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Abstract 

A successful class of models link decision-making to brain signals by assuming that evidence accumulates 

to a decision threshold. These evidence accumulation models have identified neuronal activity that 

appears to reflect sensory evidence and decision variables that drive behavior. More recently, an 

additional evidence-independent and time-variant signal, named urgency, has been hypothesized to 

accelerate decisions in the face of insufficient evidence. However, most decision-making paradigms 

tested with fMRI or EEG in humans have not been designed to disentangle evidence accumulation from 

urgency. Here we use a face-morphing decision-making task in combination with EEG and a hierarchical 

Bayesian model to identify neural signals related to sensory and decision variables, and to test the 

urgency-gating model. We find that an evoked potential time-locked to the decision, the centroparietal 

positivity, reflects the decision variable from the computational model. We further show that the 

unfolding of this signal throughout the decision process best reflects the product of sensory evidence 

and an evidence-independent urgency signal. Urgency varied across subjects, suggesting that it may 

represent an individual trait. Our results show that it is possible to use EEG to distinguish neural signals 

related to sensory evidence accumulation, decision variables, and urgency. These mechanisms expose 

principles of cognitive function in general and may have applications to the study of pathological 

decision-making as in impulse control and addictive disorders. 

 

Significance Statement: 

Perceptual decisions are often described by a class of models that assumes sensory evidence 

accumulates gradually over time until a decision threshold is reached.  In the present study, we 

demonstrate that an additional urgency signal impacts how decisions are formed.  This endogenous 

signal encourages one to respond as time elapses.   We found that neural decision signals measured by 

EEG reflect the product of sensory evidence and an evidence-independent urgency signal.  A nuanced 
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understanding of human decisions, and the neural mechanisms that support it, can improve decision-

making in many situations and potentially ameliorate dysfunction when it has gone awry. 
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Introduction 

Studies of decision-making typically assume a stochastic accumulation of sensory evidence with a 

decision being made once a threshold is reached (Gold and Shadlen, 2007; Ratcliff and McKoon, 2008).  

Drift diffusion models (DDMs) have a rich history and have successfully identified neuronal signals 

encoding evidence accumulation and decision threshold in simple, well-controlled experimental 

paradigms (Shadlen and Newsome, 2001; Kiani and Shadlen, 2009).  However, interactive behavior is 

also determined by constantly changing and unpredictable environments. The notion that sensory 

evidence must achieve a critical threshold before the decision is made is difficult to reconcile with 

situations in which choices are made under temporal pressure or based on little to no sensory evidence. 

In such situations, something other than sensory evidence accumulation must contribute to choice 

commitment. 

Convergent lines of research now support the notion of an additional “urgency signal” that non-

selectively elevates activity towards unchanged action thresholds, such that less sensory evidence is 

required for decision commitment as time elapses (Cisek et al., 2009; Standage et al., 2011; Thura and 

Cisek, 2014; Murphy et al., 2016; Malhotra et al., 2018; Palestro et al., 2018). The level or urgency is 

thought to be stable in an individual although it will differ for different contexts (e.g. favoring speed 

versus accuracy) (Thura and Cisek, 2014; Berret et al., 2018; Reppert et al., 2018). It may be linked to 

phenotypical personality traits such as impulsivity (Carland et al., 2019).  Primate single-cell recording 

studies indicate that this evidence-independent influence on the decision process is observable in the 

activity of neurons that reflect evolving decision formation (Ditterich, 2006; Churchland et al., 2008; 

Heitz and Schall, 2012; Hanks et al., 2014; Thura and Cisek, 2016).   

Recently, this line of work has been extended to human decision-making using scalp 

electroencephalography (EEG). One outcome has been to identify separable EEG signals related to 
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sensory evidence accumulation, decision variable, and motor response (O'Connell et al., 2012; Kelly and 

O'Connell, 2013; van Vugt et al., 2019).  An event-related potential (ERP) labelled centroparietal 

positivity (CPP) appears to trace evidence accumulation (O'Connell et al., 2012).  The urgency gating 

model (UGM) would predict that the CPP, as a reflection of the evolving decision variable, should reflect 

a combination of urgency and sensory evidence. However, in one study using a fixed visual stimulus, 

speed pressure was found not to affect the CPP (Steinemann et al., 2018).  It may be that sudden-onset 

and discrete trial presentation coupled with short trial times often favoured in ERP may partly obscure 

the dynamics of an unfolding decision process.  Attempts to use functional magnetic resonance imaging 

(fMRI) with evidence accumulation paradigms have provided evidence that a basal ganglia based 

urgency signal exists in humans (Nagano-Saito et al., 2012; Yau et al., 2020), as shown in primates (Thura 

and Cisek, 2017), but these lack the temporal resolution to precisely resolve urgency signalling.   

In order to disambiguate sensory processing, decisional evidence accumulation, and urgency, we 

designed a dynamic decision-making task with a slowly morphing stimulus consisting of faces whose 

emotions transitioned from neutral to happy or sad (Yau et al., 2020).  We exploited the high temporal 

resolution of EEG to tease apart neural determinants of human decision formation.  First, we 

hypothesized that onset-locking the EEG to the start of the trial would allow us to detect signals related 

to facial emotion processing, sensory evidence accumulation, or setting of the decision threshold (i.e., 

N170 or P300).  Second, by response-locking the EEG to the decision point, we sought to identify a 

neural signal (i.e., CPP) that ramps up in time and reflects the decision variable (or rate of evidence 

accumulation).  Finally, by including easy and ambiguous trials, we aimed to identify an urgency signal 

associated with early responses despite ambiguous sensory evidence.  Given the relatively large sample 

of subjects, and based on our previous work with this task, we investigated whether individuals may 

exhibit differing trait levels of the endogenous urgency signal. 
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Methods 

Participants 

74 right-handed young healthy adults (34 males; mean age 23.4 years ± 5.2 standard deviation) 

participated in the experiment for monetary compensation.  All subjects gave informed consent prior 

to data acquisition and were screened for current or past diagnosis of a psychiatric disorder, 

neurological disorder, or concussion, and moderate to severe depression (score >5 on the Beck 

Depression Inventory (Beck et al., 1961)). The study was approved by the Montreal Neurological 

Institute Research Ethics Board.   

 

Experimental Design 

Participants viewed short videos of a face “morphing” between expressions (Fig. 1).  Each trial was 

preceded by a time-jittered fixation cross.  Trials always began with a neutral expression and gradually 

transitioned into either a happy or sad emotion.  Participants were instructed to predict whether the 

facial expression would be happy or sad by the end of the trial using their index and middle finger, 

respectively, via a button box in their right hand, and to respond whenever they felt confident enough 

to do so.  Subjects were asked to respond both as quickly and as accurately as possible.  Face stimuli 

were derived from the NimStim database (Tottenham et al., 2009) and manipulated using the STOIK 

MorphMan software (http://www.stoik.com/) to generate 18 intermediate faces that gradually 

transitioned in intensity of emotional expressions between a model’s neutral and happy or sad emotion.  

Thus, emotion levels varied from 0 to 19 in both directions.  Trials lasted for a maximum of 60 frames 

over 6secs (i.e., 10 frames per sec), plus a final image of the correct emotion (with the emotion level 
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>15) for 1sec either immediately after a response was made or at the end of the trial if the participant 

had not yet made a response.  In the latter case, subjects could still respond during the final frame (i.e., 

61st frame) only if they had not yet done so earlier in the trial.  Responses during this period were 

recorded but the frame would not change and persisted until the original 1sec window was over. 

The current study consisted of two trial types (or conditions), namely “easy” and “ambiguous”, which 

were modelled after previous work (Thura et al., 2012).  These two trial types were interleaved 

throughout the runs and subjects had no knowledge of upcoming trial type.  In easy trials, all 

intermediate faces presented were of the correct emotion (e.g., in a trial in which the correct answer is 

happy, no sad images are ever presented).  Each successive frame had a 65% chance of being one level 

higher than the previous frame in the direction of the correct emotion.  By the final frame, all trials had 

an emotion level >16.  In ambiguous trials, frames within the first two-thirds of the trial (i.e., up to the 

40th frame) generally hovered around a neutral valence.  Each successive frame had a 50% chance of 

being one level higher than the previous in the direction of the correct emotion and could only reach a 

maximum of emotion level 7.  To prevent, for example, many slightly happy and a few very sad images 

being presented, the maximum emotion levels presented in the correct and incorrect directions were 

kept within two levels of each other.  In the final third of the trial, there was a steep increase of emotion 

level in favour of the correct emotion, with a 95% chance that a given frame would be exactly one level 

higher than its predecessor.  As with the easy condition, all trials had an emotion level >16 by the final 

frame. 

Each subject partook in 120 trials total, divided equally across 3 blocks.  Trials were evenly split between 

happy and sad (determined by the emotion at the final frame), and between easy and ambiguous.  Trial 

order was randomized in every block. 
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Fig. 1. Schematic of task design.  (a) Progression of a single trial begins with a blank image followed by a 

time-jittered fixation cross.  A short video that start at a neutral facial expression which transitions into a 

happy or sad emotion is then presented.  Participants are asked to respond what they think the final 

emotion will be and to do so whenever they felt confident in their prediction.  If either a response is made 

or 6secs have elapsed, an image of the correct emotion is presented.  (b)  Two types of trials were 

employed: “easy” and “ambiguous”.  In easy trials, facial expressions gradually morphed towards one of 

the two emotions.  In ambiguous trials, facial expressions remain relatively neural until two-thirds of the 

trial has elapsed, after which point emotion rapidly ramped up towards happy or sad. 

 

EEG Acquisition and Preprocessing 

EEG was recorded continuously using a 256-channel high-impedance HydroCel Geodesic Sensory Net 

and the NetStation 5 acquisition software (Electrical Geodesic, Inc., Eurgene, OR).  As per manufacturer 

standard recommendations, electrode impedance levels were kept below 50Ω during acquisition.  Data 

were collected with a sampling rate of 1000Hz using the electrode Cz as reference with online 

visualization filters of 60Hz for notch, 5Hz for high-pass, and 120Hz for low-pass. 
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Raw data were preprocessed offline using the Automagic pipeline (Pedroni et al., 2019).  First, bad 

channels were identified using PREP (Bigdely-Shamlo et al., 2015) in which a 1Hz high-pass filter is 

applied, power-line noise removed, and robust average referencing iteratively implemented to detect 

and interpolate bad channels to arrive at an average reference that is not affected by artifacts.  Bad 

channels were then excluded to avoid contamination in later preprocessing steps.  Second, continuous 

EEG recordings were filtered with a bandpass filter of 0.1-60Hz.  Third, artifacts related to eye-blinks and 

muscle movement were corrected for using the Multiple Artifact Rejection Algorithm (MARA) – a 

supervised learning algorithm that uses independent component analysis to detect and eliminate 

artifacts based on established expert ratings (Winkler et al., 2011).  Finally, the previously excluded bad 

channels were interpolated and the data was down-sampled to 250Hz for computational efficiency.  

Data quality after preprocessing was assessed automatically by Automagic and confirmed by subsequent 

manual inspection.  Further details regarding the Automagic pipeline can be found online 

(https://github.com/methlabUZH/automagic).  After preprocessing and quality control, data from 57 

participants were used for further analysis. 

Preprocessed data files were imported into MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014) 

for statistical analysis and visualization.  Epochs were created around the stimulus onset (-1,000ms to 

8,000ms time-window) and response (-1,000ms to 1,000ms time-window), with both baseline-corrected 

for the 500ms preceding stimulus onset.  Epochs in which the activity exceeded ±150µV were excluded 

(average number of trials post-preprocessing: Easy=57.92±4.47, Ambiguous=57.74±4.64). 

 

Event Related Potentials 

Here we focused on three ERPs of interest: the N170, P300 and centroparietal positivity (CPP).   
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The N170 is a face-sensitive visually evoked ERP elicited over posterior visual cortical areas.  It’s 

amplitude is thought to scale with how similar the stimulus is to a face (Eimer, 2011) but has also been 

cited as a domain-general response to unexpected perceptual events (Robinson et al., 2018).  Previous 

work using a face-car visual discrimination task to test the drift diffusion model found that the N170 

reflected an early perceptual event that is not directly related to the actual decision (Philiastides et al., 

2006; Philiastides and Sajda, 2006).  Based on the existing literature and on our grand-average 

waveform, we extracted the N170 as the peak amplitude between 120-200ms after stimulus onset at 

two lateral occipital sites (E114 & E168). 

The centroparietal “P300” has a long-established role in in a wide variety of cognitive operations and is 

well defined in the literature (Sutton et al., 1965; Polich, 2012).  In the current study, P300 refers to the 

P3b subcomponent of the P300, which has parietal topography, as opposed to the frontal P3a 

subcomponent.  While frontal P3a represents stimulus-driven attention mechanisms, the P3b is often 

elicited by target detection paradigms (e.g., the oddball paradigm) though its exact role in the decision 

process is debated (Sutton et al., 1965; Polich, 2007).  Numerous explanatory accounts have been 

proposed, variously implicating P3b in the allocation of attentional resources, context and memory 

updating, uncertainty or surprise of stimulus, and response potentiation (Hillyard et al., 1971; Polich, 

2007; Nieuwenhuis et al., 2011). In one study, its magnitude covaried with the onset of a neural decision 

variable based on task difficulty, suggesting it may index decisional computations (Philiastides et al., 

2006).  In keeping with the literature and based on the maxima and time distributions observed in the 

grand-average waveform across our participants (Fig. 2), P300 was defined as the peak amplitude 

between 200-400ms after stimulus onset at electrode site Pz, as previously described (Picton, 1992). 

More recently, a CPP component that spatially overlaps with the P300 has also been identified and is 

thought to index a developing decision variable in the choice process (O'Connell et al., 2012; Kelly and 

O'Connell, 2013; van Vugt et al., 2019).  Unlike the traditional conception of ERP components as unitary 
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processes, the CPP is thought to be a gradual signal that scales with the strength of sensory evidence, 

peaking close to the time of decision/action.  This rise-to-threshold like activity has been shown to be 

insensitive to sensory modality or target feature and unrelated to motor preparation (O'Connell et al., 

2012). The CPP resembles the drift rate parameter of the DDM, which indexes sensory evidence 

accumulation; it is thus thought to represent decision evidence (O'Connell et al., 2012; Steinemann et 

al., 2018). The CPP has also been previously suggested to spatially overlap with the P3b (O'Connell et al., 

2012; Twomey et al., 2015), however the two may be dissociable based on their temporal course. Unlike 

the P300, there is no clear established time-window of interest for CPP, with variations in the relative 

timing likely reflecting differences in paradigms and design (O'Connell et al., 2012; van Vugt et al., 2019).  

As such, we took a data-driven approach to identify a time-window of interest over which we could 

observe CPP signal buildup.  As with O'Connell et al. (2012), we calculated the temporal slope of the 

activity from each participant’s average waveform at electrode site Pz in moving windows of 100ms 

length in 10ms steps, starting from -1,000ms to response execution (i.e., 0ms).  Signal buildup rate was 

computed as the slope of a straight line fitted to the unfiltered signal within each sliding window.  A 

one-tail permutation t-test implemented via mne.stats.permutation_t_test with 5,000 permutations was 

then used to identify signal buildup rates that significantly differed from 0 across all subjects in a 

positive direction, indicating CPP activity that is ramping up.  These epochs were from 360ms before 

response to the time of response and are marked in black below the waveforms in Fig. 5.  The 

cumulative sum of activity within this time-window of interest was then used to index CPP signal buildup 

for further analysis.  An alternative to using the cumulative sum is to calculate the area under curve; 

however, these two signals are almost identical (Spearman’s rho=.999, p<.0001) and using one or the 

other did not affect our findings.  We additionally compared our analysis to results from a larger cluster, 

centered on the Pz (5 electrodes: E101, E100, E129, E119, E110, E128), to ensure our findings could be 

replicated. 
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Fig. 2. Grand average across all trials and subjects (N=57) for (a) onset-locked and (b) response-locked 

epochs.  Line colours refer to different electrode sites as indicated in the inset.  Topomaps for the 

timepoints of peak activity are depicted above the waveforms, with warmer and colder colours indexing 

higher and lower activity, respectively. 

 

Time-Frequency Analysis 

In addition to standard ERP, different frequencies of oscillatory activity in the EEG signal have been 

linked to decision parameters of the DDM.  The theta band power from mid-frontal electrodes, for 

example, has been linked to decision threshold and is thought to reflect a gating mechanism (Cavanagh 

et al., 2011a; Cavanagh et al., 2011b; Frank et al., 2015).  A posterior alpha signal, argued to be harmonic 

to theta band activity, has also been implicated (Klimesch, 2012; Kloosterman et al., 2019) as well a 

motor beta signal in the contralateral hemisphere to the hand for response execution (O'Connell et al., 

2012).  We were interested in testing whether our straight-forward, minimalistic processing analysis of 

ERPs was linked to these ongoing oscillatory fluctuations.  To this end, we used the Morlet wavelet 

methods implemented via mne.time_frequency.tfr_morlet to assess spectral power across the trial 

period on our preprocessed epoch data.  The trial’s estimated power was then baseline-corrected for 
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the 500ms preceding stimulus onset.  For visualization purposes (Fig 8), the data was resampled using 

scipy.signal.resample to match onset and response across all trials (i.e., all trials began at timepoint 0 

and ended at timepoint 1 which stood for the maximum RT for the subject).  Power was averaged across 

the frequency range for each band (alpha=0-4Hz, theta=4-8Hz, alpha=8-12Hz, beta=12-30Hz, 

gamma=30-45Hz).  Each sample of EEG time course was z-scored and outliers (z>4.5) were replaced with 

the average EEG power (Frank et al., 2015).  We then extracted the early (first 10% of trial time after 

onset) and late (last 10% of trial time before response) power for each frequency band to compare 

against ERPs of interest.  Based on the cited literature, we focused on theta power from the FCz, alpha 

from the Pz, and beta from electrodes of the left hemisphere.  We also repeated this analysis using the 

power for each frequency band averaged across all electrodes. 

 

Tendency to Wait: Early versus Late Responders 

As with our previous work (Yau et al., 2020), we observed two distinct groups of individuals based on 

performance under the ambiguous condition (Fig. 3) : (1) early responders (n=32), who on >=80% of 

ambiguous trials responded during the first two-thirds of the trial before information ramped towards 

one direction and (2) the rest, who were categorized as late responders (n=25).  We hypothesized that 

one factor that may drive this group difference lies in differences in an endogenous urgency signal. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.323683
http://creativecommons.org/licenses/by/4.0/


14 
 

Fig. 3.  Histogram of reaction time distributions in (a) easy and (b) ambiguous trials.  Solid lines reflect 

the gaussian kernel density estimation.  ER: early responders (n=32); LR: late responders (n=25). 

 

One mixed-design ANOVA per neural signal (i.e., N170 maximum amplitude, P300 maximum amplitude, 

and CPP cumulative sum) was conducted to investigate the within-subject relationships of conditions 

(i.e., easy and ambiguous) and between-subject relationships for group affiliation (i.e., early and late 

responders) as well as their interaction.  Given the unequal sample size, Levene’s test was used to test 

and confirm equality of variance between the two groups.  If sphericity was violated, Greenhouse-

Geisser corrected degrees of freedom are reported. 

In addition, given that CPP gradually ramps up in time, we tested whether CPP buildup (slope) may differ 

between the two groups at specific time intervals within our larger time-window of interest.  A two-

tailed, two sample permutation t-test (mlxtend.evaluate.permutation_test) with 5,000 permutations 

was conducted per condition.  Time windows where the two groups significantly differed are marked in 

purple below the waveforms in Fig. 5. 
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Hierarchical Drift Diffusion Model 

Drift diffusion models (DDM) are commonly used to infer latent processes underlying perceptual 

decision-making and to link them to neural mechanisms (Ratcliff et al., 2016). In the DDM framework, 

decision-making between two alternatives is reflected by a continuous integration of sensory evidence 

over time until a decision threshold for one of the choices is reached.  The model decomposes 

behavioral data into four parameters: non-decision time (nt) for stimulus encoding and response 

execution latencies, bias (z) towards one choice alternative, drift rate (v) for speed of evidence 

accumulation, and decision threshold (a) which determines how much evidence is needed before a 

decision is made (Fig. 4a).  The shape of the reaction time (RT) distribution determines the decision 

parameters (Ratcliff et al., 2016). 

Here, we applied a hierarchical estimation of the DDM (HDDM) (Wiecki et al., 2013), implemented in 

Python 2.7 (http://www.python.org), to calculate the decision parameters (Fig. 4b).  The hierarchical 

design assumes that model parameters from individual participants, while varying, are not completely 

independent.  Rather, individuals’ parameters are drawn and constrained by priors based on the group 

distributions (Gelman et al., 2013). This Bayesian estimation is thought to be more robust in recovering 

model parameters, particularly when the number of trials is relatively small (Matzke and Wagenmakers, 

2009; Wiecki et al., 2013).  Trials that fell within 5% of each tail of the RT distribution were considered 

outliers that cannot be captured by HDDM (e.g., slow responses due to inaction or fast erroneous 

responses due to action slips) and removed from analysis (Wiecki et al., 2013).  Markov chain Monte 

Carlo sampling was used for Bayesian approximation of the posterior distribution of model parameters.  

5,000 samples were drawn from the posterior to obtain smooth parameter estimates, while the first 100 

samples were discarded as burn-in.  Convergence of Markov chains were assessed by inspecting traces 
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of model parameters, their autocorrelation, and computing the Gelman-Rubin statistic (Gelman and 

Rubin, 1992) to ensure that the models had properly converged.   

As a first step, we constructed a base model whereby decision parameters are simply a function of RT 

and accuracy.  In a second model, we expanded upon this base with a simple model that allowed drift 

rate and decision threshold to vary between easy and ambiguous conditions.  Our third model further 

extended this by allowing for trial-by-trial variations in neural activity, in addition to condition, to 

modulate decision parameters.  The estimated posterior distributions index the degree to which the 

decision threshold (a) is altered by variations in P300 and N170 and how the drift rate (v) is explained by 

CPP buildup.  Our comprehensive model is as follows: [a(t) = β0 + β1P300(t) * β2N170(t)*β3condition(t), 

v(t) = β4 + β5 CPP(t)*β6condition(t)].  In these regressions, a larger positive coefficient weight (β) 

indicates a stronger positive correlation between neural measure and decision parameter, and vice 

versa.  Of note, the decision threshold and drift rate parameters were estimated separately for early and 

late responders for all models using the “depends_on" function in HDDM, as the two groups are 

assumed to have different parameter distributions.  Further, we iteratively added in modulators to test 

whether they improved model fit (described below). 

The deviance information criterion (DIC) was used for model comparison (Spiegelhalter et al., 2002).  A 

lower raw DIC value for a given model (for the whole group) favors models with highest likelihood and 

least number of parameters.  A DIC difference of 10 is considered significant (Zhang and Rowe, 2014).  

All reported DIC values are relative to the base model (i.e., target model DIC minus base model DIC) – 

the more negative the value, the better the model fit compared to the base model.  Parameters of the 

best fitting model were analyzed by Bayesian hypothesis testing which examines the probability mass of 

the parameter region in question (i.e., percentage of posterior samples greater/smaller than zero). For 

all HDDM analyses, we considered a posterior probability ≥95% of the respective parameters being 

different than zero as significant (Wiecki et al., 2013). 
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Fig. 4.   (a)  Schematic of the drift diffusion model.  (b) Graphical illustration of the hierarchical drift 

diffusion model (HDDM) with trial-by-trial neural regressors. Round nodes represent continuous random 

variables and double-bordered nodes represent deterministic variables, defined in terms of other 

variables. Decision parameters including drift rate (v), decision threshold (a), non-decision time (nt), 

bias(z), and standard deviation of drift rate (sv) were estimated for the group (nodes outside the plates 

with: group mean (μ) and variance (σ)) and subjects (j) (nodes in outer plate). Blue nodes represent 

observed data, including trial-wise behavioral data (accuracy, RT) and neural measures (P300 and CPP). 

Trial-by-trial variations of v and a were modulated by P300 and CPP, respectively, as well as by trial type 

(i.e., easy or ambiguous trials). 

 

Urgency Gating Model 

Models of decision-making incorporating an endogenous urgency signal posit that choices result from a 

combination of signals that reflect the available sensory evidence and an evidence-independent urgency 

signal that grows in time (Cisek et al., 2009; Drugowitsch et al., 2012).  We constructed a minimalistic 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.323683
http://creativecommons.org/licenses/by/4.0/


18 
 

urgency gating model (UGM) and an urgency-free, non-hierarchical drift diffusion model (DDM) to 

compare against and to test whether accounting for an urgency signal may better fit our observed data.  

In both models, a filtered evidence variable 𝑥 was derived by the following differential equation: 

𝜏
𝑑𝑥(𝑡)

𝑑𝑡
= −𝑥(𝑡) + 𝑔𝐸(𝑡) + 𝐺(0, 𝑁)   (1) 

At any given time t, the evidence E (i.e., level of information/facial emotion level) is multiplied by an 

attentional fixed gain term g.  An intra-trial Gaussian noise variable G(0,N) with a mean of 0 and a 

standard deviation of N was added.  A N of 6 was chosen based on previous work (Carland et al., 2015; 

Yau et al., 2020) and because it gave a range of simulated RTs with similar variability as the observed 

data in our current study.  The time constant 𝜏 determines how far back in time sensory information is 

considered by the model.  The UGM posits that only recent information is used to inform decision 

whereas the DDM does not; thus, 𝜏 was set to 200ms for the UGM on the basis of previous behavioral 

and physiological studies (Cisek et al., 2009; Thura et al., 2012; Thura and Cisek, 2014) while the 

maximum trial duration of 6sec was used as 𝜏 for the DDM.  Evidence (E), gain (𝑔), and noise (N) 

parameters were the same in both models. 

Next, the filtered evidence 𝑥 at a given time t was used to compute the estimated neural activity 𝑦 as 

follows: 

𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑈(𝑡)   (2) 

Where  𝑈(𝑡) = 𝑢 ∙ 𝑡 and represents the urgency signal that rises from zero with a slope 𝑢.  The UGM 

assumes that evidence is multiplied by the urgency signal which increases linearly with time (Cisek et al., 

2009; Thura and Cisek, 2014; Yau et al., 2020).  An alternative non-linear model fitted with an additional 

2nd order polynomial parameter did not significantly improve model fit, as such, we opted to keep the 

linear model with the minimum number of parameters. A decision is made when the variable 𝑦(𝑡) 
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reaches a critical decision threshold α.  A core prediction of the UGM is that decisions made with low 

levels of filtered evidence 𝑥 should be associated with high levels of urgency and vice versa.  In other 

words, high urgency will push the individual to commit to a choice even if evidence for that choice is 

weak.  On the other hand, the DDM does not have an urgency signal and 𝑈(𝑡) = 1; thus, a decision is 

made only when the variable 𝑥(𝑡) reaches threshold T.  In both models, a non-decision time of 200ms 

was added (Yau et al., 2020). 

Each model adjusts for one parameter: for UGM, the 𝑢 parameter and for DDM, the α parameter.  Both 

of these parameters influence the means of RT distributions.  An exhaustive search was implemented to 

find the parameter value that minimized the mean squared error between each model’s predicted RT 

and the observed RT across all trials for a subject.  The models were used to simulate 5,000 trials, the 

mean RT was used to compare against the real RT distributions. 

Linear mixed effect models implemented via statsmodels.mixedlm were used to examine the 

relationship between the observed CPP signal compared to a neural code predicted by either the UGM 

or the DDM at the trial-level.  Subjects were included as a random variable with differing intercepts.  For 

both the predicted and observed neural signal, buildup was determined as the cumulative sum of 

activity from 500ms post stimulus-onset to the time of response.  This 500ms delay was to ensure that 

we did not confound CPP activity with the P300 signal, as they overlap spatially.  The log-transformed 

absolute value of the predicted neural code was used since CPP is assumed to be a general evidence 

accumulation signal that positively ramps up regardless of the stimulus presented.  As with the HDDM, 

trials in which participants registered no response or with RT that fell within 5% of each tail of the RT 

distribution were considered outliers and discarded. 
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Statistical Analysis of Behavioral Data 

Statistical tests were conducted using packages pingouin (Vallat, 2018), statsmodels (Seabold and 

Perktold, 2010), and mlxtend (Raschka, 2018) in Python 3.7 (http://www.python.org).  To account for 

potential spurious outliers in our relatively low sample size, non-parametric tests were used to assess 

subject-level data.  Mann-Whitney U tests were conducted to compare differences in behavioral 

performance (i.e., mean accuracy and RT) between emotion, groups, as well as neural signals between 

correct and incorrect trials.  Spearman correlations were used to examine relationships between 

different neural signals (e.g., P300 and CPP) and other metrics of interest (e.g., HDDM decision 

threshold, DDM decision threshold, and UGM urgency signal).  An alpha of .05 was used as the  

threshold for statistical significance and results were corrected for multiple comparisons using the FDR 

Benjamini-Hochberg correction as implemented by statsmodels.stats.multitest.multipletests. 

 

Results 

Behavioral Results 

The early responder (ER) group were significantly less accurate on ambiguous trials 

(mean=53.76%±6.23) than the late responder (LR) group (mean=73.36±7.34) (U=629.5, p<.0001).  ER 

individuals appear to be performing at chance level, suggesting that they were guessing rather than 

making informed judgements.  Difference in accuracy performance was also observed on easy trials with 

the ER group (mean=94.9%±5.42) having lower accuracy than the LR group (mean=98.9%±1.2) (U=766.0, 

p<.0001) although both groups preformed near ceiling.  Moreover, although group categorization was 

made based on RTs on ambiguous trials (see Methods), ER (mean=1.39s±0.28) tended to also respond 

earlier than LR (mean=2.16 ±0.61) on easy trials (U=718.0, p<.0001).  Overall, subjects were neither 

faster (U=6165.5, p=.498) nor more accurate (U=5536.0, p=.107) to either happy or sad stimuli. 
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Comparing Neural Signals of Interest between Early and Late Responders 

To examine endogenous determinants of decision RT, we began by identifying the neural correlates 

previously implicated in evidence accumulation during perceptual decision-making.  In addition to a 

prominent sensory-evoked P300 (Fig. 2), we observed a CPP activity that increased over time and 

peaked close to the time of response – consistent with the build-to-threshold dynamics proposed by 

drift diffusion models.  These two signals were significantly positively correlated (rho=.38, p<.0001).  The 

grand-average waveforms indicate that CPP generally peaked before response suggesting that CPP 

encodes sensory information and not motor readiness, as shown by others (O'Connell et al., 2012; Kelly 

and O'Connell, 2013).  Crucially, the use of a gradual morphing stimuli eliminated sensory-evoked 

deflections (e.g., N170 and P300) from the ERP trace time-locked to the response, making it possible to 

disentangle and finely trace the evolution of the CPP from its onset to its peak.  Given the temporal 

evolution of the CPP, we probed with a permutation test whether there may be windows of time within 

which the buildup rate differs between ER and LR groups.  For easy trials, we found that LRs had greater 

CPP signal buildup compared to ERs during the -280ms to -64ms preceding response (Fig. 5b).  For 

ambiguous trials, we again observed greater CPP signal buildup among LRs than ERs over two time-

windows preceding response: -300ms to -204ms and -180ms to -84ms (Fig. 5d). This supports the 

premise that CPP reflects the accumulating decision evidence. 

We next sought to examine whether N170 amplitude, P300 amplitude, and CPP within a broader time 

window of interest (see Methods) may differ between groups (ER vs LR) or between conditions (easy vs 

ambiguous) (Fig. 5).  Contrary to our hypothesis, no significant main effect of group (F(1,55)=2.409, 

p=.126), condition (F(1,55)=.059, p=.809), or their interaction (F(1,55)=0.113, p=.738) was observed for 

the N170.  For P300, no significant main effect of group (F(1,55)=0, p=.986), condition (F(1,55)=0, 
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p=1.00), or their interaction (F(1,55)=0.718, p=.402) was observed.  Similarly for the CPP, no main effect 

of group (F(1,55)=1.708, p=.197), condition (F(1,55)=1.611, p=.210), or their interaction (F(1,55)=2.399, 

p=.127) was statistically significant.  Additionally, N170 amplitude (U=1631, p=.973), N170 latency 

(U=1794, p=.845), P300 amplitude (U=1646, p=.973), P300 latency (U=1649, p=.973), and CPP (U=1862, 

p=.845) did not differ between correct and incorrect trials – suggesting these signals may not only reflect 

external evidence but also an internal decision quantity as responses were nonetheless made despite 

incorrect trials being more likely to occur when external sensory evidence is ambiguous.  In other words, 

these ERPs are more closely associated with the choice that was made (i.e., internal estimate of 

evidence) rather than the external sensory evidence. 

Fig. 5.  (a-d): Grand average waveforms from electrode site Pz.  The onset-locked P300 signal is depicted 

in the left-hand column for (a) easy and (c) ambiguous trials.  The response-locked CPP signal is depicted 

in the middle column for (b) easy and (d) ambiguous trials.  In these CPP plots, the identified time 
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window of interest where slopes differ from zero, indicating signal buildup, is marked by the solid black 

line at the bottom.  Group difference in slope is marked by the solid purple line at the bottom.  Blue and 

red lines relate to the late and early responders, respectively.  Shading around the lines reflect the 95% 

confidence interval.  (e-f): Single-trial plots for (e) easy and (f) ambiguous trials show the temporal 

relationship between the neural signal from the electrode site Pz (normalized relative to each individual’s 

baseline average) and decision time (curved black line).  P300 can be noted early in the trial whereas CPP 

can be observed preceding the time of decision.  (g-h): Topographical maps for (g) onset- and (h) 

response-locked activity depicted at various time points. 

 

Trial-by-trial Variations in Neural Signals Modulates Decision Parameters 

Though we did not observe discernable differences when examining neural signals alone, one might 

nonetheless postulate that these signals may relate differently to decision parameters depending on 

group affiliation and condition.  We thus assessed whether decision parameters, as estimated by the 

HDDM, are modulated by EEG neural signals.  To this end, we examined the relationship between the 

decision parameters and neural signals at a trial-by-trial level to estimate their regression coefficient.  

Non-neural HDDM models where both decision threshold and drift rate varied as a function of condition 

had improved model fit (difference in DIC=-1262.89) compared with just threshold (DIC=-86.1) or just 

drift rate (DIC=-1236.46).  Moreover, allowing the decision threshold and drift rate to vary 

parametrically with P300 amplitude and CPP buildup, respectively, yielded a better fitting model (DIC=-

1272.87) compared to just P300 (DIC=-86.15), CPP (DIC=-1243.81), or no neural signal (DIC=-1236.46).  

Allowing decision threshold to vary with N170 did not improve model fit (DIC=87.97), suggesting it does 

not reflect the decision evidence used – at least in the context of the DDM.  In sum, our best fitting 
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model was one that allowed for decision threshold and drift to vary by condition, with the P300 

influencing threshold and the CPP drift rate, respectively. 

Trial-by-trial modulation of P300 amplitude (Fig 6a & c) was parametrically related to higher decision 

thresholds, but only in LRs and only for ambiguous trials (99.20% posterior probability > 0).  This is 

confirmed in the interaction analysis; P300 was significantly higher on ambiguous compared to easy 

trials among LRs (95.33% posterior probability > 0).  Regression coefficients indicate all other 

relationships were not significant.  This is in keeping with the P300 reflecting sensory evidence 

accumulation, as a higher decision threshold in longer (ambiguous) trials would lead to increased area 

under the curve of the evidence and hence greater EEG signal (Kelly and O'Connell, 2015). Our results 

suggest that, in LRs, the P300 may therefore reflect the effect of a “caution” or “inverse-urgency” signal, 

i.e. elevated decision threshold, when the environment lacks strong information for one choice over the 

other. In ERs, however, the relationship between P300 and decision threshold is not seen, probably due 

to the short latency to respond. 

CPP, as explained above, is thought to index the time-varying amount of information available, and 

thereby the drift rate (Fig 6b & d).  Among ERs, CPP was related to lower drift rate on easy trials (99.99% 

posterior probability < 0), likely because these individuals still tend to respond relatively early on easy 

trials and at points of low level of information.  However, on ambiguous trials, CPP was in fact related to 

higher drift rate in ERs (97.98% posterior probability > 0).  Interaction analyses suggest that CPP was 

significantly related to greater increases in drift rate in ambiguous compared to easy trials among ERs 

(99.90% posterior probability > 0) and a similar trend was noted among LRs (91.41% posterior 

probability > 0).  This supports the notion that CPP indexes an accumulating decision variable.  

Moreover, given that ERs perform around chance on ambiguous trials but still demonstrate high levels 

of CPP signal buildup suggests that CPP may also index an alternative parameter no captured by the 

DDM which drives decision-making, even when the actual evidence is ambiguous. 
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Fig. 6.  Bayesian posterior probability densities for modulation of decision parameters estimated from 

the hierarchical drift diffusion model by neural signals.  Peaks reflect the best estimates, while width 

represent uncertainty.  Simple effects of (a) P300 on decision threshold and (b) CPP on drift rate are 

depicted in the upper row.  Interaction effect of (c) P300 (d) and CPP on decision threshold and drift rate, 

respectively, with condition are depicted in the lower row.  A more positive regression coefficient 

indicates ambiguous > easy. 

 

CPP Reflects a Combination of Evidence Accumulation and an Evidence-Independent Urgency Signal 

We hypothesized that the CPP signal buildup across the entirety of a trial reflects a combination of both 

the sensory evidence available in the environment and an evidence-independent urgency signal.  As 

discernable from the waveform plot (Fig. 5d), CPP nonetheless ramps in time among ERs despite their 
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decisions often being made in situations of ambiguous sensory evidence. This raises the possibility that 

CPP reflects a multiplicative effect of evidence and urgency as in eq. (2). We therefore tested a second 

model that incorporates an urgency signal (Fig. 7; described in Methods).  As expected, the estimated 

urgency signal was significantly lower for the LR (mean=1.73±1.27) compared to the ER 

(mean=6.60±3.39) group (U=26.5, p<.0001). 

The predicted neural signal from a model that included the evidence-independent urgency signal 

significantly related to our actual recorded CPP signal (β=43.74, p=.023, 95%CI=[6.17, 81.33]).  We did 

not observe this with the predicted neural signal from the DDM (β=7.155, p=.706, 95%CI=[-30.07, 

44.38]), without the urgency signal.  A pairwise Spearman correlation indicates that our DDM and HDDM 

yielded highly similar decision threshold estimates (rho=.951, p<.0001) and are, therefore, comparable.  

Taken together, our findings confirm that the observed CPP signal fits with predictions of the UGM (eq. 

2 and Fig. 7). 

 

Fig. 7.  Schematic of the urgency gating model.  Sensory evidence is first differentiated and filtered.  The 

resulting signal (x) is then multiplied by a subject’s evidence-independent urgency signal (u) that grows in 

time.  The combined signal together forms the model’s predicted neural signal (y).  Green lines depict a 
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neural signal that incorporates an urgency signal whereas grey lines do not.  Once the predicted neural 

signal crosses a decision threshold, a decision is made. 

 

Relationship between ERPs and Oscillatory Fluctuations in EEG Signals 

 

 

Fig. 8  (a) Average time-frequency power across all trials.  Data is resampled to match onset (timepoint 

0) and response (timepoint 1).  A strong early theta power and a late alpha power can be observed.  

Heatmap depicts strength of power, as compared to baseline (-500ms to onset), with warmer and colder 

colours reflecting higher or lower power, respectively.  (b-e) Scatterplots with regression lines depicting 

correlation between ERPs of interest (i.e., P300 and CPP) and EEG oscillatory power (i.e., early theta and 

late alpha). 

Difference frequencies of EEG oscillations have been previously implicated in perceptual decisions (e.g., 

Cavanagh et al., 2011a; Klimesch, 2012).  Here, we aimed to link our ERPs to these bands of EEG 

oscillations.  Our paradigm allowed us to identify when in the decision-process this signal peaked.  We 

observed an early theta power near stimulus onset and a late alpha power close to the time of response.  
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Pairwise Spearman correlations indicate that early mid-frontal theta power was related positively to 

both P300 maximum amplitude (rho=.329, p=.012) and CPP buildup (rho=.411, p=.001).  However, late 

posterior alpha did not relate significantly to either P300 (rho=.116, p.389) or CPP (rho=.147, p=.274).  

No other significant correlation was observed between either the early or late power of other frequency 

bands and our ERPs of interest. 

 

Discussion 

The current study interrogates the neural determinants of perceptual decision-making in humans by 

isolating discrete EEG signatures associated with the parameters of a computational model. We used 

ERP to identify correlates of the sensory evidence and decision variable (Gold and Shadlen, 2007; Kelly 

and O'Connell, 2015), and urgency signaling (Cisek et al., 2009; Thura et al., 2012). By using a slowly 

morphing facial stimulus with variable transition rates, we were able to dissociate a sensory evidence 

accumulation component (the P300, time-locked to stimulus onset) and a decision variable (the CPP, 

time-locked to the choice). This allowed us to link the CPP to an accumulating decision variable by 

showing that it builds up to the time point of the decision and is proportional to the drift rate from the 

DDM. Moreover, we demonstrate that CPP best reflects the product of evidence and a linear urgency 

signal as predicted by the urgency gating model and is not accounted for by the DDM.  

We tested the urgency gating model by using a slowly morphing stimulus with ambiguous trials, in which 

there was no evidence early on favoring one response over the other (Cisek et al., 2009). As in our 

previous work (Yau et al., 2020), our volunteer cohort spontaneously separated into early and late 

responders. The early responder group consistently responded faster, even in easy trials, and performed 

at chance in ambiguous trials as they responded before the facial emotion information had appeared. 

Nonetheless, the early responders had evidence of ramping CPP activity, which can best be explained by 
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the presence of a multiplicative urgency signal driving the early decision. This endogenous urgency 

signal varied between individuals, suggesting that it may be thought of as a cognitive trait (Carland et al., 

2019).  

We found that the domain-general CPP signal gradually builds throughout the trial, ramping up steeply 

close to decision, and resembled characteristics of a neural signature of decision formation.  As with 

previous studies (Kelly and O'Connell, 2013; van Vugt et al., 2019), the peak of CPP activity temporally 

preceded that of the response, suggesting it reflects an intermediate level in the decision hierarchy 

between stimulus onset and motor action.  Further supporting the role of CPP in evidence accumulation, 

we found that its amplitude covaried with the drift rate parameter from the DDM, though this 

relationship was context-dependent and modulated by individual differences in tendencies to wait.  

Importantly, our results challenge the notion that CPP solely traces sensory evidence (O'Connell et al., 

2012) in two key ways: (i) CPP was related to higher drift rate in situations of high, compared to low, 

ambiguity in the decision environment, and (ii) the group of subjects who tended to respond early in the 

trial when sensory evidence is low, and performed around chance, still demonstrated CPP signal 

buildup.  These results identify the CPP as a decision variable, and dovetail with recent findings that CPP 

is mediated by subjective evidence and perceived decision confidence, over and above the sensory 

evidence (Herding et al., 2019; Tagliabue et al., 2019).  Although we cannot identify the source of the 

CPP, a combined fMRI-EEG study found the same posterior distribution of the CPP shown here (Fig. 5h) 

and localized its origin to the supplementary motor area (Pisauro et al., 2017). 

Our findings lend support to the consideration that the decision variable reflects a combination of 

sensory evidence and a dynamic urgency signal that pushes one to commit to a choice even if sensory 

evidence is weak (Cisek et al., 2009).  It must be noted that the evidence-independent urgency signals 

could be misconstrued as drift rate or threshold effects in pure evidence accumulation models; to 

disambiguate the two, one needs to dynamically manipulate the amount of information presented 
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(Thura et al., 2012), as in the present study. Indeed, neural signals predicted by a model that accounts 

for an individual’s urgency signal fit better with our observed CPP signal than that predicted by the 

conventional drift diffusion model.  Note that this urgency signal was estimated per subject and reflects 

a global mechanism affecting decision-making that is not thought to be specific to any one sensory 

modality.  Such a global gain modulation may not only manifest in the firing rate of neurons tracking the 

evolving decision process; urgency may influence processes both early and late in the decision hierarchy 

such as in the gain of sensory inputs to decision circuits (Heitz and Schall, 2013) and in downstream 

regions involved directly with motor execution (Thura and Cisek, 2016, 2017; Steinemann et al., 2018).   

Finally, the use of relatively long trial times with smooth sensory transitions allowed us to temporally 

disentangle the CPP from it’s spatially overlapping counterpart, the P300.  The P300 has been frequently 

implicated in decision-making since it’s discovery (Sutton et al., 1965) and several lines of evidence have 

converged to show that the P300 component serves as a bridging step between stimulus processing and 

response preparation (Donchin and Coles, 1988; Polich, 2007; San Martín et al., 2013), though there is 

little consensus regarding its precise functional role. Here, we demonstrated by onset-locking to the 

visual stimulus that P300 was related to increased decision thresholds only in individuals tending to wait 

when information is ambiguous. This suggests that the P300 is under the influence of a caution signal 

setting a higher decision threshold in late responders. One prominent theory on the biological origins of 

P300 amplitude is that it is a cortical manifestation of the phasic locus-coeruleus-noradrenergic 

orientation response which potentiates information processing and prepares or facilitates a behavioral 

response to the eliciting stimulus (Swick et al., 1994; Nieuwenhuis et al., 2011). This may underpin the 

famous sensitivity of the P300 to stimulus probability (Mars et al., 2008; Lucci et al., 2016) and motor 

inhibition (Smith et al., 2008) – concepts which, in the terminology of the evidence accumulation 

framework, translate to changes in the decision threshold. Unlike the P300, the N170, which is also 

observable by time-locking the EEG signal to the onset of face presentation, is linked to early encoding 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.323683
http://creativecommons.org/licenses/by/4.0/


31 
 

of facial features and not thought to encode higher level features such as emotion (Eimer, 2011); as 

such, it did not correlate with any parameters of the DDM. Collectively, our findings suggest that the 

P300 and CPP are dissociable and play different roles in the decision process.  The short trial time 

implemented in previous studies may have led to the theory that they are one and the same (Verleger et 

al., 2005; O'Connell et al., 2012; Twomey et al., 2015). 

Although the notion of urgency in decision-making has been gaining momentum, there remains debate 

how a hypothetical urgency signal is incorporated into the decision process and where it originates.  One 

potential alternative interpretation of our findings is that decisions results from boundary adjustments 

over the course of a trial.  Previous psychophysical studies in humans have found collapsing bound to 

improve model fit (Tajima et al., 2016; Palestro et al., 2018), though negative findings exists (Hawkins et 

al., 2015; Voskuilen et al., 2016). This may be a matter of interpretation: an increasing urgency signal is 

mathematically equivalent to a symmetrically collapsing decision threshold.  However, as with other 

studies investigating the neural signals of urgency (Cisek et al., 2009; Thura et al., 2012), results from our 

study indicates that urgency works via a dynamic gain in evidence accumulation that increases with 

elapsing time.  For simplicity, we utilized a minimalistic UGM (equation 2) to make it comparable with 

the DDM; however,  it is possible that the baseline or starting point of the dynamic gain is non-zero and 

can be an additional parameter to fit (Thura et al., 2014; Trueblood et al., 2020).  Nonetheless, open 

questions remain regarding where urgency might be generated in the brain.  According to the 

affordance competition model, the basal ganglia are thought to bias decisions via cortico-striatal 

connections (Cisek, 2007) and neural recordings in monkeys suggest that the urgency signal comes 

through the output nuclei of the basal ganglia (Thura and Cisek, 2017). In agreement with this proposal, 

preliminary findings in humans point to the caudate as a potential root of the urgency signal in our task 

(Yau et al., 2020).  However, there are other brain regions that could also encode urgency, for example, 
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the locus coeruleus (Murphy et al., 2016).  Further study is warranted to better identify the source of 

the urgency signal in the brain. 

 

Conclusion 

Our results reveal how different decision parameters may be reflected in neural signals. In particular, we 

demonstrate that the CPP, which behaves as a developing decision variable, is a reflection of the sensory 

evidence available in the decision environment combined with an endogenous urgency signal that grows 

in time. By embedding these neural signals into a computational framework, it is possible to generate 

testable predictions about how different parameters should vary as a function of specific stimulus 

properties such as discriminability.  These mechanisms expose principles of cognitive function in general 

and can pave a new and more precise understanding of how clinical brain disorders and experimental 

manipulations impact on decision-making in the human brain. 
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