

1 Abstract word length: 299 (max 300)
2 Author summary word length: 190 (max 200)
3 Tables: 1
4 Figures: 4
5 Supporting Information: 1
6 Supporting Tables: 10
7 Supporting Figures: 2
8

9 **The developmental genetic architecture of vocabulary skills during the first three**
10 **years of life: Capturing emerging associations with later-life reading and cognition**

11

12 Short title: The developmental genetic architecture of language-related skills

13

14 Ellen Verhoef^{1,2}, Chin Yang Shapland^{1,3,4}, Simon, E. Fisher^{1,5}, Philip S. Dale⁶, Beate St Pourcain^{1,3,5}

15 1. Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The
16 Netherlands
17 2. International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
18 3. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
19 4. Population Health Sciences, University of Bristol, Bristol, UK
20 5. Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The
21 Netherlands
22 6. Speech & Hearing Sciences, University of New Mexico, Albuquerque, USA

23

24 Corresponding authors: Ellen Verhoef and Beate St Pourcain

25 Postal address: Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the
26 Netherlands

27 e-mail: Ellen.Verhoef@mpi.nl / Phone: +31 24 3521946

28 e-mail: Beate.StPourcain@mpi.nl / Phone: +31 24 3521964 / Fax: +31 24 3521213

29 Requests for reprints should be sent to the corresponding author.

30

31 **Abstract**

32 Individual differences in early-life vocabulary measures are heritable and associated with
33 subsequent reading and cognitive abilities, although the underlying mechanisms are little understood.
34 Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary
35 in toddlerhood and (ii) assess origin and developmental stage of emerging genetic associations with
36 mid-childhood verbal and non-verbal skills.

37 Studying up to 6,524 unrelated children from the population-based Avon Longitudinal Study of
38 Parents and Children (ALSPAC) cohort, we dissected the phenotypic variance of longitudinally assessed
39 early-life vocabulary measures (15-38 months) and later-life reading and cognitive skills (7-8 years) into
40 genetic and residual components, by fitting multivariate structural equation models to genome-wide
41 genetic-relationship matrices.

42 Our findings show that the genetic architecture of early-life vocabulary is dynamic, involving
43 multiple distinct genetic factors. Two of them are developmentally stable and contribute to genetic
44 variation in mid-childhood skills: Genetic links with later-life verbal abilities (reading, verbal intelligence)
45 emerged with expressive vocabulary at 24 months. The underlying genetic factor explained 10.1%
46 variation (path coefficient: 0.32(SE=0.06)) in early language, but also 6.4% (path coefficient:
47 0.25(SE=0.12)) and 17.9% (path coefficient: 0.42(SE=0.13)) variation in mid-childhood reading and
48 verbal intelligence, respectively. An independent stable genetic factor was identified for receptive
49 vocabulary at 38 months, explaining 2.1% (path coefficient: 0.15(SE=0.07)) phenotypic variation. This
50 genetic factor was also linked to both verbal and non-verbal cognitive abilities in mid-childhood,
51 accounting for 24.7% of the variation in non-verbal intelligence (path coefficient: 0.50(SE=0.08)), 33.0%
52 in reading (path coefficient: 0.57(SE=0.07)) and 36.1% in verbal intelligence (path coefficient:
53 0.60(0.10)), corresponding to the majority of genetic variance ($\geq 66.4\%$).

54 Thus, the genetic foundations of mid-childhood reading and cognition are diverse. They involve
55 at least two independent genetic factors that emerge at different developmental stages during early

56 language development and may implicate differences in cognitive processes that are already detectable

57 during toddlerhood.

58 Author summary

59 Differences in the number of words young children produce (expressive vocabulary) and
60 understand (receptive vocabulary) can be partially explained by genetic factors, and are related to
61 reading and cognitive abilities later in life. Here, we studied genetic influences underlying word
62 production and understanding during early development (15-38 months) and their genetic relationship
63 with mid-childhood reading and cognitive skills (7-8 years), based on longitudinal phenotype measures
64 and genome-wide genetic data from up to 6,524 unrelated children. We showed that vocabulary skills
65 assessed at different stages during early development are influenced by distinct genetic factors, two of
66 which also contribute to genetic variation in mid-childhood skills, suggesting developmental stability:
67 Genetic sources emerging for word production skills at 24 months were linked to subsequent verbal
68 abilities, including mid-childhood reading and verbal intelligence performance. A further independent
69 genetic factor was identified that related to word comprehension at 38 months and also contributed to
70 variation in later verbal as well as non-verbal abilities during mid-childhood. Thus, the genetic
71 foundations of mid-childhood reading and cognition involve at least two independent genetic factors
72 that emerge during early-life language development and may implicate differences in overarching
73 cognitive mechanisms.

74

75 Introduction

76 The number of words produced and understood by children during the first few years of life is
77 a rapidly changing developmental phenotype that is often used to assess the level of language
78 acquisition (1). One of the first precursors of expressive vocabulary (i.e. word production) in typically
79 developing children is canonical babbling, which emerges around the age of four to six months (2),
80 followed by the spontaneous production of first words between 10 to 15 months of age (3). With
81 progressing development, the number of produced words increases, reaching a median of 40 words at
82 16 months (1), often trailed by a period of rapid growth till the age of about 22 months (4) and a steady
83 increase after that. This results in the production of approximately 500 words at 30 months (5) and
84 about 2,600 words at six years of age (6). The development of receptive vocabulary (i.e. word
85 comprehension) typically precedes expressive vocabulary in developing children (7), with the
86 understanding of the first few words emerging between 6 to 9 months of age (8). Thus, receptive
87 vocabulary is often larger than expressive vocabulary in size (7). For example, the number of words
88 understood by infants at 16 months of age has a median of 169 words, and is, thus, approximately 129
89 words larger compared to their expressive vocabulary at the same time (1). This discrepancy increases
90 during development, with a receptive vocabulary size of about 20,000 to 24,000 words at the age of six
91 years, which is about six times larger than its expressive counterpart (6).

92 The rate of language acquisition, and thus vocabulary size, varies between children during early
93 language development (9,10). These large interindividual differences can partially be explained by
94 genetic variation. Twin studies estimated that genetic influences could account for 17% to 25% of
95 variation in expressive vocabulary at 24 months (11,12), 10% to 14% of variation in expressive
96 vocabulary at 36 months (11) and 28% of variation in receptive vocabulary at 14 months (13). Studies
97 using genotype data from unrelated children provided similar estimates, with single-nucleotide
98 polymorphism heritability (SNP- h^2) estimates of 13% to 14% for expressive vocabulary at 15 to 30
99 months of age (14) and 12% for receptive vocabulary at 38 months of age (15).

100 Despite some stable genetic contributions during early development, there is evidence for age-
101 specific genetic influences on vocabulary skills. For example, measures of expressive vocabulary size
102 assessed between 15 and 36 months were genetically only moderately correlated, with estimates
103 ranging from 0.48 to 0.69 (11,14). Additionally, a considerable proportion (3% to 28%) of the total
104 variation in early expressive language assessed at 24, 36 and 48 months could be explained by measure-
105 specific additive genetic variance and not by a shared latent factor (16). However, the field is still missing
106 an in-depth characterisation of the genetic architecture underlying early-life vocabulary development
107 that characterises age-specific genetic influences across infancy and toddlerhood starting from the first-
108 word stage as well as differences between receptive and expressive language skills.

109 Genetic links between early language processes (assessed from 24 to 48 months of age) and
110 subsequent language- and literacy-related abilities (assessed from mid-childhood to adolescence) have
111 been reported by studies of both twins and unrelated individuals (15–17). This research suggested that
112 genetic variance in mid-childhood/adolescent language, literacy and cognitive development can already
113 be captured by genetic factors contributing to language skills in toddlerhood, i.e. before the age of four
114 years. More specifically, genetic influences underlying receptive vocabulary at 38 months could capture,
115 through amplification, the majority of genetic variation contributing to a wide spectrum of mid-
116 childhood/early-adolescent literacy and (verbal) cognitive skills in a sample of unrelated individuals (15).
117 So far, however, our understanding of the developmental origin of these factors is incomplete.

118 Here, we (i) examine stability and change in the developmental genetic architecture of language
119 during the first three years of life and (ii) assess origin and developmental stage of emerging genetic
120 associations with verbal and non-verbal abilities during mid-childhood. We model multivariate genetic
121 architectures underlying these traits as directly captured by genome-wide information (based on
122 genetic-relationship-matrices, GRMs) for up to 6,524 unrelated youth from the UK Avon Longitudinal
123 Study of Parents and Children (ALSPAC) birth cohort (18,19). We apply GRM structural equation

124 modelling (GSEM) (20), analogous to twin research-modelling techniques, and dissect the phenotypic
125 variation into additive genetic and residual variance structures.

126

127 **Results**

128 **Analysis strategy**

129 A two-stage analysis strategy was followed: During the first stage of the analysis (Stage 1), we
130 examine the multivariate genetic variance structure of expressive and receptive vocabulary from 15 to
131 38 months of age (Table 1). A structural equation model (SEM) only was fitted to vocabulary measures
132 with at least nominal evidence for SNP- h^2 ($P < 0.05$). During the second stage (Stage 2), we extend these
133 models, and assess the emerging genetic links between early-life vocabulary (15 to 38 months) and
134 reading, verbal intelligence quotient (VIQ) scores and performance (non-verbal) intelligence scores
135 (PIQ) during mid-childhood (7 to 8 years of age, S1 Table). For all SEMs studied, we report path
136 coefficients (the square root of individual factor variance contributions) and the corresponding
137 percentage of explained phenotypic variance, in addition to total SNP- h^2 , genetic and residual
138 correlations, factorial co-heritability (the proportion of total SNP- h^2 explained by a specific genetic
139 factor) and bivariate heritability (the contribution of genetic factors to the observed phenotypic
140 correlation between two measures) (S3, S4, S5 Appendix).

141

142 **Stage 1: The developmental genetic architecture of early-life vocabulary skills**

143 Univariate SNP-heritability estimates for early-life vocabulary measures: Measures of early-life
144 language included expressive vocabulary at 15, 24 and 38 months and receptive vocabulary at 15 and
145 38 months (Table 1). They were assessed with parent-reported questionnaires and analysed as rank-
146 transformed scores (see Methods). For comparison with multivariate models, we first estimated SNP-
147 h^2 using Genome-based Restricted Maximum Likelihood as implemented in Genome-wide Complex Trait

148 Analysis (GCTA) software (21). Common genetic variation accounted for a modest proportion of
149 phenotypic variation in early-life vocabulary throughout, except for receptive vocabulary at 15 months,
150 where SNP- h^2 was consistent with zero (Table 1). GCTA-SNP- h^2 estimates for expressive vocabulary at
151 15, 24 and 38 months were 11%(SE=5%), 16%(SE=6%) and 18%(SE=6%), respectively. For receptive
152 vocabulary at 15 and 38 months, SNP- h^2 was estimated at 8%(SE=5%) and 12%(SE=6%), respectively.
153 Given little evidence for SNP- h^2 for receptive vocabulary at 15 months ($P>0.05$; Table 1), we excluded
154 this measure from further correlation and GSEM analyses to facilitate the convergence of the models.
155 Note that it was not possible to include the receptive vocabulary score at 24 months due to
156 discrepancies in the questionnaire coding scheme (see Methods).

157 **Table 1. Early-life expressive and receptive vocabulary in ALSPAC**

Measure	Psychological instrument	Mean Score (SE)	Mean Age (SE)	N (%male)	GCTA-SNP- h^2 (SE)
Expressive vocabulary	MacArthur CDI ^a	14.29 (17.76)	1.28 (0.08)	6,524 (51.1)	0.11(0.05)
	MacArthur CDI ^b	64.21 (35.11)	2.03 (0.09)	6,014 (51.7)	0.16(0.06)
	MacArthur CDI ^b	113.33 (17.44)	3.21 (0.10)	6,092 (51.4)	0.18(0.06)
Receptive vocabulary	MacArthur CDI ^a	75.85(31.78)	1.28 (0.08)	6,524 (51.1)	0.08(0.05)
	MacArthur CDI ^b	109.75 (23.75)	3.21 (0.10)	6,092 (51.4)	0.12(0.06)

158 Expressive vocabulary and receptive vocabulary were assessed between 15-38 months of age in independent
159 children (genetic relationship<0.05). ^aAdapted form of the MacArthur CDI:Words & Gestures, consisting of 134
160 words. ^bAdapted from of the MacArthur CDI:Words & Sentences, consisting of 123 words. Abbreviations: ALSPAC,
161 Avon Longitudinal Study of Parents and Children; CDI, Communicative Development Inventory; GCTA, Genome-
162 wide Complex Trait Analysis; h^2 , heritability; SNP, single-nucleotide polymorphism.

163

164 Bivariate phenotypic and genetic correlations among early-life vocabulary measures: Early-life
165 vocabulary measures were phenotypically interrelated, although correlations decreased with increasing
166 age windows (Fig 1a). The largest phenotypic correlation (r_p) was estimated between expressive and
167 receptive vocabulary at 38 months ($r_p=0.63$). Bivariate genetic correlations (r_g) among early-life
168 vocabulary measures emerged from 24 months of age onwards (Figs 1b). Mirroring phenotypic
169 relationships, the largest genetic correlation was observed between expressive and receptive
170 vocabulary assessed at 38 months (GCTA- $r_g=0.86$ (SE=0.15), $P=0.004$).

171

172 Multivariate genetic variance structures between early-life vocabulary measures: Using GSEM,
173 we studied the multivariate genetic architecture underlying early vocabulary development, while
174 allowing for both shared (i.e. across age and/or ability) and unique (i.e. age- and ability-specific) genetic
175 influences. A multivariate SEM was fitted to expressive vocabulary at 15, 24 and 38 months as well as
176 receptive vocabulary at 38 months (in this order), following a Cholesky decomposition. SNP-h² estimates
177 were nearly identical for all early-life vocabulary measures using univariate GCTA and multivariate GSEM
178 approaches (Table S2). Estimated bivariate genetic correlations using GSEM were also highly consistent
179 with GCTA findings (Figs 1b and 1c), with overlapping 95%-confidence intervals (95%-CIs). GSEM-
180 estimated residual correlations among vocabulary measures were modest to moderate (Fig 1d),
181 suggesting further shared aetiological mechanisms not captured by common variation.

182 Structural models of vocabulary measures assessed during the first three years of life revealed
183 that the underlying genetic architecture is dynamic, with evidence for age-specific genetic influences
184 (Fig 2). The first genetic factor (A1) accounted for 10.6%(SE=5.0%) of the phenotypic variation in
185 expressive vocabulary at 15 months (Fig 2, S3 Table), which can be estimated by squaring the
186 corresponding estimated path coefficient, here a₁₁ (path coefficient a₁₁:0.33(SE=0.08), P=2x10⁻⁵). By
187 structural model design, the phenotypic variance explained by a₁₁ corresponds to the SNP-h² of
188 expressive vocabulary at 15 months (S2 and S3 Tables). Genetic factor A1 was also related to expressive
189 vocabulary at 24 months (path coefficient a₂₁:0.21(SE=0.10), P=0.04), explaining 4.6%(SE=4.4%) of the
190 phenotypic variation and accounting for almost a third of the SNP-h² (factorial co-heritability:
191 31.2%(SE=23.4%), S4 Table). However, there was little evidence for shared genetic influences between
192 expressive vocabulary at 15 months and either expressive or receptive vocabulary scores at 38 months
193 (Fig 2, S3 Table). This pattern of findings suggests that genetic influences underlying expressive
194 vocabulary at 15 months play a decreasing role during the course of later vocabulary development,

195 consistent with data from genetic correlation and bivariate heritability analyses (Figs 1b and 1c, S5
196 Table).

197 Expressive vocabulary at 24 months loaded on a second genetic factor (A2), explaining an
198 additional 10.1%(SE=4.0%) of the phenotypic variation (path-coefficient a_{22} : 0.32(SE=0.06), $P=4\times 10^{-7}$; Fig
199 2, S3 Table) and the majority of the SNP- h^2 (factorial co-heritability: 68.8%(SE=23.4%), S4 Table). This
200 genetic factor was also shared with both expressive (path coefficient a_{32} : 0.27(SE=0.09), $P=0.005$) and
201 receptive (path coefficient a_{42} : 0.33(SE=0.08), $P=4\times 10^{-5}$) vocabulary at 38 months, accounting for
202 7.1%(SE=5.0%) and 11.0%(5.3%) of the phenotypic variation, respectively (Fig 2, S3 Table). For receptive
203 vocabulary at 38 months, this genetic factor captured the majority of the SNP- h^2 (factorial co-
204 heritability: 88.9%(SE=23.1%), Table S4), suggesting a largely shared genetic aetiology with expressive
205 vocabulary at 24 months, as confirmed by their high genetic correlation ($GSEM-r_g=0.78$ (SE=0.19), Fig
206 1c).

207 The third genetic factor (A3) was only related to expressive vocabulary at 38 months (path
208 coefficient a_{33} : 0.29(SE=0.08), $P=0.001$) and explained 8.2%(SE=4.9%) of the phenotypic variation (Fig 2,
209 S3 Table), corresponding to nearly half of the SNP- h^2 (factorial co-heritability: 47.0%(SE=25.1%), S4
210 Table). This genetic factor was unrelated to receptive vocabulary at 38 months (path coefficient
211 a_{43} : 0.12(SE=0.12), $P=0.35$). Thus, it is likely that the genetic correlation between expressive and
212 receptive vocabulary at 38 months ($GSEM-r_g=0.82$ (SE=0.12, Fig 1c) is primarily driven by genetic
213 variance shared with expressive vocabulary at 24 months.

214 Finally, there was little support for the presence of a fourth genetic factor (A4) that would be
215 exclusively related to receptive vocabulary at 38 months (Fig 2, S3 Table). However, according to
216 findings from our previous work, such a factor is likely to account only for very little phenotypic variance
217 in receptive vocabulary at 38 months (15). Therefore, it may only become detectable once modelled
218 together with other heritable traits sharing underlying genetic influences.

219

220 **Stage 2: Multivariate genetic variance structures between early-life vocabulary and mid-**
221 **childhood reading, verbal and performance intelligence**

222 In a second step, we assessed the emergence of genetic links with mid-childhood reading
223 accuracy/comprehension at 7 years, verbal intelligence quotient scores (VIQ) at 8 years and
224 performance intelligence quotient scores (PIQ) at 8 years (S1 Table) across the studied vocabulary
225 measures during the first three years of life, using rank-transformed measures. The selected measures
226 of reading and verbal intelligence are representative of previously reported genetic association patterns
227 between vocabulary at 38 months and a wide spectrum of language, literacy and cognitive abilities in
228 ALSPAC (15). We contrast these verbal abilities with a measure of non-verbal intelligence (PIQ) to
229 evaluate differences in developmental association patterns with respect to early-life vocabulary. Thus,
230 the model from the first step (Fig 2) was extended to include, in turn, each of the three mid-childhood
231 skills, resulting in three further SEMs (with measures included in chronological order).

232 At the phenotypic level, all early-life vocabulary measures showed low to modest correlations
233 with both mid-childhood verbal and non-verbal skills (Fig 3a), with the largest phenotypic correlation
234 between receptive vocabulary at 38 months and VIQ at 8 years ($r_p=0.26$). The selected mid-childhood
235 skills, reading, VIQ and PIQ, were all moderately heritable, with GCTA-SNP- h^2 estimates of 42%(SE=6%),
236 54%(SE=7%) and 26%(SE=7%), respectively. These estimates largely corresponded to GSEM-SNP- h^2
237 estimates (S2 Table). Using GCTA, bivariate genetic correlations of mid-childhood skills with early-life
238 vocabulary measures (Fig 3b) revealed moderate genetic correlations of VIQ with expressive vocabulary
239 at 24 (GCTA- $r_g=0.41$ (SE=0.14), $P=0.003$) and 38 months (GCTA- $r_g=0.38$ (SE=0.14), $P=0.003$), but high
240 genetic correlations of both verbal and non-verbal skills with receptive vocabulary at 38 months (reading
241 GCTA- $r_g=0.83$ (SE=0.25), $P=9\times 10^{-6}$; VIQ GCTA- $r_g=0.95$ (SE=0.23), $P=1\times 10^{-8}$; PIQ GCTA- $r_g=0.68$ (SE=0.28),
242 $P=0.004$). GCTA and GSEM genetic correlation estimates were highly consistent, with overlapping 95%-
243 CIs (Figs 3b and 3c). GSEM-estimated residual correlations between early-life and mid-childhood
244 measures were low (Fig 3d).

245 Using multivariate structural models, our results showed, first, that there is little evidence for
246 genetic links between expressive vocabulary at 15 months (A1) and vocabulary, reading or cognition
247 abilities after the age of 24 months (Fig 4, S6, S7, S8 Tables). Second, the developmentally novel genetic
248 factor emerging for expressive vocabulary at 24 months (A2), explained further genetic variance in
249 receptive and expressive vocabulary at 38 months (as outlined above) and, importantly, mid-childhood
250 verbal skills. Specifically, it was related to both reading accuracy/comprehension (path coefficient
251 $a_{52}:0.25(\text{SE}=0.12)$, $P=0.04$) and VIQ (path coefficient $a_{52}=0.42(\text{SE}=0.13)$, $P=0.001$), and accounted for
252 6.4%(6.2%) and 17.9%(11.1%) of their phenotypic variation, respectively (Fig 4, S6 and S7 Tables).
253 However, this genetic factor was not linked to PIQ at 8 years (path coefficient $a_{52}:-0.03(\text{SE}=0.12)$,
254 $P=0.78$)(Fig 4e and 4f, S8 Table). These findings may reflect some genetic specificity for verbal skills
255 (reading and VIQ), compared to non-verbal cognition, though the 95%-CIs for the identified path
256 coefficients overlap (path coefficients a_{52} -reading accuracy/comprehension: 95%-CI=0.01-0.49, a_{52} -VIQ:
257 95%-CI=0.17-0.68, a_{52} -PIQ: 95%-CI=-0.26-0.20, derived assuming normality). Third, genetic influences
258 identified for expressive vocabulary at 38 months (A3) were unrelated to receptive vocabulary assessed
259 at the same age (as outlined above) and later mid-childhood abilities (Fig 4, S6, S7, S8 Tables). Thus, the
260 genetic correlation observed between expressive vocabulary at 38 months and mid-childhood VIQ
261 ($\text{GSEM-}r_g=0.35(\text{SE}=0.13)$, Fig 3c) is primarily driven by genetic variance shared with expressive
262 vocabulary at 24 months. Fourth, joint modelling of early-life vocabulary measures with mid-childhood
263 abilities enabled the identification of a genetic factor that affects receptive vocabulary at 38 months
264 (A4) and that is independent of early-life expressive vocabulary genetic factors (path coefficient
265 $a_{44}:0.15(\text{SE}=0.07)$, $P=0.04$, Fig 4c). Although this genetic factor accounted for only a tiny proportion of
266 the phenotypic variation in receptive vocabulary at 38 months (2.1%($\text{SE}=1.9\%$)), it explained
267 33.0%($\text{SE}=8.2\%$), 36.1%($\text{SE}=11.5\%$) and 24.7%($\text{SE}=7.5\%$) of the phenotypic variation in reading
268 accuracy/comprehension, VIQ and PIQ, respectively (path coefficients a_{54} -reading
269 accuracy/comprehension:0.57($\text{SE}=0.07$), $P<1\times10^{-10}$; a_{54} -VIQ: 0.60(0.10), $P=3\times10^{-10}$; a_{54} -PIQ: 0.50(0.08),
270 $P<1\times10^{-10}$). The genetic variance explained by genetic factor A4 corresponds to the majority of the

271 estimated SNP- h^2 for mid-childhood abilities, as indicated by factorial co-heritabilities (reading:
272 82.3%(SE=16.1%), VIQ: 66.4%(SE=19.9%), PIQ: 91.8%(SE=15.1%), S9 Table). Finally, there was little
273 evidence for novel genetic factors emerging during mid-childhood (A5, Fig 4), consistent with previous
274 findings (15). Thus, the fitted multivariate models for early-life vocabulary and mid-childhood skills were
275 consistent with both the identified multivariate genetic architecture of early-life vocabulary (Fig 2) and
276 the previously reported amplification of genetic factors for vocabulary at 38 months (15).

277 The phenotypic covariance of mid-childhood reading, VIQ and PIQ with receptive vocabulary at
278 38 months (Fig 3a) was primarily due to genetic covariance, with bivariate heritability estimates of
279 0.87(SE=0.21), 0.88(SE=0.16) and 0.68(SE=0.27), respectively (S10 Table). This is consistent with little
280 evidence for residual correlation between receptive vocabulary at 38 months and mid-childhood
281 measures (Fig 3d). For verbal mid-childhood skills, such as VIQ, evidence for bivariate heritability with
282 early-life expressive vocabulary was already detectable at 24 months of age (bivariate heritability:
283 0.54(SE=0.19)), as well as at 38 months of age (bivariate heritability: 0.60(SE=0.24)).

284

285 Discussion

286 This genome-wide longitudinal analysis of vocabulary size during the first three years of life
287 assessed in unrelated children demonstrates that the genetic architecture underlying expressive and
288 receptive vocabulary is dynamic, with evidence for both age- and ability-specific genetic influences.
289 Genetic continuity was found for two independent early-life genetic factors, which contribute to the
290 genetic variance of reading and cognitive skills in mid-childhood. One stable early-life genetic source of
291 variation was related to expressive vocabulary and emerged at 24 months of age, accounting for
292 between 6.4% and 17.9% of the phenotypic variation in mid-childhood abilities, especially verbal skills
293 such as reading and VIQ. A second, independent and stable early-life genetic factor was identified for
294 receptive vocabulary at 38 months and explained between 24.7% and 36.1% of the phenotypic variance
295 in both mid-childhood verbal and non-verbal cognitive abilities, including PIQ, corresponding to the

296 majority of SNP- h^2 ($\geq 66\%$). Given the modest SNP- h^2 of early-life vocabulary scores, ranging from 11%
297 to 18%, this suggests not only genetic stability, but also an amplification of early genetic variance during
298 the life-course that contributes to the markedly increased SNP- h^2 of later-life reading and cognition
299 (27% to 54%).

300 The identification of multiple independent genetic factors related to vocabulary during the first
301 three years of life may reflect rapid changes in mastering behavioral and language skills. Genetic
302 influences identified for expressive vocabulary at 15 months (A1) were also related to expressive
303 vocabulary at 24 months, but were not linked to vocabulary, reading or cognition measures beyond this
304 age. Thus, these early genetic influences might primarily affect the very first stages of language
305 development that, once achieved, have little impact on subsequent verbal and cognitive development.
306 A plausible candidate process for this is the acquisition of phonological skills to identify phonemes and
307 sequences from speech and their storage for future production (23).

308 The stable independent genetic factor emerging for expressive vocabulary at 24 months (A2)
309 contributes to the genetic architectures underlying verbal processes throughout childhood, in contrast
310 to genetic factor A1. Specifically, the genetic influences captured by A2 were related to both expressive
311 and receptive vocabulary at 38 months, as well as mid-childhood verbal abilities such as reading and
312 VIQ, but not PIQ (although 95%-CIs of estimated genetic path coefficients overlap with those for PIQ).
313 This genetic factor may reflect stages of language learning that take place after the production of words
314 in isolation at the age of 10 to 15 months (3). This includes, for example, an increasing vocabulary size
315 as well as the use of more complex grammatical structures, marked by the emergence of two-word
316 combinations around the age of 18 to 24 months (1,24). It has been shown that lexical and grammatical
317 development share underlying acquisition mechanisms (25) and measures of expressive vocabulary and
318 grammatical development at two and three years of age are both phenotypically and genetically
319 correlated (11).

320 Expressive vocabulary at 38 months loaded on an additional independent genetic factor (A3)
321 that was not related to receptive vocabulary at the same age, nor to any of the studied mid-childhood
322 reading and IQ measures. This genetic factor may, thus, involve genetic associations with processes that
323 affect expressive vocabulary at an early age, but do not play a role in later cognition. They may, for
324 example, reflect social abilities, which are known to impact on vocabulary development and vice versa
325 (26). Note that expressive vocabulary at 38 months is nonetheless genetically related to mid-childhood
326 verbal processes due to shared genetic influences that were already detectable at 24 months (A2).

327 The majority of SNP- h^2 for mid-childhood reading, VIQ and also PIQ was accounted for by a
328 genetic factor that emerged at 38 months of age for receptive vocabulary (A4), consistent with previous
329 findings (15). Although this stable genetic factor explained only a very small part of the phenotypic
330 variance in receptive vocabulary (2.1%), it accounted from 66% to 92% of the phenotypic variation in
331 later reading performance, verbal and non-verbal cognition, with very little residual contributions. Due
332 to the wide spectrum of associated mid-childhood phenotypes that are linked with this genetic factor,
333 including both later verbal and non-verbal cognitive abilities, it is possible that the genetically encoded
334 biological processes are important for cognitive development in general. It merits noting that the
335 genetic factor A4 was only detectable once modelled together with a mid-childhood skill sharing
336 underlying genetic variance, probably due to the low proportion of phenotypic variation that it
337 explained in early-life receptive vocabulary.

338 Previous twin studies demonstrating genetic links between language use in early childhood and
339 later language/literacy skills have been based on a latent factor approach jointly capturing genetic
340 variance of expressive language skills between the ages of 2 and 4 years (16,17). Here, we used a sample
341 of unrelated children with genome-wide genotyping data and distinguish language measures during the
342 first three years of life based on both modality and age at assessment. We extend and refine the
343 previous twin findings by showing that (i) early-life expressive vocabulary at 15 months of age is
344 influenced by a genetic factor that is only shared across expressive vocabulary scores during infancy,

345 and (ii) that there are at least two independent genetic factors during early life that are associated with
346 mid-childhood reading and cognition. Genetic associations with mid-childhood verbal cognitive
347 processes arise as early as 24 months of age, whereas genetic influences that are relevant for mid-
348 childhood general cognitive development emerge as early as 38 months of age for receptive vocabulary,
349 and are independent of expressive vocabulary. This latter distinction is important as receptive
350 vocabulary at 38 months also shares a genetic factor with expressive vocabulary at 24 months and
351 subsequent reading and verbal intelligence. The diversity in genetic factors may implicate differences in
352 overarching cognitive processes that are already detectable during toddlerhood. This is important as
353 genetic influences associated with early-life vocabulary could fully account for the SNP- h^2 of mid-
354 childhood reading, verbal and non-verbal intelligence. The presence of such genetic stability implicating
355 verbal processes and general cognition from toddlerhood to, at least, mid-childhood may, furthermore,
356 suggests shared biological underpinnings. Thus, joint genome-wide association study analyses across
357 developmental stages may facilitate an increase in study power.

358 In addition to the strengths of this study described above, this study benefits from modelling
359 multivariate genetic variance structures in unrelated individuals directly, based on genome-wide
360 information, using novel structural equation modelling techniques. It is, however, not possible to infer
361 biological mechanisms underlying the identified genetic factor structures with the current methodology.
362 We furthermore exploit the phenotypic richness of the ALSPAC cohort, including longitudinally assessed
363 vocabulary measures during early development as well as reading and cognitive outcomes in mid-
364 childhood. This study has also several limitations. Given the rapidly changing nature of early vocabulary
365 size, increasingly larger and complex word lists are required to reliably assess vocabulary size at 24 and
366 38 months compared to 15 months of age. Thus, the observed differences in genetic factor structures
367 during early life may reflect differences in CDI instruments, although this is unlikely to fully explain our
368 findings, given substantial phenotypic correlations between expressive vocabulary scores at 15 and 24
369 months of age ($r_p=0.53$). Furthermore, vocabulary assessments at 38 months of age might be affected
370 by ceiling effects, as the MacArthur CDI:Words & Sentences was developed for children up to 30 months

371 (5). This may have reduced phenotypic variation and, thus, power to detect genetic variance
372 components at 38 months. In addition, it has recently been shown that heritability and genetic
373 relationships estimated in samples of unrelated individuals, especially for cognition-related traits
374 (27,28), might be inflated by indirect genetic effects, reflecting a type of gene-environment correlation
375 (29). The observed association patterns between early-life vocabulary and mid-childhood reading and
376 cognitive skills may therefore represent both shared genetic variance and indirect genetic effects.
377 Future research using family-based data is warranted to assess the impact of indirect genetic effects on
378 the reported association patterns. Finally, the sparcity of large data sets with longitudinal information
379 on expressive and receptive vocabulary during infancy and toddlerhood, in addition to genome-wide
380 data, currently prevents a direct replication of our findings in independent cohorts.

381 Taken together, our findings reveal a dynamic genetic landscape underlying vocabulary during
382 the first three years of life. We found evidence for genetic continuity of two independent early-life
383 genetic factors that contribute to both verbal and general cognitive abilities in mid-childhood and
384 manifest at different developmental stages during early-life language development. Thus, the genetic
385 foundations for both mid-childhood reading and cognition lie in toddlerhood, but are diverse, and may
386 implicate aetiological differences in overarching cognitive processes that are detectable long before the
387 age of schooling.

388

389 **Methods**

390 **Sample description and trait selection**

391 Cohort information: Participants were born in 1991 or 1992 and included in ALSPAC, a UK
392 population-based birth cohort (S1 Appendix)(18,19). Ethical approval was provided by the ALSPAC Ethics
393 and Law Committee and the Local Research Ethics Committees. Informed consent for questionnaire and
394 clinical data was obtained from participants following recommendations of the ALSPAC Ethics and Law

395 Committee at the time. Consent for biological samples was collected in accordance with the Human
396 Tissue Act (2004).

397 Genetic analyses: Genotyping and genotype calling was performed using the Illumina
398 HumanHap550 quad chip and Illumina GenomeStudio software. Quality control of genetic data was
399 applied using PLINK (v1.07)(30) at both the SNP and individual level following standard procedures.
400 Individuals were excluded in case of gender mismatch between reported and genetic sex information,
401 >3% missing SNP information, non-European ancestry, or interindividual relatedness (genomic
402 relatedness>0.05). SNPs were excluded if they had a low call rate (<99%), were rare (<1%) and/or
403 deviated from Hardy-Weinberg equilibrium ($P<5\times10^{-7}$). After quality control, 7,924 children and 465,740
404 SNPs with high-quality genetic data remained.

405 Early-life vocabulary measures: Expressive and receptive vocabulary was assessed at 15, 24 and
406 38 months of age using parental-reports (predominantly mother) of age-specific defined word lists
407 adapted from the MacArthur Communicative Development Inventory (CDI). At 15 months, expressive
408 and receptive vocabulary were assessed with an abbreviated version of the MacArthur CDI:Words &
409 Gestures (133 words, 8 to 16 months of age)(31). Scores were recorded as the number of words a child
410 could “say and understand” (expressive vocabulary), and “understand” plus “say and understand”
411 (receptive vocabulary), respectively. At 24 and 38 months of age, an abbreviated vocabulary list from
412 the MacArthur CDI:Words & Sentences (123 words, 16-30 months of age)(5) was used. At both ages,
413 expressive vocabulary was ascertained as the total number of words a child could “say” plus “say and
414 understand”. Receptive vocabulary at 38 months was measured as the total number of words a child
415 could “understand” plus “say and understand”. The receptive vocabulary score at 24 months was
416 excluded due to discrepancies in the applied coding scheme (reflecting the total number of words a
417 child could “understand” only, excluding words a child could “say and understand”), and recoded scores
418 have not yet been released by ALSPAC.

419 CDI expressive vocabulary scores have high reliability and validity, showing correlations with
420 direct assessments of over 0.70 (32,33). Receptive vocabulary assessed using parental report correlated

421 0.55 with direct assessment (33). In total, N≤6,524 children (Table 1) had vocabulary scores and
422 genome-wide genetic data available for analyses.

423 Mid-childhood measures: For the selection of mid-childhood measures, we build on our
424 previous work identifying genetic links between vocabulary at 38 months and thirteen mid-
425 childhood/adolescent literacy and cognitive measures (15). As it is not possible, due to computational
426 constraints, to study longitudinal genetic architectures of early-life vocabulary measures in combination
427 with a wide spectrum of mid-childhood language, literacy and cognitive abilities, we selected three mid-
428 childhood measures that are representative of previously observed developmental association patterns
429 (15) (N≤5,296; S1 Table). The studied mid-childhood measures included reading
430 accuracy/comprehension at 7 years, assessed using the Wechsler Objective Reading Dimensions
431 (WORD)(34), as well as both VIQ and PIQ assessed at 8 years using the Wechsler Intelligence Scale for
432 Children (WISC-III)(35). Detailed descriptions, including validity and reliability, of each measure are
433 available in the Supporting Information (S2 Appendix).

434 Phenotype transformation: All early-life vocabulary and mid-childhood measures were adjusted
435 for sex, age (except for VIQ and PIQ as they were derived using age-specific norms), and the first two
436 principal components (adjusting for subtle differences in ancestry (36)), and subsequently rank-
437 transformed. In addition, early-life vocabulary measures were adjusted for age squared, as vocabulary
438 develops rapidly during early childhood (37). Phenotypic correlations between early-life vocabulary
439 measures were estimated using untransformed (Spearman rank-correlation) and rank-transformed
440 (Pearson correlation) scores respectively, and patterns were largely unaffected by trait transformation
441 (S1 Fig). Phenotypic correlations between early-life vocabulary and mid-childhood reading, VIQ and PIQ
442 measures were estimated using rank-transformed (Pearson correlation) scores only.

443 **Genome-wide Complex Trait Analysis**

444 Total SNP-h² was estimated using Genome-based restricted maximum likelihood (GREML)
445 analyses (38,39), as implemented in GCTA software (21), based on a GRM including directly genotyped

446 SNPs only (GCTA-SNP- h^2). Measures with little evidence for GCTA-SNP- h^2 ($P>0.05$) were excluded from
447 further analyses.

448 Bivariate GREML (39) was applied to estimate bivariate genetic correlations among early-life
449 vocabulary measures and between early-life vocabulary and mid-childhood reading, VIQ and PIQ
450 measures.

451

452 **Multivariate genetic analyses**

453 To study the genetic architecture of vocabulary in a developmental context, we used Genetic-
454 relationship-matrix Structural Equation Models (GSEMs)(20). This is a multivariate structural equation
455 modelling technique, which combines multivariate analysis methodologies established in twin research
456 (40,41) with estimates of genetic relationships between unrelated individuals, as captured by genome-
457 wide genetic markers (20) (S3 Appendix). Specifically, GSEMs dissect the phenotypic covariance
458 structure into one or more additive genetic factors (A), capturing genetic variance tagged by common
459 genotyped SNPs, as well as one or more residual factors (E) that resemble the residual variance,
460 containing both untagged genetic variation and unique environmental influences (including
461 measurement error). Here, multivariate GSEMs were fitted to the data through a Cholesky
462 decomposition model, with the phenotypic variance decomposed into as many latent genetic and
463 residuals factors as there are observed variables, without any restrictions on the structure (42) (S3
464 Appendix). Structural models were based on all available observations across individuals and thus allow
465 for missing data (saturated model; R:gsem library, version 0.1.5). Genetic relationships between
466 individuals were assessed with GRMs, including directly genotyped SNPs only, as implemented in GCTA
467 software (21).

468

469

470 **Acknowledgements**

471 We are extremely grateful to all the families who took part in this study, the midwives for their
472 help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and
473 laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and
474 nurses. This publication is the work of the authors and EV and BSTP will serve as guarantors for the
475 contents of this paper.

476

477 **Funding statement**

478 The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University
479 of Bristol provide core support for ALSPAC. GWAS data was generated by Sample Logistics and
480 Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America)
481 using support from 23andMe. A comprehensive list of grants funding is available on the ALSPAC website
482 (<http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf>). EV, BSTP and SEF
483 are supported by the Max Planck Society. BSTP is also supported by the Simons Foundation (Award ID:
484 514787). CYS works in a unit that receives support from the University of Bristol and the UK Medical
485 Research Council.

486

487 **Conflicts of interest**

488 The authors declare no conflict of interest.

489

490

491

492 **Data availability statement**

493 Information about ALSPAC data is available through a fully searchable data dictionary
494 (<http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/>). Access to ALSPAC data can
495 be obtained as described within the ALSPAC data access policy
496 (<http://www.bristol.ac.uk/alspac/researchers/access/>). All analyses were performed using freely
497 accessible software. Requests for scripts or other analysis details can be sent via email to the
498 corresponding author.

499

500 **Authors' contribution statement**

501 BSTP developed the study concept and EV contributed to the study design. EV performed the
502 data analysis and interpretation under the supervision of BSTP. EV and BSTP drafted the manuscript and
503 CYS, SEF and PSD provided critical revisions. All authors approved the final version of the manuscript for
504 submission.

505

506 **References**

- 507 1. Fenson L, Dale PS, Reznick JS, Bates E, Thal DJ, Pethick SJ. Variability in early communicative
508 development. *Monogr Soc Res Child Dev*. 1994;59(5):1–173; discussion 174-85.
- 509 2. Kennison SM. Introduction to language development. 1st ed. SAGA; 2014. 469 p.
- 510 3. Clark EV. First language acquisition. New York: Cambridge University Press; 2016.
- 511 4. Goldfield BA, Reznick JS. Early lexical acquisition: rate, content, and the vocabulary spurt. *J Child*
512 *Lang*. 1990 Feb;17(1):171–83.
- 513 5. Fenson L, Dale P, Reznick JS, Thal D, Bates E, Hartung J, et al. User's Guide and Technical Manual
514 for the MacArthur Communicative Development Inventories. San Diego: Singular Publishing; 1993.
- 515 6. Burger A, Chong I. Receptive Vocabulary. In: Goldstein S, Naglieri JA, editors. *Encyclopedia of Child*
516 *Behavior and Development*. Boston, MA: Springer US; 2011. p. 1231–1231.
- 517 7. Owens Jr. R E. *Language Development: An Introduction*. 9 edition. Pearson; 2015. 462 p.
- 518 8. Bergelson E, Swingley D. At 6-9 months, human infants know the meanings of many common
519 nouns. *Proc Natl Acad Sci USA*. 2012 Feb 28;109(9):3253–8.
- 520 9. Fenson L, Marchman VA. MacArthur-Bates Communicative Development Inventories: User's
521 Guide and Technical Manual. Paul H. Brookes Publishing Company; 2007. 188 p.
- 522 10. Frank MC, Braginsky M, Yurovsky D, Marchman VA. Wordbank: an open repository for
523 developmental vocabulary data. *J Child Lang*. 2017 May;44(3):677–94.
- 524 11. Dionne G, Dale PS, Boivin M, Plomin R. Genetic Evidence for Bidirectional Effects of Early Lexical
525 and Grammatical Development. *Child Development*. 2003;74(2):394–412.
- 526 12. Dale PS, Dionne G, Eley TC, Plomin R. Lexical and grammatical development: a behavioural genetic
527 perspective. *Journal of Child Language*. 2000 Oct;27(03):619–642.
- 528 13. Reznick JS, Corley R, Robinson J. A longitudinal twin study of intelligence in the second year.
529 *Monogr Soc Res Child Dev*. 1997;62(1):i–vi, 1–154; discussion 155-60.
- 530 14. St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS, O'Reilly PF, et al. Common
531 variation near ROBO2 is associated with expressive vocabulary in infancy. *Nature communications*.
532 2014;5:4831.
- 533 15. Verhoeft E, Shapland CY, Fisher SE, Dale PS, Pourcain BS. The developmental origins of genetic
534 factors influencing language and literacy: Associations with early-childhood vocabulary. *Journal of*
535 *Child Psychology and Psychiatry* [Internet]. 2020 Sep 14; Available from:
536 <https://doi.org/10.1111/jcpp.13327>
- 537 16. Harlaar N, Hayiou-Thomas ME, Dale PS, Plomin R. Why Do Preschool Language Abilities Correlate
538 With Later Reading? A Twin Study. *J Speech Lang Hear Res*. 2008 Jun 1;51(3):688–705.

539 17. Hayiou-Thomas ME, Dale PS, Plomin R. The etiology of variation in language skills changes with
540 development: a longitudinal twin study of language from 2 to 12 years. *Dev Sci.* 2012
541 Mar;15(2):233–49.

542 18. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the
543 Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. *Int J Epidemiol.* 2013
544 Feb;42(1):97–110.

545 19. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the 'children
546 of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. *Int J
547 Epidemiol.* 2013 Feb;42(1):111–27.

548 20. St Pourcain B, Eaves LJ, Ring SM, Fisher SE, Medland S, Evans DM, et al. Developmental changes
549 within the genetic architecture of social communication behaviour: A multivariate study of genetic
550 variance in unrelated individuals. *Biological Psychiatry.* 2017 Sep 28;83:598–606.

551 21. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis.
552 *Am J Hum Genet.* 2011 Jan 7;88(1):76–82.

553 22. Fenson L, Dale PS, Reznick S. Technical Manual for the MacArthur Communicative Development
554 Inventories. Developmental Psychology Laboratory; 1991.

555 23. Curtin S, Archer SL. Speech perception. In: Bavin EL, Naigles LR, editors. *The Cambridge Handbook
556 of Child Language.* 2nd ed. Cambridge: Cambridge University Press; 2015. p. 137–58. (Cambridge
557 Handbooks in Language and Linguistics).

558 24. Hoff E. *Language Development.* Cengage Learning; 2013. 482 p.

559 25. Bates E, Goodman JC. On the inseparability of grammar and the lexicon: Evidence from acquisition.
560 In: *Language development: The essential readings.* Malden: Blackwell Publishing; 2001. p. 134–
561 62. (Essential readings in developmental psychology).

562 26. Silverman RD, Hartranft AM. *Developing Vocabulary and Oral Language in Young Children.* Guilford
563 Publications; 2014. 274 p.

564 27. Selzam S, Ritchie SJ, Pingault J-B, Reynolds CA, O'Reilly PF, Plomin R. Comparing Within- and
565 Between-Family Polygenic Score Prediction. *The American Journal of Human Genetics.* 2019 Aug
566 1;105(2):351–63.

567 28. Cheesman R, Hunjan A, Coleman JRI, Ahmadzadeh Y, Plomin R, McAdams TA, et al. Comparison of
568 Adopted and Nonadopted Individuals Reveals Gene–Environment Interplay for Education in the
569 UK Biobank: Psychological Science [Internet]. 2020 Apr 17; Available from:
570 <https://journals.sagepub.com/doi/full/10.1177/0956797620904450>

571 29. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorleifsson TE, et al. The nature of
572 nurture: Effects of parental genotypes. *Science.* 2018 Jan 26;359(6374):424–8.

573 30. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for
574 Whole-Genome Association and Population-Based Linkage Analyses. *Am J Hum Genet.* 2007
575 Sep;81(3):559–75.

576 31. Fenson L, Pethick S, Renda C, Cox JL, Dale PS, Reznick JS. Short-form versions of the MacArthur
577 Communicative Development Inventories. *Applied Psycholinguistics.* 2000 Mar;21(1):95–116.

578 32. Dale PS. The validity of a parent report measure of vocabulary and syntax at 24 months. *J Speech*
579 *Hear Res.* 1991 Jun;34(3):565–71.

580 33. Ring ED, Fenson L. The correspondence between parent report and child performance for
581 receptive and expressive vocabulary beyond infancy. *First Language.* 2000 Jun 1;20(59):141–59.

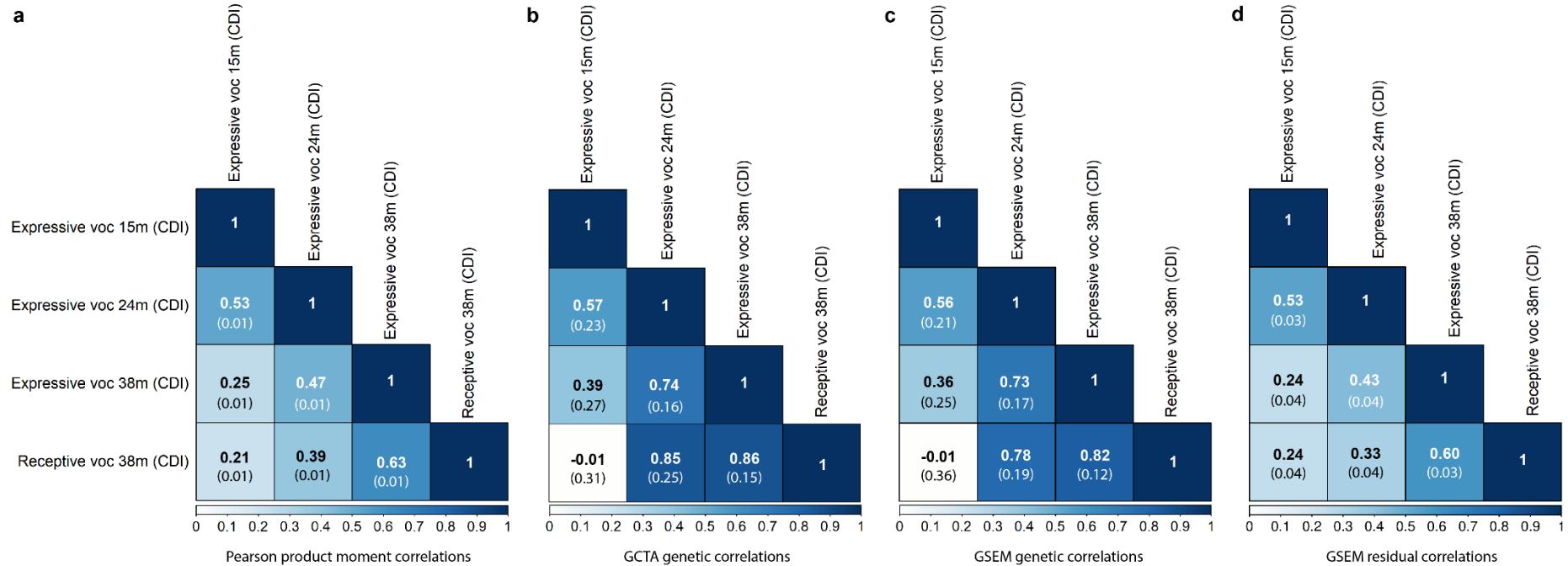
582 34. WORD, Wechsler Objective Reading Dimensions Manual. Psychological Corporation; 1993. 146 p.

583 35. Wechsler D, Golombok S, Rust J. WISC-III UK Wechsler Intelligence Scale for Children – Third
584 Edition UK Manual. Sidcup, UK: The Psychological Corporation; 1992.

585 36. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components
586 analysis corrects for stratification in genome-wide association studies. *Nature Genetics.* 2006
587 Aug;38(8):904–9.

588 37. Brooks R, Meltzoff AN. Infant gaze following and pointing predict accelerated vocabulary growth
589 through two years of age: a longitudinal, growth curve modeling study. *J Child Lang.* 2008
590 Feb;35(1):207–20.

591 38. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a
592 large proportion of the heritability for human height. *Nat Genet.* 2010 Jul;42(7):565–9.

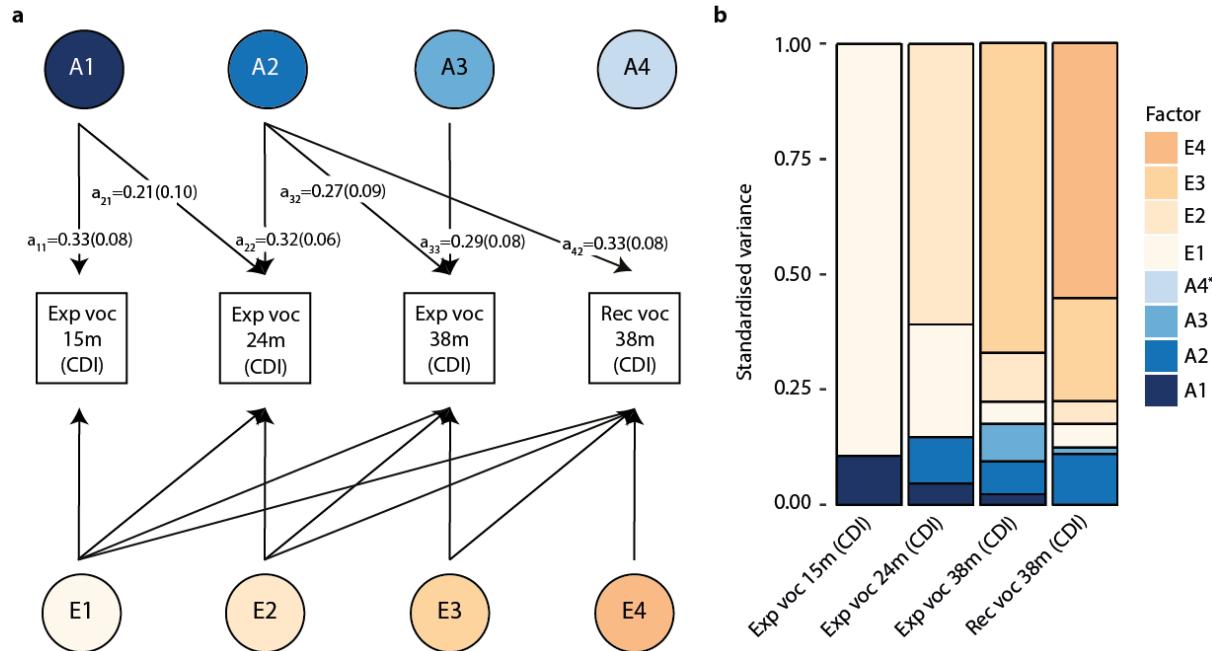

593 39. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex
594 diseases using single-nucleotide polymorphism-derived genomic relationships and restricted
595 maximum likelihood. *Bioinformatics.* 2012 Oct 1;28(19):2540–2.

596 40. Martin NG, Eaves LJ. The genetical analysis of covariance structure. *Heredity (Edinb).* 1977
597 Feb;38(1):79–95.

598 41. Neale M, Maes HHM. Methodology for genetic studies of twins and families. Dordrecht: Kluwer
599 Academic Publisher; 2004.

600 42. Neale M, Boker S, Xie G, Maes HHM. Mx: Statistical modeling. 7th ed. Richmond: Department of
601 Psychiatry; 2006.

602

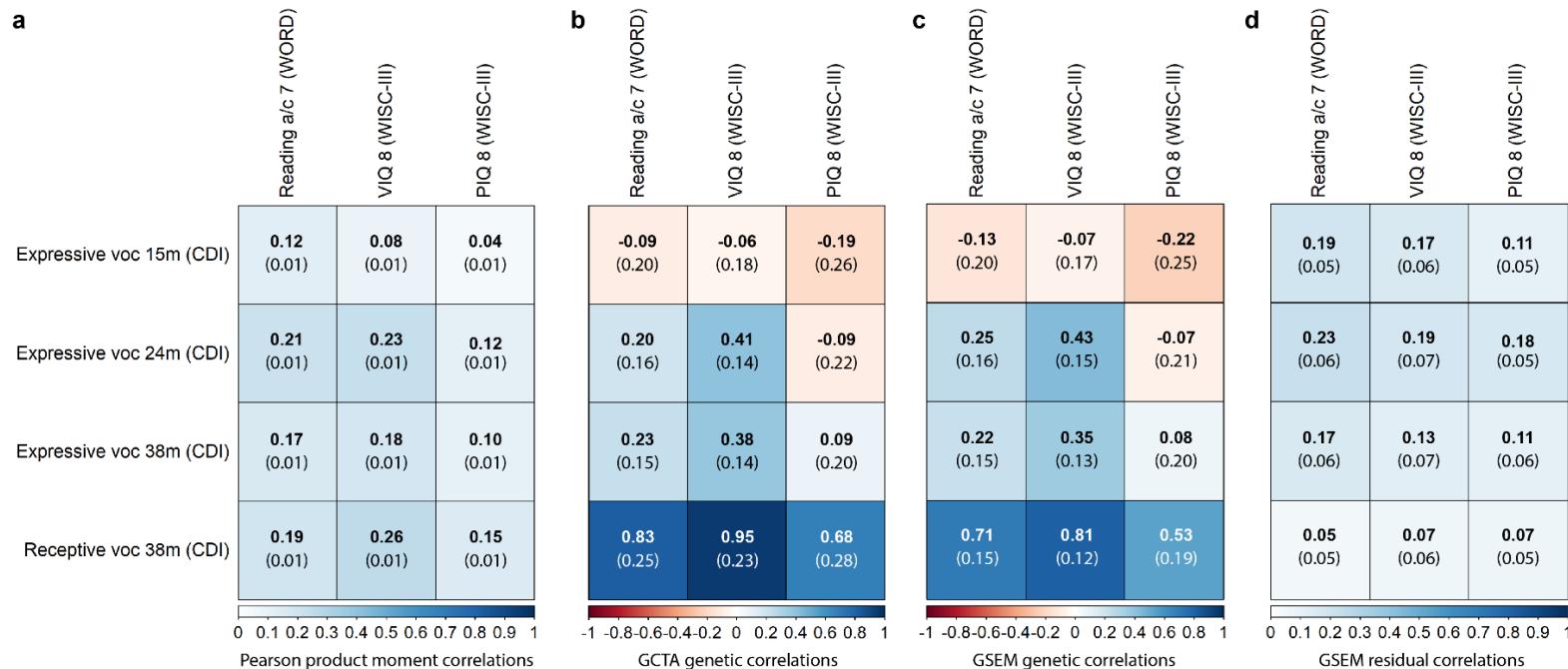

603 **Figures**

604

605 **Fig 1. Phenotypic, genetic and residual correlations among early-life vocabulary scores (15 to 38 months).**

606 Correlation patterns are shown for rank-transformed measures with sufficient evidence for $SNP-h^2$ ($P<0.05$) Standard errors are shown in brackets. (a) Phenotypic correlations
 607 were estimated with Pearson correlation coefficients. (b) GCTA genetic correlations based on GREML. (c) GSEM genetic correlations. (d) GSEM residual correlations.
 608 Abbreviations: CDI, Communicative Development Inventory; GCTA, Genome-based Restricted Maximum Likelihood as implemented in genome-wide complex trait analysis
 609 (GCTA) software; GREML, Genome-based restricted maximum likelihood; GSEM, genetic-relationship-matrix structural equation modelling; m, months; voc, vocabulary.

610 Genetic analyses were conducted using genetic relationship matrices based on directly genotyped SNPs and individuals with a genetic relationship of <0.05

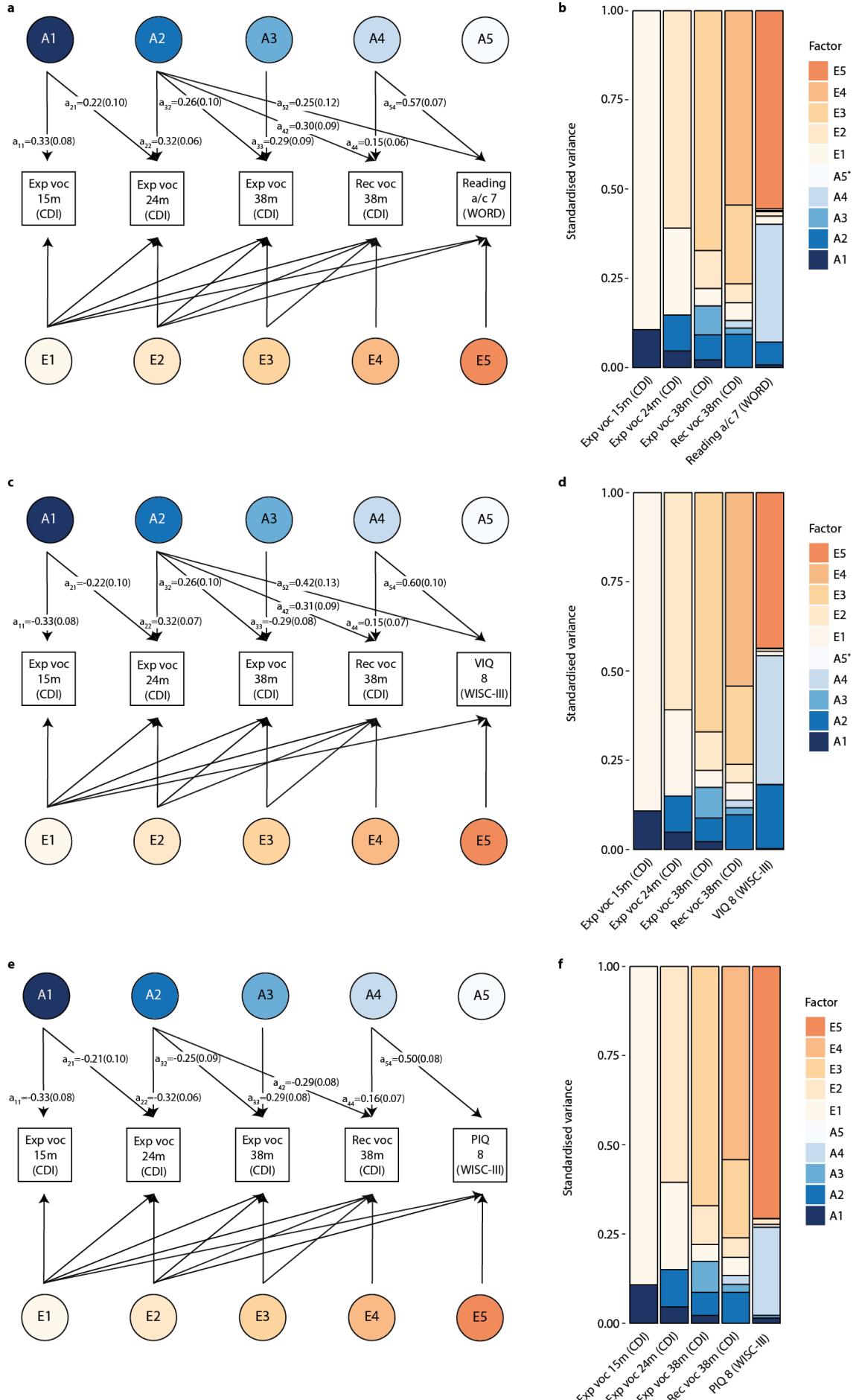

611

612 **Fig 2. Structural model of early-life vocabulary scores (15 to 38 months)**

613 Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 38
 614 months of age) based on all available observations for children across development ($N \leq 6,524$; Cholesky
 615 decomposition model). **(a)** Path diagram with standardised path coefficients and corresponding standard errors.
 616 Only paths with a path coefficient passing a P -value threshold of 0.05 are shown. Full information on path
 617 coefficients and their standard errors can be found in S3 Table. **(b)** Standardised variance explained by genetic and
 618 residual factors modelled in (a).

619 * The proportion of phenotypic variance explained by genetic factor A4 in receptive vocabulary at 38 months is
 620 negligible.

621 Abbreviations: CDI, Communicative Development Inventory; Exp, expressive; m, months of age; Rec, receptive;
 622 voc, vocabulary


623

624 **Fig 3. Phenotypic, genetic and residual correlations between early-life vocabulary scores and mid-childhood reading, verbal intelligence and performance**
625 **intelligence.**

626 Correlation patterns are shown for rank-transformed measures with sufficient evidence for $SNP-h^2$ ($P<0.05$) Standard errors are shown in brackets. (a) Phenotypic correlations
627 were estimated with Pearson correlation coefficients. (b) GCTA genetic correlations based on GREML. (c) GSEM genetic correlations. (d) GSEM residual correlations.
628 Abbreviations: a, accuracy; c, comprehension; CDI, Communicative Development Inventory; GCTA, Genome-based Restricted Maximum Likelihood as implemented in genome-
629 wide complex trait analysis (GCTA) software; GREML, Genome-based restricted maximum likelihood; GSEM, genetic-relationship-matrix structural equation modelling; m,
630 months; PIQ; performance intelligence quotient; VIQ; verbal intelligence quotient, voc, vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WORD, Wechsler
631 Objective Reading Dimension

632 Genetic analyses were conducted using genetic relationship matrices based on directly genotyped SNPs and individuals with a genetic relationship of <0.05

633

634 **Fig 4. Structural models of early-life vocabulary and mid-childhood reading and cognition**

635 Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 38
636 months of age) in combination with mid-childhood **(a,b)** reading accuracy/comprehension at 7 years, **(c,d)** VIQ
637 scores at 8 years or **(e,f)** PIQ scores at 8 years, based on all available observations for children across development
638 ($N \leq 6,524$). **(a,c,e)** Path diagrams with standardised path coefficients and corresponding standard errors including
639 mid-childhood **(a)** reading accuracy/comprehension, **(c)** VIQ and **(e)** PIQ outcomes. Only paths with a path
640 coefficient passing a P -value threshold of 0.05 are shown. Full information on all path coefficients and their
641 standard errors can be found in S6, S7, S8 Tables. **(b,d,f)** Standardised variance explained by genetic and residual
642 factors as modelled in a,c,e for models including **(b)** reading accuracy/comprehension, **(d)** VIQ, and **(f)** PIQ.

643 * The proportion of phenotypic variance explained by genetic factor A5 is negligible.

644 Abbreviations: a, accuracy; c, comprehension; CDI, Communicative Development Inventory; Exp, expressive; m,
645 months of age; Rec, receptive; PIQ, performance intelligence quotient; VIQ, verbal intelligence quotient; voc,
646 vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WORD, Wechsler Objective Reading Dimension

647 **Supporting information**

648 **S1 Appendix. ALSPAC description**

649 **S2 Appendix. Mid-childhood ALSPAC measures**

650 **S3 Appendix. Genetic-relatedness-matrix Structural equation modelling**

651 **S4 Appendix. Factorial co-heritability**

652 **S5 Appendix. Bivariate heritability**

653 **S6 Appendix. Websites**

654 **S1 Table. Mid-childhood measures in the Avon Longitudinal Study of Parents and Children**

655 **S2 Table. SNP heritability estimates**

656 **S3 Table. Standardised path coefficients and variance explained for early-life vocabulary measures**

657 **S4 Table. Factorial co-heritability for early-life vocabulary measures**

658 **S5 Table. Bivariate heritability for early-life vocabulary measures**

659 **S6 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood reading accuracy/comprehension**

660

661 **S7 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood verbal intelligence**

662

663 **S8 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood performance intelligence**

664

665 **S9 Table. Factorial co-heritability for genetic factors contributing to mid-childhood reading, verbal intelligence and performance intelligence**

666

667 **S10 Table. Bivariate heritability for early-life vocabulary measures and mid-childhood reading, verbal intelligence and performance intelligence**

668

669 **S1 Fig: Phenotypic correlations among early-life vocabulary measures**

670 **S2 Fig: Path diagram for a trivariate trait**