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ABSTRACT 

 

Background: The protozoan parasites in the Cryptosporidium genus cause both acute diarrheal 

disease and subclinical (i.e. non-diarrheal) disease. It is unclear if the microbiota can influence 

the manifestation of diarrhea during a Cryptosporidium infection.  

  

Methods: To characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the 

microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal 

samples was evaluated using 16S rRNA gene sequencing. Additionally, the microbiome 

composition prior to infection was examined to test whether a preexisting microbiome profile could 

influence the Cryptosporidium infection phenotype.   

 

Results: Fecal microbiome composition was associated with diarrheal symptoms at two 

timepoints. Megasphaera was significantly less abundant in diarrheal samples when compared 

to subclinical samples at the time of Cryptosporidium detection (log2(fold change) = -4.3, p=10-10) 

and prior to infection (log2(fold change) = -2.0, p=10-4). Random forest classification also identified 

Megasphaera abundance in the pre- and post-exposure microbiota.as predictive of a subclinical 

infection.  

 

Conclusions: Microbiome composition broadly, and specifically low Megasphaera abundance, 

was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection. 

This observation suggests that the gut microenvironment may play a role in determining the 

severity of a Cryptosporidium infection.  
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INTRODUCTION 

Protozoan parasites in the Cryptosporidium genus cause both acute diarrhea and subclinical (i.e. 

non-diarrheal) disease, and both clinical outcomes are associated with poor physical and 

neurocognitive growth in infants [1–6]. These parasites are the fifth leading cause of diarrhea in 

young children [7] and recent studies have estimated the global burden of Cryptosporidium 

diarrhea mortality to be as high as 50,000 deaths annually [8]. This burden is disproportionately 

borne by young children [9]. Importantly, no therapies exist to treat Cryptosporidium infection in 

children or immunocompromised individuals [10]. Thus, there is a pressing need to prevent 

cryptosporidiosis mortality. 

 

Understanding the difference in the host, parasite, and environment during acute diarrheal and 

subclinical infections may reveal new therapeutic solutions. Human polymorphisms are 

associated with an increased host susceptibility to cryptosporidiosis; however, these mutations 

do not completely explain the differences in infection outcomes [19,20]. Parasite genetics (within 

and across species) have been associated with differences in their host range [16,21–23]. The 

role of the microbiome upon infection by Cryptosporidium has been examined in healthy adults 

[24] and animals [25,26];  but its role in differentiating diarrheal and subclinical infections is not 

known and nor is the impact of any differences in the microbiome composition occurring during 

infant cryptosporidiosis. 

 

Here, we interrogate the association between diarrheal status during cryptosporidiosis and a 

child’s microbiome using fecal samples from infants living in Mirpur and Mirzapur, Bangladesh. In 

Mirpur, Cryptosporidium diarrhea was frequent (24% of infections) and detected Cryptosporidium 

species included Cryptosporidium hominis, parvum, and meleagridis with C. hominis as the most 

common. In contrast, most infections in Mirzapur were subclinical (98%) and Cryptosporidium 

meleagridis was the most common detected species [1]. Because Cryptosporidium-associated 
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diarrhea was infrequent in Mirzapur and most infections involved C. meleagridis rather than C. 

hominis or C. parvum, the association between diarrheal status and microbiome composition in 

infants in Mirzapur could not be decoupled from an alternative infection phenotype caused by C. 

meleagridis. We therefore focused our analysis on Mirpur due to the variation in diarrheal status 

and the dominance of the Cryptosporidium hominis species in this population. We found that the 

microbiota demonstrated high variability between children but despite this, microbiota 

composition and a low abundance of Megasphaera were associated with diarrheal symptoms 

both at the time of Cryptosporidium detection and prior to infection. Thus, we propose that 

Megasphaera may prevent acute diarrhea during parasite infection or is a biomarker for other 

unknown protective factors.  

 

METHODS 

Cohort: Children were enrolled into a community-based prospective cohort study of enteric 

infections which was established at the urban and rural Bangladesh sites, Mirpur and Mirzapur 

respectively (Figure 1A, “Cryptosporidiosis and Enteropathogens in Bangladesh”; 

ClinicalTrials.gov identifier NCT02764918) [1,28]. Stool samples were collected monthly and 

during diarrheal episodes. Diarrhea was defined as three or more loose stools within 24 hours, 

as reported by the child’s caregiver. Both a pan-species and species-specific qPCRs were used 

to identify the species of the Cryptosporidium infecting the children (Steiner et al. 2018). If positive 

samples were collected with an interval of less than or equal to 65 days they were regarded as 

derived from one infection event [1,28]. In addition to the collection of stool samples, a study 

database was created containing clinical information on each episode of diarrhea a child 

experienced, antibiotic consumption, and anthropometric measurements as well as data on the 

household demographics [1]. A subset of the Cryptosporidium-positive and corresponding ‘pre-

detection’ Cryptosporidium-negative surveillance samples were analyzed. The data from 

Mirzapur (Figure 1A right) were only included in the post-hoc analysis represented in Figure 4F 
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due to the limited amount of information on the antibiotic history of these children, the rarity of 

diarrheal cases at this site, and the high prevalence of C. meleagridis at the site relative to the 

more common C. hominis species detected in Mirpur. 

Figure 1: Study design. A: Overall cohort design and sample collection. For more information, see [1,28]. 
Samples from Mirzapur were only used in post-hoc analysis in Figure 4F. B: Paired samples were 
selected to assess Cryptosporidium-positive samples (time-of-detection, TOD) and the preceding 
surveillance sample (pre-detection, PD). Cryptosporidium-positive samples were identified from both 
monthly surveillance and diarrheal stool samples, generating our subclinical and diarrheal sample groups. 
 

258 infants enrolled and 
consented

138 Cryptosporidium infections

Mirzapur

130 samples analyzed:
- 1 diarrheal sample
- 64 non-diarrheal samples
- 65 pre-detection samples

145 surveillance and diarrheal 
samples sequenced

250 infants enrolled and 
consented

240 Cryptosporidium infections

182 samples analyzed:
- 31 diarrheal samples 
- 60 non-diarrheal samples
- 91 pre-detection samples

Mirpur

235 surveillance and diarrheal 
samples sequenced

samples removed if:
unpaired pre- and time-of-detection samples

insufficient number of high quality sequencing reads
missing data

child left study prior to 2nd birthday

Followed until 
2 years old

Enrolled at
birth

monthly surveillance 
stool samples collected If Cryptosporidium 

is detected in a diarrheal 
or surveillance stool,

(1) sequence
(2) sequence previous

surveillance

last surveillance 
stool within 40 days

of detection

diarrheal samples
collected

time-of-detection
(TOD) sample

pre-detection
(PD) sample

A

B

used for Figure 4Fused for Figures 1-4
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The study was approved by both the Ethical and Research Review Committees of the 

International Centre for Diarrhoeal Disease Research, Bangladesh, and by the Institutional 

Review Board of the University of Virginia. For each child, informed written consent was obtained 

from their parent or guardian. 

 

DNA extraction: On the day of collection, stool samples were brought to the study clinic and 

transported to our laboratory at 4°C, where they were aliquoted in DNase- and Rnase-free 

cryovials for storage at -80°C. For DNA extraction, samples were thawed and 200mg removed 

for total nucleic acid extraction; see [1]. To verify the extraction protocol, phocine herpesvirus 

(EVAg European Virus Archive Global, Erasmus MC, Department of Virology, Rotterdam, The 

Netherlands) and bacteriophage MS2 (ATCC 15597B; American Type Culture Collection, 

Manassas, VA) were added into each sample as positive controls.  

 

16S ribosomal sequencing and processing: The V4 region of the 16S rRNA gene was 

amplified using the previously described phased Illumina-eubacteria primers and protocol from 

[29,30] with the minor modification that the illumina MiSeq v3 chemistry was used to generate 

300bp paired-end reads. Sequencing was performed by the University of Virginia’s Genome 

Analysis and Technology Core. Negative controls included extraction blanks throughout the 

amplification and sequencing process. As positive controls, DNA was extracted from the HM-

782D Mock Bacteria Community (ATCC through BEI Resources) and analyzed on each 

sequencing run (Supplemental Figure 1A-C). Additionally, a PhiX DNA library was added at 

20% into each sequencing run to increase genetic diversity prior to parallel sequencing in both 

forward and reverse directions using the Miseq v3 kit and machine (per the manufacturer’s 

protocol).  
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Supplemental Figure 1: Sequencing controls and preprocessing. A-B: ASVs detected from run 1 (A) and 
run 2 (B) positive controls containing purified DNA from BEI Resources’ HM-782D mock community. C: 
Members of the HM-782D mock community. Positive controls for each run had the expected read 
assignments. D: Histogram of reads throughout the preprocessing pipeline; dotted line represents the 
distribution mean. Samples were sequenced deeply, permitting subsampling of 10,000 reads to remove 
biases introduced by variable read depth. 
 

Sequencing produced 48,146,401 reads with a mean of 118,295.8 and median of 121,519 

reads per sample (raw reads from Supplemental Figure 1D). Sequence adaptors were then 

removed using Bbtools [31] and primers were removed using CutAdapt [32]; quality-based filtering 

was performed with DADA2 [33]. Quality filtration reduced the total number of reads to a mean of 

59,202.2 reads per sample (Supplemental Figure 1D). In brief, reads were removed and trimmed 

based on overall read quality and base pair quality: forward and reverse reads were trimmed to 

250 or 200 base pairs and removed if there were more than 3 or 6 expected errors, respectively. 

Reads were also truncated at the first instance of a quality score (Phred or Q score) of 2 or less. 

Next, forward and reverse reads were merged with only 1 mismatch permitted. Lastly, taxa 

assignments were made using DADA2’s naive Bayesian classifier method and the Ribosomal 

Database Project's Training Set 16 (release 11.5) reference database [33] and reads that did not 

A

D

B Acinetobacter baumannii, strain 5377
Actinomyces odontolyticus, strain 1A.21
Bacillus cereus, strain NRS 248
Bacteroides vulgatus, strain ATCC® 8482
Clostridium beijerinckii, strain NCIMB 8052
Deinococcus radiodurans, strain R1 (smooth)
Enterococcus faecalis, strain OG1RF
Escherichia coli, strain K12, substrain MG1655
Helicobacter pylori, strain 26695
Lactobacillus gasseri, strain 63 AM
Listeria monocytogenes, strain EGDe 
Neisseria meningitidis, strain MC58
Propionibacterium acnes, strain KPA171202
Pseudomonas aeruginosa, strain PAO1-LAC
Rhodobacter sphaeroides, strain ATH 2.4.1
Staphylococcus aureus, strain TCH1516
Staphylococcus epidermidis, FDA strain PCI 1200 
Streptococcus agalactiae, strain 2603 V/R
Streptococcus mutans, strain UA159
Streptococcus pneumoniae, strain TIGR4

C
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map to bacteria (including human contaminants, archaea, and mitochondrial or chloroplast DNA) 

were removed, resulting in a mean of 27,809 reads per sample.  

Samples with fewer than 10,000 reads and unpaired samples (those with no pre-detection 

or time-of-detection sample within 42 days) were removed from consideration; all were 

subsampled to a uniform depth of 10,000 reads per sample to correct for differences in 

sequencing depth across samples. Following these filtration and processing steps, 2953 amplicon 

sequence variants (ASVs) and 182 stool samples remained in the dataset.  

 The 182 paired pre-detection and time-of-detection samples (91 pre- and 91 post-

detection), as well as additional positive and negative control samples (amplification blanks) and 

additional samples that did not pass our selection criteria, were split into two sequencing runs to 

increase the sequencing depth. The first sequencing run included all pre-detection samples and 

the second sequencing run included all time-of-detection samples. As an unintentional result of 

this choice, sequencing batch effects may result in spurious differences between pre- and time-

of-detection samples, thus analyses are focused on symptomatic vs. subclinical samples within 

each time point (i.e., within the same sequencing batch). 

 

Statistical and machine learning analyses: All of the following data processing and statistical 

analyses were performed in R [33–37]; see Supplemental Material for code and software 

versions. Appropriate statistical tests were selected and are described as introduced throughout 

the Results.  

For machine learning analyses, random forest analysis was used to classify subclinical or 

diarrheal samples using associated metadata and/or amplicon sequence variant (ASV) 

abundances, and the trained classifiers were used to identify individual variables that were 

important for prediction accuracy [38]. Within a random forest classifier, individual trees were built 

from subsets of the data and model performance was evaluated by predicting the class of each 

sample using only the trees in the random forest that were not constructed using that sample (i.e., 
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out-of-bag performance). Here, variables were ranked by their effect on classifier certainty, which 

influenced overall accuracy, using the mean decrease in node impurity (via the Gini coefficient). 

Variables that maximally split samples by classification group yielded a larger forest-wide node 

impurity and, thus, more important variables had a higher mean decrease in node impurity. 

Analytic code is provided in the supplemental material; analyses and figure generation were 

performed in R [37,39–51]. 

 

RESULTS 

Prevalence of diarrhea and antibiotic use 

Infants were enrolled into a prospective cohort from Mirpur, Dhaka, Bangladesh to study enteric 

infections (Figure 1A, left); this cohort was part of a larger assessment of diarrhea in Bangladesh, 

published previously (Figure 1A; [1]). Each child was monitored by community health workers for 

enteric disease, including collection of monthly surveillance and diarrheal stool samples during 

the first two years of life. Diarrhea and antibiotic use were common in this cohort (Figure 2A & 

Supplemental Figure 2), and Cryptosporidium spp., including C. hominis and meleagridis, were 

frequently detected during diarrhea (Table 1). These parasites cause both subclinical and overt 

diarrheal infections [1].  

Figure 2: Diarrheal infection and antibiotic treatment were common and heterogenous in infants from 
Mirpur. A: Prevalence of diarrhea. Frequency of diarrheal episodes per child. Full Mirpur cohort in grey, 

A CB
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red subset indicates the children whose samples were used in the microbiome study (and all subsequent 
figures). B: All-cause diarrhea was heterogenous among children with divergent Cryptosporidium 
outcomes. Number of diarrheal events per child based on cumulative Cryptosporidium status, both over 
the first two years of life. C: Antibiotic usage was heterogenous among children with divergent 
Cryptosporidium outcomes. Number of antibiotic events per child based on cumulative Cryptosporidium 
status, both over the first two years of life. Combination therapies were treated as separate doses. For B 
and C, the full cohort was used and statistics are shown if significant. For B and C, each box represents 
the median (inner line), 25th percentile and 75th percentile. Upper whiskers extend from the top of the box 
to the largest value within 1.5 times the interquartile range (distance between 25th and 75th percentile), 
and the lower whisker extends to the smallest value within 1.5 time the interquartile range. P-values were 
generated from a t.test without multiple testing correction. 
 

Table 1: Sample summary statistics for samples from Mirpur.  

 Subclinical infections Diarrheal infections Total 

Children 72 

 Male/Female 28/44 

Children with repeat infections in dataset 19 

Samples 182 

 Number of pre-detection 
samples 

60 31 91 

Number of time-of-
detection samples 

60 31 91 

Age at collection (in days) Mean = 362.5 
SD = 128.8 

Mean = 321.3 
SD = 136.3 

Mean = 348.7 
SD = 132.1 

Days between pre-
detection & time- of-
detection sample* 

Mean = 31.1 
SD = 4.6 

Mean = 19.2 
SD = 9.1 

Mean = 27.0 
SD = 8.6 

Parasite burden at time-of-
detection (pan-
Cryptosporidium qPCR Ct) 

Mean = 28.6 
SD = 6.2 

Mean = 29.9 
SD = 7.3 

Mean = 29.0 
SD = 6.6 

Positive qPCR (for positive 
samples)  

pan-Cryptosporidium: 
100% 
C. hominis: 60% 
C. meleagridis: 7% 

pan-Cryptosporidium: 
100% 
C. hominis: 58% 
C. meleagridis: 6% 

pan-
Cryptosporidi
um: 100% 
C. hominis: 
59%  
C. 
meleagridis: 
7% 

First infection or repeat 
infection? (N/N) 

42/18 28/3 70/21 

SD = standard deviation. *Statistically different between subclinical and diarrheal infections via t test (p = 4*10-8). All 
other comparisons between clinical types were not significantly different using a t test (all comparisons except first v. 
subsequent infection) or Chi Squared test (first v. subsequent infection). 
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Children who had at least one symptomatic episode of cryptosporidiosis had more 

cumulative episodes of diarrhea than children with exclusively subclinical infections or no 

Cryptosporidium-positive stool samples (Figure 2B). Additionally, children with only diarrheal 

episodes (i.e. no observed subclinical cryptosporidiosis) had more frequent exposure to 

antibiotics than children who had never tested positive for Cryptosporidium (Figure 2C). Frequent 

antibiotic use occurred (Supplementary Figure 2A), but there was no difference in antibiotic use 

during the month prior to infection between children with subclinical or diarrheal infections 

(Supplementary Figure 2B). 

Supplemental Figure 2: Frequent antibiotic use was age-dependent but homogenous between subclinical 
and diarrheal cases of Cryptosporidium in Mirpur. A: Antibiotic usage by drug. Antibiotics were prescribed 
for both diarrhea and other infections (e.g. respiratory). Combination therapies are listed for each 
subcomponent and multiple uses on a single drug within a month are listed as distinct episodes. Dotted line 
indicates the child’s first birthday. B: Children with diarrheal cryptosporidiosis in the microbiome sub-cohort 
took no more doses of antibiotics in the month leading up to the Cryptosporidium-positive stool sample than 
children with subclinical cryptosporidiosis, as determined using a t-test. Each box represents the median 
(inner line), 25th percentile and 75th percentile. Upper whiskers extend from the top of the box to the largest 
value within 1.5 times the interquartile range (distance between 25th and 75th percentile), and the lower 
whisker extends to the smallest value within 1.5 time the interquartile range. 
  

Microbiota Sequencing 

Given the difference in all-cause diarrheal frequency between children with subclinical and 

diarrheal cryptosporidiosis (Figure 2B), we hypothesized that microbiome composition may 

A B
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influence the development of acute symptoms during cryptosporidiosis. 16S rRNA gene 

sequencing was performed on both the time-of-detection stool samples (Cryptosporidium-

positive, including subclinical and diarrheal) and the corresponding surveillance stool collected 

immediately prior to the Cryptosporidium-positive sample (pre-detection; Figure 1B) for a subset 

of children who tested positive for Cryptosporidium (Table 1, red in Figure 2A). Pre-detection 

samples were collected within approximately one month of the time-of-detection samples (Table 

1).  

Sequencing produced 48,146,401 reads with a mean of 118,295.8 and median of 121,519 

reads per sample (raw reads from Supplemental Figure 1D). Following quality filtration and 

taxonomy assignment, a mean of 27,809 reads per sample remained permitting us to subsample 

reads to a uniform depth of 10,000 reads per sample to correct for differences in sequencing 

depth across samples.  

 

Microbiota diversity 

Following sequencing, taxonomy was assigned to reads using DADA2. Nearly 25% of reads were 

assigned to an amplicon sequence variant (ASV) belonging to the genus Bifidobacterium (Figure 

3A) that represents a number of functionally-diverse species which colonize the infant 

gastrointestinal tract soon after birth. Microbiota alpha diversity measures (richness and 

evenness) were not statistically significantly different between sample groups (two-way ANOVA, 

post-hoc testing via Tukey’s Honestly Significant Difference method significance cutoff of p-value 

< 0.05; Figure 3B-C). Despite this lack of significance (p > 0.21 for all comparisons), the 

microbiota of infants who had diarrheal infection was, on average, less diverse than infants with 

subclinical infection, both prior to and at the time of infection (Figure 3B-C). Moreover, this cohort 

exhibited high inter-individual variation as many ASVs were specific to just a few children. Only a 

few ASVs were found in >50% samples (Figure 3D). 
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Figure 3: Microbiome samples were highly variable. A: Most abundant amplicon sequence variants (ASVs) 
in the study. Only the top 10 most abundant ASVs are shown. Nearly 25% of all reads were assigned to an 
ASV in the Bifidobacterium genus. B: Richness of each sample, or the number of ASVs present in a sample, 
was not significantly different across sample groups. For B and C, each box represents the median (inner 
line), 25th percentile and 75th percentile. Upper whiskers extend from the top of the box to the largest value 
within 1.5 times the interquartile range (distance between 25th and 75th percentile), and the lower whisker 
extends to the smallest value within 1.5 time the interquartile range. C: Evenness was also minimally 
different across sample groups. Evenness is a diversity metric calculated to represent how many different 
species are present and how well distributed those species are across samples; it is calculated using the 
inverse Simpson’s index. No significant differences in evenness was observed amongst any comparisons 
of clinical type (two-way ANOVA with multiple testing correction via Tukey’s Honestly Significant Difference 
method). D: Fraction of all samples containing a particular ASV, ordered by from highest to lowest. Very 
few ASVs were detected in many samples; however, almost all samples contain the most common 
Bifidobacterium ASV. ASVs: Amplicon sequence variants. 
 

Associations between diarrheal symptoms and the microbiota 

To identify compositional differences in the microbiome among sample groups, principal 

coordinate analysis was performed using the Euclidean distance between samples. Pre-detection 

samples overlapped substantially with Cryptosporidium-positive samples and, among positive 

samples, subclinical and diarrheal samples did not separate (permutational multivariate analysis 

A B

DC
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of variance using distance matrices [PERMANOVA], p>0.05, Figure 4A). The change in 

microbiota from pre-detection to time-of-detection for each child was similarly variable for both 

diarrheal and subclinical infections (PERMANOVA, p>0.05, Supplemental Figure 3).  
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Figure 4: Identifying associations between diarrheal symptoms and the microbiota. A: Pre-detection and 
time-of-detection sample microbiota were indistinguishable via principal coordinate analysis using a 
permutational multivariate analysis of variance using distance matrices and a significance cutoff of p < 0.05, 
as were subclinical and diarrheal Cryptosporidium-positive samples. Principal coordinate analysis of ASV 
quantification across all samples using Euclidean distance. B: Univariate statistics identifies ASVs 
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associated with symptoms in the pre-detection samples and time-of-detection samples. Statistically 
significant differential expressed ASVs are colored, whereas grey points represent ASVs that were not 
different or not significantly different, using DESeq2. Large points indicate ASVs that were also identified 
as important using random forest classification, whereas small points were not among the top 15 most 
important variables. Random forest classifiers were built to predict the presence of diarrhea upon 
Cryptosporidium infection. Importantly, purple points represent statistically significant ASVs that were also 
among the most important variables for classifiers made at both timepoints. C: Random forest classifiers 
were built from the time-of-detection (TOD) microbiota (blue) or pre-detection microbiota (red). Area-under-
the-curve (AUC), a metric of classifier accuracy, is listed for each classifier. D: Most important variables, as 
ranked by mean decrease in node impurity (or, Gini importance), from the pre-detection and time-of-
detection classifiers. Important variables were similarly important, within and across models. Of note, age 
was not an important variable in the time-of-detection classifier. E: One ASV assigned to the Megasphaera 
genus was significantly less abundant in diarrheal cases via univariate analyses (at both timepoints) and 
was among the top 15 most important variables for the classifiers for both timepoints. Relative abundance 
of each ASV is plotted for each sample with each box representing the median (inner line), 25th percentile 
and 75th percentile. Upper whiskers extend from the top of the box to the largest value within 1.5 times the 
interquartile range (distance between 25th and 75th percentile), and the lower whisker extends to the 
smallest value within 1.5 time the interquartile range. F: The Megasphaera ASV was also more likely to be 
high-abundance (above dashed line) in samples at the second study site, Mirzapur, where diarrheal 
cryptosporidiosis was less common when compared to Mirpur; however, environmental factors, including 
the causal Cryptosporidium species, were also different in Mirzapur [1]. Increased Megasphaera 
abundance in Mirzapur may partially explain reduced diarrhea associated with cryptosporidiosis in that 
community. ASVs: Amplicon sequence variants. 
 

 
Supplemental Figure 3: The change in ASV quantification (between pre-detection and time-of-detection 
samples) for subclinical and diarrheal samples were also indistinguishable via principal coordinate 
analysis. Principal coordinate analysis of the change in ASV quantification across all samples using 
Euclidean distance. Pre-detection and time-of-detection samples were run on different sequencing runs 
(see Methods) so the biological shift in microbiota might be confounded by the technical shift in run-to-run 
variation. 
 

Given the lack of separation between samples when considering overall microbiome 

composition, univariate analyses were used to identify individual ASVs that were significantly 

different between subclinical and diarrheal samples prior to and at the time of infection (Figure 
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4B). However, univariate statistics rely on assumptions of independence and, thus, may perform 

poorly with microbiome datasets due to correlations between and statistical interactions amongst 

members of the microbiota  [52]. To make robust inferences of the importance of individual ASVs, 

we utilized a univariate approach designed specifically for sparse count data [53] as well as 

random forest classification to consider interactions amongst ASVs. Interpreting the results of 

these two approaches together provided a more stringent assessment of ASV importance.  

 Thus, classification using the random forest models was performed to determine if specific 

members of the microbiota were predictive of the development of diarrheal symptoms; important 

variables from the random forest models are highlighted on the volcano plots that also show the 

results of univariate statistical tests (Figure 4B & C). This machine learning approach was used 

to prioritize the results generated from univariate statistics. Classifier performance using the pre-

detection or time-of-detection microbiome separately yielded predictive models (AUC > 0.6 for 

both prior to and at the time of infection Figure 4C); this performance was similar to the highest-

performing classification models across a metanalysis of case-control clinical microbiome studies 

[54,55].  

Both classifiers supported conclusions drawn by univariate analyses and identified several 

additional ASVs as important to classify subclinical and diarrheal samples (Figure 4B & C). Some 

important microbes for each classifier were not enriched in either sample group (large grey points 

in Figure 4B), this suggested that these ASVs are only important when analyzed in combination 

with others. Despite the effect of antibiotic treatment on the microbiota [56], the addition of a 

child’s antibiotic history did not significantly augment classifier performance (Supplemental 

Figure 4), indicating that there was no interaction between the important ASVs and antibiotic use. 

The infecting Cryptosporidium species (C. hominis or C. meleagridis) were not important variables 

in the random forest models, and child age was not an important variable in the time-of-detection 

model (Figure 4D). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.10.01.323147doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/


18 
 

 
Supplemental Figure 4: Difference in variable importance upon adding antibiotic history data. A: 
Classifiers built from the time-of-detection microbiota, with and without antibiotic history have similar 
performance (A) and identify the same important variables (B), indicating that antibiotic history did not 
add to the information gained from the microbiome. 
 

We focused on ASVs that were identified via both the univariate statistics and machine 

learning approaches. For the pre-detection timepoint, these prioritized ASVs were assigned to 

the Megasphaera, Flavonifractor, Morganella, Collinsella, and Lactobacillus genera; for the time-

of-detection timepoint, these included the same Megasphaera ASV, as well as ASVs assigned to 

Parabacteroides, Enterococcus, Prevotella, Bifidobacterium, Sutterella, Veillonella, Megamonas, 

and Faecalibacterium (Figure 4B & D). Combinations of ASVs were more predictive of diarrhea 

A

B
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than any individual ASV, as evident by the similar Gini importance for all important variables 

(Figure 3D).  

Megasphaera, in particular, was identified at both timepoints and both analytic approaches 

(Figure 4B & E). This Megasphaera ASV also accounted for at least 1% of reads across the 

entire study (Figure 2A). This bile acid-resistant species colonizes the small [57] and large 

intestines [58,59]. It can therefore be a major component of the microbiome at the site of 

Cryptosporidium parasite colonization. The other ASVs that contributed to model performance 

were either less abundant or resided predominantly in the large bowel. Although there were many 

environmental differences between the study sites, this ASV was also more likely to be detected 

at high abundance in our second study site, rural Mirzapur (Figure 4F), despite the observation 

that Megasphaera ASV did not vary with Cryptosporidium species (Supplemental Material). The 

most common Cryptosporidium species at Mirzapur was C. meleagridis rather than the C. hominis 

in Mirpur, but C. meleagridis has been associated with gastrointestinal disease in other studies 

and has also been shown to cause diarrhea in a human challenge experiment [60,61]. Children 

in Mirzapur were however less likely to develop diarrhea upon Cryptosporidium infection; 3% of 

Cryptosporidium-positive stools in Mirzapur were diarrheal, compared to 32% in Mirpur [1].  

 

DISCUSSION 

Here, we identified differences in the microbiota composition and in the abundance of an 

individual ASV, Megasphaera, in infants who had either a subclinical or a diarrheal 

Cryptosporidium infection. Fecal samples from 72 Cryptosporidium-infected children in Mirpur, 

Bangladesh were used to profile the human microbiota during cryptosporidiosis (Table 1, Figure 

1) with 16S rRNA gene sequencing (Figure 3). It is well established that the microbiome shifts 

with child development [62–64], and that it is highly variable in infants under the age of two [65–

67]. There was also universally frequent antibiotic use and enteric infections in this young 
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population (Figure 2C, Supplemental Figure 2, Table 1). It was unsurprising therefore that there 

was a high degree of inter sample variability among these infants’ samples (Figure 3A & D).   

Despite this variation, microbiome composition was predictive of diarrheal symptoms at 

the time of infection and up to a month prior (Figure 4C). Although individual members of the 

microbiome were associated with diarrhea (Figure 4B), no single ASV completely explained the 

clinical type of infection (Figure 4D). This observation is consistent with animal models of infection 

that have highlighted a complex relationship between the microbiota, host, and parasite [68–70]. 

For example, previous work found that antibiotics alone did not sensitize immunocompetent mice 

to infection [25], although certain probiotics [71], antibiotics [72], and deprivation of prebiotics [73] 

could exacerbate disease severity. 

Higher abundance of one ASV, Megasphaera (class: Clostridia), was associated with 

subclinical Cryptosporidium infection whereas its absence or low abundance was more common 

in cases of Cryptosporidium-associated diarrhea (Figure 4B & D). Megasphaera was not 

associated with antibiotic use in this cohort (Supplemental Figure 4) or all-cause diarrhea (i.e. 

total number of diarrheal episodes, Supplemental Material). Megasphaera species can collocate 

in the small intestines [57] with Cryptosporidium, and were more frequently observed at high 

abundance in a community in which diarrhea was rarely seen during cryptosporidiosis (Figure 

4F; [1]). Megasphaera are known to synthesize short chain fatty acids [74], compounds that 

regulate the intestinal homeostasis [75], impact the host immune response [76], and modulate 

osmotic diarrhea [77]. This ability of Megasphaera to produce short chain fatty acids or to 

modulate the host’s immune system through other mechanisms may be protective in attenuating 

disease outcome during Cryptosporidium infection.  Alternatively, Megasphaera may be a 

biomarker for another microbiome- or immune-mediated mechanism of protection from diarrhea. 

 

Conclusion 
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In sum, the microbiome was predictive of Cryptosporidium diarrhea both prior to and at the time 

of infection. Low abundance of one member of the microbiome, Megasphaera, was associated 

with diarrheal symptoms. There is currently no effective drug for treating Cryptosporidium diarrhea 

in children and modulating members of the microbiota such as Megasphaera may be an appealing 

therapeutic strategy.  

 

SUPPLEMENTAL MATERIAL, particularly analytic code, is available at 

https://github.com/maureencarey/cryptosporidium_microbiome. 
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