript
(Gruber et al., 2012; Li et al., 2015; Martin et al.,
2012; Masamha et al., 2014; Takagaki et al., 1996;
Zhu et al., 2018).

Regulation by these factors results in the large
variation in 3’ UTR content seen across tissues and
developmental stages (Lianoglou et al., 2013).
Specific tissues, most notably neuronal tissues, are
associated with preferential use of gene-distal or
downstream APA sites (Miura et al., 2013). Similarly,
the broad use of gene-proximal or distal APA sites
can be developmentally regulated.

Undifferentiated, proliferating cells generally display
enriched usage of proximal APA sites while more
differentiated cells show shifts towards increased
usage of distal APA sites (Ji et al., 2009; Sandberg
et al., 2008). This phenomenon has also been
connected to cancer progression where increased
usage of proximal APA sites in key oncogenes was
associated with elevated cell proliferation and
oncogenic transformation (Mayr and Bartel, 2009;
Sandberg et al., 2008).

Alternative polyadenylation exists in two structurally
distinct forms. The first, which we will refer to as
“tandem UTRs” occurs when multiple APA sites are
found within the same terminal exon (Figure 1B,
top). The second, which we will refer to as
“alternative last exons” or “ALEs”, occurs when
multiple APA sites are found within different terminal
exons (Figure 1B, bottom). Regulation of the
choice between alternative tandem UTRs can be
viewed as a competition between a proximal
upstream poly(A) site that is transcribed first with a
distal downstream site that is transcribed second.
Similarly the choice between ALE’s can be viewed
as a competition between recognition of a proximal
5’ splice site and a distal poly(A) site (Peterson and
Perry, 1989). It is not known whether the two forms

of APA are subject to common regulatory
mechanisms but in this regard it is interesting to
note that transcription speed has been reported to
influence the competition between alternative splice
sites and tandem poly(A) sites (Liu et al., 2017).

The study of APA using high-throughput RNA
sequencing has been facilitated through a handful
of software packages aimed at quantifying changes
in relative APA site usage across conditions (Grassi
et al., 2016; Ha et al., 2018; Xia et al., 2014).
However, quantifying APA from transcriptomic
alignments can be difficult. Due to their shared
isoform structure, different APA isoforms often
contain a considerable amount of sequence in
common. If the APA quantification software relies
on these transcriptomic alignments (Grassi et al.,
2016; Xia et al., 2014), this can make assigning
reads to a specific isoform challenging. Newer
transcriptome quantification techniques that assign
reads to transcripts by comparing their sequence
contents are better equipped to handle this
problem. (Bray et al., 2016; Ha et al., 2018; Patro et
al., 2017).

To take advantage of this advance in isoform
quantification and apply it to the analysis of APA,
we developed LABRAT (Lightweight Alignment-
Based Reckoning of Alternative Three-prime ends).
A particular advantage of our approach is that it
permits rapid analysis of large numbers of publically
available RNA-seq data sets including patient
samples. Here, we applied this approach to tens of
thousands of RNAseq samples to study processes
and factors that regulate APA as well as the
consequences of APA site choice on transcript fate.

RESULTS

Quantification of alternative polyadenylation with
LABRAT

To quantify relative alternative polyadenylation site
usage from RNAseq data, LABRAT takes a genome
annotation file and first searches the annotation for
tags that define transcripts with ill-defined 3’ ends
in order to filter and remove them from further
analysis (Figure 1A). Because annotations are
isoform-based, they are often rigid in their explicit
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Figure 1. Quantifying changes in alternative polyadenylation with LABRAT. (A) LABRAT computational pipeline. (B) Explanation of i as a metric of
polyadenylation site choice. Genes that exclusively use upstream or gene-proximal sites have i values of 0 while those that exclusively use
downstream or gene-distal sites have i values of 1. The two transcript structures associated with alternative polyadenylation, tandem UTRs and
alternative last exons, are diagrammed. (C) Comparison of ¢ values in mouse brain and liver RNA for genes whose 1 value was significantly different
between these tissues. (D-E) RNA coverage profiles of two genes with differential polyadenylation site usage in mouse brain and liver tissues. Dots
represent Y values calculated in each of 8 replicates. (F) Benchmarking of LABRAT performance against other widely used software package for
quantification of alternative polyadenylation from RNAseq data.

connection of upstream alternative splicing events most gene-proximal to most gene-distal. Each APA
to downstream APA sites, even though this site within a gene is assigned a value, m, which is
connection may not be accurate. Therefore, to defined as it’s position within this proximal-to-distal
exclude spurious contributions of upstream ordering, beginning with 0. Each gene is assigned a
alternative splicing events to APA site quantification, value, n, which is defined as the number of distinct
we extracted the final two exons of every transcript APA sites that it contains. The expression (TPM) of
and the expression of these transcript “terminal every terminal fragment belonging to a given APA
fragments” was quantified using Salmon (Patro et site is then summed to define the expression level
al., 2017). of the APA site, and this process is repeated for

every APA site within a gene. The expression level
of each APA site is then scaled according to the
following formula:

For each gene, alternative polyadenylation sites are
then defined using terminal fragments. Terminal
fragments with 3’ ends within 25 nt of other 3’ ends
are grouped together to define a single
polyadenylation site, and the sites are ordered from
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m
TPMscaled = TPMunscaled <m>

To quantify a gene’s relative APA site usage, we
defined a term, . Scaled and unscaled TPM
values are summed across all APA sites within a
gene, and ¢ is defined as the ratio between these
summed values:

> TPM,
- X TPM,

caled

W

nscaled

With this strategy, genes that show exclusive usage
of the most gene-proximal APA site will be assigned
a Y value of 0, while those that show exclusive
usage of the most gene-distal APA site will be
assigned a vy value of 1 (Figure 1B). Usage of both
sites will result in a ¥ value between 0 and 1
depending on the relative usage of the sites.
Importantly, this strategy also applies to genes with
more than 2 APA sites. In these cases, one ) value
is assigned to the entire gene without the need to
do multiple pairwise comparisons between APA
sites.

After calculating i values for genes in all samples,
LABRAT compares 1 values of experimental
replicates across experimental conditions to identify
genes with statistically significantly different i
values between conditions. This is done using a
mixed linear effects model that tests the relationship
between ¢ values and experimental condition. A
null model is also created in which the term
denoting the experimental condition has been
removed. A likelihood ratio test compares the
goodness of fit of these two models to the observed
data and assigns a p value for the probability that
the real model is a better fit than the null model. In
simple comparisons between two conditions, this
approach mimics a t-test. However, this technique
has the advantage of being able to easily
incorporate covariates into significance testing.
After performing this test on all genes, the raw p
values are corrected for multiple hypothesis testing
using a Benjamini-Hochsberg correction (Benjamini
and Hochberg, 1995).

In addition, LABRAT determines whether a gene’s
APA sites conform to either the tandem UTR or ALE

structures (Figure 1B) and designates the gene
accordingly. For genes with more than 2 APA sites,
it is possible to contain both tandem UTR and ALE
structures. These genes are designated as having a
“mixed” APA structure.

Identifying tissue-specific differences in APA with
LABRAT

To demonstrate the ability of LABRAT to identify
and quantify differences in APA, we analyzed
RNAseq data from mouse brain and liver tissues (Li
et al., 2017). Because neuronal tissues are known to
be highly enriched for the use of distal APA sites
(Miura et al., 2013), we reasoned that comparison of
these two tissues might provide a positive control
for LABRAT’s ability to identify differential APA.

We found 470 genes that displayed differential APA
site usage between the tissues (FDR < 0.05) (Figure
1C). As expected, 68% of these genes showed
increased usage of distal APA sites in brain,
indicating a significant enrichment for the use of
downstream APA sites in this tissue (binomial p =
3.2e-15). To further explore changes in i value for
specific genes, we plotted read coverages over two
genes that showed significantly more downstream
APA site usage in brain tissue: Slc16a7 and Elavl1
(Figure 1D, E). For both genes, we observed
significantly lower read coverages corresponding to
usage of the distal APA site in the liver samples
relative to the brain samples. Accordingly, LABRAT
assigned these genes to have low 1 values in the
liver samples, and high y values in the brain
samples, indicating that LABRAT can accurately
quantify APA.

To perform similar analyses in human samples, we
analyzed over 5000 RNAseq samples from over 30
different human tissues produced as part of the
Genotype-Tissue Expression (GTEX) project (GTEx
Consortium, 2013). We quantified APA in these
samples and observed relationships between tissue
APA using PCA analysis (Figure S1A). In this
analysis, brain and testis samples were clear
outliers. Interestingly, performing the PCA analysis
using only tandem UTR (Figure S1B) or ALE (Figure
S1C) genes produced very similar results,
suggesting that these two forms of APA are broadly
coregulated across many tissues.
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To understand more about APA in human brain and
testis, we compared their APA profiles to those
observed in human liver samples. As expected, we
observed that brain samples exhibited a significant
bias for the use of downstream APA sites (p <
2.2e-16) (Figure S1D). Conversely, testis samples
exhibited a similar bias for the use of upstream APA
sites (p < 2.2e-16) (Figure S1E). The propensity of
testis to use upstream APA sites has been
previously observed (Liu et al., 2007; Wang et al.,
2008; Zhang et al., 2005) and is likely a key feature
of spermatogenesis (Li et al., 2016). Overall, these
results demonstrate the ability of LABRAT to
recapitulate previously reported observations and
gave us confidence in its results moving forward.

Comparison of LABRAT to similar methods of APA
quantification

To compare LABRAT with other APA analysis tools,
we generated a synthetic RNAseq dataset
containing 50 million reads in which 1250 genes
displayed increased distal APA site usage, 1250
genes displayed increased proximal APA site usage,
and 2500 genes displayed no change in APA site
usage (Frazee et al., 2015). We used the software
packages QAPA (Ha et al., 2018), DaPars (Xia et al.,
2014), and Roar (Grassi et al., 2016) in addition to
LABRAT to quantify APA in these data.

QAPA, like LABRAT, uses lightweight alignments to
quantify APA. Reassuringly, we found that vy values
calculated by LABRAT were highly correlated to the
analogous metric used by QAPA, PPAU (R = 0.81)
(Figure S1F). In comparing the four methods,
LABRAT was the best suited to accurately identify
differential APA in the simulated data (Figure 1F).
We further found that the accuracy of LABRAT was
not noticeably affected by read depth down to one

million reads (Figure S1G).

Alternative polyadenylation isoforms are differentially
localized in cell bodies and projections

Multiple studies have found that alternative
polyadenylation decisions made during nuclear
processing can influence the subcellular localization
of the resulting transcript, particularly in neuronal
cells (Ciolli Mattioli et al., 2019; Taliaferro et al.,
2016; Tushev et al., 2018). However, it has been

unclear how widespread this effect is and whether it
was driven primarily by tandem UTRs or ALEs. To
address this, we used LABRAT to analyze the
relative APA status of 26 paired transcriptomic
datasets from cell body and projection samples
from neuronal cells, NIH 3T3 cells, and MDA-
MB231 cells (Farris et al., 2019; Goering et al.,
2019; Hudish et al., 2020; Mardakheh et al., 2015;
Minis et al., 2013; Taliaferro et al., 2016; Tushev et
al., 2018; Wang et al., 2017; Zappulo et al., 2017).

For all samples, we identified genes whose 1) value
was significantly different between subcellular
compartments (FDR < 0.05), finding between 10
and 740 genes that fit this criterion in each sample
(Figure 2A). For these genes, we then compared
their 1 values across compartments by subtracting
the 1 value in the cell body from the vy in the
projection to define 4. Genes with positive 4y
values therefore had their distal APA isoform
enriched in projections while those with negative 4y
values had their proximal APA isoform enriched in
projections.

We found that for 19 of these 26 samples, over 50%
of significant genes had positive 4y values,
indicating a broad connection between the use of
distal APA sites and localization of the resulting
transcript to cell projections (Figure 2A). Further,
we observed a relationship between the amount of
time that the projection had been allowed to grow
and the fraction of genes with positive 4y values.
Of the samples in which the projections had grown
for 2 days or less, 15 out of 20 showed a significant
bias for the association of distal APA sites with
projections. Conversely, of the samples in which
the projections had grown for 6 days or more, 0 out
of 6 showed a significant bias for the association of
distal APA sites with projections. This suggests that
distal APA transcripts may play a role in early
projection outgrowth but may be less important in
mature projections.

Given the conflicting reports about the relative
contributions of distal APA produced by tandem
UTR and ALEs to the transcriptomes of cell
projections (Ciolli Mattioli et al., 2019; Taliaferro et
al., 2016; Tushev et al., 2018), we analyzed these
two classes of APA isoforms separately. Across the
26 subcellular comparisons, we found a strong,
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Figure 2. Alternative polyadenylation is associated with RNA localization in a variety of cell types. (A) Comparison of i values for RNA isolated from cell
projections and cell bodies. i values for all genes were calculated using RNA collected from cell projection and cell body compartments, and genes with
significantly different i values across compartments were identified (FDR < 0.05). 43 values (cell projection - cell body) for these genes are indicated by
boxplots. P values in blue represent binomial p values for deviations from the expected 50% chance for a gene to have a positive 4y value. Samples were
also separated according to the amount of time that projections were allowed to grow before their RNA content was analyzed. This is represented by the
long (at least 6 days) and short (2 days or less) categories colored in red. (B) As in A, i values for all genes were calculated using RNA collected from cell
projection and cell body compartments, and genes with significantly different ¢ values across compartments were identified (FDR < 0.05). The fraction of
significant tandem UTR and ALE genes with positive 4y values were plotted on the x and y axes, respectively. (C) Simplex plot indicating i values
calculated from RNA isolated from biochemically defined cytosolic, membrane-associated, and insoluble fractions of HepG2 cells. Genes with equal ¢
values in all three fractions are represented by dots equidistant from each vertex (at the intersection of the dotted lines). Genes that displayed higher ¢
values in a given fraction than the others are represented by dots placed closer to that fraction’s vertex. Red lines indicate the density of dots. (D)
Comparison of ¥ values in HepG2 cytosolic and membrane fractions for genes whose ) value was significantly different between these compartments
(FDR < 0.01). (E) Correlation of 4y values (membrane - cytosol) for all genes expressed in both HepG2 and K562 cells. (F) Fraction of genes with
nonsignificant 4y values (membrane vs. cytosol, gray) and those with significant 4y values (red) that encode peptides that have ER signal sequences as
defined by SignalP. Distributions of this fraction were created through bootstrapping in which 40% of the genes were sampled 100 times. P values were
calculated using a Wilcoxon rank sum test.
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significant correlation (R = 0.58, p = 0.0024)
between the fraction of ALE genes with positive 4y
values and the fraction of tandem UTR genes with
positive 4y values (Figure 2B). This indicates that
both classes of genes are preferentially contributing
their distal APA isoforms to projections and
suggests that these two classes of alternative
poly(A) site selection may be regulated by a
common mechanism.

Alternative polyadenylation isoforms are differentially
localized in biochemically defined cytosolic and
membrane fractions

To further explore connections between APA and
RNA localization beyond cell projections, we used
LABRAT to analyze RNAseq data from a
biochemical fractionation of 3 cell types, Drosophila
DM-D17-C3 (D17) cells, human HepG2 cells, and
human K562 cells (Benoit Bouvrette et al., 2018). In
these data, cells were fractionated into nuclear,
cytosolic, membrane-associated and insoluble
fractions. RNA was isolated from each of these
fractions and prepared for high-throughput
sequencing using either polyA-selection-based or
ribosomal RNA-depletion-based library preparation.
For each fraction, two replicates of each library
preparation method were sequenced.

As with the projection data, we compared ) values
for genes across cellular compartments.
Hierarchical clustering of samples based on
values revealed that samples from the same fraction
generally clustered with each other, indicating the
high quality of the data. indicating the quality of the
data (Figure S2A-C). To minimize the effect of
library preparation on the identification of genes
with significantly different y values across
compartments, we included the library preparation
method as a covariate in LABRAT’s linear model.
This allowed us to pool all of the samples for a
given compartment in order to identify genes with
significantly different ¢ values between
compartments regardless of library preparation
method.

We first identified genes with significantly different y
values across any pairwise comparison between
cytosolic, membrane-associated, and insoluble
fractions (FDR < 0.05). Based on our observations

relating distal APA and RNA localization to
projections, we then asked if any of these fractions
were associated with higher y values than the other
two. We visualized these comparisons using
simplex plots (Figure 2C). In these plots, each dot
represents a gene, and its position is determined by
the relative y values in each fraction. A gene with a
Y value of 1 in a fraction and y values of 0 in the
other two would be placed at that fraction’s vertex
while a gene with equal y values in all 3 fractions
would be placed equidistant from each vertex at the
intersection of the dotted lines. We found that
genes tended to have higher i values in the
membrane fraction (Figure 2C, S2D, E), indicating a
preferential association of downstream APA
isoforms with that fraction.

Because of this observation, we then focused on
comparing the cytosolic and membrane fractions.
When comparing the cytosolic and membrane
fractions of HepG2 cells, we identified 552 genes
that had significantly different ¢ values between the
fractions (FDR < 0.01). Of these, 492 (89%) had a ¢
value that was higher in the membrane fraction than
the cytosolic fraction, indicating a broad association
between transcripts produced using distal APA sites
and the membrane fraction (Figure 2D). We
observed highly similar results when comparing the
cytosolic and membrane fractions from K562 cells

and D17 cells (Figure S2F, G).

We then queried whether the same genes had
differential APA isoform associations with the
cytosolic and membrane fractions in the HepG2
and K562 samples. To test this, we calculated 4y
values (membrane - cytosol) for all genes expressed
in both cell lines. We observed a strong correlation
(R = 0.73) between 4y values in the two cell lines
(Figure 2E), suggesting that the effects of APA on
transcript membrane association are shared
between cell lines and are therefore likely transcript-
specific with a conserved mechanistic basis.

The ER comprises a large fraction of cellular
membranes, and RNA localization to the ER is
important for cotranslational access to the secretory
pathway. We therefore asked whether transcripts
with significant membrane vs. cytosol 4y values
were more or less likely than expected to encode
the peptide-based signal sequences required for
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Figure 3. The speed of RNA polymerase Il influences APA. (A) Model for how polymerase speed can affect

2014). The slow Pol Il

alternative polyadenylation. During the time between transcription of proximal and distal polyadenylation sites, mutant used in these

the proximal site can be recognized and used but the proximal site cannot. Increasing this time of proximal site
exclusivity by decreasing the speed of RNA polymerase may increase the likelihood of the proximal site being
used. (B) Read coverage and vy values for the gene PAFAH1B1 in cells expressing wildtype (orange) and slow

studies is a single amino
acid substitution in the

(purple) RNA polymerase II. (C) Comparison of i values in cells expressing wildtype and slow RNA polymerase Il fynnel domain of the Pol Il
for genes whose vy value was significantly different between these samples (FDR < 0.05). (D) Distance between

alternative polyadenylation sites for genes that displayed increased upstream APA (orange), increased
downstream APA (purple), or whose APA did not change (gray) in cells expressing a slow RNA polymerase Il

large subunit Rpb1
(R749H).

compared to cells expressing wildtype RNA polymerase Il. (E-F) As in D, comparison of i values in cells

expressing wildtype and slow RNA polymerase Il for tandem UTR (E) and ALE (F) genes whose i value was

significantly different between these samples (FDR < 0.05).

RNA transport to the ER through cotranslational
targeting. We identified ER signal sequences using
SignalP (Almagro Armenteros et al., 2019).
Interestingly, we found that in both the HepG2 and
K562 samples, genes that had significant
membrane vs. cytosol 4y values were significantly
less likely to contain an ER signal sequence than
other genes (Figure 2F). This observation therefore
suggests two alternative modes of RNA localization
to the ER: one for transcripts that encode signal
peptides and another for those that do not.
Specifically, mMRNAs that are not cotranslationally
targeted by signal peptide recognition appear to be
targeted by a mechanism involving distal APA use.

During transcription, a
gene-proximal APA site is
necessarily transcribed before a gene-distal APA
site. There exists a time, therefore, during which the
proximal site is the only APA site that exists on the
transcript. Reducing the speed of Pol Il transcription
would increase this time in which the proximal site
is free from competition with the distal site. We
hypothesized that this would lead to an increase in
usage of the proximal APA site (Figure 3A). Indeed,
we found that for many genes, proximal APA site
usage was increased in slow Pol Il samples (Figure
3B), and that overall there was a shift towards
increased usage of the proximal site (Figure 3C).
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If the shift in APA was related to the amount of time
during which the proximal site was exclusive, then
the shift should be most pronounced in genes in
which the distance between proximal and distal
sites is large. Consistent with this hypothesis, we
found that this “inter-polyA distance” for genes that
displayed increased proximal APA was significantly
longer than expected (Figure 3D), further
suggesting that changes in Pol Il kinetics can
predictably alter APA.

If alternative polyadenylation of tandem UTRs and
ALEs were generally coregulated, then it would be
expected that changes in Pol Il speed would affect
both classes of genes. To test this, we examined
the increase in proximal APA site usage caused by
slow transcription in the context of tandem UTR
and ALE genes separately. We found that proximal
APA usage was increased for both tandem UTR and
ALE genes (Figure 3E, F), indicating that the two
classes of genes are similarly affected by changes
in Pol Il speed and consistent with the idea that
they are coregulated by a common mechanism.

Dozens of RNA-binding proteins (RBPs) regulate
relative APA isoform abundance across many genes

To investigate the contributions that individual RBPs
can have to the regulation of APA isoform
abundance, we analyzed the ENCODE RBP
knockdown RNAseq datasets with LABRAT
(Consortium, ENCODE Project et al., 2012; Davis et
al., 2018). This resource contains 523 shRNA-
mediated RBP knockdown RNAseq experiments
spread across human HepG2 and K562 cell lines.
We compared 1 values for all expressed genes
between RBP knockdown and control knockdown
samples for 191 RBPs that were expressed in both
cell lines. To identify genes that had significantly
different i values (FDR < 0.05) between RBP
knockdown and control knockdown samples, we
incorporated the cell line of the experiment as a
covariate in LABRAT’s linear model.

We began by assessing the reproducibility of
changes in APA isoform abundance upon RBP
knockdown between the two cell lines. To do this,
we correlated 4y values (control knockdown - RBP
knockdown) for all expressed genes in a given RBP
knockdown in HepG2 cells with their 4y values

upon knockdown of the same RBP in K562 cells.
We therefore end up with one correlation coefficient
per RBP knockdown. As a control, we compared
these values to correlations of Ay values where the
RBP that was knocked down was different between
the cell lines (Figure 4A). Reassuringly, we found
that correlations between experiments in which the
expression of the same RBP was knockdown were
significantly higher than those in which the
expression different RBPs were knocked down (p =
1.5e-19, Wilcoxon ranksum test). When we
restricted the comparison to genes that had
significantly different ¢ values between RBP and
control knockdowns (FDR < 0.05), we observed a
much higher correlation of 4y values between cell
lines (Figure 4A). These results gave us confidence
that we could accurately quantify APA isoform
abundance in the ENCODE datasets.

For each RBP knockdown experiment, we then took
the genes with significantly different ¢ values
between RBP and control knockdowns and
analyzed the distribution of their 4y values (control
knockdown - RBP knockdown) (Figure 4B). We
observed that many RBP had distributions of 4y
values that were skewed towards being mostly
positive or mostly negative. We defined a term, «,
as the fraction of these genes with positive 4y
values. RBPs with a values greater than 0.5
therefore were broadly associated with increased
distal APA isoform abundance while those with a
values less than 0.5 were associated with increased
proximal APA isoform abundance. 94 RBPs had «
values that were significantly skewed from the
expected value of 0.5 (binomial p < 0.01), and of
these 52 had «a values of greater than 0.5 while 42
had « values less than 0.5 (Figure 4C).

For each RBP knockdown experiment we then
calculated a values for tandem UTR and ALE genes
separately. « values for these two APA types were
highly correlated (R = 0.62), further indicating that
these two mechanisms of APA regulation are not
independent and share elements in common
(Figure 4D, Figure S3A).

If changes in APA isoform abundance upon RNAI
were directly due to loss of the RBP, then we would
expect that the RBP would directly bind the 3’
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Figure 4. Many RBPs promote proximal or distal APA isoform abundance in hundreds of genes. (A) Correlation of all statistically

values across HepG2 and K562 cell lines for all ENCODE RBP-knockdown RNAseq experiments. In gray, correlation significant (binomial
coefficients for comparisons of different RBP knockdowns are shown (e.g. RBP X in HepG2 vs. RBP Y in K562). In

yellow, correlation coefficients for comparisons of the same RBP knockdown are shown (e.g. RBP X in HepG2 vs RBP X P < 0-05)- For 21 of
in K562). In red, this comparison is restricted to only those genes whose 1 value significantly differed between the RBP these RBPS, we
knockdown and control knockdown samples (e.g. RBP X in HepG2 vs RBP X in K562, significant A4y genes only). In
identification of these significant genes, the cell line was included as a covariate. (B) Comparison of ¢ values in RBP observed a
knockdown and control samples for genes whose 1 value was significantly different between these samples (FDR < significant overlap
0.0fé). The number .of genes with significant 411) values.m each compgrlson |s. indicated by the bar graph. A term, a, was between the RBPs
defined as the fraction of these genes that displayed higher i values in the high RBP state (control knockdown) versus )

the low RBP state (RBP knockdown). (C) For each RBP knockdown, the number of genes with significant 4y values (FDR functional APA

< 0.05) is indicated on the y axis while the fraction of these genes with positive 41 values (control knockdown - RBP targets and the 3’
knockdown) is indicated on the x axis. Knockdowns whose fraction of genes with positive 4y values significantly differs .
from the expected 50% are indicated with red circles. (D) a values for each RBP knockdown in HepG2 cells were UTRs it bound

calculated using tandem UTR and ALE genes independently. These were then plotted and correlated. Each dot in this (Figure 4E)_ To

plot represents one RBP knockdown experiment. (E) Among 84 RBPs expressed in HepG2 cells, overlaps between the .
genes whose APA was sensitive to RBP knockdown and the genes whose 3’ UTRs were bound by the RBP in eCLIP assess Whether this
experiments were calculated. The significance of this overlap was calculated using a binomial test. 21 RBPs bound the 3’ was more or less
UTRs of their APA targets more often than expected (binomial p < 0.05). To assess whether this was more than the than the number of
expected number of significant RBPs, relationships between RBPs and their lists of APA and eCLIP targets were shuffled

1000 times, and the analysis was repeated after each shuffle to create a null distribution (pink). expected significant
UTRs of the genes whose APA it regulates. To test RBPs, we shuffled
this, we analyzed RBP/RNA interactions as the relationships between RBPs and their lists of
measured by the eCLIP experiments performed as APA targets and bound 3’ UTRs and again
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calculated the number of RBPs that showed
significant overlap between APA and eCLIP data.
Repeating this process 1000 times gave us a null
distribution of the expected number of RBPs with
significant overlaps and indicated that the observed
number of overlaps was significant in HepG2 cells
(p = 0.006).

Although we did not observe a similar significant
relationship between APA and eCLIP data in K562
cells (p = 0.4) (Figure S3D), overall, these results
indicate that many of the RBPs tested are
modulating relative APA isoform abundance through
direct interactions.

Misregulation of alternative polyadenylation is
cancer type specific and correlates with patient
survival

Changes APA have long been known to be
associated with cancer (Masamha and Wagner,
2018; Yuan et al., 2019). Most often, APA is thought
to contribute to cancer phenotypes through a
general increased usage of proximal APA sites,
which are thought to be associated with increased
expression of oncogenes and proliferation of cell
lines (Mayr and Bartel, 2009; Sandberg et al., 2008).
To further explore this phenomenon, we used
LABRAT and data from The Cancer Genome Atlas
(TCGA) (Cancer Genome Atlas Research Network et
al., 2013) to examine changes in APA between
matched tumor and normal samples from 671
patients across 21 different cancers.

For each cancer, we identified between 130 and
3043 genes that displayed significant differences in
Y values (FDR < 0.05) between tumor and normal
samples. We then defined 4y values (tumor -
normal) to ask whether proximal or distal sites
showed increased usage in tumor samples. For
some cancers, including Lung Squamous Cell
Carcinoma (LUSC), Urothelial Bladder Carcinoma
(BLCA) and Lung Adenocarcinoma (LUAD), tumors
displayed the expected pattern of increased
proximal APA in tumors (Figure 5A). Conversely,
Thyroid Cancer (THCA) and Kidney Renal Clear Cell
Carcinoma (KIRC) showed strong biases in the
opposite direction with increased distal APA in
tumors. Mechanisms that drive APA dysregulation
are therefore likely specific to different cancer types,
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and it is not true that increased proximal APA is a
general feature of cancer cells.

We then compared y values in the TCGA data for
tandem UTR genes and ALE genes separately. For
each pair of tumor and normal samples, we
calculated the fraction of genes with significantly
different i values across conditions (FDR < 0.05) in
which the iy value was greater in the tumor sample
than the normal sample. Put another way, for each
patient, we calculated the fraction of significant
tandem UTR and ALE genes with positive 4y
(tumor - normal) values (Figure 5B). The tandem
UTR- and ALE-derived fractions were strongly
correlated with each other (R = 0.74), again
suggesting that these two modes of APA may be
coregulated.

We wondered if APA was misregulated in the same
genes across many different cancer types or
whether the set of genes with misregulated APA
was cancer type specific. Although many APA
misregulated genes were specific to certain
cancers, we did observe that hundreds of genes
repeatedly showed misregulation across multiple
cancers (Figure 5C). We defined a set of genes that
repeatedly showed increased proximal APA usage
in BLCA, LUAD, and LUSC tumors. Using gene
ontology analysis, we found that these genes were
significantly enriched for those encoding single-
stranded RNA binding proteins (Eden et al., 2009).
Similarly, we defined a set of genes that repeatedly
showed increased distal APA usage in THCA and
KIRC. These genes were enriched for being
involved in programmed cell death and responses
to stress.

We enquired whether transcripts we identified
whose APA status correlates with membrane
association (Figure 2C, D) are among those subject
to misregulation in tumors. Many of these
membrane associated mRNAs showed significantly
different i values between tumor and normal
samples, suggesting that the subcellular localization
of these transcripts may be altered in cancerous
cells.

To determine if the degree of APA misregulation was
related to patient prognosis, we performed survival
analyses for patients from the TCGA dataset. In
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same genes (Figure

5D). Conversely, for kidney renal clear cell specific, and both increased proximal and distal
carcinoma (KIRC), a cancer that typically exhibits APA are associated with poor patient prognosis,
increased distal APA, we found the opposite. depending on the cancer type.

Patients with lower i values in misregulated genes
had better outcomes compared to patients with
higher ¥ values (p < 0.0001) (Figure 5E). Therefore,
the direction of APA misregulation is cancer- Some of the original studies on the relationship
between APA and RNA expression reported that

Usage of distal APA sites is broadly but weakly
associated with decreased RNA expression
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distal APA is associated with a decrease in RNA
levels (Mayr and Bartel, 2009) while more recent
genome-wide studies have reported that the
relationship is less clear (Spies et al., 2013; Venkat
et al., 2020). To comprehensively examine the
relationship between APA and gene expression, we
compared changes in ¥y and changes in RNA levels
across the 191 ENCODE RBP knockdown sample
pairs and the 671 TCGA tumor/normal sample
pairs. To do so, we defined a term, rho (p), as the
correlation between changes in i) and changes in
gene expression across two samples (Figure 6A).
Sample comparisons where 4y and gene
expression changes are positively correlated
indicate that distal APA and increased RNA levels
were associated, and these comparisons will have
positive p values. Conversely, sample comparisons
where Ay and gene expression changes are
negatively correlated indicate that distal APA and
decreased RNA levels were associated, and these
comparisons will have negative p values.

We calculated p values across all genes for each
RBP knockdown in the ENCODE data. In both the
HepG2 and K562 samples, these p values
overwhelmingly tended to be negative, but weakly
so (Figure 6B). We similarly calculated p values
across all genes for every patient-derived tumor/
normal pair in the TCGA data (Figure 6C). Again,
these p values were consistently but weakly
negative. These results indicate that although distal
APA is generally associated with decreased gene
expression, its contribution to changes in RNA
levels is modest when comparing all genes in
aggregate.

It could be the case, though, that for specific genes,
APA and gene expression may be more strongly
linked. To explore this, we calculated p values for
each gene individually across all of the ENCODE
and TCGA sample pairs (Figure 6D, E). The median
genes again had weakly negative p values (-0.12 in
the ENCODE data, -0.20 in the TCGA data).
ENCODE- and TCGA-derived p values for genes
were correlated with each other (Figure 6F).
Tandem UTR genes and ALE genes displayed
similar distributions of p values, indicating that
relationships between gene expression and APA are
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of approximately equal strength in these two APA
classes (Figure S4A-D).

The tails of the p value distributions were long,
indicating that there were genes whose changes in
1 value and changes in expression were highly
correlated across conditions. We selected three of
these, RPLP1, NOLC1, and UBE2G1, for further
analysis. Given that each of these genes had
strong negative p values in both the ENCODE and
TCGA data (Figure 6G), we reasoned that there
may be elements in their distal UTRs downstream
of the proximal APA site that confer reduced
steady-state RNA levels. To test this experimentally,
we fused the proximal and distal UTRs of each of
these genes to the coding region of Firefly
luciferase. Each construct was then site-specifically
incorporated into the genome of Hela cells through
Cre-mediated recombination (Khandelia et al.,
2011). The Firefly luciferase transcripts were
coexpressed from a bidirectional tet-On promoter
with unmodified Renilla luciferase. The RNA level of
each Firefly-UTR fusion was measured using
Tagman gRT-PCR with the Renilla luciferase
transcript as a normalizing control. For all three
tested genes, fusion of the distal UTR to Firefly
luciferase significantly reduced the steady-state
level of the RNA relative to a fusion with the
proximal UTR, indicating that sequence elements
downstream of the proximal APA sites likely have a
role in reducing RNA expression (Figure 6H). We
conclude that by comparing changes in gene
expression and APA, we can identify functional
elements within 3’ UTRs that regulate mRNA
abundance.

Features enriched in UTRs associated with gene
expression changes

To better understand sequence elements
downstream of proximal APA sites that may reduce
RNA expression, we used the p values calculated
for individual genes using ENCODE and TCGA
sample sets to assign genes to positively
correlated, negatively correlated or not correlated
(control) gene sets (Figure 61, Figure S4E). These
gene sets behave differently: positively correlated
genes are more highly expressed when downstream
PAS are used (increased ) while negatively
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Figure 6. Comprehensive analyses of connections between alternative polyadenylation and transcript expression. (A) Diagram of correlation between
APA and transcript expression. Rho (p) is defined as the correlation between changes in gene expression and changes in ¥ value across two
conditions. In the scenario described in the top row, the overall RNA expression level for the gene is high in sample A but low in sample B while the
gene’s ¥ value is low in sample A and high in sample B. Changes in gene expression and 41 are therefore negatively correlated, giving p a negative
value. Conversely, in the scenario described in the bottom row, changes in gene expression and vy are positively correlated. (B) p values across all
expressed genes within a comparison for the ENCODE RBP knockdown data. Each dot represents a single comparison (RBP knockdown vs control
knockdown). P values for the correlation between gene expression and APA are indicated by dot shape and color. (C) p values across all expressed
genes with a comparison for the TCGA paired tumor/control sample data. Each dot represents a single patient’s tumor and control samples. P values
for the correlation between gene expression and APA are indicated by dot shape and color. (D) Gene-level p values across all ENCODE RBP
knockdown experiments. (E) Gene-level p values across all TCGA tumor/control sample pairs. (F) Correlation of gene-level p values derived from the
ENCODE and TCGA datasets (D and E). Red lines indicate the density of points, and the locations of three genes selected for further study are
indicated by labels. (G) Correlation between gene expression changes and 4y for three genes. Orange dots represent ENCODE sample pairs (RBP
knockdown vs. control knockdown) while purple dots represent TCGA sample pairs (tumor vs. control samples). Legend continues on next page
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(H) Top: illustration of the UTR fragments fused to the Firefly luciferase gene. Bottom: RT-gPCR-derived relative levels of firefly luciferase mMRNA
expression when the proximal and distal UTR fragments of the indicated genes were fused. Values indicate ratios between the abundances of Firefly
and Renilla luciferase mMRNAs with this ratio in the proximal UTR comparison set to 1. P values were calculated using a Wilcoxon ranksum test. (I)
Correlation between gene expression changes and 4y was used to define positively correlated, negatively correlated and control genes with two APA
isoforms. Correlations are calculated for ENCODE and TCGA separately. (J) Distal UTR lengths of each gene set. P values were calculated using a
Wilcoxon ranksum test. (K) Distal UTR GC content of each gene set. P values were calculated using a Wilcoxon ranksum test. (L) Five-mer
enrichments in the distal 3' UTRs of positively and negatively correlated gene sets vs control. Five-mers are significantly enriched (BH-adjusted p<0.05,
Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a circle plus, open circle or closed dot respectively.
Five-mers are colored by their AU content as ranked 0-5. Canonical AU rich element (ARE) “AUUUA” is highlighted as enriched in negatively
correlated distal UTRs. (M) RBP motif enrichments in the distal 3' UTRs of positively and negatively correlated gene sets vs control. RBP motifs are
significantly enriched (BH-adjusted p<0.05, Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a green
circle plus, blue open circle or purple dot respectively. Canonical ARE binding protein motifs are highlighted as enriched in negatively correlated distal
UTRs. (N) Distal UTR AREScores of each gene set as calculated by AREScore software. P values were calculated using a Wilcoxon ranksum test.

correlated genes become less highly expressed as The relation between RBP expression and the

they utilize more downstream PAS. widespread misregulation of APA in cancer cells is
poorly understood. We investigated this problem by
examining expression in patient samples of the 191
RBPs that potentially influence APA isoform
abundance revealed by our analysis of ENCODE
knockdown RNAseq results (Figure 4B, C). Based
on the ENCODE RBP knockdown data, we defined
a values for RBPs where values of greater than 0.5
indicated an RBP that promoted distal APA isoform
abundance while values of less than 0.5 indicated
an RBP that promoted proximal APA isoform
abundance. To compare « values to RBP effects on
APA isoform abundance observed in the TCGA

This analysis was simplified by only considering
genes with two APA isoforms such that RNA
expression could be explained by proximal or distal
UTR usage. The analyzed UTR sequences were
unigue, meaning that tandem UTRs were separated
into proximal and distal UTRs such that distal UTRs
lacked their shared 5’ sequence (Figure 6H). This
allowed us to identify sequence characteristics of
distal UTRs that explain the differences in RNA
expression of the positively correlated and
negatively correlated gene sets.

Negatively correlated genes were found to have data, we defined another term, 3, as the correlation
longer distal UTRs with lower GC content than between the change in RNA expression of an RBP
expected (Figure 6J, 6K). Additionally, they were between tumor and matched normal TCGA samples
generally enriched for AU rich five-mers including and the median 4y of genes with significantly

the canonical AU rich element (ARE) different APA between the samples (FDR < 0.05)
“AUUUA” (Figure 6L, Figure S4F). Conversely the (Figure 7A). RBPs with positive g values are

distal UTRs of positively correlated genes were therefore associated with increased distal APA
depleted for AU-rich five-mers (Figure S4G). isoform abundance while those with negative
Unsurprisingly given their AU-richness, negatively values are associated with increased proximal APA
correlated genes were enriched for ARE binding isoform abundance.

protein motifs in their distal UTRs and contained If ENCODE-derived effects of RBPs on APA isoform

more AREs as scored by AREScore (Spasic et al.,
2012) (Figure 6M, 6N). AREs are destabilizing RNA
elements bound by several ARE binding proteins
that facilitate RNA degradation. The presence of
AREs in distal UTRs of negatively correlated genes

abundance were recapitulated in the TCGA data,
we would expect to see a positive correlation
between the ¢ and g values for RBPs. We restricted
this comparison to the 94 RBPs that had «a values

significantly different from the expected value of 0.5

is consistent with lower RNA expression when (p < 0.01, binomial test). For these RBPs, a and #
downstream PAS are utilized. It is important to note values were positively correlated (R = 0.23, p =

that the dlsta:c UTRs of posrflvely co.rrelate.d genes 0.03). RBPs with « values greater than 0.5 had

are depl'eted or AREs consistent with their higher significantly higher # values than those with «

expression. These results suggest that APA can .

regulate gene expression through the inclusion of values less than 0.5 (Figure 7B). Further, when we
g 9 b 9 correlated a and g values across all RBPs for all

destabilizing AREs in a transcript’s 3’UTR. : o
sample pairs within a cancer type, we observed

Regulatory effects of RBPs on APA isoform positive correlations in all 12 cancers tested (Figure
abundance inferred from ENCODE data can be 7C). These results further suggest that dozens of
observed in TCGA data RBPs have the ability to regulate relative APA
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Figure 7. APA is regulated by RBP expression in ENCODE and TCGA data. (A) Diagram depicting
connections between changes in RBP expression between condition and widespread, global in changes in
. Left: In figure 4, RBPs were assigned a value, @, based on the effect that their knockdown had on the 4y
values for all genes. a was defined as the fraction of genes that displayed increased i values in control
knockdown samples compared to RBP knockdown samples. The expression of RBPs with high «a values
was therefore associated with increased i values transcriptome-wide (top) while expression of RBPs with
low a values was correlated with decreased i values transcriptome-wide (bottom). Similar RBP effects were
calculated in TCGA data (right) by comparing the change in RBP expression between two matched samples
with transcriptome-wide changes in y values. A value, 8, was defined as the correlation between changes in
RBP expression and the median 41 across all genes with significant Ay values (FDR < 0.05). « and 8 are
therefore comparable in relating RBP expression and transcriptome wide changes in ¢ with the former
designed for ENCODE RBP knockdown data and the latter designed for TCGA paired sample data. (B) 8
values for RBPs with low a values (@ < 0.5, blue) and high « values (a > 0.5, red). Here, an RBP’s g value
considers the correlation between its expression and global i across all TCGA sample pairs. The p value
was calculated using a Wilcoxon ranksum test. (C) Correlation between a and f values across all RBPs for
all TCGA sample pairs, separated by cancer type. The p value was calculated using a binomial test for
deviation from the expected 0.5 probability that a cancer’s correlation between a and g would be positive.

isoform abundance of many genes in a coordinated,
directional manner and that the misregulation of
APA seen in many cancers may be due to altered
expression of specific RBPs.

DISCUSSION

Alternative polyadenylation is a key step in control
of mRNA function, and its misregulation can have
large effects on cellular and even organismal
phenotype including major effects on the
transcriptome of diseased cells including tumors
(Berkovits and Mayr, 2015; Grassi et al., 2018; Mayr
and Bartel, 2009; Shi and Manley, 2015; Tian and
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accurately quantify
alternative polyadenylation
and changes in its regulation
across conditions from
standard RNAseq data.
LABRAT builds upon
advances in transcriptome
quantification using
lightweight alignments (Patro
et al., 2017) to determine the
relative usage of APA sites
within genes. This strategy
of using fast, accurate,
isoform-level quantification
has previously been successfully used to study
differential isoform regulation (Alamancos et al.,
2015; Ha et al., 2018). Here, we have used LABRAT
to explore the regulation and consequences of APA
in a variety of contexts using thousands of data
sets.

The subcellular localization of specific transcripts
has been known to be regulated by APA. For
example, the dendritic localization of BDNF mRNA
depends on the content of the transcript’s 3’'UTR as
determined by APA (An et al., 2008). More recent
transcriptome-wide studies have shown that this
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phenomenon is widespread, as hundreds of genes
display differential enrichments of APA isoforms
across cell body and projection compartments
(Ciolli Mattioli et al., 2019; Taliaferro et al., 2016;
Tushev et al., 2018). Still, there has been confusion
as to the relative contributions of tandem UTR- and
ALE-mediated APA to this effect, perhaps due to
inefficiencies in studying APA with software that
uses genomic alignments. LABRAT is the only
currently available APA software that explicitly
separates and labels these two classes of genes.
We took advantage of this to quantify the
distribution of tandem UTR and ALE isoforms
across subcellular compartments and found that
both classes of APA contribute approximately
equally to differences in RNA localization. We
further found that differential APA isoform
localization is most prevalent in young cellular
projections that are less than 3 days old, suggesting
that this effect may be important for the initiation of
projection outgrowth but less significant for the
maintenance of established projections.

Although RNA localization is most heavily studied in
polarized cell types like neurons, transcripts are
asymmetrically distributed in essentially all cells.
LABRAT identified hundreds of genes with
differential APA isoform enrichment between
biochemically defined cytosolic and membrane
fractions in nonpolarized D17, HepG2, and K562
cells. These results indicate that APA may play a
broad role in subcellular localization to membranes
in multiple cell types. The consequences of this
localization remain unknown, but given that a large
fraction of cellular membrane belongs to the ER,
modulation of membrane association may be a way
to tune the ER association and therefore translation
status of a transcript. Further, given the broad
misregulation of APA in many cancers, this may
mean that the membrane association of many
transcripts changes upon transformation. We further
found that genes whose APA isoforms are
differentially associated with membranes are less
likely to encode ER-targeting signal peptides,
suggesting that RNA localization to the ER can
occur using mechanisms that are independent of
the cotranslational targeting. This phenomenon and
its misregulation in specific contexts like cancer
needs more study.

17

The abundance of several CPSF and CstF subunits
can have important effects on alternative polyA site
choice (Schénemann et al., 2014; Shi et al., 2009;
Sun et al., 2018; Takagaki and Manley, 1998). Other
RBPs, including CFIm25, have also been shown to
strongly directionally regulate APA through
activation or repression of specific cleavage events
(Masamha et al., 2014; Zhu et al., 2018). Using RBP
knockdown followed by high-throughput RNA
sequencing experiments performed by the
ENCODE consortium (Consortium, ENCODE Project
et al., 2012; Davis et al., 2018) we interrogated the
regulatory effects of 191 RBPs on APA isoform
abundance. In this analysis, the knockdown of
dozens of RBPs promoted widespread, coordinated
directional shifts in relative APA isoform abundance
for hundreds to thousands of genes, suggesting
that the repertoire of RBPs that can differentially
regulate APA isoforms is quite large. It is important
to note, though, that not all of these RBPs may be
directly regulating APA. For example, many may be
differentially regulating stability of 3’ UTR isoforms.

The CPA apparatus processes nascent Pol Il
transcripts at the ends of genes in the context of
complexes with Pol ll. According to the “window of
opportunity” model (Bentley, 2014), the decision
between alternative polyA sites can be influenced
by the delay between synthesis of upstream and
downstream sites which is determined by the speed
of transcription. Consistent with this model, we
found using LABRAT that slow transcription caused
by a mutation in the Pol Il large subunit causes a
significant shift in favor of upstream polyA sites and
that this effect is true for both the ALE and tandem
3’ UTR classes of APA. Moreover, as predicted by
the “window of opportunity” model the mRNAs with
the greatest upstream shift in APA correspond to
those with the greatest distance between alternative
tandem 3’UTR sites (Figure 3D). In summary, these
results show that Pol Il speed can significantly
modulate alternative polyA site choice. They further
suggest the possibility that regulation of
transcription elongation could contribute to
changes in APA under normal and pathological
conditions.

Connections between APA and cancer have been
well established (Masamha and Wagner, 2018;
Masambha et al., 2014; Xia et al., 2014). Generally,
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conclusions regarding this relationship have been
focused on the idea of increased proximal APA in
cancerous samples (Masamha et al., 2014; Mayr
and Bartel, 2009; Xia et al., 2014) with the idea that
proximal APA of oncogenic transcripts particular
removes repressive regulatory elements in the distal
UTR that might otherwise keep the expression of
these genes low. However, our results using
LABRAT to assess APA changes in 671 paired
tumor and normal samples indicate that broad,
directional shifts in APA are specific to the type of
cancer being studied. Some cancers, including
lung cancers and head-neck squamous cell
carcinoma, display the canonical increased use of
proximal APA sites, while others, including kidney
renal clear cell carcinoma and thyroid cancers,
show strong shifts in the opposite direction toward
distal APA sites. Further, increased proximal and
distal APA is associated with poor patient prognosis
in head-neck squamous cell carcinoma (HNSC) and
kidney renal clear cell carcinoma (KIRC),
respectively. Critically, this indicates that increased
proximal APA is not a general signature of cancer,
but rather that the direction of APA misregulation is
cancer-specific.

Relationships between APA and gene expression
have also been well documented (Mayr and Bartel,
2009; Sandberg et al., 2008). Early studies of this
connection indicated that distal APA was generally
associated with a decrease in gene expression.
Later studies, though, indicated that this
relationship was less clear (Spies et al., 2013). To
investigate how APA affects gene expression, we
compared changes in ¥ values and changes in
gene expression for all genes in over 1000 pairs of
RNAseq samples. We found that within a sample,
correlations between gene expression and APA
were weak, but were consistently in the canonical,
expected direction where distal APA leads to lower
expression. Reorienting the analysis to interrogate
the relationship within single genes but across
samples again revealed that the average gene has
only a very weak connection between APA and
gene expression. Still, some genes had remarkable
correlations (R ~ 0.7-0.8) between these two
measurements, indicating that changes in their
expression across diverse samples are controlled in
large part by modulation of APA site choice.
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Across over a thousand pairs of samples, we
observed strong correlations between APA changes
in genes with tandem UTRs and those with ALEs. If
a particular condition promoted increased distal
APA in tandem UTR genes, it overwhelmingly also
promoted increased distal APA in ALE genes and
vice versa. This strongly indicates that the two may
be regulated by similar mechanisms. Tandem UTRs
are regulated solely at the level of cleavage/
polyadenylation. The simplest interpretation of our
results is therefore that the contribution of regulated
splicing to ALE control is minor compared to that of
regulated cleavage/polyadenylation, perhaps
because splicing kinetics are slower. For ALEs,
proximal cleavage events obviate potential
regulation of the ALE by splicing since the distal
ALE is removed from the transcript. If recognition of
the proximal APA site by the cleavage and
polyadenylation machinery is inhibited, this may
provide time for splicing to distal ALEs to occur, and
this decision could be affected by the speed of
transcription. In this model, splicing acts on ALEs
only if given the chance to do so through inhibition
of kinetically favored cleavage events.

Overall, the results presented here shed light on the
molecular consequences of APA and make
predictions about the proteins and mechanisms
involved in its regulation. Further experimental
studies are needed to fully understand these
processes. We envision LABRAT as an important
tool in deriving meaningful insights from those
experiments.
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METHODS

General LABRAT usage

LABRAT is freely available for download here: https://github.com/TaliaferroLab/LABRAT/. LABRAT searches
for specific tags in the annotation associated with transcripts with ill-defined 3’ ends. These tags are present
in Gencode (www.gencodegenes.org) gff annotations but may not be present in annotations from other
sources. For this reason, we strongly suggest using Gencode annotations for use with LABRAT. For analysis
of Drosophila data, we modified LABRAT to perform similar filtering on Ensembl annotations for the dm6
Drosophila genome build. This version of LABRAT is also available at the above GitHub address.

Genes that did not pass an expression filter (TPM = 5) were removed from further analysis. This gene
expression was defined as the sum of the expression values for all valid, filter-passing transcripts for the
gene. LABRAT reports these genes as having a i value of NA.

Identification of genes with significantly different 1 values across conditions was done using a linear mixed
effects model with the Python package statsmodels (Seabold and Perktold, 2010). For simple comparisons
involving two conditions, a simple model relating conditions and iy values was used (i values ~ condition).
For analysis of the CeFra and ENCODE data, slightly more complex models were used. In the CeFra data,
the method of library preparation, polyA-enrichment or ribosomal RNA depletion, was added as a covariate (i
values ~ condition + libprep). In the ENCODE data, the cell line, K562 or HepG2, was added as a covariate (y
values ~ condition + cell line). These models were then compared to null models where the effect of the
condition was removed. For simple comparisons, the null models were specified as (¥ values ~ 1). For the
CeFra and ENCODE comparisons, these were specified as (i values ~ libprep) and (i values ~ cell line),
respectively. A likelihood ratio test was then used to evaluate the relative fit between the experimental and
null models. P values were derived from the likelihood ratio test and then corrected for multiple hypothesis
testing using a Benjamini-Hochberg correction (Benjamini and Hochberg, 1995). Ay values are defined as
differences in mean 1y across conditions.

To define tandem UTR and ALE structures, LABRAT observes the isoform structures at the 3’ end of a gene.

If all APA sites are contained within the same exon, then the structure in tandem UTR. If all APA sites are
contained within different exons, then the structure is ALE. If a gene has only two APA sites, then its structure
must be either tandem UTR or ALE. If a gene has more than two APA sites, it is possible for the gene to fit
into neither classification. For example, in a gene with three APA sites, it is possible to have two of them
contained within one exon and the third by itself in another exon. In these cases, LABRAT assigns the gene to
have a “mixed” structure.

Comparison of APA in mouse brain and liver tissues

RNAseq data for mouse brain and liver tissues was downloaded from (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA375882) (Li et al., 2017). Each tissue sample contained 8 replicates. Genes with
significantly different ¢ values were identified as those with an FDR of less than 0.05.

Analysis of APA in GTEx RNAseq data

RNAseq data from the Genotype-Tissue Expression (GTEXx) project (BioProject PRUNA75899) were
downloaded from the NCBI Sequence Read Archive (SRA) via dbGaP-authenticated access and quantified
using salmon (Patro et al., 2017) as described elsewhere in this manuscript. i values were calculated for each
gene in each sample using LABRAT. LABRAT employs an expression level cutoff, returning a v value of NA if
the sum of expression of all isoforms for a gene is not at least 5 TPM. There were many genes in this analysis
of tissue-specific RNAseq that therefore had i values of NA in at least one sample. To facilitate PCA analysis,
these missing ¥ values were imputed using the R package missMDA (Josse and Husson, 2016).
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The data used for the analyses described in this manuscript were obtained from dbGaP accession number
phs000424.vN.pN between 07/16/2020 and 08/31/2020.

APA analysis of simulated RNAseq data

To compare the performance of LABRAT to QAPA (Ha et al., 2018), DaPars (Xia et al., 2014) and Roar (Grassi
et al., 2016), we generated a synthetic RNAseq dataset. In this dataset, 5000 genes with only two alternative
polyadenylation sites were analyzed. 1250 were randomly assigned to have positive 4y values, 1250 were
assigned to have negative 4y values, and 2500 were assigned to have no significant change in y between
conditions. Each gene was then randomly assigned a TPM expression value using a Dirichlet distribution with
numpy.random.dirichlet.

The simulation was performed by comparing three replicates each from two conditions. For the positive 4y
genes, the minimum y from condition B was required to be at least 0.1 greater than the maximum y from
condition A. Conversely, for the negative 4y genes, the maximum y from condition B was required to be at
least 0.1 less than the minimum vy from condition A. For control genes, the difference between any two
values both within and across conditions was required to be less than 0.25.

Given a gene’s overall expression and its i value, TPM values were then relatively split between
polyadenylation sites such that the desired y value was achieved. TPM values for individual transcripts within
polyadenylation sites were then assigned. If a polyadenylation site was only supported by a single transcript,
that transcript was given the site’s entire TPM value. If a polyadenylation site was supported by multiple
transcripts, the site’s TPM allotment was randomly distributed among the transcripts.

Given a transcript’s assigned TPM value and its length, the desired number of counts for each transcript was
then computed by multiplying the TPM value by the length of the transcript. The sequence of each transcript
and the desired number of counts were then given to the R package polyester (Frazee et al., 2015) to create
synthetic, 100 nucleotide, paired-end RNAseq reads.

In analyzing the reads with each package, gene assignments (positive 4y, negative 41, or control) made by
the software were compared to the assignments made during preparation of the synthetic dataset. For
analysis of these reads with LABRAT, genes with FDR values of less than 0.05 were called as affected genes
(either positive or negative 4y depending on the reported 4y value) while those with values of 0.05 or greater
were called as control genes. For analysis with QAPA, genes with differences in PPAU values of at least 10
were called as affected genes while those with differences in PPAU values of less than 10 were called as
control genes. For analysis with DaPars, genes with adjusted p values of less than 0.05 were called as
affected genes while those with adjusted p values of 0.05 or greater were called as control genes. For
analysis with Roar, genes with p values less than 0.05 and roar values greater than 1.1 were called as positive

Ay genes, genes with p values less than 0.05 and roar values less than 0.9 were called as negative 4y genes,
while genes with p values of 0.05 or greater were called as control genes.

Analysis of differential APA isoform enrichment across subcellular compartments

Y values for each subcellular compartment were quantified using LABRAT, and genes with significant changes
in ¥ values across compartments were identified using an FDR cutoff of 0.05. The fraction of these significant
genes with greater ¢ values in the projections than cell bodies was calculated. Binomial p values were
calculated for deviations from the expected fraction of 50%. Times of projection growth were manually
curated from the methods description of each study.

Analysis of differential APA isoform enrichment across biochemically defined subcellular fractions
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Y values for each subcellular fraction were quantified using LABRAT, and genes with significant changes in ¢
values across compartments were identified using an FDR cutoff of 0.05. FDRs were calculated using a linear
model that incorporated the method of library preparation (polyA-enrichment or ribosomal RNA depletion) as
a covariate.

Quantification of ER signal sequence abundance

For each gene, the translation of its longest CDS sequence was given to the signal sequence prediction
program SignalP (Almagro Armenteros et al., 2019). For a set of genes, the fraction of genes within the set
that contained at least one SignalP-defined ER signal sequence was calculated. For comparing these
fractions across sets of genes, a distribution of fractions was created by bootstrapping where 40% of the
genes were sampled 100 times.

Analysis of APA changes induced by changes in RNA Polymerase Il speed

RNAseq data from HEK293 cells expressing slow (R749H) and wildtype RNA polymerase Il (Fong et al., 2014)
were downloaded from the Gene Expression Omnibus (GSE63375). Using an FDR cutoff of 0.1, genes with
significantly different ¢ values between wildtype and R749H samples were identified using LABRAT.

Analysis of ENCODE RBP RNAi knockdown RNAseq samples

In this dataset, each RBP was associated with two RBP RNAi samples and two control RNAi samples. We
limited analyses to RBPs that had knockdown samples in both K562 and HepG2 cell lines. 1 values were
calculated comparing RBP knockdown and control knockdown samples, and genes with significant i
differences between RBP RNAi and control RNAi samples were identified using an FDR cutoff of 0.05. FDRs
were calculated using a linear model that incorporated the cell line (HepG2 or K562) as a covariate.

For each RBP, the fraction of these significant genes with greater ¥ values in the control RNAi than RBP RNAI
was calculated. These fractions were defined as a value, a, where a ranged from 0 to 1. a values greater than
0.5 were therefore associated with larger i values (and therefore more distal APA) in the control RNAi sample.
Conversely, a values less than 0.5 were therefore associated with smaller i values (and therefore more
proximal APA) in the control RNAi sample. Each RBP was therefore assigned one a value from the ENCODE
data. Binomial p values were calculated for deviations from the expected fraction of 50%.

Comparison of ENCODE RBP RNAi knockdowns and eCLIP RBP binding data

The eCLIP narrowpeak bed files for isogenic replicates aligned to GRCh38 for each RBP measured in both
HepG2 (103 RBPs) and K562 (120 RBPs) were downloaded from www.encodeproject.org. Analyses were
restricted for within each line and not combined. For each individual RBP data set, overlapping peaks were
merged using bedtools v2.29.2 (Quinlan and Hall, 2010). These peaks were then intersected with the longest
3’UTR of genes whose polyA sites were both affected and unaffected by RBP knockdown (as measured by
LABRAT described above). RBP occupancy was scored for each 3’'UTR as either present or not. The
statistical significance of a given RBPs occupancy within the subset of genes whose polyA site choice was
affected by knockdown of any RBP was determined using a binomial test.

The number of RBPs that were ‘self significant’, i.e. the occupancy of a specific RBP was significant for the
genes whose polyA site choice was affected by knockdown of that same RBP, was determined for both
HepG2 and K562. To determine if that number was greater than what was expected by chance, relationships
between RBPs and the genes they bind were shuffled, and the analysis was repeated to identify the number
of ‘self significant’ RBPs. This process was repeated 1000 times to generate a null distribution of the number
of ‘self significant’” RBPs. The number of actual ‘self significant’ RBPs was then compared to the null
distribution and an empirical p value was calculated.
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Analysis of APA in TCGA matched tumor/normal tissue samples

In this dataset, each patient is associated with a pair of samples, one from a tumor and another from matched
normal tissue. 1 values were calculated for each sample, and genes with significant y differences between all
tumor samples and all normal samples within a cancer type were identified using an FDR cutoff of 0.05.

Using the TCGA data, the effect of an RBP’s expression on y was inferred by correlating changes in the
RBP’s expression across samples with changes in Y values of genes that passed the FDR cutoff of 0.05. For
each tumor/normal pair, the change in RBP expression was calculated by comparing TPM expression values,
and changes in ¥ were calculated by finding the median 4y value across genes with significant changes in .
The spearman correlation coefficient of this comparison across all tumor/normal pairs was defined as . Each
RBP was therefore assigned one S value from the TCGA data.

Analysis of survival data in TCGA samples

Using the tumor and matched normal tissue samples from the TCGA dataset, genes with significant
differences (FDR < 0.05) were identified for each tumor type as misregulated genes. The median 1 of
misregulated genes was then calculated for each patient in samples without matched normal tissue controls.
Patients were then ranked by their median y of misregulated genes and separated into quartiles. Only
patients within the most extreme quartiles were plotted for each tumor type.

Clinical data for each patient was obtained from cbioportal (Gao et al., 2013). Survival analysis and plotting
was performed with R packages survival (version=3.1-8) (Therneau and Grambsch, 2000) and survminer
(version=0.4.8) (Alboukadel Kassambara, 2020). Log-rank tests for significance were calculated to compare
extreme quartiles for each tumor type and were considered significant if less than 0.05.

Analysis of relationship between APA and RNA expression

For every pair of samples (Control and RBP RNAi in ENCODE and tumor/normal samples in TCGA), the
change in RNA expression and i value for every gene was calculated. Gene expression filters (TPM > 5) were
applied, but FDR cutoffs for 4y were not. These two values were then compared to each other, and the
resulting Spearman correlation coefficient was defined as rho (p). If distal APA (i.e. increases in y) was
associated with decreases in RNA expression, the resulting p value would be negative.

p was calculated in two different ways. In the first way, changes in expression and y for all genes within a
sample were correlated. In this comparison, each sample pair ends up with a single p value. In the second
way, changes in expression and i for a single gene across all sample pairs were correlated. In this
comparison, each gene ends up with a single p value in each sample set (ENCODE and TCGA).

The second p calculations were used to categorize genes as being either positively or negatively correlated.
To achieve similar numbers of genes in each category, a positive p in either sample set was considered as
positively correlated while a p less than -0.15 in either sample set was considered negatively correlated.
Genes behaving inconsistently between sample sets were removed from these categories and placed in the
control gene category(25% of positively correlated and 14% or negatively correlated). For simplicity, genes
with only two APA isoforms were considered during this categorization resulting in 316 positively correlated
genes, 313 negatively correlated genes and 1466 control genes used in UTR sequence analysis.

Quantifying effects on RNA expression due to UTR content with qRT-PCR

Proximal and distal UTR regions were cloned onto the coding sequence of Firefly luciferase. In this plasmid,
Firefly luciferase is driven by a bidirectional tet-On promoter. This promoter also drives Renilla luciferase,
which served as a control in these experiments. The resulting plasmids were transfected into Hela cells
using Lipofectamine 2000 (Life Technologies). These cells were engineered to contain a single loxP-flanked
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cassette within their genome (Khandelia et al., 2011). The plasmid was site-specifically integrated into the
genome of the Hel a cells by cotransfecting it with a plasmid expressing Cre recombinase. Recombinants
were then selected using 1 ug / mL puromycin for 2 weeks.

The expression of Firefly and Renilla luciferase transcripts was induced by incubating cells with 1 pg / mL
doxycycline for 48 hours. Total RNA was then isolated using a Quick RNA Isolation Mini Kit (Zymo Research).
1 pg of total RNA was reverse transcribed using iScript Reverse Transcriptase Supermix (BioRad). The relative
levels of Firefly and Renilla luciferase transcripts in the sample were then quantified using Tagman gPCR. For
each gene, the ratio of Firefly to Renilla luciferase in the case where the proximal UTR was fused to Firefly
luciferase was set to 1.

Identifying features enriched in UTRs associated with gene expression changes

For each gene considered in this analysis (positively correlated, negatively correlated and control genes),
proximal and distal UTR sequences were extracted in such a way that they contained unique sequences only.
This means that the distal UTRs of genes with tandem UTR models lacked the beginning of their sequence
which is unique to the proximal UTR as illustrated in Figure 6H.

UTR sequence features of either positively or negatively correlated genes were always compared to the
control gene set. Enrichment analyses were performed using a custom R package (FeatureReachR) publicly
available here: https://github.com/TaliaferroLab/FeatureReachR. This R package utilizes wilcoxon ranksum
tests to compare length and GC contents of the three gene sets. Motif and five-mer enrichment significance is
calculated with a Fisher’s exact test and corrected using the Benjamini & Hochberg method (Benjamini and
Hochberg, 1995). RBP binding motifs are represented as a sequence match > 80% with position weight
matrices sourced from the CISBP-RNA database (http://cisbp-rna.ccbr.utoronto.ca/) (Ray et al., 2013) or RNA
bind-N-seq results (Dominguez et al., 2018). AREScore (Spasic et al., 2012) was utilized to determine the
presence of AU rich elements within the UTRs and compared again using wilcoxon rank-sum tests (http://
arescore.dkfz.de/arescore.pl).
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Figure S1. (A) PCA analysis of i values calculated from human tissues. Data was produced as part of the GTEx project. (B) As in A, but only using genes
that have a tandem UTR APA structure. (C) As in A, but using only genes that have an ALE APA structure. (D) Comparison of i values from human brain
and liver samples. Delta i values for genes with FDR values less than 0.01 are plotted. (E) Comparison of ¢ values from human testis and liver samples.
Delta i values for genes with FDR values less than 0.01 are plotted. (F) Comparison of APA quantifications produced by LABRAT (i) and QAPA (PPAU).
(G) Benchmarking of APA software performance at a range of sequence read depths.
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Figure S2. Hierarchical clustering of i values from biochemically fractionated Drosophila DM-D17-C3 cells (A), HepG2 cells (B), and K562 cells (C).
(D-E) Simplex plots relating relative 1 values for genes between the cytosolic, membrane-associated, and insoluble fractions of DM-D17-C3 cells (D)
and K562 cells (E). A dot that is equidistant from all three vertices had equal i values in each fraction while a dot that is closer to one vertex had a
higher ¥ value in that fraction relative to the other two fractions. (F-G) Comparison of ¢ values in K562 (F) and DM-D17-C3 (G) cytosolic and
membrane fractions for genes whose 1) value was significantly different between these compartments (FDR < 0.01).
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Figure S4. (A-B) Histogram of gene-wise correlations between changes in iy and changes in gene expression (p) derived from TCGA tumor and
matched normal samples for tandem UTR (A) genes and ALE (B) genes. (C-D) Histogram of gene-wise correlations between changes in iy and changes
in gene expression (p) derived from ENCODE RBP knockdown and control samples for tandem UTR (C) genes and ALE (D) genes. (E) Binned scatter

plot comparing changes in iy and changes in gene expression for genes with negative p values (blue), positive p values (purple) and control genes (gray).

(F) Enrichment of 5mers in the distal UTRs of negatively correlated genes compared to the distal UTRs of control genes. (G) Enrichment of 5mers in the
distal UTRs of positively correlated genes compared to the distal UTRs of control genes.
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