

1 The Species-specific Acquisition and Diversification of a Novel 2 Family of Killer Toxins in Budding Yeasts of the Saccharomycotina.

3
4 Lance R. Fredericks¹, Mark D. Lee¹, Angela M. Crabtree¹, Josephine M. Boyer¹, Emily A. Kizer¹, Nathan T.
5 Taggart¹, Samuel S. Hunter^{2#}, Courtney B. Kennedy¹, Cody G. Willmore¹, Nova M. Tebbe¹, Jade S. Harris¹,
6 Sarah N. Brocke¹, Paul A. Rowley^{1*}

7
8 ¹Department of Biological Sciences, University of Idaho, Moscow, ID, USA
9

10 ²iBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA
11

12 [#]currently at University of California Davis Genome Center, University of California, Davis, 451 Health Sciences Dr., Davis, CA
13 95616

14 *Correspondence: prowley@uidaho.edu

Abstract

15 Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi,
16 including *Saccharomyces* yeasts. Although many *Saccharomyces* killer toxins have been
17 previously identified, their evolutionary origins remain uncertain given that many of the se genes
18 have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the
19 *Saccharomyces* genus has identified a novel killer toxin with a unique spectrum of activity
20 produced by *Saccharomyces paradoxus*. The expression of this novel killer toxin is associated
21 with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite
22 dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1
23 toxin from *Saccharomyces cerevisiae* and has been named K1-like (K1L). Genomic homologs of
24 K1L were identified in six non-*Saccharomyces* yeast species of the Saccharomycotina
25 subphylum, predominantly in subtelomeric regions of the yeast genome. The sporadic
26 distribution of these genes supports their acquisition by horizontal gene transfer followed by
27 diversification, with evidence of gene amplification and positive natural selection. When
28 ectopically expressed in *S. cerevisiae* from cloned cDNAs, both K1L and its homologs can
29 inhibit the growth of competing yeast species, confirming the discovery of a new family of
30 biologically active killer toxins. The phylogenetic relationship between K1L and its homologs
31 suggests gene flow via dsRNAs and DNAs across taxonomic divisions to enable the acquisition
32 of a diverse arsenal of killer toxins for use in niche competition.

Introduction

33
34 Many different species of fungi have been observed to produce proteinaceous killer toxins that
35 inhibit the growth of competing fungal species [1–7]. The killer phenotype was reported in the
36 budding yeast *Saccharomyces cerevisiae* in 1962, when Bevan *et al.* observed that spent culture
37 medium had antifungal properties [8]. The potential future application of killer toxins as novel
38 fungicides has led to the discovery of many different killer yeasts with varying specificities and
39 toxicities [9,10]. In the *Saccharomyces* yeasts, including several commonly used laboratory
40 strains, it is estimated that 9–10% are able to produce killer toxins [11,12]. Despite the number of
41 known killer yeasts that have been identified, a complete understanding of the diversity of killer
42 toxins and their evolutionary history is lacking, even within the *S. cerevisiae*, which has been
43 used as a model organism to study killer toxins for decades.

44
45 In general, killer toxin production by *S. cerevisiae* is most often enabled by infection with
46 double-stranded RNA (dsRNA) totiviruses of the family *Totiviridae* [13–15]. Totiviruses that
47 infect *Saccharomyces* yeasts are approximately 4.6 kbp in length and only encode two proteins,

49 Gag and Gag-pol (by a programmed -1 frameshift). These proteins are essential for the assembly
50 of virus particles and the replication of viral RNAs [16,17]. Totiviruses therefore enable killer
51 toxin production by acting as helper viruses for the replication and encapsidation of 'M' satellite
52 dsRNAs, which often encode killer toxins. These satellite dsRNAs are not limited to
53 *Saccharomyces* yeasts, as they have been identified within other yeasts of the phylum
54 Ascomycota (i.e. *Zygosaccharomyces bailii*, *Torulaspora delbrueckii*, and *Hanseniaspora*
55 *uvarum* [18–20]) and the phylum Basidiomycota (*Ustilago maydis* [21,22]). In the Ascomycota,
56 the organization of dsRNA satellites is similar, with all sequenced dsRNA satellites encoding a
57 5' terminal sequence motif with the consensus of G(A)₄₋₆, one or more central homopolymeric
58 adenine (poly(A)) tracts, and a 3' UTR containing packaging and replication *cis*-acting elements
59 [16]. In all known satellite dsRNAs, killer toxin genes are positioned upstream of the central
60 poly(A) tract and encode a single open reading frame. Identifying and characterizing dsRNAs is
61 challenging, as the sequencing of dsRNAs currently requires specialized techniques for nucleic
62 acid purification and conversion to cDNAs [23–25]. This has limited our understanding of the
63 diversity of dsRNA-encoded killer toxins within fungi.
64

65 In *Saccharomyces* yeasts, there are eight known satellite dsRNA-encoded killer toxins that have
66 been identified in *Saccharomyces* yeasts (K1, K2, K28, Klus, K21, K45, K62, and K74), with the
67 majority found in the species *S. paradoxus* [26–30]. Owing to their early identification and
68 distinct mechanisms of action, most functional studies of killer toxins have focused on the *S.*
69 *cerevisiae* killer toxins K1 and K28. *Saccharomyces*-associated killer toxin genes appear to be
70 evolutionarily diverse and unrelated by nucleotide and amino acid sequence. Despite the lack of
71 homology, there are similarities in the posttranslational modifications that occur during killer
72 toxin maturation prior to extracellular export of the active toxin. Killer toxins are expressed as
73 pre-processed toxins (protoxins) with hydrophobic signal peptides that are required for
74 extracellular secretion [31]. These signal peptides are cleaved by a signal peptidase complex in
75 the endoplasmic reticulum. In the case of K1 and K28 toxins, the resulting protoxins are
76 glycosylated and then crosslinked by disulfide bonds in the endoplasmic reticulum. Disulfide
77 bonds in killer toxins are critical for both protein stability and toxicity [32–34]. The disulfide-
78 linked protoxins are further cleaved by carboxypeptidases in the Golgi network to yield mature
79 toxins that are secreted by exocytosis [35]. Mature K1 and K28 toxins can be described as α/β
80 heterodimers that are linked by interchain disulfide bonds. Once outside of the producer cell,
81 mature killer toxins can exert their antifungal activities upon competing fungi.
82

83 The K1 toxin was the first killer toxin to be discovered in *S. cerevisiae* and the mechanism of
84 action has been studied extensively (reviewed in [36]). K1 is an ionophoric toxin that attacks the
85 cell membrane of susceptible yeast cells and is mechanistically similar to the K2 toxin [37].
86 Interaction of K1 with a susceptible cell occurs in a two-step process that involves the initial
87 energy-independent binding of the α - and β -domains of the toxin to the β -1,6-D-glucan
88 polysaccharide of the yeast cell wall [31,34,38,39]. After binding surface glucans, K1
89 translocates to the cell membrane where it interacts with a secondary receptor, Kre1p [40].
90 Although there is still uncertainty on the exact mechanism of action of K1, it is likely that
91 intoxication is caused by α -domain dependent formation of membrane channels and the
92 subsequent selective leakage of monovalent cations from the cytoplasm [41]. K1 is lethal even at
93 low concentrations, causing the apoptosis of sensitive cells [42]. Importantly, killer toxin
94 immunity is provided by the immature protoxin by a mechanism that is not well understood. For

95 K1, this activity has been mapped to the α -subunit and 31 amino acids of the adjacent g-subunit
96 that is usually removed during toxin maturation [39,43].

97
98 In this study we describe the identification of a novel killer toxin encoded by a satellite dsRNA
99 in *S. paradoxus*. This killer toxin has low primary sequence identity to the canonical K1 toxin
100 produced by *S. cerevisiae* but has a similar secondary structure and domain organization. Due to
101 its relatedness to K1, we have named this new killer toxin K1-like (K1L). This is the first
102 example of a dsRNA-encoded killer toxin from *Saccharomyces* yeasts that has significant
103 homology to a larger family of DNA-encoded “K1 killer toxin-like” (KKT) genes within the
104 Saccharomycotina. Cloning and ectopic expression of *K1L* and *KKT* genes confirmed that they
105 are functional extracellular antifungal toxins. These proteins represent a new family of killer
106 toxins that are both diverse and show signs of rapid protein evolution. This work provides
107 insights into the expansion and horizontal transfer of killer toxin genes in yeasts, whether they
108 are encoded upon DNAs or mobilized and replicated as dsRNAs by viruses.

109
110 **Methods**
111

112 **Killer phenotype assays**

113 Killer toxin production by yeasts was measured using killer yeast agar plates (YPD agar plates
114 with 0.003% w/v methylene blue at pH 4.6), as described previously [23]. Toxin production was
115 identified by either a zone of growth inhibition or methylene blue-staining of the susceptible
116 lawn yeasts. The pH optima of killer toxins produced by different yeasts was measured on killer
117 yeast agar plates adjusted to pH values of 4.0, 5.0 and 5.5. The diameter of growth inhibition
118 zones was measured with calipers

119
120 **Killer toxin enrichment**

121 Strains of killer yeast were grown in 2 mL of YPD medium (pH 4.6) overnight at room
122 temperature with vigorous shaking (250 rpm). The culture was centrifuged at 3,100 \times g for 5 min
123 followed by filtration of the culture medium through a 0.22 μ m filter. Filtered growth medium
124 was added 1:1 with 4°C supersaturated ammonium sulfate solution and mixed by inversion and
125 incubated on ice for 3 h. The precipitated proteins were collected by centrifugation at 20,800 \times g
126 for 10 min at 4°C. The supernatant was then removed, and the precipitated proteins suspended in
127 10 μ L of YPD pH 4.6. Killer toxins were incubated either at room temperature, or heat-
128 inactivating at 98°C for 2 min before treating lawns of susceptible yeasts spread onto killer assay
129 agar plates.

130
131 **Curing *Saccharomyces* yeasts of dsRNAs**

132 Cycloheximide, anisomycin, and high temperatures were used to create strains of yeasts that lack
133 satellite dsRNAs. Yeasts were first grown overnight in 2 mL of liquid YPD medium before 1 μ L
134 of cell suspension was transferred to YPD agar with either cycloheximide (0.4 - 5.0 μ M) or
135 anisomycin (0.8 μ M). Yeast cultures were incubated for 2-5 days at 23°C to recover surviving
136 cells. Curing satellite dsRNAs using temperature involved incubating yeast cultures on YPD agar
137 for 2-5 days at 30°C, 37°C, or 40°C. Growing cells were streaked onto YPD agar plates from the
138 heat-treated agar plates and were incubated for an additional 2-3 days at 23°C. The colonies
139 resulting from chemical or temperature treatment were analyzed for the loss of killer toxin

140 production by replica plating onto killer assay agar plates seeded with a killer toxin sensitive
141 yeast strain.

142

143 **Short read sequencing of satellite dsRNAs**

144 The protocol followed for the preparation of dsRNAs, cDNAs, Nextera Illumina libraries, and
145 sequence analysis were the same as we previously reported, with several amendments detailed
146 below [23]. The extracted dsRNAs were not incubated with oligo d(T)25 magnetic beads and 2×
147 LTE buffer was replaced with 2× STE (500 mM NaCl; 20 mM Tris-HCl, pH 8.0; 30 mM EDTA,
148 pH 8.0). Reads were cleaned with fastp and assembled with SPAdes 3.13.0 [44,45]. HTStream
149 (<https://github.com/ibest/HTStream>) was used to clean the reads with stringent parameters.
150 SPAdes assembler v3.11.1 was used to assemble reads using default parameters. The contigs
151 produced for each dataset were used to build a bowtie2 index and were mapped to create BAM
152 files that were subsequently visualized using Geneious version 8.1 (<https://www.geneious.com>).
153 Sequence reads were deposited to the NCBI Sequence Read Archive with the accession number:
154 TBA.

155

156 **Sanger sequencing of SpV-M1L**

157 Reverse transcriptase PCR was used to generate overlapping DNAs that represented the genetic
158 sequence of the satellite dsRNA SpV-M1L. The approximate molecular weight of these DNAs
159 was determined by agarose gel electrophoresis and capillary electrophoresis ((Fragment
160 Analyzer, Agilent Technologies Inc, La Jolla, CA, USA). DNAs were cloned using the pCR-
161 Blunt II-TOPO vector and subjected to Sanger sequencing (See File S3 for the full list of primers
162 used).

163

164 **Cloning of genome-encoded killer toxin genes**

165 Genomic DNAs were extracted from *K. africana*, *N. dairenensis*, *N. castellii*, *T. phaffii*, *P.*
166 *membranifaciens* using the method of Hoffman and Wilson (1987) and were used as templates
167 for PCR (see table S1 for the full list of primers used) [46]. Killer toxin genes were cloned into
168 pCR8 by TOPO-TA cloning (Thermo Fisher) and the DNA sequences were confirmed by Sanger
169 sequencing. The K1L gene was commercially synthesized (GeneArt by Thermo Fisher) and used
170 as a PCR template to amplify K1L. The PCR-derived K1L gene was cloned into pCR8 by
171 TOPO-TA cloning and confirmed via Sanger sequencing. All killer toxin genes were sub-cloned
172 using Gateway technology into the destination vector pAG426-Gal-ccdB for ectopic expression
173 in either *S. cerevisiae* or *S. paradoxus* [47,48].

174

175 **Expression of K1L and related homologs from the Ascomycota**

176 For ectopic expression of killer toxins, plasmids encoding toxin genes were used to transform
177 either *S. cerevisiae* BY4741 or a customized non-flocculant tractable derivative of *S. paradoxus*
178 A12 (named A12C) [49]. Transformants were selected on complete medium lacking uracil. To
179 assay toxin expression, a single colony of each transformed strain was used to inoculate a series
180 of consecutive overnight cultures in 2 mL of complete medium lacking uracil first with dextrose,
181 then raffinose, and finally galactose at 30°C with shaking (250 rpm). The optical density of the
182 final 2 mL culture was normalized to an OD600 of 1.0 and 1 mL was centrifuged at 3,000 × g for
183 5 min. The supernatant was removed, and the cell pellet was disrupted by gentle agitation. 2.5
184 µL of the resulting cell slurry was used to inoculate YPD and YPG plates (with 0.003% w/v

185 methylene blue, pH 4.6) seeded with a killer toxin-susceptible yeast strain. Inoculated plates
186 were incubated for 48-72 h at 25°C until killer toxin production was visible (24-72 h).

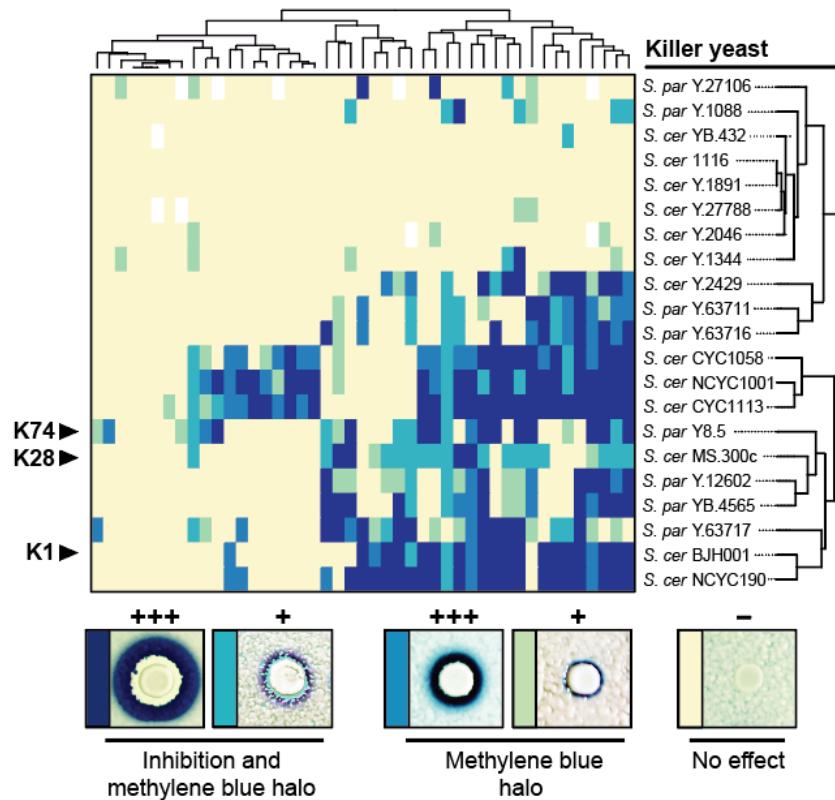
187

188 **Phylogenetic analyses**

189 Killer toxin gene sequences were aligned using MUSCLE and manually trimmed to represent the
190 most confident alignment of the α -domain. MEGA (version 7) was used for phylogenetic
191 analysis using neighbor-joining and maximum likelihood methodologies. The optimal model for
192 amino acid substitution was determined as the Whelan and Goldman model with a gamma
193 distribution. 500 bootstrap replicates were used to construct a phylogenetic model with the
194 highest log-likelihood.

195

196


197 **Results**

198

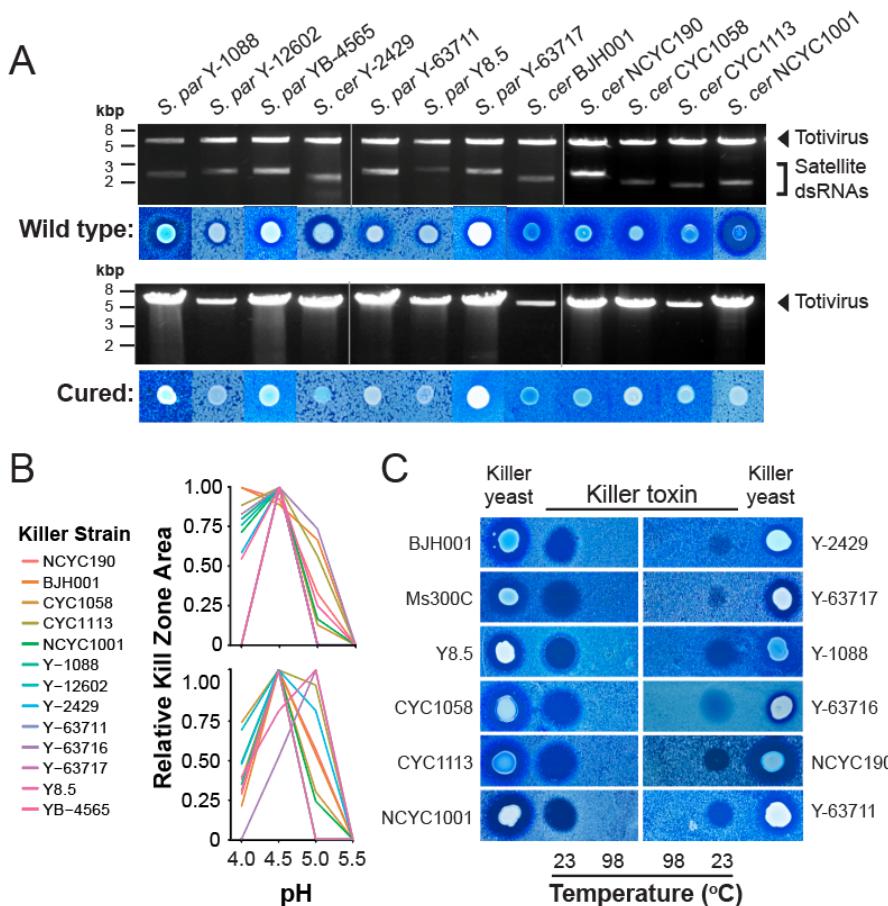
199 **The Identification of New Strains of Killer Toxin-Producing Yeasts.** A total of 110 strains of
200 *Saccharomyces* yeasts were obtained from the USDA Agricultural Research Service (ARS)
201 culture collection and screened to identify the production of novel killer toxins. The first screen
202 used eight yeasts from four different species as indicators of toxin production on “killer assay
203 media” (YPD, pH 4.6 with methylene blue) and found that 22% (24 strains) could inhibit the
204 growth of at least one strain of yeast spread as a lawn (File S1). To identify the types of killer
205 toxins based on their unique spectrum of activities, 13 of the killer yeasts were further screened
206 against 45 indicator lawns of yeasts. Four strains of *S. cerevisiae* that have been previously
207 described in the literature to produce killer toxins of unknown types were also included
208 (NCYC1001, NCYC190, CYC1058, and CYC1113) [50–52]. To facilitate the classification of
209 different toxin types, yeasts that produce K1 (BJH001), K28 (MS300c), and K74 (Y8.5) killer
210 toxins, and a non-killer yeast (*S. cerevisiae* 1116) were included for comparison. The degree of
211 growth inhibition by each killer yeast was scored qualitatively based on the appearance of zones
212 of growth inhibition and methylene blue staining of the surrounding indicator strain on agar
213 plates (Fig. 1 and File S2).

214

215 The known strain- and species-specificity of killer toxins have been previously used to biotype
216 different yeasts [53–57] and to identify groups of unknown killer toxins [3,58]. Cluster analysis
217 grouped the killer yeasts based on their ability to inhibit growth and revealed that no two strains
218 of killer yeast have the exact same spectrum of antifungal activity. Clustering revealed that that
219 the antifungal specificity of *S. cerevisiae* NCYC190 is closely correlated with that of the K1
220 killer yeast *S. cerevisiae* BJH001, with 91% identical interactions with competing lawn strains.
221 The killer toxins K28 (MS300c) and K74 (Y8.5) have similar activities, even though they are
222 different types of killer toxins [27,59]. *S. cerevisiae* CYC1113, CYC1058, and NCYC1001 have
223 the broadest spectrum of activity but do not cluster with either K1, K28, or K74 killer yeasts. The
224 killer toxin activity of *S. paradoxus* Y-63717 clusters with K1 (49% identical interactions),
225 showing both gain and loss of function. This result is particularly intriguing because evidence of
226 K1 production by *S. paradoxus* is inconsistent between different research groups with recent
227 studies suggesting that K1 toxins are unique to *S. cerevisiae* [12,60,61]. The remaining killer
228 yeasts that were identified have weaker inhibitory activities with weak clustering with known
229 killer yeasts.

230
231
232
233
234
235
236
237
238

Fig. 1. The strain and species specificity of killer toxins produced by *Saccharomyces* yeasts. A total of 21 killer yeasts were assayed for killer toxin production on agar plates seeded with 47 different indicator strains. Killer toxin activity was qualitatively assessed based on the presence and size of zones of growth inhibition or methylene blue staining around killer yeasts. Darker colors on the cluster diagram represent a more prominent killer phenotype with yellow indicating no detectable killer phenotype. The non-killer yeast strain *S. cerevisiae* 1116 was used as a negative control. Results were analyzed using the R package gplots to cluster killer yeast and indicator yeasts based on killer toxin cell tropism and susceptibility, respectively.

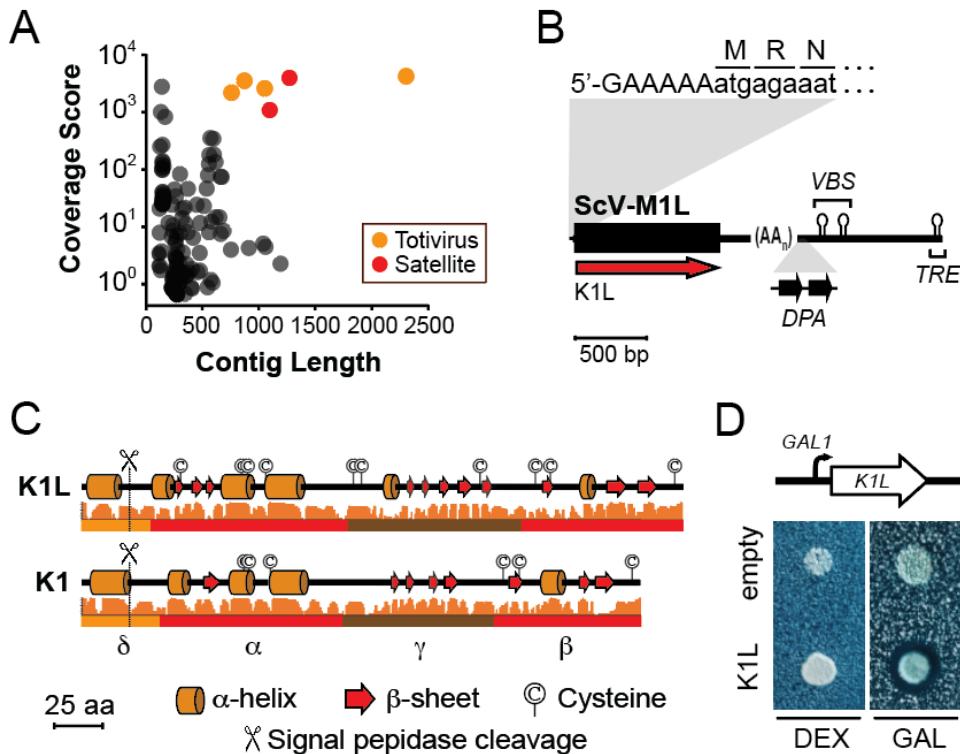

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Killer Yeasts Harbor Satellite dsRNAs that Encode Proteinaceous Killer Toxins.

The production of killer toxins by yeasts is often associated with the presence of satellite dsRNAs that are maintained by totiviruses [17,36]. To determine if the killer phenotype correlates with the presence of dsRNAs, cellulose chromatography was used to selectively purify dsRNAs from 19 killer yeasts (including *S. cerevisiae* BJH001 as a positive control [23]). The analysis of extracted nucleic acids revealed that 68% of the killer yeasts contained dsRNAs indicative of totiviruses (~4.6 kbp) and satellite dsRNAs (<2 kbp) (Fig. 2A; top). The remaining killer yeasts were found to either contain only totiviruses (16%) or no dsRNAs (16%), which suggests that killer toxin production by these strains is genome encoded (Fig. S1). To confirm that the observed satellite dsRNAs encode killer toxin genes, killer yeasts were treated with either cycloheximide, anisomycin, or incubated at elevated temperatures to select for the loss of dsRNAs [62,63]. The majority of killer yeast (86%) lost their killer phenotype after exposure to chemical or thermal insult (Fig. 2A; bottom). Analysis of the dsRNAs within yeast strains that had lost killer toxin production showed the loss of satellite dsRNAs, but with the maintenance of totivirus dsRNAs (Fig. 2A; bottom). The same treatments were unable to select for the loss of the killer phenotype in five representative strains that lacked dsRNA satellites (Y-1344, Y-2046,

255 YB-432, Y-1891, and Y-27788). Relative to the wild type strains, most of the cured strains
 256 exhibited an elevated copy number of totivirus dsRNAs. This phenomenon has been previously
 257 observed and is attributed to the fitness cost of parasitism by satellite dsRNAs [64].
 258

259 The dsRNA-encoded killer toxins identified have a pH optimum between 4.5 and 5, with no
 260 inhibitory activity at pH 5.5 (Fig. 2B). To confirm that the identified killer toxins are
 261 proteinaceous, each was purified by ammonium sulfate precipitation and used to challenge
 262 susceptible yeasts. Zones of inhibition were clearly visible on confluent lawns of yeast cells for
 263 all of the killer toxins tested (Fig. 2C). The inhibitory activities of these precipitates were heat-
 264 labile, and the toxicity was lost after incubation at 98°C for 2 minutes. Together, these data
 265 suggest that these killer toxins have similar biochemical characteristics to known proteinaceous
 266 killer toxins despite their differing inhibitory effects towards yeasts.

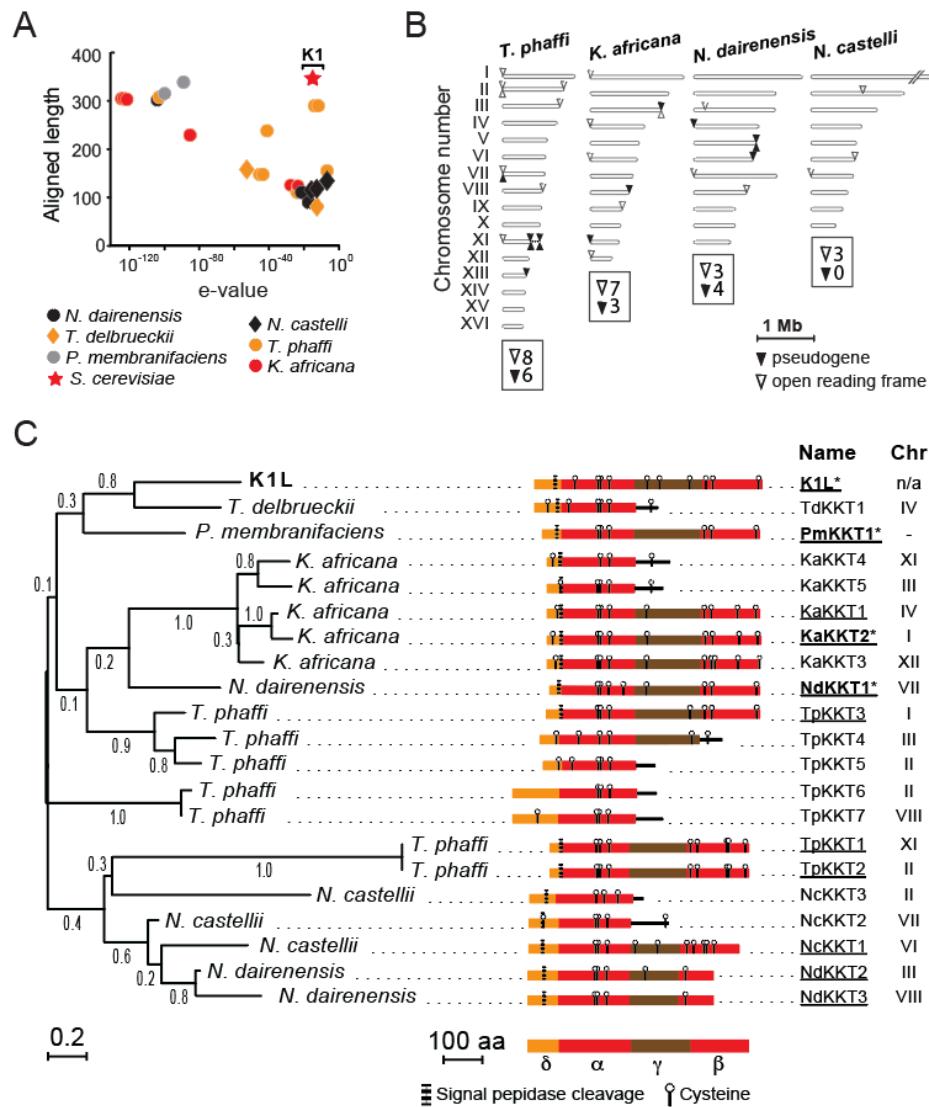


267
 268 **Fig. 2. Analysis of dsRNAs present within killer yeasts and the biological properties of their killer toxins.** (A)
 269 The extraction and analysis of dsRNAs from totiviruses and associated satellites in *Saccharomyces* yeasts that
 270 produce killer toxins (top panel) or have lost the killer phenotype by exposure to cycloheximide, anisomycin, or
 271 elevated temperatures (bottom panel). (B) The relative pH optimum of killer toxins against the indicator yeasts *S.*
 272 *cerevisiae* YB-4237 (top) and DSM70459 (bottom). (C) Enrichment and concentration of killer toxins from spent
 273 growth media by ammonium sulfate precipitation and their loss of inhibitory activity after incubation at 98°C.
 274

275 **The Discovery of a New Killer Toxin Produced by *S. paradoxus*.** To identify the unknown killer
 276 toxins produced by killer yeasts, dsRNAs were purified and subjected to a short-read sequencing
 277 pipeline for dsRNAs [23]. BLASTn analysis of *de novo* assembled contigs revealed that dsRNAs

278 within strains CYC1058 and NCYC1001 encode canonical K2 toxins and NCYC190 a canonical
279 K1 toxin (Fig. S2). The contigs derived from the dsRNAs of Y-63717 assembled into 125
280 different contigs, with six >750 bp in length and a coverage score >1,000 (Fig. 3A). BLASTn
281 analysis of these high-quality contigs identified the dsRNA genome of the totivirus L-A-45 from
282 *S. paradoxus* N-45 with 100% coverage and 95.5% nucleotide identity [27]. However, the
283 remaining contigs did not match the nucleotide sequence of any known killer toxin in
284 *Saccharomyces* yeasts. A combination of 5' and 3' RACE, reverse transcriptase PCR, and
285 capillary electrophoresis was used to assemble the complete sequence of the putative dsRNA
286 satellite from Y-63717 (Fig. 3B and S3). The novel satellite dsRNA is approximately 2371 bp in
287 length with a single open reading frame (ORF) that encodes a protein of 340 amino acids. The 5'
288 ORF is positioned upstream of a central poly(A) tract of ~220 bp (Fig. 3B and S3). The 5'
289 terminus has a nucleotide sequence of 5'-GAAAAAA that is found in many satellites dsRNAs
290 (Fig. S3) and is predicted to fold into a large stem-loop structure (Fig. S4). Downstream of the
291 poly(A) tract in the 3' untranslated region (UTR) there are elements of secondary structure that
292 are indicative of replication (terminal recognition element; *TRE*) and packaging signals (viral
293 binding site; *VBS*) that have been well characterized in the canonical M1 satellite dsRNA from *S.*
294 *cerevisiae* (ScV-M1) (Fig. 3B and S3) [65–67]. In addition to RNA secondary structures, there
295 are also two direct repeats of the sequence motif named “Downstream of Poly(A)” (*DPA*; 5'-
296 CTCACCYTGAGNHTAACTGG-3') that is found in different satellite dsRNAs isolated from *S.*
297 *paradoxus* (M45, M74, and M62), *S. cerevisiae* (M1 and Mlus), *Zygosaccharomyces bailii*
298 (MZb), and *Torulaspora delbrueckii* (Mbarr) (Fig. S3) [19,68].
299

300 The length and positioning of the 5' ORF of the satellite dsRNA in Y-63717 strongly suggests
301 that it encodes a killer toxin (Fig. 2). A PSI-BLAST search of the NCBI database with two
302 iterations found that the putative killer toxin has weak homology to the canonical K1 toxin from
303 *S. cerevisiae* (99% coverage, 21% amino acid identity, e-value 4×10^{-17}) (Fig. 4A). Based on this
304 homology, the putative killer toxin was named K1L (K1-like) and the dsRNA satellite was
305 named *Saccharomyces paradoxus* virus M1-like (SpV-M1L). The organization of the functional
306 domains of K1L appears to be similar to K1 based on the secondary structure, conserved cysteine
307 residues, and the predicted signal peptidase cleavage sites (Fig. 3C) [69]. K1L contains ten
308 cysteine residues, two of which are likely important for interchain disulfide linkage (Cys91) and
309 killer toxin immunity (Cys257) based on their alignment with cysteines from K1 [32]. To
310 confirm that the K1L is an active killer toxin, it was ectopically expressed by the non-killer strain
311 *S. paradoxus* A12C using a galactose inducible promoter. A well-defined zone of growth
312 inhibition was visible when the strain was grown on galactose-containing media (Fig. 3D). No
313 K1L toxin expression was observed when cells were plated on dextrose-containing growth
314 media. Together, these data confirm the identification of a new dsRNA satellite in
315 *Saccharomyces* yeasts and a novel killer toxin related to K1.



316
317 **Fig. 3. Short-read sequencing and analysis of the K1L killer toxin from *S. paradoxus* Y-63717.** (A) Sequence
318 contigs after *de novo* assembly of sequence reads represented by contig coverage score and contig length. BLASTx
319 analysis was used to annotate contigs as similar to totiviruses or satellite dsRNAs. (B) Schematic of the organization
320 of the SpV-M1L satellite dsRNA (C) Jpred secondary structure prediction of the K1 killer toxin and K1L killer toxin
321 from Sp-M1L with confidence score plotted as a histogram. Predicted domain boundaries are drawn below the
322 secondary structure prediction. (D) Ectopic expression of K1L from a plasmid in the non-killer yeast *S. paradoxus*
323 A12 induced by the presence of galactose in the growth media.

324
325 **K1L Homologs are Found in Yeasts of the Saccharomycotina.** The PSI-BLAST search that
326 identified K1L as a homolog of K1 also identified 24 hypothetical “K1-like Killer Toxin” (KKT)
327 genes in six diverse species of non-*Saccharomyces* yeasts from the subphylum
328 Saccharomycotina. The species *Kazachstania africana*, *Naumovozyma castellii*, *Naumovozyma*
329 *dairenensis*, *Tetrapisispora phaffii*, and *Pichia membranifaciens* encode KKT genes that closely
330 matched K1L (aligned >300 amino acids, e-value <10⁻⁸⁰) and represent yeasts from the families
331 *Saccharomycetaceae* and *Pichiaceae* (Fig. 4A and Table S1) [70]. Importantly, genomic KKT
332 genes appear to be unique to these particular species and absent from other related yeasts (i.e.
333 *Kazachstania naganishii*, *Tetrapisispora blattae*, and *Pichia kudriavzevii*). The length of all KKT
334 ORFs was between 153-390 amino acids with 11 of the KKT proteins being similar in length to
335 K1L (~340 amino acids) and an amino acid identity between 25-38% (Fig. 4A). In addition,
336 BLASTn was used to identify 14 additional pseudogenes that, in some species, outnumber intact
337 KKT genes (Fig. 4B and Table S1). All KKT genes and related pseudogenes are found in multiple
338 copies that vary in frequency between different yeast species and are mostly located within
339 subtelomeric regions (within ~20 kb of the assembled chromosome ends) (Fig. 4B). Of the 38
340 KKT genes and pseudogenes found within six different species, only two are positioned away
341 from the subtelomeric regions in the yeasts *N. dairenensis* and *N. castellii* (Fig. 4B). Analysis of
342 the chromosomal position of these two genes revealed that their insertions are unique to each
343 species, are absent from other related species at the syntenic chromosomal location, and are

344 inserted close to tRNAs (Fig. S5). It was noted that six of the *KKT* genes and pseudogenes from
 345 *K. africana* contained a characteristic “GAAAAAA” sequence motif close to the start codon of
 346 each ORF (Fig. S5).

347

348

349

350

351

352

353

354

355

356

357

358

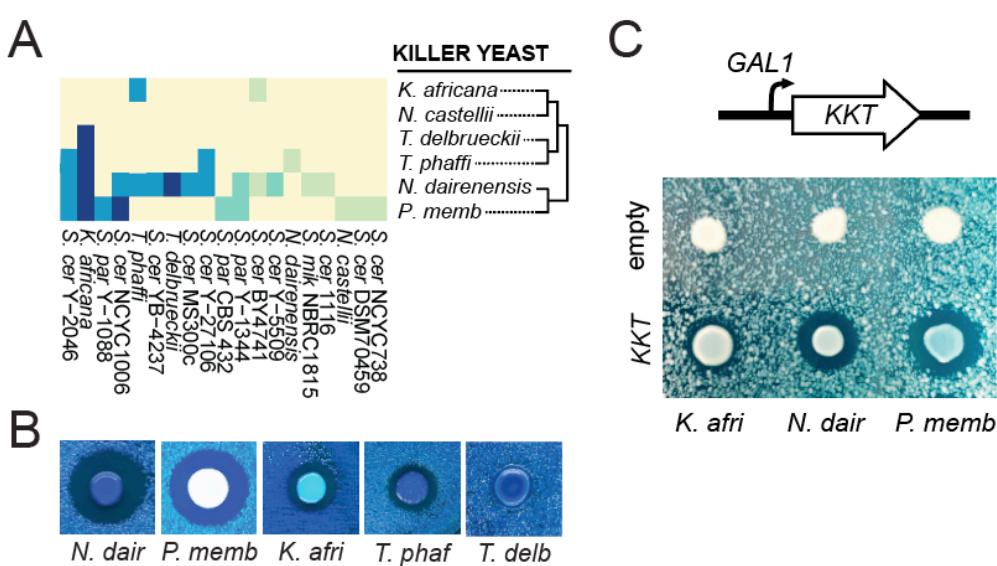
359

360

361

362

Fig. 4. K1L genes are broadly distributed across the subphylum Saccharomycotina and are primarily subtelomeric in their genomic location (A) PsiBLAST analysis of the killer toxin encoded upon the satellite dsRNA from *S. paradoxus* Y-63717. (B) Location of *KKT* genes and pseudogenes on the linear representation of the chromosomes of four yeasts of the *Saccharomycetaceae*. Chromosome I of *N. castelli* did not contain any *KKT* genes and was truncated due to its large size for clarity (C) Unrooted maximum likelihood phylogeny of the aligned α -domain of 21 *KKT* proteins from six species of yeast and one dsRNA satellite. Numerical values represent the bootstrap support for the placement of each node. The domain organization of each protein is illustrated and annotated based on the four-domain structure of K1. Underlined killer toxin names represent those that were cloned and functionally tested for antifungal activity. *Killer toxins with confirmed antifungal activities.


To ascertain the evolutionary history and relatedness of K1L and its homologs, a multiple amino acid sequence alignment was constructed. The most confident alignment was achieved between the putative α -domain of each protein and included eight truncated proteins with premature stop codons. Phylogenetic analysis was performed using maximum likelihood (Fig. 4C) and

363 neighbor-joining (Fig. S6) methodologies with 500 bootstrap iterations as implemented by
364 MEGA [71]. The tree topologies of the two phylogenetic models are in general agreement and
365 show the distinct clustering of KKT killer toxins from each species (Fig. 4C and S6). BLASTn
366 analysis and nucleotide alignment of the 5' and 3' UTRs of the *KKT* genes from *K. africana*
367 indicates that flanking nucleotide sequence is between 83-94% identical over ~2,000 bp. There is
368 also evidence of gene duplication of *KKT* within *N. dairensis* based on their close
369 phylogenetic relationships and similar untranslated regions. The acquisition of *KKT* genes in *T.*
370 *phaffii* appears to have occurred on three separate occasions resulting in three distinct clades of
371 genes that have significant sequence divergence from each other and other *KKT* genes. Each
372 clade appears to be composed of 2-3 closely related paralogs, suggesting recent gene duplication
373 events of a single ancestral gene. To ascertain the evolutionary trajectory of *KKT* paralogs, the
374 rate of accumulation of nonsynonymous (dN) and synonymous (dS) mutations were calculated
375 for *KKT* paralogs that could be confidently aligned by their nucleotide sequences. When dN/dS
376 was calculated for all codons over the evolutionary history of the sequence pairs, all three pairs
377 of paralogs have evolved under purifying selection since their duplication (dN/dS = 0.72, 0.41,
378 0.23) [72]. However, a domain-resolution approach using a sliding window to calculate dN/dS
379 indicates evidence of positive selection (dN/dS >1) in the α - and/or γ -domains (Fig. S7).
380

381 ***A New Family of Antifungal Killer Toxins.*** The relatedness of the *KKT* genes to the killer toxin
382 *K1L* suggests that they encode antifungal killer toxins. To assay for killer toxin production by
383 the yeasts that encode *KKT* genes, *P. membranifaciens*, *N. dairensis*, *N. castellii*, *T.*
384 *delbrueckii*, *T. phaffii*, and *K. africana* were used to challenge 19 different yeast on killer assay
385 plates. With the exception of *N. castellii*, all of the *KKT*-encoding yeast species produced killer
386 toxins that caused growth inhibition of at least one other yeast (Fig. 5A and B). Each of these
387 killer yeasts was also immune to its own killer toxin, but susceptible to those produced by other
388 *KKT*-encoding yeasts. The production of killer toxins by these species is consistent with the
389 previously reported killer activity of *P. membranifaciens*, *T. delbrueckii*, and *T. phaffii*
390 [19,73,74]. There was no evidence of satellite dsRNAs in any of the *KKT*-encoding yeasts,
391 except for the detection of an unknown high molecular weight dsRNA within *P.*
392 *membranifaciens* NCYC333 (Fig. S8). The differences in killer toxin production by different
393 strains of *P. membranifaciens* indicated that there could be strain-specific differences in *KKT*
394 genes. The published genome sequence of *P. membranifaciens* Y-2026 revealed a large central
395 deletion in the γ -domain of its *KKT* gene (Fig. S9). Sanger sequencing of the same *KKT* gene
396 from *P. membranifaciens* Y-2026 acquired directly from the NRRL culture collection failed to
397 identify the same deletion, instead there was an indel within the γ -domain that caused the
398 truncation of the killer toxin gene (Fig. S9). Sequencing of the *K1L* gene from *P.*
399 *membranifaciens* NCYC333 confirmed a full-length *K1L* gene that correlated with robust killer
400 toxin production by the strain. However, Y-2026 was still able to produce killer toxins,
401 suggesting the production of other antifungal molecules by *P. membranifaciens*.
402

403 Although *P. membranifaciens*, *N. dairensis*, *T. delbrueckii*, *T. phaffii*, and *K. africana* are
404 killer yeasts (Fig. 5A and B), it was unclear whether *KKT* genes were directly responsible for the
405 observed production of killer toxins. Indeed, *T. phaffii* has been reported to express an antifungal
406 glucanase and K2 killer toxin-related genes have been found in the genome of *K. africana*
407 [68,73]. To demonstrate that *KKT* genes are active killer toxins with antifungal activities, 10 full-
408 length *KKT* genes were cloned into galactose inducible expression vectors (labelled in Fig. 4C).

409 Active killer toxin production from a non-killer strain of *S. cerevisiae* transformed with *KKT*
410 genes was assayed against 13 lawns of yeasts using galactose containing agar plates. The
411 majority of *KKT* genes did not cause any noticeable growth inhibition or methylene blue staining
412 of competing yeasts (Fig. S10). However, killer toxins from *P. membranifaciens* NCYC333, *K.*
413 *africana*, and *N. dairenensis* were able to create visible zones of growth inhibition (Fig. 5C). No
414 growth inhibition was observed when the genes were not expressed by plating cells on dextrose
415 (Fig. S10), or when *S. cerevisiae* was transformed with an empty vector control (Fig. 5C).
416 Altogether, these data show that *KKT* genes encode active killer toxins and confirm the
417 discovery of a new family of genome and dsRNA-encoded antifungal proteins in the
418 Saccharomycotina.
419

420
421
422 **Fig. 5. The antifungal activity of *KIL* toxins cloned from *K. africana*, *N. dairenensis*, and *P. membranifaciens***
423 **when ectopically expressed by *S. cerevisiae*.** (A) *KKT*-encoding yeasts were assayed for killer toxin production on
424 killer assay agar plates seeded with indicator strains. Killer toxin production was judged by the presence of zones of
425 growth inhibition or methylene blue staining (see Fig. 1). (B) Representative pictures of killer toxin production by
426 different species of yeast from the Saccharomycotina. (C) Galactose-dependent ectopic expression of *KKT* genes
427 from *K. africana* (KaKKT2), *P. membranifaciens* (PmKKT1) and *N. dairenensis* (NdKKT1) can inhibit the growth
428 of *K. africana*.
429
430

431 Discussion

432 The most significant finding of this study is the discovery of a novel satellite dsRNA that
433 encodes a killer toxin related to K1 and a larger family of DNA-encoded homologs in yeasts.
434 The relatedness of killer toxins encoded on dsRNAs and DNAs suggests that the origins of K1L
435 are outside of the *Saccharomyces* genus, with killer toxin gene mobilization and interspecific
436 transfer by dsRNAs. Many of these killer toxins have been shown to be biologically active and
437 are diverse in their amino acid sequences with evidence of their rapid evolution by gene
438 duplication and elevated rates of non-synonymous mutations. This demonstrates the likely
439 benefits of killer toxin acquisition and the ongoing mobilization of these genes between
440 divergent species of yeasts. The more specific implications of our findings are discussed below.
441

442 **Horizontal Acquisition and Copy Number Expansion of Killer Toxins in Fungi.** *KKT* genes
443 have most likely been acquired by horizontal gene transfer because of their sporadic distribution
444 and lack of common ancestry in closely related yeast species. Moreover, the lack of relatedness
445 of *KKT* genes in these species suggests that they have independent origins. Fungi are known to
446 acquire foreign DNAs from other species of fungi [75–80] and bacteria [81,82]. The interspecific
447 capture of DNAs derived from retrotransposons, viruses, and plasmids has also been observed
448 [83–86]. Specifically, genome integrated copies of dsRNA-encoded killer toxins homologous to
449 KP4, K1, K2, Klus, and Kbarr have been found within bacteria and fungi, indicating gene flow
450 between dsRNAs and DNAs across taxonomic divisions [68,87]. However, the vast majority of
451 these putative killer toxins are uncharacterized, and it remains unclear as to whether they are
452 biologically active.

453
454 Phylogenetic evidence suggests that cross-species transmission of viruses between fungi has
455 occurred on multiple independent occasions between fungi [88,89]. Laboratory experiments have
456 also successfully demonstrated extracellular [90,91] and interspecific virus transfer [27]. In
457 particular for yeasts, mating and hybridization between different species has been frequently
458 observed, and is a mechanism for gene introgression, as well as for the acquisition of
459 retrotransposons and plasmids. The close association of many yeast species in natural and
460 anthropic habitats may increase the likelihood of horizontal gene transfer or invasion by dsRNA
461 viruses and satellites [92–94]. Specifically, the satellite dsRNA that was identified in this study
462 (named SpV-M1L) and an unrelated satellite dsRNA (SpV-M45) are both found within
463 sympatric Far Eastern yeast strains of *S. paradoxus* [27,95]. The parasitism of L-A-45 by both of
464 these satellite dsRNAs in different strains suggests that they were acquired by horizontal gene
465 transfer and evolved distinct mechanisms to enable their replication and packaging by the same
466 totivirus. Unlike *Saccharomyces* yeasts, the presence of active RNAi within the *KKT*-encoding
467 yeasts would hinder the horizontal acquisition of dsRNA viruses from other yeasts, which could
468 explain the abundance of genome encoded killer toxins [96,97]. However, these yeasts can be
469 infected with dsRNA viruses as *T. delbrueckii* can support the replication of the putative totivirus
470 TdV-LAbarr and an associated satellite [19]. Invasion of these species and the evasion of active
471 RNAi by viruses would enable the broad mobilization of killer toxins and viral sequences
472 encoded upon dsRNAs.

473
474 To capture killer toxin genes from dsRNAs, the erroneous reverse transcription of mRNAs by
475 endogenous retrotransposons would allow their insertion into the yeast genome by the
476 retrotransposon integrase protein [98]. The ancestor of the *KKT* genes from *K. africana* could
477 have been captured directly from dsRNAs as they all encode a 5'UTR “GAAAAAA” motif close
478 to the start codon that is characteristic of a satellite dsRNAs. The 5' UTR is often conserved
479 during mRNA capture by retrotransposons in addition to a short (20-50 bp) poly(A) tail, which
480 we were unable to identify in the 3' UTRs of the *KKT* genes from *K. africana* [98]. While the
481 majority of *KKT* genes are subtelomeric in their location, we have observed that non-
482 subtelomeric *KKT* genes from *N. dairensis* and *N. castellii* have been uniquely inserted into
483 genomic loci near tRNA genes. The genomic integration of retrotransposon cDNAs is selectively
484 targeted to tRNA genes and many extrachromosomal nucleic acids are identified at loci adjacent
485 to tRNAs [85]. This suggests the potential mobilization of these genes by retrotransposons and
486 direct insertion by integrase or cellular DNA repair mechanisms [99]

487

488 **The Benefits of Killer Toxin Acquisition.** Acquisition of foreign nucleotide sequences can be
489 associated with adaptation to a specific environmental niche, including genes associated with
490 nutrient acquisition, virulence, stress response, and interference competition (e.g. allelopathy)
491 [77,80,85]. The acquisition, expansion, and rapid evolution of *KKT* genes could represent
492 selection for a diverse arsenal of killer toxins to improve competitive fitness. The production of
493 killer toxins by different species of yeasts has been consistently shown to provide a competitive
494 advantage, particularly in a spatially structured environment at an optimal pH for killer toxin
495 activity [100–104]. However, competition between different killer yeasts selects for locally
496 adapted populations that are immune to the predominant killer toxins in a specific environmental
497 niche [7]. Furthermore, laboratory evolution of killer yeast populations has shown that the
498 selective pressure of killer toxin exposure increases the prevalence of killer toxin resistance
499 [105]. The rise of killer toxin resistance within a population would perhaps drive the acquisition
500 of new killer toxins or the subfunctionalization of existing killer toxins to maintain a selective
501 advantage. The majority of *KKT* genes are found within the subtelomeric regions of
502 chromosomes that would facilitate gene expansion due to elevated rates of homologous
503 recombination between telomeric repeat sequences. As has been noted for the subtelomeric *MAL*
504 gene family, gene duplication enables evolutionary innovation that is also evident in *KKT*
505 paralogs by elevated signatures of positive selection [106]. Other fungal killer toxin families
506 have also undergone copy number expansion and are experiencing elevated rates of non-
507 synonymous substitutions [87,107,108]. Both KP4-like and Zymocin-like killer toxin families
508 appear to have roles during antagonistic interactions with plants and fungi, respectively, which
509 could drive the continued evolution of novel killer toxins.
510

511 In addition to the expansion of *KKT* genes in yeasts, there is also gene loss and
512 pseudogenization. *KKT* gene inactivation is biased towards truncations that leave the α -domain
513 and a small portion of the γ -domain. This same α/γ region of K1 is the minimal sequence
514 required for functional killer toxin immunity that would provide a selective advantage by
515 protecting yeasts from exogenous killer toxins related to *KKT* [39,43]. *KKT* yeasts (with the
516 exception of *P. membranifaciens*) all encode C-terminally truncated *KKT* genes and are mostly
517 resistant to other *KKT* killer yeasts. However, despite encoding several truncated *KKT* genes, *K.*
518 *africana* appears to be naturally susceptible to many of the killer toxins produced by other *KKT*
519 encoding yeasts, including its own killer toxin when ectopically expressed by *S. cerevisiae*.
520 Subtelomeric Sir-dependent gene silencing could account for this apparent susceptibility under
521 laboratory conditions, preventing the constitutive expression of both full-length and truncated
522 *KKT* genes and associated immunity functions by *K. africana* [109,110].
523

524 There are now nine evolutionarily distinct dsRNA-encoded killer toxins that have been
525 discovered within *Saccharomyces* yeast. K1L and its homologs represent a unique example of
526 the mobilization and subtelomeric expansion of killer toxin genes in different species. The clear
527 diversity of dsRNAs within *Saccharomyces* yeasts and the known prevalence of killer yeasts
528 suggests that more killer toxins await future discovery and characterization.
529
530
531
532
533

534 **Acknowledgements**

535 We would like to acknowledge the NRRL Agricultural Research Service culture collection for
536 providing the Rowley laboratory with a diverse collection of *Saccharomyces* yeasts. We would
537 also like to thank Dr. Antonia Santos for the CYC yeasts (Complutense Yeast Collection,
538 Complutense University of Madrid), Prof. Manfred J. Schmitt (Saarland University,
539 Saarbrücken, Germany) for *S. cerevisiae* MS300c, and Dr. Gianni Liti for the genetically
540 tractable strains of *S. paradoxus* and *S. cerevisiae*. We would also like to acknowledge Dr.
541 Gianni Liti and Dr. Scott Minnich for helpful comments on the draft manuscript.

542

543 **Funding**

544 The research was supported by funds provided to PAR by the Institute for Modeling
545 Collaboration and Innovation at the University of Idaho (NIH grant #P20GM104420), the
546 Institutional Development Award (IDeA) from the National Institute of General Medical
547 Sciences of the National Institutes of Health under Grant #P20GM103408, and the National
548 Science Foundation grant number 1818368. This work was also supported in part by NIH
549 COBRE Phase III grant #P30GM103324. Funding was also provided by the Office of
550 Undergraduate Research (LRF, SNB, EAK, JSH, and JMB) and the Hill Undergraduate Research
551 Fellowship program (NMT and CBK) at the University of Idaho. The funders had no role in
552 study design, data collection and analysis, decision to publish, or preparation of the manuscript
553 and any opinions, findings, and conclusions or recommendations expressed in this material are
554 those of the author(s) and do not necessarily reflect the views of the funders.

555

556

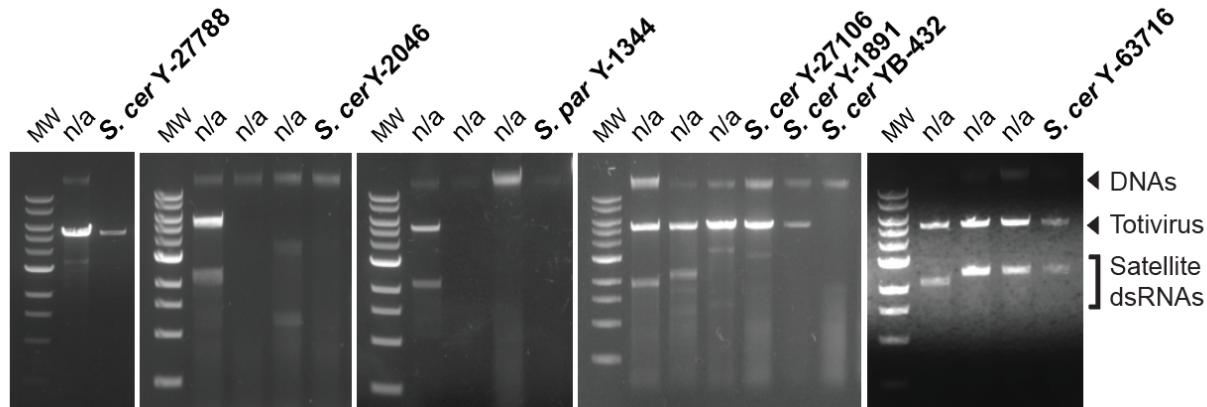
557

558

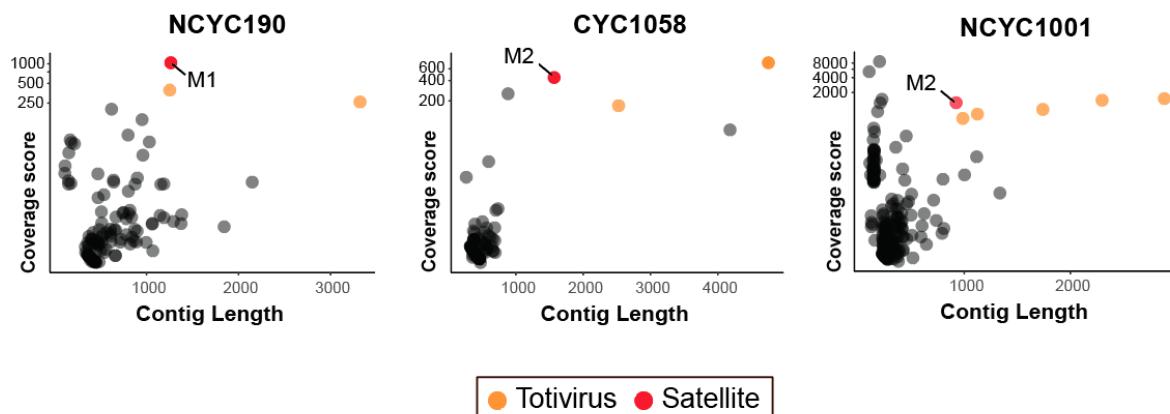
559

560

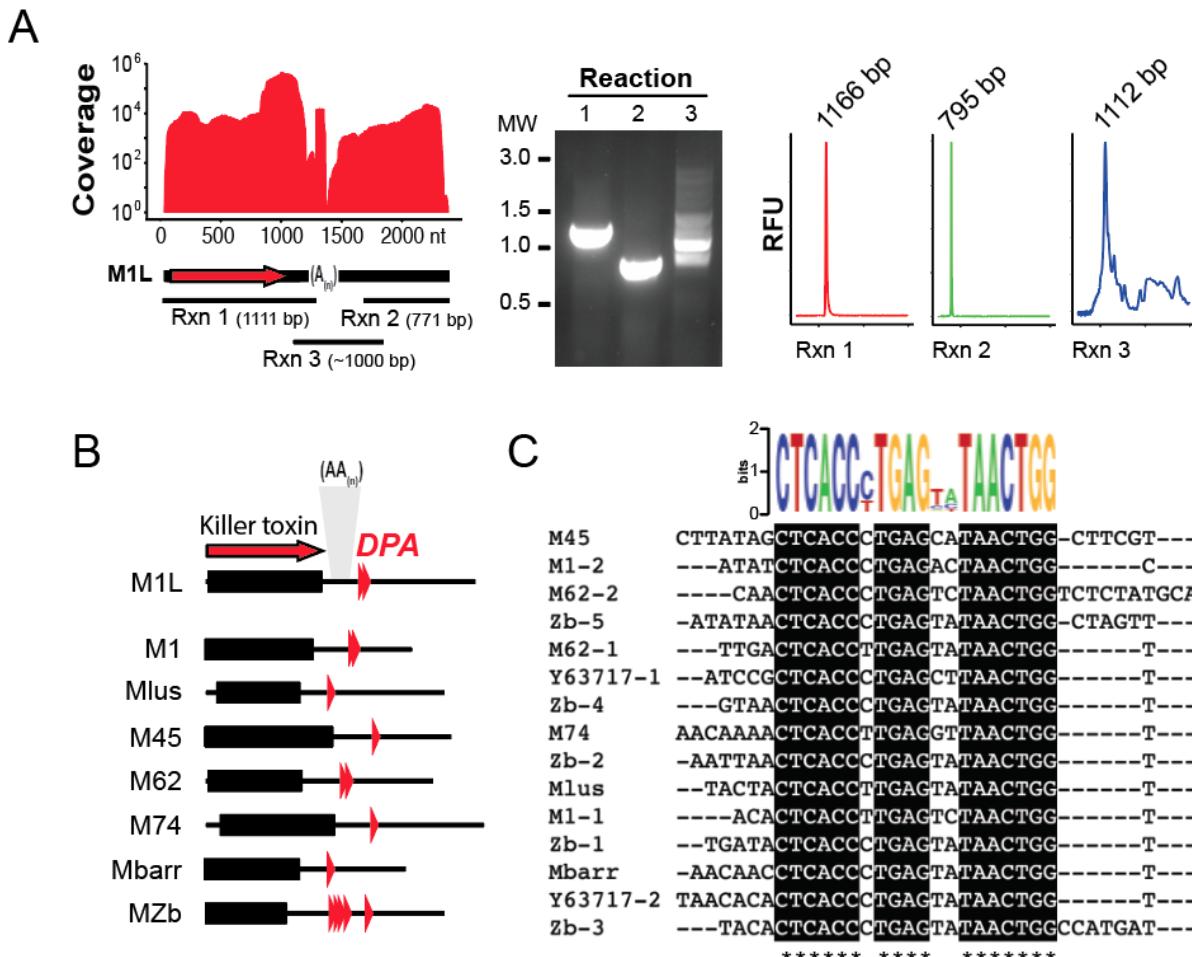
561


562

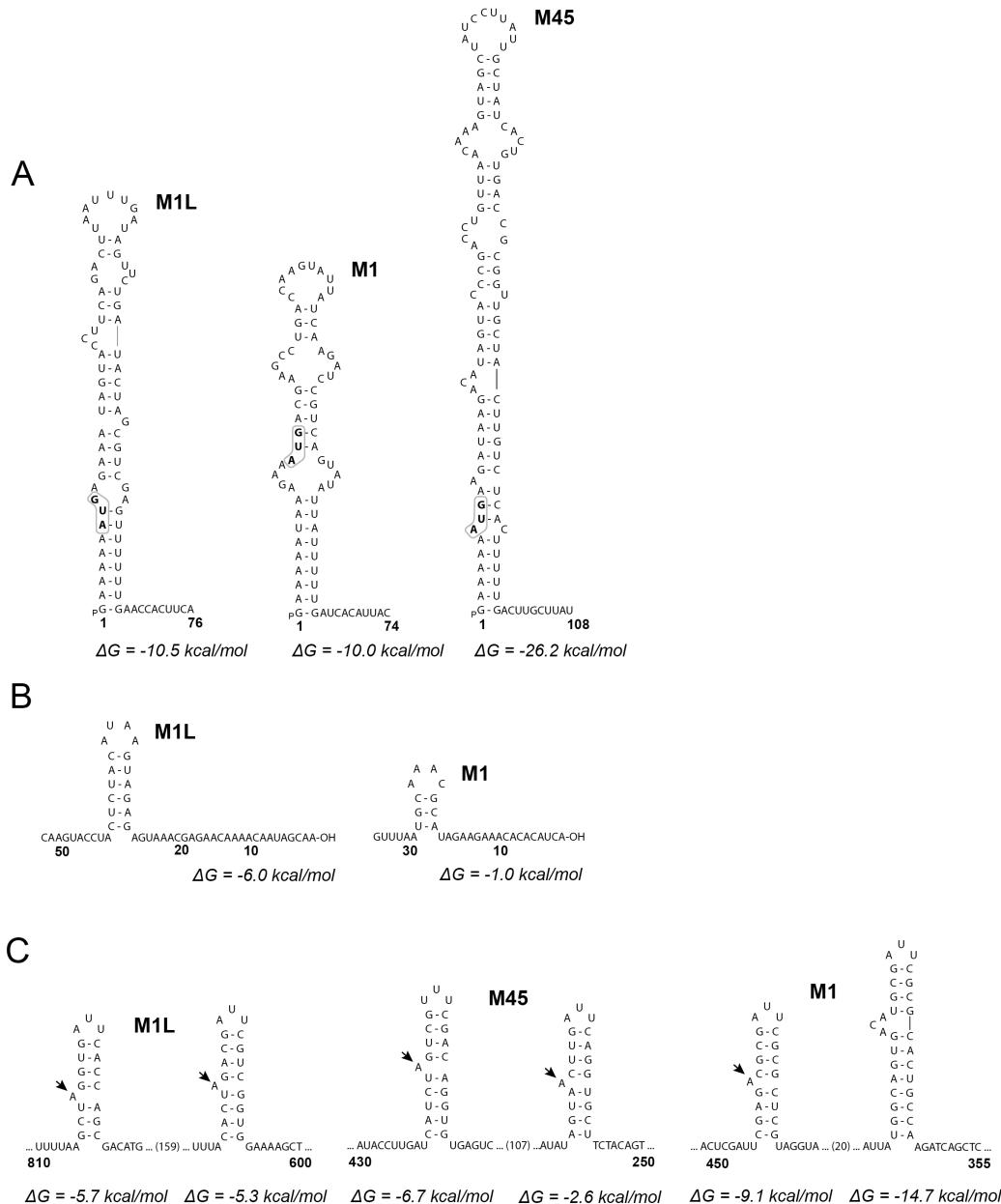
563


564

565


566
567
568 **SUPPLEMENTARY FILES**
569

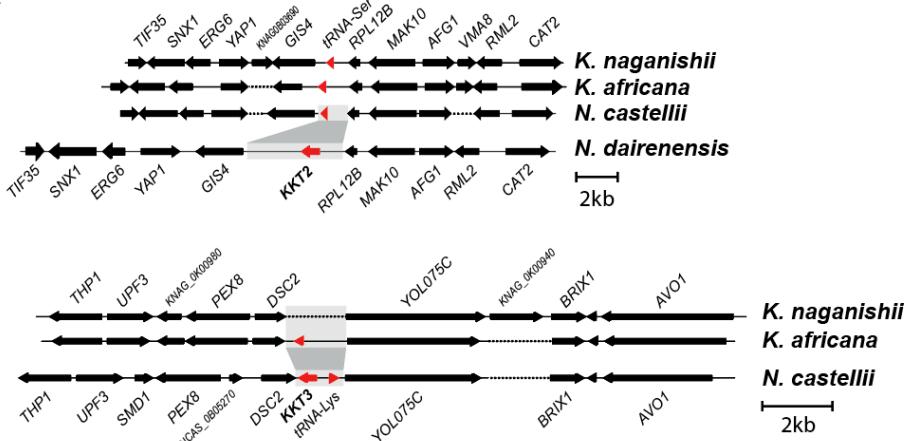
570
571 **Fig. S1. Double-stranded RNA enrichment and analysis of nucleic acids from killer yeasts.** Agarose gel
572 electrophoresis is used to show the diversity of dsRNA in killer yeasts. Satellite dsRNAs are labeled as dsRNAs that
573 are smaller than the associated totivirus dsRNAs.



574
575 **Fig. S2. Coverage and contig length of NGS of dsRNAs from different strains of yeasts.** Each scatter plot
576 represents all contigs generated after *de novo* assembly of sequence reads after assembly. M satellites are
577 labeled according to their relatedness to other previously described sequences.
578

579
580
581
582
583
584
585

Fig. S3. Sequence analysis of the dsRNA satellite M1L from *S. paradoxus*. (A) Coverage of the assembled short reads for the assembly of M1L and the positioning the expected product from three reverse transcription PCR reactions to amplify portions of K1L ORF, the 3' UTR, and across the internal poly(A) tract. Actual PCR products and their estimated sizes as determined from fragment analysis are shown. (B) The positioning of the repeated DPA element is represented relative to the genomes of eight dsRNA satellites. (C) The consensus sequence derived from 15 DPA elements is shown as a sequence logo and multisequence alignment.

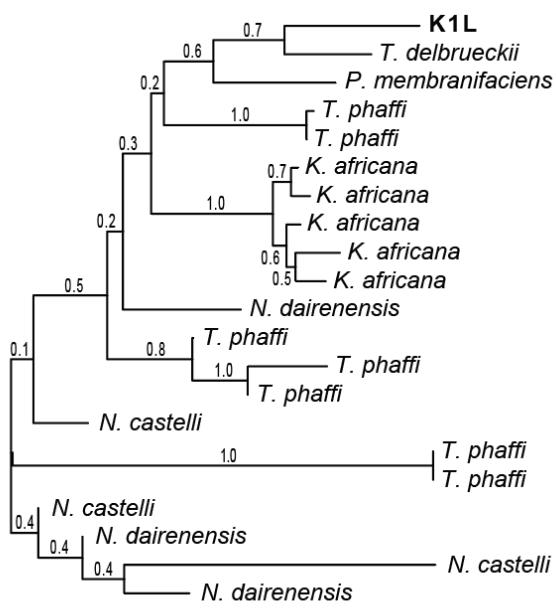


586

587 **Fig. S4. Secondary structure predictions of M1L, M1, and M45 (+) strand 5' and 3' ends.** (A) Secondary prediction
 588 of the 5' terminal structures. Start codons for the translation of preprotoxin synthesis are highlighted. Numbers
 589 represent nucleotides from the 5' terminus. (B) Putative replication signal represented as a stem-loop at the 3' end
 590 of M1L and M1 satellite. Numbers represent distance from the 3' terminal nucleotide. (C) Putative viral particle
 591 binding sites with a 5' facing 'A' bulge present in the stem-loops (indicated by an arrow). Numbers represent
 592 distance from the 3' terminal nucleotide.

593

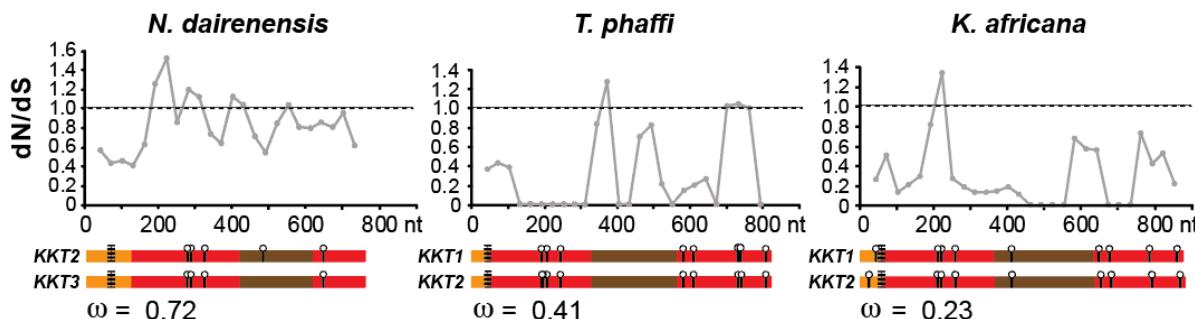
A



B

KaKKT1: 5' - GAAAAAAca **ATG**...
KaKKT2: 5' - GAAAAAAca **ATG**...
KaKKT3: 5' - GAAAAAAca **ATG**...
KaKKT4: 5' - GAAAAATAaca **ATG**...
KaKKT5: 5' - GTAAAAA **ATG**...
KaKKT10P: 5' - GAAAAAAca **ATG**...

594
595
596
597
598
599
600
601


Fig. S5. Unique genomic insertions of *KKT* genes in *N. dairenensis* and *N. castellii*. (A) *N. dairenensis* *KKT2* inserted into chromosome III and *N. castellii* *KKT3* inserted into chromosome II. Genes flanking *KKT* insertions are colored green and demonstrate synteny between related genomes. Single red triangles represent tRNA genes. Broken lines represent gaps in synteny that were inserted for clarity. (B) 5' UTR sequence from *KKT* genes and one pseudogene identified within *K. africana*.

602
603
604

Fig. S6. Phylogenetic model of the evolutionary relationship between *KKT* proteins using the neighbor-joining method. Unrooted neighbor-joining phylogeny of the aligned α -domain of 21 *KKT* proteins from six species of

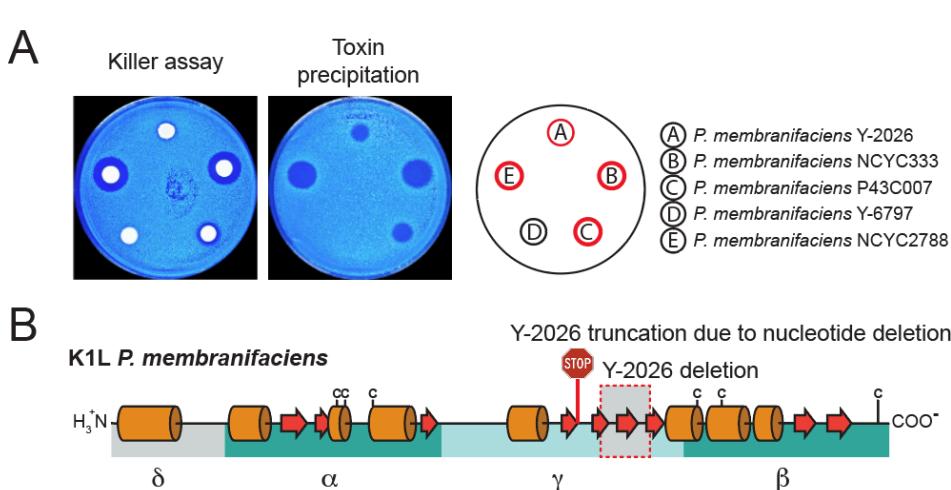

605 yeast and one dsRNA satellite dsRNA. Numerical values represent the bootstrap support for the placement of each
606 node.
607
608

Fig. S7. Paralogous KKT genes are evolving under positive selection in different species of yeasts. Three sliding window dN/dS calculations are shown for the comparison of three pairs of closely related genes in three yeast species. The X-axis represents the nucleotide (nt) number of each gene and is shown in the context of the predicted domain organization of each pair of genes. Omega values represent the whole gene dN/dS value for each gene pair.

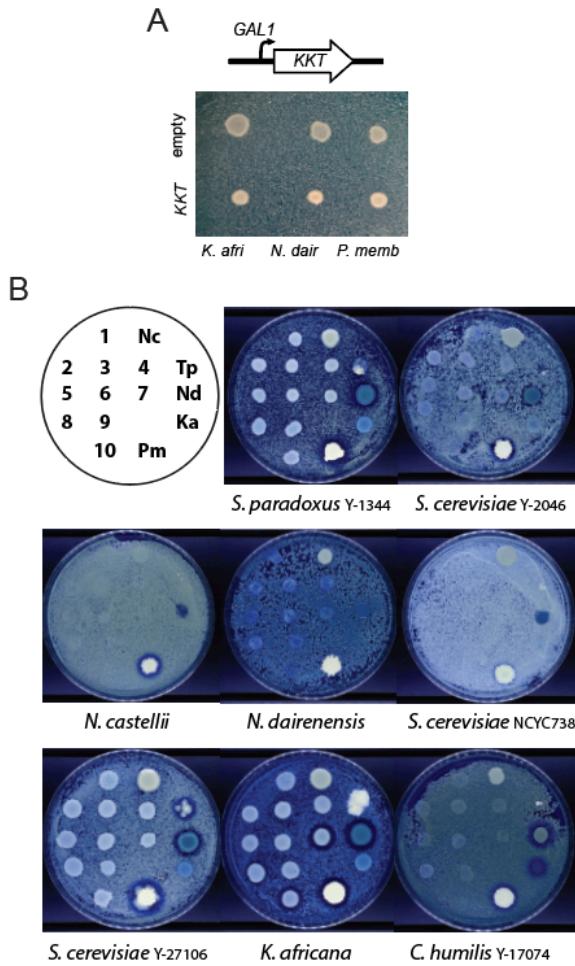


Fig. S8. The absence of satellite dsRNAs within killer yeasts of the Saccharomycotina. Agarose gel electrophoresis of dsRNAs extracted from different killer yeasts. Stained bands in lane 2 represent canonical totivirus and satellite dsRNAs from *S. cerevisiae*.

623 **Fig. S9. Strain-specific production of killer toxins by *P. membranifaciens*.** (A) Killer toxin production and partial
 624 purification from *P. membranifaciens* (B) Mutations within *KKT1* in the context of the proteins secondary structure
 625 organization (as predicted by Jpred) from strain Y-2026 compared to full-length active killer toxin sequenced from
 626 strain NCYC333. Arrows represent beta-sheets and cylinders represent alpha helices. “c” represents cysteine
 627 residues.

628

Fig. S10. Ectopic expression of KKT genes causes the inhibition of *K. africana* and is dependent on the induction of KKT expression. (A) Galactose-dependent ectopic expression of *KKT* genes by *S. cerevisiae* on agar plates seeded with different species of yeasts. Key: 1. pUI114, 2. pUI109 (T.p1), 3-pUI110 (T.p2), 4-pUI111 (T.p3), 5. pUI112 (N.d1), 6-pUI113 (N.d2), 7-pML115 (N.d3), 8. pML117 (K.a1), 9. pML118 (K.a2), 10. pML116 (P.m), Nc. *N. castellii* NCYC2898, Nd. *N. dairensis* NCYC777, Tp. *T. phaffii* Y-8282, Pm. *P. membranifaciens* NCYC333.

651
 652

Species	Strain	Gene	Protein	Chr	Position	nt	aa
<i>K. africana</i>	CBS 2517	KaKKT1	XP_003956791.1	4	4933-5865	932	310
		KaKKT3	XP_003959753.1	12	3868-4800	932	310
		KaKKT2	XP_003954584.1	1	14695-15627	932	310
		KaKKT5	XP_003956787.1	3	1322627-1323511	884	153
		KaKKT4	XP_003959210.1	9	c592072-591575	885	165
		KaKKT6	XP_003957738.1	6	4855-5505	650	216
		KaKKT7P	-	8	738788-737853	935	-
		KaKKT8P	-	3	1320455-1320080	375	-
		KaKKT9P	-	11	29171-30101	930	95
<i>N. castellii</i>	CBS 4309	NcKKT1	XP_003677247.1	6	820175-821086	911	303
		NcKKT2	XP_003677251.1	7	4472-5032	560	186
		NcKKT3	XP_003674985.1	2	979503-979970	467	155
<i>N. dairensis</i>	CBS 421	NdKKT1	XP_003671029.2	7	263-1186	923	307
		NdKKT2	XP_003669012.1	3	214531-215346	815	271
		NdKKT3	XP_003671820.1	8	997352-998167	815	271

		NdKKT4P	-	5	1179525-1178607	918	-
		NdKKT5P	-	6	1136398-1135718	680	-
		NdKKT7P	-	6	1135727-1135598	129	-
<i>T. phaffii</i>	CBS 4417	TpKKT3	XP_003683531.1	1	8390-9322	932	310
		TpKKT1	XP_003687580.1	11	11192-10317	875	291
		TpKKT5	XP_003684118.1	2	7999-8806	807	161
		TpKKT6	XP_003684596.1	2	1153004-1153633	629	209
		TpKKT7	XP_003686950.1	8	749558-750160	602	200
		TpKKT2	XP_003684117.1	2	1052-1927	875	291
		TpKKT4	XP_003685085.1	3	1089707-1090513	806	268
		TpKKT8	XP_003686288.1	7	6094-5576	518	172
		TpKKT12P	-	11	512438-515245	807	-
		TpKKT9P	-	11	521694-523935	241	-
		TpKKT10P	-	11	518825-521023	198	-
		TpKKT11P	-	13	451100-453480	380	-
		TpKKT13P	-	11	520515-520628	113	-
		TpKKT13P	-	11	520515-520628	113	-
		TpKKT14P	-	7	3752-3575	177	-
<i>T. delbrueckii</i>	CBS 1146	TdKKT1	XP_003680807.1	4	11668-12189	522	173
<i>P. membranifaciens</i>	KS47-1	PmKKT1	GAV30688.1	n/a	c2248-1259	990	390

653

Table S1. Species that encode genome encoded killer toxins that are homologous to K1L.

654

655

656

File S1. A large-scale screen to identify killer yeasts in the *Saccharomyces* genus.

657

File S2. Image data illustrating the susceptibility of 53 strains of yeast to a selection of potent killer toxins produced by *Saccharomyces* yeasts.

658

File S3. SignalP and TargetP predictions for K1, K1L and KKT proteins.

659

File S4. Supplementary file listing all primers, plasmids, and yeast strains used in this study.

660

File S5. Supplementary FASTA file with the DNA sequences of all plasmids used in this study.

661

662

References:

663

664

665

1. Stumm C, Hermans J, Middelbeek EJ, Croes AF, Vries G de. Killer-Sensitive Relationships in Yeasts From Natural Habitats. *Antonie van Leeuwenhoek*. 1977;43: 125–128.
2. Rosini G. The Occurrence of Killer Characters in Yeasts. *Canadian journal of microbiology*. 1983;29: 1462–1464.
3. Young TW, Yagiu M. A comparison of the killer character in different yeasts and its classification. *Antonie van Leeuwenhoek*. 1978;44: 59–77. doi:10.1007/bf00400077
4. Philliskirk G, Young TW. The occurrence of killer character in yeasts of various genera. *Antonie van Leeuwenhoek*. 1975;41: 147–151. doi:10.1007/bf02565046

679 5. Buzzini P, Martini A. Biodiversity of killer activity in yeasts isolated from the Brazilian rain
680 forest. *Can J Microbiol.* 2000;46: 607–611. doi:10.1139/w00-032

681 6. Kandel JS, Stern TA. Killer Phenomenon in Pathogenic Yeast. *Antimicrobial Agents and*
682 *Chemotherapy.* 1979;15: 568–571.

683 7. Starmer WT, Ganter PF, Aberdeen V, Lachance MA, Phaff HJ. The Ecological Role of Killer
684 Yeasts in Natural Communities of Yeasts. *Canadian journal of microbiology.* 1987;33: 783–796.

685 8. Bevan EA, Makower M. The physiological basis of the killer character in yeast. *Proc. Int.*
686 *Congr. Genet;* 1963.

687 9. Schaffrath R, Meinhardt F, Klassen R. *Yeast Killer Toxins: Fundamentals and Applications.*
688 Springer International Publishing; 2018. pp. 87–118. doi:10.1007/978-3-319-71740-1_3

689 10. Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit:
690 The importance of elucidating the mechanisms of action of yeast antagonists. *Trends Food Sci*
691 *Tech.* 2016;47: 39–49. doi:10.1016/j.tifs.2015.11.003

692 11. Pieczynska MD, Visser JAGM de, Korona R. Incidence of symbiotic dsRNA ‘killer’ viruses
693 in wild and domesticated yeast. *Fems Yeast Res.* 2013;13: 856–859. doi:10.1111/1567-
694 1364.12086

695 12. Chang S-L, Leu J-Y, Chang T-H. A Population Study of Killer Viruses Reveals Different
696 Evolutionary Histories of Two Closely Related *Saccharomyces sensu stricto* Yeasts. *Molecular*
697 *Ecology.* 2015;24: 4312–4322. doi:10.1111/mec.13310

698 13. Herring AJ, Bevan EA. Virus-Like Particles Associated with Double-Stranded-RNA Species
699 Found in Killer and Sensitive Strains of Yeast *Saccharomyces cerevisiae*. *The Journal of general*
700 *virology.* 1974;22: 387–394. doi:10.1099/0022-1317-22-3-387

701 14. Vodkin MH, Fink GR. A Nucleic Acid Associated with a Killer Strain of Yeast. *Proc*
702 *National Acad Sci.* 1973;70: 1069–1072. doi:10.1073/pnas.70.4.1069

703 15. Berry EA, Bevan EA. A new species of double-stranded RNA from yeast. *Nature.* 1972;239:
704 279–280. doi:10.1038/239279a0

705 16. Wickner RB, Fujimura T, Esteban R. Viruses and prions of *Saccharomyces cerevisiae*.
706 *Advances in virus research.* 2013;86: 1–36. doi:10.1016/b978-0-12-394315-6.00001-5

707 17. Rowley PA. The frenemies within: viruses, retrotransposons and plasmids that naturally
708 infect *Saccharomyces* yeasts. *Yeast (Chichester, England).* 2017;49: 111–292.
709 doi:10.1002/yea.3234

710 18. Schmitt MJ, Neuhausen F. Killer toxin-secreting double-stranded RNA mycoviruses in the
711 yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. *Journal of Virology*. 1994;68:
712 1765–1772.

713 19. Ramírez M, Velázquez R, Maqueda M, López-Piñeiro A, Ribas JC. A new wine *Torulaspora*
714 *delbrueckii* killer strain with broad antifungal activity and its toxin-encoding double-stranded
715 RNA virus. *Frontiers in microbiology*. 2015;6: 403–12. doi:10.3389/fmicb.2015.00983

716 20. Zorg J, Kilian S, Radler F. Killer toxin producing strains of the yeasts *Hanseniaspora uvarum*
717 and *Pichia kluyveri*. *Arch Microbiol*. 1988;149: 261–267. doi:10.1007/bf00422015

718 21. Puhalla JE. Compatibility reactions on solid medium and interstrain inhibition in *Ustilago*
719 *maydis*. *Genetics*. 1968;60: 461–474.

720 22. Kandel J, Koltin Y. Killer phenomenon in *Ustilago maydis*. Comparison of the killer
721 proteins. *Genetics*; 1978. doi:10.1016/s0147-5975(78)80020-6

722 23. Crabtree AM, Kizer EA, Hunter SS, Leuven JTV, New DD, Fagnan MW, et al. A Rapid
723 Method for Sequencing Double-Stranded RNAs Purified from Yeasts and the Identification of a
724 Potent K1 Killer Toxin Isolated from *Saccharomyces cerevisiae*. *Viruses*. 2019;11: 70.
725 doi:10.3390/v11010070

726 24. Potgieter AC, Page NA, Liebenberg J, Wright IM, Landt O, Dijk AA van. Improved
727 strategies for sequence-independent amplification and sequencing of viral double-stranded RNA
728 genomes. *The Journal of general virology*. 2009;90: 1423–1432. doi:10.1099/vir.0.009381-0

729 25. Decker CJ, Parker R. Analysis of double-stranded RNA from microbial communities
730 identifies double-stranded RNA virus-like elements. *Cell reports*. 2014;7: 898–906.
731 doi:10.1016/j.celrep.2014.03.049

732 26. Rodríguez-Cousío N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M, et al. A
733 new wine *Saccharomyces cerevisiae* killer toxin (Klus), encoded by a double-stranded rna virus,
734 with broad antifungal activity is evolutionarily related to a chromosomal host gene. *Applied and*
735 *Environmental Microbiology*. 2011;77: 1822–1832. doi:10.1128/aem.02501-10

736 27. Rodríguez-Cousío N, Gómez P, Esteban R. Variation and Distribution of L-A Helper
737 Totiviruses in *Saccharomyces sensu stricto* Yeasts Producing Different Killer Toxins. *Toxins*.
738 2017;9: 313–20. doi:10.3390/toxins9100313

739 28. Bostian KA, Elliott Q, Bussey H, Bum V, Smith AI, Tipper DJ. Sequence of the preprotoxin
740 dsRNA gene of type I killer yeast: Multiple processing events produce a two-component toxin.
741 *Cell*. 1984;36: 741–751. doi:10.1016/0092-8674(84)90354-4

742 29. Schmitt MJ, Tipper DJ. Sequence of the M28 dsRNA: Preprotoxin Is Processed to an α/β
743 Heterodimeric Protein Toxin. *Virology*. 1995;213: 341–351. doi:10.1006/viro.1995.0007

744 30. Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY. Expression in yeast of a
745 cDNA copy of the K2 killer toxin gene. *Mgg Mol Gen Genetics*. 1991;227: 127–136.
746 doi:10.1007/bf00260717

747 31. Sturley SL, Elliot Q, LeVitre J, Tipper DJ, Bostian KA. Mapping of functional domains
748 within the *Saccharomyces cerevisiae* type 1 killer preprotoxin. *The EMBO Journal*. 1986;5:
749 3381–3389.

750 32. Gier S, Lermen M, Schmitt MJ, Breinig F. Substitution of cysteines in the yeast viral killer
751 toxin K1 precursor reveals novel insights in heterodimer formation and immunity. *Sci Rep-uk*.
752 2019;9: 13127. doi:10.1038/s41598-019-49621-z

753 33. Suzuki Y, Schwartz SL, Mueller NC, Schmitt MJ. Cysteine residues in a yeast viral A/B
754 toxin crucially control host cell killing via pH-triggered disulfide rearrangements. Linstedt A,
755 editor. *Mol Biol Cell*. 2017;28: 1123–1131. doi:10.1091/mbc.e16-12-0842

756 34. Zhu H, Bussey H. Mutational analysis of the functional domains of yeast K1 killer toxin.
757 *Molecular and Cellular Biology*. 1991;11: 175–181. doi:10.1126/science.1091317

758 35. Bussey H, Saville D, Greene D, Tipper DJ, Bostian KA. Secretion of *Saccharomyces*
759 *cerevisiae* Killer Toxin: Processing of the Glycosylated Precursor. *Molecular and Cellular*
760 *Biology*. 1983;3: 1362–1370.

761 36. Schmitt MJ, Breinig F. Yeast viral killer toxins: lethality and self-protection. *Nature reviews*
762 *Microbiology*. 2006;4: 212–221. doi:10.1038/nrmicro1347

763 37. Novotná D, Flegelová H, Janderová B. Different action of killer toxins K1 and K2 on the
764 plasma membrane and the cell wall of *Saccharomyces cerevisiae*. *FEMS yeast research*. 2004;4:
765 803–813. doi:10.1016/j.femsyr.2004.04.007

766 38. Hutchins K, Bussey H. Cell wall receptor for yeast killer toxin: involvement of (1,6)-beta-D-
767 glucan. *Journal of Bacteriology*. 1983;154: 161–169.

768 39. Boone C, Bussey H, Greene D, Thomas DY, Vernet T. Yeast killer toxin: Site-directed
769 mutations implicate the precursor protein as the immunity component. *Cell*. 1986;46: 105–113.
770 doi:10.1016/0092-8674(86)90864-0

771 40. Breinig F, Tipper DJ, Schmitt MJ. Kre1p, the plasma membrane receptor for the yeast K1
772 viral toxin. *Cell*. 2002;108: 395–405. doi:10.1016/s0092-8674(02)00634-7

773 41. Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H, et al. Yeast K1 killer
774 toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. *Proc National*
775 *Acad Sci*. 1990;87: 6228–6232. doi:10.1073/pnas.87.16.6228

776 42. Reiter J, Herker E, Madeo F, Schmitt MJ. Viral killer toxins induce caspase-mediated
777 apoptosis in yeast. *The Journal of Cell Biology*. 2005;168: 353–358. doi:10.1083/jcb.200408071

778 43. Zhu YS, Kane J, Zhang XY, Zhang M, Tipper DJ. Role of the gamma component of
779 preprotoxin in expression of the yeast K1 killer phenotype. *Yeast* Chichester Engl. 1993;9: 251–
780 66. doi:10.1002/yea.320090305

781 44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a
782 new genome assembly algorithm and its applications to single-cell sequencing. *Journal of*
783 *computational biology : a journal of computational molecular cell biology*. 2012;19: 455–477.
784 doi:10.1089/cmb.2012.0021

785 45. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
786 *Bioinformatics*. 2018;34: i884–i890. doi:10.1093/bioinformatics/bty560

787 46. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases
788 autonomous plasmids for transformaion of *Escherichia coli*. *Gene*. 1987;57: 267–272.
789 doi:10.1016/0378-1119(87)90131-4

790 47. Alberti S, Gitler AD, Lindquist S. A suite of Gateway cloning vectors for high-throughput
791 genetic analysis in *Saccharomyces cerevisiae*. *Yeast* (Chichester, England). 2007;24: 913–919.
792 doi:10.1002/yea.1502

793 48. Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, Heuvel S van den, et al.
794 GATEWAY recombinational cloning: application to the cloning of large numbers of open
795 reading frames or ORFeomes. *Methods in enzymology*. 2000;328: 575–592.

796 49. Cubillos FA, Louis EJ, Liti G. Generation of a large set of genetically tractable haploid and
797 diploid *Saccharomyces* strains. *FEMS yeast research*. 2009;9: 1217–1225. doi:10.1111/j.1567-
798 1364.2009.00583.x

799 50. Santos A, Sanchez A, Marquina D. Yeasts as biological agents to control *Botrytis cinerea*.
800 *Microbiological research*. 2004;159: 331–338. doi:10.1016/j.micres.2004.07.001

801 51. Young TW. The genetic manipulation of killer character into brewing yeast. *J I Brewing*.
802 1981;87: 292–295. doi:10.1002/j.2050-0416.1981.tb04039.x

803 52. Walker GM, McLeod AH, Hodgson VJ. Interactions between killer yeasts and pathogenic
804 fungi. *FEMS microbiology letters*. 1995;127: 213–222. doi:10.1111/j.1574-6968.1995.tb07476.x

805 53. Polonelli L, Morace G, Dettori G, Cattel C. Biotyping of Micelial Fungus Cultures by the
806 Killer System. *European journal of epidemiology*. 1987;3: 237–242. doi:10.1007/bf00149730

807 54. Buzzini P, Turchetti B, Vaughan-Martini AE. The use of killer sensitivity patterns for
808 biotyping yeast strains: the state of the art, potentialities and limitations. *FEMS yeast research*.
809 2007;7: 749–760. doi:10.1111/j.1567-1364.2007.00238.x

810 55. Buzzini P, Martini A. Discrimination between *Candida albicans* and other pathogenic species
811 of the genus *Candida* by their differential sensitivities to toxins of a panel of killer yeasts. *Journal*
812 *of Clinical Microbiology*. 2001. doi:10.1128/jcm.39.9.3362-3364.2001

813 56. Polonelli L, Morace G, Archibusacci C, Sestito M. Killer System: a Simple Method for
814 Differentiating *Candida albicans* Strains. *Journal of Clinical Microbiology*. 1983;17: 774–780.

815 57. Fuentefria AM, Faganello J, Pazzini F, Schrank A, Valente P, Vainstein M. Typing and
816 patterns of cellular morphological alterations in *Cryptococcus neoformans* and *Cryptococcus*
817 *gattii* isolates exposed to a panel of killer yeasts. *Medical mycology*. 2007;45: 503–512.
818 doi:10.1080/13693780701416580

819 58. Rogers D, Bevan EA. Group classification of killer yeasts based on cross-reactions between
820 strains of different species and origin. *Microbiology*. 1978;105: 199–202.

821 59. Schmitt MJ. Cloning and expression of a cDNA copy of the viral K28 killer toxin gene in
822 yeast. *Molecular & general genetics : MGG*. 1995;246: 236–246. doi:10.1007/bf00294687

823 60. Rodríguez-Cousiño N, Esteban R. Relationships and Evolution of Double-Stranded RNA
824 Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain
825 Populations. Cullen D, editor. *Appl Environ Microb*. 2017;83: e02991-16–18.
826 doi:10.1128/aem.02991-16

827 61. Pieczynska MD, Wloch-Salamon D, Korona R, Visser JAGM de. Rapid multiple-level
828 coevolution in experimental populations of yeast killer and nonkiller strains. *Evolution; international journal of organic evolution*. 2016;70: 1342–1353. doi:10.1111/evo.12945

830 62. Wickner RB. “Killer character” of *Saccharomyces cerevisiae*: curing by growth at elevated
831 temperature. *J Bacteriol*. 1974;117: 1356–7.

832 63. Fink GR, Styles CA. Curing of a Killer Factor in *Saccharomyces cerevisiae*. *Proc National*
833 *Acad Sci*. 1972;69: 2846-. doi:10.1073/pnas.69.10.2846

834 64. Ball SG, Tirtiaux C, Wickner RB. Genetic Control of L-A and L-(BC) dsRNA Copy Number
835 in Killer Systems of *Saccharomyces cerevisiae*. *Genetics*. 1984;107: 199–217.

836 65. Esteban R, Fujimura T, Wickner RB. Site-specific binding of plus replicase-containing
837 particles of yeast. *Proc National Acad Sci*. 1988;85: 4411–4415. doi:10.1073/pnas.85.12.4411

838 66. Esteban R, Fujimura T, Wickner RB. Internal and terminal cis-acting sites are necessary for
839 in vitro replication of the L-A double-stranded RNA virus of yeast. *Embo J*. 1989;8: 947–954.
840 doi:10.1002/j.1460-2075.1989.tb03456.x

841 67. Fujimura T, Esteban R, Esteban LM, Wickner RB. Portable encapsidation signal of the L-A
842 double-stranded RNA virus of *S. cerevisiae*. *Cell*. 1990;62: 819–828. doi:10.1016/0092-
843 8674(90)90125-x

844 68. Ramírez M, Velázquez R, López-Piñeiro A, Naranjo B, Roig F, Llorens C. New Insights into
845 the Genome Organization of Yeast Killer Viruses Based on “Atypical” Killer Strains
846 Characterized by High-Throughput Sequencing. *Toxins*. 2017;9. doi:10.3390/toxins9090292

847 69. Petersen TN, Brunak S, Heijne G von, Nielsen H. SignalP 4.0: discriminating signal peptides
848 from transmembrane regions. *Nature methods*. 2011;8: 785–786. doi:10.1038/nmeth.1701

849 70. Shen X-X, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A. Reconstructing the
850 Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. *G3 Genes*
851 *Genomes Genetics*. 2016;6: 3927–3939. doi:10.1534/g3.116.034744

852 71. Hall BG. Building Phylogenetic Trees from Molecular Data with MEGA. *Mol Biol Evol*.
853 2013;30: 1229–1235. doi:10.1093/molbev/mst012

854 72. Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. *Trends Genet*.
855 2002;18: 486. doi:10.1016/s0168-9525(02)02722-1

856 73. Comitini F, Mannazzu I, Ciani M. *Tetrapisispora phaffii* killer toxin is a highly specific β -
857 glucanase that disrupts the integrity of the yeast cell wall. *Microb Cell Fact*. 2009;8: 55.
858 doi:10.1186/1475-2859-8-55

859 74. Santos A. Killer toxin of *Pichia membranifaciens* and its possible use as a biocontrol agent
860 against grey mould disease of grapevine. *Microbiology+*. 2004;150: 2527–2534.
861 doi:10.1099/mic.0.27071-0

862 75. Peter J, Chiara MD, Friedrich A, Yue J-X, Pflieger D, Bergström A, et al. Genome evolution
863 across 1,011 *Saccharomyces cerevisiae* isolates. *Nature*. 2018;556: 339–344.
864 doi:10.1038/s41586-018-0030-5

865 76. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. Sequencing and comparison of
866 yeast species to identify genes and regulatory elements. *Nature*. 2003;423: 241–254.
867 doi:10.1038/nature01644

868 77. Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, et al. Eukaryote-to-eukaryote
869 gene transfer events revealed by the genome sequence of the wine yeast *Saccharomyces*
870 *cerevisiae* EC1118. *P Natl Acad Sci Usa*. 2009;106: 16333–8. doi:10.1073/pnas.0904673106

871 78. Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, et al. Multiple recent
872 horizontal transfers of a large genomic region in cheese making fungi. *Nat Commun*. 2014;5:
873 2876. doi:10.1038/ncomms3876

874 79. Marsit S, Mena A, Bigey F, Sauvage F-X, Couloux A, Guy J, et al. Evolutionary Advantage
875 Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts. *Mol Biol Evol*.
876 2015;32: 1695–1707. doi:10.1093/molbev/msv057

877 80. Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É, et
878 al. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. *Curr Biol*.
879 2015;25: 2562–2569. doi:10.1016/j.cub.2015.08.025

880 81. Marcet-Houben M, Gabaldón T. Acquisition of prokaryotic genes by fungal genomes. *Trends Genet*. 2010;26: 5–8. doi:10.1016/j.tig.2009.11.007

882 82. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. Genome
883 evolution in yeasts. *Nature*. 2004;430: 35–44. doi:10.1038/nature02579

884 83. Carr M, Bensasson D, Bergman CM. Evolutionary Genomics of Transposable Elements in
885 *Saccharomyces cerevisiae*. *Plos One*. 2012;7: e50978. doi:10.1371/journal.pone.0050978

886 84. Strope PK, Kozmin SG, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. 2 micron
887 plasmid in *Saccharomyces* species and in *Saccharomyces cerevisiae*. Kurtzman C, editor. *Fems*
888 *Yeast Res*. 2015;15: fov090-8. doi:10.1093/femsyr/fov090

889 85. Frank AC, Wolfe KH. Evolutionary capture of viral and plasmid DNA by yeast nuclear
890 chromosomes. *Eukaryot Cell*. 2009;8: 1521–1531. doi:10.1128/ec.00110-09

891 86. Satwika D, Klassen R, Meinhardt F. Repeated capture of a cytoplasmic linear plasmid by the
892 host nucleus in *Debaryomyces hansenii*. *Yeast*. 2012;29: 145–154. doi:10.1002/yea.2893

893 87. Brown DW. The KP4 killer protein gene family. *Current genetics*. 2011;57: 51–62.
894 doi:10.1007/s00294-010-0326-y

895 88. Myers JM, Bonds AE, Clemons RA, Thapa NA, Simmons DR, Carter-House D, et al. Survey
896 of Early-Diverging Lineages of Fungi Reveals Abundant and Diverse Mycoviruses. *Mbio*.
897 2020;11. doi:10.1128/mbio.02027-20

898 89. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al. Evolutionary genomics of mycovirus-
899 related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse
900 viral lineages. *Bmc Evol Biol*. 2012;12: 91. doi:10.1186/1471-2148-12-91

901 90. El-Sherbeini M, Bostian KA. Viruses in fungi: infection of yeast with the K1 and K2 killer
902 viruses. *Proc National Acad Sci*. 1987;84: 4293–4297. doi:10.1073/pnas.84.12.4293

903 91. Yu X, Li B, Fu Y, Xie J, Cheng J, Ghabrial SA, et al. Extracellular transmission of a DNA
904 mycovirus and its use as a natural fungicide. *Proceedings of the National Academy of Sciences*
905 of the United States of America

906 2013;110: 1452–1457. doi:10.1073/pnas.1213755110

907 92. González SS, Alcoba-Flórez J, Laich F. *Lachancea lanzarotensis* sp. nov., an ascomycetous
908 yeast isolated from grapes and wine fermentation in Lanzarote, Canary Islands. *Int J Syst Evol*
Micr. 2013;63: 358–363. doi:10.1099/ijst.0.046029-0

909 93. Zhang B-Q, Luan Y, Duan C-Q, Yan G-L. Use of *Torulaspora delbrueckii* Co-fermentation
910 With Two *Saccharomyces cerevisiae* Strains With Different Aromatic Characteristic to Improve
911 the Diversity of Red Wine Aroma Profile. *Front Microbiol.* 2018;9: 606.
912 doi:10.3389/fmicb.2018.00606

913 94. Sampaio JP, Gonçalves P. Natural populations of *Saccharomyces kudriavzevii* in Portugal
914 are associated with oak bark and are sympatric with *S. cerevisiae* and *S. paradoxus*. *Appl*
915 *Environ Microb.* 2008;74: 2144–2152. doi:10.1128/aem.02396-07

916 95. Naumov GI, Naumova ES, Sniegowski PD. Differentiation of European and Far East Asian
917 Populations of *Saccharomyces paradoxus* by Allozyme Analysis. *Int J Syst Bacteriol.* 1997;47:
918 341–344. doi:10.1099/00207713-47-2-341

919 96. Drinnenberg IA, Fink GR, Bartel DP. Compatibility with killer explains the rise of RNAi-
920 deficient fungi. *Science.* 2011;333: 1592–1592. doi:10.1126/science.1209575

921 97. Wolfe KH, Armisén D, Proux-Wera E, ÓhÉigearthaigh SS, Azam H, Gordon JL, et al. Clade-
922 and species-specific features of genome evolution in the Saccharomycetaceae. *Fems Yeast Res.*
923 2015;15: fov035. doi:10.1093/femsyr/fov035

924 98. Derr LK, Strathern JN, Garfinkel DJ. RNA-mediated recombination in *S. cerevisiae*. *Cell.*
925 1991;67: 355–364. doi:10.1016/0092-8674(91)90187-4

926 99. Moore JK, Haber JE. Capture of retrotransposon DNA at the sites of chromosomal double-
927 strand breaks. *Nature.* 1996;383: 644–646. doi:10.1038/383644a0

928 100. McBride R, Greig D, Travisano M. Fungal viral mutualism moderated by ploidy. *Evol Int J*
929 *Org Evol.* 2008;62: 2372–80. doi:10.1111/j.1558-5646.2008.00443.x

930 101. Wloch-Salamon DM, Gerla D, Hoekstra RF, Visser JAGM de. Effect of dispersal and
931 nutrient availability on the competitive ability of toxin-producing yeast. *Proc Royal Soc Lond B*
932 *Biological Sci.* 2008;275: 535–541. doi:10.1098/rspb.2007.1461

933 102. Greig D, Travisano M. Density-dependent effects on allelopathic interactions in yeast.
934 *Evolution; international journal of organic evolution.* 2008;62: 521–527. doi:10.1111/j.1558-
935 5646.2007.00292.x

936 103. Pintar J, Starmer WT. The costs and benefits of killer toxin production by the yeast *Pichia*
937 *kluyveri*. *Antonie van Leeuwenhoek.* 2003;83: 89–97. doi:10.1023/a:0000000089097

938 104. Ganter PF, Starmer WT. Killer Factor as a Mechanism of Interference Competition in
939 Yeasts Associated with Cacti. *Ecology.* 1992;73: 54–67. doi:10.2307/1938720?refreqid=search-
940 gateway:978308e99892760329dfa73a64d2ec8

941 105. Buskirk SW, Rokes AB, Lang GI. Adaptive evolution of a rock-paper-scissors sequence
942 along a direct line of descent. *Biorxiv.* 2019; 700302. doi:10.1101/700302

943 106. Brown CA, Murray AW, Verstrepen KJ. Rapid Expansion and Functional Divergence of
944 Subtelomeric Gene Families in Yeasts. *Curr Biol.* 2010;20: 895–903.
945 doi:10.1016/j.cub.2010.04.027

946 107. Tzelepis G, Karlsson M. Killer toxin-like chitinases in filamentous fungi: Structure,
947 regulation and potential roles in fungal biology. *Fungal Biol Rev.* 2018;33: 123–132.
948 doi:10.1016/j.fbr.2018.11.001

949 108. Lu S, Faris JD. *Fusarium graminearum* KP4-like proteins possess root growth-inhibiting
950 activity against wheat and potentially contribute to fungal virulence in seedling rot. *Fungal
951 Genetics and Biology.* 2019;123: 1–13. doi:10.1016/j.fgb.2018.11.002

952 109. Hecht A, Strahl-Bolsinger S, Grunstein M. Spreading of transcriptional repressor SIR3 from
953 telomeric heterochromatin. *Nature.* 1996;383: 92–6. doi:10.1038/383092a0

954 110. Ai W, Bertram PG, Tsang CK, Chan T-F, Zheng XFS. Regulation of Subtelomeric
955 Silencing during Stress Response. *Mol Cell.* 2002;10: 1295–1305. doi:10.1016/s1097-
956 2765(02)00695-0

957