

1 **Antibody-drug conjugates targeting CD45 plus Janus kinase**
2 **inhibitors effectively condition for allogeneic hematopoietic**
3 **stem cell transplantation**

4 **Stephen P. Persaud¹, Julie K. Ritchey², Jaebok Choi², Peter G. Ruminski², Matthew L.**
5 **Cooper², Michael P. Rettig², and John F. DiPersio^{2*}**

6 **¹Division of Laboratory and Genomic Medicine, Department of Pathology and**
7 **Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA**

8 **²Division of Oncology, Department of Medicine, Washington University School of**
9 **Medicine, St. Louis, MO 63110, USA**

10 ***Address correspondence to: John DiPersio, Campus Box 8007, 660 South Euclid Ave, St.**
11 **Louis, MO 63110. Phone: 314-454-8306; FAX: 314-454-7551; Email: jdipersi@wustl.edu.**

12 **Keywords: antibody-drug conjugates, saporin, baricitinib, allogeneic HSCT, CD45-ADC**
13 **Running title: CD45-ADC plus JAK inhibitors for allo-HSCT**

14

15

16

17

18

19

20

21 **ABBREVIATIONS**

22 **7-AAD: 7-aminoactinomycin D**
23 **Allo-HSCT: allogeneic hematopoietic stem cell transplantation**
24 **ACK: Ammonium chloride-potassium bicarbonate**
25 **ADC: antibody-drug conjugate**
26 **AML: acute myeloid leukemia**
27 **APC: antigen presenting cell**
28 **BSA: bovine serum albumin**
29 **CBC: Complete blood count**
30 **CD: Cluster of differentiation**
31 **CFU: colony forming unit**
32 **FBS: fetal bovine serum**
33 **EDTA: ethylenediaminetetraacetic acid**
34 **FACS: fluorescence-activated cell sorting**
35 **GFP: green fluorescent protein**
36 **GvHD: graft-versus-host disease**
37 **GvL: graft-versus-leukemia**
38 **Hct: hematocrit**
39 **HEPES: *N*-2-hydroxyethylpiperazine-*N'*-2-ethanesulfonic acid**
40 **HSC/HSCT: hematopoietic stem cell/hematopoietic stem cell transplantation**
41 **IFN: Interferon**
42 **Ig: immunoglobulin**
43 **IL: Interleukin**
44 **IMDM: Iscove's Modified Dulbecco's Media**
45 **JAK: Janus kinase**
46 **LK: Lineage⁻Sca1⁻cKit⁺**
47 **LSK: Lineage⁻Sca1⁺cKit⁺**
48 **miHA: minor histocompatibility antigen**
49 **MHC: major histocompatibility complex**
50 **MLR: mixed leukocyte reaction**
51 **PLTS: platelets**
52 **PBS: phosphate buffered saline**
53 **Running buffer: PBS + 0.5% BSA + 2 mM EDTA**
54 **NK: natural killer cell**
55 **RAG: recombinase activating gene**
56 **RPMI-1640: Roswell Park Memorial Institute-1640 media**
57 **sAV: streptavidin**
58 **SAP: saporin-conjugated**
59 **Stat: signal transducer and transactivator**
60 **TBI: Total body irradiation**
61 **TCD: T cell depletion/depleted**
62 **TNF: Tumor necrosis factor**
63 **WBC: white blood cells**

65 **ABSTRACT**

66 **Despite the curative potential of hematopoietic stem cell transplantation (HSCT),**
67 **transplant conditioning-associated toxicities preclude broader clinical application.**
68 **Antibody-drug conjugates (ADC) provide an attractive approach to HSCT conditioning**
69 **that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have**
70 **largely involved syngeneic HSCT; however, for treatment of acute leukemias or tolerance**
71 **induction for solid organ transplantation, strategies for allogeneic HSCT (allo-HSCT) are**
72 **needed. Using murine allo-HSCT models, we show that combining CD45-targeted ADCs**
73 **with the Janus kinase inhibitor baricitinib enables multilineage alloengraftment with >80-**
74 **90% donor chimerism. Mechanistically, baricitinib impaired T and NK cell survival,**
75 **proliferation and effector function, with NK cells being particularly susceptible due to**
76 **inhibited IL-15 signaling. Unlike irradiated mice, CD45-ADC-conditioned mice did not**
77 **manifest graft-versus-host alloreactivity when challenged with mismatched T cells. Our**
78 **studies demonstrate novel allo-HSCT conditioning strategies that exemplify the promise of**
79 **immunotherapy to improve the safe application of HSCT for treating hematologic diseases.**

80

81

82

83

84

85

86 INTRODUCTION

87 Hematopoietic stem cell transplantation (HSCT) has therapeutic potential for hematologic
88 malignancies¹, autoimmunity², immunodeficiency³, chronic infection⁴, or tolerance induction for
89 solid organ transplantation (SOT)⁵. However, two formidable barriers must be overcome to
90 achieve successful HSCT outcomes. First, recipient-derived hematopoietic stem cells (HSCs)
91 must be depleted to create space for incoming donor HSCs. Second, in allogeneic HSCT (allo-
92 HSCT), host and donor immune responses must be controlled to prevent graft rejection and
93 graft-versus-host-disease (GvHD), respectively⁶. To overcome these barriers, HSCT patients
94 undergo conditioning regimens comprised of chemotherapy and/or irradiation,⁷ whose toxicities
95 limit the use of HSCT to life-threatening conditions like acute myeloid leukemia (AML)⁸.

96 For AML, allo-HSCT offers the best chance for disease control. Donor T lymphocytes in the
97 HSC allograft mediate graft-versus-leukemia (GvL) effects that protect against relapse⁹.
98 Myeloablative conditioning is preferable for AML as its antileukemia activity also mitigates
99 relapse risk¹⁰. However, since the median age at diagnosis for AML is 68¹¹, patients' medical
100 comorbidities or functional status may prevent them from undergoing this potentially curative
101 therapy¹². Moreover, older AML patients have cytogenetically and clinically higher-risk disease
102 that is more treatment-resistant and relapse-prone^{13, 14, 15}. This presents a clinical dilemma: the
103 patients most likely to suffer from AML with adverse features are those who most require
104 aggressive therapy, yet they are often the least able to tolerate it.

105 Novel allo-HSCT conditioning approaches that avoid treatment-related toxicities without
106 sacrificing therapeutic efficacy are urgently needed. Recently, conditioning strategies have
107 emerged using antibody-drug conjugates (ADCs) to target the hematopoietic niche. Initial studies

108 used ADCs comprised of the ribosome inactivator saporin¹⁶ linked to antibodies recognizing the
109 phosphatase CD45¹⁷ (CD45-SAP) or the tyrosine kinase c-Kit (cKit-SAP)¹⁸ to specifically
110 deplete HSCs. In mouse models, CD45-SAP and cKit-SAP were well-tolerated and effectively
111 permitted syngeneic HSCT with high-level donor chimerism. Moreover, these conditioning
112 regimens were used therapeutically in mouse models of sickle cell disease¹⁷, hemophilia¹⁹,
113 Fanconi anemia²⁰, and recombinase-activating gene (RAG) deficiency²¹.

114 Fewer studies, however, have studied ADCs as conditioning for allo-HSCT, in which T- and/or
115 NK cell-mediated rejection must be overcome to enable engraftment. Such studies are critical for
116 applying ADC-based conditioning to AML or for tolerance induction in SOT. Prior reports using
117 cKit-targeted regimens have achieved engraftment in major histocompatibility complex (MHC)-
118 mismatched allo-HSCT models^{22,23}. Herein, we used CD45-SAP to develop minimally-toxic
119 conditioning regimens for murine allo-HSCT, with particular emphasis on how these therapies
120 impact host and donor immunity. Using minor histocompatibility antigen (miHA)- and MHC-
121 mismatched models, we demonstrate that CD45-SAP plus pan-T cell depletion (TCD) is
122 sufficient to permit allogeneic donor engraftment. Furthermore, the selective and balanced Janus
123 kinase 1/2 (JAK1/2) inhibitor baricitinib, previously shown to prevent GvHD while enhancing
124 GvL effects²⁴, permits robust alloengraftment after CD45-SAP conditioning without requiring
125 pan-TCD. Finally, unlike total body irradiation (TBI) conditioning, CD45-SAP did not promote
126 pathogenic graft-versus-host alloreactivity in mice challenged with allogeneic splenocytes.
127 Taken together, our study provides a novel strategy for allo-HSCT whose biological effects –
128 reducing rejection and GvHD while sparing GvL activity – provide the ideal blend of
129 immunomodulatory activities for the treatment of AML.

130

131 **RESULTS**

132 **CD45 and cKit antibody-drug conjugates for syngeneic HSCT conditioning**

133 To evaluate saporin-conjugated CD45 and cKit antibodies as conditioning agents for allo-HSCT,
134 we compared their previously described abilities to deplete murine HSCs and promote syngeneic
135 HSCT^{17, 18}. *In vitro*, CD45-SAP and cKit-SAP inhibited hematopoietic colony formation with
136 picomolar-range IC50 values (Figure 1a). Both ADCs effectively depleted HSCs *in vivo*, as
137 defined phenotypically (LSK CD48⁻CD150⁺) or by colony formation (Figure 1b). Importantly,
138 HSC depletion required an intact ADC comprised of the relevant antibody linked to saporin;
139 controls lacking either of these components were devoid of activity. As previously reported,
140 CD45-SAP was strongly lymphodepleting, whereas cKit-SAP lacked this activity
141 (Supplementary Figure 1a). Notably, reduced CD4⁺ and CD8⁺ T cells and increased granulocytes
142 were noted in control mice receiving sAV-SAP or IgG-SAP (Supplementary Figure 1a). These
143 effects were more pronounced in the CD45-SAP group, which received higher doses than the
144 cKit-SAP group, possibly reflecting a dose-dependent effect of sAV-SAP itself. Finally, all
145 ADC-treated mice had CBCs within the reference range (Supplementary Figure 1b).

146 In a syngeneic HSCT model (B6-GFP → B6), 3 mg/kg CD45-SAP (75 µg) was well-tolerated and
147 permitted stable, high-level donor engraftment comparable to that reported previously¹⁷ (Figure
148 1c). Although cKit-SAP depleted HSCs as effectively as CD45-SAP, even when dosed at 0.4
149 mg/kg (10 µg), it was somewhat less effective at promoting engraftment. When the cKit-SAP
150 dose was increased to 2 mg/kg (50 µg), donor engraftment of all lineages was equivalent to that
151 seen with CD45-SAP. Donor chimerism in spleen, bone marrow and thymus mirrored that
152 observed in peripheral blood (Supplementary Figure 2a). Finally, successful serial

153 transplantation of bone marrow from CD45-SAP and cKit-SAP conditioned primary transplant
154 recipients confirmed that these primary recipients had engrafted functional HSCs (Figure 1e,
155 Supplementary Figure 2b). Taken together, these studies confirm the efficacy of CD45-SAP and
156 cKit-SAP as conditioning for HSCT in the absence of immunologic barriers.

157 **CD45-SAP plus *in vivo* T cell depletion enables engraftment in miHA- and MHC-
158 mismatched allo-HSCT**

159 To investigate the efficacy of ADCs for allo-HSCT conditioning, we used two transplant models
160 (Figure 2a): a miHA-mismatched BALB/c-Ly5.1 \rightarrow DBA/2 model and a haploidentical
161 CB6F1 \rightarrow B6 (F1-to-parent) model MHC-mismatched for H-2^d in the host-versus-graft direction.
162 We chose CD45-SAP for conditioning in these studies to leverage its lymphodepleting activity to
163 overcome graft rejection. However, CD45-SAP alone was insufficient to allow donor
164 engraftment in either model, suggesting that stronger immunosuppression was necessary.

165 To achieve a fuller, sustained T cell ablation, we treated CD45-SAP conditioned animals with
166 depleting CD4⁺ and/or CD8⁺ antibodies throughout the peritransplant period (Figure 2a)²⁵. In the
167 miHA model, while *in vivo* CD4⁺ TCD did not permit significant engraftment, CD8⁺ TCD was
168 sufficient to observe engraftment in 7 of 9 recipient mice. *In vivo* CD4⁺ and CD8⁺ pan-TCD of
169 CD45-SAP conditioned mice resulted in multilineage engraftment in all treated mice, albeit with
170 significant variability in donor chimerism (Figure 2b). Serial CBCs showed stable counts in all
171 lineages (Figure 2d). Gradual loss of donor chimerism was noted in only 1 of 10 pan-TCD mice
172 with myeloid cells declining faster than the longer-lived B cells, a pattern suggestive of inability
173 to engraft or maintain long-term HSCs. Some persistent, low-level donor engraftment, comprised
174 mostly of T cells, was observed in pan-TCD mice conditioned with an inactive ADC. Finally,

175 serial transplantation studies using marrow from CD45-SAP-conditioned, pan-TCD recipients
176 confirmed that these mice engrafted functional donor-derived HSCs (Supplementary Figure 3).

177 In the MHC-mismatched model, CD4⁺ and CD8⁺ pan-TCD was required for engraftment (Figure
178 2c). High-level donor chimerism of B cells and myeloid cells and lower T cell chimerism were
179 routinely observed in this system. Although all pan-TCD animals developed donor chimerism in
180 the first two months post-HSCT, 5 of 9 mice showed a gradual loss of donor-derived cells at later
181 timepoints, similar in pace to that seen with one mouse in the miHA model. One recipient
182 showed a sudden, multilineage loss of donor-derived cells, indicative of graft rejection. Serial
183 CBCs were largely stable without any significant periods of post-transplant pancytopenia (Figure
184 2e).

185 Although the miHA model has potential for bidirectional alloreactivity, we observed no overt
186 graft rejection or GvHD in miHA-mismatched recipients. This suggested that donor and
187 recipient-derived cells coexisted in stable mixed chimerism, a requirement for tolerance
188 induction for SOT. To directly test for allotolerance, we surgically grafted BALB/c or DBA/2
189 skin into BALB-DBA mixed chimeric mice (Supplementary Figure S4a). Whereas DBA/2 mice
190 that failed to engraft BALB/c HSCs rejected BALB/c skin by 2 weeks post-implantation²⁶,
191 BALB-DBA chimeras were tolerant to BALB/c and DBA/2 skin grafts. As a secondary test, we
192 adoptively transferred CFSE-labeled T cells from BALB-DBA chimeras to new cohorts of
193 BALB/c, DBA/2 or CB6F1 mice (Supplementary Figure S4b). Ninety percent of the transferred
194 T cells were Ly5.1⁺ (donor-derived cells from BALB/c-CD45.1 mice) and did not proliferate
195 when infused into either BALB/c or DBA/2 mice. However, these cells proliferated robustly
196 upon infusion into CB6F1 mice heterozygous for the foreign H-2^b haplotype. Taken together,

197 these results verify that our mixed chimeric mice develop cross-tolerance to donor and recipient
198 tissue.

199 **CD45-SAP combined with the JAK1/JAK2 inhibitor baricitinib promotes multilineage
200 engraftment in allo-HSCT recipients without *in vivo* T cell depletion**

201 Our studies using *in vivo* TCD in miHA- and MHC-mismatched allo-HSCT provide proof-of-
202 principle evidence that ADC-based conditioning regimens can permit engraftment provided that
203 immune barriers are sufficiently suppressed. However, the variability of donor chimerism we
204 observed, the high incidence of graft loss, and the potential risk of opportunistic infections,
205 would limit the clinical utility and translatability of a strategy requiring prolonged TCD. We
206 therefore sought to refine our ADC-based allo-HSCT conditioning regimens with these issues in
207 mind.

208 Prior work from our laboratory demonstrated that the selective JAK1/2 inhibitor, baricitinib,
209 prevents and even reverses established GvHD, while enhancing GvL effects²⁴. The complete
210 prevention of GvHD seen with baricitinib phenocopied that seen in IFN γ R-deficient mice treated
211 with α IL-6R, implicating these cytokines' signaling pathways as important targets of baricitinib
212 effect. Interestingly, mice that received baricitinib showed somewhat improved donor
213 chimerism, although this was in lethally-irradiated mice with donor chimerism already near
214 100%. However, in a fully-mismatched allo-HSCT model utilizing sublethal irradiation for
215 conditioning (Supplementary Figure 5), IFN γ R deficiency in donor and/or recipient cells
216 markedly improved donor chimerism. This result suggested that disabling IFN γ R permitted
217 engraftment in the context of reduced-intensity conditioning. We hypothesized that baricitinib,

218 which also blocks IFN γ R signaling, may promote engraftment in allo-HSCT when combined
219 with CD45-SAP.

220 We therefore tested baricitinib in our miHA- and MHC-mismatched allo-HSCT models, first
221 using it in lieu of TCD (Figure 3a). CD45-SAP conditioning plus daily baricitinib administered
222 during the peritransplant period was highly effective in the miHA-mismatched model (Figure
223 3b). Seven of 10 mice engrafted, all of which showed stable multilineage donor chimerism of
224 ~80% overall. In the MHC-mismatched model, however, daily baricitinib treatment plus CD45-
225 SAP led to donor chimerism in four of seven mice that was stable in only one of those four
226 (Figure 3c). Thus, while daily baricitinib treatment was effective at overcoming immune barriers
227 in miHA-mismatched allo-HSCT, it was ineffective in the MHC-mismatched setting.

228 Since T cells comprise the major barrier to engraftment in the both miHA- and MHC
229 mismatched models, failed engraftment in mice receiving baricitinib daily likely reflects
230 insufficient host T cell immunosuppression to prevent rejection. We reasoned that reducing the
231 strength of the alloresponse by other means may improve baricitinib efficacy. We therefore
232 combined CD45-SAP and daily baricitinib therapy with pre-transplant pan-TCD, essentially
233 substituting in baricitinib for post-transplant TCD (Figure 3d). This regimen was highly
234 effective, achieving stable engraftment in 7 of 10 mice, with overall donor chimerism >90%. The
235 donor chimerism in all lineages, particularly T cells, was superior to that seen with baricitinib or
236 pan-TCD alone. By contrast, mice receiving vehicle instead of baricitinib engrafted temporarily
237 but experienced graft failure or rejection by three months post-HSCT.

238 Pharmacokinetics may also have impacted the efficacy of baricitinib monotherapy in MHC-
239 mismatched HSCT. Data from a prior study showed that subcutaneous baricitinib has a plasma

240 half-life in B6 mice of approximately one hour²⁷, suggesting a prolonged absence of circulating
241 drug if dosed every 24 hours. To test the duration of baricitinib effect, we conducted a
242 pharmacodynamic study in which mice received a single baricitinib dose, then were followed
243 over time with a whole blood assay for IFN γ -induced Stat1 phosphorylation (Supplementary
244 Figure 6). Baricitinib at 400 μ g completely suppressed Stat1 phosphorylation at 4 hours post-
245 infusion, an effect that was diminished slightly at 12 and 24 hours and absent by 36 hours. By
246 comparison, 80 μ g baricitinib provided only partial suppression at 4 hours post-infusion that was
247 absent at later timepoints.

248 We hypothesized that a continuous presence of baricitinib would provide more sustained
249 immunosuppression. We therefore administered the same 400 μ g daily dose of baricitinib
250 continuously via subcutaneous osmotic pumps. Baricitinib was readily soluble in DMSO mixed
251 1:1 with PEG-400 (Supplementary Figure 7a), and remained soluble and bioactive in this vehicle
252 after a 30-day incubation at 37°C (Supplementary Figure 7b). Peripheral blood leukocytes from
253 B6 mice implanted with baricitinib-loaded pumps showed impaired Stat1 phosphorylation in
254 response to IFN γ , confirming drug release *in vivo* (Supplementary Figure 7c).

255 Continuously-infused baricitinib (Figure 3e) was more effective than daily baricitinib (Figure 3c)
256 in promoting multilineage engraftment in MHC-mismatched allo-HSCT, achieving >80% overall
257 donor chimerism in 8 of 11 mice. This appeared to be a class effect of JAK1/2 inhibitors, as the
258 related inhibitor ruxolitinib also permitted engraftment, albeit less effectively than baricitinib. As
259 we consistently observed in the MHC-mismatched model when JAK inhibitors were dosed daily,
260 mice with baricitinib pumps developed a mild anemia at the earliest time points which corrected

261 by the later timepoints; otherwise, CBCs were at or above the lower reference limit
262 (Supplementary Figure 8).

263 Taken together, these studies demonstrate multiple effective, feasible strategies using CD45-SAP
264 and JAK1/2 inhibitors to achieve high-level donor chimerism in both miHA- and MHC-
265 mismatched allo-HSCT without prolonged, global T cell ablation.

266 **Baricitinib promotes engraftment via suppression of T and NK cell-mediated rejection**

267 We next pursued the mechanisms by which baricitinib promotes engraftment in allo-HSCT.
268 While we hypothesize that suppression of T cell alloreactivity is an important component,
269 disruption of JAK1/2 signaling may impact engraftment in other ways, such as direct effects on
270 donor hematopoiesis^{28, 29, 30}. To investigate the degree to which immunosuppression versus other
271 mechanisms contributes to engraftment, we applied baricitinib to CD45-SAP-conditioned
272 syngeneic HSCT, in which immune barriers to engraftment are absent. In peripheral blood and
273 lymphoid organs (Figures 4a and 4b), no significant difference in donor chimerism was observed
274 between CD45-SAP-conditioned mice receiving baricitinib versus vehicle. Importantly, no
275 engraftment was observed in baricitinib-treated mice conditioned with inactive ADC, indicating
276 that baricitinib alone cannot make space for donor HSCs.

277 To characterize the acute effects of baricitinib treatment on HSCT recipients, we analyzed
278 peripheral blood and lymphoid organs of B6 mice that received daily baricitinib for 4 days, the
279 same time period baricitinib is administered before HSCT. Baricitinib treatment minimally
280 affected CBCs or bone marrow cellularity but was associated with a significant reduction in
281 spleen cellularity (Supplementary Figures 9a and 9b). Bone marrow hematopoietic stem and
282 progenitor cell (HSPCs) numbers were largely unaffected by baricitinib, except for somewhat

283 lower frequencies of long-term HSC (CD34⁺CD135⁻ LSK) and megakaryocyte-erythroid
284 progenitors (CD16/32⁺CD34⁺ LK; Supplementary Figure 9c). Absolute myeloid, conventional T
285 cell, and FoxP3⁺ Treg counts were similar in all examined organs, but lower frequencies of B
286 cells were noted in baricitinib-treated mouse spleens (Supplementary Figure 9d and 9e). Finally,
287 immunophenotyping of the splenic T cell and antigen presenting cell (APC) compartments
288 revealed no differences between baricitinib- and vehicle-treated mice (Supplementary Figures 9f
289 and 9g).

290 To examine how baricitinib impacts T cell responses, we cultured polyclonally-stimulated,
291 CFSE-labeled B6 T cells *in vitro* with baricitinib or vehicle. Baricitinib impaired expansion of
292 α CD3-stimulated CD4⁺ and CD8⁺ T cells in a dose-dependent manner (Figure 4c), due to
293 increased cell death and mildly reduced cell proliferation (Figure 4d). As expected with primary
294 murine cells, unstimulated cultures showed significant T cell death after 72 hours; importantly,
295 the degree of cell death in these cultures was only subtly increased by baricitinib at the highest
296 tested dose, suggesting against nonspecific toxicity. Concentrations of TNF α , IL-6 and,
297 particularly, IFN γ in the culture supernatants were reduced by baricitinib during the culture
298 period (Figure 4e). This reduction was not generalizable, as IL-2 secretion was unaffected by
299 baricitinib. In summary, although baricitinib minimally affects resting T cells in pre-HSCT
300 recipients, activated T cell function is more adversely affected. This is consistent with our
301 hypothesis that baricitinib acts predominantly via immunosuppression, exerting its major
302 therapeutic function on alloreactive T cells that become activated in response to donor HSCs.

303 In order to extend baricitinib-based conditioning to fully haploidentical (F1 \rightarrow F1) and fully
304 MHC-mismatched models (i.e., BALB/c \rightarrow B6), inhibition of both T and NK cells is necessary.
305 Multiple reports have shown that ruxolitinib depletes NK cells in mice and humans, impairing

306 NK cell proliferation, cytotoxicity and cytokine production^{31,32,33}. We hypothesized that
307 baricitinib, via inhibition of JAK1/2 signaling, would show similar biological effects and protect
308 against NK cell-mediated rejection. To test this, we administered CD45-SAP plus baricitinib as
309 conditioning for B6→CB6F1 (parent-to-F1) allo-HSCT (Figure 5a). In this model, engraftment
310 of parental HSCs is resisted by CB6F1 NK cells, which react to the absence of H-2^d on the
311 donor-derived cells (“missing self” recognition)³⁴. This phenomenon, termed hybrid resistance,
312 provides an opportunity to isolate NK cell-mediated host-versus-graft responses and investigate
313 how baricitinib affects them.

314 Overall donor chimerism in B6→CB6F1 transplants treated with CD45-SAP plus vehicle was
315 approximately 25% four months post-HSCT (Figure 5a), considerably lower than that obtained
316 in syngeneic HSCT (Figure 1c). As expected, engraftment was improved by α NK1.1 depletion.
317 Mice conditioned with baricitinib showed overall donor chimerism approaching 60%, surpassing
318 that obtained with α NK1.1 depletion. Pre-HSCT analysis of peripheral blood revealed that both
319 α NK1.1 treatment and baricitinib markedly depleted CB6F1 recipients’ circulating NK cells
320 (Figure 5b). We confirmed this finding in the spleen and peripheral blood, but not bone marrow,
321 of B6 mice treated with daily baricitinib (Figure 5c). Thus, baricitinib overcame NK cell-
322 mediated barriers to HSCT due to efficient *in vivo* NK cell depletion.

323 NK cell development, maturation, and function depend upon IL-15, which signals through JAK1
324 and JAK3 to activate Stat5³⁵. We asked whether baricitinib disrupts this critical signaling
325 pathway to compromise NK cell survival and function. Murine NK cells stimulated *in vitro* with
326 IL-15 alone or a cocktail of IL-12, IL-15 and IL-18³⁶ showed dose-dependent increases in cell
327 death and decreases in IFN γ production in response to baricitinib (Figure 5d). As with T cells,

328 nonspecific toxicity in unstimulated cultures was modest and noted only at the highest baricitinib
329 doses. In longer cultures, baricitinib impaired IL-15-mediated NK cell expansion, an effect
330 attributable to dramatically reduced proliferation and viability (Figure 5e). Baricitinib also
331 strongly suppressed IL-15-induced upregulation of the lytic granule enzymes perforin and
332 granzyme B (Figure 5f), which are required for full NK cell cytotoxicity³⁷. However, baricitinib
333 did not prevent killing of YAC-1 target cells when added to NK cells that had been already
334 primed with IL-15, suggesting that baricitinib inhibits the acquisition but not the execution of
335 NK cytotoxicity (Figure 5g). Finally, analysis of IL-15 signaling confirmed that baricitinib
336 inhibits IL-15-induced Stat5 phosphorylation in a dose-dependent manner (Figure 5h). These
337 data collectively demonstrate that baricitinib potently impairs NK cell viability, proliferation,
338 and effector function via interference with the IL-15-Stat5 signaling axis.

339 **CD45-SAP conditioning poorly stimulates pathogenic graft-versus-host alloreactivity**
340 **compared to TBI**

341 The contribution of conditioning regimen intensity to the development of acute and chronic
342 GvHD is well-studied^{38, 39, 40, 41}. A multitude of variables modulate GvHD risk, including donor
343 and recipient age, GvHD prophylaxis, donor HSC source and relatedness, and degree of HLA
344 disparity, which can influence the choice of conditioning intensity⁴². Theoretically, host tissue
345 injury caused by chemotherapy and radiation amplifies GvHD via release of endogenous
346 damage- and pathogen-associated molecular patterns from dying cells. These mediators activate
347 innate immunity, arming APCs to prime vigorous alloreactive T cell responses^{43, 44, 45}. We asked
348 whether or not CD45-SAP, with its minimal tissue toxicities, would behave similarly.

349 To study the effect of conditioning regimen on T cell alloresponses *in vivo*, we used a parent-to-
350 F1 adoptive transfer model, in which alloreactivity is exclusively in the graft-versus-host
351 direction (Figure 6a). In this system, F1 mice conditioned with sublethal irradiation that receive
352 parental splenocytes develop pancytopenia secondary to T cell-mediated marrow aplasia⁴⁶. We
353 compared CD45-SAP to sublethal rather than lethal irradiation (as is typically used in standard
354 GvHD models) to more closely match the severity and degree of myeloablation of the
355 conditioning regimens. Both CD45-SAP and 500 cGy irradiation are nonlethal and have been
356 shown to permit similar levels of syngeneic HSC engraftment¹⁷, suggesting a similar capacity to
357 generate marrow HSC niche space.

358 Compared to ADC-conditioned mice, TBI-conditioned mice infused with allogeneic splenocytes
359 showed poorer survival and clinical courses along with greater weight loss (Figure 6b). At three
360 weeks post-splenocyte infusion, TBI-conditioned, but not ADC-conditioned mice, developed
361 pancytopenia (Figure 6c) and marked elevations in the plasma concentrations of several
362 inflammatory cytokines, particularly IFN γ (Figure 6d). Importantly, TBI-conditioned mice
363 receiving syngeneic splenocytes and unconditioned mice receiving allogeneic splenocytes
364 showed no morbidity, mortality, cytopenias, or pro-inflammatory cytokinemia, confirming that
365 irradiation plus allogeneic T cells are required for pathology. Circulating donor-derived T cells
366 were present in ADC-conditioned mice but at lower frequencies than irradiated mice, indicating
367 that the lack of disease in ADC-conditioned mice is not due to failure of these cells to engraft
368 (Figure 6e). Finally, bone marrow histopathology and flow cytometry demonstrated profound
369 marrow aplasia and HSPC depletion in TBI-conditioned mice that developed lethal disease
370 (Figure 6f and 6g).

371 To understand why high doses of allogeneic T cells failed to elicit disease in CD45-SAP-
372 conditioned mice, we analyzed the donor T cell response in the lymphoid organs of ADC- versus
373 TBI-conditioned mice. While donor CD4⁺ and CD8⁺ T cells were identified in the spleens of
374 both ADC- and TBI-conditioned mice, the bone marrows of ADC-conditioned mice were
375 virtually devoid of donor T cells (Figure 7a). This contrasted starkly with irradiated mice, whose
376 marrows were extensively infiltrated by donor T cells, mainly CD8⁺ T cells. While higher
377 expression of the bone marrow homing chemokine receptor CXCR4 on CD8⁺ T cells could
378 explain why these were the predominant marrow-infiltrating cells in irradiated mice, differences
379 in CXCR4 expression cannot account for the differences observed between ADC- and TBI-
380 conditioned mice (Figure 7b). Most T cells in ADC- and TBI-conditioned mice had a
381 CD44^{hi}CD62L^{lo} effector phenotype, with somewhat higher frequencies in irradiated mice. Donor
382 CD8⁺ T cells in irradiated mice upregulated perforin and granzymes A and B relative to ADC-
383 conditioned mice, indicating greater potential for cytotoxicity (Figure 7c). Higher expression of
384 MHC and the costimulatory receptors CD80 and CD86 (Figure 7d) were noted in host-derived
385 APCs from irradiated mice compared to ADC-conditioned mice. Collectively, these data suggest
386 that ADC-conditioning produces a suboptimal environment for priming a pathogenic allogeneic
387 T cell response.

388

389

390

391

392

393 **DISCUSSION**

394 Toxicities from chemotherapy- and radiation-based conditioning remain a major obstacle to the
395 broader application of HSCT for the treatment of hematopoietic diseases, particularly for elderly
396 or infirmed patients. Reduced-intensity conditioning provides one way to extend HSCT to
397 patients unable to tolerate more severe conditioning,⁴⁷ and is a reasonable approach to treat non-
398 malignant diseases or for autologous gene therapy, for which mixed donor chimerism may be
399 sufficient for cure. However, for AML, reduced-intensity conditioning more poorly ablates
400 residual malignant cells, potentially leading to relapse. In this setting, relapse control becomes
401 more reliant on GvL effects^{48, 49}, which is inextricably linked to GvHD development. These
402 issues illustrate the complexity of managing treatment-related toxicity and relapse outcomes to
403 achieve optimal outcomes for patients receiving allo-HSCT for leukemia.

404 Antibody-based HSCT conditioning presents a way to more favorably balance toxicity and
405 therapeutic efficacy. By simultaneously targeting the stem cell compartment and malignant cells,
406 the therapeutic goals of HSCT can hypothetically be achieved with toxicities largely confined to
407 the hematopoietic system. Indeed, recent work in murine^{17, 18, 22, 23, 25, 50}, non-human primates^{51, 52,}
408 ⁵³, and early human trials⁵⁴ have demonstrated feasibility and limited toxicities of antibody and
409 ADC-based therapies alongside high efficacy in depleting recipient HSCs and/or malignant cells.
410 Optimization of these strategies for allo-HSCT and translation to human clinical trials will
411 benefit from a greater mechanistic understanding of how they modulate donor and recipient
412 immunity, with significant implications for treating high-risk malignancies like AML.

413 In the present study, we used mouse allo-HSCT models to identify ADC-based conditioning
414 regimens able to achieve robust donor engraftment, and to understand the immunobiology

415 underlying their effect. T cells were the primary immune barriers to miHA- and MHC-
416 mismatched HSCT, as engraftment was achievable by combining CD45-SAP with pan-TCD.
417 The transient donor chimerism we often encountered in the MHC-mismatched model could be
418 explained by incomplete T cell elimination at all tissue sites, even with prolonged depleting
419 antibody treatment. This issue is particularly relevant for developing thymocytes, which not only
420 require higher antibody doses than peripheral T cells for depletion⁵⁵, but also include a CD4⁻
421 CD8⁻ subset unable to bind α CD4 or α CD8 antibodies. Upon maturation and thymic egress,
422 these cells could mediate alloreactivity in the periphery. Given the high frequency of T cells
423 estimated to be alloreactive⁵⁶, even a small residual population of functional host T cells could
424 reject donor HSCs.

425 The use of baricitinib in combination with CD45-SAP as conditioning improved significantly
426 upon the shortcomings of pan-TCD, suppressing host T and NK cell responses to enable robust,
427 high-level, multilineage engraftment without requiring prolonged antibody depletion. As
428 baricitinib relatively spares JAK3⁵⁷, its inhibitory activity against T and NK cells may result
429 from antagonism of JAK1, which associates with the common beta chain (CD122) used by the
430 IL-2 and IL-15 receptors. Interference with IL-15 signaling led to the poorer *in vitro*
431 proliferation, survival and function we observed with baricitinib-treated NK cells, and an
432 analogous mechanism impacting IL-2 signaling may affect baricitinib-treated T cells. Future
433 studies utilizing inhibitors targeting individual JAKs will help further dissect the mechanisms of
434 baricitinib effect on T and NK cell biology and identify the relevant signaling pathways.

435 While daily baricitinib monotherapy was sufficient to permit engraftment in miHA-mismatched
436 HSCT, co-administration of pre-HSCT TCD or continuous infusion of baricitinib was required
437 for the MHC-mismatched model, consistent with our expectation that more durable

438 immunosuppression is necessary with increasing degrees of MHC disparity. Indeed, in our
439 preliminary experiments with fully MHC-mismatched allo-HSCT (BALB/c→B6), continuous
440 baricitinib plus CD45-SAP conditioning gave ~25% engraftment success (not shown),
441 considerably lower than the ~70% engraftment rate for the MHC-mismatched model described
442 herein. Continued optimization of our conditioning regimens aims to achieve robust, high-level
443 engraftment in fully haploidentical (F1-to-F1) and fully MHC-mismatched allo-HSCT. ADCs
444 with alternative toxic payloads able to produce greater myeloablation and lymphodepletion, or
445 immunosuppressive treatments able to synergize with baricitinib, are potential avenues to
446 improvement in this regard.

447 Our finding that daily baricitinib synergized with pre-HSCT TCD in our MHC-mismatched
448 model was in some respects surprising. That baricitinib could substitute for post-HSCT TCD is
449 consistent with our hypothesis that T cell inhibition is crucial to its activity. However, this
450 strategy succeeded in mice whose CD4⁺ and CD8⁺ T cells were ablated by pre-HSCT T cell
451 depletion. While this could simply reflect baricitinib inhibiting the few cells surviving TCD,
452 other explanations are possible, such as modulation of APC function or alterations of thymic
453 selection or egress. Aside from NK cell depletion, we did not observe gross immunologic
454 alterations in mice acutely treated with baricitinib, yet there may be more subtle effects that
455 impact allograft tolerance or effects which become apparent only with chronic treatment. Deeper
456 immunophenotyping and transcriptomic profiling in baricitinib-treated mice, focusing on
457 differences between daily versus continuous baricitinib administered either acutely or
458 chronically, is central to rationally designing and optimizing allo-HSCT conditioning with
459 baricitinib.

460 Finally, infusion of allogeneic T cells did not elicit pathogenic alloreactivity in CD45-SAP
461 conditioned mice due to poor donor cell expansion, effector function, and target organ
462 infiltration. This outcome likely reflects poorer priming of the donor alloresponse by innate
463 immune signals in ADC-conditioned mice, signals that are more abundantly generated by TBI-
464 induced injury^{58, 59}. Given the large numbers of T cells in peripheral blood-mobilized stem cell
465 preparations, an ADC-based conditioning regimen that minimizes collateral tissue damage might
466 prevent amplification of T cell alloreactivity leading to GvHD. However, donor T cells unable to
467 elicit GvHD may also be unable to mount a GvL response, which could offset the benefit of
468 reduced GvHD with a greater risk of leukemia relapse. Murine leukemia models utilizing allo-
469 HSCT with ADC-based conditioning would provide a relevant preclinical platform on which to
470 integrate *in vivo* studies of engraftment, GvHD and GvL effects and understand the underlying
471 biology.

472 In conclusion, the studies presented herein exemplify the promise of immunotherapy to provide
473 safe, effective conditioning for HSCT. Importantly, our studies provide insights to the unique
474 immunobiology of ADC-conditioned allo-HSCT and an experimental foundation on which
475 further basic and translational investigations can be conducted.

476

477

478

479

480

481 **METHODS**

482 **Mice**

483 Mice were handled in accordance with an animal protocol approved by the Institutional Animal
484 Care and Use Committee (IACUC) at Washington University School of Medicine. The following
485 strains were used in our studies: C57BL6/J, BALB/cJ, DBA/2J, CB6F1/J (C57BL6/J x BALB/cJ
486 F1), C57BL/6-Tg(UBC-GFP)30Scha/J (B6-GFP), CByJ.SJL(B6)-*Ptprc^a*/J (BALB-Ly5.1).
487 IFN γ R^{-/-} mice were provided by Dr. Herbert Virgin (Department of Pathology and Immunology,
488 Washington University). All mice were bred within specific-pathogen free colonies at
489 Washington University School of Medicine or purchased from Jackson Laboratories (Bar
490 Harbor, ME) and maintained on *ad libitum* water and standard chow (LabDiet 5053; Lab Supply,
491 Fort Worth, TX). Age and gender-matched mice were used for all experiments, with all animals
492 aged 6-12 weeks old; no selection was applied to assign mice to experimental treatment groups.
493 For all experiments involving lethal irradiation, mice received trimethoprim-sulfamethoxazole
494 (SulfaTrim, 5 mL per 250 mL drinking water) for two weeks beginning two days prior to
495 irradiation. For retroorbital injections, mice were anesthetized with 3% isoflurane in O₂ delivered
496 by vaporizer at a flow rate of 1 L/min. For survival surgery procedures (skin grafting and
497 osmotic pump implantation), mice were anesthetized via intraperitoneal injection of 80-100
498 mg/kg ketamine plus 5-10 mg/kg xylazine. Prior to first incision, the surgical site was shaved,
499 disinfected, and draped in sterile fashion. Skin closure was done using 9 mm autoclips and
500 buprenorphine (0.1 mg/kg) was provided for post-operative analgesia.

501

502

503 **Mouse tissue preparation**

504 Spleens, lymph nodes, or thymi harvested from euthanized mice were processed into single-cell
505 suspensions by gentle homogenization with a syringe plunger through a 70 μ m filter in PBS
506 containing 0.5% BSA and 2 mM EDTA (Running buffer). Bone marrow was harvested from
507 femurs and tibias by centrifugation as previously described⁶⁰. Mouse peripheral blood samples
508 were drawn from the facial vein using Goldenrod 5 mm animal lancets (Medipoint; Mineola,
509 NY) and collected into K₃EDTA-coated tubes (BD). Erythrocytes were removed from all mouse
510 tissue specimens using ammonium chloride-potassium bicarbonate (ACK) lysis.

511 **Cell culture and *in vitro* assays**

512 Primary murine T cells were grown in R10 media - RPMI plus 10% fetal bovine serum (FBS;
513 R&D Systems, Minneapolis, MN) supplemented with GlutaMAX (Gibco) and
514 penicillin/streptomycin (Gibco) - at 37°C/5% CO₂. For mouse NK cell cultures, R10 media was
515 supplemented with 10 mM HEPES, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate
516 and 55 μ M 2-mercaptoethanol (K10 medium). YAC-1 cells for NK cell cytotoxicity assays were
517 obtained from ATCC, tested negative for *Mycoplasma*, and maintained in R10 media. Human
518 peripheral blood mononuclear cells (PBMCs) were harvested from leukoreduction chambers by
519 Ficoll density gradient centrifugation and cryopreserved.

520 For *ex vivo* stimulation of primary mouse T cells, 1 x 10⁵ T cells purified from spleen and lymph
521 nodes with the EasySep Mouse T cell Isolation Kit (Stem Cell Technologies; Vancouver, BC,
522 Canada) were cultured with 4 x 10⁵ T-depleted splenocytes in 96-well round bottom plates in
523 R10 media with 1 μ g/mL α CD3. Supernatants were collected for cytokine analysis after 24 hours
524 incubation, and cultured cells were analyzed for expansion by flow cytometry at 72 hours.

525 For primary NK cell assays, splenic NK cells were enriched to >80% purity using the EasySep
526 Mouse NK Cell Isolation Kit (Stem Cell Technologies), and 1.0-2.5 x 10⁴ NK cells were cultured
527 in K10 media along with either IL-15 alone (1-100 ng/mL; BioLegend), or a cocktail of IL-12
528 (10 ng/mL; BioLegend), IL-15 (10 ng/mL), and IL-18 (50 ng/mL; BioLegend)³⁶. For
529 cytotoxicity assays, purified NK cells were stimulated with 100 ng/mL IL-15 for 48 hours,
530 washed twice to remove cytokines, then incubated for 4 hours at multiple effector-to-target ratios
531 with a fixed number of YAC-1 target cells (2000 YAC-1 cells per well of a 96 well, round-
532 bottom plate) with or without baricitinib. YAC-1 cell death was assessed with Zombie viability
533 dye staining and analyzed by flow cytometry.

534 For colony forming unit (CFU) assays, murine whole bone marrow was resuspended at 10X final
535 concentration in IMDM + 2% FBS with single doses or concentration series of ADC or control
536 conjugate. Then, 300 μ L of each suspension was diluted into 3 mL complete methylcellulose
537 medium (R&D), vigorously vortexed, and 1.1 mL of the resulting methylcellulose suspension
538 was plated in duplicate and incubated 12 days at 37°C.

539 **Complete blood counts (CBC)**

540 CBC analysis was performed using a Hemavet 950 analyzer (Drew Scientific). Total white blood
541 cell (WBC) count plus differential, hematocrits (Hct), and platelet (PLT) counts were obtained.
542 Reference ranges were as follows: WBC 1.8-10.7 x 10³ cells per μ L, Hct 35.1-45.4%, PLT 592-
543 2972 x 10³ cells/ μ L. Absolute counts of circulating leukocyte subsets were calculated by
544 multiplying the WBC by the frequency of each specific cell type as measured by flow cytometry.

545 **Flow cytometry**

546 Flow cytometry was performed with a Beckman Coulter Gallios instrument equipped with
547 Kaluza acquisition software. *Post hoc* compensation and data analysis were done using FlowJo
548 version 10.7 (Treestar; Ashland, OR). All flow cytometry reagents are listed in Supplementary
549 Table 1. For routine preparation of fresh, unfixed samples, single cell suspensions were stained
550 with fluor-conjugated antibodies to surface antigens in 100 μ L Running buffer at room
551 temperature for 15-20 minutes. For staining with biotinylated antibodies, samples were first
552 incubated with biotinylated antibody, washed, then stained with fluor-conjugated streptavidin
553 plus any other fluor-conjugated antibodies as above. For viability staining of fresh samples, 7-
554 aminoactinomycin D (7-AAD; BioLegend, San Diego, CA) was added at 1 μ g/mL immediately
555 before analysis. For intracellular cytokine and cytotoxic granule staining, cells were stained with
556 Zombie fixable viability dye (BioLegend; 1:400 final dilution) in PBS for 15 minutes, then
557 stained 15 minutes for surface markers and fixed for 20 minutes with 4% paraformaldehyde
558 (PFA) in PBS (BioLegend). Cells were then permeabilized with 0.5 % saponin in Running buffer
559 and stained for intracellular markers. FoxP3 staining was done using the FoxP3/Transcription
560 Factor Staining Buffer Set per the manufacturer's instructions (eBioscience).

561 **Phosphoflow analysis**

562 For phospho-Stat1 analysis, whole blood from baricitinib- or vehicle-treated mice was stimulated
563 for 15 minutes with 100 ng/mL murine IFN γ at 37°C, then immediately fixed with 1 mL
564 Lyse/Fix Buffer (BD) for 10 minutes at 37°C. For phospho-Stat3 analysis, cryopreserved human
565 PBMC were thawed and rested overnight at 37°C in R10, stimulated with 100 ng/mL human IL-
566 6 for 15 minutes at 37°C in the presence of baricitinib or vehicle (0.1% DMSO), then fixed in 4%
567 PFA in PBS. For phospho-Stat5 analysis, purified B6 mouse splenic NK cells were incubated for

568 30 minutes with 100 ng/mL IL-15 in K10 medium in the presence of baricitinib or vehicle, then
569 fixed in 4% PFA.

570 After stimulation and fixation, all samples were permeabilized in ice-cold Perm Buffer III (BD)
571 and held at -20°C overnight. Samples were then washed thrice with Running buffer and stained
572 for phospho-Stat molecules. For phospho-Stat1, samples were incubated 1 hour at room
573 temperature with primary rabbit anti-phospho Stat1 (Y701, Cell Signaling Technology #9167,
574 clone 58D6), then washed and stained 1 hour with Alexa Fluor 647-conjugated anti-rabbit
575 secondary antibody (Cell Signaling Technology #4414). For phospho-Stat3, samples were
576 stained with anti-human CD4 and anti-phospho Stat3 (Y705, BD Biosciences) for 1 hour at room
577 temperature. For phospho-Stat5, samples were stained with anti-NK1.1 (BioLegend) and anti-
578 phospho Stat5 (Y694, BD Biosciences).

579 **Cytokine analysis**

580 Cytokine concentrations in culture supernatant or mouse plasma were measured with the
581 LegendPLEX Inflammation Panel (13-plex) or the Mouse Th1 Panel (5-plex) per the
582 manufacturer protocols (BioLegend). Quantification was done using LegendPLEX software v8.0
583 for Windows. If a cytokine concentration was too low to be quantified, the sample was assigned
584 the value of the lower limit of quantitation. For intracellular IFN γ analysis of splenic NK cells,
585 cells were cultured in K10 media with or without cytokine stimulation for 15 hours, with 5
586 μ g/mL Brefeldin A (BioLegend) added to each well for the last 2.5 hours. After this incubation
587 period, cells were fixed, saponin-permeabilized, and stained as described above.

588 **Preparation of saporin antibody-drug conjugates (ADC)**

589 Saporin conjugated to streptavidin (sAV-SAP; Advanced Targeting Systems, San Diego, CA)
590 was used to indirectly couple biotinylated antibodies to saporin to generate the ADCs used in this
591 study. The average saporin-to-streptavidin ratio was 2.4, yielding an effective molecular weight
592 of 127 kDa. A total molecular weight of 287 kDa (127 kDa for sAV-SAP + 160 kDa for IgG)
593 was used for conversions between molar and mass concentrations.

594 Saporin-linked ADCs targeting murine CD45.2 (CD45-SAP) and cKit (cKit-SAP) were
595 generated by incubating biotinylated anti-mouse CD45.2 (clone 104, BioLegend) or biotinylated
596 anti-mouse cKit (clone 2B8, BioLegend) with sAV-SAP in a 1:1 molar ratio for 15 minutes at
597 room temperature. Afterwards, ADCs were diluted to their final concentration in endotoxin-free
598 PBS (Sigma-Millipore) and injected intravenously via the retroorbital sinus (100-150 µL per
599 injection). Prior to ADC generation, sodium azide and endotoxin were removed from the
600 biotinylated antibodies with Zeba desalting spin columns and High-Capacity Endotoxin Removal
601 spin columns (ThermoFisher) per the manufacturer's instructions, then filter-sterilized using an
602 0.22 µm PES syringe filter.

603 For control experiments in which free antibody and free sAV-SAP were administered together,
604 non-interaction of these two components was ensured by using non-biotinylated antibodies and
605 sAV-SAP whose biotin-binding sites were occupied by an irrelevant biotinylated 11-mer peptide
606 (BLANK Streptavidin-SAP, Advanced Targeting Systems). For experiments in which free
607 antibody or sAV-SAP were administered alone, the equivalent mass of each component alone in
608 the ADC was administered to each mouse (i.e., the doses of CD45.2 antibody and sAV-SAP
609 corresponding to a CD45-SAP dose of 75 µg would be 41.8 µg and 33.2 µg, respectively). To
610 avoid interference by cKit-SAP, bone marrows analyzed by flow cytometry were stained for c-
611 Kit using clone ACK2, which does not compete for binding with clone 2B8.

612 **Hematopoietic stem cell transplantation with ADC conditioning**

613 Mice were injected with CD45-SAP or cKit-SAP at doses indicated in each figure at 7 days pre-
614 transplant (d-7). In general, 3 mg/kg (75 µg) CD45-SAP, and 0.4 mg/kg or 2 mg/kg (10 or 50 µg,
615 respectively) cKit-SAP were used. On transplant day (d0), mice received 10 x 10⁶ whole donor
616 bone marrow cells via the retroorbital injection. Mice conditioned with saporin-ADCs did not
617 receive antibiotic prophylaxis.

618 For serial transplantation experiments, mice received a single dose of lethal irradiation (1100
619 cGy for B6 mice, 950 cGy for DBA/2 mice) from a Mark I Model 30 irradiator (J.L. Shepherd
620 and Associates, ¹³⁷Cs source, 73.69 cGy/min as tested on 1/1/2020) and transplanted with 10 x
621 10⁶ whole bone marrow cells from primary transplant recipients 8-16 hours post-irradiation.

622 ***In vivo* lymphocyte depletion**

623 Antibodies for *in vivo* T and NK cell depletion and isotype controls were obtained from BioXcell
624 (West Lebanon, NH) in azide-free, low-endotoxin formulations confirmed to be murine
625 pathogen-negative for (InVivoPlus grade). CD4⁺ and CD8⁺ T cell depletion was done using
626 clones GK1.5 and YTS169.4, respectively, and NK cell depletion done using clone PK136.
627 Mouse IgG2ak (clone C1.18.4) and rat IgG2bk (clone LTF-2) were used as isotype controls. All
628 antibodies were administered intraperitoneally at 250 µg per dose following the schema for each
629 experiment. Depletion of target cell populations was routinely confirmed by flow cytometry of
630 peripheral blood immediately prior to HSCT; to avoid interference with depleting antibodies,
631 CD4⁺ T cells were stained for flow cytometry with clone RM4-4, CD8⁺ T cells with clone 53-
632 6.7, and NK cells with a combination of CD3, CD49b (DX5) and NKp46.

633 **Daily infusion with JAK inhibitors**

634 The selective Janus kinase 1 and 2 (JAK1/2) inhibitors baricitinib (LY3009104, INCB028050)
635 and ruxolitinib (INCB18424) were obtained from MedChemExpress (Monmouth Junction, NJ).
636 For subcutaneous administration, baricitinib was dissolved in 100% DMSO at 20 mg/mL and
637 stored at -20°C. Immediately prior to injection, these DMSO stocks were thawed, diluted 1:10 in
638 PBS, and injected at 200 µl/mouse subcutaneously (400 µg daily dose). For HSCT experiments,
639 mice were treated with baricitinib or vehicle (10% DMSO in PBS) for a total of 25 days,
640 beginning at d-3 relative to transplant and ending at d+21.

641 **Osmotic pump administration of JAK inhibitors**

642 ALZET subcutaneous osmotic pumps (Model 2004) were used to continuously deliver JAK1/2
643 inhibitors to mice for 28 days at a rate of 0.25 µL/hour (6 µL/day). A vehicle of 50% dimethyl
644 sulfoxide (DMSO)/50% polyethylene glycol 400 (PEG-400) was used for all experiments.
645 JAK1/2 inhibitors were prepared at 2X concentration (133.3 mg/mL) in 100% DMSO then
646 diluted to 1X with an equal volume of PEG-400 (66.7 mg/mL, 400 µg total daily dose). Prepared
647 compounds were then loaded into osmotic pumps per the manufacturer's instructions and
648 surgically implanted in accordance with our IACUC-approved protocol.

649 **Skin grafting**

650 Surgical engraftment of donor ear skin to recipient mice was performed as described⁶¹. Briefly,
651 donor BALB/cJ and DBA/2J mice were euthanized, and ear skin was harvested and held in ice-
652 cold PBS in preparation for transplant. Skin graft recipients were DBA/2J mice that either
653 successfully engrafted with BALB-Ly5.1 bone marrow (BALB-DBA mixed chimeras) or those

654 that failed to engraft. /mice mice were prepped for survival surgery as described above and had a
655 small patch of dorsal skin resected and replaced with donor ear skin. Recipients were then
656 bandaged, single-housed, and monitored for 4 days to ensure the bandage and graft bed remained
657 undisturbed. Bandages were then removed, and graft recipients monitored daily for signs of
658 rejection (scabbing, wound contraction).

659 **Graft-versus-host alloreactivity model**

660 A parent-to-F1 adoptive transfer model was used to study T cell alloreactivity *in vivo*, as
661 previously described⁴⁶. In this model, irradiated CB6F1 mice receiving allogeneic B6
662 splenocytes develop immune-mediated bone marrow aplasia, with lethality occurring
663 approximately 3 weeks post-T cell infusion. Recipients were conditioned either with CD45-SAP
664 7 days before adoptive transfer, or with 500 cGy irradiation delivered 8-16 hours pre-adoptive
665 transfer. After conditioning, recipients were infused with 25×10^6 splenocytes from B6 mice. As
666 negative controls, irradiated CB6F1 mice were treated with CB6F1 (syngeneic) splenocytes, and
667 non-conditioned CB6F1 mice were treated with B6 splenocytes. Clinical scoring of mice was
668 done based on a 10-point scale (0-2 points each for posture, activity, fur ruffling, weight loss,
669 and skin lesions), with higher scores indicating worse disease as previously described⁶². No mice
670 in these studies received antibiotic prophylaxis.

671 ***In vivo* mixed leukocyte reactions (MLR)**

672 Recipient mice were infused with $2-3 \times 10^6$ purified donor T cells that were labeled with 5 μ M
673 CFSE (BioLegend) as previously described⁶³. Recipients were euthanized at 72 h post-T cell
674 infusion and splenocytes analyzed for CFSE dilution of the infused donor T cells.

675 **Histopathology**

676 Femurs (for bone marrow histology) were preserved in neutral buffered formalin (PBS plus 3.7%
677 formaldehyde) and incubated at room temperature with gentle rocking for at least 48 hours.
678 Fixed samples were submitted to the Washington University Department of Comparative
679 Medicine Animal Diagnostic Lab for decalcification and preparation of formalin-fixed paraffin
680 embedded sections and staining with hematoxylin and eosin. A trained veterinary pathologist
681 who was blinded to the experimental treatments provided descriptive reports of any pathological
682 findings.

683 **Data analysis and statistics**

684 Sample size determinations and analysis parameters were based on general guidelines for
685 laboratory animal research⁶⁴. Data for all experiments were compiled and statistically analyzed
686 using GraphPad Prism version 8.0 for Mac. IC₅₀ values for cytotoxicity studies were calculated
687 by curve-fitting the dose response data to a three- or four-variable inhibition model. The Shapiro-
688 Wilk test for normality was used to assess conformity of each dataset to a normal distribution.
689 For comparison of two normally distributed datasets, unpaired, two-tailed Student's *t* tests with
690 Welch's correction (no assumption of equal variance between groups) were used; if either
691 dataset was not normally distributed, the Mann-Whitney *U* test was used instead. Survival
692 analysis was done with the Mantel-Cox log-rank test. For comparisons of CBC values with the
693 lower reference limit, a one-sample *t* test was used. The criterion for statistical significance for
694 all comparisons was *p* ≤ 0.05.

695

696

697

698 **ACKNOWLEDGMENTS**

699 This study was funded by NIH/NCI R35CA210084 (J.F.D), NIH/NCI Leukemia SPORE grant
700 (P50CA171963, J.F.D.) and Leukemia SPORE Career Enhancement Award (P50CA171063,
701 S.P.P.), an American Society of Transplantation and Cellular Therapy New Investigator Award
702 (S.P.P.), an NCI Research Specialist Award (R50CA211466, M.P.R), a donation from Bigelow
703 Aerospace (J.F.D.), and awards from Gabrielle's Angel Foundation for Cancer Research (S.P.P.).
704 J.C was supported by The Amy Strelzer Manasevit Research Program (Be The Match
705 Foundation and National Marrow Donor Program) and Alvin J. Siteman Cancer Center Siteman
706 Investment Program (supported by the Foundation for Barnes-Jewish Hospital Cancer Frontier
707 Fund, National Cancer Institute Cancer Center Support Grant, P30CA091842, and Barnard
708 Trust). B6 mice for *in vitro* T and NK cell assays were a kind gift from P.M. Allen. We thank J.
709 Eissenberg for helpful discussions and feedback, and P.M. Allen for critical review of the
710 manuscript.

711 **AUTHOR CONTRIBUTIONS**

712 S.P.P, P.G.R., M.L.C., M.P.R., and J.F.D conceived and designed the research, S.P.P. and J.K.R.
713 conducted the experiments, J.C. contributed data, S.P.P. performed data analysis, and S.P.P and
714 J.F.D. wrote the manuscript. All authors provided scientific and technical feedback on the work
715 and approved the final manuscript for submission.

716 **COMPETING INTERESTS**

717 The authors declare the following competing interests:

718 **S.P.P.:** None to declare

719 **J.K.R:** None to declare

720 **J.C.:** Consultancy – Daewoong Pharmaceutical; Research support: Mallinckrodt

721 Pharmaceuticals, Incyte Corporation.

722 **P.G.R.:** None to declare

723 **M.L.C.:** None to declare

724 **M.P.R.:** None to declare

725 **J.F.D.:** Consulting/Advisory Committees – Rivervest; Research support – Macrogenics,

726 BioLine, NeoImmuneTech, Incyte Corporation; Ownership Investment – Magenta Therapeutics,

727 Wugen.

728 **REFERENCES**

729 1. De Kouchkovsky, I. & Abdul-Hay, M. 'Acute myeloid leukemia: a comprehensive review
730 and 2016 update'. *Blood Cancer J* **6**, e441 (2016).

731
732 2. Burt, R.K. *et al.* Effect of Nonmyeloablative Hematopoietic Stem Cell Transplantation vs
733 Continued Disease-Modifying Therapy on Disease Progression in Patients With
734 Relapsing-Remitting Multiple Sclerosis: A Randomized Clinical Trial. *JAMA* **321**, 165-
735 174 (2019).

736
737 3. Slatter, M.A. & Gennery, A.R. Hematopoietic cell transplantation in primary
738 immunodeficiency - conventional and emerging indications. *Expert Rev Clin Immunol*
739 **14**, 103-114 (2018).

740
741 4. Gupta, R.K. *et al.* HIV-1 remission following CCR5Delta32/Delta32 haematopoietic
742 stem-cell transplantation. *Nature* **568**, 244-248 (2019).

743
744 5. Sykes, M. Transplantation: moving to the next level. *Immunol Rev* **258**, 5-11 (2014).

745
746 6. Perkey, E. & Maillard, I. New Insights into Graft-Versus-Host Disease and Graft
747 Rejection. *Annu Rev Pathol* **13**, 219-245 (2018).

748

749 7. Gyurkocza, B. & Sandmaier, B.M. Conditioning regimens for hematopoietic cell

750 transplantation: one size does not fit all. *Blood* **124**, 344-353 (2014).

751

752 8. Czechowicz, A. & Weissman, I.L. Purified hematopoietic stem cell transplantation: the

753 next generation of blood and immune replacement. *Hematol Oncol Clin North Am* **25**,

754 75-87 (2011).

755

756 9. Dickinson, A.M. *et al.* Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell

757 Transplantation for Leukemia. *Front Immunol* **8**, 496 (2017).

758

759 10. Scott, B.L. *et al.* Myeloablative Versus Reduced-Intensity Hematopoietic Cell

760 Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. *J Clin*

761 *Oncol* **35**, 1154-1161 (2017).

762

763 11. Acute Myeloid Leukemia - Cancer Stat Facts. [cited July 8, 2019] Available from:

764 <https://seer.cancer.gov/statfacts/html/amyl.html>

765

766 12. Almeida, A.M. & Ramos, F. Acute myeloid leukemia in the older adults. *Leuk Res Rep* **6**,

767 1-7 (2016).

768

769 13. Armand, P. *et al.* Impact of cytogenetics on outcome of de novo and therapy-related

770 AML and MDS after allogeneic transplantation. *Biol Blood Marrow Transplant* **13**, 655-

771 664 (2007).

772

773 14. Byrd, J.C. *et al.* Pretreatment cytogenetic abnormalities are predictive of induction

774 success, cumulative incidence of relapse, and overall survival in adult patients with de

775 novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB

776 8461). *Blood* **100**, 4325-4336 (2002).

777

778 15. Ossenkoppele, G. & Lowenberg, B. How I treat the older patient with acute myeloid

779 leukemia. *Blood* **125**, 767-774 (2015).

780

781 16. Polito, L., Bortolotti, M., Mercatelli, D., Battelli, M.G. & Bolognesi, A. Saporin-S6: a

782 useful tool in cancer therapy. *Toxins (Basel)* **5**, 1698-1722 (2013).

783

784 17. Palchaudhuri, R. *et al.* Non-genotoxic conditioning for hematopoietic stem cell

785 transplantation using a hematopoietic-cell-specific internalizing immunotoxin. *Nat*

786 *Biotechnol* **34**, 738-745 (2016).

787

788 18. Czechowicz, A. *et al.* Selective hematopoietic stem cell ablation using CD117-antibody-
789 drug-conjugates enables safe and effective transplantation with immunity preservation.
790 *Nat Commun* **10**, 617 (2019).

791

792 19. Gao, C. *et al.* Nongenotoxic antibody-drug conjugate conditioning enables safe and
793 effective platelet gene therapy of hemophilia A mice. *Blood Adv* **3**, 2700-2711 (2019).

794

795 20. Castiello, M.C. *et al.* Efficacy and safety of anti-CD45-saporin as conditioning agent for
796 RAG deficiency. *J Allergy Clin Immunol* (2020).

797

798 21. Srikanthan, M.A. *et al.* Effective Multi-lineage Engraftment in a Mouse Model of
799 Fanconi Anemia Using Non-genotoxic Antibody-Based Conditioning. *Mol Ther Methods*
800 *Clin Dev* **17**, 455-464 (2020).

801

802 22. George, B.M. *et al.* Antibody Conditioning Enables MHC-Mismatched Hematopoietic
803 Stem Cell Transplants and Organ Graft Tolerance. *Cell Stem Cell* **25**, 185-192 e183
804 (2019).

805

806 23. Li, Z., Czechowicz, A., Scheck, A., Rossi, D.J. & Murphy, P.M. Hematopoietic
807 chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117
808 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. *Nat*
809 *Commun* **10**, 616 (2019).

810

811 24. Choi, J. *et al.* Baricitinib-induced blockade of interferon gamma receptor and interleukin-
812 6 receptor for the prevention and treatment of graft-versus-host disease. *Leukemia* **32**,
813 2483-2494 (2018).

814

815 25. Chhabra, A. *et al.* Hematopoietic stem cell transplantation in immunocompetent hosts
816 without radiation or chemotherapy. *Sci Transl Med* **8**, 351ra105 (2016).

817

818 26. Pilon, C.B. *et al.* Administration of low doses of IL-2 combined to rapamycin promotes
819 allogeneic skin graft survival in mice. *Am J Transplant* **14**, 2874-2882 (2014).

820

821 27. Gavegnano, C. *et al.* Baricitinib reverses HIV-associated neurocognitive disorders in a
822 SCID mouse model and reservoir seeding in vitro. *J Neuroinflammation* **16**, 182 (2019).

823

824 28. Kleppe, M. *et al.* Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell
825 Function and Stress Hematopoiesis. *Cell Stem Cell* **21**, 489-501 e487 (2017).

826

827 29. Neubauer, H. *et al.* Jak2 deficiency defines an essential developmental checkpoint in
828 definitive hematopoiesis. *Cell* **93**, 397-409 (1998).

829

830 30. Rodig, S.J. *et al.* Disruption of the Jak1 gene demonstrates obligatory and nonredundant
831 roles of the Jaks in cytokine-induced biologic responses. *Cell* **93**, 373-383 (1998).

832

833 31. Bottos, A. *et al.* Decreased NK-cell tumour immunosurveillance consequent to JAK
834 inhibition enhances metastasis in breast cancer models. *Nat Commun* **7**, 12258 (2016).

835

836 32. Schonberg, K. *et al.* JAK Inhibition Impairs NK Cell Function in Myeloproliferative
837 Neoplasms. *Cancer Res* **75**, 2187-2199 (2015).

838

839 33. Ritchie, D.S., Du, K., Koldej, R., Huntington, N. & Davis, J. Venetoclax or Ruxolitinib
840 Depletion of Recipient NK Cells, in Combination with Reduced Intensity Conditioning,
841 Improves Donor Cell Engraftment without Gvhd in a Mouse Model of Allosct. *Biol
842 Blood Marrow Transplant* **26**, S171 (2020).

843

844 34. Beilke, J.N., Benjamin, J. & Lanier, L.L. The requirement for NKG2D in NK cell-
845 mediated rejection of parental bone marrow grafts is determined by MHC class I
846 expressed by the graft recipient. *Blood* **116**, 5208-5216 (2010).

847

848 35. Gotthardt, D., Trifinopoulos, J., Sexl, V. & Putz, E.M. JAK/STAT Cytokine Signaling at
849 the Crossroad of NK Cell Development and Maturation. *Front Immunol* **10**, 2590 (2019).

850

851 36. Cooper, M.A. *et al.* Cytokine-induced memory-like natural killer cells. *Proc Natl Acad
852 Sci U S A* **106**, 1915-1919 (2009).

853

854 37. Fehniger, T.A. *et al.* Acquisition of murine NK cell cytotoxicity requires the translation
855 of a pre-existing pool of granzyme B and perforin mRNAs. *Immunity* **26**, 798-811 (2007).

856

857 38. Afram, G. *et al.* Reduced intensity conditioning increases risk of severe cGVHD:
858 identification of risk factors for cGVHD in a multicenter setting. *Med Oncol* **35**, 79
859 (2018).

860

861 39. Im, A. *et al.* Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic
862 Cell Transplantation Using Post-Transplant Cyclophosphamide. *Biol Blood Marrow
863 Transplant* **26**, 1459-1468 (2020).

864

865 40. Levine, J.E. *et al.* Lowered-intensity preparative regimen for allogeneic stem cell

866 transplantation delays acute graft-versus-host disease but does not improve outcome for

867 advanced hematologic malignancy. *Biol Blood Marrow Transplant* **9**, 189-197 (2003).

868

869 41. Mielcarek, M. *et al.* Graft-versus-host disease after nonmyeloablative versus

870 conventional hematopoietic stem cell transplantation. *Blood* **102**, 756-762 (2003).

871

872 42. Nakasone, H. *et al.* Impact of conditioning intensity and TBI on acute GVHD after

873 hematopoietic cell transplantation. *Bone Marrow Transplant* **50**, 559-565 (2015).

874

875 43. Henden, A.S. & Hill, G.R. Cytokines in Graft-versus-Host Disease. *J Immunol* **194**,

876 4604-4612 (2015).

877

878 44. Schroeder, M.A. & DiPersio, J.F. Mouse models of graft-versus-host disease: advances

879 and limitations. *Dis Model Mech* **4**, 318-333 (2011).

880

881 45. Toubai, T., Mathewson, N.D., Magenau, J. & Reddy, P. Danger Signals and Graft-

882 versus-host Disease: Current Understanding and Future Perspectives. *Front Immunol* **7**,

883 539 (2016).

884

885 46. Yada, S. *et al.* The role of p53 and Fas in a model of acute murine graft-versus-host

886 disease. *J Immunol* **174**, 1291-1297 (2005).

887

888 47. Weisdorf, D.J. Reduced-intensity versus myeloablative allogeneic transplantation.

889 *Hematol Oncol Stem Cell Ther* **10**, 321-326 (2017).

890

891 48. Baron, F. *et al.* HLA-matched unrelated donor hematopoietic cell transplantation after

892 nonmyeloablative conditioning for patients with chronic myeloid leukemia. *Biol Blood*

893 *Marrow Transplant* **11**, 272-279 (2005).

894

895 49. Giralt, S. *et al.* Engraftment of allogeneic hematopoietic progenitor cells with purine

896 analog-containing chemotherapy: harnessing graft-versus-leukemia without

897 myeloablative therapy. *Blood* **89**, 4531-4536 (1997).

898

899 50. Czechowicz, A., Kraft, D., Weissman, I.L. & Bhattacharya, D. Efficient transplantation

900 via antibody-based clearance of hematopoietic stem cell niches. *Science* **318**, 1296-1299

901 (2007).

902

903 51. Kwon, H.S. *et al.* Anti-human CD117 antibody-mediated bone marrow niche clearance in
904 nonhuman primates and humanized NSG mice. *Blood* **133**, 2104-2108 (2019).

905

906 52. Pearse, B.R. *et al.* A CD117-Amanitin Antibody Drug Conjugate (ADC) Effectively
907 Depletes Human and Non-Human Primate Hematopoietic Stem and Progenitor Cells
908 (HSPCs): targeted Non-Genotoxic Conditioning for Bone Marrow Transplant. *Biol Blood*
909 *Marrow Transplant* **25**, S29-S30 (2019).

910

911 53. Tisdale, J.F. *et al.* A Single Dose of CD117 Antibody Drug Conjugate Enables
912 Autologous Gene-Modified Hematopoietic Stem Cell Transplant (Gene Therapy) in
913 Nonhuman Primates. *Blood* **134**, 610-610 (2019).

914

915 54. Agarwal, R. *et al.* Toxicity-Free Hematopoietic Stem Cell Engraftment Achieved with
916 Anti-CD117 Monoclonal Antibody Conditioning. *Biology of Blood and Marrow*
917 *Transplantation* **25**, S92 (2019).

918

919 55. Ghobrial, R.R., Boublik, M., Winn, H.J. & Auchincloss, H., Jr. In vivo use of monoclonal
920 antibodies against murine T cell antigens. *Clin Immunol Immunopathol* **52**, 486-506
921 (1989).

922

923 56. Morris, G.P., Ni, P.P. & Allen, P.M. Alloreactivity is limited by the endogenous peptide
924 repertoire. *Proc Natl Acad Sci U S A* **108**, 3695-3700 (2011).

925

926 57. Clark, J.D., Flanagan, M.E. & Telliez, J.B. Discovery and development of Janus kinase
927 (JAK) inhibitors for inflammatory diseases. *J Med Chem* **57**, 5023-5038 (2014).

928

929 58. Schwartz, R.H. T cell anergy. *Annu Rev Immunol* **21**, 305-334 (2003).

930

931 59. Schaeue, D. A Century of Radiation Therapy and Adaptive Immunity. *Front Immunol* **8**,
932 431 (2017).

933

934 60. Amend, S.R., Valkenburg, K.C. & Pienta, K.J. Murine Hind Limb Long Bone Dissection
935 and Bone Marrow Isolation. *J Vis Exp* (2016).

936

937 61. Cheng, C.H. *et al.* Murine Full-thickness Skin Transplantation. *J Vis Exp* (2017).

938

939 62. Cooke, K.R. *et al.* An experimental model of idiopathic pneumonia syndrome after bone
940 marrow transplantation: I. The roles of minor H antigens and endotoxin. *Blood* **88**, 3230-
941 3239 (1996).

942

943 63. Quah, B.J., Warren, H.S. & Parish, C.R. Monitoring lymphocyte proliferation in vitro and
944 in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl
945 ester. *Nat Protoc* **2**, 2049-2056 (2007).

946

947 64. Festing, M.F. & Altman, D.G. Guidelines for the design and statistical analysis of
948 experiments using laboratory animals. *ILAR J* **43**, 244-258 (2002).

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963 **FIGURE LEGENDS**

964 **Figure 1. CD45-SAP and cKit-SAP are similarly effective conditioning agents for syngeneic HSCT.**

965 **(a)** Inhibition of B6 bone marrow colony formation *in vitro* by ADCs or control conjugates. Mean colony
966 counts from one representative of three experiments are shown. **(b)** *In vivo* depletion of bone marrow
967 CD150⁺CD48⁻ LSK cells (HSC) and colony forming units (CFU) 7 days post-infusion with the indicated
968 conjugates. Mice were pooled from 2-4 experiments; please note that the same cohort of untreated mice
969 was used to compare with the CD45-SAP and cKit-SAP treatment groups. **(c and d)** Schema and results
970 for syngeneic HSCT in mice conditioned with the indicated conjugates. Donor chimerism overall and for
971 T, B, and myeloid (Gr1⁺ and/or CD11b⁺) lineages (c) and CBCs (d) are displayed. Mice were pooled from
972 2-3 experiments. Overall donor chimerism between active and inactive ADC was significantly different at
973 all timepoints ($p < 0.0001$ for CD45-SAP vs. CD45 + free SAP; $p < 0.001$ for cKit-SAP 10 μ g vs. cKit +
974 free SAP 10 μ g). **(e)** Secondary HSCT using whole marrow from B6-GFP → B6 primary recipients that
975 were conditioned with the indicated ADCs, analyzed at 4 months post-transplant. The %GFP⁺ of HSCs
976 infused to the secondary recipients is shown; mice were pooled from 2 experiments. Data points and error
977 bars represent mean \pm SEM. For statistical comparisons, ns = not significant, * = $p < 0.05$, ** = $p < 0.01$,
978 *** = $p < 0.001$, **** = $p < 0.0001$.

979 **Figure 2. $\alpha\beta$ T cell depletion in CD45-SAP conditioned mice permits engraftment in miHA- and**

980 **MHC-mismatched allo-HSCT. (a)** Schema for miHA- and MHC-mismatched allo-HSCT models
981 utilizing CD4⁺ and CD8⁺ T cell depletion (TCD) during the peritransplant period. **(b and c)** Peripheral
982 blood donor chimerism for individual mice in the miHA-mismatched (b) and MHC-mismatched
983 alloHSCT models (c). Overall donor chimerism in CD4/CD8 TCD mice was significantly higher than
984 mice receiving isotype control (miHA-mismatched model: $p < 0.0001$ all timepoints; MHC-mismatched
985 model: $p < 0.0001$ month 2, $p < 0.01$ all other timepoints). Data point marked with “X” indicates mouse
986 euthanized for severe head tilt unrelated to the experimental treatment. **(d and e)** Serial CBCs for miHA-
987 (d) and MHC-mismatched (e) models. Data points and error bars in panels (d) and (e) represent mean \pm
988 SEM. For statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** =
989 $p < 0.0001$.

990 **Figure 3. The selective JAK1/2 inhibitor baricitinib permits engraftment in CD45-SAP conditioned**

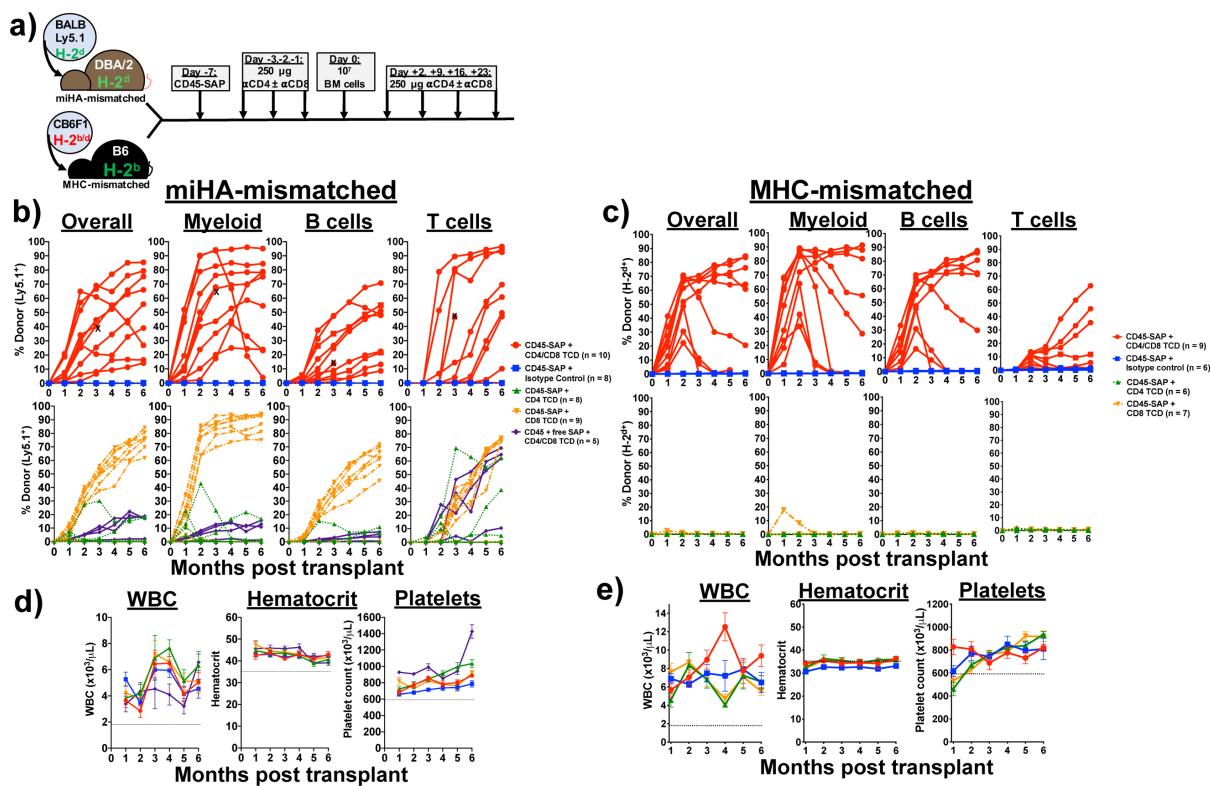
991 **mice. (a)** Schema for baricitinib and CD45-SAP treatment in the miHA- and MHC-mismatched allo-
992 HSCT models. **(b and c)** Peripheral blood donor chimerism for individual mice in the miHA-mismatched
993 (b) and MHC-mismatched (c) models. Differences between baricitinib and vehicle groups were
994 statistically significant at all timepoints in the miHA model ($p < 0.001$ at month 3, $p < 0.01$ all other
995 timepoints) and at month 1 only in the MHC-mismatched model ($p < 0.01$). **(d)** Schema and results for
996 MHC-mismatched HSCT combining CD45-SAP, daily baricitinib, and pre-transplant TCD. Differences
997 between baricitinib and vehicle groups were statistically significant at all timepoints ($p < 0.05$ months 1-
998 2, $p < 0.01$ months 3-6). Data point marked with “X” indicates mouse euthanized early to assess rapid
999 loss of donor engraftment. **(e)** Schema and results for MHC-mismatched HSCT combining CD45-SAP
1000 conditioning with continuously-infused JAK1/2 inhibitors. Differences between baricitinib and vehicle
1001 groups were significant at all timepoints ($p < 0.001$ months 1-4; $p < 0.01$ months 5-6); differences
1002 between ruxolitinib and vehicle groups were significant at months 1 and 2 ($p < 0.0001$ and $p < 0.001$,
1003 respectively). Data point marked with “X” indicates mouse death one week prior to collection of final

1004 timepoint. Insets represent the numbers of successfully engrafted mice at $t = 6$ months. For statistical
1005 comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.

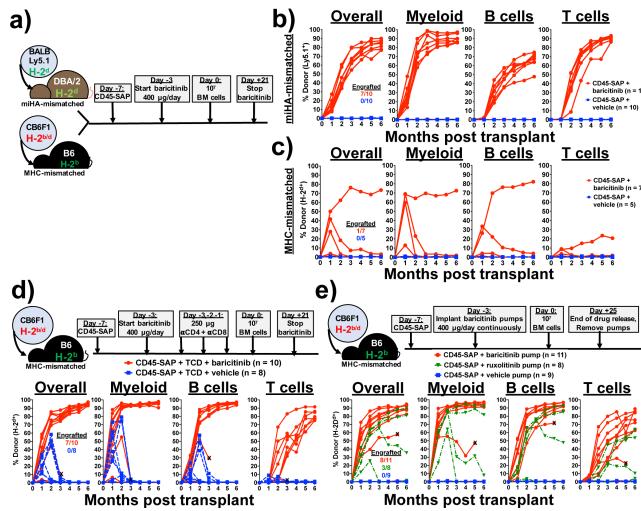
1006 **Figure 4. Baricitinib suppresses T cell function and viability, and minimally impacts syngeneic**
1007 **HSCT.** **(a)** Schema and results for syngeneic HSCT model in which recipients were conditioned with
1008 CD45-SAP or inactive ADC with or without daily baricitinib injections. **(b)** Donor chimerism in spleen
1009 and bone marrow of mice from panel (a). **(c)** *In vitro* expansion of α CD3-stimulated (1 μ g/mL, 72 hours),
1010 CFSE-labeled B6 T cells in the presence of varying concentrations of baricitinib. **(d)** Proliferation and
1011 viability of cultures in panel (c). **(E)** Cytokines present in supernatants collected from cultures described
1012 in panel (c) after 24 hours incubation. For panels (c-e), data from three technical replicates are shown
1013 from one representative of four experiments. For all panels, data points and error bars represent mean \pm
1014 SEM. For statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** =
1015 $p < 0.0001$.

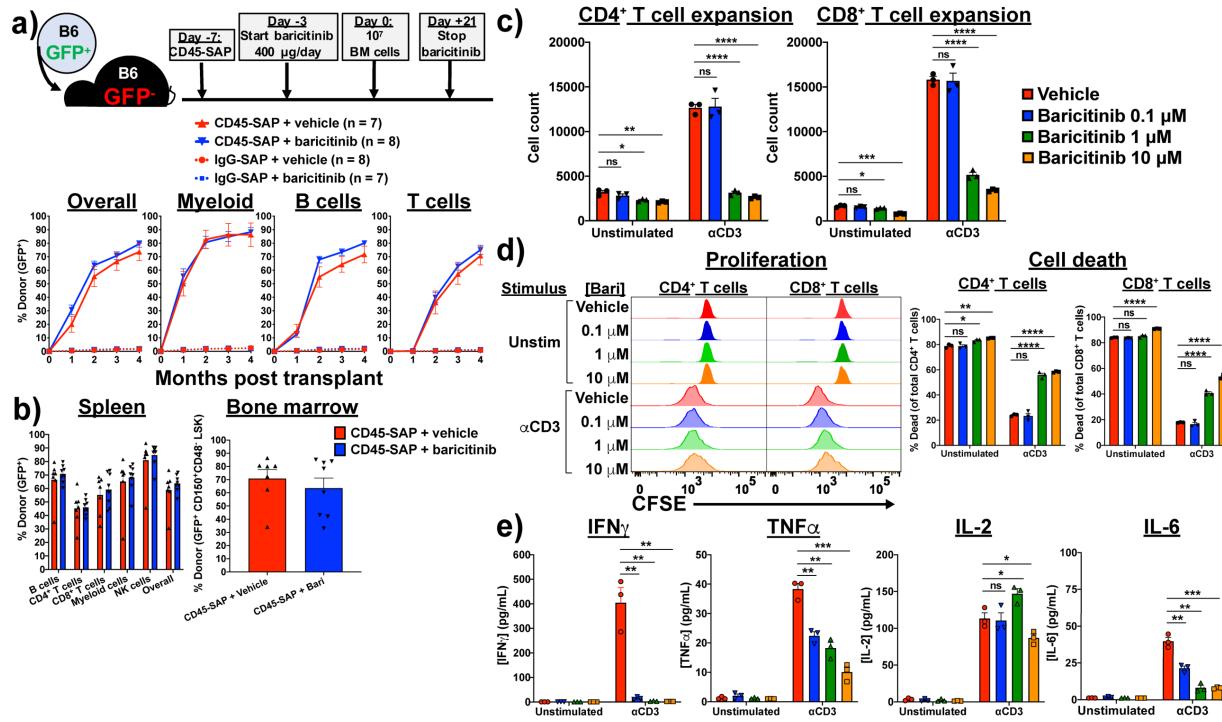
1016 **Figure 5. Baricitinib overcomes NK cell-mediated rejection by impairing NK cell survival and**
1017 **effector function.** **(a)** Schema and results for parent-to-F1 HSCT model to study baricitinib effect on NK-
1018 mediated rejection. Overall peripheral blood donor chimerism was significantly higher for the baricitinib
1019 and α NK1.1 groups compared to vehicle at all timepoints (baricitinib vs. vehicle: $p < 0.001$ months 1, 3
1020 and 4, $p < 0.0001$ month 2; α NK1.1 vs. vehicle: $p < 0.05$ months 1-3, $p < 0.01$ month 4). **(b)** Peripheral
1021 blood NK cell frequencies of recipients in panel (a) immediately before HSCT. **(c)** NK cell counts by
1022 organ in B6 mice receiving four once-daily doses baricitinib or vehicle. **(d-f)** Functional assays of IL-15-
1023 stimulated B6 splenic NK cells incubated with baricitinib or vehicle: IFN γ production and survival after
1024 15 hours (d), expansion after 72 hours (e), and cytolytic enzyme expression after 24 hours (f). **(g)** YAC-1
1025 killing by NK cells primed with IL-15 for 48 hours without baricitinib, then washed and plated with target
1026 cells for 4 hours with baricitinib or vehicle. **(h)** Stat5 phosphorylation in NK cells after IL-15 stimulation
1027 with baricitinib or vehicle present. For panels (d-h), two (h) or three (d-g) technical replicates from one of
1028 three experiments are shown; for panel (f), inset numbers are the percentage of events in each quadrant.
1029 Data points and error bars represent mean \pm SEM. For statistical comparisons: ns = not significant, * = $p <$
1030 0.05 , ** = $p < 0.01$, *** = $p < 0.001$, and **** = $p < 0.0001$.

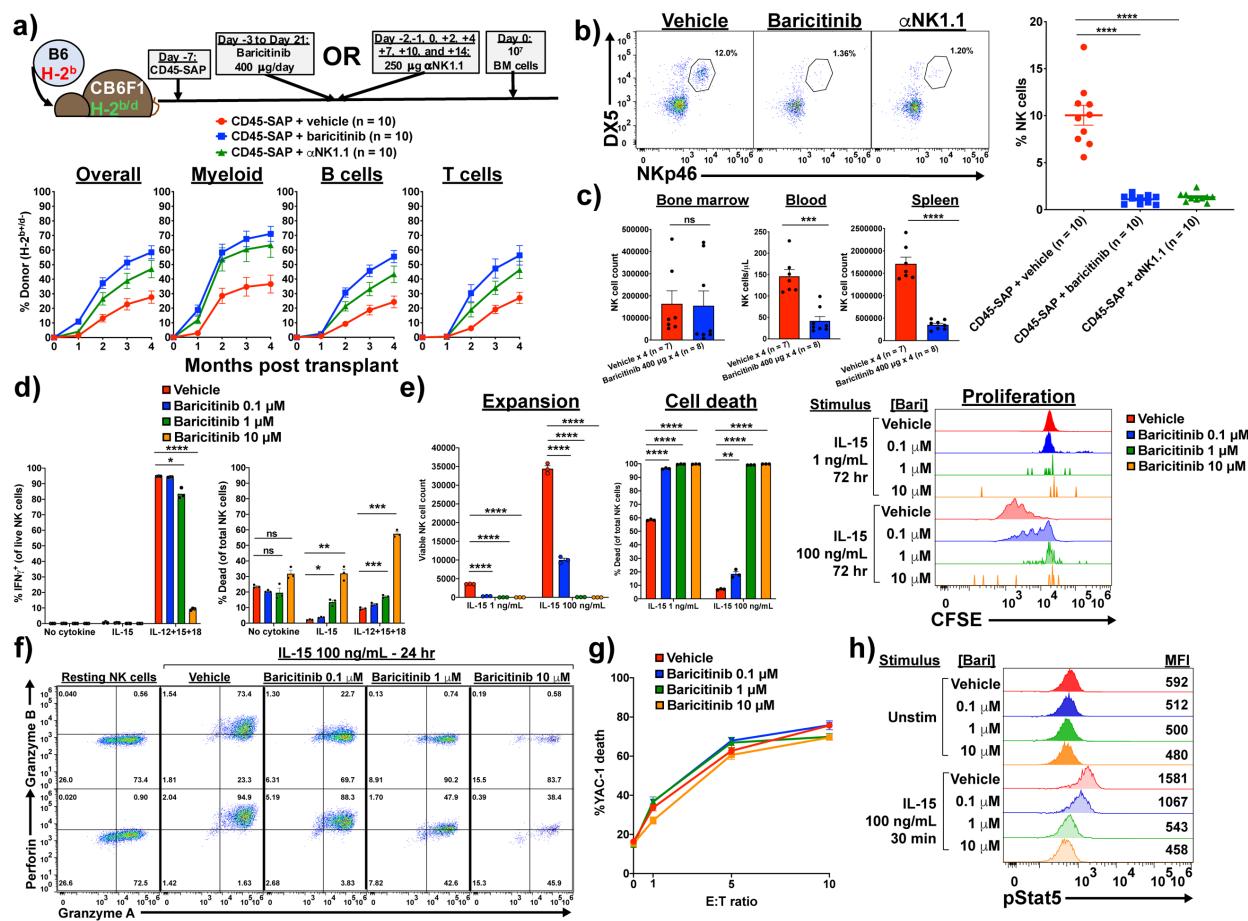
1031 **Figure 6. CD45-SAP conditioning does not promote graft-versus-host alloreactivity.** **(a)** Schema for
1032 parent-to-F1 adoptive transfer model, with sublethal irradiation or CD45-SAP conditioning administered
1033 with the usual timing with respect to HSCT. Treatment groups are color-coded throughout the figure per
1034 the indicated legend. **(b)** Clinical outcomes for mice treated as per panel (a); “X” indicates death or
1035 euthanasia and dotted lines indicate euthanasia thresholds. **(c)** CBCs at 21 days post-splenocyte infusion.
1036 **(d)** Plasma inflammatory cytokine concentrations 7 days post-splenocyte infusion. **(e)** Circulating donor T
1037 cells at days 7 and 21 post-splenocyte infusion. **(f and g)** Flow cytometry (f; gated on 7-AAD $^+$ Lineage $^-$
1038 cells) and histology (g) of bone marrow from a CD45-SAP conditioned mouse 56 days after allogeneic
1039 splenocyte infusion compared with an irradiated mouse that succumbed at day 21. For clarity, weight
1040 changes shown in (b) are from a representative sample of five mice per group; for the other plots, all mice
1041 analyzed over 2 or 3 independent experiments are included. Data points and error bars represent mean \pm
1042 SEM. For statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** =
1043 $p < 0.0001$.

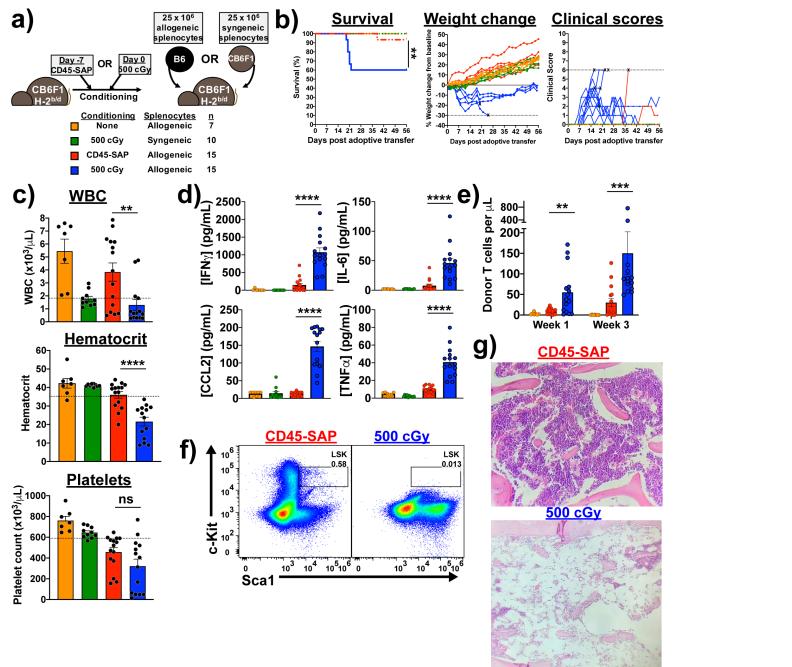

1044 **Figure 7. Irradiation, but not CD45-SAP, promotes alloreactive T cell expansion, effector function,**
1045 **and bone marrow infiltration.** **(a)** Absolute counts of donor-derived ($H-2K^{b+/d-}$) $CD4^+$ and $CD8^+$ T cells
1046 in spleens and bone marrows of CB6F1 mice conditioned with 500 cGy total body irradiation (TBI) or
1047 CD45-SAP at 7 days post-infusion of allogeneic B6 splenocytes. **(b)** Cell surface phenotyping of donor T
1048 cells harvested from spleens of TBI- versus ADC-conditioned mice. **(c)** Intracellular staining of donor T
1049 cells harvested from spleens of TBI-versus ADC-conditioned mice for $CD8^+$ T cell cytolytic granule
1050 enzymes. **(d)** Cell surface phenotyping of the recipient ($H-2K^{b+/d+}$) APC compartment in spleens of TBI-
1051 versus ADC-conditioned mice. For panels (b) and (c), inset numbers indicate the percent of events in each
1052 quadrant; for (d), inset numbers are MFIs. FACS plots are from one representative mouse obtained across
1053 2 (CD45-SAP) or 3 (500 cGy) experiments; data points and error bars represent mean \pm SEM. For
1054 statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.

1055


FIGURES AND LEGENDS


Figure 1. CD45-SAP and cKit-SAP are similarly effective conditioning agents for syngeneic HSCT. (a) Inhibition of B6 bone marrow colony formation *in vitro* by ADCs or control conjugates. Mean colony counts from one representative of three experiments are shown. (b) *In vivo* depletion of bone marrow CD150⁺CD48⁻ LSK cells (HSC) and colony forming units (CFU) 7 days post-infusion with the indicated conjugates. Mice were pooled from 2-4 experiments; please note that the same cohort of untreated mice was used to compare with the CD45-SAP and cKit-SAP treatment groups. (c and d) Schema and results for syngeneic HSCT in mice conditioned with the indicated conjugates. Donor chimerism overall and for T, B, and myeloid (Gr1⁺ and/or CD11b⁺) lineages (c) and CBCs (d) are displayed. Mice were pooled from 2-3 experiments. Overall donor chimerism between active and inactive ADC was significantly different at all timepoints ($p < 0.0001$ for CD45-SAP vs. CD45 + free SAP; $p < 0.001$ for cKit-SAP 10 μ g vs. cKit + free SAP 10 μ g). (e) Secondary HSCT using whole marrow from B6-GFP → B6 primary recipients that were conditioned with the indicated ADCs, analyzed at 4 months post-transplant. The %GFP⁺ of HSCs infused to the secondary recipients is shown; mice were pooled from 2 experiments. Data points and error bars represent mean ± SEM. For statistical comparisons, ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, and **** = $p < 0.0001$.


Figure 2. $\alpha\beta$ T cell depletion in CD45-SAP conditioned mice permits engraftment in miHA- and MHC-mismatched allo-HSCT. (a) Schema for miHA- and MHC-mismatched allo-HSCT models utilizing CD4⁺ and CD8⁺ T cell depletion (TCD) during the peritransplant period. (b and c) Peripheral blood donor chimerism for individual mice in the miHA-mismatched (b) and MHC-mismatched alloHSCT models (c). Overall donor chimerism in CD4/CD8 TCD mice was significantly higher than mice receiving isotype control (miHA-mismatched model: $p < 0.0001$ all timepoints; MHC-mismatched model: $p < 0.0001$ month 2, $p < 0.01$ all other timepoints). Data point marked with “X” indicates mouse euthanized for severe head tilt unrelated to the experimental treatment. (d and e) Serial CBCs for miHA- (d) and MHC-mismatched (e) models. Data points and error bars in panels (d) and (e) represent mean \pm SEM. For statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.


Figure 3. The selective JAK1/2 inhibitor baricitinib permits engraftment in CD45-SAP conditioned mice. (a) Schema for baricitinib and CD45-SAP treatment in the miHA- and MHC-mismatched allo-HSCT models. **(b and c)** Peripheral blood donor chimerism for individual mice in the miHA-mismatched (b) and MHC-mismatched (c) models. Differences between baricitinib and vehicle groups were statistically significant at all timepoints in the miHA model (p < 0.001 at month 3, p < 0.01 all other timepoints) and at month 1 only in the MHC-mismatched model (p < 0.01). **(d)** Schema and results for MHC-mismatched HSCT combining CD45-SAP, daily baricitinib, and pre-transplant TCD. Differences between baricitinib and vehicle groups were statistically significant at all timepoints (p < 0.05 months 1-2, p < 0.01 months 3-6). Data point marked with “X” indicates mouse euthanized early to assess rapid loss of donor engraftment. **(e)** Schema and results for MHC-mismatched HSCT combining CD45-SAP conditioning with continuously-infused JAK1/2 inhibitors. Differences between baricitinib and vehicle groups were significant at all timepoints (p < 0.001 months 1-4; p < 0.01 months 5-6); differences between ruxolitinib and vehicle groups were significant at months 1 and 2 (p < 0.0001 and p < 0.001, respectively). Data point marked with “X” indicates mouse death one week prior to collection of final timepoint. Insets represent the numbers of successfully engrafted mice at t = 6 months. For statistical comparisons: ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

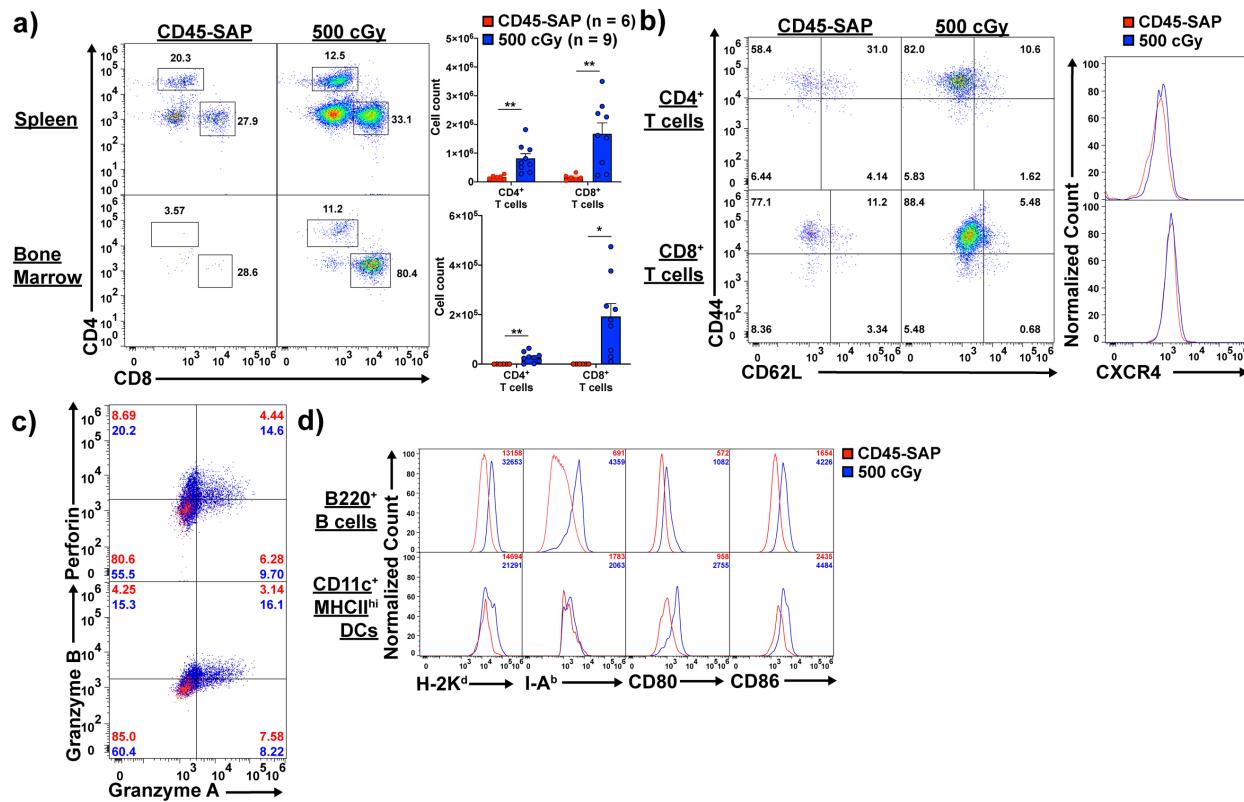

Figure 4. Baricitinib suppresses T cell function and viability, and minimally impacts syngeneic HSCT. (a) Schema and results for syngeneic HSCT model in which recipients were conditioned with CD45-SAP or inactive ADC with or without daily baricitinib injections. (b) Donor chimerism in spleen and bone marrow of mice from panel (a). (c) *In vitro* expansion of αCD3-stimulated (1 µg/mL, 72 hours), CFSE-labeled B6 T cells in the presence of varying concentrations of baricitinib. (d) Proliferation and viability of cultures in panel (c). (E) Cytokines present in supernatants collected from cultures described in panel (c) after 24 hours incubation. For panels (c-e), data from three technical replicates are shown from one representative of four experiments. For all panels, data points and error bars represent mean ± SEM. For statistical comparisons: ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001.

Figure 5. Baricitinib overcomes NK cell-mediated rejection by impairing NK cell survival and effector function. (a) Schema and results for parent-to-F1 HSCT model to study baricitinib effect on NK-mediated rejection. Overall peripheral blood donor chimerism was significantly higher for baricitinib and α NK1.1 groups compared to vehicle at all timepoints (baricitinib vs. vehicle: $p < 0.001$ months 1, 3 and 4, $p < 0.0001$ month 2; α NK1.1 vs. vehicle: $p < 0.05$ months 1-3, $p < 0.01$ month 4). (b) Peripheral blood NK cell frequencies of recipients in panel (a) immediately before HSCT. (c) NK cell counts by organ in B6 mice receiving four once-daily doses baricitinib or vehicle. (d-f) Functional assays of IL-15-stimulated B6 splenic NK cells incubated with baricitinib or vehicle: IFN γ production and survival after 15 hours (d), expansion after 72 hours (e), and cytolytic enzyme expression after 24 hours (f). (g) YAC-1 killing by NK cells primed with IL-15 for 48 hours without baricitinib, then washed and plated with target cells for 4 hours with baricitinib or vehicle. (h) Stat5 phosphorylation in NK cells after IL-15 stimulation with baricitinib or vehicle present. For panels (d-h), two (h) or three (d-g) technical replicates from one of three experiments are shown; for panel (f), inset numbers are the percentage of events in each quadrant. Data points and error bars represent mean \pm SEM. For statistical comparisons: ns = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, and **** = $p < 0.0001$.

Figure 6. CD45-SAP conditioning does not promote graft-versus-host alloreactivity. **(a)** Schema for parent-to-F1 adoptive transfer model, with sublethal irradiation or CD45-SAP conditioning administered with the usual timing with respect to HSCT. Treatment groups are color-coded throughout the figure per the indicated legend. **(b)** Clinical outcomes for mice treated as per panel (a); “X” indicates death or euthanasia and dotted lines indicate euthanasia thresholds. **(c)** CBCs at 21 days post-splenocyte infusion. **(d)** Plasma inflammatory cytokine concentrations 7 days post-splenocyte infusion. **(e)** Circulating donor T cells at days 7 and 21 post-splenocyte infusion. **(f and g)** Flow cytometry (f; gated on 7-AAD⁻Lineage⁻ cells) and histology (g) of bone marrow from a CD45-SAP conditioned mouse 56 days after allogeneic splenocyte infusion compared with an irradiated mouse that succumbed at day 21. For clarity, weight changes shown in (b) are from a representative sample of five mice per group; for the other plots, all mice analyzed over 2 or 3 independent experiments are included. Data points and error bars represent mean \pm SEM. For statistical comparisons: ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001.

Figure 7. Irradiation, but not CD45-SAP, promotes alloreactive T cell expansion, effector function, and bone marrow infiltration. (a) Absolute counts of donor-derived (H-2K^{b+d}) CD4⁺ and CD8⁺ T cells in spleens and bone marrows of CB6F1 mice conditioned with 500 cGy total body irradiation (TBI) or CD45-SAP at 7 days post-infusion of allogeneic B6 splenocytes. (b) Cell surface phenotyping of donor T cells harvested from spleens of TBI- versus ADC-conditioned mice. (c) Intracellular staining of donor T cells harvested from spleens of TBI-versus ADC-conditioned mice for CD8⁺ T cell cytolytic granule enzymes. (d) Cell surface phenotyping of the recipient (H-2K^{b+d}) APC compartment in spleens of TBI- versus ADC-conditioned mice. For panels (b) and (c), inset numbers indicate the percent of events in each quadrant; for (d), inset numbers are MFIs. FACS plots are from one representative mouse obtained across 2 (CD45-SAP) or 3 (500 cGy) experiments; data points and error bars represent mean \pm SEM. For statistical comparisons: ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and **** = p < 0.0001.