

Inhibition of Lgt in Gram-negative bacteria

Novel inhibitors of *E. coli* lipoprotein diacylglycerol transferase

are insensitive to resistance caused by *lpp* deletion

3

4 Jingyu Diao¹, Rie Komura², Tatsuya Sano², Homer Pantua¹, Kelly M. Storek¹, Hiroko Inaba²,
 5 Haruhiko Ogawa², Cameron L. Noland³, Yutian Peng¹, Susan L. Gloor^{4†}, Donghong Yan⁵, Jing
 6 Kang⁵, Anand Kumar Katakam⁶, Nicholas N. Nickerson^{1†}, Cary D. Austin⁶, Jeremy Murray³,
 7 Steven T. Rutherford¹, Mike Reichelt⁶, Yiming Xu⁴, Min Xu⁵, Hayato Yanagida², Junichi
 8 Nishikawa², Patrick C Reid², Christian N. Cunningham^{7, #} and Sharookh B. Kapadia^{1, #}

9

10 Departments of Infectious Diseases¹, Structural Biology³, Biochemical and Cellular
11 Pharmacology⁴, Translational Immunology⁵, Pathology⁶ and Early Discovery Biochemistry⁷,
12 Genentech, South San Francisco, CA 94080 USA

13 ² Peptidream Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture,
14 JAPAN 210-0821

15 † Present address: S.L.G. - EpiCypher Inc., 6 Davis Drive Durham NC; N.N.N. - Hoffmann-La
16 Roche Ltd., 7070 Mississauga Road Mississauga, ON Canada

17

18 Abstract word count: 150

19 [#] Corresponding authors

20 Sharookh B. Kapadia (E-mail: kapadia.sharookh@gene.com)

21 Christian Cunningham (E-mail: cunningham.christian@gene.com)

Inhibition of Lgt in Gram-negative bacteria

22 Abstract

23 Lipoprotein diacylglycerol transferase (Lgt) catalyzes the first step in the biogenesis of
24 Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis.
25 We demonstrate that Lgt depletion in a clinical uropathogenic *Escherichia coli* strain leads to
26 permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics.
27 Importantly, we identify the first ever described Lgt inhibitors that potently inhibit Lgt biochemical
28 activity *in vitro* and are bactericidal against wild-type *Acinetobacter baumannii* and *E. coli* strains.
29 Unlike inhibition of other steps in lipoprotein biosynthesis, deletion of the major outer membrane
30 lipoprotein, *lpp*, is not sufficient to rescue growth after Lgt depletion or provide resistance to Lgt
31 inhibitors. Our data validate Lgt as a novel druggable antibacterial target and suggest that inhibition
32 of Lgt may not be sensitive to one of the most common resistance mechanisms that invalidate
33 inhibitors of downstream steps of bacterial lipoprotein biosynthesis and transport.

34

35

36

37

38

39

40

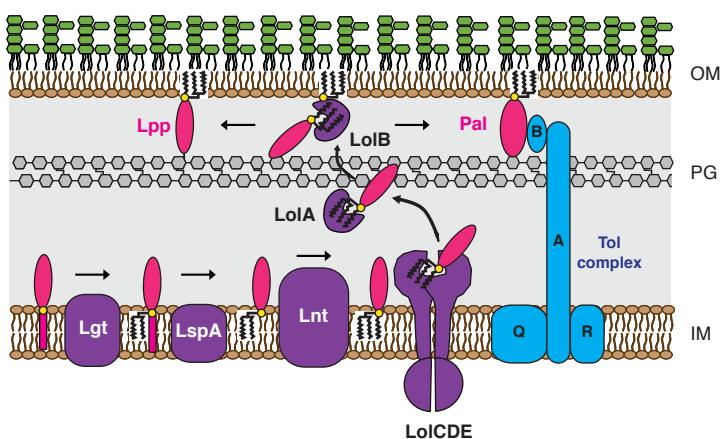
41

42

43

Inhibition of Lgt in Gram-negative bacteria

44 **Introduction**


45 The cell envelope of a typical Gram-negative bacterium consists of two membranes: a
46 phospholipid inner membrane (IM) and an asymmetrical outer membrane (OM), the latter of which
47 is composed of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The IM
48 and OM are separated by the periplasm, which contains a peptidoglycan (PG) cell wall (reviewed in
49 detail in (Silhavy, Kahne, & Walker, 2010)). *E. coli* encodes >90 lipoproteins, many of which are
50 localized to the inner leaflet of the OM, but can also be exposed on the bacterial cell surface
51 (Cowles, Li, Semmelhack, Cristea, & Silhavy, 2011; Wilson & Bernstein, 2015). Bacterial
52 lipoproteins play critical roles in adhesion, nutrient uptake, antibiotic resistance, virulence, invasion
53 and immune evasion (Kovacs-Simon, Titball, & Michell, 2011), making the lipoprotein biosynthetic
54 and transport pathways attractive targets for novel antibacterial drug discovery.

55 Lipoprotein biosynthesis in Gram-negative bacteria is mediated by three IM localized
56 enzymes: Lgt, LspA and Lnt (Figure 1). All preprolipoproteins contain a signal peptide followed by
57 a conserved four amino acid sequence, [LVI][ASTVI][GAS]C, also known as a lipobox
58 (Schlesinger, 1992), and are secreted through the IM via the Sec or Tat pathways. After secretion
59 through the IM, Lgt catalyzes the attachment of a diacylglycerol moiety from phosphatidylglycerol
60 to the thiol group of the conserved +1 position cysteine via a thioether bond (Sankaran & Wu,
61 1994). The second enzyme, prolipoprotein signal peptidase (LspA), is an aspartyl endopeptidase
62 which cleaves off the signal peptide N-terminal of the conserved diacylated +1 cysteine (M.
63 Tokunaga, Tokunaga, & Wu, 1982), and is the molecular target of the Gram-negative-specific
64 natural-product antibiotics globomycin and myxovirescin (Dev, Harvey, & Ray, 1985; Gerth,
65 Irschik, Reichenbach, & Trowitzsch, 1982; Olatunji et al., 2020; Xiao, Gerth, Müller, & Wall,
66 2012). In Gram-negative and high-GC Gram-positive bacteria, a third enzyme, lipoprotein N-acyl

Inhibition of Lgt in Gram-negative bacteria

67 transferase (Lnt), catalyzes the addition of a third acyl chain to the amino group of the N-terminal
68 cysteine via an amide linkage. Mature triacylated lipoproteins destined for the OM are extracted
69 from the IM by the LolCDE ATP-binding cassette (ABC) transporter and transported to the OM via
70 a periplasmic chaperone protein LolA and an OM lipoprotein LolB (Narita, 2011; Narita & Tokuda,
71 2010) (Figure 1).

72 **Figure 1: Lipoprotein biosynthesis and transport in Gram-negative bacteria**

73

74 Two OM lipoproteins, Lpp (also known as Murein lipoprotein or Braun's lipoprotein) and
75 Pal (peptidoglycan-associated lipoprotein), mediate tethering of the PG layer to the OM in *E. coli*.
76 Lpp is a small ~8 kDa lipoprotein that is the most abundant OM protein in *E. coli* (~500,000
77 molecules per cell) and a third of all Lpp is covalently linked to PG (Cowles et al., 2011; Neidhardt,
78 1996). *E. coli* mutants deficient in Lpp exhibit increased OM permeability, leakage of periplasmic
79 components, increased outer membrane vesicle (OMV) release and increased sensitivity to
80 complement-mediated lysis (Diao et al., 2017; H. Suzuki et al., 1978; Yem & Wu, 1978).
81 Mislocalization and accumulation of PG-linked Lpp in the inner membrane upon inhibition of LspA
82 (Xiao et al., 2012; Zwiebel, Inukai, Nakamura, & Inouye, 1981) and LolCDE (McLeod et al., 2015;
83 Nickerson et al., 2018) is believed to lead to bacterial cell death (Narita & Tokuda, 2011; Robichon,

Inhibition of Lgt in Gram-negative bacteria

84 Vidal-Inigliardi, & Pugsley, 2005; Yakushi, Tajima, Matsuyama, & Tokuda, 1997a). In addition
85 to Lpp, Pal binds PG and interacts with OmpA, Lpp and the Tol complex, and is crucial for
86 maintaining OM integrity in *E. coli* (Cascales, Bernadac, Gavioli, Lazzaroni, & Lloubes, 2002;
87 Clavel, Germon, Vianney, Portalier, & Lazzaroni, 1998; Leduc, Ishidate, Shakibai, & Rothfield,
88 1992; Mizuno, 1979). While non-natural product inhibitors of LspA and LolCDE have been
89 previously discovered (Kitamura, Owensby, Wall, & Wolan, 2018; McLeod et al., 2015), no
90 inhibitors of the first committed step in bacterial lipoprotein biosynthesis have been described.
91 Since many natural product antibiotics, including those that inhibit LspA, are cyclic (Igarashi, 2019;
92 Rossiter, Fletcher, & Wuest, 2017), we screened a macrocyclic peptide library to identify Lgt
93 inhibitors. In this study, we identify and characterize the first inhibitors of Lgt that inhibit growth
94 of wild-type *E. coli* and *A. baumannii* strains in addition to other OM-permeabilized Gram-negative
95 species. We demonstrate that, unlike inhibitors of LspA and LolCDE, treatment with Lgt inhibitors
96 does not lead to the significant accumulation of PG-linked Lpp forms in the IM and as such, are not
97 sensitive to resistance mediated by deletion of *lpp*.

98

99

100

101

102

103

104

105

106

Inhibition of Lgt in Gram-negative bacteria

107 Results

108 **Modest depletion of Lgt leads to increased OM permeability and loss of bacterial viability is**
109 **not rescued by deletion of *lpp*.** Previous investigations into the role of Lgt in *E. coli* have focused
110 on laboratory strains, specifically those lacking the O-antigen of LPS. Here, we engineered the
111 uropathogenic *E. coli* clinical isolate CFT073 so that the only copy of *lgt* was under control of an
112 arabinose-inducible promoter (CFT073 Δ *lgt*), and hence requires arabinose for Lgt expression. As
113 expected, genetic depletion of Lgt was lethal *in vitro* and growth was rescued after
114 complementation with *E. coli* *lgt* (Figure 2a). *thyA*, the gene that encodes thymidylate synthase, is
115 downstream of *lgt* and its ribosome binding site overlaps with the *lgt* stop codon. We confirmed
116 that *thyA* expression, which is regulated by transcription from the *lgt* promoter and translational
117 coupling (Gan et al., 1995), was unchanged after Lgt depletion (Figure 2-figure supplement 1a).
118 Complementation with *lgt* from *Pseudomonas aeruginosa* PA14 or *A. baumannii* ATCC 17978
119 (51.6% and 48.6% sequence identity, respectively) was able to rescue viability (Figure 2a and
120 Figure 2-figure supplement 1b). Overexpression of the *E. coli* genes encoding the downstream
121 enzymes in lipoprotein biosynthesis (LspA, Lnt) and transport (LolCDE) did not rescue growth of
122 CFT073 Δ *lgt* in spite of detectable levels of LspA, Lnt and LolCDE (Figure 2-figure supplement 1c-
123 g). While depletion of ~25% of Lgt was sufficient for bactericidal activity (Figure 2b and 2c),
124 CFT073 Δ *lgt* cells expressing as high as ~90% of normal levels of Lgt were significantly more
125 sensitive to complement-mediated killing of the normally serum-resistant *E. coli* CFT073 and
126 showed increased incorporation of SYTOX Green, a dye that normally does not penetrate an intact
127 OM (Figure 2c-e). Depletion of Lgt also resulted in an expected increase in cell size (Figure 2f) and
128 an Lpp-dependent IM contraction due to osmotic stress (Figure 2-figure supplement 2), as
129 previously reported (Inukai et al., 1978a; Inukai, Nakajima, Osawa, Haneishi, & Arai, 1978b; Rojas

Inhibition of Lgt in Gram-negative bacteria

130 et al., 2018). Consistent with these results, partial depletion of Lgt that still allowed for normal
131 growth *in vitro* led to increased sensitivity to antibiotics that are normally excluded by the
132 impermeable Gram-negative OM (Table 1). Depletion of Lgt also resulted in significant attenuation
133 in a mouse *E. coli* bacteremic infection model (Figure 2g). Cumulatively, these data suggest that
134 Lgt could be a good antibiotic target since partial inhibition of Lgt may be sufficient to lead to
135 significant attenuation in growth and cellular morphology.

136

137 **Table 1:** Antibiotic sensitivity of WT CFT073 versus CFT073 Δlgt cells expressing wild-type (4%
138 Ara) or low (0.25% Ara) levels of Lgt

139
140

Antibiotic	MIC (μ M)		
	WT CFT073	CFT073 Δlgt	
		Lgt 4% Ara	Lgt 0.25% Ara
Vancomycin (μ M)	>100	>100	12.5
Rifamycin (μ M)	6.3	6.3	0.8
Penicillin G (μ M)	>50	>50	0.8
Oxacillin (μ M)	>100	>100	12.5
Zeocin (μ M)	12.5	12.5	0.8
Norfloxacin (μ M)	0.4	0.6	0.2

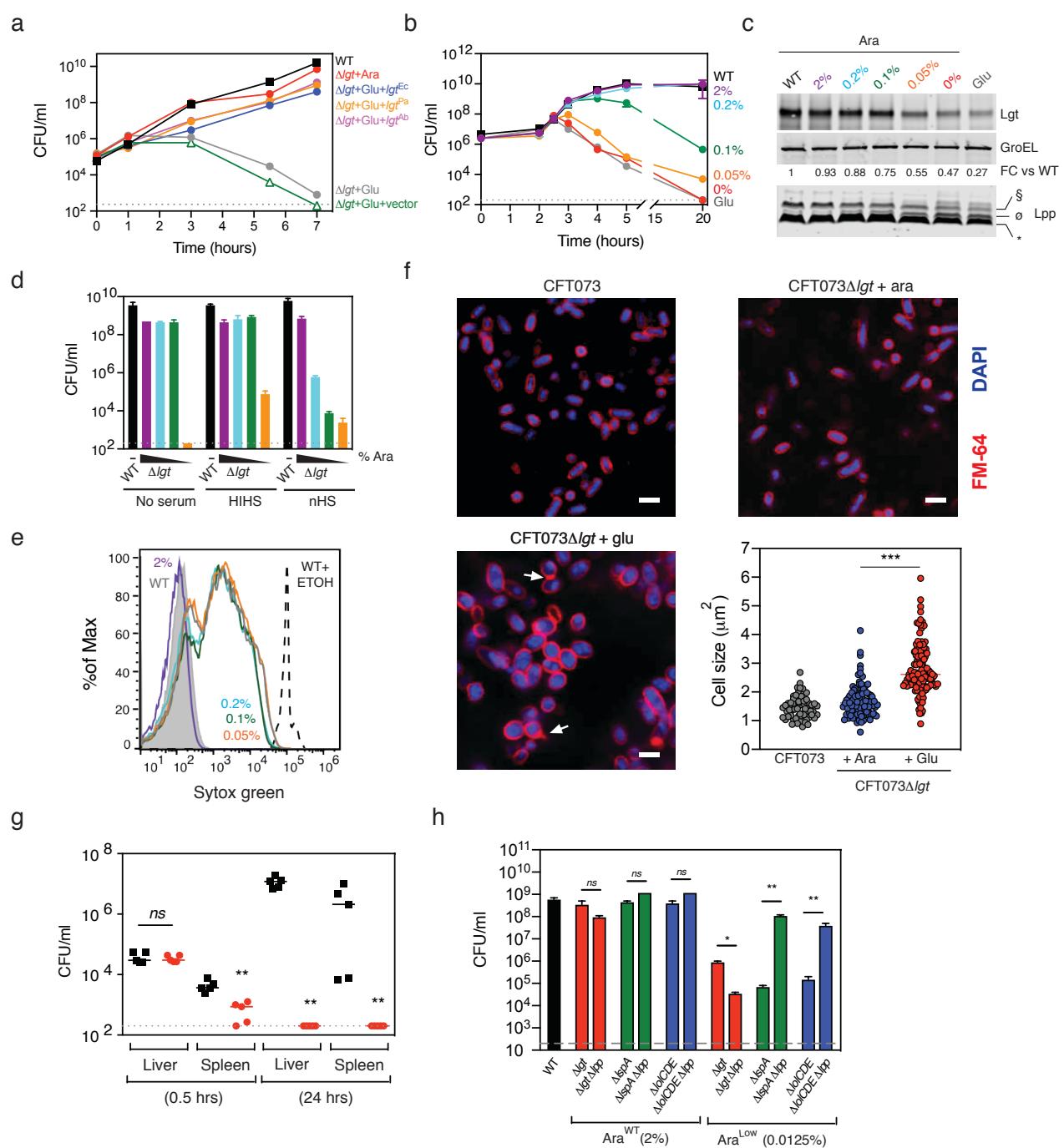
141
142

143 Bactericidal activity of LspA and LolCDE inhibitors are sensitive to deletion of the gene
144 encoding the major OM lipoprotein, Lpp (McLeod et al., 2015; Zwiebel et al., 1981). To determine
145 if Lpp played a role in bacterial cell death after Lgt depletion, we constructed a *lgt* inducible
146 deletion strain in *E. coli* MG1655 with and without *lpp* (MG1655 Δlgt and MG1655 $\Delta lgt\Delta lpp$) and
147 compared growth of these strains to *lspA* and *lolCDE* inducible deletion strains in the same
148 backgrounds. Expectedly, *lpp* deletion rescued the growth of the *lspA* and *lolCDE* inducible
149 deletions strains after depletion of LspA and LolCDE, respectively (Figure 2h). In contrast to LspA

Inhibition of Lgt in Gram-negative bacteria

150 and LolCDE depletion, the *lpp* mutant was more sensitive to Lgt depletion leading to a greater loss
151 of colony forming units (CFU) compared to that detected after Lgt depletion in cells expressing *lpp*.

152 Since the loss of *lpp* is a primary mechanism of resistance to inhibitors of LspA and
153 LolCDE thereby complicating their potential as antibacterial targets, identification of Lgt inhibitors
154 would uncover further biological understanding of this essential pathway, and potentially serve as
155 better starting chemical matter to develop novel antibiotics targeting lipoprotein biosynthesis that
156 are not sensitive to resistance mediated by *lpp* deletion.


157

158 **Identification and characterization of macrocyclic peptide inhibitors of Lgt.** Many natural
159 products or their derivatives account for a significant number of launched drugs and sine many of
160 them are cyclic in nature (Igarashi, 2019), we initially screened a macrocyclic peptide library to
161 identify specific and high affinity binders of Lgt. A genetically reprogrammed *in vitro* translation
162 system combined with mRNA affinity selection methods was used to generate large macrocycle
163 peptide libraries with sizes varying from 8-14 amino acids in length (Goto, Katoh, & Suga, 2011;
164 Ishizawa, Kawakami, Reid, & Murakami, 2013; Kashiwagi, Reid, & Inc, 2013) (Figure 3a). The
165 variable sequence (6-12 amino acids) of the macrocycle libraries encoded the random incorporation
166 of 11 natural amino acids (Ser, Tyr, Trp, Leu, Pro, His, Arg, Asn, Val, Asp, and Gly) and 5 non-
167 natural amino acids (Figure 3b). The screening of the libraries is schematically depicted in Figure
168 3c. Lgt-biotin was solubilized in 0.02% n-Dodecyl β -D-maltoside (DDM), immobilized on
169 streptavidin magnetic beads and incubated with the macrocyclic library. Iterative rounds of affinity
170 selection were performed to identify Lgt-binding macrocycles. After five rounds of enrichment,

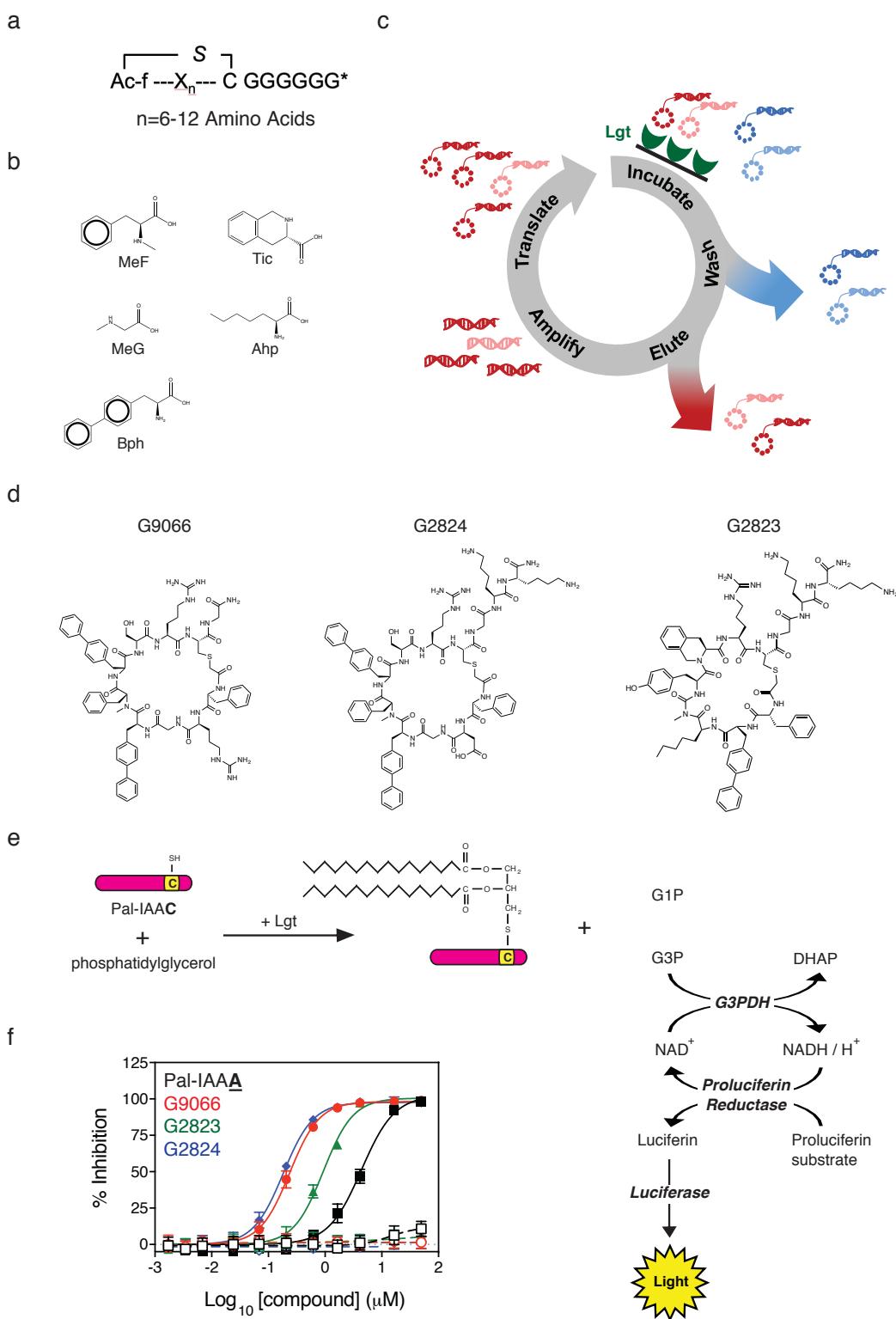
171

Inhibition of Lgt in Gram-negative bacteria

172 **Figure 2: Lgt is essential for *in vitro* growth, membrane integrity, serum resistance and**
 173 **virulence**

174

175


Inhibition of Lgt in Gram-negative bacteria

176 two additional rounds of off-rate selections were performed by increasing the wash stringency
177 before high affinity binders were eluted. Hit macrocycles were identified using next generation
178 sequencing on the last four rounds of selection followed by a frequency analysis calculation. Three
179 macrocycles were identified from these screens, **508**, **692**, and **693** (Figure 3-figure supplement 1),
180 with a frequency enrichment in the final round of selection of 4.1%, 19.4%, and 10.1%,
181 respectively, as measured by NGS. **508** contains 8 amino acids with a molecular weight (MW) of
182 1264.49 Da. **692** and **693** each contain 7 amino acids and are related to one another with a charge
183 swap at position 2, and have MWs of 1428.66 and 1259.55 respectively. The calculated LogPs
184 (cLogP), which is the logarithm of the compounds partition coefficient between n-octanol and water
185 and a measure of a molecule's hydrophilicity, were 4, 1.8 and 1.7 for **508**, **692** and **693**,
186 respectively. **692** was synthesized with a Gly off of the C-terminus and renamed G9066 (Figure
187 3d). During re-synthesis, both **508** and **693** were synthesized with a Gly-Lys-Lys tail off of the C-
188 terminus to aide in solubility of these macrocycles and were renamed G2823 and G2824,
189 respectively (Figure 3d).

190 We then tested the ability of G9066, G2823 and G2824 to inhibit *E. coli* Lgt enzymatic
191 activity *in vitro* by measuring the release of glycerol phosphate which is a by-product of the Lgt-
192 catalyzed transfer of diacylglyceryl from phosphatidylglycerol to a peptide substrate via formation
193 of a thioether bond. The peptide substrate was derived from the Pal lipoprotein (Pal-IAAC, where
194 C is the conserved cysteine that is modified by Lgt). While glycerol-1-phosphate (G1P) is the
195 expected by-product of the Lgt enzymatic activity (Sankaran & Wu, 1994), the
196 phosphatidylglycerol substrate used in our biochemical assay contains a racemic glycerol moiety at
197 the end of phosphatidyl group, and hence both G1P and glycerol-3-phosphate (G3P) are released
198 from phosphatidylglycerol as Lgt catalyzes the reaction (Figure 3e). The detection of G3P is based

Inhibition of Lgt in Gram-negative bacteria

199 **Figure 3: Identification of Lgt inhibitors**

Inhibition of Lgt in Gram-negative bacteria

201 on a coupled luciferase reaction which is described in more detail in the Methods and in Figure 3e.

202 G9066, G2823 and G2824 potently inhibited Lgt biochemical activity ($IC_{50}=0.24 \mu M$, $0.93 \mu M$ and

203 $0.18 \mu M$, respectively) (Figure 3f). In comparison, a mutant Pal peptide substrate with the

204 conserved cysteine mutated to alanine (Pal-IAAA), which cannot get modified and acts as a Lgt-

205 binding nonreactive, substrate-based competitive inhibitor, inhibited Lgt with an $IC_{50}=4.4 \mu M$

206 (Figure 3f). When tested against bacterial cells in minimal inhibitory concentration (MIC) growth

207 assays, G9066 and G2824 inhibited growth of WT *A. baumannii* 19606 with a MIC = $37.5 \mu M$.

208 G2823 and G2824 inhibited *E. coli* MG1655 growth with a MIC = $50 \mu M$ (Table 2). OM

209 permeabilization either genetically (*imp4213* mutation) or chemically (EDTA treatment) of all

210 **Table 2: Growth inhibition of a panel of bacterial strains and eukaryotic cells by Lgti, LspAi**
211 **and LolCDEi**

Bacteria	Strain	Lgti			LspAi GBM	LolCDEi C1	Vancomycin
		G9066	G2823	G2824			
<i>E. coli</i> (MIC, μM)	MG1655	>100	50	50	25	>100	>100
	MG1655 + EDTA	3.1	3.1	3.1	0.8	3.1	3.1
	MG1655 Δlpp + EDTA	3.1	3.1	3.1	12.5	12.5	0.8
	CFT073	100	83.3	92	29.2	50	>100
	CFT073 Δlpp	31.3	25	62.5	>100	>100	>100
	CFT073 + EDTA	3.1	4.2	3.1	1.1	2.1	0.8
<i>A. baumannii</i> (MIC, μM)	CFT073 Δlpp + EDTA	1.6	3.1	2.3	4.7	9.4	0.8
	CFT073 $imp4213$	5.7	8.4	8.4	0.5	2.1	0.6
	CFT073 $imp4213\Delta lpp$	6.8	9.4	8.9	11.5	17.7	0.7
	19606	37.5	100	37.5	25	100	>100
	19606 + EDTA	3.1	4.7	6.3	0.6	12.5	0.2
	<i>P. aeruginosa</i> (MIC, μM)	PA14	>100	>100	>100	>100	>100
		PA14 $imp4213$	6.3	6.3	50	>100	12.5
<i>S. aureus</i> (MIC, μM)	PA14 + EDTA	6.3	6.3	6.3	50	50	6.3
	USA300	6.3	>100	>100	>100	>100	0.4
Mammalian cytotoxicity (EC ₅₀ , μM) [§]	HepG2	> 100	> 100	> 100	> 100	> 100	> 100
	HeLa	> 100	> 100	> 100	> 100	> 100	> 100
	293T	> 100	> 100	> 100	> 100	> 100	> 100

Inhibition of Lgt in Gram-negative bacteria

212 * All *E. coli* MIC values represent averages from at least four independent experiments each performed in duplicate.
213 For other bacterial strains, MIC values represent averages from two independent experiments each performed in
214 duplicate
215 [†] Mammalian cytotoxicity values are representative of three independent replicates
216

217

218 Gram-negative strains, including *P. aeruginosa* PA14 and *A. baumannii* 19606, led to growth
219 inhibition (Table 2). Interestingly, *lpp* deletion in either CFT073~~imp~~4213 or CFT073 treated with
220 EDTA did not lead to increases in G9066, G2823 or G2824 MIC, unlike that seen with inhibitors of
221 LspA and LolCDE (Table 2). In fact, *lpp* deletion in WT CFT073 cells led to a modest increase in
222 G9066, G2823 and G2824 potency. G2823 and G2824 showed minimal non-specific activity
223 against eukaryotic cells and the Gram-positive *Staphylococcus aureus* strain USA300, consistent
224 with data demonstrating *lgt* is dispensable for Gram-positive bacterial growth *in vitro* (Stoll,
225 Dengjel, Nerz, & Götz, 2005). In contrast, G9066 inhibited growth of USA300 to a greater extent
226 suggesting G9066 may have additional targets or non-specific cellular effects. Given G9066 and
227 G2824 are very similar, we decided to focus the remainder of this study on G2823 and G2824
228 (hereafter referred to as Lgti).

229

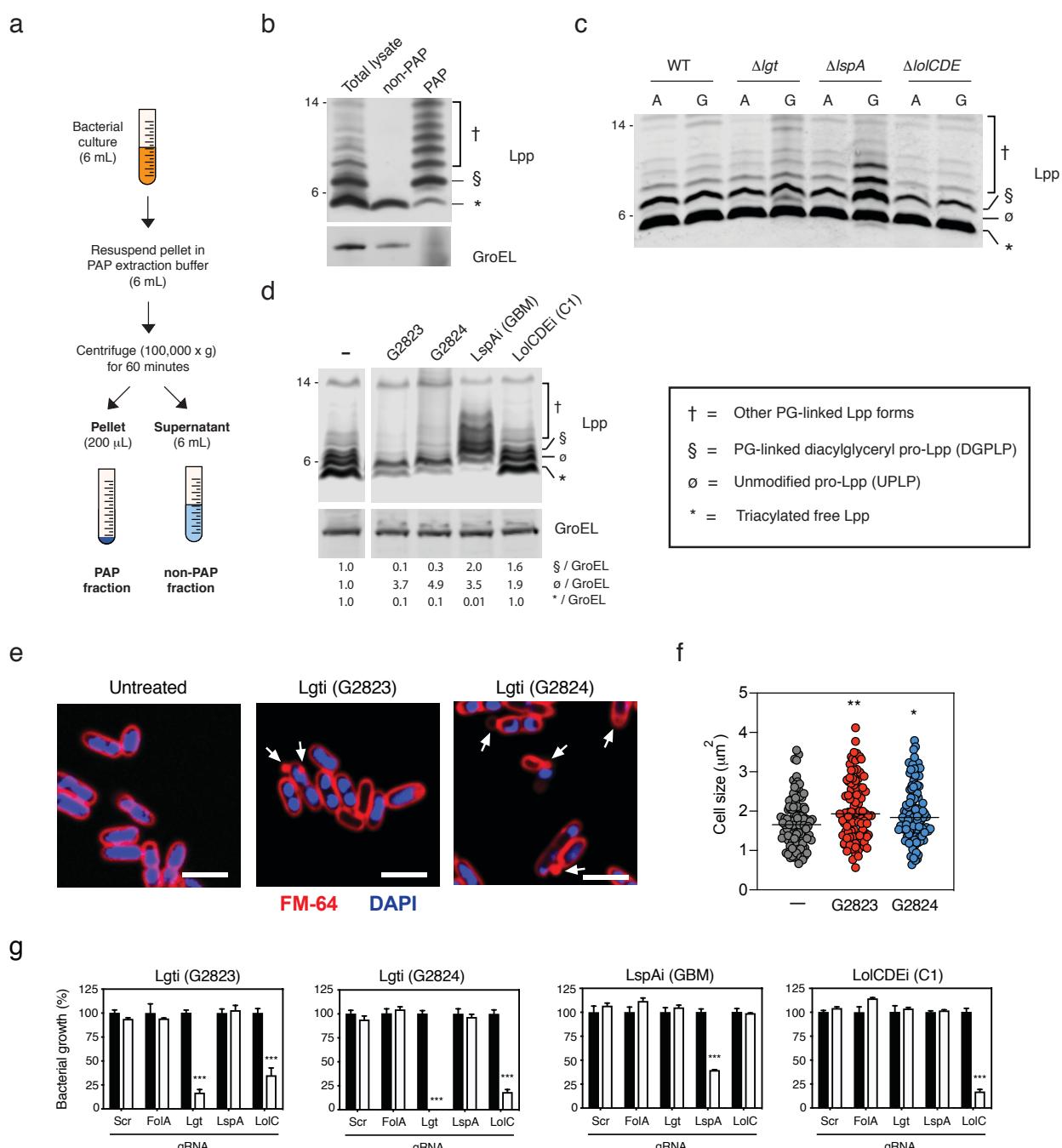
G2823 and G2824 specifically inhibit Lgt in *E. coli*

230 While the Lgti inhibited both Lgt enzymatic function and bacterial growth, it was unclear whether
231 inhibition of bacterial cell growth was mediated by specific inhibition of Lgt function. We were
232 unable to raise on-target resistant mutants to Lgti, and hence multiple experimental approaches were
233 undertaken to determine if inhibition of bacterial growth was indeed Lgt-dependent. As the
234 accumulation of Lpp intermediates detected by Western blot analyses has been successfully used to
235

Inhibition of Lgt in Gram-negative bacteria

236 verify inhibition or deletion of specific enzymes involved in lipoprotein biosynthesis or transport
237 (Narita & Tokuda, 2011; Nickerson et al., 2018), we asked if Lgt treatment led to the accumulation
238 of pro-Lpp, the substrate of Lgt. We initially sought to verify the various Lpp forms by leveraging
239 a previously described protocol using SDS fractionation (Diao et al., 2017; Nakae, Ishii, &
240 Tokunaga, 1979; Whitfield, Hancock, & Costerton, 1983). Lysozyme was added to allow for the
241 identification of PG-linked Lpp forms, as previously demonstrated (M. Suzuki, Hara, & Matsumoto,
242 2002). CFT073 cell lysates were centrifuged to separate the SDS-insoluble PG-associated proteins
243 (PAP) and SDS-soluble non-PG-associated proteins (non-PAP) (Figure 4a) and Lpp were detected
244 by Western blot analysis. As expected, the fastest migrating form representing the triacylated
245 mature form of Lpp (*) was enriched in the non-PAP fraction and the PG-linked Lpp forms (†) were
246 enriched in the PAP fraction (Figure 4b). We also detected a form corresponding to the PG-linked
247 diacylglycerol modified pro-Lpp (DGPLP, §), as previously reported (M. Suzuki et al., 2002). We
248 then asked if we could detect pro-Lpp in total cell lysates after Lgt depletion and used the *lspA* and
249 *lolCDE* inducible deletion strains as controls. We confirmed that specific depletion of Lgt led to the
250 accumulation of the unmodified pro-Lpp (UPLP, ø), (Figure 4c), consistent with previous results
251 (Pailler, Aucher, Pires, & Buddelmeijer, 2012). While depletion of LspA led to the accumulation of
252 DGPLP (§) and other PG-linked Lpp forms (†), depletion of LolCDE did not change the SDS-
253 PAGE migration of Lpp as LolCDE is only critical for transport to the OM and does not affect
254 lipoprotein biosynthesis (Figure 4c). These results now allowed us to determine whether the Lgti
255 identified in this study inhibited Lgt in bacterial cells.

256 As the Lgti have only moderate activity against WT bacterial strains, we performed
257 mechanistic studies with Lgti in the CFT073 cells containing the *imp4213* allele in *lptD*
258 (CFT073*imp4213*), which leads to permeabilization of the OM (Ruiz, Falcone, Kahne, & Silhavy,


Inhibition of Lgt in Gram-negative bacteria

259 2005). Given the high expression of Lpp, we engineered CFT073*imp4213* cells to only express an
260 arabinose inducible *lpp* (CFT073*imp4213Δlpp:lpp^{Ara}*) to minimize the background from pre-formed
261 Lpp. *lpp* gene expression was induced prior to treatment with sub-MIC levels of Lgti and led to an
262 accumulation of UPLP (ø, Figure 4d), similar to what was observed with the CFT073*Δlgt* strain
263 (Figure 4c), and a concurrent decrease in the triacylated mature Lpp form (*, Figure 4d). While
264 treatment with globomycin (LspAi) led to an accumulation of DGPLP and other PG-linked Lpp
265 forms, treatment of cells with the AstraZeneca LolCDE inhibitor C1 (LolCDEi) (McLeod et al.,
266 2015) did not lead to significant accumulation of Lpp, which is consistent with our data using the
267 inducible deletion strains as well as published results (Narita & Tokuda, 2011; Nickerson et al.,
268 2018). These data demonstrate that the Lgti identified in this study inhibit the generation of mature
269 triacylated Lpp and lead to the accumulation of UPLP, which is the substrate of Lgt.

270 Lgt on-target activity was further confirmed using two additional methods. First, Lgti
271 treatment also led to the expected OM blebbing and increase in cell size (Figure 4e and 4f), the
272 former of which was previously demonstrated in a Pal-deficient *E. coli* strain (Kowata, Tochigi,
273 Kusano, & Kojima, 2016). Second, we asked whether cells expressing reduced levels of Lgt would
274 be specifically sensitized to Lgti compared to the other inhibitors. To test this hypothesis, we
275 utilized CRISPRi technology to decrease gene expression of the enzymes involved in lipoprotein
276 biosynthesis and transport. BW25113 cells containing plasmids expressing dCas9 and guide RNAs
277 (gRNAs) specific to *lgt*, *lspA*, *lolC* were treated with Lgti, LspAi and LolCDEi and bacterial growth
278 was measured. Scrambled (scr) and a *folA*-specific gRNAs were used as negative controls. Levels
279 of downregulation of target gene expression (Figure 4-figure supplement 1) were consistent with
280 published reports for CRISPRi in bacterial cells (Rousset et al., 2018). Decreased expression of *lgt*
281 specifically sensitized cells to Lgti but not LspAi and LolCDEi (Figure 4g and

Inhibition of Lgt in Gram-negative bacteria

282 **Figure 4: Lgti inhibit Lgt enzymatic activity in bacterial cells.**

283

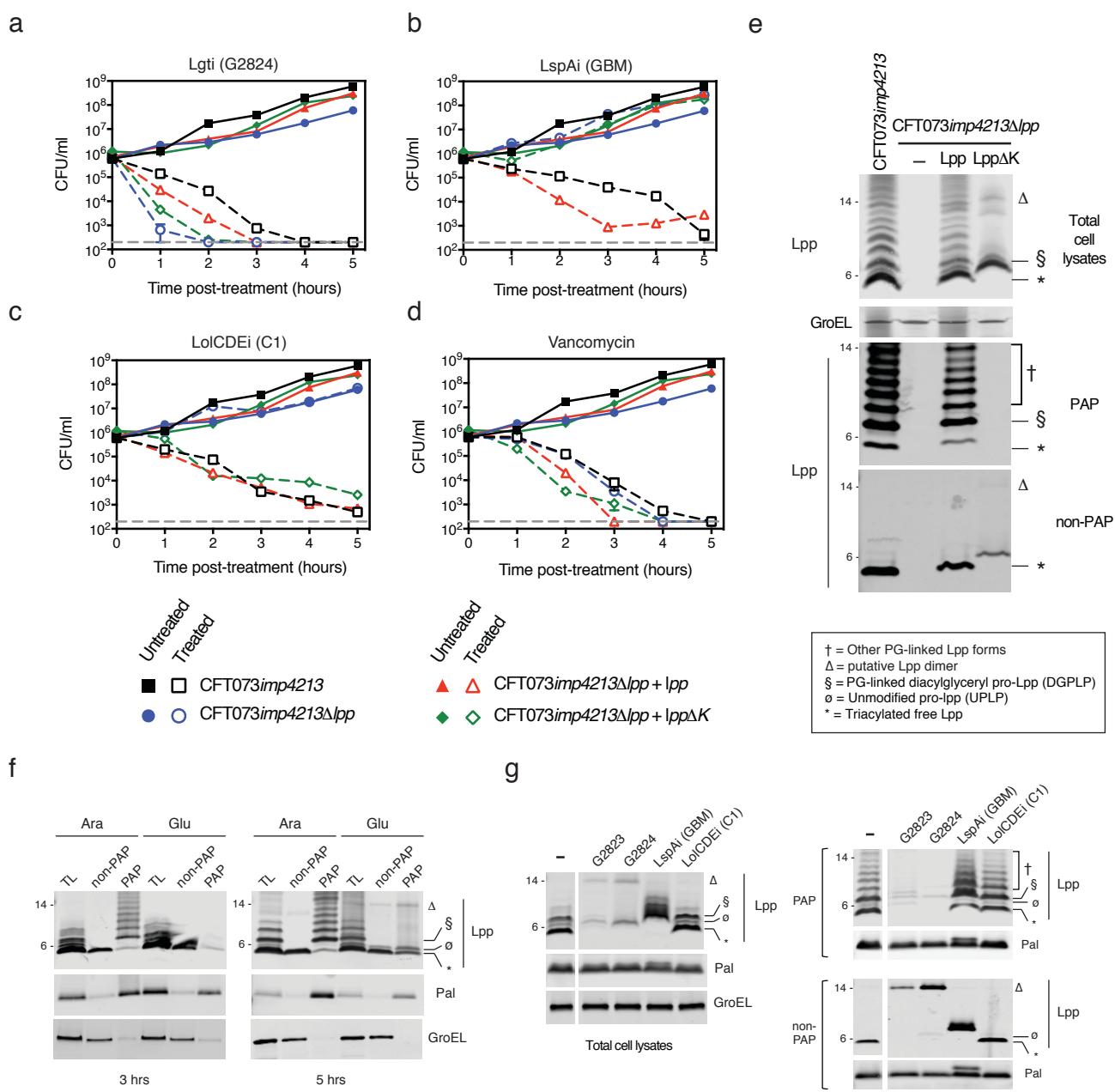
284

Inhibition of Lgt in Gram-negative bacteria

285 Figure 4-figure supplement 2). As expected, decreased expression of *lspA* and *lolC* specifically led
286 to enhanced growth inhibition by LspAi and LolCDEi compounds, respectively (Figure 4g and
287 Figure 4-figure supplement 2a,b). Decreased *lolC* expression also sensitized cells to Lgti (Figure
288 4g) and, at higher concentrations, LspAi (Figure 4-figure supplement 2d), but we confirmed that
289 previously identified LolCDEi-resistant mutants were not cross-resistant to Lgti (Supplemental
290 Table 1). Cumulatively, our data demonstrate that the novel Lgt-binding macrocycles G2823 and
291 G2824 interfere with Lgt activity leading to inhibition of *E. coli* growth.

292

293 **Antibacterial activity of Lgti is not sensitive to *lpp* deletion.**


294 Our data with the inducible deletion strains (Figure 2h) suggested that the mechanism of cell death
295 upon Lgt depletion is independent of Lpp (Figure 2h), distinguishing it from the mechanism of cell
296 death after depletion of enzymes involved in later steps of lipoprotein biosynthesis. Since the Lgti
297 identified in this study now allowed us to pharmacologically intervene at this step in the pathway,
298 we compared the bactericidal activity of Lgti with that of LspAi and LolCDEi. We treated
299 CFT073*imp4213* and CFT073*imp4213Δlpp* cells with Lgti (G2824), LspAi (GBM) and LolCDEi
300 (C1) at 2×MIC of the respective inhibitors against CFT073*imp4213* and enumerated viable CFU
301 counts. Consistent with our data using the inducible deletion strains, *lpp* deletion did not protect
302 cells from Lgti (Figure 5a). In fact, the rate of CFU loss after Lgti treatment was more rapid in *lpp*-
303 deleted cells, which is consistent with our data using the CFT073*Δlgt* cells (Figure 2h) and indicates
304 a protective role for Lpp when targeting Lgt. As expected, inhibition of bacterial growth by LspAi
305 and LolCDEi was lost in the absence of *lpp* (Figure 5b and 5c). In contrast, vancomycin showed
306 equivalent killing of CFT073*imp4213* and CFT073*imp4213Δlpp* at 5 hours post treatment (Figure

Inhibition of Lgti in Gram-negative bacteria

307 5d). These data confirm that *lpp* deletion is not a mechanism of resistance to Lgti, and in fact
 308 protects cells against depletion or inhibition of Lgti.

309

310 **Figure 5: *lpp* deletion does not rescue growth after Lgti treatment**

311

Inhibition of Lgt in Gram-negative bacteria

312 To determine if PG-linkage of Lpp plays a role in protection against Lgti, we treated
313 CFT073 $imp4213\Delta lpp$ cells complemented with either WT *lpp* or a mutant form that is unable to
314 covalently link to PG (*lpp* ΔK). Using the previously described SDS fraction protocol, we
315 confirmed that while WT Lpp localized to both PAP and non-PAP fractions, the Lpp ΔK mutant was
316 only detected in the non-PAP fraction (Figure 5e). As we noted earlier, PG-linked DGPLP (§) and
317 other PG-linked Lpp forms (†) were primarily detectable in cell lysates and PAP fraction (Figure
318 5e). While complementation of CFT073 $imp4213\Delta lpp$ with WT *lpp* led to increased bactericidal
319 activity of LspAi and LolCDEi, bactericidal activity of Lgti and LolCDEi in cells deleted for *lpp* or
320 those only expressing Lpp ΔK was comparable (Figure 5a-c). These data suggest that while PG-
321 linked Lpp is toxic to cells after treatment with LspAi, it functions as a protective mechanism
322 against Lgti. Furthermore, accumulation of PG-linked Lpp does not fully explain the bactericidal
323 activity of LolCDEi.

324

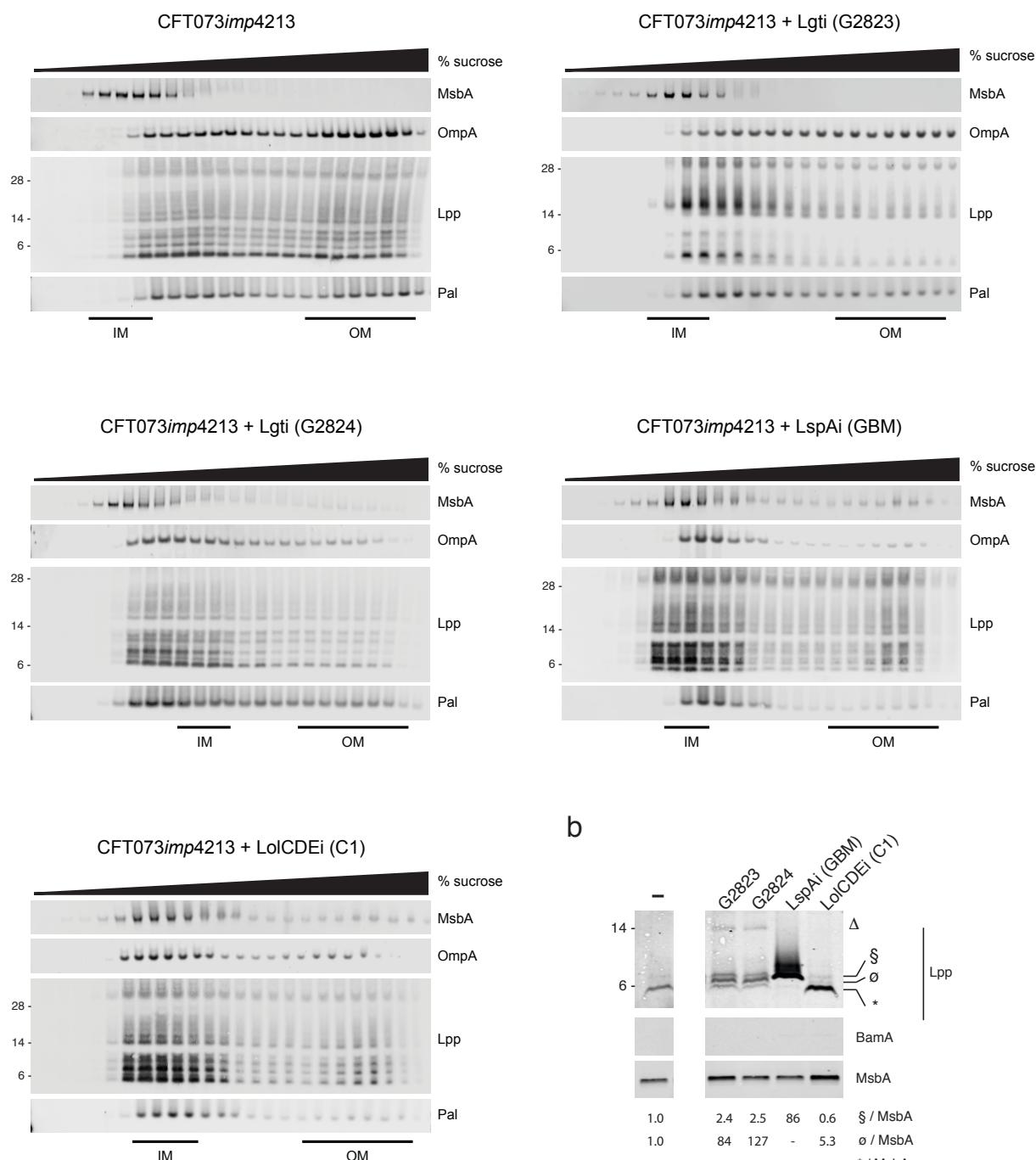
325 **Lgt depletion or inhibition leads to decreased PG-association of Lpp and Pal.**

326 Unlike with inhibitors of LspA (Yakushi, Tajima, Matsuyama, & Tokuda, 1997a) and LolCDE
327 (Nickerson et al., 2018), Lpp protects cells from Lgti suggesting that the PG-linkage state and/or
328 localization of Lpp must differ after treatment with Lgti. Using SDS fractionation to enrich for PG-
329 associated proteins in the CFT073 Δlgt inducible deletion strain, we find that while Lgt depletion
330 leads to a significant loss of DGPLP and other PG-linked Lpp forms in the PAP fractions, there is a
331 modest accumulation of UPLP in the PAP fraction (Figure 5f). Lgt depletion also led to decreased
332 PG-associated Pal, although the difference between pro-Pal and mature Pal forms was difficult to
333 distinguish by SDS-PAGE due to larger size of Pal compared to Lpp. We then tested if Lgti

Inhibition of Lgt in Gram-negative bacteria

334 treatment also led to a similar loss of PG-association of Lpp and Pal. As before, we used cells
335 expressing an inducible form of *lpp* (CFT073*imp4213Δlpp:lpp^{Ara}*) and find that Lgti treatment leads
336 to decreased PG-associated DGPLP and other PG-linked Lpp forms Lpp (Figure 5g). In addition,
337 we also detect a modest decrease in PG-associated Pal (Figure 5g). As expected, LspAi treatment
338 led to the accumulation of PG-linked DGPLP (§) and other PG-linked Lpp forms (†). These data
339 suggest that the accumulated UPLP after Lgt inhibition is either not significantly linked to PG or
340 does not accumulate to levels needed to induce cell death. To address the first question, we
341 engineered cells to only express a mutant of Lpp that has the conserved cysteine modified
342 (CFT073*imp4213Δlpp:lpp^{C21A}*) and asked if this form was PG-linked. Lpp^{C21A} cannot be modified
343 by Lgt and represents the pro-Lpp substrate of Lgt. While complementation of
344 CFT073*imp4213Δlpp* with WT Lpp led to normal PG-linkage, CFT073*imp4213Δlpp:lpp^{C21A}* cells
345 showed a significantly less PG-association of Lpp (Figure 5-figure supplement 1). Cumulatively,
346 these data demonstrate that inhibition of Lgt leads to decreased PG-association of Lpp, which could
347 explain why deletion of *lpp* does not lead to resistance to Lgti.

348


349 **Inhibition of Lgt does not lead to significant accumulation of PG-linked Lpp in the IM**

350 We then asked if membrane localization of Lpp, other OM lipoproteins and OMPs were affected by
351 Lgti. We utilized sucrose gradient centrifugation to separate *E. coli* IM and OM and measured
352 levels of OM lipoproteins (Lpp, Pal, BamD) and OMPs (BamA, OmpA) by Western blot analyses.
353 Sucrose gradient centrifugation of CFT073*imp4213* cells membranes led to the efficient separation
354 of IM and OM, as measured by MsbA and OmpA expression, respectively (Figure 6a). In
355 comparison to untreated cells, Lgti treatment led to significant reductions of Lpp in the OM (Figure

Inhibition of Lgt in Gram-negative bacteria

356 **Figure 6: Inhibition of Lgt leads to depletion of essential OM lipoproteins and OMPs and**
 357 **minimal IM accumulation of PG-linked DGPLP**

a

358

359

Inhibition of Lgti in Gram-negative bacteria

360 6a). Although Lgti treatment led to accumulation of Lpp in the IM, the levels were significantly
361 lower than that seen with LspAi and LolCDEi. All the inhibitors led to decreased OM localization
362 of other lipoproteins, Pal and BamD, as well as the OM β -barrel proteins BamA and OmpA (Figure
363 6 and Figure 6 – figure supplement 1). These results are not totally unexpected given OmpA
364 insertion into the OM requires BamA function, which itself requires other Bam lipoproteins,
365 including BamD, for proper OM localization. These results suggest that while Lgti are similar to
366 LspAi and LolCDEi in their effects on Pal and other lipoproteins involved in OM biogenesis
367 pathways, they differ from LspAi and LolCDEi in that they do not lead to significant accumulation
368 of Lpp in the IM supporting our data that *lpp* deletion does not play major role in resistance to Lgti.

369 In addition to sucrose gradient centrifugation, we also treated cells with sarkosyl that
370 specifically solubilizes the IM and has been used for IM proteomic analyses in multiple Gram-
371 negative bacteria (Ferrer-Navarro, Ballesté-Delpierre, Vila, & Fàbrega, 2016; Filip, Fletcher, Wulff,
372 & Earhart, 1973; Hobbs, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to
373 untreated cells, treatment with Lgti led to a ~84 to 127-fold increase in levels of UPLP in the IM. In
374 contrast, DGPLP levels in the IM increased by a modest ~2.5-fold in comparison to LspAi
375 treatment, which results in a ~86-fold increase of DGPLP in the IM (Figure 6b). These results
376 confirm that Lgti treatment leads to minimal accumulation of inefficiently PG-linked UPLP in the
377 IM, but no significant accumulation of other PG-linked Lpp forms, including the DGPLP.

378

379

380

Inhibition of Lgt in Gram-negative bacteria

381 Discussion

382 Lipoprotein biosynthesis is a critical pathway involved in the biogenesis and maintenance of the
383 Gram-negative bacterial OM, and disruption of any step in this pathway leads to loss of cell
384 viability. Lpp maintains the integrity of the Gram-negative bacterial cell surface by covalent
385 interaction between the C-terminal lysine and the *meso*-diaminopimelic acid residue of the PG layer
386 (Braun & Wolff, 1970; Hirota, Suzuki, Nishimura, & Yasuda, 1977; H. Suzuki et al., 1978; Zhang
387 & Wu, 1992; Zhang, Inouye, & Wu, 1992). Published data suggest that *lpp* deletion leads to rescue
388 of growth after inhibition of LspA and LolCDE (McLeod et al., 2015; Nickerson et al., 2018; Xiao
389 et al., 2012; Yakushi, Tajima, Matsuyama, & Tokuda, 1997a; Zwiebel et al., 1981) as well as rescue
390 of the temperature-sensitive *Salmonella typhimurium* *lgt* and *lnt* mutants (Gan, Gupta, Sankaran,
391 Schmid, & Wu, 1993; Gupta, Gan, Schmid, & Wu, 1993). While *E. coli* *lnt* is essential in the
392 absence of *lpp* (Robichon et al., 2005), Lpp overexpression in the *E. coli* *lnt* mutant leads to
393 bacterial cell growth arrest (Narita & Tokuda, 2011). Following up on data from Pailier et al., who
394 demonstrated that *lgt* is essential in BW25113, a derivative of *E. coli* K-12 strain BD792, and that
395 Lgt depletion leads to increased DNA leakage from the cell pole (Pailier et al., 2012), we
396 demonstrate that Lgt depletion in the clinical *E. coli* strain CFT073 leads to significant perturbations
397 to the bacterial cell envelope leading to increased sensitivity to antibiotics (Table 1), increased
398 serum killing (Figure 2d) and attenuated virulence *in vivo* (Figure 2g).

399 Based on this information and published reports, we had expected that deletion of *lpp* would
400 also lead to rescue of growth after depletion or pharmacologic inhibition of Lgt, but our data
401 demonstrate Lpp is in fact protective in cells treated with Lgti (Figure 5) or after Lgt depletion in
402 the CFT074Δ*lgt* inducible deletion strain (Figure 2h). Both Lgt depletion and inhibition leads to the

Inhibition of Lgt in Gram-negative bacteria

403 loss of PG tethering to the OM mediated by Lpp and Pal (Figure 5). Data demonstrating that cells
404 expressing the Lpp^{C21A} mutant contain significantly less PG-linked Lpp further supports our
405 conclusions that Lpp linkage to PG is negatively affected by Lgti. Although alternative hypotheses
406 remain to be tested, our findings suggest that efficient crosslinking of Lpp to PG occurs only after
407 diacylglycerol modification of lipoprotein substrates by Lgt. Given that Lpp is critical for cell
408 envelope stiffness (Mathelié-Guinlet, Asmar, Collet, & Dufrêne, 2020), we propose that in the
409 absence of significant accumulation of DGPLP or other PG-linked Lpp forms, Lpp is protective
410 against Lgti bactericidal activity. While our data is consistent with a previous report demonstrating
411 UPLP and DGPLP are both linked to a single muropeptide unit (M. Suzuki et al., 2002), we show
412 that the level of PG-linkage is significantly less efficient in the absence of diacylglycerol
413 modification of pro-Lpp. The consequence of these findings is that targeting Lgt as a novel
414 antibacterial target would overcome a major liability of targeting other steps in the lipoprotein
415 biosynthetic pathway, namely the off-target resistance mediated by *lpp* deletion (McLeod et al.,
416 2015; Xiao et al., 2012; Zwiebel et al., 1981).

417 The Lgti identified in this study are the first described inhibitors of the first committed step
418 in bacterial lipoprotein biosynthesis. G2823 and G2824 inhibit growth of WT *E. coli* and *A.*
419 *baumannii*. We used a combination of biochemical and genetic strategies (Figure 3) to confirm
420 these molecules function through inhibition of the diacylglycerol transferase activity of Lgt. First,
421 the Lgti in this study were identified using a Lgt binding screen and confirmed to inhibit Lgt
422 enzymatic function *in vitro*. Second, the multiple effects and phenotypes detected in Lgti-treated
423 cells were recapitulated using *lgt* inducible deletion strains, strongly arguing against off-target
424 effects as the main cause of cell death. While we were unable to raise on-target resistant mutants to
425 any Lgti, one could speculate that if the Lgti bind to the conserved phosphatidylglycerol binding

Inhibition of Lgt in Gram-negative bacteria

426 site in Lgt, mutations disrupting Lgti binding might result in loss of Lgt function leading to cell
427 death. This hypothesis is actually consistent with data using globomycin or an improved analog
428 ,G0790, which binds a highly conserved active site (Vogeley et al., 2016) and for which no on-
429 target resistance mutations have ever been described (Lehman & Grabowicz, 2019; Pantua et al.,
430 2020). As recent publications have revealed significant insights into the potential mechanisms of
431 diacylglycerol modification by Lgt (Mao et al., 2016; Singh et al., 2019), further studies aimed at
432 determining if these Lgti competitively inhibit binding of the phosphatidylglycerol or prolipoprotein
433 substrates would be critical in better understanding the mechanism by which these molecules
434 interfere with this critical OM biogenesis pathway. Although we do not detect MIC shifts with Lgti
435 in cells overexpressing *lgt* (data not shown), drug resistance in *E. coli* after target overexpression
436 can increase, remain unchanged or decrease depending on the balance between bacterial fitness
437 costs and inhibition of enzymatic activity (Palmer & Kishony, 2014). One could speculate that even
438 a modest inhibition of Lgt could lead to significant effects on OM integrity and cellular fitness
439 which may counteract any resistance arising from *lgt* overexpression. While CRISPRi-mediated
440 downregulation of *lgt* expression specifically sensitizes cells to Lgti but not LspAi or LolCDEi
441 (Figure 4g), *lolC* downregulation increases sensitivity to growth inhibition by LolCDE, Lgti and, at
442 higher concentrations, LspAi (Figure 4-supplement 1). It is possible that LolC depletion may
443 increase the permeability of cells to Lgti and LspAi as Lol depletion by CRISPRi has been
444 demonstrated to lead to increased risk of plasmolysis and membrane reorganization (Caro, Place, &
445 Mekalanos, 2019). As with many early antibiotic leads, we cannot fully rule out that the Lgti
446 identified in this study may have additional targets in bacterial cells at higher concentrations, but
447 our data strongly suggest that Lgti concentrations that inhibit growth of OM-permeabilized *E. coli*
448 are consistent with their inhibition of Lgt enzymatic activity.

Inhibition of Lgt in Gram-negative bacteria

449 In addition to the fact that *lpp* deletion does not play a role in resistance to Lgti, our studies
450 have uncovered additional novel findings that spur new questions and investigations. First, both
451 Lgt depletion as well as pharmacologic inhibition of Lgt led to accumulation of a ~14 kDa Lpp
452 isoform in the IM (Δ , Figure 5f,g). While the identity or function of this Lpp form is unknown, its
453 size and the fact that a Lpp form around the same molecular weight is also detected in cells
454 expressing the Lpp Δ K mutant (Figure 5 – figure supplement 1) suggest that it could represent a
455 stable Lpp dimer. While stable Lpp trimers have been described (Bjelić, Karshikoff, & Jelesarov,
456 2006; Shu, Liu, Ji, & Lu, 2000), there is also evidence that Lpp can exist as a dimer (Chang, Lin,
457 Wang, & Liao, 2012). Second, while our data suggest that the lack of diacylglycerol modification
458 by Lgt generates a less optimal substrate for the L,D-transpeptidases that covalently link Lpp to PG,
459 it does not rule out the possibility that PG-linkage may occur at or after modification by Lgt. Third,
460 we demonstrate that LolCDEi remain bactericidal against cells expressing only Lpp Δ K. While the
461 sucrose gradient and sarkosyl solubilization centrifugation studies demonstrate that LspAi treatment
462 leads to accumulation of DGPLP in the IM (Figure 6), consistent with previous data with
463 globomycin (M. Suzuki et al., 2002), no such accumulation is detected after treatment with
464 LolCDEi. This raises the possibility that accumulation of either WT Lpp or Lpp Δ K could compete
465 with less abundant essential OM lipoproteins for limited transport via LolCDE, which is consistent
466 with our data demonstrating decreased OM localization of BamD after LolCDEi treatment (Figure 6
467 – figure supplement 1). Lgti, like LspAi and LolCDEi, had significant effects on OM localization
468 of the β -barrel protein, OmpA (Figure 6a), which is most likely due to decreased OM expression of
469 BamD and consequently BamA (Figure 6 – figure supplement 1). These results inform us that
470 while Lgti behave very similarly to LspAi and LolCDEi in terms of depleting OM lipoproteins and
471 OMPs, their effects on Lpp set them apart from other inhibitors on this pathway.

Inhibition of Lgt in Gram-negative bacteria

472 In summary, our study is the first to systematically differentiate the role of Lpp in targeting
473 multiple steps of bacterial lipoprotein biosynthesis and transport. The loss of PG-association of Lpp
474 and Pal, resulting from Lgt depletion or pharmacologic inhibition of Lgt, leads to significant OM
475 defects. The identification and characterization of these Lgti validates Lgt as a novel and druggable
476 antibacterial target and could serve as initial starting points for ongoing medicinal chemistry efforts
477 to improve antibacterial potency and physiochemical properties. Our studies suggest that
478 therapeutic targeting of Lgt over other steps in the lipoprotein biosynthesis and transport pathways
479 might present a more favorable resistance profile and prevent the spread of multi-drug resistant
480 bacterial infections.

481

482

483

484

485

486

487

488

489

490

Inhibition of Lgt in Gram-negative bacteria

491 **Materials and Methods**

492

493 **Ethics statement**

494 All mice used in this study were housed and maintained at Genentech in accordance with American
495 Association of Laboratory Animal Care guidelines. All experimental studies were conducted under
496 protocol 13-0979A were approved by the Institutional Animal Care and Use Committee of
497 Genentech Lab Animal Research and performed in an Association for Assessment and
498 Accreditation of Laboratory Animal Care International (AAALAC)-accredited facility in
499 accordance with the Guide for the Care and Use of Laboratory Animals and applicable laws and
500 regulations.

501

502 **Antibodies**

503 The anti-Pal antibody was a generous gift from Dr. Shaw Warren (Massachusetts General Hospital).
504 The anti-OmpA (Antibody Research Corporation), anti-GroEL (Enzo Life Sciences), anti-ThyA
505 (GeneTex, Inc) and anti-His (Cell Signaling Technology) antibodies were obtained from
506 commercial sources. Generation of anti-Lpp and anti-BamA antibodies has been previously
507 described (Diao et al., 2017; Storek et al., 2018; 2019). Recombinant Lgt and BamD were used to
508 generate rabbit polyclonal antibodies. Rabbit immunizations, generation of antisera and purification
509 of rabbit polyclonal antibodies were performed as previously described for Lpp (Diao et al., 2017).

510

511 **Generation of bacterial strains and plasmids**

Inhibition of Lgt in Gram-negative bacteria

512 Bacterial strains and plasmids used in this study are listed in Supplemental File 2. *E. coli* strain
513 CFT073 (ATCC 700928) (Mobley et al., 1990) and MG1655 (ATCC 700926) were purchased from
514 ATCC. Gene disruption in CFT073 was performed as previously described (Datsenko & Wanner,
515 2000; Diao et al., 2017). CFT073 Δlgt was generated based on the previously published protocol
516 (Paillet et al., 2012) by retaining the *lgt* stop codon, which forms part of the *thyA* ribosomal binding
517 site. The primers used to generate the CFT073 and MG1655 mutants are listed in Supplemental
518 File 3. Plasmids pKD46 for the λ Red recombinase (Datsenko & Wanner, 2000; Diao et al., 2017),
519 pKD4 or pSim18 for the integration construction (Datsenko & Wanner, 2000; Diao et al., 2017) and
520 pCP20 (Cherepanov & Wackernagel, 1995) for the FLP recombinase were used in this study. The
521 inducible deletion strains (MG1655 Δlgt , MG1655 $\Delta lspA$ and MG1655 $\Delta lolCDE$) in either the WT
522 and/or Δlpp backgrounds were generated using similar methods as previously described (Diao et al.,
523 2017; Noland et al., 2017). CFT073 $imp4213\Delta lpp$ containing pBAD24-*lpp* was used to generate
524 CFT073 $imp4213\Delta lpp:lpp^{Ara}$ to detect the different Lpp species after treatment with pharmacologic
525 inhibitors. The PA14 $imp4213$ strain was generated based on published protocols (Balibar &
526 Grabowicz, 2016; Hmelo et al., 2015). For expression under the IPTG-inducible promoter, DNA
527 encoding the full-length sequences of *lgt*, *lspA*, *lnt* and *lolCDE* were cloned into pLMG18 and
528 induced using 2.5 mM IPTG.

529

530 ***In vitro* growth inhibition and serum sensitivity assays**

531 Unless stated otherwise, *E. coli* cells were grown in Luria-Bertani (LB) medium (0.5% yeast
532 extract, 1% tryptone, 0.5% NaCl) at 37°C. When indicated, kanamycin (Kan) was added to culture
533 media at a 50 μ g/ml final concentration. MIC assays were performed based on Clinical and

Inhibition of Lgt in Gram-negative bacteria

534 Laboratory Standards Institute (CLSI) guidelines. For *in vitro* growth curves, overnight cultures of
535 WT CFT073, CFT073 Δlgt and CFT073 Δlgt complemented with *lgt* from *E. coli* (*lgt*^{Ec}) or *P.*
536 *aeruginosa* (*lgt*^{Pa}) were grown to mid-exponential phase (OD₆₀₀=0.6) and then diluted to
537 OD₆₀₀=0.1 to initiate growth curves. At various times, culture aliquots were diluted and plated in
538 dilutions on LB+Kan agar and CFUs were enumerated in duplicate. Growth of MG1655 inducible
539 deletion strains was measured by culturing in the presence of two-fold dilutions of arabinose
540 (starting arabinose concentrations for CFT073 and MG1655 inducible deletion strains were 4% and
541 0.8%, respectively). While 2% arabinose was sufficient for WT growth of MG1655 Δlgt , 4%
542 arabinose was used for CFT073 Δlgt based on comparing its growth to that of WT CFT073 as
543 measured by CFUs. OD₆₀₀ growth measurements were performed using an EnVision 2101
544 Multilabel Reader plate reader (PerkinElmer) linked with Echo Liquid Handler (Labcyte). For
545 time-kill experiments, bacteria were harvested in mid-exponential phase and treated with 12.5 μ M
546 Lgti G2824, 3.2 μ M LspAi (GBM), 6.3 μ M LolCDEi (C1) and 1.6 μ M vancomycin. G2823 was
547 not be tested due to limitations in compound availability. CFUs were enumerated at various times
548 post treatment. Bacterial culture medium containing 2% arabinose was used to induce *lpp* or *lpp* Δ K
549 expression from pBad24 plasmids. Bacterial viability at different time points during the treatment
550 was measured by enumerating CFU. Serum killing assays were carried out as previously described
551 (Diao et al., 2017).

552

553 **Detection of membrane permeability using SYTOX Green incorporation**

Inhibition of Lgt in Gram-negative bacteria

554 To determine the effect of Lgt depletion on membrane permeability, WT CFT073 and CFT073 Δlgt
555 strains were streaked onto a LB agar plate containing 4% arabinose and cultured at 37°C for 18
556 hours. From a single colony, bacteria were cultured in LB broth containing 4% arabinose and
557 cultured at 37°C to OD 0.5. One mL cultures of OD=0.5 for both strains were harvested, washed
558 and resuspended in LB broth or medium containing a range of arabinose (2, 0.2, 0.1, 0.05% and 0)
559 or glucose (0.2%) concentrations and incubated at 37°C for 2 hours. Cells were harvested by
560 centrifugation at 4000 \times g at 4°C for 5 minutes. Intact CFT073 or CFT073 treated with 70%
561 ethanol at RT for 15 minutes to permeabilize the cells were used as controls. Cells were incubated
562 with SYTOX green following the manufacturer's recommendation, washed with PBS (3 \times) and
563 fixed in 2% paraformaldehyde. SYTOX Green incorporation was measured by flow cytometry
564 using a FACS Aria II (Becton Dickenson) and analyzed using Flowjo software.

565

566 **Mouse infection model**

567 Overnight bacterial cultures were back diluted 1:100 in M9 media and grown to an OD₆₀₀=0.8-1 at
568 37°C. Cells were harvested, washed once with PBS and resuspended in PBS containing 10%
569 glycerol. Cells were frozen in aliquots and thawed aliquots were measured for CFUs prior to mouse
570 infections. Virulence of WT CFT073 and CFT073 Δlgt was measured using the neutropenic *E. coli*
571 infection model (Cross, Siegel, Byrne, Trautmann, & Finbloom, 1989). Seven-week-old female A/J
572 mice (Jackson Laboratory) were rendered neutropenic by peritoneal injection of 2 doses of
573 cyclophosphamide (150 mg/kg on Day -4 and 100 mg/kg on Day -1). On Day 0, mice were
574 infected with 5×10^5 CFU of mid-exponential phase bacteria diluted in PBS by intravenous
575 injection through the tail vein. At 30 minutes and 24 hours post infection, bacterial burden in the
576 liver and spleen was determined by serial dilutions of tissue homogenates on LB plates.

Inhibition of Lgt in Gram-negative bacteria

577

578 **Macrocyclic peptide library design and selection of Lgt-binding molecules**

579 A thioether-macrocyclic peptide library was constructed by using N-chroloacetyl D-phenylalanine
580 (ClAc-f) as an initiator in a genetically reprogrammed *in vitro* translation system (Kashiwagi et al.,
581 2013). The genetic code was designed with the addition of two N-methyl amino acids: N-methyl-L-
582 phenylalanine (MeF) and N-methyl-L-glycine (MeG); and, three unnatural amino acids: (S)-2-
583 aminoheptanoic acid (Ahp), (S)-3-([1,1'-biphenyl]-4-yl)-2-aminopropanoic acid (Bph), and (S)-
584 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in addition to 11 natural amino acids (Ser,
585 Tyr, Trp, Leu, Pro, His, Arg, Asn, Val, Asp, and Gly). After *in vitro* translation, a thioether bond
586 formed spontaneously between the N-terminal ClAc group of the initiator D-phenylalanine residue
587 and the sulfhydryl group of a downstream cysteine residue to generate the macrocyclic peptides.

588 Affinity selection of macrocyclic peptides binding to Lgt was performed using *E. coli* Lgt-
589 biotin in 0.02% n-dodecyl β -D-maltoside (DDM). Briefly, 10 μ M mRNA library was hybridized
590 with a peptide-linker (11 μ M) at RT for 3 minutes. The mRNA library was translated at 37°C for 30
591 minutes in the reprogrammed *in vitro* translation system to generate the peptide-mRNA fusion
592 library (Goto et al., 2011; Ishizawa et al., 2013). Each reaction contained 2 μ M mRNA-peptide-
593 linker conjugate, 12.5 μ M initiator tRNA (tRNAfMet aminoacylated with ClAc-D-Phe), and 25 μ M
594 of each elongator tRNA aminoacylated with the specified non-canonical /canonical amino acids. In
595 the first round of selections, translation was performed at 20 μ L scale. After the translation, the
596 reaction was quenched with 17 mM EDTA. The product was subsequently reverse-transcribed using
597 RNase H minus reverse transcriptase (Promega) at 42°C for 30 minutes and buffer was exchanged
598 for DDM buffer: 50 mM Tris (pH 8), 5 mM EDTA, 200 mM NaCl2, 0.02% DDM, and 1 mM

Inhibition of Lgt in Gram-negative bacteria

599 Glutathione. For affinity selection, the peptide-mRNA/cDNA solution was incubated with 250 nM
600 biotinylated *E. coli* Lgt for 60 minutes at 4°C and the streptavidin-coated beads (Dynabeads M-280
601 Streptavidin, Thermo) were further added and incubated for 10 minutes to isolate Lgt binders. The
602 beads were washed once with cold DDM buffer, the cDNA was eluted from the beads by heating
603 for 5 minutes at 95°C, and fractional recovery from the affinity selection step were assessed by
604 quantitative PCR using Sybr Green I on a LightCycler thermal cycler (Roche). After five rounds of
605 affinity maturation, two additional rounds of off-rate selections were performed by increasing the
606 wash stringency before elution to identify high affinity binders. Sequencing of the final enriched
607 cDNA was carried out using a MiSeq next generation sequencer (Illumina).

608

609 Peptide Synthesis

610 Thioether macrocyclic peptides were synthesized using standard Fmoc solid phase peptide synthesis
611 (SPPS). Following coupling of all amino acids, the deprotected N-terminus was chloroacetylated
612 on-resin followed by global deprotection using a trifluoroacetic acid (TFA) deprotection cocktail.
613 The peptides were then precipitated from the deprotection solution by adding over 10-fold excess
614 diethyl ether. Crude peptide pellets were then dissolved and re-pelleted 3 times using diethyl ether.
615 After the final wash, the pellet was left to dry and then the pellet was resuspended in DMSO
616 followed by the addition of triethylamine for intramolecular cyclization via formation of a thioether
617 bond between the thiol of the cysteine and N-terminal chloroacetyl group. Upon completion of
618 cyclization, the reaction was quenched with AcOH and the cyclic peptide was purified using
619 standard reverse-phase HPLC methods.

Inhibition of Lgt in Gram-negative bacteria

620

621 SDS-PAGE and Western immunoblotting

622 Bacterial cell samples normalized for equivalent OD₆₀₀ and resuspended in Bugbuster lysis buffer
623 (Fischer Scientific) with the addition of sample buffer (LI-COR), and separated by SDS-PAGE
624 using 16% Tricine protein gels or NuPAGE 4-20% Bis-Tris gels (Thermofisher Scientific) and
625 transferred to nitrocellulose membranes using the iBlot™2 Dry Blotting system (Invitrogen) and
626 blocked using LI-COR blocking buffer for 30 minutes. Unless stated otherwise, loading buffer with
627 reducing agents were added and samples were not boiled prior to SDS-PAGE. For the sucrose
628 gradient centrifugation, samples were boiled prior to running the SDS-PAGE. Primary antibodies
629 were used at a final concentration of 1µg/ml with some exceptions: rabbit anti-Lpp polyclonal
630 antibody (0.1µg/ml); murine anti-Pal 6D7 (0.5 µg/ml); rabbit anti-GroEL (1:10,000 final dilution);
631 rabbit anti-OmpA (1:50,000 final dilution). The secondary antibodies were all obtained from LI-
632 COR, and used as per manufacturer's instructions. Images were collected using the Odyssey CLx
633 imaging system (LI-COR) and analyzed by Image Studio Lite.

634

635

636 Expression and purification of recombinant Lgt and BamD

637 DNA encoding full-length *E. coli* Lgt fused to a C-terminal Flag-tag was transformed into Rosetta
638 2(DE3) Gold cells (Agilent). Starter cultures were grown in Terrific Broth (TB) media with
639 carbenicillin (50µg/mL) and chloramphenicol (12.5µg/mL) at 37°C for 3 hours. The starter cultures
640 were diluted 1:50 in TB medium with carbenicillin (50µg/mL), chloramphenicol (12.5µg/mL), and
641 glycerol (1%) and grown at 37°C for 2 hours with shaking at 200 rpm. The temperature of the
642 culture was reduced to 30°C and grown for an additional 2 hours before the temperature of the

Inhibition of Lgt in Gram-negative bacteria

643 culture was reduced to 16°C and grown for 64 hours. The cells were harvested by centrifugation
644 and resuspended into lysis buffer (20mM Tris, pH 8.0, 300mM NaCl, Protease Inhibitor cocktail
645 and Lysonase) and stirred at 4°C for 30 minutes before being passed through a microfluidizer 3
646 times. The membrane fraction was solubilized by adding DDM directly to the lysate to a final
647 concentration of 1% and stirring at 4°C for 2 hours before centrifugation at 40,000 rpm for 1 hour.
648 Pre-equilibrated FLAG resin was added to the supernatant and incubated with rotation at 4°C for 2
649 hours. The slurry was added to a gravity column and the column was washed with 10 CV buffer A
650 (20mM Tris, pH 8.0, 300mM NaCl, 5% glycerol, 1% DDM) and 10 CV buffer B (20mM Tris, pH
651 8.0, 300mM NaCl, 5% glycerol, 0.05% DDM). The bound fraction was eluted by the addition of 5
652 CV of buffer C (20mM Tris, pH 8.0, 300mM NaCl, 5% glycerol, 0.05% DDM, 100 μ g/mL FLAG
653 peptide). The peak fractions were collected, concentrated to less than 5 mL and loaded onto a
654 superdex 200 16/60 column equilibrated with buffer C (20mM Tris, pH 8.0, 300mM NaCl, 5%
655 glycerol, 0.05% DDM, 1mM TCEP). The peak fractions were collected, analyzed by SDS-PAGE
656 and stored at -80°C.

657 For recombinant *E. coli* BamD protein expression, DNA fragments encoding BamD (Gly₂₂-
658 Thr₂₄₅) were cloned into a modified pET-52b expression vector containing an C-terminal His₈-tag
659 and overexpressed in *E. coli* host Rosetta 2 (DE3) grown by fermentation at 17°C for 64 hours, at
660 which point cells were collected and resuspended in 50 mM Tris, pH 8.0, 300 mM NaCl, 0.5 mM
661 TCEP containing cOmplete Protease Inhibitors (Roche), 1 mM PMSF and 2 U/ml of Benzonase
662 nuclease (Sigma Aldrich). After cell lysis by microfluidization and low speed centrifugation,
663 soluble protein was purified by Ni-NTA affinity and size exclusion chromatography. The peak
664 fractions containing BamD were pooled and concentrated to 5 mg/mL.

665

Inhibition of Lgt in Gram-negative bacteria

666 **Development of the Lgt biochemical assay**

667 The Lgt enzymatic activity was measured by specific detection of G3P. Both G3P and G1P are
668 released from phosphatidylglycerol as Lgt catalyzes the transfer of diacylglycerol from
669 phosphatidylglycerol to the preprolipoprotein substrate, since the PG substrate used in the assay
670 contains a racemic glycerol moiety at the end of phosphatidyl group. The standard assay consists of
671 6 μ L reaction mixture with 3 nM Lgt-DDM, 50 μ M phosphatidylglycerol (1,2-dipalmitoyl-*sn*-
672 glycero-3-phospho-(1'-*rac*-glycerol), Avanti), 12.5 μ M Pal-IAAC peptide substrate derived from
673 the Pal lipoprotein (MQLNKVLKGLMIALPVMAIAACSSNKN, synthesized by CPC Scientific) in
674 50 mM Tris, pH 8, 200 mM NaCl, 5 mM EDTA, 0.02% DDM, 0.05 % Bovine Skin Gelatin, and 1
675 mM glutathione. As a control, we used a mutant non-modifiable Pal substrate peptide containing a
676 cysteine to alanine mutation (Pal-IAAAA) which served as a competitive non-modifiable inhibitor.
677 The reaction was quenched after 60 minutes at RT with 0.5 μ L of 4.8% Lauryl Dimethylamine-N-
678 Oxide (Anatrace), followed by addition of 6 μ L Detection Solution. After incubation for 120
679 minutes at RT, the luminescence signal was read. The Detection Solution was modified based on a
680 NAD Glo protocol (Promega, G9072), per manufacturer's instruction. Specifically, 10 mL
681 Detection Solution consists of 3-fold dilution of Luciferin Detection Reagents, supplemented with
682 10 μ L Reductase, 2.5 μ L Reductase Substrate, 1 mM NAD, and 4.25 U of G3PDH (Roche
683 Diagnostics, 10127779001). The Luciferin Detection Reagents, Reductase, and Reductase Substrate
684 were all from the NAD Glo kit (Promega). Luminescence values were normalized to DMSO
685 controls (0% inhibition) and no enzyme controls (100% inhibition). IC₅₀ values were calculated
686 using a 4 parameter logistic model using GraphPad Prism software.
687

688 **Visualization of WT CFT073 and CFT073 Δ lgt by time-lapse microscopy, confocal**

Inhibition of Lgt in Gram-negative bacteria

689 **microcopy, transmission electron microscopy**

690 Electron microscopy was performed as previously described (Noland et al., 2017). For time-lapse
691 microscopy, WT CFT073, CFT073 Δ lgt and CFT073 Δ lgt Δ lpp cells were grown overnight in LB
692 medium containing 4% arabinose, back-diluted to a final OD₆₀₀ of 0.1 and immediately placed
693 between a cover slip and 1% agarose pad containing 0.2% glucose for imaging. Cells were
694 maintained at 37 °C during imaging in a stage top chamber (Okolab Inc.). Cells were imaged on a
695 Nikon Eclipse Ti inverted confocal microscope (Nikon Instruments Inc.) coupled with a UltraVIEW
696 VoX (PerkinElmer Inc.) and a 100 \times (NA 1.40) oil-immersion objective. Images were captured at
697 various times using ORCA-Flash 4.0 CMOS camera (Hamamatsu Photonics), collected using
698 Volocity software (Quorum Technologies) and processed using Fiji (Schindelin et al., 2012). For
699 confocal microscopy, images were acquired on a Leica SP8 STED 3x platform using a 100 \times white
700 light, NA:1.4 oil immersion objective. CFT073 $imp4213$ cells were treated with Lgti, LspAi or
701 LolCDEi at 1 \times MIC for 30 minutes, fixed with 4% paraformaldehyde and incubated with 1 μ g/mL
702 FM-64 dye and 1 μ g/mL DAPI solution. Quantitation of bacterial cell area was performed using
703 the ImageJ program by measuring at least ~100 bacterial cells from two independent experiments.
704

705 **Targeted downregulation of gene expression by CRISPRi**

706 The two-plasmid bacterial CRISPRi system pdCas9-bacteria_GNE and pgRNA-bacteria_GNE are
707 based off the AddGene plasmids 44249 and 44251 (Qi et al., 2013), respectively. The plasmid was
708 synthesized in smaller DNA fragments (500bp-3kb) (IDT gBlocks) and assembled by Gibson
709 Assembly (NEB) according to manufacturer's protocols. Plasmids were confirmed by sequencing
710 (ELIM Bio). gRNAs were designed to target the 5' end of the gene on the non-template strand
711 using Benchling CRISPR software (Peters et al., 2016). gRNAs were cloned into pgRNA-bacteria

Inhibition of Lgt in Gram-negative bacteria

712 using Gibson Assembly (NEB) according to manufacturer's protocols and sequence confirmed
713 (ELIM Bio).

714 Bacterial cultures were grown overnight on LB agar supplemented with carbenicillin (50
715 µg/mL) and chloramphenicol (12.5 µg/mL) to maintain both plasmids, pdCas9-bacteria and
716 pgRNA-bacteria with each gRNA as appropriate. Cells were scraped from the plate into fresh
717 media. OD₆₀₀ was measured and subsequently diluted to OD₆₀₀=0.001 in the presence or absence of
718 Lgti, LspAi and LolCDEi. 200 µL was transferred to a 96-well plate (Corning) and monitored for
719 growth by measuring OD₆₀₀ (EnVision Multimode Plate Reader, PerkinElmer). All treatments were
720 performed in triplicate. Specificity of CRISPRi downregulation was measured using RT-qPCR.

721

722 **Purification of peptidoglycan-associated proteins**

723 Purification of PG-associated proteins (PAP) was performed according to published methods (Diao
724 et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria
725 were harvested in mid-exponential phase for treatment and then subjected for PAP extraction by
726 resuspended cell pellets from 10 OD (A₆₀₀) in 6 mL of PAP extraction buffer containing 2%
727 (wt/vol) SDS in 100 mM Tris-HCl (pH 8.0) with 100mM NaCl, 10% glycerol, and cOmpleteTM,
728 mini, EDTA-free protease inhibitor cocktail (Sigma-Aldrich). After 60 minutes at RT, the
729 extraction was subjected to centrifugation at 100,000 × g for 60 minutes at 22°C, and the pellet,
730 containing PG and associated proteins, was washed once with the same PAP extraction buffer with
731 centrifugation at 100,000 × g for 30 minutes and resuspended in 200 µL of PAP extraction buffer
732 (referred to as the SDS-insoluble on PAP fraction). The supernatant containing the SDS-soluble
733 fraction was aliquoted and frozen (referred to as non-PAP fraction). Both fractions were treated
734 with equal volume of BugBuster buffer prior to the addition of sample buffer for Western

Inhibition of Lgt in Gram-negative bacteria

735 immunoblotting as described above. It should be noted that the final PAP fractions are ~30-fold
736 more concentrated than the non-PAP fractions.

737

738 **Isolation of *E. coli* IM and OM using sucrose gradient centrifugation and** 739 **sarkosyl fractionation**

740 Bacterial inner and outer membranes were separated by sucrose gradient as previously (Nickerson
741 et al., 2018; Yakushi, Tajima, Matsuyama, & Tokuda, 1997b) with some modifications. Briefly,
742 bacteria were grown in Luria broth at 37°C to mid-exponential phase (OD₆₀₀=0.6), and then treated
743 with 1×MIC of indicated inhibitors for 1 hour. Cells representing 30-40 OD₆₀₀ equivalents were
744 harvested by centrifugation at 4000 × g for 15 minutes, washed once with 50 mM Tris-HCl (pH 7.5)
745 containing 25% (wt/vol) sucrose and Complete EDTA-free protease inhibitor cocktail (Roche), and
746 then incubated for 10 minutes at RT in the same buffer containing 100 µg/ml lysozyme (Thermo
747 Scientific) and 1000 U/ml nuclease (BenzonaseNuclease, EMD Millipore). Two-fold volume of
748 ice-cold EDTA (pH 8.0) was added and the suspension was disrupted by two passages through an
749 LV1 Microfluidizer (Microfluidics). Unbroken cells were removed by centrifugation at 4,000 × g
750 and membranes were collected by ultracentrifugation at 100,000 × g for 1 hour and washed once
751 with 50 mM Tris-HCl (pH 7.5). The final membrane preparation was resuspended in 50 mM Tris-
752 HCl (pH 7.5) containing 10% sucrose, 1.5 mM EDTA and protease inhibitor cocktail and then
753 applied to a 30 to 70% (wt/vol) sucrose gradient. The loaded gradients were spun at 200,000 × g for
754 22 hours at 4°C in a Beckman SW41Ti rotor. Fractions were removed and analyzed by SDS-PAGE
755 and immunoblotting with appropriate antibodies. The IM fractionation of bacterial cells using
756 sarkosyl was performed according to published methods (Filip et al., 1973; Pantua et al., 2020)..

757

Inhibition of Lgt in Gram-negative bacteria

758 **Statistical analyses**

759 All statistical analyses were performed using GraphPad Prism 6.0 software (GraphPad). The data
760 was tested for being parametric and statistical analyses were performed on log-transformed data.
761 All graphs represent the mean \pm the standard error of the mean (SEM). Unless stated otherwise, p
762 values for all data were determined using regular unpaired *t* test (* = $p < 0.05$, ** = $p < 0.01$, and ***
763 = $p < 0.001$). p values for mouse CFU studies were determined using the Mann Whitney Test.
764 Bonferroni correction was applied to control for multiple comparisons for CRIPSRI data in Figure
765 4g.

766

767 **Acknowledgements**

768 We thank Dr. Shaw Warren (Massachusetts General Hospital) for the anti-Pal antibody, Erin
769 Dueber for help with purification of BamD, Scott Stawicki for assistance with generating the rabbit
770 polyclonal antibodies, and Eric Brown for helpful comments and suggestions for the manuscript.

771

772 **Competing interests**

773 This study was supported by internal Genentech funds. All authors except R.K., T.S., H.I., H.O.,
774 H.Y., J.N. and P.C.R. are employees of Genentech, a member of the Roche Group, and are
775 shareholders of Roche. R.K., T.S., H.I., H.O., H.Y., J.N. and P.C.R. are employees of PeptiDream,
776 Inc.

777

778

779

Inhibition of Lgt in Gram-negative bacteria

780

References

781 Balibar, C. J., & Grabowicz, M. (2016). Mutant Alleles of lptD Increase the Permeability of
782 *Pseudomonas aeruginosa* and Define Determinants of Intrinsic Resistance to Antibiotics.
783 *Antimicrobial Agents and Chemotherapy*, 60(2), 845–854. <http://doi.org/10.1128/AAC.01747-15>

785 Bjelić, S., Karshikoff, A., & Jelesarov, I. (2006). Stability and folding/unfolding kinetics of the
786 homotrimeric coiled coil Lpp-56. *Biochemistry*, 45(29), 8931–8939.
787 <http://doi.org/10.1021/bi0608156>

788 Braun, V., & Wolff, H. (1970). The murein-lipoprotein linkage in the cell wall of *Escherichia coli*.
789 *European Journal of Biochemistry / FEBS*, 14(2), 387–391.

790 Caro, F., Place, N. M., & Mekalanos, J. J. (2019). Analysis of lipoprotein transport depletion in
791 *Vibrio cholerae* using CRISPRi. *Proceedings of the National Academy of Sciences of the United
792 States of America*, 116(34), 17013–17022. <http://doi.org/10.1073/pnas.1906158116>

793 Cascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J.-C., & Lloubes, R. (2002). Pal lipoprotein of
794 *Escherichia coli* plays a major role in outer membrane integrity. *Journal of Bacteriology*,
795 184(3), 754–759.

796 Chang, T.-W., Lin, Y.-M., Wang, C.-F., & Liao, Y.-D. (2012). Outer membrane lipoprotein Lpp is
797 Gram-negative bacterial cell surface receptor for cationic antimicrobial peptides. *The Journal of
798 Biological Chemistry*, 287(1), 418–428. <http://doi.org/10.1074/jbc.M111.290361>

799 Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in *Escherichia coli*: TcR and KmR
800 cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.
801 *Gene*, 158(1), 9–14.

802 Clavel, T., Germon, P., Vianney, A., Portalier, R., & Lazzaroni, J. C. (1998). TolB protein of
803 *Escherichia coli* K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal,
804 Lpp and OmpA. *Molecular Microbiology*, 29(1), 359–367.

805 Cowles, C. E., Li, Y., Semmelhack, M. F., Cristea, I. M., & Silhavy, T. J. (2011). The free and
806 bound forms of Lpp occupy distinct subcellular locations in *Escherichia coli*. *Molecular
807 Microbiology*, 79(5), 1168–1181. <http://doi.org/10.1111/j.1365-2958.2011.07539.x>

808 Cross, A. S., Siegel, G., Byrne, W. R., Trautmann, M., & Finbloom, D. S. (1989). Intravenous
809 immune globulin impairs anti-bacterial defences of a cyclophosphamide-treated host. *Clinical
810 and Experimental Immunology*, 76(2), 159–164.

811 Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in
812 *Escherichia coli* K-12 using PCR products. *Proceedings of the National Academy of Sciences of
813 the United States of America*, 97(12), 6640–6645. <http://doi.org/10.1073/pnas.120163297>

814 Dev, I. K., Harvey, R. J., & Ray, P. H. (1985). Inhibition of prolipoprotein signal peptidase by
815 globomycin. *The Journal of Biological Chemistry*, 260(10), 5891–5894.

816 Diao, J., Bouwman, C., Yan, D., Kang, J., Katakam, A. K., Liu, P., et al. (2017). Peptidoglycan
817 Association of Murein Lipoprotein Is Required for KpsD-Dependent Group 2 Capsular
818 Polysaccharide Expression and Serum Resistance in a Uropathogenic *Escherichia coli* Isolate.
819 *mBio*, 8(3), e00603–17. <http://doi.org/10.1128/mBio.00603-17>

820 Ferrer-Navarro, M., Ballesté-Delpierre, C., Vila, J., & Fàbrega, A. (2016). Characterization of the
821 outer membrane subproteome of the virulent strain *Salmonella Typhimurium* SL1344. *Journal
822 of Proteomics*, 146, 141–147. <http://doi.org/10.1016/j.jprot.2016.06.032>

Inhibition of Lgt in Gram-negative bacteria

823 Filip, C., Fletcher, G., Wulff, J. L., & Earhart, C. F. (1973). Solubilization of the cytoplasmic
824 membrane of *Escherichia coli* by the ionic detergent sodium-lauryl sarcosinate. *Journal of*
825 *Bacteriology*, 115(3), 717–722.

826 Gan, K., Gupta, S. D., Sankaran, K., Schmid, M. B., & Wu, H. C. (1993). Isolation and
827 characterization of a temperature-sensitive mutant of *Salmonella typhimurium* defective in
828 prolipoprotein modification. *The Journal of Biological Chemistry*, 268(22), 16544–16550.

829 Gan, K., Sankaran, K., Williams, M. G., Aldea, M., Rudd, K. E., Kushner, S. R., & Wu, H. C.
830 (1995). The *umpA* gene of *Escherichia coli* encodes phosphatidylglycerol:prolipoprotein
831 diacylglycerol transferase (lgt) and regulates thymidylate synthase levels through translational
832 coupling. *Journal of Bacteriology*, 177(7), 1879–1882.

833 Gerth, K., Irschik, H., Reichenbach, H., & Trowitzsch, W. (1982). The myxovirescins, a family of
834 antibiotics from *Myxococcus virescens* (Myxobacterales). *The Journal of Antibiotics*, 35(11),
835 1454–1459.

836 Goto, Y., Katoh, T., & Suga, H. (2011). Flexizymes for genetic code reprogramming. *Nature*
837 *Protocols*, 6(6), 779–790. <http://doi.org/10.1038/nprot.2011.331>

838 Gupta, S. D., Gan, K., Schmid, M. B., & Wu, H. C. (1993). Characterization of a temperature-
839 sensitive mutant of *Salmonella typhimurium* defective in apolipoprotein N-acyltransferase. *The*
840 *Journal of Biological Chemistry*, 268(22), 16551–16556.

841 Hirota, Y., Suzuki, H., Nishimura, Y., & Yasuda, S. (1977). On the process of cellular division in
842 *Escherichia coli*: a mutant of *E. coli* lacking a murein-lipoprotein. *Proceedings of the National*
843 *Academy of Sciences of the United States of America*, 74(4), 1417–1420.

844 Hmelo, L. R., Borlee, B. R., Almblad, H., Love, M. E., Randall, T. E., Tseng, B. S., et al. (2015).
845 Precision-engineering the *Pseudomonas aeruginosa* genome with two-step allelic exchange.
846 *Nature Protocols*, 10(11), 1820–1841. <http://doi.org/10.1038/nprot.2015.115>

847 Hobb, R. I., Fields, J. A., Burns, C. M., & Thompson, S. A. (2009). Evaluation of procedures for
848 outer membrane isolation from *Campylobacter jejuni*. *Microbiology (Reading, England)*,
849 155(Pt 3), 979–988. <http://doi.org/10.1099/mic.0.024539-0>

850 Igarashi, M. (2019). New natural products to meet the antibiotic crisis: a personal journey. *The*
851 *Journal of Antibiotics*, 72(12), 890–898. <http://doi.org/10.1038/s41429-019-0224-6>

852 Inukai, M., Enokita, R., Torikata, A., Nakahara, M., Iwado, S., & Arai, M. (1978a). Globomycin, a
853 new peptide antibiotic with spheroplast-forming activity. I. Taxonomy of producing organisms
854 and fermentation. *The Journal of Antibiotics*, 31(5), 410–420.
855 <http://doi.org/10.7164/antibiotics.31.410>

856 Inukai, M., Nakajima, M., Osawa, M., Haneishi, T., & Arai, M. (1978b). Globomycin, a new
857 peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and
858 biological characterization. *The Journal of Antibiotics*, 31(5), 421–425.
859 <http://doi.org/10.7164/antibiotics.31.421>

860 Ishizawa, T., Kawakami, T., Reid, P. C., & Murakami, H. (2013). TRAP display: a high-speed
861 selection method for the generation of functional polypeptides. *Journal of the American*
862 *Chemical Society*, 135(14), 5433–5440. <http://doi.org/10.1021/ja312579u>

863 Jabbour, R. E., Wade, M. M., Deshpande, S. V., Stanford, M. F., Wick, C. H., Zulich, A. W., &
864 Snyder, A. P. (2010). Identification of *Yersinia pestis* and *Escherichia coli* strains by whole cell
865 and outer membrane protein extracts with mass spectrometry-based proteomics. *Journal of*
866 *Proteome Research*, 9(7), 3647–3655. <http://doi.org/10.1021/pr100402y>

867 Kashiwagi, K., Reid, C. P., & Inc, P. (2013). Rapid display method in translational synthesis of
868 peptide.

Inhibition of Lgt in Gram-negative bacteria

869 Kitamura, S., Owensby, A., Wall, D., & Wolan, D. W. (2018). Lipoprotein Signal Peptidase
870 Inhibitors with Antibiotic Properties Identified through Design of a Robust In Vitro HT
871 Platform. *Cell Chemical Biology*, 25(3), 301–308.e12.
872 <http://doi.org/10.1016/j.chembiol.2017.12.011>

873 Kovacs-Simon, A., Titball, R. W., & Michell, S. L. (2011). Lipoproteins of bacterial pathogens.
874 *Infection and Immunity*, 79(2), 548–561. <http://doi.org/10.1128/IAI.00682-10>

875 Kowata, H., Tochigi, S., Kusano, T., & Kojima, S. (2016). Quantitative measurement of the outer
876 membrane permeability in *Escherichia coli* lpp and tol-pal mutants defines the significance of
877 Tol-Pal function for maintaining drug resistance. *The Journal of Antibiotics*.
878 <http://doi.org/10.1038/ja.2016.50>

879 Leduc, M., Ishidate, K., Shakibai, N., & Rothfield, L. (1992). Interactions of *Escherichia coli*
880 membrane lipoproteins with the murein sacculus. *Journal of Bacteriology*, 174(24), 7982–7988.

881 Lehman, K. M., & Grabowicz, M. (2019). Countering Gram-Negative Antibiotic Resistance:
882 Recent Progress in Disrupting the Outer Membrane with Novel Therapeutics. *Antibiotics*
883 (Basel, Switzerland), 8(4), 163. <http://doi.org/10.3390/antibiotics8040163>

884 Mao, G., Zhao, Y., Kang, X., Li, Z., Zhang, Y., Wang, X., et al. (2016). Crystal structure of *E. coli*
885 lipoprotein diacylglycerol transferase. *Nature Communications*, 7, 10198.
886 <http://doi.org/10.1038/ncomms10198>

887 Mathelié-Guinlet, M., Asmar, A. T., Collet, J.-F., & Dufrêne, Y. F. (2020). Lipoprotein Lpp
888 regulates the mechanical properties of the *E. coli* cell envelope. *Nature Communications*, 11(1),
889 1789–11. <http://doi.org/10.1038/s41467-020-15489-1>

890 McLeod, S. M., Fleming, P. R., MacCormack, K., McLaughlin, R. E., Whiteaker, J. D., Narita, S.-
891 I., et al. (2015). Small molecule inhibitors of Gram-negative lipoprotein trafficking discovered
892 by phenotypic screening. *Journal of Bacteriology*, 197(6), JB.02352–14–1082.
893 <http://doi.org/10.1128/JB.02352-14>

894 Mizuno, T. (1979). A novel peptidoglycan-associated lipoprotein found in the cell envelope of
895 *Pseudomonas aeruginosa* and *Escherichia coli*. *Journal of Biochemistry*, 86(4), 991–1000.

896 Mobley, H. L., Green, D. M., Trifillis, A. L., Johnson, D. E., Chippendale, G. R., Lockatell, C. V.,
897 et al. (1990). Pyelonephritogenic *Escherichia coli* and killing of cultured human renal proximal
898 tubular epithelial cells: role of hemolysin in some strains. *Infection and Immunity*, 58(5), 1281–
899 1289.

900 Nakae, T., Ishii, J., & Tokunaga, M. (1979). Subunit structure of functional porin oligomers that
901 form permeability channels in the outer membrane of *Escherichia coli*. *The Journal of
902 Biological Chemistry*, 254(5), 1457–1461.

903 Narita, S.-I. (2011). ABC transporters involved in the biogenesis of the outer membrane in gram-
904 negative bacteria. *Bioscience, Biotechnology, and Biochemistry*, 75(6), 1044–1054.
905 <http://doi.org/10.1271/bbb.110115>

906 Narita, S.-I., & Tokuda, H. (2010). Sorting of bacterial lipoproteins to the outer membrane by the
907 Lol system. *Methods in Molecular Biology* (Clifton, NJ), 619(Chapter 7), 117–129.
908 http://doi.org/10.1007/978-1-60327-412-8_7

909 Narita, S.-I., & Tokuda, H. (2011). Overexpression of LolCDE allows deletion of the *Escherichia*
910 *coli* gene encoding apolipoprotein N-acyltransferase. *Journal of Bacteriology*, 193(18), 4832–
911 4840. <http://doi.org/10.1128/JB.05013-11>

912 Neidhardt, F. C. (1996). Chemical composition of *Escherichia coli*. In *Escherichia coli and*
913 *Salmonella: cellular and molecular biology* (2nd ed., pp. 1035–1063). Washington D.C.

Inhibition of Lgt in Gram-negative bacteria

914 Nickerson, N. N., Jao, C. C., Xu, Y., Quinn, J., Skippington, E., Alexander, M. K., et al. (2018). A
915 Novel Inhibitor of the LolCDE ABC Transporter Essential for Lipoprotein Trafficking in
916 Gram-Negative Bacteria. *Antimicrobial Agents and Chemotherapy*, 62(4), e02151–17.
917 <http://doi.org/10.1128/AAC.02151-17>

918 Noland, C. L., Kattke, M. D., Diao, J., Gloor, S. L., Pantua, H., Reichelt, M., et al. (2017).
919 Structural insights into lipoprotein N-acylation by *Escherichia coli* apolipoprotein N-
920 acyltransferase. *Proceedings of the National Academy of Sciences of the United States of
921 America*, 114(30), E6044–E6053. <http://doi.org/10.1073/pnas.1707813114>

922 Olatunji, S., Yu, X., Bailey, J., Huang, C.-Y., Zapotoczna, M., Bowen, K., et al. (2020). Structures
923 of lipoprotein signal peptidase II from *Staphylococcus aureus* complexed with antibiotics
924 globomycin and myxovirescin. *Nature Communications*, 11(1), 140–11.
925 <http://doi.org/10.1038/s41467-019-13724-y>

926 Pailler, J., Aucher, W., Pires, M., & Buddelmeijer, N. (2012). Phosphatidylglycerol:prolipoprotein
927 diacylglycerol transferase (Lgt) of *Escherichia coli* has seven transmembrane segments, and its
928 essential residues are embedded in the membrane. *Journal of Bacteriology*, 194(9), 2142–2151.
929 <http://doi.org/10.1128/JB.06641-11>

930 Palmer, A. C., & Kishony, R. (2014). Opposing effects of target overexpression reveal drug
931 mechanisms. *Nature Communications*, 5, 4296. <http://doi.org/10.1038/ncomms5296>

932 Pantua, H., Skippington, E., braun, M.-G., Noland, C. L., Diao, J., peng, Y., et al. (2020). Unstable
933 Mechanisms of Resistance to Inhibitors of *Escherichia coli* Lipoprotein Signal Peptidase. *mBio*,
934 11(5), VMBF–0016–2015. <http://doi.org/10.1128/mBio.02018-20>

935 Peters, J. M., Colavin, A., Shi, H., Czarny, T. L., Larson, M. H., Wong, S., et al. (2016). A
936 Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. *Cell*,
937 165(6), 1493–1506. <http://doi.org/10.1016/j.cell.2016.05.003>

938 Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A.
939 (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene
940 expression. *Cell*, 152(5), 1173–1183. <http://doi.org/10.1016/j.cell.2013.02.022>

941 Robichon, C., Vidal-Inigliardi, D., & Pugsley, A. P. (2005). Depletion of apolipoprotein N-
942 acyltransferase causes mislocalization of outer membrane lipoproteins in *Escherichia coli*. *The
943 Journal of Biological Chemistry*, 280(2), 974–983. <http://doi.org/10.1074/jbc.M411059200>

944 Rojas, E. R., Billings, G., Odermatt, P. D., Auer, G. K., Zhu, L., Miguel, A., et al. (2018). The outer
945 membrane is an essential load-bearing element in Gram-negative bacteria. *Nature*, 559(7715),
946 617–621. <http://doi.org/10.1038/s41586-018-0344-3>

947 Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural Products as Platforms To
948 Overcome Antibiotic Resistance. *Chemical Reviews*, 117(19), 12415–12474.
949 <http://doi.org/10.1021/acs.chemrev.7b00283>

950 Rousset, F., Cui, L., Siouve, E., Becavin, C., Depardieu, F., & Bikard, D. (2018). Genome-wide
951 CRISPR-dCas9 screens in *E. coli* identify essential genes and phage host factors. *PLoS
952 Genetics*, 14(11), e1007749. <http://doi.org/10.1371/journal.pgen.1007749>

953 Ruiz, N., Falcone, B., Kahne, D., & Silhavy, T. J. (2005). Chemical conditionality: a genetic
954 strategy to probe organelle assembly. *Cell*, 121(2), 307–317.
955 <http://doi.org/10.1016/j.cell.2005.02.014>

956 Sankaran, K., & Wu, H. C. (1994). Lipid modification of bacterial prolipoprotein. Transfer of
957 diacylglycerol moiety from phosphatidylglycerol. *The Journal of Biological Chemistry*,
958 269(31), 19701–19706.

Inhibition of Lgt in Gram-negative bacteria

959 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012).
960 Fiji: an open-source platform for biological-image analysis. *Nature Methods*, 9(7), 676–682.
961 <http://doi.org/10.1038/nmeth.2019>

962 Schlesinger, M. J. (1992). Lipid Modifications of Proteins. CRC Press.

963 Shu, W., Liu, J., Ji, H., & Lu, M. (2000). Core structure of the outer membrane lipoprotein from
964 *Escherichia coli* at 1.9 Å resolution. *Journal of Molecular Biology*, 299(4), 1101–1112.
965 <http://doi.org/10.1006/jmbi.2000.3776>

966 Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. *Cold Spring Harbor
967 Perspectives in Biology*, 2(5), a000414–a000414. <http://doi.org/10.1101/cshperspect.a000414>

968 Singh, W., Bilal, M., McClory, J., Dourado, D., Quinn, D., Moody, T. S., et al. (2019). Mechanism
969 of Phosphatidylglycerol Activation Catalyzed by Prolipoprotein Diacylglycerol Transferase.
970 *The Journal of Physical Chemistry. B*, 123(33), 7092–7102.
971 <http://doi.org/10.1021/acs.jpcb.9b04227>

972 Stoll, H., Dengjel, J., Nerz, C., & Götz, F. (2005). *Staphylococcus aureus* deficient in lipidation of
973 prelipoproteins is attenuated in growth and immune activation. *Infection and Immunity*, 73(4),
974 2411–2423. <http://doi.org/10.1128/IAI.73.4.2411-2423.2005>

975 Storek, K. M., Auerbach, M. R., Shi, H., Garcia, N. K., Sun, D., Nickerson, N. N., et al. (2018).
976 Monoclonal antibody targeting the β-barrel assembly machine of *Escherichia coli* is
977 bactericidal. *Proceedings of the National Academy of Sciences of the United States of America*,
978 115(14), 3692–3697. <http://doi.org/10.1073/pnas.1800043115>

979 Storek, K. M., Chan, J., Vij, R., Chiang, N., Lin, Z., Bevers, J., et al. (2019). Massive antibody
980 discovery used to probe structure-function relationships of the essential outer membrane protein
981 LptD. *eLife*, 8, 3002. <http://doi.org/10.7554/eLife.46258>

982 Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, M., & Hirota, Y. (1978). Murein-
983 lipoprotein of *Escherichia coli*: a protein involved in the stabilization of bacterial cell envelope.
984 *Molecular & General Genetics : MGG*, 167(1), 1–9.

985 Suzuki, M., Hara, H., & Matsumoto, K. (2002). Envelope disorder of *Escherichia coli* cells lacking
986 phosphatidylglycerol. *Journal of Bacteriology*, 184(19), 5418–5425.
987 <http://doi.org/10.1128/jb.184.19.5418-5425.2002>

988 Tokunaga, M., Tokunaga, H., & Wu, H. C. (1982). Post-translational modification and processing
989 of *Escherichia coli* prolipoprotein in vitro. *Proceedings of the National Academy of Sciences of
990 the United States of America*, 79(7), 2255–2259. <http://doi.org/10.1073/pnas.79.7.2255>

991 Vogeley, L., Arnaout, El, T., Bailey, J., Stansfeld, P. J., Boland, C., & Caffrey, M. (2016).
992 Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic
993 globomycin. *Science (New York, N.Y.)*, 351(6275), 876–880.
994 <http://doi.org/10.1126/science.aad3747>

995 Whitfield, C., Hancock, R. E., & Costerton, J. W. (1983). Outer membrane protein K of *Escherichia
996 coli*: purification and pore-forming properties in lipid bilayer membranes. *Journal of
997 Bacteriology*, 156(2), 873–879.

998 Wilson, M. M., & Bernstein, H. D. (2015). Surface-Exposed Lipoproteins: An Emerging Secretion
999 Phenomenon in Gram-Negative Bacteria. *Trends in Microbiology*.
1000 <http://doi.org/10.1016/j.tim.2015.11.006>

1001 Xiao, Y., Gerth, K., Müller, R., & Wall, D. (2012). Myxobacterium-produced antibiotic TA
1002 (myxovirescin) inhibits type II signal peptidase. *Antimicrobial Agents and Chemotherapy*,
1003 56(4), 2014–2021. <http://doi.org/10.1128/AAC.06148-11>

Inhibition of Lgt in Gram-negative bacteria

1004 Yakushi, T., Tajima, T., Matsuyama, S., & Tokuda, H. (1997a). Lethality of the covalent linkage
1005 between mislocalized major outer membrane lipoprotein and the peptidoglycan of *Escherichia*
1006 *coli*. *Journal of Bacteriology*, 179(9), 2857–2862.
1007 Yakushi, T., Tajima, T., Matsuyama, S., & Tokuda, H. (1997b). Lethality of the covalent linkage
1008 between mislocalized major outer membrane lipoprotein and the peptidoglycan of *Escherichia*
1009 *coli*. *Journal of Bacteriology*, 179(9), 2857–2862.
1010 Yem, D. W., & Wu, H. C. (1978). Physiological characterization of an *Escherichia coli* mutant
1011 altered in the structure of murein lipoprotein. *Journal of Bacteriology*, 133(3), 1419–1426.
1012 Zhang, W. Y., & Wu, H. C. (1992). Alterations of the carboxyl-terminal amino acid residues of
1013 *Escherichia coli* lipoprotein affect the formation of murein-bound lipoprotein. *The Journal of*
1014 *Biological Chemistry*, 267(27), 19560–19564.
1015 Zhang, W. Y., Inouye, M., & Wu, H. C. (1992). Neither lipid modification nor processing of
1016 prolipoprotein is essential for the formation of murein-bound lipoprotein in *Escherichia coli*.
1017 *The Journal of Biological Chemistry*, 267(27), 19631–19635.
1018 Zwiebel, L. J., Inukai, M., Nakamura, K., & Inouye, M. (1981). Preferential selection of deletion
1019 mutations of the outer membrane lipoprotein gene of *Escherichia coli* by globomycin. *Journal*
1020 *of Bacteriology*, 145(1), 654–656.
1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

Inhibition of Lgt in Gram-negative bacteria

1034 **Figure legends**

1035

1036 **Figure 1: Lipoprotein biosynthesis and transport in Gram-negative bacteria.** Prolipoprotein
1037 substrates translocate through the IM via the Sec or Tat pathway and are sequentially modified by
1038 Lgt, LspA and Lnt. Triacylated lipoproteins that are destined for the OM are recognized by the Lol
1039 system (LolABCDE) and transported to the OM. Lpp and Pal are two OM lipoproteins that tether
1040 the OM to the PG layer. Pal also binds to TolB, which also can interact with Lpp and OmpA, an
1041 OM β -barrel protein that can also associate with PG (not shown).

1042

1043 **Figure 2: Lgt is essential for *in vitro* growth, membrane integrity, serum resistance and**
1044 **virulence. (a)** CFT073 Δlgt cells were grown in the presence of 4% arabinose (red circles) or 0.2%
1045 glucose (grey circles) and CFUs were enumerated over 7 hours post treatment. CFT073 Δlgt
1046 cultured in the presence of 0.2% glucose were complemented with empty pLMG18 plasmid (open
1047 green triangles) or pLMG18 plasmids expressing *lgt* from *E. coli* (blue circles), *A. baumannii*
1048 (magenta circles) or *P. aeruginosa* (orange circles). The grey dashed line represents the limit of
1049 detection (200 CFU/ml) of the experiment. Data are representative of two independent experiments
1050 each performed in duplicate. **(b-c)** A modest ~25% reduction in Lgt levels results in a significant
1051 loss in viability over time with a concurrent accumulation of the unmodified pro-Lpp (\emptyset , UPLP).
1052 CFT073 Δlgt cells were treated with a range of arabinose concentrations and CFUs were enumerated
1053 over 20 hours. CFU growth data are representative of two independent experiments each performed
1054 in duplicate. Western blot analysis for expression of Lgt and Lpp was performed using WT

Inhibition of Lgt in Gram-negative bacteria

1055 CFT073 and CFT073 Δ *lgt* total cell lysates harvested at 3 hours post arabinose treatment. To
1056 quantitate Lgt expression levels, Lgt levels were normalized to GroEL and quantitated as fold
1057 change relative to WT CFT073 (FC vs WT). Lpp forms are denoted as follows: * = triacylated free
1058 Lpp; § = PG-linked diacylglycerol pro-Lpp (DGPLP); ø = unmodified pro-Lpp (UPLP). Data are
1059 representative of two independent experiments. **(d)** Lgt depletion leads to increased serum
1060 sensitivity. WT CFT073 and CFT073 Δ *lgt* cells grown in the presence of a range of arabinose
1061 concentrations (2% = magenta; 0.2% = light blue; 0.1% = green and 0.05% = orange) were
1062 incubated with 50% normal human serum (nHS), heat inactivated human serum (HIHS) or medium
1063 (no serum) for 1 hour and CFUs were enumerated. Data are representative of at least three
1064 independent experiments each performed in duplicate. **(e)** Lgt depletion leads to increased OM
1065 permeability. WT CFT073 and CFT073 Δ *lgt* cells were incubated with the same range of arabinose
1066 concentrations as in Figure 2d and incubated with the nucleic acid dye, SYTOX Green, and flow
1067 cytometry was performed to determine level of dye incorporation. While SYTOX Green does not
1068 efficiently incorporate in bacterial cells with an intact OM (CFT073 Δ *lgt* treated with 2% arabinose,
1069 magenta), SYTOX Green incorporation in bacterial cells increases after Lgt depletion. Intact
1070 CFT073 (WT, grey) or CFT073 treated with 70% ethanol (WT+ETOH, black), which permeabilizes
1071 the cells, were used as controls. Data are representative of two independent experiments. **(f)** Lgt
1072 depletion results in a globular cellular phenotype and membrane blebbing. WT CFT073 or
1073 CFT073 Δ *lgt* cells were grown in either arabinose or glucose for 4 hours, fixed and incubated with
1074 FM-64 dye (red) and DAPI (blue) to detect OM and nucleic acids, respectively. Cells were
1075 visualized by confocal microscopy. Arrows represent membrane blebs. Scale bars represent 1 μ m.
1076 Quantitation of cell size was performed using ImageJ software. **(g)** Lgt depletion leads to
1077 significant attenuation in virulence. Intravenous infection of neutropenic A/J mice with WT

Inhibition of Lgt in Gram-negative bacteria

1078 CFT073 (black) or CFT073 Δlgt (red) cells. At 0.5 hours and 24 hours post-infection, bacterial
1079 burden in the liver and spleen were enumerated. Overall p -value for the ANOVA is $p < 0.0001$.
1080 Pairwise comparisons were analyzed using unpaired Mann Whitney test (** $p = 0.0079$). The grey
1081 dashed line represents the limit of detection (200 CFU/ml) for this experiment. **(h)** Deletion of *lpp*
1082 does not rescue growth after Lgt depletion. *E. coli* MG1655 (WT, black), or inducible deletion
1083 strains for *lgt* (Δlgt , red), *lspA* ($\Delta lspA$, green) and *lolCDE* ($\Delta lolCDE$, blue) that either contained *lpp*
1084 or had *lpp* deleted were grown in conditions that allowed for normal growth (Ara^{WT}, 2% arabinose)
1085 or decreased growth (Ara^{Low}, 0.0125% arabinose) and CFUs at were enumerated at 5 hours post
1086 treatment. Data are representative of two independent experiments each performed in duplicate (*ns*
1087 = not significant, * $p < 0.05$, ** $p < 0.01$).

1088

1089 **Figure 3: Identification of Lgt inhibitors.** **(a)** Representation of macrocycle peptide libraries
1090 varying in size from 8-14 amino acids in length. The variable region (X_n) of the macrocycle
1091 libraries was encoded to allow the random incorporation of 11 natural amino acids and 5 non-
1092 natural amino acids. **(b)** The 5 non-natural amino acids used in the generation of the libraries were
1093 N- α -Methyl-L-phenylalanine (MeF), N- α -Methyl-L-glycine (MeG, Sarcosine), (S)-2-
1094 Aminoheptanoic acid (Ahp), 4-Phenyl-L-phenylalanine (Bph) and (S)-1,2,3,4-
1095 Tetrahydroisoquinoline-3-carboxylic acid (Tic). **(c)** Schematic representation of affinity-based
1096 selections using recombinant Lgt-biotin immobilized on streptavidin magnetic beads. As discussed
1097 in the Methods, Lgt-DDM was incubated with the macrocycle library and Lgt binders were eluted,
1098 amplified and translated to generate new libraries enriched for Lgt binders. Iterative rounds of
1099 affinity selection and washing were performed against recombinant Lgt and macrocycles that bound

Inhibition of Lgt in Gram-negative bacteria

1100 to Lgt were identified using next generation sequencing. **(d)** Structure of the macrocyclic peptides
1101 G9066, G2823 and G2824 identified in this study. **(e)** Development of the *in vitro* Lgt biochemical
1102 assay. Lgt-DDM was incubated with phosphatidylglycerol and the Pal-IAAC peptide substrate
1103 derived from the Pal lipoprotein (MQLNKVLKGLMIALPVMAIAACSSNKN) for 60 minutes at
1104 RT, as described in the Methods. After Lgt catalyzes the transfer of diacylglyceryl from
1105 phosphatidylglycerol to the Pal substrate (Pal-IAAC), glycerol-1-phosphophate (G1P) is released
1106 from phosphatidylglycerol. Given the phosphatidylglycerol substrate used in our biochemical assay
1107 contains a racemic glycerol moiety at the end of phosphatidyl group, both G1P and G3P are
1108 released. G3P is quantitatively converted to Dihydroxyacetone phosphate (DHAP) with
1109 concomitant formation of an equivalent amount of NADH by the action of glycerol 3-phosphate
1110 dehydrogenase (G3PDH). Newly formed NADH will in turn quantitatively react with
1111 prolucliferin to generate equivalent amounts of luciferin, which ultimately results in
1112 luminescence by luciferase that is proportional to the amount of luciferin available. **(f)** Dose-
1113 dependent inhibition of Lgt biochemical activity. Lgt was incubated with phosphatidylglycerol and
1114 the Pal-IAAC substrate in the presence of absence of by G9066 (red), G2823 (green) or G2824
1115 (blue). Luminescence values were normalized to DMSO controls (0% inhibition) and no enzyme
1116 controls (100% inhibition). As a control, we incubated the Lgt reactions with a mutant substrate
1117 peptide also derived from the Pal lipoprotein which has the conserved cysteine mutated to alanine
1118 (Pal-IAAAA, black). While the Pal-IAAAA peptide binds to Lgt, it cannot be modified by Lgt and acts
1119 as a non-modifiable, competitive peptide. Negative control reactions for each inhibitor were run in
1120 the absence of Lgt enzymes (open symbols). Data are representative of at least two independent
1121 experiments each performed in triplicate.

1122

Inhibition of Lgt in Gram-negative bacteria

1123 **Figure 4: Lgti inhibit Lgt enzymatic activity in bacterial cells. (a)** Schematic representing the
1124 isolation of PAP and non-PAP fractions. Bacterial cultures were resuspended in 6 mL of PAP
1125 extraction buffer and centrifuged at 100,000 \times g for 60 minutes. 6 mL of supernatants were
1126 collected and pellets were resuspended in 200 μ L of PAP extraction buffer. PG-linked Lpp forms
1127 were more readily detected with the concentrated PAP fractions. **(b)** SDS fractionation of WT
1128 CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp.
1129 CFT073*imp4213* cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed
1130 in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used
1131 as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the
1132 SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS-
1133 insoluble PAP fraction (§ = PG-linked diacylglycerol pro-Lpp, DGPLP; † = other PG-linked Lpp
1134 forms). Molecular weight markers (kDa) are denoted on the left of the blots. **(c)** Detection of Lpp
1135 intermediates in MG1655 Δ *lgt*, MG1655 Δ *lspA* and MG1655 Δ *lolCDE* inducible deletion strains by
1136 Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or
1137 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified
1138 pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)
1139 accumulated after LspA depletion. **(d)** Accumulation of pro-Lpp in cells treated with Lgti.
1140 CFT073*imp4213* cells expressing an arabinose inducible form of Lpp (*CFT073imp4213* Δ *lpp*:*lpp*^{ArA})
1141 were incubated with arabinose for 30 minutes prior to treatment with 0.5 \times MIC concentrations of the
1142 inhibitors for another 30 minutes. Lpp forms are denoted as described above. **(e)** Lgti treatment
1143 leads to cell morphology changes and membrane blebs. CFT073*imp4213* cells were left untreated
1144 or treated with Lgti at 1 \times MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI
1145 solution (blue) to stain membranes and nucleic acid, respectively, and visualized by confocal

Inhibition of Lgt in Gram-negative bacteria

1146 microscopy. Arrows represent membrane blebs and scale bars represent 3 μ m. **(f)** Quantitation of
1147 cell size after treatment Lgti. A total of 104 ± 4 cells per treatment were quantitated using ImageJ
1148 ($*p = 0.04$; $***p = 0.002$). **(g)** CRISPRi knock-down of *lgt* gene expression sensitizes cells to Lgti
1149 but not LspAi and LolCDEi. *E. coli* BW25113 cells expressing dCas9 and gRNAs specific to *lgt*,
1150 *lspA* or *lolC* were untreated (black bars) or treated (white bars) with 2 μ M Lgti (G2823 and G2824),
1151 0.05 μ M LspAi (globomycin) or 0.8 μ M LolCDEi (C1). A scrambled (scr) gRNA and gRNA
1152 specific to *folA* (dihydrofolate reductase) were used as negative controls. Bacterial growth was
1153 measured by OD₆₀₀ and values were normalized to the untreated sample for each gRNA, which was
1154 set at 100% ($***p < 0.001$). Data are representative of at least two independent experiments each
1155 performed in triplicate.

1156

1157 **Figure 5: *lpp* deletion does not rescue growth after Lgti treatment.** CFT073*imp4213* (black),
1158 CFT073*imp4213Δlpp* (blue) or CFT073*imp4213Δlpp* complemented with pBAD24 plasmids
1159 encoding WT *lpp* (red) or *lppΔK* (green) were untreated (filled symbols) or treated (open symbols)
1160 with 12.5 μ M Lgti G2824 **(a)**, 3.2 μ M LspAi (GBM) **(b)**, 6.3 μ M LolCDEi (C1) **(c)** and 1.6 μ M
1161 vancomycin **(d)**. G2823 was not be tested due to limitations in compound availability. CFUs were
1162 enumerated at various times post treatment. **(e)** CFT073*imp4213*, CFT073*imp4213Δlpp* or
1163 CFT073*imp4213Δlpp* complemented with WT *lpp* or *lppΔK* were treated with SDS to enrich for
1164 PAP and non-PAP fractions. As the PAP fraction is 30-fold more concentrated than the non-PAP
1165 fraction, it is more appropriate to compare different mutants within the same fraction. Lpp forms
1166 are denoted as previously described ($*$ = Triacylated free Lpp; \S = PG-linked DGPLP; \oslash = UPLP; \dagger
1167 = other PG-linked Lpp forms; Δ = putative Lpp dimer). The identity of the band in Figure 5e

Inhibition of Lgt in Gram-negative bacteria

1168 below the putative Lpp dimer (Δ) is unknown and could represent a degradation product. The
1169 Lpp Δ K is his-tagged and hence migrates slower on SDS-PAGE relative to the mature triacylated
1170 Lpp. Data are representative of three independent experiments. **(f)** Lgt depletion leads to loss of
1171 PG-linked Lpp and Pal. CFT073 Δ *lgt* inducible deletion cells were grown in arabinose (Ara) or
1172 glucose (Glu) and Lpp and Pal expression was determined in total cell lysates (TL), SDS-insoluble
1173 (PAP) and SDS-soluble (non-PAP) fractions at 3 and 5 hours post treatment. GroEL was used as a
1174 control for fractionation. Lpp forms are denoted by symbols as described in Figure 5e. **(g)** Lgti
1175 treatment leads to loss of PG-associated Lpp and Pal. CFT073*imp4213* cells were treated with Lgti
1176 (G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 30 minutes at $0.5 \times$ MIC and levels of Lpp
1177 and Pal were measured in total cell lysates, PAP and non-PAP fractions. Lpp forms are denoted by
1178 symbols as described above.

1179

1180 **Figure 6: Inhibition of Lgt leads to depletion of essential OM lipoproteins and OMPs and**
1181 **minimal IM accumulation of PG-linked DGPLP.** **(a)** CFT073*imp4213* cells were treated with
1182 Lgti (G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 60 minutes at $1 \times$ MIC and subjected
1183 to sucrose gradient ultracentrifugation as described in the Methods. IM and OM fractions were
1184 assigned based on the expression of MsbA and OmpA, respectively. These data are representative of
1185 at least three independent experiments. **(b)** CFT073*imp4213* cells were treated with Lgti (G2823
1186 and G2824), LspAi (GBM) or LolCDEi (C1) and IM were solubilized using sarkosyl. Lpp and Pal
1187 levels were probed using Western blot analyses. Lpp forms denoted in the figure are as follows (* =
1188 triacylated free Lpp; § = PG-linked DGPLP; ø = UPLP; † = other PG-linked Lpp forms; Δ =
1189 putative Lpp dimer). IM fractions were probed for MsbA and BamA as controls. Levels of

Inhibition of Lgt in Gram-negative bacteria

1190 triacylated free Lpp (*), UPLP (\emptyset) and DGPLP ($\$$) were quantitated by normalizing to MsbA and

1191 levels detected in untreated cells (-) were set at 1.

1192

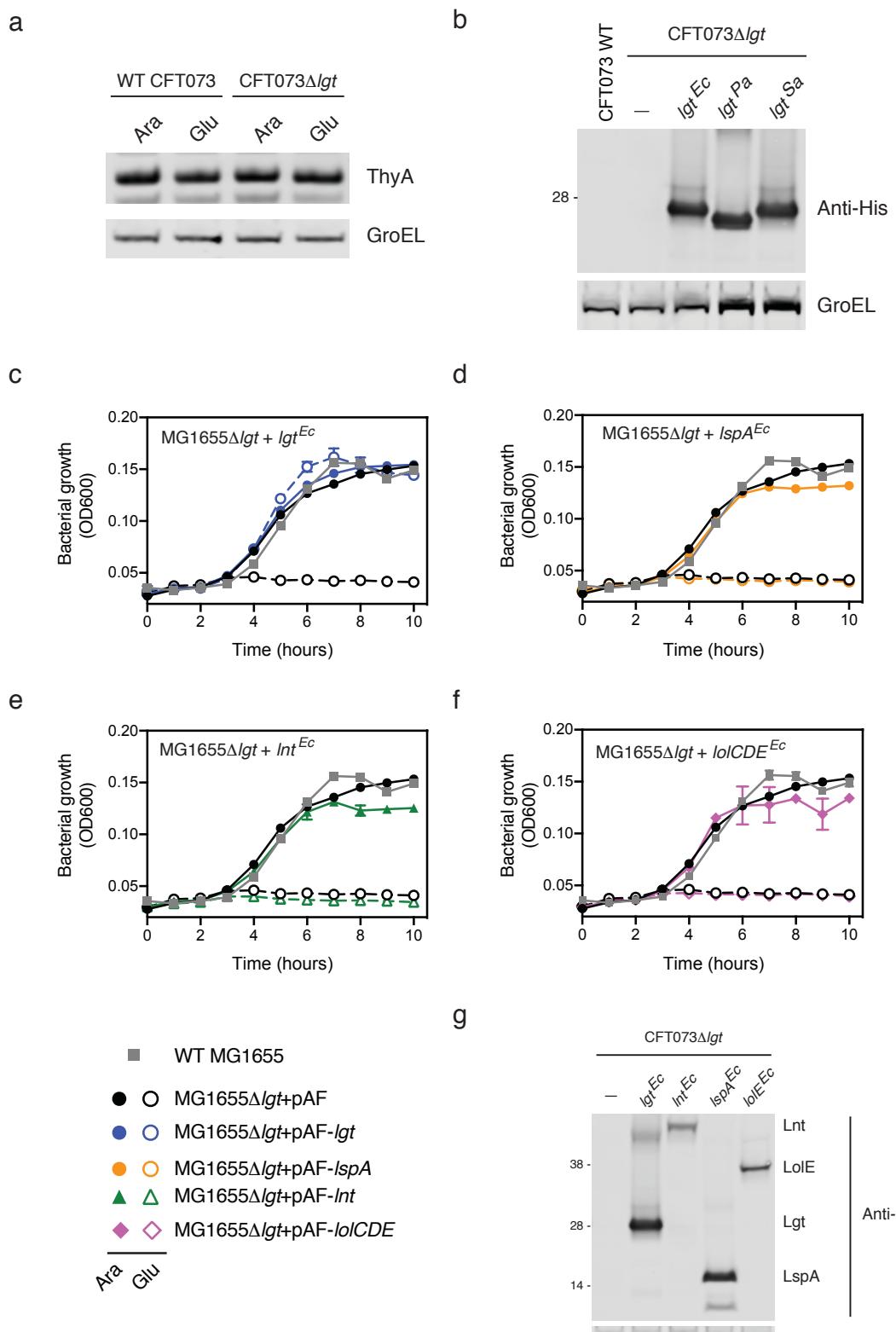
1193

1194

1195

1196

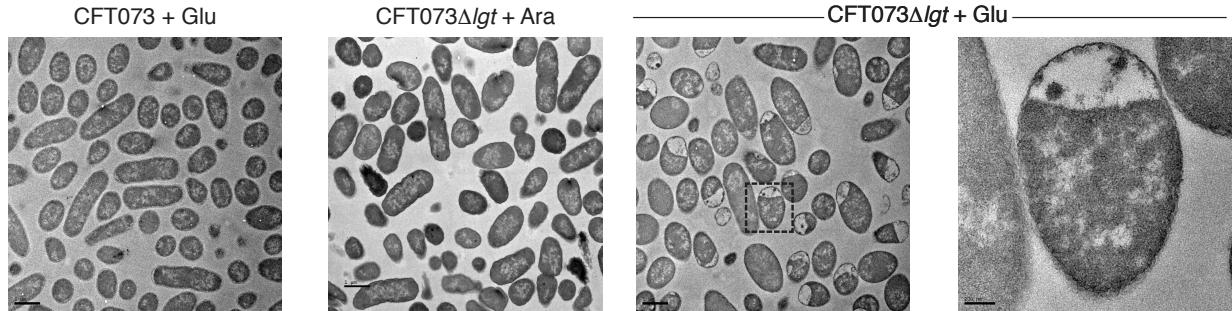
1197


1198

1199

1200

Diao et al. Supplementary Information


Figure 2-supplement 1

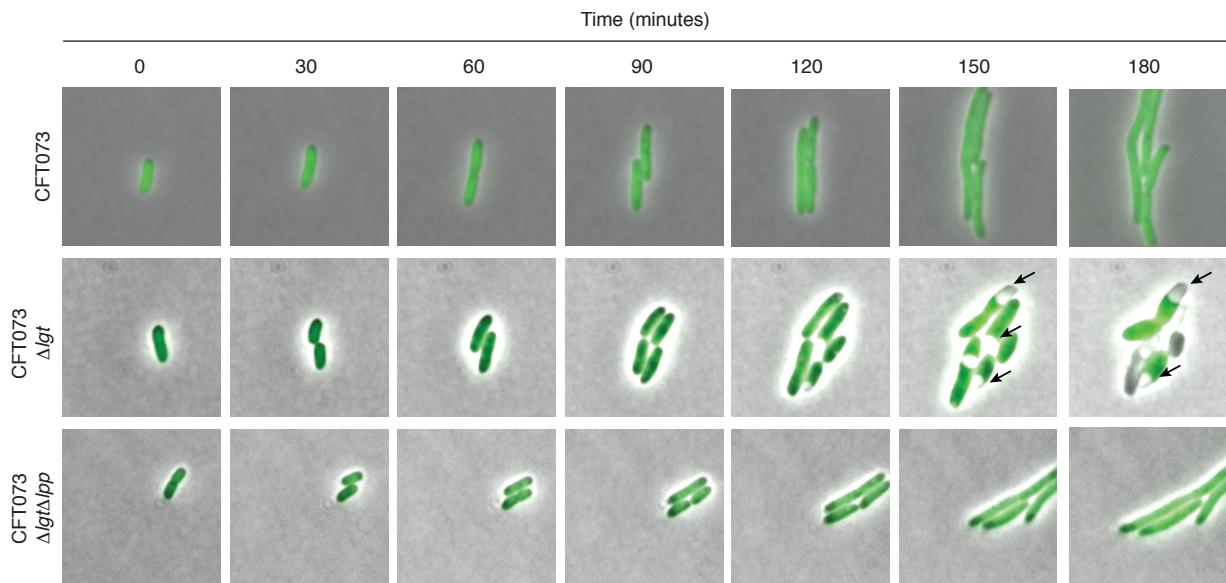

Diao et al. Supplementary Information

Figure 2-figure supplement 2

a

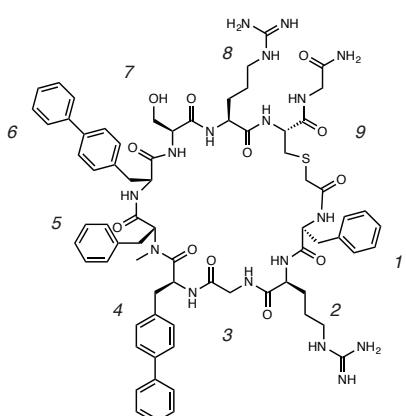
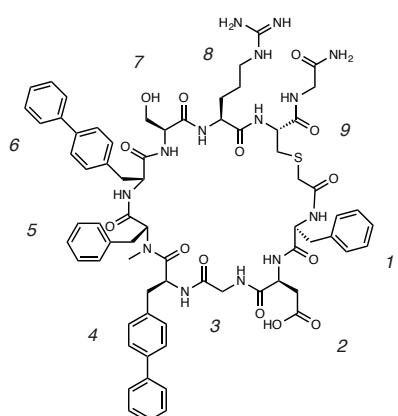
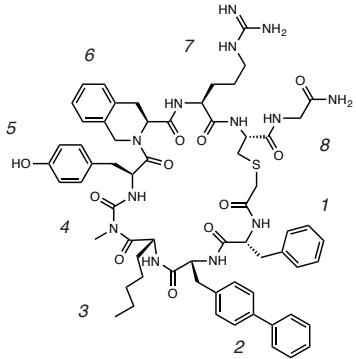
b

1

2

3

4




5

6

7

Diao et al. Supplementary Information

Figure 3-supplement 1

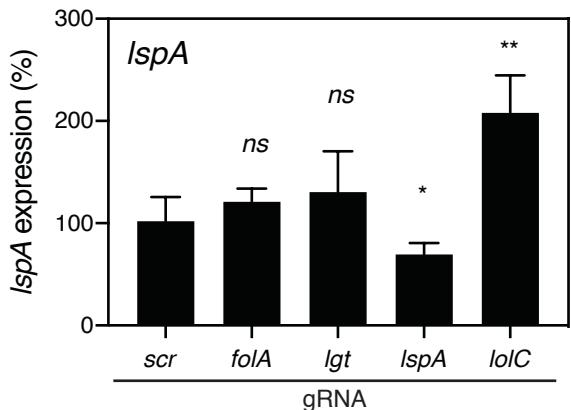
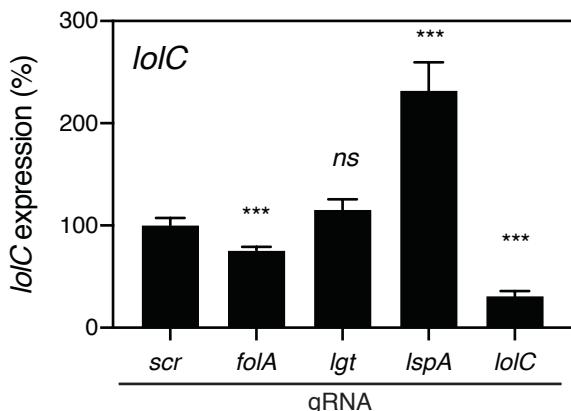
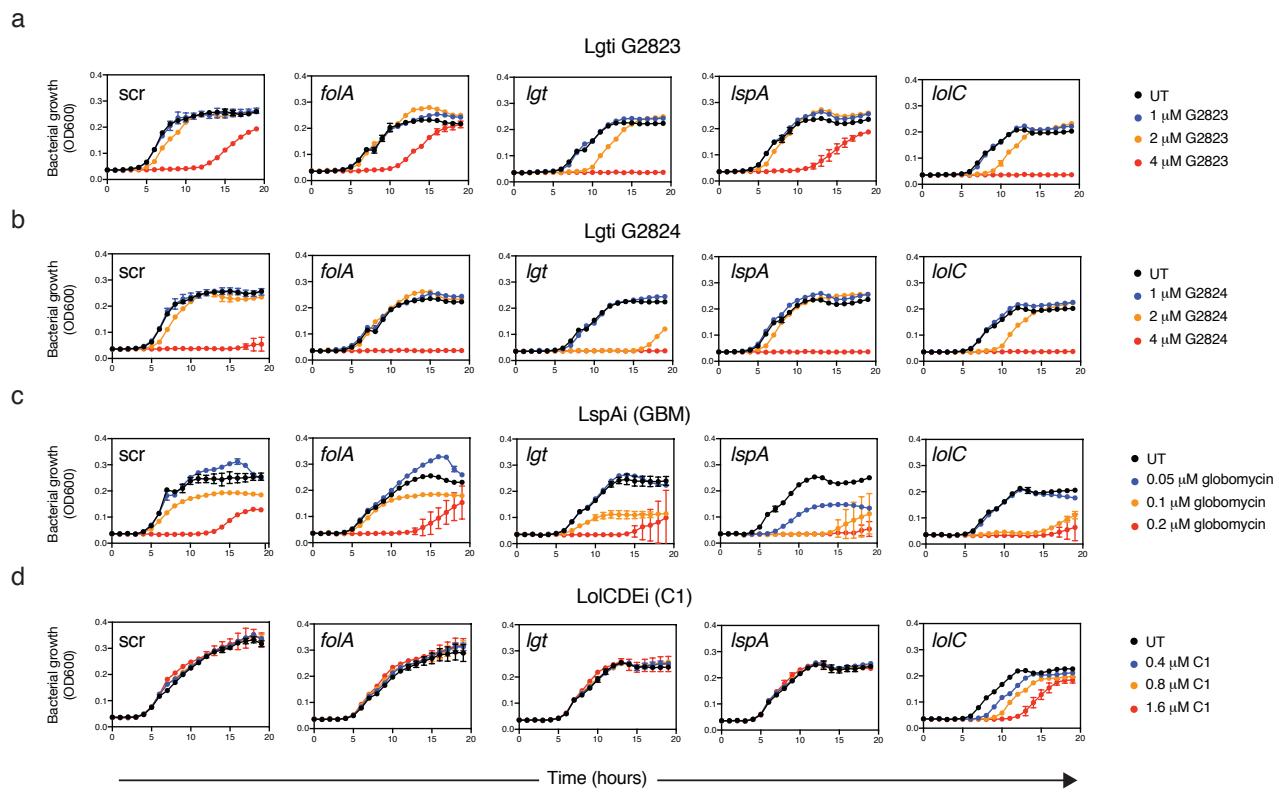

Diao et al. Supplementary Information

Figure 4-supplement 1


a

b

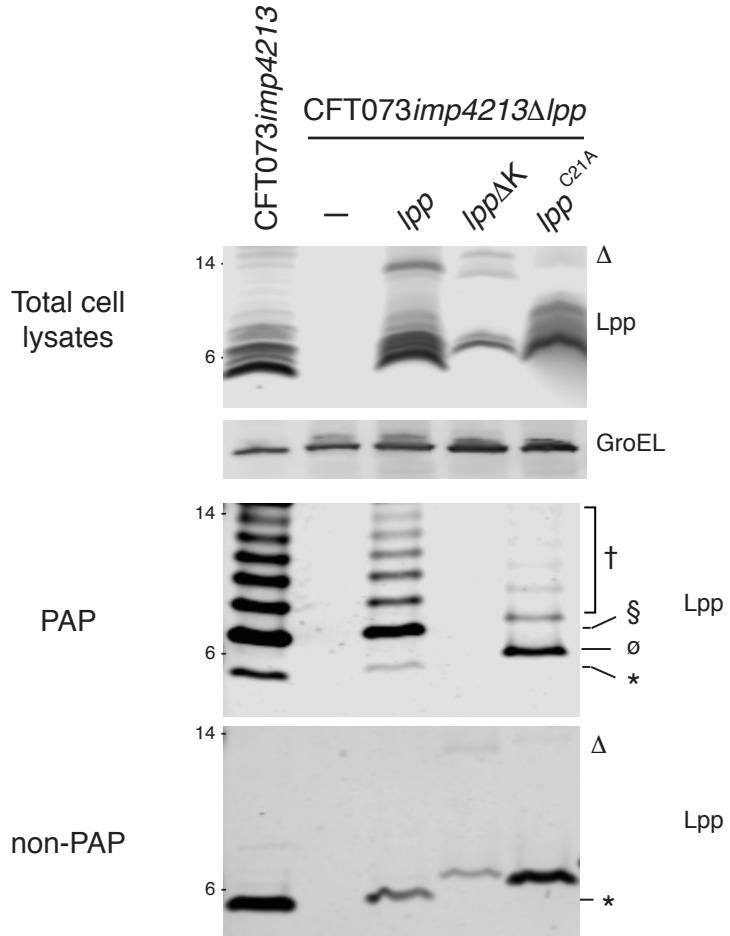
c



1

2

Diao et al. Supplementary Information


Figure 4-supplement 2

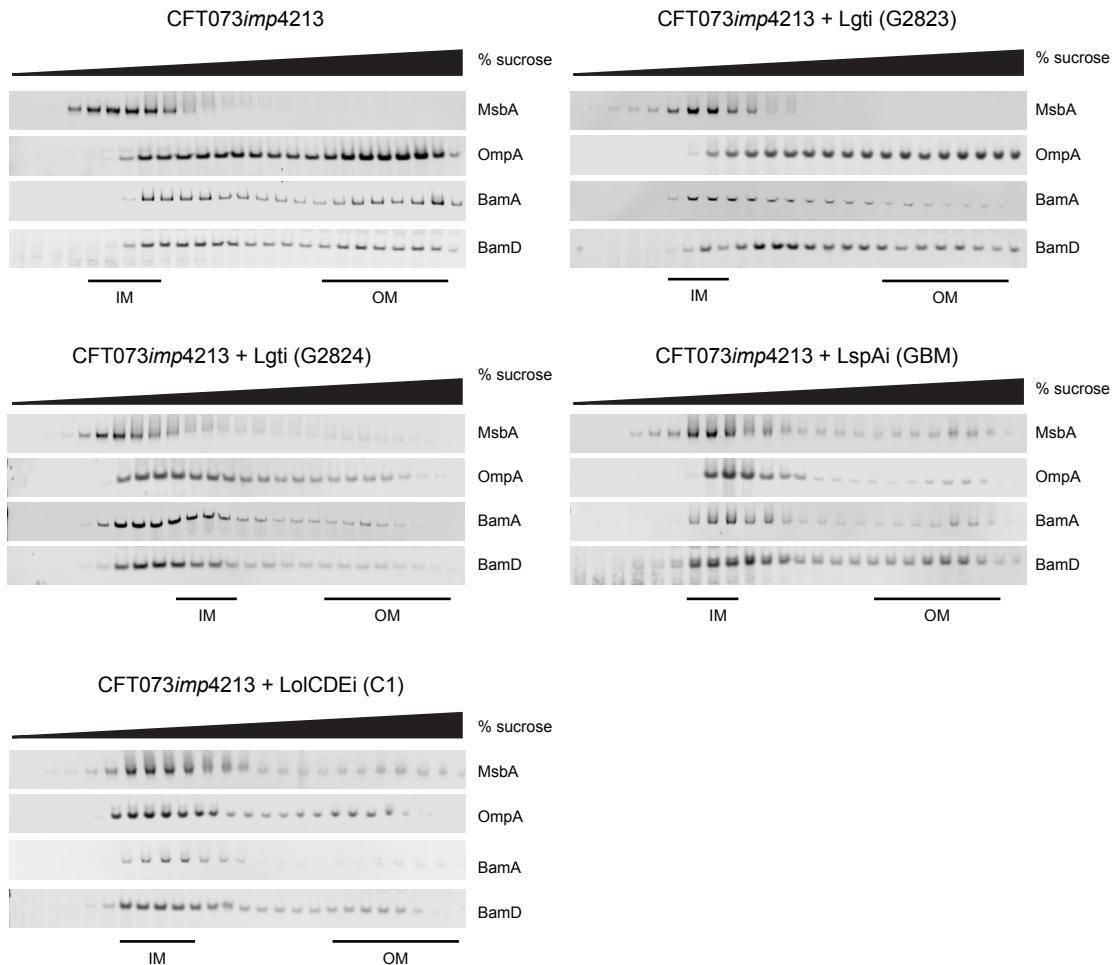
1
2
3
4
5
6
7
8
9
10
11
12

Diao et al. Supplementary Information

Figure 5-supplement 1

† = Other PG-linked Lpp forms
Δ = putative Lpp dimer
§ = PG-linked diacylglycerol pro-Lpp (DGPLP)
ø = Unmodified pro-Lpp (UPLP)
* = Triacylated free Lpp

1


2

3

4

Diao et al. Supplementary Information

Figure 6-supplement 1

1

2

3

4

5

6

Diao et al. Supplementary Information

1 **Figure supplement legends**

2 **Figure 2-figure supplement 1:** **(a)** Normal expression of thymidylate synthase (ThyA) after
3 depletion of Lgt. WT CFT073 and CFT073 Δlgt were grown under wild-type (4% arabinose, Ara)
4 or depleted (0.2% glucose, Glu) conditions for 4 hours and total cell lysates were subjected to
5 Western blot analyses using an anti-ThyA antibody. GroEL was used as a loading control. **(b)**
6 Western blot analyses confirming protein expression after complementation with pLMG18
7 expressing *lgt* from *E. coli* (*lgt*^{Ec}), *P. aeruginosa* (*lgt*^{Pa}) or *S. aureus* (*lgt*^{Sa}). All complemented *lpp*
8 contain a c-terminal His-tag. **(c-f)** Loss of *E. coli* MG1655 Δlgt viability after Lgt depletion is
9 rescued after complementing with *E. coli* *lgt* (*lgt*^{Ec}) but not *E. coli* *lspA* (*lspA*^{Ec}), *lnt* (*lnt*^{Ec}) or
10 *lolCDE* (*lolCDE*^{Ec}). 2.5 mM IPTG was used to induce expression of *E. coli* *lspA*, *lnt* or *lolCDE*.
11 Cells were grown in arabinose (filled symbols, Ara) or glucose (open symbols, Glu) and bacterial
12 growth was measured by OD₆₀₀. **(g)** Anti-His Western blot analyses demonstrating protein
13 expression of *E. coli* Lgt, LspA, Lnt and LolE in CFT073 Δlgt cells complemented with His-tagged
14 versions of the respective genes.

15

16 **Figure 2-figure supplement 2:** Lgt depletion results in IM contraction and the expected globular
17 cellular phenotype. **(a)** CFT073 and CFT073 Δlgt deletion strains were treated for 2 hours with 4%
18 arabinose (Ara) or 0.2% glucose (Glu) and samples were processed for imaging by Transmission
19 electron microscopy. Bars represent 1 μ m (200 nm for last panel). **(b)** Live cell imaging of WT
20 CFT073, CFT073 Δlgt and CFT073 $\Delta lgt\Delta lpp$ inducible deletion strains containing a plasmid
21 expressing *gfp* (pGFP) were grown in the presence of 0.2% glucose. Phase contrast and

Diao et al. Supplementary Information

1 fluorescence microscopy images were overlayed at various times post treatment. Arrows denote IM
2 contraction which is not observed in the strain containing the *lpp* deletion.

3

4 **Figure 3-figure supplement 1:** Chemical structures of original hit macrocycles **508**, **692** and **693**
5 identified in the library screen. The sequences of the macrocycles are represented in a linear format
6 using the three letter amino acid codes. Non-natural amino acids are as follows: N- α -Methyl-L-
7 phenylalanine (MeF), N- α -Methyl-L-glycine (MeG, Sarcosine), (S)-2-Aminoheptanoic acid (Ahp),
8 4-Phenyl-L-phenylalanine (Bph) and (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid (Tic).
9 CIAcf was fixed at the first position and used for cyclization.

10

11 **Figure 4-figure supplement 1:** Efficiency of CRISPRi-mediated downregulation of target genes.
12 Total RNA was harvested from *E. coli* BW25113 cells transformed with scrambled (scr) gRNA or
13 gRNA specific for *folA*, *lgt*, *lspA*, and *lolC* and gene expression of *lgt* (a), *lspA* (b) and *lolC* (c) was
14 measured by RT-qPCR. Relative gene expression of *lgt*, *lspA* and *lolC* were calculated by
15 normalizing to *rpoB* levels using the $2^{-\Delta\Delta CT}$ method. Expression levels are graphed after
16 comparison to “scr” gRNA, which was set at 100%. Data are representative of two independent
17 experiments each performed in duplicate (*ns* = not significant, **p* < 0.05, ***p* < 0.01, ****p* < 0.001).

18

19 **Figure 4-figure supplement 2:** Kinetics of growth inhibition after CRISPRi gRNA induction in *E.*
20 *coli* BW25113. BW25113 cells expressing either scrambled (scr) gRNA or gRNAs specific to *folA*,
21 *lgt*, *lspA* or *lolC* were treated with (a) Lgti G2823, (b) Lgti G2824, (c) LspAi (GBM) and (d)

Diao et al. Supplementary Information

1 LolCDEi (C1) and bacterial growth was measured by OD₆₀₀. For all inhibitors, three concentrations
2 were tested based on the MIC of each molecule and compared to untreated cells (UT, black) (Lgti =
3 4, 2 and 1 μ M; LspAi = 0.2, 0.1 and 0.05 μ M and LolCDEi = 1.6, 0.8 and 0.4 μ M). Data are
4 representative of three independent experiments each performed in triplicate.

5

6 **Figure 5-figure supplement 1:** Determination of PG-linkage of WT Lpp, Lpp Δ K and Lpp C21A .
7 CFT073*imp4213*, CFT073*imp4213* Δ *lpp* or CFT073*imp4213* Δ *lpp* complemented with WT *lpp*,
8 *lpp* Δ K or *lpp* C21A were treated with SDS to isolate PAP and non-PAP fractions. Lpp levels were
9 detected by Western blot analyses in total cell lysates, PAP and non-PAP fractions. The Lpp C21A
10 mutant contains an alanine in place of the conserved cysteine in the lipobox. The *lpp* Δ K construct
11 is His-tagged and hence migrates slower on SDS-PAGE. Lpp forms are denoted in the figure (* =
12 triacylated free Lpp; § = PG-linked DGPLP; ø = UPLP; † = other PG-linked Lpp forms; Δ =
13 putative Lpp dimer).

14

15 **Figure 6-figure supplement 1:** Membrane localization of BamA and BamD in CFT073*imp4213*
16 cells treated with Lgti (G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 60 minutes at
17 1 \times MIC and subjected to sucrose gradient ultracentrifugation as described in the Methods. Levels of
18 BamA and BamD were detected by Western blot analyses. IM and OM fractions were assigned
19 based on the expression of MsbA and OmpA, respectively, as presented in Figure 6.

20

21

Diao et al. Supplementary Information

1 **Table S1:** Lgti minimal inhibitory concentrations (MIC) against LolCDE-resistant *E. coli* isolates
2
3

MG1655 imp4213	MIC (μ M)					
	Lgti (G9066)	Lgti (G2823)	Lgti (G2824)	LspAi (GBM)	LolCDEi (C2)	Vancomycin
WT	3.1	4.7	3.1	0.2	2.4	0.8
LolC (Q258K)	6.3	3.1	3.1	0.3	75	0.8
LolC (N265K)	3.1	6.3	3.1	0.2	37.5	1.2
LolD (S43R)	6.3	4.7	3.1	0.2	37.5	0.8
LolE (F367L)	6.3	3.1	3.1	0.3	25	1.2
LolE (P372L)	3.1	6.3	3.1	0.2	50	1.2

4
5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 **Table S2:** Bacterial strains and plasmids used in this study

Bacterial strains	Description	Reference
<i>E. coli</i>		
BW25113	rrnB3 DElacZ4787 hsdR514 DE(araBAD)567 DE(rhaBAD)568 rph-1	(Baba et al., 2006)
MG1655	<i>E. coli</i> K-12 F- lambda- <i>ilvG</i> negative, <i>rfb-50</i> <i>rph-1</i>	ATCC 700926
MG1655 Δ <i>lgt</i>	MG1655 Δ <i>lgt</i> ::kan with an arabinose-inducible integrated <i>lgt</i> copy	This study
MG1655 Δ <i>lgt</i> Δ <i>lpp</i>	MG1655 Δ <i>lpp</i> , Δ <i>lgt</i> ::kan containing an arabinose-inducible integrated <i>lgt</i> copy	This study
MG1655 Δ <i>lspA</i>	Arabinose-inducible conditional knockout of <i>lspA</i>	(Pantua et al., 2020)
MG1655 Δ <i>lspA</i> Δ <i>lpp</i>	MG1655 Δ <i>lpp</i> , Δ <i>lspA</i> ::kan containing an arabinose-inducible integrated <i>lspA</i> copy	This study
MG1655 Δ <i>lolCDE</i>	Arabinose-inducible conditional knockout of <i>lolCDE</i>	This study
MG1655 Δ <i>lolCDE</i> Δ <i>lpp</i>	MG1655 Δ <i>lpp</i> , Δ <i>lolCDE</i> ::kan containing an arabinose-inducible integrated <i>lolCDE</i> copy	This study
CFT073	Bacteremia isolate, wild-type (O6:K2:H1)	ATCC 700928
CFT073 Δ <i>lgt</i>	CFT073 Δ <i>lgt</i> ::kan containing an arabinose-inducible integrated <i>lgt</i> copy	This study
CFT073 $imp4213$	CFT073 carrying the <i>imp4213</i> allele in <i>lptD</i>	(Ho et al., 2018)
CFT073 $imp4213$ Δ <i>lgt</i>	CFT073 Δ <i>lgt</i> ::kan containing an arabinose-inducible integrated <i>lgt</i> copy and carrying the <i>imp4213</i> allele in <i>lptD</i>	This study
CFT073 $imp4213$ Δ <i>lpp</i>	CFT073 Δ <i>lpp</i> ::kan carrying the <i>imp4213</i> allele in <i>lptD</i>	This study
<i>CFT073imp4213Δ<i>lpp</i>$:$<i>lpp</i>[“]</i>	<i>CFT073imp4213Δ<i>lpp</i>$:$<i>lpp</i>[“]::kan containing pBAD24 expressing <i>lpp</i></i>	This study
TOP10	pWQ601, general cloning strain	Invitrogen Center for Staphylococcal Research, Nebraska
<i>S. aureus</i> USA300	USA300 FPR3757	
<i>A. baumannii</i> 19606	<i>Acinetobacter baumannii</i> strain isolated in a patient urine sample	ATCC
<i>P. aeruginosa</i> PA14	<i>Pseudomonas aeruginosa</i> strain UCBPP-PA14 originally isolated from a burn wound	ATCC
PA14 $imp4213$	<i>Pseudomonas aeruginosa</i> UCBPP-PA14 containing the <i>imp4213</i> mutation in <i>lptD</i>	This study
Plasmids		
pKD4	Kanamycin resistance (Kan ^R) cassette flanked by FRT (FLP recognition target) sites, oriR γ	(Silhavy, Kahne, & Walker, 2010) (Cowles, Li, Semmelhack, Cristea, & Silhavy, 2011; Wilson & Bernstein, 2015)
pKD46	Expresses the phage λ Red recombinase, Amp ^R , temperature sensitive, oriR γ	(Kovacs-Simon, Titball, & Michell, 2011)
pCP20	Thermal induction of FLP recombinase expression, Amp ^R , temperature sensitive	ATCC 77357
pLDR8	Lambda integrase expression vector	ATCC 77358
pLDR9	Lambda att site integration vector	

Diao et al. Supplementary Information

pBAD24	Arabinose inducible expression vector	ATCC 87399
pBAD24- <i>lpp</i>	pBad24 expressing <i>E. coli</i> <i>lpp</i>	This study
pBAD24- <i>lppΔK</i>	pBad24 expressing <i>E. coli</i> <i>lppΔK</i>	This study
pBAD24- <i>lpp</i> ^{C21A}	pBad24 expressing <i>E. coli</i> <i>lpp</i> ^{C21A}	This study
pdCas9-bacteria_GNE	Based on AddGene plasmid 44249	This study
pgRNA-bacteria_GNE	Based on AddGene plasmid 44251	This study
pLMG18	Low-copy IPTG-inducible expression plasmid, Cm ^r	(M. Tokunaga, Tokunaga, & Wu, 1982)
pLMG18- <i>lgt</i> ^{Ec}	pLMG18 expressing <i>E. coli</i> <i>lgt</i>	This study
pLMG18- <i>lgt</i> ^{Sa}	pLMG18 expressing <i>S. aureus</i> <i>lgt</i>	This study
pLMG18- <i>lgt</i> ^{Pa}	pLMG18 expressing <i>P. aeruginosa</i> <i>lgt</i>	This study
pLMG18- <i>lspA</i> ^{Ec}	pLMG18 expressing <i>E. coli</i> <i>lspA</i>	This study
pLMG18- <i>Int</i> ^{Ec}	pLMG18 expressing <i>E. coli</i> <i>Int</i>	This study
pLMG18- <i>lolCDE</i> ^{Ec}	pLMG18 expressing <i>E. coli</i> <i>lolCDE</i>	This study
pGFP	pBla_Short encoding sfGFP	(Storek et al., 2018)

1

2 **References**

3 Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006). Construction of
4 Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular Systems*
5 *Biology*, 2(1), 2006.0008. <http://doi.org/10.1038/msb4100050>

6 Cowles, C. E., Li, Y., Semmelhack, M. F., Cristea, I. M., & Silhavy, T. J. (2011). The free and bound forms
7 of Lpp occupy distinct subcellular locations in Escherichia coli. *Molecular Microbiology*, 79(5), 1168–
8 1181. <http://doi.org/10.1111/j.1365-2958.2011.07539.x>

9 Ho, H., Miu, A., Alexander, M. K., Garcia, N. K., Oh, A., Zilberleyb, I., et al. (2018). Structural basis for
10 dual-mode inhibition of the ABC transporter MsbA. *Nature*, 557(7704), 196–201.
<http://doi.org/10.1038/s41586-018-0083-5>

11 Kovacs-Simon, A., Titball, R. W., & Michell, S. L. (2011). Lipoproteins of bacterial pathogens. *Infection*
12 and *Immunity*, 79(2), 548–561. <http://doi.org/10.1128/IAI.00682-10>

13 Pantua, H., Skippington, E., Braun, M.-G., Noland, C. L., Diao, J., Peng, Y., et al. (2020). Unstable
14 Mechanisms of Resistance to Inhibitors of Escherichia coli Lipoprotein Signal Peptidase. *mBio*, 11(5),
15 VMBF-0016–2015. <http://doi.org/10.1128/mBio.02018-20>

16 Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. *Cold Spring Harbor Perspectives*
17 in *Biology*, 2(5), a000414–a000414. <http://doi.org/10.1101/cshperspect.a000414>

18 Storek, K. M., Auerbach, M. R., Shi, H., Garcia, N. K., Sun, D., Nickerson, N. N., et al. (2018). Monoclonal
19 antibody targeting the β -barrel assembly machine of Escherichia coli is bactericidal. *Proceedings of the*
20 *National Academy of Sciences of the United States of America*, 115(14), 3692–3697.
21 <http://doi.org/10.1073/pnas.1800043115>

22 Tokunaga, M., Tokunaga, H., & Wu, H. C. (1982). Post-translational modification and processing of
23 Escherichia coli prolipoprotein in vitro. *Proceedings of the National Academy of Sciences of the United*
24 *States of America*, 79(7), 2255–2259. <http://doi.org/10.1073/pnas.79.7.2255>

25 Wilson, M. M., & Bernstein, H. D. (2015). Surface-Exposed Lipoproteins: An Emerging Secretion
26 Phenomenon in Gram-Negative Bacteria. *Trends in Microbiology*.
27 <http://doi.org/10.1016/j.tim.2015.11.006>

28

29

30

Diao et al. Supplementary Information

1 **Table S3:** Primers used in this study for strain generation and quantitative PCR

Primer	Sequence (5' to 3')
<i>Strain generation</i>	
CFT073Δ <i>lgt</i> .F	TTTCAATCGCTGTTCTTTCAGCGAAATAACAAGAACCTGTGGTGACAG GTGTAGGCTGGAGCTGCTTC
CFT073Δ <i>lgt</i> .R	CCTTCGTCGAGCAGTTTGATCAGTTCAAATACTGTTCATGGTCC CATATGAATATCCTCCTAGTTCTATT
MG1655Δ <i>lolCDE</i> .F	CGGGGGCTTTCAGATTAGCCCTGACGATCACTTACAGTTCAGACGTTACCCAT CTTGCTTCGTTATATACTCGTGTCTTGCTACAGCAACCAGACGGATTCTGT AGGCTGGAGCTGCTTC
MG1655Δ <i>lolCDE</i> .R	CCCACTGCAACTGCCGACCGCTATCAAACACGCCAAGCGCAATTGTTCCACC AATATCAAACCCGTAATACATTGCCGCTCCTGTTAATGTACTGCCATATGA ATATCCTCCTAGTTCTATT
<i>Quantitative PCR</i>	
<i>lgt</i> .F	CTCGGTGGACGTATTGGTTATG
<i>lgt</i> .R	TCACCACGATAACGCCAATC
<i>lgt</i> .PRB	/ <u>56-FAM</u> / ACAATTCC /ZEN/ CGCAGTTATGGCCG / <u>3IABkFQ</u> /
<i>lspA</i> .F	TCGATCTGGCAGCAAATAC
<i>lspA</i> .R	CGCTATCGCAAGGAACTAA
<i>lspA</i> .PRB	/ <u>56-FAM</u> / TGCAGATTA /ZEN/ AGCGACGGAACAGC / <u>3IABkFQ</u> /
<i>lolC</i> .F	CCACAGGCAATTCTCTCTTCT
<i>lolC</i> .R	TAGGTGCGACGCGATTAAC
<i>lolC</i> .PRB	/ <u>56-FAM</u> / CTCTCTTAA /ZEN/ CCCGCAGCAACTCCC / <u>3IABkFQ</u> /

2
3