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23 Abstract  

24 We present the development and validation of a mathematical model that predicts how glucose 

25 dynamics influence metabolism and therefore tumor cell growth. Glucose, the starting material for 

26 glycolysis, has a fundamental influence on tumor cell growth. We employed time-resolved 

27 microscopy to track the temporal change of the number of live and dead tumor cells under different 

28 initial glucose concentrations and seeding densities. We then constructed a family of mathematical 

29 models (where cell death was accounted for differently in each member of the family) to describe 

30 overall tumor cell growth in response to the initial glucose and confluence conditions.  The Akaikie 

31 Information Criteria was then employed to identify the most parsimonious model. The selected 

32 model was then trained on 75% of the data to calibrate the system and identify trends in model 

33 parameters as a function of initial glucose concentration and confluence. The calibrated parameters 

34 were applied to the remaining 25% of the data to predict the temporal dynamics given the known 

35 initial glucose concentration and confluence, and tested against the corresponding experimental 

36 measurements. With the selected model, we achieved an accuracy (defined as the fraction of 

37 measured data that fell within the 95% confidence intervals of the predicted growth curves) of 77.2 

38 ± 6.3% and 87.2 ± 5.1% for live BT-474 and MDA-MB-231 cells, respectively.

39

40 Key words: metabolism, time-resolved microscopy, computational, BT-474, MDA-MB-231
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46 1. Introduction

47 The major source of energy for most cancer cells comes from a high rate of glycolysis 

48 followed by lactate fermentation in the cytosol, even in the presence of sufficient oxygen—a 

49 phenomenon known as the Warburg effect [1,2]. This contrasts with normal cells that exhibit a 

50 comparatively low rate of glycolysis followed by oxidative phosphorylation in the mitochondria. 

51 Additionally, high concentrations of oxygen can lead to a reduction of glycolytic activity, known 

52 as the Pasteur effect [3]. Also, an observation by Sonveaux [4] supports the claim that well-

53 oxygenated tumor cells utilize lactate, leaving glucose available for hypoxic cells. This 

54 phenomenon has stimulated numerous efforts to investigate the underlying mechanisms [2,5,6] of 

55 altered metabolism and has identified potential targets including glucose transporters [7], lactate 

56 transporters [8], and enzymes like hexokinase and pyruvate kinase in the pathway of  glycolysis 

57 [9,10] for the development of new therapeutics. Efforts have been made to rigorously model the 

58 development of tumor subpopulations, nutrient dynamics, and tumor-environment interactions 

59 [11–18]. For example, in the model developed by Mendoza-Juez et al. [12], tumor cells were 

60 divided into two subpopulations, the oxidative cells that undergo aerobic oxidation of glucose and 

61 glycolytic cells that undergo glycolysis and produce lactate, corresponding to an oxidative 

62 phenotype and a Warburg phenotype. Proliferation and conversion between the two 

63 subpopulations was described by a set of ordinary differential equations. This study also 

64 considered the nutrient concentrations of glucose and lactate as a result of consumption and 

65 production by tumor cells, which in return, can cause conversion between phenotypes. Mendoza-

66 Juez et al. [12] further provided preliminary validation of their model by comparing it to metabolic 

67 data available from several previously published studies [4,19,20]. However, as no direct 

68 calibration of this model to experimental data was performed,  it was not possible to capture 
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69 specific parameter values that could be used to characterize cell lines [11,16], or make predictions 

70 of tumor cell dynamics as a function of glucose availability or utilization. Additionally, the reliance 

71 on a large number of unmeasured parameters makes further applications challenging.  Therefore, 

72 in this work, we aim to simplify this model with a smaller set of parameters that can be estimated 

73 or calibrated from experimental data and recast the associated models we developed with these 

74 estimates to predict tumor growth given initial conditions. 

75 We designed a set of experiments employing time-resolved microscopy to track the 

76 temporal change of the number of live and dead tumor cells in vitro given a set of initial 

77 confluences (i.e., seeding density) and glucose concentrations.  To quantitatively characterize 

78 those observations, we developed a family of mathematical models to describe the proliferation 

79 and death of tumor cells as a function of glucose availability and consumption. These models, 

80 which are based on those of Mendoza-Juez [12], take the form of systems of nonlinear, ordinary 

81 differential equations to describe the collective temporal behavior of tumor cells. We aim to 

82 identify the most parsimonious model from that family to optimally characterize  tumor cell growth 

83 as a function of glucose dynamics.  After the optimal model is selected, we quantify the 

84 proliferation rate, death rate due to glucose depletion, death rate due to the bystander effect, and 

85 the consumption rate of glucose in a training set.  We then use this calibrated model to predict 

86 tumor cell growth given prescribed initial conditions in a validation set.

87

88 2. Materials and methods

89 Throughout the following text, the reader is encouraged to refer to Fig 1 which provides 

90 an overview of the experimental and computational modeling components of the study.

91
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92 Fig 1. A flow chart indicating the data acquisition and analysis steps. Based on the phase-

93 contrast (panels a and b) and fluorescent (panels e and f) images acquired from the time-resolved 

94 microscopy studies, we perform cell segmentation of total and dead cells (panels c and g, 

95 respectively) and generate time courses of confluence for both live and dead cells (panel d). The 

96 data are then used for selecting the most parsimonious mathematical model which estimates model 

97 parameters. Finally, the data are divided into subsets for training and validation of the predictive 

98 accuracy of the model.

99

100 2.1 Cell culture 

101 We applied our experimental-mathematical approach in two breast cancer subtypes to 

102 quantitatively characterize cell types known to have distinct phenotypes, molecular profiles, and 

103 metabolic activities.  Triple negative breast cancer [21] (TNBC) is defined by the absence of the 

104 expression of the estrogen, progesterone, and HER2 (human epidermal growth factor receptor 2) 

105 receptors, while in HER2+ breast cancer [22], HER2 is overexpressed. 

106 BT-474 (a model of HER2+ breast cancer) and MDA-MB-231 (a model of triple negative 

107 breast cancer) cell lines were obtained from the American Type Culture Collection (ATCC, 

108 Manassas, VA) and maintained in culture according to ATCC recommendation. Ninety-six well-

109 plates were seeded with either BT-474 or MDA-MB-231 cells at initial confluences ranging from 

110 10% to 80% in Dulbecco’s modified eagle medium (DMEM without glucose, sodium pyruvate, 

111 HEPES, L-glutamine and phenol red, Thermo Fisher Scientific, Waltham, MA) one day before 

112 imaging experiments began. On day zero, media were changed to DMEM with different glucose 

113 concentrations (0 mM, 0.1 mM, 0.2 mM, 0.5 mM, 0.8 mM, 1 mM, 2 mM, 5 mM, 8 mM and 10 
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114 mM). Each initial condition had four replicates. Cells were cultured in 5% CO2 and air at 37°C for 

115 4 days.

116

117 2.2 Image acquisition

118 Cells were incubated in the IncuCyte S3 live cell imaging system (Essen BioScience, Ann 

119 Arbor, MI). Images were acquired with a 4× objective and stitched together to obtain whole well 

120 images (2400 × 2400 pixels) for each well of the 96-well plates via the device’s whole-well 

121 imaging function. IncuCyte Cytotox Red Reagents (Essen BioScience, Ann Arbor, MI), a cyanine 

122 nucleic acid dye, was added to the medium on day 0 before the first scan to enable quantification 

123 of cell death. Once cells become unhealthy, the plasma membrane begins to lose integrity allowing 

124 entry of the IncuCyte Cytotox Reagent and yielding a 100-1000-fold increase in fluorescence upon 

125 binding to DNA. Phase-contrast and red fluorescent (excitation wavelength: 585 nm and emission 

126 wavelength: 635 nm) images were acquired every 3 hours for 4 days. 

127

128 2.3 Image segmentation to quantify confluence over time 

129 All cell segmentation was performed in Matlab (The Mathworks, Inc., Natick, MA).  The 

130 segmentation approaches were developed based on the particular morphological features of the 

131 two cells lines. In particular, the BT-474 cells are mass cells with robust cell-cell adhesion that 

132 form cell clusters, while the MDA-MB-231 cells are elongated cells [23]. 

133 To segment the BT-474 cells within the phase-contrast images at each time point, a 

134 predetermined mask corresponding to the size of 96-well-plate from IncuCyte Software (Essen 

135 BioScience, Ann Arbor, MI) was first applied to the images so the region of interest (ROI) only 

136 included the area within each well and not the surrounding area of the plate in each square image. 
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137 The masked image was then converted from the RGB (red, green, blue) format to grayscale and 

138 the Matlab function ‘colfilt’ was used to calculate the standard deviation of signal intensities within 

139 each 3-by-3 sliding block of the image to detect the edge of cell clusters. Next, a Gaussian filter 

140 was used to smooth the image returned from ‘colfilt’ to reduce the variance of signal intensities 

141 within each cell cluster. The resulting image was then normalized (by dividing the signal intensity 

142 of each pixel by the highest signal intensity from each image) between 0 and 1. After normalization, 

143 the morphological operator ‘imerode’ was used to make the clusters shrink in size and enlarge the 

144 holes to avoid losing open space within clusters.  Next the returned image was converted to a 

145 binary image by the Matlab function ‘im2bw’. The morphological operator ‘imclose’ was used to 

146 fill holes in the interior of cell clusters. The morphological operator ‘imopen’ was used to smooth 

147 object contours, break thin connections and remove thin protrusions. Finally, ‘bwareaopen’ was 

148 used to remove small objects like cell debris or noise.  Please see S1 Fig of the Supporting 

149 Information for details and example images from each step.

150 While BT-474 cells form clusters that have clear boundaries, MDA-MB-231 cells are 

151 elongated and do not form clusters. This results in a much higher edge-area ratio in MDA-MB-

152 231 images compared to BT-474. Thus, the segmentation scheme just described was adjusted to 

153 handle these differences in cell morphology. In particular, once the ROI was identified, ‘histcount’ 

154 was used to count the number of pixels for each signal intensity (256 possible signal intensity 

155 values in grayscale image) within the ROI. The pixels with signal intensities in the top 10% were 

156 assigned a 0, while the remaining pixels were assigned a 1 to binarize the image. All other steps 

157 were the same as the BT-474 segmentation. Please see S2 Fig of the Supporting Information for 

158 example images.
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159 The fluorescent images were used to quantify the Cytotox Red signal (which marks the 

160 dead cells) for both cell lines. Since MDA-MB-231 cells change from an elongated to a circular 

161 morphology when they die, the differences in morphology of the two cell lines observed in phase-

162 contrast images of the living cells vanishes. Thus, we applied the same approach segmenting the 

163 phase-contrast images of BT-474 cells to the florescent images of both cell lines. 

164 The resulting segmented and binarized phase-contrast and fluorescent images were then 

165 analyzed to determine confluence at each time point. Confluence was defined as the percentage of 

166 the well covered by cells and was calculated by counting the number of pixels in the segmented 

167 images and dividing by the area of the field of view.  Thus, our time-resolved microscopy data 

168 provided time courses of both living and dead cell number. 

169 Tumor cell growth time courses were obtained from 4 experiments for each set of initial 

170 conditions, and each point in each time course consisted of a mean ± 95% confidence interval (a 

171 one-sample Kolmogorov-Smirnov test confirmed normality). One‐way ANOVA was used to 

172 compare the average number of live cells for each experiment at the end of day 4 between the 

173 groups with different initial conditions.

174

175 2.4 Mathematical models

176 We developed a family of mathematical models to quantitatively and temporally describe 

177 the change in tumor cell number as function of glucose levels.  To do so, we started with the model 

178 developed by Mendoza-Juez et al. [12] which describes the tumor as consisting of two 

179 subpopulations undergoing either aerobic oxidation of glucose or glycolysis, corresponding to 

180 Warburg and oxidative phenotypes, respectively. In our work, we first simplified the model to 

181 account for only one metabolic phenotype, and then extended it to account for the accumulation 
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182 of dead tumor cells due to glucose depletion and the bystander effect [24,25]. Accordingly, we 

183 modeled the change of glucose concentration as a result of consumption by all live tumor cells. 

184 Our complete model is described by a coupled set of ordinary differential equations shown below 

185 (the reader is encouraged to refer to Table 1 through the following discussion):

186 [1]         

187 [2]  

188 , [3]                             

189 where N(t), D(t), and G(t) describe the live tumor cell number, dead tumor cell number, and 

190 glucose concentration, respectively, at time t. The first term on the right-hand side of Eq. [1] 

191 describes logistic growth of tumor cells where kp is the proliferation rate, and  is the carrying 

192 capacity. Here we define the carrying capacity as the limitation on the number of tumor cells that 

193 can physically fit within the environment. The logistic term is also modified by the state function, 

194 Sp(G(t)), that scales the proliferation rate as a function of glucose concentration.  The second term 

195 on the right-hand side of Eq. [1] describes the death of tumor cells due to glucose depletion at the 

196 rate kd. This term is also modified by the state function, Sd(G(t)), that scales the rate of cell death 

197 as a function of glucose concentration. We assume that the dead tumor cells are accumulating and 

198 releasing factors [24,25] which may be sensed by the remaining live cells and, potentially, induce 

199 cell death. This is referred to as the bystander effect [24,25] and it is captured by the third term on 

200 the right-hand side of Eq. [1] which induces cell death at the rate kbys. Eq. [2] models the rate of 

201 change in number of dead cells, with the first term on the right-hand side describing death due to 

202 glucose depletion, and the second term accounting for the death due to the bystander effect. Eq. 

dN (t)
dt

 k p N (t) 1
N (t)








S p G(t)   kd N (t)Sd G(t)   kbys N (t) D(t)
D(t)  N (t)







dD(t)
dt

 kd N (t)Sd G(t)   kbysN (t) D(t)
D(t)  N (t)







dG(t)
dt

 vN (t) G(t)
G(t)  G*






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203 [3] describes the change of glucose concentration due to the consumption by tumor cells at the rate 

204 v and a Michaelis-Mentens constant, G*.  The state functions for tumor cell proliferation and tumor 

205 cell death are given as:

206 [4]  

207 , [5]                                

208 where Gmin is the minimum glucose level required for proliferation. The parenthetical term on the 

209 right-hand side of Eq. [4] describes the dependence of cell fate (proliferation or death) on glucose 

210 availability. Observe that as G ➝ 0, Sd(G(t)) ➝ 1, which maximizes the death rate due to glucose 

211 depletion. Conversely, as G ➝ ∞, Sd(G(t)) ➝ 0, which minimizes cell death. As tumor cells may 

212 keep proliferating for some time even in a glucose free medium (please see S3 Fig of the 

213 Supporting Information), we introduced a hyperbolic tangent function of time. We hypothesize the 

214 tumor cell population is composed of two sub-populations, one that has passed the restriction point 

215 [26–29], is committed to divide, and thus does not need to be checked by the state function; and a 

216 second subpopulation that has not passed the restriction point, and thus has to be checked by the 

217 state function.  The hyperbolic tangent function increases from 0 to 1 as time increases from 0 to 

218 infinity; thus, the hyperbolic tangent function on the right-hand side of Eq. [4] introduces a delay 

219 due to the duration of mitosis [30,31]. At time 0, the effect of glucose concentration described by 

220 the parenthetical term is multiplied by tanh(0), and becomes 0. This means the effect of glucose 

221 concentration is not sensed by cells immediately. At a later time, as tanh(t) increases to 1, the effect 

222 of glucose concentration increases until fully sensed by the cells. Afterwards, any further mitosis 

Sd G(t)   1
G(t)

G(t)  Gmin







tanh(t)

S p G(t)   1 1
G(t)

G(t)  Gmin







tanh(t)
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223 is fully affected by glucose concentration through the state function. Note that we have Sd(G(t)) + 

224 Sp(G(t)) = 1. 

225 Table 1. The definitions, units, and source for the model parameters.

Parameter Definitions Units Source

kp Proliferation rate day-1 Calibrated

kd Death rate due to starvation day-1 Calibrated

kbys Death rate due to bystander effect day-1 Calibrated

 Carrying capacity cells Assigned from 
literature [32] 

v General glucose consumption mM·cell-1·day-1 Calibrated

G* Michaelis-Menten constant mM Assigned from 
literature [12]

Gmin Minimum glucose level for uptake mM Assigned from 
literature [12]

226
227 Eqs. [1] – [5] can then be used to generate a family of three models by making a small 

228 set of simplifying assumptions.  If we remove cell death due to the bystander effect in Eqs. [1] and 

229 [2], we create another coupled system.  Similarly, if we remove cell death due to glucose depletion 

230 in Eqs. [1] and [2], we construct a third coupled system.  These three sets of equations provide our 

231 three-member model family which we then subject to a model selection operation to identify the 

232 most parsimonious model.

233

234 2.5 Model calibrations

235 The model described in the previous section was calibrated to experimentally measured 

236 live and dead cell time courses (described in Section 2.3), with the initial glucose concentration 

237 and confluence serving as the initial conditions.  Recall that the overall goal was to calibrate model 

238 parameters against a test data set, and then use the subsequent parameterized model to predict 

239 tumor cell numbers in a validation cohort.  To achieve this goal we performed a series of three 
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240 calibrations for each cell line: one in which the parameters were calibrated for each individual time 

241 course, another in which the parameters were calibrated globally  (i.e., a single set of parameters 

242 for the entire cohort/test set), and in the third in which we combined the results from the first two 

243 approaches so that some parameters were calibrated globally and others calibrated individually as 

244 a function of initial conditions.

245 In the first calibration scenario, the measured live and dead tumor cell time courses were 

246 independently fit to the model (i.e., Eqs. [1] – [5]) to produce separate estimates for each model 

247 parameter within each cell line. The resulting parameter values were then further analyzed to 

248 determine if their value was a function of initial glucose level and confluence.  In the second 

249 calibration scenario, the measured live and dead tumor cell time courses were fit by assuming 

250 model parameters were independent of initial conditions; i.e., a single set of model parameters 

251 were determined to simultaneously fit all time courses (for each cell line). This approach assumed 

252 that the parameter values were not affected by initial conditions and are specific to each cell line.  

253 In the third calibration scenario, we assumed (based on the results of the first two calibration 

254 scenarios) that the proliferation rate, kp, the consumption rate of glucose, v, and the death rate due 

255 to glucose depletion, kd, were specific for each cell line, while the other parameter, kbys was a 

256 function of initial confluence and glucose levels. A Student's t-test was used to test for statistical 

257 differences, between the two cell lines, of each global model parameter (i.e., kp, v, and kd) estimated.  

258 To perform each of the above calibrations, we employed a non-linear, least squares 

259 approach which seeks to minimize the residual sum of square (RSS) errors between the measured 

260 data and the model described in section 2.4. We defined the system of ODEs, initial conditions, 

261 and time steps in Matlab using the built-in ODE solver ‘ode45’ to  estimate the model parameters. 

262 We used a least square optimization algorithm ‘lsqcurvefit’ to update the parameter estimates and 
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263 minimize the RSS errors. To avoid local minima, we used Matlab’s ‘MultiStart’ to run, in parallel, 

264 10 optimization problems with different initial parameter guesses to identify the set of parameters 

265 that minimized the RSS error. The initial parameter guesses that led to the solution point with the 

266 lowest (best) RSS error were recorded and set to be the single-start initial points for a second round 

267 of ‘lsqcurvefit’ to calculate the residuals and Jacobian matrix, which cannot be acquired during the 

268 first round fitting with multiple starting points. The residuals and Jacobian matrix were used to 

269 determine the confidence interval for each parameter by calling the function, ‘nlparci’. Before the 

270 fitting procedure, the initial live and dead tumor cell numbers were assigned as the average of the 

271 first three timepoints to reduce error in the estimation of the initial conditions.

272

273 2.6 Model selection

274 As the three models (described in Section 2.4) with the different fitting strategies 

275 (described in Section 2.5) are phenomenological in nature (i.e., they are not derived from first 

276 principles), we do not know which one, a priori, provides the best description of the experimental 

277 data.  To address this limitation, we performed model selection via the Akaike Information Criteria 

278 (AIC) [33]. The AIC seeks to select the most parsimonious model by balancing goodness of fit 

279 with the number of free parameters. Given our data set, we will employ the AICc [34,35] which 

280 includes a correction for small sample size and is given as follows:

281 , [6]  

282 where n is the number of data samples and p is the number of model parameters. The model with 

283 the lowest AICc value is selected as the most parsimonious.

284

AICc  n ln(RSS)  2 p 
2 p( p 1)
n  p 1
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285 2.7 Determining the dependence of model parameters on initial 

286 conditions

287 The results of the third calibration scenario showed that kbys for the BT-474 line increased 

288 with higher initial confluence (see S4 Fig of the Supporting Information), but decreased with 

289 higher initial glucose level, while kbys for the MDA-MB-231 line was not affected by initial 

290 confluence (see S5 Fig of the Supporting Information), but decreased with higher initial glucose 

291 level. The dependence of local parameter (i.e., parameters calibrated for individual time courses) 

292 values on initial conditions were determined by Pearson’s partial correlation coefficient. Given 

293 this relationship, we sought to determine if there was a simple functional relation between model 

294 parameters and initial conditions. We were able to find one such relation for kbys for the BT-474 

295 cells:

296 , [7]  

297 where N0 is the initial confluence, G0 is the initial glucose concentration, kbys,0 is the maximum kbys 

298 rate, and α is a decay parameter. We then fit Eq. [7] to the set of initial conditions and associated 

299 parameter estimates (with their confidence intervals) obtained from the training data set to estimate 

300 kbys,0, α, and their respective 95% confidence interval. Thus, Eq. [7] determines a parameter surface 

301 where kbys can be estimated given the initial confluence and glucose. This death rate, combined 

302 with estimates of the other global parameters (i.e., kp, v, and kd), can then be substituted into the 

303 Eqs. [1] – [5] to predict tumor cell number at future time points.  Using an analogous procedure, a 

304 similar relation was determined for the MDA-MB-231 cells:

305 , [8]  

kbys  kbys,0 N0 exp(G0 )

kbys  kbys,0 exp(G0 )  
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306 where the parameters are as indicated for Eq. [7], with β being a base death rate which is present 

307 in this cell line even when sufficient glucose is present. Note that N0 does not appear in Eq. [8] as 

308 this death rate for MDA-MB-231 cells is not affected by the initial confluence. Thus, Eq. [8] also 

309 determines a parameter curve where kbys can be estimated given the initial glucose level. Again, 

310 this death rate, combined with estimates of the other global parameters (i.e., kp, v, and kd), can then 

311 be substituted into the Eqs. [1] – [5] to predict tumor cell number at future time points.  

312

313 2.8 Training and validation

314 The data measured from the time-resolved microscopy experiments were divided into 

315 training (75% of the data) and validation sets by random sampling. The training subset was used 

316 to calibrate the global parameters kp, kd, and v. We calculated the absolute value of the error 

317 between the best fit curve and measured data across the whole training set to provide an estimate 

318 of the error in the measurement (i.e., uncertainty) of the initial number of live and dead tumor cells, 

319 as required for forming a prediction on the validation set. Then, given these global parameters, and 

320 the initial conditions (i.e., G0 and N0) from each time course in the validation set, kbys was 

321 calculated using Eq. [7] for the BT-474 line or [8] for the MDA-MB-231 line. Next, kbys was 

322 combined with the global parameters and initial conditions to run the forward model via Eqs. [1] 

323 – [5]. The resulting predicted tumor cell number time courses (with confidence intervals) for live 

324 and dead tumor cells were compared to the corresponding measured data and the errors were 

325 tabulated.  We defined ‘prediction accuracy’ as the fraction of measured data that fell within the 

326 95% confidence intervals of the predicted growth curves, while accuracy for the whole validation 

327 set was determined as the average ‘prediction accuracy’ over all measured time courses. This 

328 training and validation process was repeated 50 times, and the average error for predicted time 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.326041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/


16

329 courses and average overall accuracy was recorded. To evaluate the model’s performance, we 

330 report the averages of the RSS, mean percent error over the time course percent error at the end of 

331 experiment, mean error over the time course, error at the end of experiment (explicit matrices are 

332 presented in S1 Table of the Supporting Information). 

333

334 3. Results

335 3.1 Tumor cell growth with different initial conditions

336 Example time courses for the BT-474 cell line, with different initial confluences (i.e., 

337 seeding density) and four glucose concentrations, are shown in Fig 2a-c. For wells with low initial 

338 confluence (23.8 ± 0.5%), the number of live cells changed from day 0 to day 4 by -34.3 ± 12.3% 

339 (mean ± 95% confidence interval), -6.5 ± 10.5%, +31.4 ± 8.4%, and +35.7 ± 1.8% for the 0.2 mM, 

340 0.5 mM, 2 mM, and 5 mM initial glucose concentrations, respectively (Fig 2a). For wells with 

341 intermediate initial confluence (35.9 ± 1.8%), the number of live cells changed from day 0 to day 

342 4 by -63.7 ± 9.3%, -55.6 ± 3.1%, -10.4 ± 19.6%, and +14.9 ± 8.3% for the 0.2 mM, 0.5 mM, 2 

343 mM, and 5 mM initial glucose concentrations, respectively (Fig 2b). For wells with high initial 

344 confluence (51.7 ± 1.4%), the number of live cells changed from day 0 to day 4 by -76.0 ± 1.0%, 

345 -76.3 ± 1.5%, -43.9 ± 12.4%, and -17.6 ± 7.6% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial 

346 glucose concentrations, respectively (Fig 2c). The average number of live cells for each experiment 

347 at the end of day 4 was significantly different among the groups with different initial conditions 

348 (p < 1e-5).

349

350 Fig 2. Time courses of tumor cell confluence in media with varying initial glucose levels, 

351 grouped by initial confluence. Panels a-c present confluence time courses for the BT-474 cell 
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352 line, while panels d-f present confluence time courses for the MDA-MB-231 cell line. Different 

353 colors represent the four initial glucose concentrations, and the error bars were calculated from 

354 four replicates with similar initial conditions. In each panel, cells represented by each color were 

355 seeded at the same initial confluence, but yielded significant differences in confluence at the end 

356 of the experiment. These time courses provide quantitative and dynamic data on the effects of 

357 glucose availability and confluence on tumor cell growth. 

358

359 Example time courses for the MDA-MB-231 cell line, with different initial confluences 

360 and four glucose concentrations are shown in Fig 2d-f. For wells with low initial confluence (36.9 

361 ± 1.0%), the number of live cells changed from day 0 to day 4 by -68.3 ± 7.9%, -47.7 ± 12.7%, 

362 +30.2 ± 13.5% and +32.9 ± 7.9% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose 

363 concentrations, respectively (Fig 2d). For wells with intermediate initial confluence (56.2 ± 1.4%), 

364 the number of live cells changed from day 0 to day 4 by -63.7 ± 10.3%, -46.5 ± 10.6%, -1.8 ± 

365 3.4%, and +13.3 ± 2.1% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose concentrations, 

366 respectively (Fig 2e). For wells with high initial confluence (71.9 ± 1.0%), the number of live cells 

367 changed from day 0 to day 4 by -41.5 ± 11.6%, -33.6 ± 9.2%, -10.0 ± 3.2%, and -1.6 ± 2.9% for 

368 the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose concentrations, respectively (Fig 2f). The 

369 average number of live cells for each experiment at the end of day 4 was significantly different 

370 among the groups with different initial conditions (p < 1e-5).

371

372 3.2 Model calibration

373 The model characterized by Eqs. [1] – [5] featuring three global parameters (kp, kd, and v), 

374 and one local parameter dependent on initial conditions (kbys) was selected by the AICc as the most 
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375 parsimonious and employed for all subsequent analysis (details provided in S2 Table of the 

376 Supporting Information). The estimates for the three global parameters and their 95% confidence 

377 intervals for both BT-474 and MDA-MB-231 cells are shown in Table 2. The proliferation and 

378 glucose consumption rates of the BT-474 cells were significantly lower than the MDA-MB-231 

379 cells (p < 1e-4), while the death rate due to glucose depletion of the BT-474 cells was higher than 

380 MDA-MB-231 cells (p < 1e-4).  

381 Table 2. Parameter estimates obtained from the global calibration procedure

Cell Line
Parameters

BT-474 MDA-MB-231
p-value

kp  (day-1) 0.092 ± 0.002 0.14 ± 0.003 < 10-4

kd (day-1) 0.13 ± 0.013 0.041 ± 0.006 < 10-4

v (×10-5 mM·cell-1·day-1) 2.68 ± 0.10 4.48 ± 0.15 < 10-4

382

383 As described in Section 2.5, the selected model (i.e., the model with globally calibrated kp, 

384 kd, and v and locally calibrated kbys) was fit to the measured experimental data. The mean percent 

385 error across all timepoints, mean percent error at the end of experiment mean error across all 

386 timepoints, and mean error at the end of experiment are reported in Table 3. The model was able 

387 to provide an accurate description of the time course data over a wide range of initial conditions 

388 with mean percent error and mean percent error at the end of experiments below 7% for live cells 

389 in both cell lines (Table 3). For the dead cells, the model performs more modestly with mean 

390 percent error between 16% and 67% over all initial conditions. Importantly, the mean error, either 

391 across all timepoints or at the end of experiment, was < 2% for both live and dead cells in both cell 

392 lines. This suggests the higher percent error of dead cells is due to the small number of dead cells 

393 as compared to the number of live cells.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.326041doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/


19

394 Table 3. Evaluation of fitting quality with selected model for both cell lines

Cell Line

BT-474 MDA-MB-231

Live Dead Live Dead

RSS 1.35 1.13 1.87 1.31

Mean % Error 0.09 ± 0.23 66.01 ± 4.13 0.59 ± 0.22 18.17 ± 1.66

% Error EoE* -0.78 ± 3.44 44.37 ± 30.63 6.22 ± 2.31 16.92 ± 18.43

Mean Error -0.01 ± 0.06 0.61 ± 0.05 -0.03 ± 0.07 0.87 ± 0.05

Error EoE* 0.24 ± 0.57 0.56 ± 0.42 1.65 ± 0.42 0.42 ± 0.43

395 *EoE = End of Experiment

396

397 3.3 Relationship between bystander effect death rate (kbys) and initial 

398 conditions

399 For the BT-474 cells, the death rate due to the bystander effect, kbys, was found to increase 

400 with increasing initial confluence, with a partial correlation coefficient of 0.66 (p < 1e-4). For 8 of 

401 10 initial glucose levels tested (0, 0.1, 0.2, 0.5, 0.8, 1, 2, and 5 mM), the bystander effect death 

402 rate was positively correlated with initial confluence, with correlation coefficients all above 0.74 

403 (p < 0.01). Estimates of kbys were plotted against the initial confluence level (Fig 3a). The 

404 correlation coefficients between kbys and initial confluence level were 0.75, 0.94, 0.81, 0.81, and 

405 0.84 for initial glucose level of 0.2 mM, 0.5 mM, 1 mM, 2 mM, and 5 mM, respectively. For the 

406 highest two initial glucose levels (8 and 10 mM), there was no significant correlation between the 

407 bystander effect death rate and the initial confluence (p > 0.1). The bystander effect was found to 

408 decrease with increasing initial glucose level, with a partial correlation coefficient of -0.74 (p < 

409 1e-4). For low (23.8 ± 0.5%), intermediate (35.9 ± 1.8%), and high (51.7 ± 1.4%) initial 
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410 confluences, there are significant correlations between kbys and the initial glucose level (Fig 3b),  

411 with correlation coefficient of -0.44 (p < 0.01), -0.80 (p < 1e-4), and -0.91 (p < 1e-4).  Given these 

412 relationships, kbys was fit to each initial condition as described in Section 2.7 (see Eq. [7]), yielding 

413 a kbys,0 of 2.37 ± 0.13 × 10-5 mM·cell-1·day-1 and an α of 0.13 ± 0.029 mM-1. With kbys,0 and α 

414 identified, Eq. [7] defines a parameter surface where we can obtain the value of kbys for any initial 

415 confluence and glucose level within the experimentally measured range (Fig 3d).  

416

417 Fig 3. Relationship between bystander effect death rate (kbys) and initial conditions. Panel a 

418 presents estimates of the death rate due to the bystander effect, kbys, as a function of different initial 

419 confluence and glucose levels for BT-474 cells. For each glucose level, kbys increases with higher 

420 initial confluence, where the lowest initial glucose level increases kbys the most. Panel b indicates 

421 that kbys increases with higher initial confluence and decreases with higher initial glucose level for 

422 the BT-474 line. (Error bars were calculated from the four wells with similar initial conditions.) 

423 Panel c shows that kbys decreases with higher initial glucose level for the MDA-MB-231 cell line. 

424 (Error bars were calculated from the twelve wells with same initial glucose level.) Panel d shows 

425 the parameter surface for the BT-474 cell line, where kbys is displayed as function of initial 

426 confluence and glucose level, with blue dots representing calibrated estimates of kbys.  Panel e 

427 indicates how kbys decreases with initial glucose level for the MDA-MB-231 line, with shaded area 

428 between solid red curves showing the 95% confidence interval. The blue dots represent the 

429 calibrated estimates of kbys.  The fitted surface and curve in panels d and e, respectively, is used to 

430 assign kbys as a function of initial confluence and glucose concentration in the validation data set.

431
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432 For the MDA-MB-231 cells, there was no significant correlation between the death rate 

433 due to the bystander effect and the initial confluence with a partial correlation coefficient of -0.03 

434 (p = 0.73). The bystander effect was found to decrease with increasing initial glucose level (Fig 

435 3c), with a partial correlation coefficient of -0.72 (p < 1e-4). For the low (36.9 ± 1.0%), 

436 intermediate (56.2 ± 1.4%), and high (71.9 ± 1.0%) initial confluences, there are significant 

437 correlations between the death rate due to the bystander effect and the initial glucose level, with 

438 correlation coefficient of -0.76 (p < 1e-4), -0.76 (p < 1e-4), and -0.66 (p < 1e-4).  Given these 

439 relationships, kbys was fit to each initial condition as described in Section 2.7 (see Eq. [8]), yielding 

440 a kbys,0 of 0.71 ± 0.067 × 10-5 mM·cell-1·day-1 , an α of 0.98 ± 0.23 mM-1 and a β of 0.22 ± 0.053 

441 mM·cell-1·day-1. With kbys,0, α, and β identified, Eq. [8] defines a parameter curve where we can 

442 obtain the value of kbys for any initial glucose level within the experimentally measured range (Fig 

443 3e).  

444

445 3.4 Evaluation of model performance through training and validation

446 In each round of training and validation, 75% of the whole dataset was randomly selected 

447 for a training set, with the remainder assigned to the validation set. The selected model (i.e., the 

448 model with globally calibrated kp, kd, and v and locally calibrated kbys) was calibrated to each time 

449 course in the training set to obtain estimates and confidence intervals for the model parameters. 

450 For the BT-474 cells, we reported the model performance during training (Table 4). The 

451 average mean percent error across all timepoints, and the average percent error at the end of 

452 experiment were < 1% for live cells.  Although the average mean percent error across all timepoints, 

453 and the average percent error at the end of experiment were > 45% for dead cells, the average 

454 mean error across all timepoints and average error at the end of experiment were < 1% for both 
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455 live and dead cells. The average uncertainty across 50 training sets for live and dead cells were 

456 6.88 ± 0.09% and 30.83 ± 0.15%, respectively.  

457 Table 4. Summary of model calibration across 50 training sets

Cell Line

BT-474 MDA-MB231

Live Dead Live Dead

RSS 1.09 ± 0.02 0.88 ± 0.01 2.22 ± 0.02 0.96 ± 0.02

Mean % Error 0.24 ± 0.04 72.42 ±1.23 -0.26 ± 0.06 12.29 ± 0.29

% Error EoE* -0.90 ± 0.28 49.88 ± 2.41 6.01 ± 0.24 11.25 ±1.62

Mean Error 0.07 ± 0.01 0.69 ± 0.01 -0.52 ± 0.03 0.19 ± 0.02

Error EoE* 0.25 ± 0.04 0.69 ±0.03 1.44 ±0.05 -0.62 ± 0.05

Uncertainty 6.88 ± 0.09 30.83 ± 0.15 5.17 ± 0.05 16.78 ± 0.12

458 *EoE = End of Experiment

459

460 For the BT-474 cells, the parameters kbys,0 and α in Eq. [7] were estimated as described in 

461 section 2.7 and a specific parameter surface of kbys was determined. The uncertainty calculated 

462 from fitting the data of the training set to the model was used to estimate the confidence interval 

463 of the initial confluence from the validation set. The initial conditions (i.e., initial glucose level 

464 and confluence) from the validation set were used with Eq. [7] to identify the value of kbys to be 

465 used, in conjunction with the three global parameters (kp, v, and kd and their respective confidence 

466 intervals) in Eqs. [1] – [5] to run the forward model. This process was repeated 50 times to obtain 

467 an average RSS, average mean percent error, average percent error at the end of experiment, 

468 average mean error, average error at the end of experiment, and accuracy (Table 5). The accuracy 

469 was defined as the percent of data points falling within the 95% confidence interval of the predicted 

470 values. The average RSS was 1.45 ± 0.09 and 1.22 ± 0.09 for live and dead cells, respectively, 
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471 while the accuracy was 77.2 ± 6.3% and 50.5 ± 7.5% for live and dead cells, respectively. The 

472 average mean percent error across all timepoints and the average percent error at the end of 

473 experiment were both < 2% for live cells. Although the average mean percent error across all 

474 timepoints and average percent error at the end of the experiment for dead cells can be as high as > 

475 150%, the average mean error across all timepoints and average error at the end of experiment 

476 were < 3% for both live and dead cells. Fig 4 presents representative prediction results compared 

477 with measured data on BT-474 cells from the same round of training and validation (Fig 4).

478 Table 5. Evaluation of prediction across 50 rounds of training and validation

Cell Line

BT-474 MDA-MB231

Live Dead Live Dead

RSS 1.45 ± 0.09 1.22 ± 0.09 1.69 ± 0.10 1.35 ± 0.12

Mean % Error -1.96 ± 0.54 153.18 ± 9.07 -0.59 ± 0.47 25.22 ± 1.27

% Error EoE* -5.78 ±1.49 168.20 ±16.31 7.04 ± 1.62 47.54 ± 9.95

Mean Error -0.78 ± 0.15 1.57 ± 0.13 -1.15 ± 0.15 0.87 ± 0.16

Error EoE* -1.66 ± 0.33 2.67 ± 0.27 -0.12 ± 0.38 1.09 ± 0.43

Accuracy 77.2 ± 6.3 50.5 ± 7.5 87.2 ± 5.1 66.7 ± 7.0

479 *EoE = End of Experiment

480

481 Fig 4. Model predictions for BT-474 cells. Example model predictions from one validation set 

482 of BT-474 cells are shown in dashed lines. In each panel, data measured from experiments are 

483 shown in circles, while the 95% confidence intervals for the predicted tumor cell growth and dead 

484 cell accumulation numbers are shown with shaded regions between the solid curves; with blue 

485 indicating live cells, and red indicating dead cells. The initial glucose level is shown above each 
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486 plot. For this validation set, the model prediction accuracy was 72.2 ± 8.6% and 49.3 ± 10.0% for 

487 live and dead cells, respectively.

488

489 For the MDA-MB-231 cells, we reported the model performance during training (Table 4). 

490 The average mean percent error across all timepoints, and the average percent error at the end of 

491 experiment were < 13% for both live and dead cells. The average mean error across all timepoints 

492 and average error at the end of experiment were < 2% for both live and dead cells. The average 

493 uncertainty across 50 training sets for live cells and dead cells were 5.17 ± 0.05% and 16.78 ± 0.12% 

494 respectively.

495 For the MDA-MB-231 cells, the parameters kbys,0, α, and β in Eq. [8] were estimated as 

496 described in section 2.7 and a specific parameter curve for kbys was determined. The uncertainty 

497 calculated from fitting the data of the training set to the model was used to estimate the confidence 

498 interval of the initial confluence from the validation set. The initial condition (i.e., initial glucose 

499 level) from the validation set were used with Eq. [8] to identify the value of kbys to be used, in 

500 conjunction with the three global parameters (kp, v, and kd and their respective confidence intervals) 

501 in Eqs. [1-5] to run the forward model. This process was repeated 50 times to obtain average RSS, 

502 average mean percent error, average percent error at the end of experiment, average mean error, 

503 average error at the end of experiment, and accuracy (Table 5). The accuracy was defined as the 

504 percent of data points falling within the 95% confidence interval of the predicted values. The 

505 average RSS was 1.69 ± 0.10 and 1.35 ± 0.12 for live and dead cells, respectively, while the 

506 accuracy was 87.2 ± 5.1% and 66.7 ± 7.0% for live and dead cells, respectively. The average mean 

507 percent error across all timepoints and the average of percent error at the end of experiment were 

508 both < 8% for live cells. Although the average percent error across all timepoints and average error 
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509 at the end of experiment for dead cells were > 25%, the average mean error across all timepoints 

510 and average error at the end of experiment were < 2% for both live and dead cells. Fig 5 presents 

511 representative prediction results compared with measured data on MDA-MB-231 cells from the 

512 same round of training and validation (Fig 5). 

513

514 Fig 5. Model predictions for MDA-MB-231 cells. Example model predictions from one 

515 validation set of MDA-MB-231 cells are shown in dashed lines. In each panel, data measured from 

516 experiments are shown in circles, while the 95% confidence intervals for the predicted tumor cell 

517 growth and dead cell accumulation numbers are shown with shaded regions between the solid 

518 curves; with blue indicating live cells, and red indicating dead cells. The initial glucose level is 

519 shown above each plot. For this validation set, the model prediction accuracy was 86.9 ± 7.4% and 

520 69.6 ± 9.4% for live and dead cells, respectively.

521

522 4. Discussion

523 This study sought to develop an experimental-mathematical approach to quantify tumor 

524 cell proliferation as a function of glucose availability. This allowed us to quantify important cell 

525 phenotypes related to proliferation and cell death, and then use the model to predict the temporal 

526 change in tumor cell number.  To accomplish this task, we proposed a family of three models in 

527 which each member of the family consisted of a system of coupled ordinary differential equations 

528 (ODEs) describing the rate of change of living and dead tumor cell number and glucose 

529 concentration. The complete model considered tumor cell proliferation, cell death due to glucose 

530 depletion, the bystander effect quantifying the effects of dead cells accumulated in the environment, 

531 and the consumption of glucose. To calibrate the model, we acquired time-resolved microscopy 
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532 images to generate confluence time courses of both live and dead tumor cells over an array of 

533 initial glucose concentrations and confluences. We then fit the data to all the models and selected 

534 the most parsimonious model with the lowest AICc value. During the model selection, we 

535 determined that the proliferation rate, death rate due to glucose depletion, and consumption rate of 

536 glucose were three parameters that depended only on cell line and not initial conditions; thus, they 

537 could be fit as global parameters.  Conversely, it was determined that the death rate due to the 

538 bystander effect was a local parameter that varied with the initial conditions. We therefore 

539 investigated the relationship between this parameter and the initial conditions for each cell line. 

540 Finally, we evaluated the performance of the selected model through training and validation. 

541 Mathematical models have been developed to describe cancer cell metabolism from 

542 different perspectives. For example, Mendoza-Juez et al. [12] focused on glucose and lactate as 

543 the main nutrient resources, and thus concentrated on the dynamic development of two 

544 subpopulations with different metabolic behavior. Conversely, Astanin et al. [11], while similarly 

545 modeling oxidative and glycolytic subpopulations, also included oxygen consumption and ATP 

546 production in their model. Without measurement, this system was characterized with typical values 

547 of dimensionless parameters for simulation.  These models, with a heavy reliance on a large 

548 number of unmeasured parameters, can be difficult to calibrate and therefore difficult to apply 

549 within an experimental-predictive framework. 

550 The family of models proposed in this study was derived from the work of Mendoza-Juez 

551 et al. [12], but included two simplifications.  First, we viewed the live tumor cells as a single 

552 population instead of several subpopulations with different metabolic phenotypes.  At the cost of 

553 losing detailed phenotype or subpopulation dynamics, the simplification allowed us to practically 

554 connect the accessible experimental data and mathematical modeling. Given sufficient 
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555 experimental data (via the time-resolved microscopy data) and known initial conditions, we were 

556 able to perform a direct calibration of our model. This experimental-computational approach was 

557 applied in two cell lines, representing very different breast cancer subtypes. We found the 

558 proliferation rate of the BT-474 cells was statistically lower than MDA-MB-231 cells. We found 

559 the death rate due to glucose depletion for the BT-474 cells was statistically higher than that of the 

560 MDA-MB-231, while the consumption rate of glucose for the BT-474 cells is statistically lower 

561 than that of the MDA-MB-231 cells. We concluded that while MDA-MB-231 cells consume 

562 glucose at a higher rate (thereby enabling more rapid growth and division), the glucose level 

563 required for proliferation was lower than that of the BT-474 cells. These results serve to quantify 

564 the well-established experimental observations that MDA-MB-231 is more aggressive than the 

565 BT-474 cell line [36–38]. To the best of our knowledge, this represents the first time these 

566 important cellular parameters have been quantified within a rigorous modeling framework.  Once 

567 calibrated, our model could be used to predict the number of live tumor cells, validated by direct 

568 comparison with experimental data.

569 The death rate due to the bystander effect, kbys, proved to be dependent on the initial 

570 conditions. Therefore, kbys was estimated individually for each set of initial conditions, and not 

571 considered as a global parameter. The bystander effect parameter for both cell lines became 

572 significantly lower when the initial glucose level increased. This parameter significantly increased 

573 when the initial confluence for the BT-474 cell line increased, but was not affected by initial 

574 confluence in the MDA-MB-231 line. This difference indicates there could be different 

575 mechanisms underlying the bystander effect in different cell types. Studies concerning the 

576 bystander effect can be identified into two separate groups. In the first case, the bystander effect is 

577 proven to be mediated by degree of GJIC (gap junction intercellular communication) capacity [39–
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578 41]. Since BT-474 cells are mass cells with robust cell-cell adhesion and close cell contact within 

579 clusters, they have high GJIC capacity. However, MDA-MB-231 cells do not form clusters with 

580 strong cell contact and exhibit low GJIC level. These are consistent with the results that the death 

581 rate of bystander effect for BT-474 increases with initial confluence, but is not affected by initial 

582 confluence for MDA-MB-231. In the second case, killing of the non-treated cells involves the 

583 release of one or more soluble factors, such as apoptosis inducing signals [42], extracellular 

584 vesicles [43], or oxidizing diffusive factors [44]. In our study, the death rate of bystander effect 

585 for MDA-MB-231 is not affected by initial confluence, implying there would be at least one 

586 soluble factor regulated by metabolism. Furthermore, there could be multiple mechanisms 

587 underlying the bystander effect for a given cell line, considering the death rate of bystander effect 

588 for BT-474 is affected by both confluence and glucose level. While further work including the 

589 identification and quantification of these factors is required to support our work, this experimental-

590 computational approach allows us to analyze the characteristics of bystander effect for the cell line 

591 tested. This could provide guidance on choice of enhanced therapies utilizing the bystander effect 

592 (e.g., GJIC enhancement) for synergistic effect [41]. 

593 The present work assumed glucose consumption was entirely captured by the temporal 

594 change of tumor cell number, which is most likely an oversimplification.  To address this limitation, 

595 the development of a method for time-resolved measurement of glucose dynamics is required.  

596 Further quantification and mathematical description of the glucose dynamics (e.g., a FRET 

597 nanosensor for glucose [45]) would provide additional time-resolved data that would enable 

598 extension of the model to more precisely describe glucose kinetics. The hyperbolic tangent 

599 function introduced in Eqs. [4] and [5] is sufficient to characterize the growth curves in our current 

600 research and we chose to keep it simple to avoid overfitting. However other sigmoidal functions 
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601 of time that are more directly related to phenomena affecting glucose dynamics should be explored 

602 to refine to the model by introducing more biology. In particular, the state functions (i.e., Eqs. [4] 

603 and [5]) have the potential to be extended to characterize glucose utilization as a function of cell 

604 cycle [46–48]. Additionally, our model could then be extended to account for additional nutrients 

605 of metabolic interest (e.g., lactate, intermediate products between glycolysis and oxidative 

606 phosphorylation, and oxygen). Such extension would, of course, require additional time resolved 

607 measurements to parameterize the model.  We also limited the application of our model to only 

608 two different breast cancer cell lines, but given their differences in parameter values, systematic 

609 investigation of a range of cells lines is warranted. 

610 In summary, the temporal change of tumor cell number with different initial glucose levels 

611 and seeding densities was tracked with time-resolved microscopy. These data were used to 

612 calibrate a mathematical model describing cell proliferation and death as a function of glucose 

613 dynamics, which was then used to predict tumor cell dynamics in a separate validation set. This 

614 approach yielded an accuracy of > 75% for predicting the change in the number of living cells over 

615 time, and is readily extendable to account for and predict the effects of interventions designed to 

616 affect glucose metabolism.

617

618 5. Conclusion

619 We have developed and validated an experimental-mathematical approach that is capable 

620 of accurately predicting how glucose availability influences tumor cell proliferation.  The method 

621 was applied in two commonly studied breast cancer cells in which we were able to quantify rates 

622 directly reporting on cell proliferation, death due to glucose starvation, death due to the bystander 

623 effect, and overall glucose consumption. Furthermore, this framework is directly applicable to 
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624 other tumor cell lines.  The integration of mechanism-based modeling and time-resolved 

625 microscopy is a powerful, and flexible, approach to systematically investigate glucose dynamics 

626 related tumor cell growth. 

627
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777  Supporting information

778 S1 Fig. Steps on cell segmentation for phase-contrast images of BT-474 breast cancer cell 

779 lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window of 400 
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780 x 400 pixels from an example image. Panel A: raw image of BT-474 cells; Panel B: image post 

781 ‘colfilt’; Panel C: image post the Gaussian filter; Panel D: image post ‘im2bw’; Panel E: image 

782 post ‘imerode’; Panel F: image post ‘imclose’; Panel G: image post ‘imopen’; Panel H: image post 

783 ‘bwareaopen’, the final cell mask; Panel I: overlay of raw image and the  cell mask for BT-474 

784 cells.

785

786 S2 Fig. Steps on cell segmentation for phase-contrast images of MDA-MB-231 breast cancer 

787 cell lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window of 

788 400 x 400 pixels from an example image. Panel A: raw image of MDA-MB-231 cells; Panel B: 

789 image post binarization; Panel C: image post ‘imclose’; Panel D: image post ‘bwareaopen’, the 

790 final cell mask; Panel E: overlay of raw images and the cell mask for MDA-MB-231 cells.

791

792 S3 Fig. Time courses of tumor cell confluence in media with 0 mM glucose, grouped by initial 

793 confluence. Tumor cells may keep proliferating for some time even in a glucose free medium, 

794 even up to 24 hours for MDA-MB-231 (Panel A). The proliferation in glucose free medium is not 

795 observed for BT-474 (Panel B).

796

797 S4 Fig. Estimates of the death rate due to the bystander effect, kbys, as a function of different 

798 initial confluence, for BT-474 cells. Each subtitle indicates the initial glucose concentration. For 

799 a given initial glucose level, kbys increases with initial confluence. For 8 of 10 initial glucose levels 

800 tested (0, 0.1, 0.2, 0.5, 0.8, 1, 2, and 5 mM, the bystander effect death rate is positively correlated 

801 with initial confluence, with correlation coefficients all > 0.74 (p < 0.01). For the highest two initial 
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802 glucose levels (8 and 10 mM), there is no significant correlation between the bystander effect death 

803 rate and the initial confluence (p > 0.1).

804

805 S5 Fig. Estimates of the death rate due to the bystander effect, kbys, as a function of different 

806 initial confluence, for MDA-MB-231 cells. Each subtitle indicates the initial glucose 

807 concentration. There is no significant correlation between the bystander effect death rate and the 

808 initial confluence (p > 0.1).

809

810 S1 Table. Results of AICc value for model selection. Model 02 is the complete model described 

811 by Eq.[1]-[5]. In Model 01, all the terms involving kbys is removed, while in Model 03, any term 

812 involving kd is removed. In the first calibration, the measured live and dead tumor cell time courses 

813 are independently fit to the model to produce separate estimates for each model parameter. In the 

814 second calibration, all the parameters are treated as global parameters. In the third calibration, kbys 

815 is considered as a local parameter while the other parameters (kp, kd, and v) are treated as global 

816 parameters.

817

818 S2 Table. Explicit matrices of variables used to evaluate the model’s performance. Xmodel,ij is 

819 the number of live or dead cells of well j at timepoint i calculated from the model, Xdata,ij is the 

820 number of live or dead cells of well j at timepoint i from the measured data, t is the total number 

821 of timepoints, w is the total number of wells, and tend is the last timepoint at the end of experiment 

822 (EoE).

823

824
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