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Abstract

We present the development and validation of a mathematical model that predicts how glucose
dynamics influence metabolism and therefore tumor cell growth. Glucose, the starting material for
glycolysis, has a fundamental influence on tumor cell growth. We employed time-resolved
microscopy to track the temporal change of the number of live and dead tumor cells under different
initial glucose concentrations and seeding densities. We then constructed a family of mathematical
models (where cell death was accounted for differently in each member of the family) to describe
overall tumor cell growth in response to the initial glucose and confluence conditions. The Akaikie
Information Criteria was then employed to identify the most parsimonious model. The selected
model was then trained on 75% of the data to calibrate the system and identify trends in model
parameters as a function of initial glucose concentration and confluence. The calibrated parameters
were applied to the remaining 25% of the data to predict the temporal dynamics given the known
initial glucose concentration and confluence, and tested against the corresponding experimental
measurements. With the selected model, we achieved an accuracy (defined as the fraction of
measured data that fell within the 95% confidence intervals of the predicted growth curves) of 77.2

+ 6.3% and 87.2 £ 5.1% for live BT-474 and MDA-MB-231 cells, respectively.

Key words: metabolism, time-resolved microscopy, computational, BT-474, MDA-MB-231


https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326041; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

46 1. Introduction

47 The major source of energy for most cancer cells comes from a high rate of glycolysis
48  followed by lactate fermentation in the cytosol, even in the presence of sufficient oxygen—a
49  phenomenon known as the Warburg effect [1,2]. This contrasts with normal cells that exhibit a
50  comparatively low rate of glycolysis followed by oxidative phosphorylation in the mitochondria.
51  Additionally, high concentrations of oxygen can lead to a reduction of glycolytic activity, known
52  as the Pasteur effect [3]. Also, an observation by Sonveaux [4] supports the claim that well-
53  oxygenated tumor cells utilize lactate, leaving glucose available for hypoxic cells. This
54 phenomenon has stimulated numerous efforts to investigate the underlying mechanisms [2,5,6] of
55  altered metabolism and has identified potential targets including glucose transporters [7], lactate
56  transporters [8], and enzymes like hexokinase and pyruvate kinase in the pathway of glycolysis
57  [9,10] for the development of new therapeutics. Efforts have been made to rigorously model the
58  development of tumor subpopulations, nutrient dynamics, and tumor-environment interactions
59  [11-18]. For example, in the model developed by Mendoza-Juez et al. [12], tumor cells were
60 divided into two subpopulations, the oxidative cells that undergo aerobic oxidation of glucose and
61  glycolytic cells that undergo glycolysis and produce lactate, corresponding to an oxidative
62  phenotype and a Warburg phenotype. Proliferation and conversion between the two
63  subpopulations was described by a set of ordinary differential equations. This study also
64  considered the nutrient concentrations of glucose and lactate as a result of consumption and
65  production by tumor cells, which in return, can cause conversion between phenotypes. Mendoza-
66  Juezetal. [12] further provided preliminary validation of their model by comparing it to metabolic
67 data available from several previously published studies [4,19,20]. However, as no direct

68  calibration of this model to experimental data was performed, it was not possible to capture
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specific parameter values that could be used to characterize cell lines [11,16], or make predictions
of tumor cell dynamics as a function of glucose availability or utilization. Additionally, the reliance
on a large number of unmeasured parameters makes further applications challenging. Therefore,
in this work, we aim to simplify this model with a smaller set of parameters that can be estimated
or calibrated from experimental data and recast the associated models we developed with these
estimates to predict tumor growth given initial conditions.

We designed a set of experiments employing time-resolved microscopy to track the
temporal change of the number of live and dead tumor cells in vitro given a set of initial
confluences (i.e., seeding density) and glucose concentrations. To quantitatively characterize
those observations, we developed a family of mathematical models to describe the proliferation
and death of tumor cells as a function of glucose availability and consumption. These models,
which are based on those of Mendoza-Juez [12], take the form of systems of nonlinear, ordinary
differential equations to describe the collective temporal behavior of tumor cells. We aim to
identify the most parsimonious model from that family to optimally characterize tumor cell growth
as a function of glucose dynamics. After the optimal model is selected, we quantify the
proliferation rate, death rate due to glucose depletion, death rate due to the bystander effect, and
the consumption rate of glucose in a training set. We then use this calibrated model to predict

tumor cell growth given prescribed initial conditions in a validation set.

2. Materials and methods

Throughout the following text, the reader is encouraged to refer to Fig 1 which provides

an overview of the experimental and computational modeling components of the study.
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92  Fig 1. A flow chart indicating the data acquisition and analysis steps. Based on the phase-
93  contrast (panels a and b) and fluorescent (panels e and f) images acquired from the time-resolved
94  microscopy studies, we perform cell segmentation of total and dead cells (panels ¢ and g,
95  respectively) and generate time courses of confluence for both live and dead cells (panel d). The
96  data are then used for selecting the most parsimonious mathematical model which estimates model
97  parameters. Finally, the data are divided into subsets for training and validation of the predictive
98  accuracy of the model.

99

100 2.1 Cell culture

101 We applied our experimental-mathematical approach in two breast cancer subtypes to
102 quantitatively characterize cell types known to have distinct phenotypes, molecular profiles, and
103 metabolic activities. Triple negative breast cancer [21] (TNBC) is defined by the absence of the
104  expression of the estrogen, progesterone, and HER2 (human epidermal growth factor receptor 2)
105  receptors, while in HER2+ breast cancer [22], HER2 is overexpressed.

106 BT-474 (a model of HER2+ breast cancer) and MDA-MB-231 (a model of triple negative
107  breast cancer) cell lines were obtained from the American Type Culture Collection (ATCC,
108  Manassas, VA) and maintained in culture according to ATCC recommendation. Ninety-six well-
109  plates were seeded with either BT-474 or MDA-MB-231 cells at initial confluences ranging from
110 10% to 80% in Dulbecco’s modified eagle medium (DMEM without glucose, sodium pyruvate,
111  HEPES, L-glutamine and phenol red, Thermo Fisher Scientific, Waltham, MA) one day before
112 imaging experiments began. On day zero, media were changed to DMEM with different glucose

113 concentrations (0 mM, 0.1 mM, 0.2 mM, 0.5 mM, 0.8 mM, 1 mM, 2 mM, 5 mM, 8§ mM and 10
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114  mM). Each initial condition had four replicates. Cells were cultured in 5% CO, and air at 37°C for
115 4 days.

116

117 2.2 Image acquisition

118 Cells were incubated in the IncuCyte S3 live cell imaging system (Essen BioScience, Ann
119  Arbor, MI). Images were acquired with a 4x objective and stitched together to obtain whole well
120  images (2400 x 2400 pixels) for each well of the 96-well plates via the device’s whole-well
121  imaging function. IncuCyte Cytotox Red Reagents (Essen BioScience, Ann Arbor, MI), a cyanine
122 nucleic acid dye, was added to the medium on day 0 before the first scan to enable quantification
123 of cell death. Once cells become unhealthy, the plasma membrane begins to lose integrity allowing
124 entry of the IncuCyte Cytotox Reagent and yielding a 100-1000-fold increase in fluorescence upon
125  binding to DNA. Phase-contrast and red fluorescent (excitation wavelength: 585 nm and emission
126  wavelength: 635 nm) images were acquired every 3 hours for 4 days.

127

128 2.3 Image segmentation to quantify confluence over time

129 All cell segmentation was performed in Matlab (The Mathworks, Inc., Natick, MA). The
130  segmentation approaches were developed based on the particular morphological features of the
131  two cells lines. In particular, the BT-474 cells are mass cells with robust cell-cell adhesion that
132 form cell clusters, while the MDA-MB-231 cells are elongated cells [23].

133 To segment the BT-474 cells within the phase-contrast images at each time point, a
134 predetermined mask corresponding to the size of 96-well-plate from IncuCyte Software (Essen
135  BioScience, Ann Arbor, MI) was first applied to the images so the region of interest (ROI) only

136  included the area within each well and not the surrounding area of the plate in each square image.
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137  The masked image was then converted from the RGB (red, green, blue) format to grayscale and
138  the Matlab function ‘colfilt’ was used to calculate the standard deviation of signal intensities within
139  each 3-by-3 sliding block of the image to detect the edge of cell clusters. Next, a Gaussian filter
140  was used to smooth the image returned from ‘colfilt’ to reduce the variance of signal intensities
141  within each cell cluster. The resulting image was then normalized (by dividing the signal intensity
142 ofeach pixel by the highest signal intensity from each image) between 0 and 1. After normalization,
143 the morphological operator ‘imerode’ was used to make the clusters shrink in size and enlarge the
144 holes to avoid losing open space within clusters. Next the returned image was converted to a
145  binary image by the Matlab function ‘im2bw’. The morphological operator ‘imclose’ was used to
146  fill holes in the interior of cell clusters. The morphological operator ‘imopen’ was used to smooth
147  object contours, break thin connections and remove thin protrusions. Finally, ‘bwareaopen’ was
148  used to remove small objects like cell debris or noise. Please see S1 Fig of the Supporting
149  Information for details and example images from each step.

150 While BT-474 cells form clusters that have clear boundaries, MDA-MB-231 cells are
151  elongated and do not form clusters. This results in a much higher edge-area ratio in MDA-MB-
152 231 images compared to BT-474. Thus, the segmentation scheme just described was adjusted to
153  handle these differences in cell morphology. In particular, once the ROI was identified, ‘histcount’
154  was used to count the number of pixels for each signal intensity (256 possible signal intensity
155  wvalues in grayscale image) within the ROI. The pixels with signal intensities in the top 10% were
156  assigned a 0, while the remaining pixels were assigned a 1 to binarize the image. All other steps
157  were the same as the BT-474 segmentation. Please see S2 Fig of the Supporting Information for

158  example images.
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159 The fluorescent images were used to quantify the Cytotox Red signal (which marks the
160  dead cells) for both cell lines. Since MDA-MB-231 cells change from an elongated to a circular
161  morphology when they die, the differences in morphology of the two cell lines observed in phase-
162  contrast images of the living cells vanishes. Thus, we applied the same approach segmenting the
163 phase-contrast images of BT-474 cells to the florescent images of both cell lines.

164 The resulting segmented and binarized phase-contrast and fluorescent images were then
165  analyzed to determine confluence at each time point. Confluence was defined as the percentage of
166  the well covered by cells and was calculated by counting the number of pixels in the segmented
167 images and dividing by the area of the field of view. Thus, our time-resolved microscopy data
168  provided time courses of both living and dead cell number.

169 Tumor cell growth time courses were obtained from 4 experiments for each set of initial
170  conditions, and each point in each time course consisted of a mean + 95% confidence interval (a
171  one-sample Kolmogorov-Smirnov test confirmed normality). One-way ANOVA was used to
172 compare the average number of live cells for each experiment at the end of day 4 between the
173 groups with different initial conditions.

174

175 2.4 Mathematical models

176 We developed a family of mathematical models to quantitatively and temporally describe
177  the change in tumor cell number as function of glucose levels. To do so, we started with the model
178  developed by Mendoza-Juez et al. [12] which describes the tumor as consisting of two
179  subpopulations undergoing either aerobic oxidation of glucose or glycolysis, corresponding to
180  Warburg and oxidative phenotypes, respectively. In our work, we first simplified the model to

181  account for only one metabolic phenotype, and then extended it to account for the accumulation
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182  of dead tumor cells due to glucose depletion and the bystander effect [24,25]. Accordingly, we
183  modeled the change of glucose concentration as a result of consumption by all live tumor cells.
184  Our complete model is described by a coupled set of ordinary differential equations shown below

185  (the reader is encouraged to refer to Table 1 through the following discussion):

o . (D)

" O o129, (610) 4,308, (00) -k, v0 5 20] o

. dD(r) _ k,N(t)S, (G(t)) +k, N (t)(%J .
a0 G

188 a N )LG(t) G*J’ h

189  where N(¢), D(¢), and G(¢) describe the live tumor cell number, dead tumor cell number, and
190  glucose concentration, respectively, at time ¢. The first term on the right-hand side of Eq. [1]
191  describes logistic growth of tumor cells where &, is the proliferation rate, and & is the carrying
192 capacity. Here we define the carrying capacity as the limitation on the number of tumor cells that
193 can physically fit within the environment. The logistic term is also modified by the state function,
194 S,(G(?)), that scales the proliferation rate as a function of glucose concentration. The second term
195  on the right-hand side of Eq. [1] describes the death of tumor cells due to glucose depletion at the
196  rate k,. This term is also modified by the state function, S,(G(?)), that scales the rate of cell death
197  as a function of glucose concentration. We assume that the dead tumor cells are accumulating and
198  releasing factors [24,25] which may be sensed by the remaining live cells and, potentially, induce
199  cell death. This is referred to as the bystander effect [24,25] and it is captured by the third term on
200  the right-hand side of Eq. [1] which induces cell death at the rate k. Eq. [2] models the rate of
201  change in number of dead cells, with the first term on the right-hand side describing death due to

202  glucose depletion, and the second term accounting for the death due to the bystander effect. Eq.
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203 [3] describes the change of glucose concentration due to the consumption by tumor cells at the rate
204  vand a Michaelis-Mentens constant, G*. The state functions for tumor cell proliferation and tumor

205  cell death are given as:

206 s,(G(0)= =(! G(?%J tanh() [4]
207 S (G)=1 L G(t();()G )anh(t) [5]

208  where G, is the minimum glucose level required for proliferation. The parenthetical term on the

209  right-hand side of Eq. [4] describes the dependence of cell fate (proliferation or death) on glucose

210  availability. Observe that as G = 0, S,(G(¢)) — 1, which maximizes the death rate due to glucose

211 depletion. Conversely, as G = oo, S, (G(#)) — 0, which minimizes cell death. As tumor cells may

212 keep proliferating for some time even in a glucose free medium (please see S3 Fig of the
213 Supporting Information), we introduced a hyperbolic tangent function of time. We hypothesize the
214 tumor cell population is composed of two sub-populations, one that has passed the restriction point
215 [26-29], is committed to divide, and thus does not need to be checked by the state function; and a
216  second subpopulation that has not passed the restriction point, and thus has to be checked by the
217  state function. The hyperbolic tangent function increases from 0 to 1 as time increases from 0 to
218  infinity; thus, the hyperbolic tangent function on the right-hand side of Eq. [4] introduces a delay
219  due to the duration of mitosis [30,31]. At time 0, the effect of glucose concentration described by
220  the parenthetical term is multiplied by tanh(0), and becomes 0. This means the effect of glucose
221  concentration is not sensed by cells immediately. At a later time, as tanh(¢) increases to 1, the effect

222 of glucose concentration increases until fully sensed by the cells. Afterwards, any further mitosis

10
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223 s fully affected by glucose concentration through the state function. Note that we have SAG(7)) +

224 S,(G() = 1.

225 Table 1. The definitions, units, and source for the model parameters.
Parameter Definitions Units Source
k, Proliferation rate day! Calibrated
kq Death rate due to starvation day! Calibrated
Kipys Death rate due to bystander effect day! Calibrated
0 Carrying capacity cells Assigned from
literature [32]
v General glucose consumption mM-cell-!-day! Calibrated
G Michaelis-Menten constant mM Assigned from
literature [12]
Ghmin Minimum glucose level for uptake mM Assigned from
literature [12]
226
227 Egs. [1] — [5] can then be used to generate a family of three models by making a small

228  set of simplifying assumptions. If we remove cell death due to the bystander effect in Egs. [1] and
229  [2], we create another coupled system. Similarly, if we remove cell death due to glucose depletion
230  in Egs. [1] and [2], we construct a third coupled system. These three sets of equations provide our
231  three-member model family which we then subject to a model selection operation to identify the

232 most parsimonious model.

233

234 2.5 Model calibrations

235 The model described in the previous section was calibrated to experimentally measured
236  live and dead cell time courses (described in Section 2.3), with the initial glucose concentration
237  and confluence serving as the initial conditions. Recall that the overall goal was to calibrate model
238  parameters against a test data set, and then use the subsequent parameterized model to predict

239  tumor cell numbers in a validation cohort. To achieve this goal we performed a series of three

11
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240  calibrations for each cell line: one in which the parameters were calibrated for each individual time
241  course, another in which the parameters were calibrated globally (i.e., a single set of parameters
242 for the entire cohort/test set), and in the third in which we combined the results from the first two
243 approaches so that some parameters were calibrated globally and others calibrated individually as
244  a function of initial conditions.

245 In the first calibration scenario, the measured live and dead tumor cell time courses were
246  independently fit to the model (i.e., Egs. [1] — [5]) to produce separate estimates for each model
247  parameter within each cell line. The resulting parameter values were then further analyzed to
248  determine if their value was a function of initial glucose level and confluence. In the second
249  calibration scenario, the measured live and dead tumor cell time courses were fit by assuming
250  model parameters were independent of initial conditions; i.e., a single set of model parameters
251  were determined to simultaneously fit all time courses (for each cell line). This approach assumed
252 that the parameter values were not affected by initial conditions and are specific to each cell line.
253  In the third calibration scenario, we assumed (based on the results of the first two calibration
254 scenarios) that the proliferation rate, k,, the consumption rate of glucose, v, and the death rate due
255  to glucose depletion, k, were specific for each cell line, while the other parameter, &, was a
256  function of initial confluence and glucose levels. A Student's ¢-test was used to test for statistical
257  differences, between the two cell lines, of each global model parameter (i.e., &, v, and k) estimated.
258 To perform each of the above calibrations, we employed a non-linear, least squares
259  approach which seeks to minimize the residual sum of square (RSS) errors between the measured
260  data and the model described in section 2.4. We defined the system of ODEs, initial conditions,
261  and time steps in Matlab using the built-in ODE solver ‘ode45’ to estimate the model parameters.

262  We used a least square optimization algorithm ‘Isqcurvefit’ to update the parameter estimates and

12
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263  minimize the RSS errors. To avoid local minima, we used Matlab’s ‘MultiStart’ to run, in parallel,
264 10 optimization problems with different initial parameter guesses to identify the set of parameters
265  that minimized the RSS error. The initial parameter guesses that led to the solution point with the
266  lowest (best) RSS error were recorded and set to be the single-start initial points for a second round
267  of ‘Isqcurvefit’ to calculate the residuals and Jacobian matrix, which cannot be acquired during the
268  first round fitting with multiple starting points. The residuals and Jacobian matrix were used to
269  determine the confidence interval for each parameter by calling the function, ‘nlparci’. Before the
270  fitting procedure, the initial live and dead tumor cell numbers were assigned as the average of the
271  first three timepoints to reduce error in the estimation of the initial conditions.

272

273 2.6 Model selection

274 As the three models (described in Section 2.4) with the different fitting strategies
275  (described in Section 2.5) are phenomenological in nature (i.e., they are not derived from first
276  principles), we do not know which one, a priori, provides the best description of the experimental
277  data. To address this limitation, we performed model selection via the Akaike Information Criteria
278  (AIC) [33]. The AIC seeks to select the most parsimonious model by balancing goodness of fit
279  with the number of free parameters. Given our data set, we will employ the AIC. [34,35] which

280  includes a correction for small sample size and is given as follows:

2p(p+1)

281 AIC =nIn(RSS)+2p+
‘ n—p-1

; [6]

282  where n is the number of data samples and p is the number of model parameters. The model with
283  the lowest AIC, value is selected as the most parsimonious.

284

13
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285 2.7 Determining the dependence of model parameters on initial

286 conditions

287 The results of the third calibration scenario showed that &;,, for the BT-474 line increased
288  with higher initial confluence (see S4 Fig of the Supporting Information), but decreased with
289  higher initial glucose level, while k, for the MDA-MB-231 line was not affected by initial
290  confluence (see S5 Fig of the Supporting Information), but decreased with higher initial glucose
291  level. The dependence of local parameter (i.e., parameters calibrated for individual time courses)
292  values on initial conditions were determined by Pearson’s partial correlation coefficient. Given
293  this relationship, we sought to determine if there was a simple functional relation between model
294  parameters and initial conditions. We were able to find one such relation for &, for the BT-474

295 cells:

296 ki, =k, oNyexp(=aG), [7]

bys
297  where N, is the initial confluence, Gy is the initial glucose concentration, Ky 1 the maximum py
298  rate, and a is a decay parameter. We then fit Eq. [7] to the set of initial conditions and associated
299  parameter estimates (with their confidence intervals) obtained from the training data set to estimate
300 Ky 0, o, and their respective 95% confidence interval. Thus, Eq. [7] determines a parameter surface
301  where kg can be estimated given the initial confluence and glucose. This death rate, combined
302  with estimates of the other global parameters (i.e., k,, v, and k), can then be substituted into the
303  Egs. [1]—[5] to predict tumor cell number at future time points. Using an analogous procedure, a

304  similar relation was determined for the MDA-MB-231 cells:

305 kbys = kbyS,O eXp(_aGO) + ﬂ’ [8]
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306  where the parameters are as indicated for Eq. [7], with S being a base death rate which is present
307 in this cell line even when sufficient glucose is present. Note that Ny does not appear in Eq. [8] as
308  this death rate for MDA-MB-231 cells is not affected by the initial confluence. Thus, Eq. [8] also
309  determines a parameter curve where kj,; can be estimated given the initial glucose level. Again,
310  this death rate, combined with estimates of the other global parameters (i.e., &, v, and k), can then
311  Dbe substituted into the Egs. [1] — [5] to predict tumor cell number at future time points.

312

313 2.8 Training and validation

314 The data measured from the time-resolved microscopy experiments were divided into
315  training (75% of the data) and validation sets by random sampling. The training subset was used
316  to calibrate the global parameters k,, k;, and v. We calculated the absolute value of the error
317  between the best fit curve and measured data across the whole training set to provide an estimate
318  of'the error in the measurement (i.e., uncertainty) of the initial number of live and dead tumor cells,
319  asrequired for forming a prediction on the validation set. Then, given these global parameters, and
320  the initial conditions (i.e., Gy and Ny) from each time course in the validation set, k., was
321  calculated using Eq. [7] for the BT-474 line or [8] for the MDA-MB-231 line. Next, k,, was
322  combined with the global parameters and initial conditions to run the forward model via Egs. [1]
323 —[5]. The resulting predicted tumor cell number time courses (with confidence intervals) for live
324  and dead tumor cells were compared to the corresponding measured data and the errors were
325 tabulated. We defined ‘prediction accuracy’ as the fraction of measured data that fell within the
326  95% confidence intervals of the predicted growth curves, while accuracy for the whole validation
327  set was determined as the average ‘prediction accuracy’ over all measured time courses. This

328 training and validation process was repeated 50 times, and the average error for predicted time
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329  courses and average overall accuracy was recorded. To evaluate the model’s performance, we
330 report the averages of the RSS, mean percent error over the time course percent error at the end of
331  experiment, mean error over the time course, error at the end of experiment (explicit matrices are
332 presented in S1 Table of the Supporting Information).

333

334 3. Results

335 3.1 Tumor cell growth with different initial conditions

336 Example time courses for the BT-474 cell line, with different initial confluences (i.e.,
337  seeding density) and four glucose concentrations, are shown in Fig 2a-c. For wells with low initial
338  confluence (23.8 + 0.5%), the number of live cells changed from day 0 to day 4 by -34.3 + 12.3%
339  (mean £ 95% confidence interval), -6.5 £ 10.5%, +31.4 £ 8.4%, and +35.7 = 1.8% for the 0.2 mM,
340 0.5 mM, 2 mM, and 5 mM initial glucose concentrations, respectively (Fig 2a). For wells with
341  intermediate initial confluence (35.9 + 1.8%), the number of live cells changed from day 0 to day
342 4 by -63.7 + 9.3%, -55.6 + 3.1%, -10.4 + 19.6%, and +14.9 + 8.3% for the 0.2 mM, 0.5 mM, 2
343  mM, and 5 mM initial glucose concentrations, respectively (Fig 2b). For wells with high initial
344  confluence (51.7 £ 1.4%), the number of live cells changed from day 0 to day 4 by -76.0 + 1.0%,
345  -76.3 £1.5%, -43.9 + 12.4%, and -17.6 + 7.6% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial
346  glucose concentrations, respectively (Fig 2¢). The average number of live cells for each experiment
347  at the end of day 4 was significantly different among the groups with different initial conditions
348  (p<le-5).

349

350  Fig 2. Time courses of tumor cell confluence in media with varying initial glucose levels,

351  grouped by initial confluence. Panels a-c present confluence time courses for the BT-474 cell

16


https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326041; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

352  line, while panels d-f present confluence time courses for the MDA-MB-231 cell line. Different
353  colors represent the four initial glucose concentrations, and the error bars were calculated from
354  four replicates with similar initial conditions. In each panel, cells represented by each color were
355 seeded at the same initial confluence, but yielded significant differences in confluence at the end
356  of the experiment. These time courses provide quantitative and dynamic data on the effects of
357  glucose availability and confluence on tumor cell growth.

358

359 Example time courses for the MDA-MB-231 cell line, with different initial confluences
360 and four glucose concentrations are shown in Fig 2d-f. For wells with low initial confluence (36.9
361 £ 1.0%), the number of live cells changed from day 0 to day 4 by -68.3 + 7.9%, -47.7 + 12.7%,
362  +30.2 £ 13.5% and +32.9 = 7.9% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose
363  concentrations, respectively (Fig 2d). For wells with intermediate initial confluence (56.2 + 1.4%),
364  the number of live cells changed from day O to day 4 by -63.7 + 10.3%, -46.5 + 10.6%, -1.8 +
365  3.4%, and +13.3 + 2.1% for the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose concentrations,
366  respectively (Fig 2e). For wells with high initial confluence (71.9 £ 1.0%), the number of live cells
367 changed from day O to day 4 by -41.5 £ 11.6%, -33.6 £ 9.2%, -10.0 = 3.2%, and -1.6 = 2.9% for
368  the 0.2 mM, 0.5 mM, 2 mM, and 5 mM initial glucose concentrations, respectively (Fig 2f). The
369 average number of live cells for each experiment at the end of day 4 was significantly different
370  among the groups with different initial conditions (p < 1e-5).

371

372 3.2 Model calibration

373 The model characterized by Eqgs. [1] —[5] featuring three global parameters (k,, k4, and v),

374  and one local parameter dependent on initial conditions (k) was selected by the A/C, as the most
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375  parsimonious and employed for all subsequent analysis (details provided in S2 Table of the
376  Supporting Information). The estimates for the three global parameters and their 95% confidence
377  intervals for both BT-474 and MDA-MB-231 cells are shown in Table 2. The proliferation and
378  glucose consumption rates of the BT-474 cells were significantly lower than the MDA-MB-231
379  cells (p < le-4), while the death rate due to glucose depletion of the BT-474 cells was higher than

380 MDA-MB-231 cells (p < le-4).

381 Table 2. Parameter estimates obtained from the global calibration procedure
Cell Line
Parameters p-value
BT-474 MDA-MB-231
k, (day™) 0.092 + 0.002 0.14 +0.003 <104
ky(day™) 0.13+0.013 0.041 +0.006 <104
v (x10° mM-cell-!-day!) 2.68+0.10 448 £0.15 <104
382
383 As described in Section 2.5, the selected model (i.e., the model with globally calibrated £,

384 k4, and v and locally calibrated k) was fit to the measured experimental data. The mean percent
385  error across all timepoints, mean percent error at the end of experiment mean error across all
386  timepoints, and mean error at the end of experiment are reported in Table 3. The model was able
387  to provide an accurate description of the time course data over a wide range of initial conditions
388  with mean percent error and mean percent error at the end of experiments below 7% for live cells
389 in both cell lines (Table 3). For the dead cells, the model performs more modestly with mean
390  percent error between 16% and 67% over all initial conditions. Importantly, the mean error, either
391  across all timepoints or at the end of experiment, was < 2% for both live and dead cells in both cell
392  lines. This suggests the higher percent error of dead cells is due to the small number of dead cells

393  as compared to the number of live cells.
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394 Table 3. Evaluation of fitting quality with selected model for both cell lines
Cell Line
BT-474 MDA-MB-231
Live Dead Live Dead
RSS 1.35 1.13 1.87 1.31
Mean % Error 0.09 £0.23 66.01 +4.13 0.59 £0.22 18.17 £ 1.66
% Error EoE” -0.78 £ 3.44 44.37 +30.63 6.22+2.31 16.92 + 18.43
Mean Error -0.01 £0.06 0.61 +£0.05 -0.03 £0.07 0.87+0.05
Error EoE” 0.24 +0.57 0.56 £0.42 1.65+0.42 0.42+0.43

395  “EoE = End of Experiment

396

397 3.3 Relationship between bystander effect death rate (k;,,) and initial

398 conditions

399 For the BT-474 cells, the death rate due to the bystander effect, &, was found to increase
400  with increasing initial confluence, with a partial correlation coefficient of 0.66 (p < 1e-4). For 8 of
401 10 initial glucose levels tested (0, 0.1, 0.2, 0.5, 0.8, 1, 2, and 5 mM), the bystander effect death
402  rate was positively correlated with initial confluence, with correlation coefficients all above 0.74
403 (p < 0.01). Estimates of k., were plotted against the initial confluence level (Fig 3a). The
404  correlation coefficients between k;,, and initial confluence level were 0.75, 0.94, 0.81, 0.81, and
405  0.84 for initial glucose level of 0.2 mM, 0.5 mM, 1 mM, 2 mM, and 5 mM, respectively. For the
406  highest two initial glucose levels (8 and 10 mM), there was no significant correlation between the
407  bystander effect death rate and the initial confluence (p > 0.1). The bystander effect was found to
408  decrease with increasing initial glucose level, with a partial correlation coefficient of -0.74 (p <

409  le-4). For low (23.8 = 0.5%), intermediate (35.9 = 1.8%), and high (51.7 £ 1.4%) initial
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410  confluences, there are significant correlations between &, and the initial glucose level (Fig 3b),
411  with correlation coefficient of -0.44 (p < 0.01), -0.80 (p < le-4), and -0.91 (p < le-4). Given these
412 relationships, k,, was fit to each initial condition as described in Section 2.7 (see Eq. [7]), yielding
413 a kpyp of 2.37 £ 0.13 x 10° mM-cell!-day! and an a of 0.13 £ 0.029 mM!. With ko and «
414 1identified, Eq. [7] defines a parameter surface where we can obtain the value of k), for any initial
415  confluence and glucose level within the experimentally measured range (Fig 3d).

416

417  Fig 3. Relationship between bystander effect death rate (k) and initial conditions. Panel a
418  presents estimates of the death rate due to the bystander effect, &;,,, as a function of different initial
419  confluence and glucose levels for BT-474 cells. For each glucose level, &, increases with higher
420  1initial confluence, where the lowest initial glucose level increases k;,, the most. Panel b indicates
421  that k;,, increases with higher initial confluence and decreases with higher initial glucose level for
422 the BT-474 line. (Error bars were calculated from the four wells with similar initial conditions.)
423 Panel c shows that &, decreases with higher initial glucose level for the MDA-MB-231 cell line.
424  (Error bars were calculated from the twelve wells with same initial glucose level.) Panel d shows
425  the parameter surface for the BT-474 cell line, where k;, is displayed as function of initial
426  confluence and glucose level, with blue dots representing calibrated estimates of k;,,. Panel e
427  indicates how k;,, decreases with initial glucose level for the MDA-MB-231 line, with shaded area
428  between solid red curves showing the 95% confidence interval. The blue dots represent the
429  calibrated estimates of k;,,. The fitted surface and curve in panels d and e, respectively, is used to
430  assign ks as a function of initial confluence and glucose concentration in the validation data set.

431
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432 For the MDA-MB-231 cells, there was no significant correlation between the death rate
433 due to the bystander effect and the initial confluence with a partial correlation coefficient of -0.03
434  (p = 0.73). The bystander effect was found to decrease with increasing initial glucose level (Fig
435  3c), with a partial correlation coefficient of -0.72 (p < le-4). For the low (36.9 = 1.0%),
436  intermediate (56.2 £ 1.4%), and high (71.9 + 1.0%) initial confluences, there are significant
437  correlations between the death rate due to the bystander effect and the initial glucose level, with
438  correlation coefficient of -0.76 (p < le-4), -0.76 (p < le-4), and -0.66 (p < le-4). Given these
439  relationships, k,, was fit to each initial condition as described in Section 2.7 (see Eq. [8]), yielding
440  a kpysp 0f 0.71 £ 0.067 x 10> mM-cell!-day!, an a of 0.98 + 0.23 mM' and a  of 0.22 + 0.053
441  mM:-cell'!-day!. With ks, 0, and § identified, Eq. [8] defines a parameter curve where we can
442 obtain the value of k,, for any initial glucose level within the experimentally measured range (Fig
443 3e).

444

445 3.4 Evaluation of model performance through training and validation

446 In each round of training and validation, 75% of the whole dataset was randomly selected
447  for a training set, with the remainder assigned to the validation set. The selected model (i.e., the
448  model with globally calibrated &, k;, and v and locally calibrated k) was calibrated to each time
449  course in the training set to obtain estimates and confidence intervals for the model parameters.

450 For the BT-474 cells, we reported the model performance during training (Table 4). The
451  average mean percent error across all timepoints, and the average percent error at the end of
452  experiment were < 1% for live cells. Although the average mean percent error across all timepoints,
453  and the average percent error at the end of experiment were > 45% for dead cells, the average

454  mean error across all timepoints and average error at the end of experiment were < 1% for both
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455 live and dead cells. The average uncertainty across 50 training sets for live and dead cells were

456  6.88 +0.09% and 30.83 £ 0.15%, respectively.

457 Table 4. Summary of model calibration across 50 training sets
Cell Line
BT-474 MDA-MB231
Live Dead Live Dead
RSS 1.09 + 0.02 0.88 +0.01 2.22+0.02 0.96 +0.02
Mean % Error 0.24+0.04 72.42 £1.23 -0.26 £ 0.06 12.29 £0.29
% Error EoE" -0.90 £0.28 49.88 £2.41 6.01 £0.24 11.25£1.62
Mean Error 0.07 £0.01 0.69 +£0.01 -0.52 £0.03 0.19+0.02
Error EoE* 0.25+0.04 0.69 +0.03 1.44 +£0.05 -0.62 +£0.05
Uncertainty 6.88 +£0.09 30.83 £0.15 5.17 +£0.05 16.78 £0.12
458  "EoE = End of Experiment
459
460 For the BT-474 cells, the parameters k3, gand a in Eq. [7] were estimated as described in

461  section 2.7 and a specific parameter surface of k;,, was determined. The uncertainty calculated
462  from fitting the data of the training set to the model was used to estimate the confidence interval
463  of the initial confluence from the validation set. The initial conditions (i.e., initial glucose level
464  and confluence) from the validation set were used with Eq. [7] to identify the value of k3, to be
465  used, in conjunction with the three global parameters (k,, v, and k; and their respective confidence
466  intervals) in Egs. [1] —[5] to run the forward model. This process was repeated 50 times to obtain
467 an average RSS, average mean percent error, average percent error at the end of experiment,
468  average mean error, average error at the end of experiment, and accuracy (Table 5). The accuracy
469  was defined as the percent of data points falling within the 95% confidence interval of the predicted

470  values. The average RSS was 1.45 + 0.09 and 1.22 + 0.09 for live and dead cells, respectively,
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471  while the accuracy was 77.2 = 6.3% and 50.5 = 7.5% for live and dead cells, respectively. The
472  average mean percent error across all timepoints and the average percent error at the end of
473  experiment were both < 2% for live cells. Although the average mean percent error across all
474  timepoints and average percent error at the end of the experiment for dead cells can be as high as >
475  150%, the average mean error across all timepoints and average error at the end of experiment
476  were < 3% for both live and dead cells. Fig 4 presents representative prediction results compared

477  with measured data on BT-474 cells from the same round of training and validation (Fig 4).

478 Table 5. Evaluation of prediction across 50 rounds of training and validation
Cell Line
BT-474 MDA-MB231
Live Dead Live Dead
RSS 1.45+0.09 1.22 +£0.09 1.69+0.10 1.35+0.12
Mean % Error -1.96 £0.54 153.18 £9.07 -0.59£0.47 2522+ 1.27
% Error EoE” -5.78 £1.49 168.20 £16.31 7.04 £1.62 47.54 £9.95
Mean Error -0.78 £ 0.15 1.57+£0.13 -1.15+0.15 0.87+£0.16
Error EoE” -1.66 £0.33 2.67+0.27 -0.12+£0.38 1.09 £ 0.43
Accuracy 77.2+£6.3 50.5+7.5 87.2+5.1 66.7+7.0
479  "EoE = End of Experiment
480
481  Fig 4. Model predictions for BT-474 cells. Example model predictions from one validation set
482  of BT-474 cells are shown in dashed lines. In each panel, data measured from experiments are
483  shown in circles, while the 95% confidence intervals for the predicted tumor cell growth and dead
484  cell accumulation numbers are shown with shaded regions between the solid curves; with blue
485  indicating live cells, and red indicating dead cells. The initial glucose level is shown above each

23


https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326041; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

486  plot. For this validation set, the model prediction accuracy was 72.2 £+ 8.6% and 49.3 + 10.0% for
487  live and dead cells, respectively.

488

489 For the MDA-MB-231 cells, we reported the model performance during training (Table 4).
490  The average mean percent error across all timepoints, and the average percent error at the end of
491  experiment were < 13% for both live and dead cells. The average mean error across all timepoints
492  and average error at the end of experiment were < 2% for both live and dead cells. The average
493  uncertainty across 50 training sets for live cells and dead cells were 5.17 + 0.05% and 16.78 £ 0.12%
494 respectively.

495 For the MDA-MB-231 cells, the parameters k9, a, and f in Eq. [8] were estimated as
496  described in section 2.7 and a specific parameter curve for k;,, was determined. The uncertainty
497  calculated from fitting the data of the training set to the model was used to estimate the confidence
498 interval of the initial confluence from the validation set. The initial condition (i.e., initial glucose
499  level) from the validation set were used with Eq. [8] to identify the value of &, to be used, in
500  conjunction with the three global parameters (k,, v, and k, and their respective confidence intervals)
501  in Egs. [1-5] to run the forward model. This process was repeated 50 times to obtain average RSS,
502  average mean percent error, average percent error at the end of experiment, average mean error,
503  average error at the end of experiment, and accuracy (Table 5). The accuracy was defined as the
504  percent of data points falling within the 95% confidence interval of the predicted values. The
505 average RSS was 1.69 £ 0.10 and 1.35 £+ 0.12 for live and dead cells, respectively, while the
506  accuracy was 87.2 £ 5.1% and 66.7 = 7.0% for live and dead cells, respectively. The average mean
507  percent error across all timepoints and the average of percent error at the end of experiment were

508  both <8% for live cells. Although the average percent error across all timepoints and average error

24


https://doi.org/10.1101/2020.10.05.326041
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326041; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

509 at the end of experiment for dead cells were > 25%, the average mean error across all timepoints
510 and average error at the end of experiment were < 2% for both live and dead cells. Fig 5 presents
511  representative prediction results compared with measured data on MDA-MB-231 cells from the
512 same round of training and validation (Fig 5).

513

514  Fig 5. Model predictions for MDA-MB-231 cells. Example model predictions from one
515  wvalidation set of MDA-MB-231 cells are shown in dashed lines. In each panel, data measured from
516  experiments are shown in circles, while the 95% confidence intervals for the predicted tumor cell
517  growth and dead cell accumulation numbers are shown with shaded regions between the solid
518  curves; with blue indicating live cells, and red indicating dead cells. The initial glucose level is
519  shown above each plot. For this validation set, the model prediction accuracy was 86.9 + 7.4% and
520 69.6 = 9.4% for live and dead cells, respectively.

521

522 4. Discussion

523 This study sought to develop an experimental-mathematical approach to quantify tumor
524  cell proliferation as a function of glucose availability. This allowed us to quantify important cell
525  phenotypes related to proliferation and cell death, and then use the model to predict the temporal
526  change in tumor cell number. To accomplish this task, we proposed a family of three models in
527  which each member of the family consisted of a system of coupled ordinary differential equations
528 (ODEs) describing the rate of change of living and dead tumor cell number and glucose
529  concentration. The complete model considered tumor cell proliferation, cell death due to glucose
530  depletion, the bystander effect quantifying the effects of dead cells accumulated in the environment,

531  and the consumption of glucose. To calibrate the model, we acquired time-resolved microscopy
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532 images to generate confluence time courses of both live and dead tumor cells over an array of
533  initial glucose concentrations and confluences. We then fit the data to all the models and selected
534  the most parsimonious model with the lowest AIC, value. During the model selection, we
535  determined that the proliferation rate, death rate due to glucose depletion, and consumption rate of
536  glucose were three parameters that depended only on cell line and not initial conditions; thus, they
537  could be fit as global parameters. Conversely, it was determined that the death rate due to the
538  Dbystander effect was a local parameter that varied with the initial conditions. We therefore
539  investigated the relationship between this parameter and the initial conditions for each cell line.
540  Finally, we evaluated the performance of the selected model through training and validation.

541 Mathematical models have been developed to describe cancer cell metabolism from
542  different perspectives. For example, Mendoza-Juez et al. [12] focused on glucose and lactate as
543  the main nutrient resources, and thus concentrated on the dynamic development of two
544  subpopulations with different metabolic behavior. Conversely, Astanin et al. [11], while similarly
545  modeling oxidative and glycolytic subpopulations, also included oxygen consumption and ATP
546  production in their model. Without measurement, this system was characterized with typical values
547  of dimensionless parameters for simulation. These models, with a heavy reliance on a large
548  number of unmeasured parameters, can be difficult to calibrate and therefore difficult to apply
549  within an experimental-predictive framework.

550 The family of models proposed in this study was derived from the work of Mendoza-Juez
551 et al. [12], but included two simplifications. First, we viewed the live tumor cells as a single
552 population instead of several subpopulations with different metabolic phenotypes. At the cost of
553  losing detailed phenotype or subpopulation dynamics, the simplification allowed us to practically

554  connect the accessible experimental data and mathematical modeling. Given sufficient
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555  experimental data (via the time-resolved microscopy data) and known initial conditions, we were
556  able to perform a direct calibration of our model. This experimental-computational approach was
557 applied in two cell lines, representing very different breast cancer subtypes. We found the
558  proliferation rate of the BT-474 cells was statistically lower than MDA-MB-231 cells. We found
559  the death rate due to glucose depletion for the BT-474 cells was statistically higher than that of the
560 MDA-MB-231, while the consumption rate of glucose for the BT-474 cells is statistically lower
561  than that of the MDA-MB-231 cells. We concluded that while MDA-MB-231 cells consume
562  glucose at a higher rate (thereby enabling more rapid growth and division), the glucose level
563  required for proliferation was lower than that of the BT-474 cells. These results serve to quantify
564  the well-established experimental observations that MDA-MB-231 is more aggressive than the
565 BT-474 cell line [36-38]. To the best of our knowledge, this represents the first time these
566  important cellular parameters have been quantified within a rigorous modeling framework. Once
567  calibrated, our model could be used to predict the number of live tumor cells, validated by direct
568  comparison with experimental data.

569 The death rate due to the bystander effect, k., proved to be dependent on the initial
570  conditions. Therefore, kp,, was estimated individually for each set of initial conditions, and not
571  considered as a global parameter. The bystander effect parameter for both cell lines became
572  significantly lower when the initial glucose level increased. This parameter significantly increased
573  when the initial confluence for the BT-474 cell line increased, but was not affected by initial
574  confluence in the MDA-MB-231 line. This difference indicates there could be different
575  mechanisms underlying the bystander effect in different cell types. Studies concerning the
576  bystander effect can be identified into two separate groups. In the first case, the bystander effect is

577  proven to be mediated by degree of GJIC (gap junction intercellular communication) capacity [39—
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578  41]. Since BT-474 cells are mass cells with robust cell-cell adhesion and close cell contact within
579  clusters, they have high GJIC capacity. However, MDA-MB-231 cells do not form clusters with
580  strong cell contact and exhibit low GJIC level. These are consistent with the results that the death
581  rate of bystander effect for BT-474 increases with initial confluence, but is not affected by initial
582  confluence for MDA-MB-231. In the second case, killing of the non-treated cells involves the
583  release of one or more soluble factors, such as apoptosis inducing signals [42], extracellular
584  wvesicles [43], or oxidizing diffusive factors [44]. In our study, the death rate of bystander effect
585  for MDA-MB-231 is not affected by initial confluence, implying there would be at least one
586  soluble factor regulated by metabolism. Furthermore, there could be multiple mechanisms
587  underlying the bystander effect for a given cell line, considering the death rate of bystander effect
588  for BT-474 is affected by both confluence and glucose level. While further work including the
589 identification and quantification of these factors is required to support our work, this experimental-
590 computational approach allows us to analyze the characteristics of bystander effect for the cell line
591  tested. This could provide guidance on choice of enhanced therapies utilizing the bystander effect
592  (e.g., GJIC enhancement) for synergistic effect [41].

593 The present work assumed glucose consumption was entirely captured by the temporal
594  change of tumor cell number, which is most likely an oversimplification. To address this limitation,
595  the development of a method for time-resolved measurement of glucose dynamics is required.
596  Further quantification and mathematical description of the glucose dynamics (e.g., a FRET
597  nanosensor for glucose [45]) would provide additional time-resolved data that would enable
598  extension of the model to more precisely describe glucose kinetics. The hyperbolic tangent
599  function introduced in Egs. [4] and [5] is sufficient to characterize the growth curves in our current

600 research and we chose to keep it simple to avoid overfitting. However other sigmoidal functions
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601  of'time that are more directly related to phenomena affecting glucose dynamics should be explored
602  to refine to the model by introducing more biology. In particular, the state functions (i.e., Eqgs. [4]
603  and [5]) have the potential to be extended to characterize glucose utilization as a function of cell
604  cycle [46—48]. Additionally, our model could then be extended to account for additional nutrients
605 of metabolic interest (e.g., lactate, intermediate products between glycolysis and oxidative
606  phosphorylation, and oxygen). Such extension would, of course, require additional time resolved
607  measurements to parameterize the model. We also limited the application of our model to only
608  two different breast cancer cell lines, but given their differences in parameter values, systematic
609 investigation of a range of cells lines is warranted.

610 In summary, the temporal change of tumor cell number with different initial glucose levels
611 and seeding densities was tracked with time-resolved microscopy. These data were used to
612  calibrate a mathematical model describing cell proliferation and death as a function of glucose
613  dynamics, which was then used to predict tumor cell dynamics in a separate validation set. This
614  approach yielded an accuracy of > 75% for predicting the change in the number of living cells over
615 time, and is readily extendable to account for and predict the effects of interventions designed to
616  affect glucose metabolism.

617

618 5. Conclusion

619 We have developed and validated an experimental-mathematical approach that is capable
620  of accurately predicting how glucose availability influences tumor cell proliferation. The method
621  was applied in two commonly studied breast cancer cells in which we were able to quantify rates
622  directly reporting on cell proliferation, death due to glucose starvation, death due to the bystander

623  effect, and overall glucose consumption. Furthermore, this framework is directly applicable to
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other tumor cell lines. The integration of mechanism-based modeling and time-resolved
microscopy is a powerful, and flexible, approach to systematically investigate glucose dynamics

related tumor cell growth.
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778  S1 Fig. Steps on cell segmentation for phase-contrast images of BT-474 breast cancer cell

779  lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window of 400
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780  x 400 pixels from an example image. Panel A: raw image of BT-474 cells; Panel B: image post
781  ‘colfilt’; Panel C: image post the Gaussian filter; Panel D: image post ‘im2bw’; Panel E: image
782  post ‘imerode’; Panel F: image post ‘imclose’; Panel G: image post ‘imopen’; Panel H: image post
783  ‘bwareaopen’, the final cell mask; Panel I: overlay of raw image and the cell mask for BT-474
784  cells.

785

786  S2 Fig. Steps on cell segmentation for phase-contrast images of MDA-MB-231 breast cancer
787  cell lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window of
788 400 x 400 pixels from an example image. Panel A: raw image of MDA-MB-231 cells; Panel B:
789  image post binarization; Panel C: image post ‘imclose’; Panel D: image post ‘bwareaopen’, the
790  final cell mask; Panel E: overlay of raw images and the cell mask for MDA-MB-231 cells.

791

792 S3 Fig. Time courses of tumor cell confluence in media with 0 mM glucose, grouped by initial
793  confluence. Tumor cells may keep proliferating for some time even in a glucose free medium,
794  even up to 24 hours for MDA-MB-231 (Panel A). The proliferation in glucose free medium is not
795  observed for BT-474 (Panel B).

796

797  S4 Fig. Estimates of the death rate due to the bystander effect, k,, as a function of different
798 initial confluence, for BT-474 cells. Each subtitle indicates the initial glucose concentration. For
799  agiven initial glucose level, &, increases with initial confluence. For 8 of 10 initial glucose levels
800  tested (0,0.1,0.2,0.5, 0.8, 1, 2, and 5 mM, the bystander effect death rate is positively correlated

801  with initial confluence, with correlation coefficients all > 0.74 (p <0.01). For the highest two initial
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802  glucose levels (8 and 10 mM), there is no significant correlation between the bystander effect death
803  rate and the initial confluence (p > 0.1).

804

805  SS Fig. Estimates of the death rate due to the bystander effect, k;,,, as a function of different
806 initial confluence, for MDA-MB-231 cells. Each subtitle indicates the initial glucose
807  concentration. There is no significant correlation between the bystander effect death rate and the
808  1initial confluence (p > 0.1).

809

810  S1 Table. Results of AICc value for model selection. Model 02 is the complete model described
811 by Eq.[1]-[5]. In Model 01, all the terms involving k), is removed, while in Model 03, any term
812  involving k, is removed. In the first calibration, the measured live and dead tumor cell time courses
813 are independently fit to the model to produce separate estimates for each model parameter. In the
814  second calibration, all the parameters are treated as global parameters. In the third calibration, &y,
815  is considered as a local parameter while the other parameters (k,, k;, and v) are treated as global
816  parameters.

817

818  S2 Table. Explicit matrices of variables used to evaluate the model’s performance. X, ;; 1
819  the number of live or dead cells of well j at timepoint i calculated from the model, Xz, ; is the
820  number of live or dead cells of well j at timepoint i from the measured data, ¢ is the total number
821  of timepoints, w is the total number of wells, and ¢,,, is the last timepoint at the end of experiment
822  (EoE).

823

824
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