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ABSTRACT

Background: The protozoan parasites in the Cryptosporidium genus cause both acute diarrheal
disease and subclinical (i.e. non-diarrheal) disease. It is unclear if the microbiota can influence

the manifestation of diarrhea during a Cryptosporidium infection.

Methods: To characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the
microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal
samples was evaluated using 16S rRNA gene sequencing. Additionally, the microbiome
composition prior to infection was examined to test whether a preexisting microbiome profile could

influence the Cryptosporidium infection phenotype.

Results: Fecal microbiome composition was associated with diarrheal symptoms at two
timepoints. Megasphaera was significantly less abundant in diarrheal samples when compared
to subclinical samples at the time of Cryptosporidium detection (logz(fold change) = -4.3, p=107"%)
and prior to infection (logz(fold change) = -2.0, p=10"*). Random forest classification also identified
Megasphaera abundance in the pre- and post-exposure microbiota.as predictive of a subclinical

infection.

Conclusions: Microbiome composition broadly, and specifically low Megasphaera abundance,
was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection.
This observation suggests that the gut microenvironment may play a role in determining the

severity of a Cryptosporidium infection.
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INTRODUCTION

Protozoan parasites in the Cryptosporidium genus cause both acute diarrhea and subclinical (i.e.
non-diarrheal) disease, and both clinical outcomes are associated with poor physical and
neurocognitive growth in infants [1-6]. These parasites are the fifth leading cause of diarrhea in
young children [7] and recent studies have estimated the global burden of Cryptosporidium
diarrhea mortality to be as high as 50,000 deaths annually [8]. This burden is disproportionately
borne by young children [9]. Importantly, no therapies exist to treat Cryptosporidium infection in
children or immunocompromised individuals [10]. Thus, there is a pressing need to prevent

cryptosporidiosis mortality.

Understanding the difference in the host, parasite, and environment during acute diarrheal and
subclinical infections may reveal new therapeutic solutions. Human polymorphisms are
associated with an increased host susceptibility to cryptosporidiosis; however, these mutations
do not completely explain the differences in infection outcomes [19,20]. Parasite genetics (within
and across species) have been associated with differences in their host range [16,21-23]. The
role of the microbiome upon infection by Cryptosporidium has been examined in healthy adults
[24] and animals [25,26]; but its role in differentiating diarrheal and subclinical infections is not
known and nor is the impact of any differences in the microbiome composition occurring during

infant cryptosporidiosis.

Here, we interrogate the association between diarrheal status during cryptosporidiosis and a
child’s microbiome using fecal samples from infants living in Mirpur and Mirzapur, Bangladesh. In
Mirpur, Cryptosporidium diarrhea was frequent (24% of infections) and detected Cryptosporidium
species included Cryptosporidium hominis, parvum, and meleagridis with C. hominis as the most
common. In contrast, most infections in Mirzapur were subclinical (98%) and Cryptosporidium
meleagridis was the most common detected species [1]. Because Cryptosporidium-associated
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diarrhea was infrequent in Mirzapur and most infections involved C. meleagridis rather than C.
hominis or C. parvum, the association between diarrheal status and microbiome composition in
infants in Mirzapur could not be decoupled from an alternative infection phenotype caused by C.
meleagridis. We therefore focused our analysis on Mirpur due to the variation in diarrheal status
and the dominance of the Cryptosporidium hominis species in this population. We found that the
microbiota demonstrated high variability between children but despite this, microbiota
composition and a low abundance of Megasphaera were associated with diarrheal symptoms
both at the time of Cryptosporidium detection and prior to infection. Thus, we propose that
Megasphaera may prevent acute diarrhea during parasite infection or is a biomarker for other

unknown protective factors.

METHODS

Cohort: Children were enrolled into a community-based prospective cohort study of enteric
infections which was established at the urban and rural Bangladesh sites, Mirpur and Mirzapur
respectively (Figure 1A, “Cryptosporidiosis and Enteropathogens in Bangladesh”;
ClinicalTrials.gov identifier NCT02764918) [1,28]. Stool samples were collected monthly and
during diarrheal episodes. Diarrhea was defined as three or more loose stools within 24 hours,
as reported by the child’s caregiver. Both a pan-species and species-specific gPCRs were used
to identify the species of the Cryptosporidium infecting the children (Steiner et al. 2018). If positive
samples were collected with an interval of less than or equal to 65 days they were regarded as
derived from one infection event [1,28]. In addition to the collection of stool samples, a study
database was created containing clinical information on each episode of diarrhea a child
experienced, antibiotic consumption, and anthropometric measurements as well as data on the
household demographics [1]. A subset of the Cryptosporidium-positive and corresponding ‘pre-
detection’ Cryptosporidium-negative surveillance samples were analyzed. The data from
Mirzapur (Figure 1A right) were only included in the post-hoc analysis represented in Figure 4F
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due to the limited amount of information on the antibiotic history of these children, the rarity of
diarrheal cases at this site, and the high prevalence of C. meleagridis at the site relative to the

more common C. hominis species detected in Mirpur.

A Mirpur Mirzapur
250 infants enrolled and 258 infants enrolled and
consented consented
240 Cryptosporidium infections 138 Cryptosporidium infections
235 surveillance and diarrheal 145 surveillance and diarrheal
samples sequenced samples sequenced

samples removed if:
unpaired pre- and time-of-detection samples
insufficient number of high quality sequencing reads
missing data
child left study prior to 2nd birthday

182 samples analyzed: 130 samples analyzed:
- 31 diarrheal samples - 1 diarrheal sample
- 60 non-diarrheal samples - 64 non-diarrheal samples
- 91 pre-detection samples - 65 pre-detection samples
used for Figures 1-4 used for Figure 4F
B pre-detection
(PD) sample
diarrheal samples last surveillance
collected stool within 40 days
\ of detection

Enrolled at H Followed until
birth Ho ° o* oo o H 3 vours old

time-of-detection

monthly surveillance (TOD) sample

stool samples collected If Cryptosporidium
is detected in a diarrheal

or surveillance stool,
(1) sequence
(2) sequence previous
surveillance
Figure 1: Study design. A: Overall cohort design and sample collection. For more information, see [1,28].
Samples from Mirzapur were only used in post-hoc analysis in Figure 4F. B: Paired samples were
selected to assess Cryptosporidium-positive samples (time-of-detection, TOD) and the preceding
surveillance sample (pre-detection, PD). Cryptosporidium-positive samples were identified from both
monthly surveillance and diarrheal stool samples, generating our subclinical and diarrheal sample groups.
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The study was approved by both the Ethical and Research Review Committees of the
International Centre for Diarrhoeal Disease Research, Bangladesh, and by the Institutional
Review Board of the University of Virginia. For each child, informed written consent was obtained

from their parent or guardian.

DNA extraction: On the day of collection, stool samples were brought to the study clinic and
transported to our laboratory at 4°C, where they were aliquoted in DNase- and Rnase-free
cryovials for storage at -80°C. For DNA extraction, samples were thawed and 200mg removed
for total nucleic acid extraction; see [1]. To verify the extraction protocol, phocine herpesvirus
(EVAg European Virus Archive Global, Erasmus MC, Department of Virology, Rotterdam, The
Netherlands) and bacteriophage MS2 (ATCC 15597B; American Type Culture Collection,

Manassas, VA) were added into each sample as positive controls.

16S ribosomal sequencing and processing: The V4 region of the 16S rRNA gene was
amplified using the previously described phased lllumina-eubacteria primers and protocol from
[29,30] with the minor modification that the illumina MiSeq v3 chemistry was used to generate
300bp paired-end reads. Sequencing was performed by the University of Virginia’s Genome
Analysis and Technology Core. Negative controls included extraction blanks throughout the
amplification and sequencing process. As positive controls, DNA was extracted from the HM-
782D Mock Bacteria Community (ATCC through BEI Resources) and analyzed on each
sequencing run (Supplemental Figure 1A-C). Additionally, a PhiX DNA library was added at
20% into each sequencing run to increase genetic diversity prior to parallel sequencing in both
forward and reverse directions using the Miseq v3 kit and machine (per the manufacturer’s

protocol).
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Supplemental Figure 1: Sequencing controls and preprocessing. A-B: ASVs detected from run 1 (A) and
run 2 (B) positive controls containing purified DNA from BEI Resources’ HM-782D mock community. C:
Members of the HM-782D mock community. Positive controls for each run had the expected read
assignments. D: Histogram of reads throughout the preprocessing pipeline; dotted line represents the
distribution mean. Samples were sequenced deeply, permitting subsampling of 10,000 reads to remove
biases introduced by variable read depth.

Sequencing produced 48,146,401 reads with a mean of 118,295.8 and median of 121,519
reads per sample (raw reads from Supplemental Figure 1D). Sequence adaptors were then
removed using Bbtools [31] and primers were removed using CutAdapt [32]; quality-based filtering
was performed with DADAZ2 [33]. Quality filtration reduced the total number of reads to a mean of
59,202.2 reads per sample (Supplemental Figure 1D). In brief, reads were removed and trimmed
based on overall read quality and base pair quality: forward and reverse reads were trimmed to
250 or 200 base pairs and removed if there were more than 3 or 6 expected errors, respectively.
Reads were also truncated at the first instance of a quality score (Phred or Q score) of 2 or less.
Next, forward and reverse reads were merged with only 1 mismatch permitted. Lastly, taxa
assignments were made using DADA2’s naive Bayesian classifier method and the Ribosomal

Database Project's Training Set 16 (release 11.5) reference database [33] and reads that did not
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map to bacteria (including human contaminants, archaea, and mitochondrial or chloroplast DNA)
were removed, resulting in a mean of 27,809 reads per sample.

Samples with fewer than 10,000 reads and unpaired samples (those with no pre-detection
or time-of-detection sample within 42 days) were removed from consideration; all were
subsampled to a uniform depth of 10,000 reads per sample to correct for differences in
sequencing depth across samples. Following these filtration and processing steps, 2953 amplicon
sequence variants (ASVs) and 182 stool samples remained in the dataset.

The 182 paired pre-detection and time-of-detection samples (91 pre- and 91 post-
detection), as well as additional positive and negative control samples (amplification blanks) and
additional samples that did not pass our selection criteria, were split into two sequencing runs to
increase the sequencing depth. The first sequencing run included all pre-detection samples and
the second sequencing run included all time-of-detection samples. As an unintentional result of
this choice, sequencing batch effects may result in spurious differences between pre- and time-
of-detection samples, thus analyses are focused on symptomatic vs. subclinical samples within

each time point (i.e., within the same sequencing batch).

Statistical and machine learning analyses: All of the following data processing and statistical
analyses were performed in R [33-37]; see Supplemental Material for code and software
versions. Appropriate statistical tests were selected and are described as introduced throughout
the Results.

For machine learning analyses, random forest analysis was used to classify subclinical or
diarrheal samples using associated metadata and/or amplicon sequence variant (ASV)
abundances, and the trained classifiers were used to identify individual variables that were
important for prediction accuracy [38]. Within a random forest classifier, individual trees were built
from subsets of the data and model performance was evaluated by predicting the class of each
sample using only the trees in the random forest that were not constructed using that sample (i.e.,
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out-of-bag performance). Here, variables were ranked by their effect on classifier certainty, which
influenced overall accuracy, using the mean decrease in node impurity (via the Gini coefficient).
Variables that maximally split samples by classification group yielded a larger forest-wide node
impurity and, thus, more important variables had a higher mean decrease in node impurity.
Analytic code is provided in the supplemental material; analyses and figure generation were

performed in R [37,39-51].

RESULTS

Prevalence of diarrhea and antibiotic use

Infants were enrolled into a prospective cohort from Mirpur, Dhaka, Bangladesh to study enteric
infections (Figure 1A, left); this cohort was part of a larger assessment of diarrhea in Bangladesh,
published previously (Figure 1A; [1]). Each child was monitored by community health workers for
enteric disease, including collection of monthly surveillance and diarrheal stool samples during
the first two years of life. Diarrhea and antibiotic use were common in this cohort (Figure 2A &
Supplemental Figure 2), and Cryptosporidium spp., including C. hominis and meleagridis, were
frequently detected during diarrhea (Table 1). These parasites cause both subclinical and overt

diarrheal infections [1].
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Figure 2: Diarrheal infection and antibiotic treatment were common and heterogenous in infants from
Mirpur. A: Prevalence of diarrhea. Frequency of diarrheal episodes per child. Full Mirpur cohort in grey,
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red subset indicates the children whose samples were used in the microbiome study (and all subsequent
figures). B: All-cause diarrhea was heterogenous among children with divergent Cryptosporidium
outcomes. Number of diarrheal events per child based on cumulative Cryptosporidium status, both over
the first two years of life. C: Antibiotic usage was heterogenous among children with divergent
Cryptosporidium outcomes. Number of antibiotic events per child based on cumulative Cryptosporidium
status, both over the first two years of life. Combination therapies were treated as separate doses. For B
and C, the full cohort was used and statistics are shown if significant. For B and C, each box represents
the median (inner ling), 25" percentile and 75" percentile. Upper whiskers extend from the top of the box
to the largest value within 1.5 times the interquartile range (distance between 25" and 75" percentile),
and the lower whisker extends to the smallest value within 1.5 time the interquartile range. P-values were
generated from a t.test without multiple testing correction.

Table 1: Sample summary statistics for samples from Mirpur.

infection? (N/N)

Subclinical infections Diarrheal infections Total
Children 72
Male/Female 28/44
Children with repeat infections in dataset 19
Samples 182
Number of pre-detection 60 31 91
samples
Number of time-of- 60 31 91
detection samples
Age at collection (in days) | Mean = 362.5 Mean = 321.3 Mean = 348.7
SD = 128.8 SD =136.3 SD = 1321
Days between pre- Mean = 31.1 Mean = 19.2 Mean = 27.0
detection & time- of- SD=4.6 SD =91 SD =8.6
detection sample*
Parasite burden at time-of- | Mean = 28.6 Mean =29.9 Mean =29.0
detection (pan- SD=6.2 SD=7.3 SD =6.6
Cryptosporidium qPCR Ct)
Positive gPCR (for positive | pan-Cryptosporidium: pan-Cryptosporidium: pan-
samples) 100% 100% Cryptosporidi
C. hominis: 60% C. hominis: 58% um: 100%
C. meleagridis: 7% C. meleagridis: 6% C. hominis:
59%
C.
meleagridis:
7%
First infection or repeat 42/18 28/3 70/21

SD = standard deviation. *Statistically different between subclinical and diarrheal infections via t test (p = 4*10-8). All
other comparisons between clinical types were not significantly different using a t test (all comparisons except first v.

subsequent infection) or Chi Squared test (first v. subsequent infection).
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Children who had at least one symptomatic episode of cryptosporidiosis had more
cumulative episodes of diarrhea than children with exclusively subclinical infections or no
Cryptosporidium-positive stool samples (Figure 2B). Additionally, children with only diarrheal
episodes (i.e. no observed subclinical cryptosporidiosis) had more frequent exposure to
antibiotics than children who had never tested positive for Cryptosporidium (Figure 2C). Frequent
antibiotic use occurred (Supplementary Figure 2A), but there was no difference in antibiotic use
during the month prior to infection between children with subclinical or diarrheal infections

(Supplementary Figure 2B).
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Supplemental Figure 2: Frequent antibiotic use was age-dependent but homogenous between subclinical
and diarrheal cases of Cryptosporidium in Mirpur. A: Antibiotic usage by drug. Antibiotics were prescribed
for both diarrhea and other infections (e.g. respiratory). Combination therapies are listed for each
subcomponent and multiple uses on a single drug within a month are listed as distinct episodes. Dotted line
indicates the child’s first birthday. B: Children with diarrheal cryptosporidiosis in the microbiome sub-cohort
took no more doses of antibiotics in the month leading up to the Cryptosporidium-positive stool sample than
children with subclinical cryptosporidiosis, as determined using a t-test. Each box represents the median
(inner ling), 25" percentile and 75" percentile. Upper whiskers extend from the top of the box to the largest
value within 1.5 times the interquartile range (distance between 25" and 75" percentile), and the lower
whisker extends to the smallest value within 1.5 time the interquartile range.

Microbiota Sequencing

Given the difference in all-cause diarrheal frequency between children with subclinical and

diarrheal cryptosporidiosis (Figure 2B), we hypothesized that microbiome composition may
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influence the development of acute symptoms during cryptosporidiosis. 16S rRNA gene
sequencing was performed on both the time-of-detection stool samples (Cryptosporidium-
positive, including subclinical and diarrheal) and the corresponding surveillance stool collected
immediately prior to the Cryptosporidium-positive sample (pre-detection; Figure 1B) for a subset
of children who tested positive for Cryptosporidium (Table 1, red in Figure 2A). Pre-detection
samples were collected within approximately one month of the time-of-detection samples (Table
1).

Sequencing produced 48,146,401 reads with a mean of 118,295.8 and median of 121,519
reads per sample (raw reads from Supplemental Figure 1D). Following quality filtration and
taxonomy assignment, a mean of 27,809 reads per sample remained permitting us to subsample
reads to a uniform depth of 10,000 reads per sample to correct for differences in sequencing

depth across samples.

Microbiota diversity

Following sequencing, taxonomy was assigned to reads using DADA2. Nearly 25% of reads were
assigned to an amplicon sequence variant (ASV) belonging to the genus Bifidobacterium (Figure
3A) that represents a number of functionally-diverse species which colonize the infant
gastrointestinal tract soon after birth. Microbiota alpha diversity measures (richness and
evenness) were not statistically significantly different between sample groups (two-way ANOVA,
post-hoc testing via Tukey’s Honestly Significant Difference method significance cutoff of p-value
< 0.05; Figure 3B-C). Despite this lack of significance (p > 0.21 for all comparisons), the
microbiota of infants who had diarrheal infection was, on average, less diverse than infants with
subclinical infection, both prior to and at the time of infection (Figure 3B-C). Moreover, this cohort
exhibited high inter-individual variation as many ASVs were specific to just a few children. Only a

few ASVs were found in >50% samples (Figure 3D).
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Figure 3: Microbiome samples were highly variable. A: Most abundant amplicon sequence variants (ASVs)
in the study. Only the top 10 most abundant ASVs are shown. Nearly 25% of all reads were assigned to an
ASV in the Bifidobacterium genus. B: Richness of each sample, or the number of ASVs present in a sample,
was not significantly different across sample groups. For B and C, each box represents the median (inner
line), 25" percentile and 75" percentile. Upper whiskers extend from the top of the box to the largest value
within 1.5 times the interquartile range (distance between 25" and 75" percentile), and the lower whisker
extends to the smallest value within 1.5 time the interquartile range. C: Evenness was also minimally
different across sample groups. Evenness is a diversity metric calculated to represent how many different
species are present and how well distributed those species are across samples; it is calculated using the
inverse Simpson’s index. No significant differences in evenness was observed amongst any comparisons
of clinical type (two-way ANOVA with multiple testing correction via Tukey’s Honestly Significant Difference
method). D: Fraction of all samples containing a particular ASV, ordered by from highest to lowest. Very
few ASVs were detected in many samples; however, almost all samples contain the most common
Bifidobacterium ASV. ASVs: Amplicon sequence variants.
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Associations between diarrheal symptoms and the microbiota

To identify compositional differences in the microbiome among sample groups, principal
coordinate analysis was performed using the Euclidean distance between samples. Pre-detection
samples overlapped substantially with Cryptosporidium-positive samples and, among positive
samples, subclinical and diarrheal samples did not separate (permutational multivariate analysis
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of variance using distance matrices [PERMANOVA], p>0.05, Figure 4A). The change in
microbiota from pre-detection to time-of-detection for each child was similarly variable for both

diarrheal and subclinical infections (PERMANOVA, p>0.05, Supplemental Figure 3).
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Figure 4: Identifying associations between diarrheal symptoms and the microbiota. A: Pre-detection and
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as were subclinical and diarrheal Cryptosporidium-positive samples. Principal coordinate analysis of ASV
quantification across all samples using Euclidean distance. B: Univariate statistics identifies ASVs
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associated with symptoms in the pre-detection samples and time-of-detection samples. Statistically
significant differential expressed ASVs are colored, whereas grey points represent ASVs that were not
different or not significantly different, using DESeqg2. Large points indicate ASVs that were also identified
as important using random forest classification, whereas small points were not among the top 15 most
important variables. Random forest classifiers were built to predict the presence of diarrhea upon
Cryptosporidium infection. Importantly, purple points represent statistically significant ASVs that were also
among the most important variables for classifiers made at both timepoints. C: Random forest classifiers
were built from the time-of-detection (TOD) microbiota (blue) or pre-detection microbiota (red). Area-under-
the-curve (AUC), a metric of classifier accuracy, is listed for each classifier. D: Most important variables, as
ranked by mean decrease in node impurity (or, Gini importance), from the pre-detection and time-of-
detection classifiers. Important variables were similarly important, within and across models. Of note, age
was not an important variable in the time-of-detection classifier. E: One ASV assigned to the Megasphaera
genus was significantly less abundant in diarrheal cases via univariate analyses (at both timepoints) and
was among the top 15 most important variables for the classifiers for both timepoints. Relative abundance
of each ASV is plotted for each sample with each box representing the median (inner line), 25" percentile
and 75™ percentile. Upper whiskers extend from the top of the box to the largest value within 1.5 times the
interquartile range (distance between 25" and 75™ percentile), and the lower whisker extends to the
smallest value within 1.5 time the interquartile range. F: The Megasphaera ASV was also more likely to be
high-abundance (above dashed line) in samples at the second study site, Mirzapur, where diarrheal
cryptosporidiosis was less common when compared to Mirpur; however, environmental factors, including
the causal Cryptosporidium species, were also different in Mirzapur [1]. Increased Megasphaera
abundance in Mirzapur may partially explain reduced diarrhea associated with cryptosporidiosis in that
community. ASVs: Amplicon sequence variants.
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Supplemental Figure 3: The change in ASV quantification (between pre-detection and time-of-detection
samples) for subclinical and diarrheal samples were also indistinguishable via principal coordinate
analysis. Principal coordinate analysis of the change in ASV quantification across all samples using
Euclidean distance. Pre-detection and time-of-detection samples were run on different sequencing runs
(see Methods) so the biological shift in microbiota might be confounded by the technical shift in run-to-run
variation.

Given the lack of separation between samples when considering overall microbiome
composition, univariate analyses were used to identify individual ASVs that were significantly

different between subclinical and diarrheal samples prior to and at the time of infection (Figure
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4B). However, univariate statistics rely on assumptions of independence and, thus, may perform
poorly with microbiome datasets due to correlations between and statistical interactions amongst
members of the microbiota [52]. To make robust inferences of the importance of individual ASVs,
we utilized a univariate approach designed specifically for sparse count data [53] as well as
random forest classification to consider interactions amongst ASVs. Interpreting the results of
these two approaches together provided a more stringent assessment of ASV importance.

Thus, classification using the random forest models was performed to determine if specific
members of the microbiota were predictive of the development of diarrheal symptoms; important
variables from the random forest models are highlighted on the volcano plots that also show the
results of univariate statistical tests (Figure 4B & C). This machine learning approach was used
to prioritize the results generated from univariate statistics. Classifier performance using the pre-
detection or time-of-detection microbiome separately yielded predictive models (AUC > 0.6 for
both prior to and at the time of infection Figure 4C); this performance was similar to the highest-
performing classification models across a metanalysis of case-control clinical microbiome studies
[54,55].

Both classifiers supported conclusions drawn by univariate analyses and identified several
additional ASVs as important to classify subclinical and diarrheal samples (Figure 4B & C). Some
important microbes for each classifier were not enriched in either sample group (large grey points
in Figure 4B), this suggested that these ASVs are only important when analyzed in combination
with others. Despite the effect of antibiotic treatment on the microbiota [56], the addition of a
child’s antibiotic history did not significantly augment classifier performance (Supplemental
Figure 4), indicating that there was no interaction between the important ASVs and antibiotic use.
The infecting Cryptosporidium species (C. hominis or C. meleagridis) were not important variables
in the random forest models, and child age was not an important variable in the time-of-detection

model (Figure 4D).
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Supplemental Figure 4: Difference in variable importance upon adding antibiotic history data. A:
Classifiers built from the time-of-detection microbiota, with and without antibiotic history have similar
performance (A) and identify the same important variables (B), indicating that antibiotic history did not
add to the information gained from the microbiome.

We focused on ASVs that were identified via both the univariate statistics and machine
learning approaches. For the pre-detection timepoint, these prioritized ASVs were assigned to
the Megasphaera, Flavonifractor, Morganella, Collinsella, and Lactobacillus genera; for the time-
of-detection timepoint, these included the same Megasphaera ASV, as well as ASVs assigned to
Parabacteroides, Enterococcus, Prevotella, Bifidobacterium, Sutterella, Veillonella, Megamonas,

and Faecalibacterium (Figure 4B & D). Combinations of ASVs were more predictive of diarrhea
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than any individual ASV, as evident by the similar Gini importance for all important variables
(Figure 3D).

Megasphaera, in particular, was identified at both timepoints and both analytic approaches
(Figure 4B & E). This Megasphaera ASV also accounted for at least 1% of reads across the
entire study (Figure 2A). This bile acid-resistant species colonizes the small [57] and large
intestines [58,59]. It can therefore be a major component of the microbiome at the site of
Cryptosporidium parasite colonization. The other ASVs that contributed to model performance
were either less abundant or resided predominantly in the large bowel. Although there were many
environmental differences between the study sites, this ASV was also more likely to be detected
at high abundance in our second study site, rural Mirzapur (Figure 4F), despite the observation
that Megasphaera ASV did not vary with Cryptosporidium species (Supplemental Material). The
most common Cryptosporidium species at Mirzapur was C. meleagridis rather than the C. hominis
in Mirpur, but C. meleagridis has been associated with gastrointestinal disease in other studies
and has also been shown to cause diarrhea in a human challenge experiment [60,61]. Children
in Mirzapur were however less likely to develop diarrhea upon Cryptosporidium infection; 3% of

Cryptosporidium-positive stools in Mirzapur were diarrheal, compared to 32% in Mirpur [1].

DISCUSSION

Here, we identified differences in the microbiota composition and in the abundance of an
individual ASV, Megasphaera, in infants who had either a subclinical or a diarrheal
Cryptosporidium infection. Fecal samples from 72 Cryptosporidium-infected children in Mirpur,
Bangladesh were used to profile the human microbiota during cryptosporidiosis (Table 1, Figure
1) with 16S rRNA gene sequencing (Figure 3). It is well established that the microbiome shifts
with child development [62-64], and that it is highly variable in infants under the age of two [65—

67]. There was also universally frequent antibiotic use and enteric infections in this young
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population (Figure 2C, Supplemental Figure 2, Table 1). It was unsurprising therefore that there
was a high degree of inter sample variability among these infants’ samples (Figure 3A & D).

Despite this variation, microbiome composition was predictive of diarrheal symptoms at
the time of infection and up to a month prior (Figure 4C). Although individual members of the
microbiome were associated with diarrhea (Figure 4B), no single ASV completely explained the
clinical type of infection (Figure 4D). This observation is consistent with animal models of infection
that have highlighted a complex relationship between the microbiota, host, and parasite [68—70].
For example, previous work found that antibiotics alone did not sensitize immunocompetent mice
to infection [25], although certain probiotics [71], antibiotics [72], and deprivation of prebiotics [73]
could exacerbate disease severity.

Higher abundance of one ASV, Megasphaera (class: Clostridia), was associated with
subclinical Cryptosporidium infection whereas its absence or low abundance was more common
in cases of Cryptosporidium-associated diarrhea (Figure 4B & D). Megasphaera was not
associated with antibiotic use in this cohort (Supplemental Figure 4) or all-cause diarrhea (i.e.
total number of diarrheal episodes, Supplemental Material). Megasphaera species can collocate
in the small intestines [57] with Cryptosporidium, and were more frequently observed at high
abundance in a community in which diarrhea was rarely seen during cryptosporidiosis (Figure
4F; [1]). Megasphaera are known to synthesize short chain fatty acids [74], compounds that
regulate the intestinal homeostasis [75], impact the host immune response [76], and modulate
osmotic diarrhea [77]. This ability of Megasphaera to produce short chain fatty acids or to
modulate the host’s immune system through other mechanisms may be protective in attenuating
disease outcome during Cryptosporidium infection. Alternatively, Megasphaera may be a

biomarker for another microbiome- or immune-mediated mechanism of protection from diarrhea.

Conclusion
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In sum, the microbiome was predictive of Cryptosporidium diarrhea both prior to and at the time
of infection. Low abundance of one member of the microbiome, Megasphaera, was associated
with diarrheal symptoms. There is currently no effective drug for treating Cryptosporidium diarrhea
in children and modulating members of the microbiota such as Megasphaera may be an appealing

therapeutic strategy.

SUPPLEMENTAL MATERIAL, particularly ~ analytic  code, is available at

https://github.com/maureencarey/cryptosporidium_microbiome.

FUNDING This work was supported by the National Institutes of Health (R01 Al043596 to WAP
and CAG, T32 LM012416 to JP and GLM, and R21 142656 to CAG), the University of Virginia
(Engineering-in-Medicine Seed funding to MAC, JP, and WAP), the Bill & Melinda Gates
Foundation (OPP1100514), and the PhRMA Foundation (Postdoctoral Fellowship in Translational
Medicine and Therapeutics to MAC). The governments of Bangladesh, Canada, Sweden, and the
UK provide core support to icddr,b. The funders had no role in study design, data collection and

analysis or decision to submit for publication.

CONFLICT OF INTEREST WAP acts as a consultant for TechLab Inc that produces diagnostics

for cryptosporidiosis. The authors have no other conflicts of interest to report.

ACKNOWLEDGEMENTS We thank the children and parents from the icddr,b study sites as well
as the field workers, physicians, scientists, and staff of the Emerging Infectious Diseases Division
of icddr,b for their key contributions to this research. We also wish to thank the members of the
Petri lab group for their feedback, especially Jeff Donowitz, Kevin Steiner, Chelsea Marie, and
Barbara Mann and the UVa Genome Analysis and Technology Core for conducting the
sequencing for this paper.

21


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

AUTHOR CONTRIBUTIONS MAC and CAG conceived of and WP led the study. RH and ASGF
founded the birth cohort and directed the Bangladesh studies. GLM and MAC conceived of the
analyses. Field work and data collection at icddr,b were performed by MA and MK, with ASGF
and RH providing supervision. DNA extraction and 16S rRNA library preparation were performed
by MJU. UN oversaw the clinical database. GLM performed some preliminary microbiome
sequence processing and machine learning analyses, with supervision by JP. MAC performed all

final analyses. MAC drafted the manuscript. All authors edited and approved the final manuscript.

DATA AVAILABILITY Select clinical metadata is available on the NCBI's dbGaP under accession
number phs001665.v2.p1. The data for this study is collected as a sub-study of dbGaP
phs001475.v2.p1. Raw sequence data generated for this study will be available in the Sequence
Read Archive upon publication. Code for analysis is available at
https://github.com/maureencarey/cryptosporidium_microbiome. Per the consent of the parents
and guardians of the children in this study, all other deidentified data may be available upon

request.

REFERENCES

1. Steiner KL, Ahmed S, Gilchrist CA, et al. Species of Cryptosporidia Causing Subclinical
Infection Associated with Growth Faltering in Rural and Urban Bangladesh- a Birth Cohort
Study. Clin Infect Dis 2018; Available at: http://dx.doi.org/10.1093/cid/ciy310.

2. Checkley W, Epstein LD, Gilman RH, Black RE, Cabrera L, Sterling CR. Effects of
Cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent
catch-up growth. Am J Epidemiol 1998; 148:497-506.

3. Korpe PS, Haque R, Gilchrist C, et al. Natural History of Cryptosporidiosis in a Longitudinal
Study of Slum-Dwelling Bangladeshi Children: Association with Severe Malnutrition. PLoS
Negl Trop Dis 2016; 10:e0004564.

4. Lima AA, Fang G, Schorling JB, et al. Persistent diarrhea in northeast Brazil: etiologies and
interactions with malnutrition. Acta Paediatr Suppl 1992; 381:39-44.

22


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

5. Guerrant DI, Moore SR, Lima AA, Patrick PD, Schorling JB, Guerrant RL. Association of
early childhood diarrhea and cryptosporidiosis with impaired physical fithess and cognitive
function four-seven years later in a poor urban community in northeast Brazil. Am J Trop
Med Hyg 1999; 61:707-713.

6. Sallon S, Deckelbaum RJ, Schmid Il, Harlap S, Baras M, Spira DT. Cryptosporidium,
malnutrition, and chronic diarrhea in children. Am J Dis Child 1988; 142:312-315.

7. Platts-Mills JA, Babji S, Bodhidatta L, et al. Pathogen-specific burdens of community
diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob
Health 2015; 3:564—75.

8. Khalil IA, Troeger C, Rao PC, et al. Morbidity, mortality, and long-term consequences
associated with diarrhoea from Cryptosporidium infection in children younger than 5 years:
a meta-analyses study. Lancet Glob Health 2018; 6:e758—e768.

9. GBD 2016 Diarrhoeal Disease Collaborators. Estimates of the global, regional, and national
morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for
the Global Burden of Disease Study 2016. Lancet Infect Dis 2018; 18:1211-1228.

10. Manjunatha UH, Vinayak S, Zambriski JA, et al. A Cryptosporidium PI(4)K inhibitor is a
drug candidate for cryptosporidiosis. Nature 2017; 546:376.

11. Wilke G, Funkhouser-Jones LJ, Wang Y, et al. A Stem-Cell-Derived Platform Enables
Complete Cryptosporidium Development In Vitro and Genetic Tractability. Cell Host
Microbe 2019; 26:123—-134.e8.

12. Morada M, Lee S, Gunther-Cummins L, et al. Continuous culture of Cryptosporidium
parvum using hollow fiber technology. Int J Parasitol 2016; 46:21-29.

13. DeCicco RePass MA, Chen Y, Lin Y, Zhou W, Kaplan DL, Ward HD. Novel Bioengineered
Three-Dimensional Human Intestinal Model for Long-Term Infection of Cryptosporidium
parvum. Infect Immun 2017; 85. Available at: http://dx.doi.org/10.1128/1A1.00731-16.

14. Heo |, Dutta D, Schaefer DA, et al. Modelling Cryptosporidium infection in human small
intestinal and lung organoids. Nat Microbiol 2018; 3:814-823.

15. Cardenas D, Bhalchandra S, Lamisere H, et al. Two- and Three-Dimensional
Bioengineered Human Intestinal Tissue Models for Cryptosporidium. In: Mead JR,
Arrowood MJ, eds. Cryptosporidium: Methods and Protocols. New York, NY: Springer New
York, 2020: 373-402.

16. Sateriale A, Slapeta J, Baptista R, et al. A Genetically Tractable, Natural Mouse Model of
Cryptosporidiosis Offers Insights into Host Protective Immunity. Cell Host Microbe 2019;
26:135-146.e5.

17. Lee S, Beamer G, Tzipori S. The piglet acute diarrhea model for evaluating efficacy of
treatment and control of cryptosporidiosis. Human Vaccines & Immunotherapeutics. 2019;
15:1445-1452. Available at: http://dx.doi.org/10.1080/21645515.2018.1498436.

18. Dayao DA, Sheoran A, Carvalho A, et al. An immunocompetent rat model of infection with
Cryptosporidium hominis and Cryptosporidium parvum. Int J Parasitol 2020; 50:19-22.

23


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

19. Wojcik GL, Korpe P, Marie C, et al. Genome-Wide Association Study of Cryptosporidiosis
in Infants Implicates PRKCA. MBio 2020; 11. Available at:
http://dx.doi.org/10.1128/mBio.03343-19.

20. Kirkpatrick BD, Haque R, Duggal P, et al. Association between Cryptosporidium infection
and human leukocyte antigen class | and class Il alleles. J Infect Dis 2008; 197:474—478.

21. Nader JL, Mathers TC, Ward BJ, et al. Evolutionary genomics of anthroponosis in
Cryptosporidium. Nat Microbiol 2019; Available at: http://dx.doi.org/10.1038/s41564-019-
0377-x.

22. Gilchrist CA, Cotton JA, Burkey C, et al. Genetic Diversity of Cryptosporidium hominis in a
Bangladeshi Community as Revealed by Whole-Genome Sequencing. J Infect Dis 2018;
218:259-264.

23. Heiges M, Wang H, Robinson E, et al. CryptoDB: a Cryptosporidium bioinformatics
resource update. Nucleic Acids Res 2006; 34:D419-22.

24. Chappell CL, Darkoh C, Shimmin L, et al. Fecal Indole as a Biomarker of Susceptibility to
Cryptosporidium Infection. Infect Immun 2016; 84:2299-2306.

25. Harp JA, Wannemuehler MW, Woodmansee DB, Moon HW. Susceptibility of germfree or
antibiotic-treated adult mice to Cryptosporidium parvum. Infect Immun 1988; 56:2006—
2010.

26. Harp JA, Chen W, Harmsen AG. Resistance of severe combined immunodeficient mice to
infection with Cryptosporidium parvum: the importance of intestinal microflora. Infect Immun
1992; 60:3509-3512.

27. Bartelt LA, Bolick DT, Kolling GL, et al. Amixicile Reduces Severity of Cryptosporidiosis but
Does Not Have In Vitro Activity against Cryptosporidium. Antimicrob Agents Chemother
2018; 62. Available at: http://dx.doi.org/10.1128/AAC.00718-18.

28. Gilchrist CA, Cotton JA, Burkey C, et al. Genetic Diversity of Cryptosporidium hominis in a
Bangladeshi Community as Revealed by Whole-Genome Sequencing. J Infect Dis 2018;
218:259-264.

29. Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut
microbiota. Science 2013; 341:1237439.

30. Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community
analysis on the lllumina HiSeq and MiSeq platforms. ISME J 2012; 6:1621-1624.

31. Bushnell B. BBTools: a suite of fast, multithreaded bioinformatics tools designed for
analysis of DNA and RNA sequence data. Joint Genome Institute https://jgidoegov/data-
and-tools/bbtools 2018;

32. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal 2011; 17:10-12.

33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADAZ2: High-
resolution sample inference from lllumina amplicon data. Nat Methods 2016; 13:581-583.

24


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

34. Team RC. R Foundation for Statistical Computing; Vienna, Austria: 2014. : A language and
environment for statistical computing 2015;

35. Team R, Others. RStudio: integrated development for R. RStudio, Inc , Boston, MA URL
http://www rstudio com 2015; 42:14.

36. Morgan M, Anders S, Lawrence M, Aboyoun P, Pagés H, Gentleman R. ShortRead: a
bioconductor package for input, quality assessment and exploration of high-throughput
sequence data. Bioinformatics 2009; 25:2607—2608.

37. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and
graphics of microbiome census data. PLoS One 2013; 8:e61217.

38. Breiman L. Random Forests. Mach Learn 2001; 45:5-32.

39. Wickham H. reshape2: Flexibly reshape data: a reboot of the reshape package. R package
version 2012; 1. Available at: http://cran.ms.unimelb.edu.au/web/packages/reshape2/.

40. Wickham H, Chang W, Others. ggplot2: An implementation of the Grammar of Graphics. R
package version 0 7, URL: http://CRAN R-project org/package= ggplot2 2008; Available at:
http://ftp.auckland.ac.nz/software/CRAN/src/contrib/Descriptions/ggplot.html.

41. Attali D, Baker C. ggExtra: Add marginal histograms to ‘ggplot2’, and more
‘ggplot2’enhancements. R package version 0 3 2016; 4.

42. Kassambara A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0 1
2017; 6.

43. Allaire JJ, Xie Y, McPherson J, et al. rmarkdown: Dynamic Documents for R. 2018;
Available at: https://CRAN.R-project.org/package=rmarkdown.

44. Xie Y. knitr: a comprehensive tool for reproducible research in R. Implement Reprod Res
2014; Available at:
https://books.google.com/books?hl=en&Ir=&id=WVTSBQAAQBAJ&oi=fnd&pg=PA3&ots=q
Sxw89GmV3&sig=FRrY5j5zcadovLD4VH5P7Z2Z2ZYCA.

45. Liaw A, Wiener M, Others. Classification and regression by randomForest. R news 2002;
2:18-22.

46. Paluszynska A, Biecek P. randomForestExplainer: Explaining and Visualizing Random
Forests in Terms of Variable Importance. 2017; Available at: https://CRAN.R-
project.org/package=randomForestExplainer.

47. Urrea V, Calle M. AUCREF: variable selection with random forest and the area under the
curve. R package version 1 1 2012,

48. Robin X, Turck N, Hainard A, et al. pPROC: an open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinformatics 2011; 12:77.

49. Wickham H, Francois R, Henry L, Miller K. dplyr: A grammar of data manipulation. R
package version 0 4 2015; 3.

50. Wagner H. Vegan: community ecology package. R package 2015;

25


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

51. Wickham H, Henry L, Others. tidyr: Easily Tidy Data with ‘spread ()’and ‘gather ()’Functions.
R package version 0 8 2018; 2.

52. Calle ML. Statistical Analysis of Metagenomics Data. Genomics Inform 2019; 17:e6.

53. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeqg2. Genome Biol 2014; 15:550.

54. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome
studies identifies disease-specific and shared responses. Nat Commun 2017; 8:1784.

55. Topguoglu BD, Lesniak NA, Ruffin MT 4th, Wiens J, Schloss PD. A Framework for Effective
Application of Machine Learning to Microbiome-Based Classification Problems. MBio 2020;
11. Available at: http://dx.doi.org/10.1128/mBio.00434-20.

56. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome
maturation during early life. Sci Transl Med 2016; 8:343ra82.

57. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children
with Enteropathy. N Engl J Med 2020; 383:321-333.

58. Zozaya-Hinchliffe M, Martin DH, Ferris MJ. Prevalence and abundance of uncultivated
Megasphaera-like bacteria in the human vaginal environment. Appl Environ Microbiol 2008;
74:1656—-16509.

59. Guo C, LiY, Wang P, et al. Alterations of Gut Microbiota in Cholestatic Infants and Their
Correlation With Hepatic Function. Front Microbiol 2018; 9:2682.

60. Chappell CL, Okhuysen PC, Langer-Curry RC, Akiyoshi DE, Widmer G, Tzipori S.
Cryptosporidium meleagridis: infectivity in healthy adult volunteers. Am J Trop Med Hyg
2011; 85:238-242.

61. Cama VA, Bern C, Roberts J, et al. Cryptosporidium species and subtypes and clinical
manifestations in children, Peru. Emerg Infect Dis 2008; 14:1567-1574.

62. Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition
from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016; 16:90.

63. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and
geography. Nature 2012; 486:222—-227.

64. Costello EK, Carlisle EM, Bik EM, Morowitz MJ, Relman DA. Microbiome assembly across
multiple body sites in low-birthweight infants. MBio 2013; 4:e00782—13.

65. Avershina E, Storrg O, Jien T, Johnsen R, Pope P, Rudi K. Major faecal microbiota shifts
in composition and diversity with age in a geographically restricted cohort of mothers and
their children. FEMS Microbiol Ecol 2014; 87:280—290.

66. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly
enriched gene sets in human gut microbiomes. DNA Res 2007; 14:169-181.

67. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing
infant gut microbiome. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4578—-4585.

26


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.323147; this version posted October 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

68. McKenney EA, Greene LK, Drea CM, Yoder AD. Down for the count: Cryptosporidium
infection depletes the gut microbiome in Coquerel’s sifakas. Microb Ecol Health Dis 2017,
28:1335165.

69. Ichikawa-Seki M, Motooka D, Kinami A, et al. Specific increase of Fusobacterium in the
faecal microbiota of neonatal calves infected with Cryptosporidium parvum. Sci Rep 2019;
9:12517.

70. Ras R, Huynh K, Desoky E, Badawy A, Widmer G. Perturbation of the intestinal microbiota
of mice infected with Cryptosporidium parvum. Int J Parasitol 2015; 45:567-573.

71. Oliveira BCM, Widmer G. Probiotic Product Enhances Susceptibility of Mice to
Cryptosporidiosis. Appl Environ Microbiol 2018; 84. Available at:
http://dx.doi.org/10.1128/AEM.01408-18.

72. Charania R, Wade BE, McNair NN, Mead JR. Changes in the Microbiome of
Cryptosporidium-Infected Mice Correlate to Differences in Susceptibility and Infection
Levels. Microorganisms 2020; 8. Available at:
http://dx.doi.org/10.3390/microorganisms8060879.

73. Oliveira BCM, Bresciani KDS, Widmer G. Deprivation of dietary fiber enhances
susceptibility of mice to cryptosporidiosis. PLoS Negl Trop Dis 2019; 13:e0007411.

74. Shetty SA, Marathe NP, Lanjekar V, Ranade D, Shouche YS. Comparative genome
analysis of Megasphaera sp. reveals niche specialization and its potential role in the human
gut. PLoS One 2013; 8:e79353.

75. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids
(SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for
Inflammatory Bowel Diseases. Front Immunol 2019; 10:277.

76. Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids
Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity 2019; 51:285—
297.e5.

77. Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol
2010; 72:297-313.

27


https://doi.org/10.1101/2020.10.01.323147
http://creativecommons.org/licenses/by/4.0/

