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ABSTRACT

Bone marrow commonly serves as a metastatic niche for disseminated tumor cells (DTCs) of
solid cancers in patients with unfavorable clinical outcome. Single-cell assessment of bone
marrow metastases is essential to decipher the entire spectrum of tumor heterogeneity in these

cancers, however, has previously not been performed.

Here we used multi-epitope-ligand cartography (MELC) to spatially profile 20 biomarkers and
assess morphology in DTCs as well as hematopoietic and mesenchymal cells of eight bone
marrow metastases from neuroblastoma patients. We developed DeepFLEX, a single-cell
image analysis pipeline for MELC data that combines deep learning-based cell and nucleus
segmentation and overcomes frequent challenges of multiplex imaging methods including
autofluorescence and unspecific antibody binding.

Using DeepFLEX, we built a single-cell atlas of bone marrow metastases comprising more
than 35,000 single cells. Comparisons of cell type proportions between samples indicated that
microenvironmental changes in the metastatic bone marrow are associated with tumor cell
infiltration and therapy response. Hierarchical clustering of DTCs revealed multiple phenotypes
with highly diverse expression of markers such as FAIM2, an inhibitory protein in the Fas
apoptotic pathway, which we propose as a complementary marker to capture DTC

heterogeneity in neuroblastoma.

The presented single-cell atlas provides first insights into the heterogeneity of human bone
marrow metastases and is an important step towards a deeper understanding of DTCs and

their interactions with the bone marrow niche.
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INTRODUCTION

Metastasis is the major cause of cancer-related deaths! and relies on the ability of tumor cells
to disseminate from the primary site and adapt to distant tissue environments.? This is an
arduous process, which can fuel heterogeneity among metastasizing and disseminated tumor
cells (DTCs).2 Tumor heterogeneity manifests in variations of clinically important features such
as the abundance of prognostic markers as well as therapeutic targets, which complicates
patient stratification and explains failure of therapeutic approaches.*567

Cancer cells are attracted by distant microenvironments that promote their growth and
survival.2 One such hospitable microenvironment is the bone marrow, which has a major role
in dormancy and relapse® and is a frequent site of dissemination in numerous solid cancerso1,
such as breast cancer, colorectal cancer and neuroblastoma.*?

Neuroblastoma, an extracranial neoplasm of the sympathetic nervous system, is the most
common solid tumor in children in their first year of life and accounts for roughly 15% of
childhood cancer related deaths.'*14%5 In more than 90% of metastatic stage (stage M)
neuroblastoma patients, tumor cells disseminate to the bone marrow?!17, where some tumor
cells may resist initial chemotherapy and give rise to relapse. These relapse seeding clones
are frequently, already at the time-point of diagnosis, detected in the bone marrow, but not in
the primary tumor.® Based on bulk RNA-sequencing (RNA-seq), we have previously shown
differences between the transcriptome of DTCs with predominantly hypoxia-associated genes
enriched, and primary tumor cells with an increased expression of mesenchymal genes.'®
Subsequently, two studies of neuroblastoma cell lines and primary tumors unraveled the gene
regulatory networks driving two plastic phenotypes, adrenergic and mesenchymal type
neuroblastoma cells and highlighted their importance, as the latter were more frequently found
in post-therapy and relapse samples and were more resistant to chemotherapy.'%?° Thus,
genetic and phenotypic tumor heterogeneity can be considered key to why treatment of
metastatic disease remains poor.

Although phenotypic tumor heterogeneity of solid cancers has been investigated at the primary
site at single-cell resolution,?%:222324 tg date no analyses of human bone marrow metastases
have been undertaken.?®

In recent years, numerous technologies for the analysis of single cells have emerged and
advanced rapidly. While single-cell RNA-seq (scRNA-seq) methods?® enable high-dimensional
analyses of cells at the transcriptomic level, highly multiplexed imaging methods?’ provide an
image of every cell and thereby allow subcellular localization of proteins as well as
morphological assessment. Despite the volume of developing multiplex imaging methods, the

standard method to detect DTCs in bone marrow aspirates in neuroblastoma routine diagnostic
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procedures, is still automated immunofluorescence plus fluorescence in situ hybridization
(AIPF), which is limited to only three biomarkers (GD2, CD56 and one genetic marker).?%2° In
order to unravel the complete scope of intra-tumor heterogeneity and capture therapy-related
changes and resistant cells in solid cancers with bone marrow involvement, a comprehensive
single-cell map of bone marrow metastases is indispensable. Thus, we sought to provide the
first single-cell atlas of bone marrow metastases including DTCs and cells of the
microenvironment, by employing neuroblastoma as a model.

We applied Multi-Epitope-Ligand Cartography (MELC), a multiplex imaging method with a
resolution of 450nm that employs automated sequential cycles of staining with fluorophore-
coupled antibodies followed by immunofluorescence (IF) microscopy and photobleaching.30:31
A 20-plex antibody panel was established, and we developed an image analysis pipeline,
called DeepFLEX, which tackles frequent obstacles of IF-based imaging and in addition
involves accurate, deep learning-based cell and nucleus segmentation. Our study revealed
novel markers, including FAIM2 (Fas Apoptotic Inhibitory Molecule 2), to capture heterogeneity
of DTCs in bone marrow metastases of neuroblastoma patients. Moreover, our analyses
delivered the first indication that the presence of DTCs as well as treatment are associated

with dynamic changes in the bone marrow microenvironment.

RESULTS

Comprehensive single-cell multiplex immunofluorescence imaging panel

To analyze bone marrow metastases on a single-cell level, we sought to establish a MELC
panel specific to neuroblastoma DTCs, hematopoietic, and mesenchymal cells in the bone
marrow. Therefore, in our workflow (Fig. 1a), we first selected DTC-associated biomarkers,
which we then validated separately by conventional IF staining.

Data mining (see Methods) based on RNA-seq data of stage M neuroblastoma primary tumors,
DTCs, and bone marrow-derived mononuclear cells (MNCs); proteomics data of
neuroblastoma tumors, neuroblastoma cell lines, and peripheral-nerve-associated fibroblasts;
and public databases (Uniprot, Protein Atlas, PubMed) revealed five potential DTC biomarkers:
TAG1 (CNTN2), DCLK1, FAIM2, PRAME and TACC2 (Fig. 1b). All five candidates had (1)
significantly higher transcript levels in DTCs as compared to bone-marrow-derived MNCs, (Il)
an equal or higher transcription at the time point of relapse as compared to diagnosis, (lll)
literature available on neuroblastoma-, tumor- or metastasis association and (IV) protein
expression described to be localized on the cell membrane and detected by proteomic
analysis. To further characterize DTC heterogeneity, we complemented these five markers by

mesenchymal-type neuroblastoma cell markers?® VIM and PROM1, immune checkpoint
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molecules B7-H33%? and PD-L1 with its binding partner PD-1%3, the currently investigated
therapeutic target NCAM-L134, as well as two gold-standard neuroblastoma markers CD56 and
the ganglioside GD2.%° VIM was highly, but not exclusively expressed by DTCs (Fig. 1c, top).
PD-1, PD-L1 and PROM1 showed low expression on the mRNA level and were not detected
in the mass spectrometry data (Fig. 1c, bottom), which can be explained by their expression
on rare cell types.

To assess their protein expression on a single-cell level, we validated these 13 DTC-related
biomarkers (Fig. S1a) using optimized IF-sample preparation protocols (Fig. S1b and S2a,
Table S1) on neuroblastoma cell lines in isolation (Fig. S1c, Table S2 and S3) and spiked into
bone marrow-derived MNCs or peripheral blood-derived MNCs (Fig. S2b). Three out of the 5
initial DTC biomarker candidates (Fig. 1b) yielded a tumor-specific IF-staining on
neuroblastoma cell lines spiked into bone marrow-derived MNCs (Fig. 1d). These were
DCLK1, which is crucial for neuroblast proliferation®3’, TAG1, a promoter of glioma
proliferation®® and the inhibitor of Fas induced apoptosis FAIM2 (Fig. S3). We selected FAIM2
together with GD2, CD56, VIM, B7-H3 and PD-1 for multiplex imaging and tested them
simultaneously with 14 other bone marrow hematopoietic and mesenchymal cell markers
(Table S4) in MELC assays, finally resulting in a specific and robust 20-plex panel (Fig. le,
Table 1).

In conclusion, we here provide a validated 20-plex MELC panel for neuroblastoma composed
of DTC markers, including a novel candidate marker called FAIM2, as well as myeloid,

lymphoid, mesenchymal, and hematopoietic stem and progenitor cell markers (Fig. 1f).

Deep learning-based single-cell analysis pipeline for FLuorescence multiplEX imaging
— DeepFLEX

MELC and other IF-based multiplex imaging methods suffer from inhomogeneous illumination,
background noise due to incomplete signal removal by photobleaching or heat denaturation,
autofluorescence and unspecific binding, which are either not addressed or not effectively
solved in published single-cell image analysis pipelines.39:40:41.42.43,44

To address these challenges and allow unsupervised single-cell analysis of MELC imaging
data, we developed DeepFLEX (Fig. 2a), a semi-automated, deep learning-based pipeline.
DeepFLEX integrates methods for image processing, segmentation, feature extraction,
normalization, and single-cell analysis that were recently published by our group and experts
in the field (see Methods).

DeepFLEX corrects for common problems of IF staining and microscopy. Cross-correlation-
based registration*® aligns images, which are shifted due to the microscope stage movement

in between staining and bleaching cycles. Flat-field correction eliminates gross variations in
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illumination using calibration images. Image subtraction of the bleached from the subsequently
stained sample removes bleaching remnants. CIDRE*, a retrospective multi-image
illumination correction method based on energy minimization further homogenizes illumination
towards image borders (Fig. S4a-d).

The deep neuronal network Mask R-CNN#, trained on an annotated fluorescence image
dataset*®, allows accurate cell and nucleus segmentation in the processed images.
Simultaneous segmentation of the nucleus (based on the nuclear stain propidium iodide) and
the cell (based on phase contrast images acquired prior to each staining cycle) allows the
elimination of displaced and inaccurately segmented cells by considering only those cells for
the analysis, which are present in every cell segmentation mask, but also in the nucleus
segmentation mask. Cells affected by artifacts are excluded by user-guided region selection
(Fig. S4e-h).

Based on the cell and the nucleus segmentation mask, DeepFLEX facilitates the extraction of
single-cell features (Table S5) describing the intensity (mean intensity, total intensity, and
mean of the highest 20% of pixel values) and morphology (roundness, solidity, perimeter and
size) of three cell compartments, namely the cell itself, the nucleus, and their difference, which
represents the cell cytoplasm with the membrane (Fig. S5a-b).

Our pipeline diminishes non-specific staining, autofluorescence, and experimental batch
effects by normalizing single-cell features based on images of negative control secondary
antibodies (see Methods), and mutually exclusive marker pairs for the prediction of background
levels via RESTORE*® (Table S6, Fig. S5c-d).

DeepFLEX analyzes the normalized single-cell data based on the integration of the visual
analysis framework Cytosplore® and the python data visualization library seaborn

(seaborn.pydata.org), which provide methods for interactive and quantitative analysis of

individual cell classes, respectively (Fig. S5e).

We proved that features extracted by DeepFLEX are comparable to their respective images in
representing cells, by using them as inputs to shallow and deep neural networks trained on an
annotated cell dataset and inferring cell classes (see Suppl. Methods, Fig. S6a-d, Table S7).
In summary, DeepFLEX represents a comprehensive single-cell image analysis pipeline for
MELC multiplex imaging, which includes accurate deep learning-based cell and nucleus
segmentation, and demonstrates computational solutions for common obstacles of targeted

multiplex imaging technologies such as unspecific binding and autofluorescence
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Single-cell map of tumor cells and the microenvironment in neuroblastoma bone
marrow metastases

To obtain a single-cell map of DTCs and the bone marrow microenvironment in children with
neuroblastoma, we used the designed 20-plex panel for MELC imaging of eight bone marrow
samples (Table 2) collected from three stage M and one stage Ms neuroblastoma patient
(Table 3) at different time-points during therapy. We then fed the generated multiplex images
into DeepFLEX, which resulted in an atlas of 35,700 single cells distributed between ten
clusters (Fig. 2b).

After confirming that potential batch effects have been eliminated (Fig. S5d, bottom), we
annotated clusters based on median feature expression of cell-type-specific marker proteins
(Fig. 2c, Fig. S7 and S8) and a recently published single-cell atlas®® of healthy adult human
bone marrow. In addition, we verified our annotation using representative gallery images of

each cell type (Fig. 2d).

We found most of the expected immune cell types including T-helper cells (T-h cells), cytotoxic
T-lymphocytes (CTLs), monocytes and macrophages (MO/M®) as well as B-cells. A dominant
proportion of cells in the bone marrow microenvironment of children represented a
hematopoietic mixed (Fig. 2b, yellow cluster) and a stem and progenitor (Fig. 2b, grey cluster)
cell phenotype. Moreover, we were able to identify a segregated tumor cell cluster with co-
expression of all markers expressed by DTCs from our panel (GD2, CD56, B7-H3, CD24 and
FAIM2). The mesenchymal marker VIM showed the highest expression on monocytes and
macrophages (Fig. 2c, Fig. S8). In bulk transcriptomic and proteomic data (Fig 1c), VIM was
also highly expressed in neuroblastoma cells, which was in accordance with the IF staining
results on neuroblastoma cell lines (Fig. Sic, Fig. S2b). However, in the eight analyzed bone
marrow samples, which were prepared with the same protocol (Fig. S2a) and stained with the
identical antibody (Table 1), DTCs were negative for VIM (Fig. 2c, Fig. S8), and also the
mesenchymal marker CD29, indicating that DTCs in our sample set are predominantly of an
adrenergic type, but clarification will require further robust mesenchymal markers. CD29 was
enriched in two clusters (Fig. 2c): (I) in myelocytes, which, in accordance with a previous
study®?, also showed a strong expression of CD24 as well as a c-shaped morphology (Fig. 2d),
and hence low values for the two features roundness and solidity; and (ll) in a cluster (CD29*
cells), which was negative for CD45 and hematopoietic lineage markers and mainly composed
of large cells, suggesting a mesenchymal stromal phenotype. These cells, however, displayed
a low abundance of VIM. One cluster exhibited a pronounced expression of HLA-ABC, but

could not be assigned to a specific cell type.

Page 7 of 27


https://doi.org/10.1101/2020.09.30.321539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321539; this version posted September 30, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lazic et al Single-cell multiplex imaging of bone marrow metastases

Taken together, we here provide a comprehensive representation of DTCs and the bone

marrow microenvironment of neuroblastoma patients.

Analysis of bone marrow microenvironmental changes

We then investigated the influence of DTC abundance on the bone marrow microenvironment
by separately analyzing the cell composition of each individual bone marrow sample (Fig. 3a,
Fig. S9).
Independent of the sample size (Fig. 3b), DeepFLEX detected DTCs in the same bone marrow
samples as AIPF (Table 2), currently the standard method for minimal residual disease
detection in routine diagnostic procedures. Although the proportion of DTCs detected by the
two methods was in a similar range, absolute numbers differed, which can be explained by the
higher number of markers used in DeepFLEX and the difference in sample size.
Next, we compared bone marrow samples with high and low tumor cell content (Fig. 3b and
¢). The proportion of hematopoietic mixed as well as stem and progenitor cells was strongly
reduced in samples with a high tumor cell infiltration. Moreover, myelocytes appeared only in
samples with a high DTC content.
In order to exclude that the myelocytic cluster co-expressing CD24, which is also highly
expressed in DTCs, and the mesenchymal marker CD29, might contain mesenchymal-type
neuroblastoma cells*®?°, we performed interphase fluorescence in situ hybridization (iFISH)
subsequent to MELC. The bone marrow sample with the highest DTC fraction and most
abundant CD29*CD24* cluster (BM 1.1) originated from a patient with a chromosome 17q gain
and was therefore interrogated using a 17qg-specific probe. The result (Fig. 3d) unequivocally
demonstrated that cells from the myelocytic cluster do not carry supernumerary 17q signals
and were therefore considered normal cells. However, these cells only appeared in the
presence of DTCs in the bone marrow in our sample set. In addition, FISH analysis also
confirmed the accurate classification of DTCs. We clearly detected six copies of 17q, which
was in accordance with a previous FISH analysis of lymph node metastases from the same
patient (NB1, Fig. S10).
Patient NB1 (Table 3) was diagnosed with a primary tumor located in the right adrenal gland,
and widespread metastatic bone marrow infiltration according to abdominal magnetic
resonance imaging (MRI) and the meta-iodobenzylguanidine (MIBG) scan. This was also
reflected in results obtained by DeepFLEX, which detected a DTC content of 63% in the
diagnostic bone marrow sample BM 1.1 (Table 2, Fig. 3a). Upon induction chemotherapy, the
patient showed a good local response and no evidence of tumor cells in the bone marrow,
which was in accordance with our results (BM1.2), (Table 2, Fig. 3a). Therapy response also
coincided with the expansion of hematopoietic mixed as well as stem and progenitor cells
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indicating hematopoietic restoration.

In summary, we observed that dissemination of neuroblastoma tumor cells into the bone
marrow as well as response to therapy was associated with changes in the bone marrow
microenvironment, specifically alterations of the myelocyte cell and hematopoietic mixed and

stem and progenitor cell compartments.

Heterogeneity of disseminated tumor cells and FAIM2 as a novel complementary

marker

Though neuroblastoma tumor heterogeneity has been investigated at the primary site on a
single-cell level®?°, a respective characterization in the metastatic bone marrow was still
missing. To assess tumor heterogeneity of bone marrow metastatic cells, we therefore
performed hierarchical clustering (see Methods) on the single-cell data of our DTC cluster
using only the DTC markers from our 20-plex MELC panel.

We obtained a clustermap with 30 DTC sub-clusters showing the heterogeneous expression
of markers expressed by DTCs (Fig. 4a), which was also reflected by representative gallery
images of individual DTC phenotypes (Fig. 4b). Notably, half of all DTCs belonged to sub-
cluster 19, which represented a dominant phenotype in the two highly tumor-infiltrated bone
marrow samples BM 1.1 and BM 3.1 (Fig. 4c). While DTCs showed a predominantly round
nuclear shape, cellular and nuclear size contributed to the fractionation of DTCs into distinct
sub-clusters and varied between different phenotypes, e.g. 17 and 30, which were composed
of mainly large and small cells, respectively. Sub-cluster 18 and 20 displayed a high expression
of FAIM2, an inhibitory protein in the Fas-apoptotic pathway of tumor cells®354, which was
proposed as a tumor marker in small cell lung® and breast cancer®®. FAIM2 is known to be
primarily expressed in neurons®57, which was in accordance with our bulk proteomics data
(Fig. S3a). In our RNA-seq datasets, FAIM2 transcription was significantly higher in tumor cells
than in bone marrow-derived MNCs (Fig. S3b). Moreover, FAIM2 transcription was enriched
in primary tumor cells without MYCN amplification as compared to those with MYCN
amplification (Fig. S3B), thus supporting previous findings®®. However, we did not observe a
differential expression between these two classes in DTCs. Interestingly, in our single-cell
analysis of eight neuroblastoma bone marrow samples, FAIM2 was expressed only in a subset
of DTCs (Fig. 4a and b, Fig. S11). As other markers, that were found to be expressed by DTCs,
FAIM2 was NOT exclusive to neuroblastoma cells, but was also found on other cell types in
the bone marrow (Fig. S8 and S11). To assess the correlation of FAIM2 and other DTC
markers, we plotted the DTC marker abundances for all cells of the DTC clusters (Fig. 4d, Fig.

S12). This corroborated the observation, that only a subset of DTCs exhibit a high expression
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of FAIM2 along with low or intermediate abundances of the other DTC markers, while the latter
were mostly co-expressed by DTCs.

Here we present a first exploratory survey of DTCs in bone marrow metastases on a single-
cell level highlighting a hitherto unappreciated diversity pointing toward multiple distinct
subclasses of DTCs. We show that FAIM2 marks a subset of DTCs and can serve as a
complementary biomarker for capturing DTC heterogeneity in neuroblastoma.

DISCUSSION

While the bone marrow attracts tumor cells in numerous solid cancer entities leading to poor
outcome in affected patients, comprehensive analyses of bone marrow metastases have not
been performed on a single cell level. We here set out to capture tumor heterogeneity and
unravel microenvironmental changes in a solid cancer with bone marrow involvement.

To this end, we constructed an atlas of DTCs and their microenvironment in the metastatic
bone marrow niche by multiplex imaging of eight human neuroblastoma bone marrow samples
and subsequent image analysis by our newly-developed pipeline DeepFLEX. Our results
revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary
marker to capture DTC heterogeneity. The presented findings indicate that malignant bone
marrow infiltration and response to cancer therapy might be associated with changes in the
bone marrow microenvironment, warranting deeper investigations of spatio-temporal
dynamics at the single-cell level and of their clinical relevance.

The bone marrow, as part of the immune system, constitutes a niche comprised of multiple
immune cell subpopulations®®, shown to be involved in cancer progression.®® As a key regulator
of hematopoietic and mesenchymal stem cell function, the niche may facilitate quiescence and
drug-resistance®!, impairing current therapeutic approaches. Single-cell multi-modal analysis
of healthy human bone marrow recently identified the major bone marrow mononuclear
populations.>! However, the single-cell atlas of malignant human bone marrow has so far only
been described in leukemia®2%3, where the bone marrow is not considered a metastatic, but
rather an originating site. Herein, we provide first insights into the single-cell landscape of
human bone marrow metastases including variations among DTCs as well as cells of the
mesenchymal and hematopoietic compartment.

Among DTCs, we showed a high level of diversity reflected by heterogeneous cell
morphologies as well as protein expression profiles and fractionation into phenotypically
diverse DTC sub-clusters. Notably, half of the cells belonged to one major DTC sub-cluster,
which represented a dominant phenotype in both of the two highly tumor-infiltrated bone
marrow samples. This phenotype dominance was also observed in a previous study® on

breast cancer, where in almost half of the analyzed cohort, 50% of all tumor cells belonged to
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a single tumor cluster, and might reflect clonal expansion, intrinsic plasticity or result from
tumor-microenvironment interaction.

A subset of DTCs exhibited a high expression of FAIM2, an inhibitory protein in the Fas-
apoptotic pathway, which we included into the 20-plex panel upon data mining of a previously
generated neuroblastoma RNA-seq and proteomics dataset. FAIM2 was described as a
therapeutic target in small cell lung cancer® and as a predictive marker of poor outcome in
breast cancer patients.%¢ Herein, we propose FAIM2 as a complementary marker to depict a
broader spectrum of DTC heterogeneity, as it marked a subpopulation of DTCs and showed a
lower correlation with the other analyzed DTC markers than the latter with each other. DCLK1,
a cancer stem cell marker®, was another candidate of high interest, whose distribution is yet
to be assessed in bone marrow metastases. A deeper investigation of DTC sub-classes in
larger patient cohorts may yield targets for neuroblastoma therapy.

Neuroblastoma heterogeneity has been investigated before by scRNA-seq of primary tumor
samples, most of which were shown to be composed of adrenergic and mesenchymal type
neuroblastoma cells, the latter suggested to be more resistant to chemotherapy.?® Also, we
have previously shown that mesenchymal characteristics can be adopted upon therapy-
induced tumor cell senescence.® %" Yet, in the investigated bone marrow samples, collected
at different time points in the disease course, we did not detect neuroblastoma cells of a
mesenchymal phenotype based on the expression of the mesenchymal markers, CD29 and
Vimentin. This might be explained by the limited sample as well as panel size and the fact that
mesenchymal type neuroblastoma cell identity has previously been defined by master
transcription factors active in gene regulatory networks. Thus, future research will require the
identification of robust imaging-based markers to reliably assign neuroblastoma cells to these
two classes.

Within the bone marrow microenvironment, we observed alterations in the hematopoietic and
mesenchymal cell compartment with respect to the level of tumor cell infiltration indicating that
DTCs shape the metastatic niche, albeit based on a very limited cohort size. In support of this
notion, leukemia cells are likewise known to reprogram the bone marrow niche in order to
instigate changes that promote their progression.® Interestingly, we identified considerably
fewer progenitor and other immature hematopoietic cells (distributed among 2 clusters, i.e.
hematopoietic mixed and stem and progenitor cells), in highly tumor infiltrated samples, which
solidifies previous findings, suggesting that tumor invasion reduces the support for primitive
hematopoietic stem and progenitor cells in the metastatic niche.®® In addition, it is widely
accepted that cytotoxic therapy leads to bone marrow perturbation resulting in
myelosupression’®, which might also be responsible for the observed depletion of immature,

lineage negative hematopoietic cells. Furthermore, we only found myelocytes in samples with
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a high DTC infiltration, which may be attributable to the immunosuppressive and tumor-
promoting functions of cells from the myeloid origin as well as their role in inflammation.”
Our findings were based on single-cell analyses of MELC multiplex imaging data, enabled by
the pipeline DeepFLEX, which we developed based on the integration of methods for image
processing**46, segmentation*”48, normalization*® and single-cell analysis.>®® DeepFLEX
tackles confounding factors of targeted imaging technologies such as unspecific binding and
autofluorescence and combines deep-learning based cell and nucleus segmentation, which
allow accurate single-cell assessment. In addition to the code, we provide the complete
multiplex image dataset of all samples used in this study. The demonstrated application of
DeepFLEX on MELC imaging data serves as a blueprint for further single-cell analyses by
multiplex imaging methods beyond MELC, facing similar challenges.

In conclusion, this study offers a first view into the single-cell landscape of human bone marrow
metastases and might motivate further investigations in other solid cancers with bone marrow
involvement. Moreover, our findings represent a valuable source of information for the design
of therapeutic approaches depending on the distribution of target molecules on cancer cells
such as immunotherapies’?, and can hence contribute towards better patient stratification in

neuroblastoma.

DATA AND CODE AVAILABILITY

The RNA-seq dataset used for datamining is available for download on the GEO data
repository under accession number GSE94035.

Supplementary data (.csv and .doc files) holding manually curated information retrieved from
protein databases and literature search can be found on

https://cloud.stanna.at/sharing/iyvorsYWzp

The mass spectrometry proteomics data has been deposited to the ProteomeXchange
Consortium (proteomecentral.proteomexchange.org) via the PRIDE partner repository
(ebi.ac.uk/pride/ , PMID: 24727771) with the dataset identifier PXD018267.

Python code for the DeepFLEX pipeline is available on github.com/perlfloccri/DeepFLEX. A

compiled release with all necessary dependencies pre-installed is available from dockerhub

URL https://hub.docker.com/repository/docker/imageprocessing29092020/deepflex.

The MELC multiplex imaging data of our neuroblastoma cohort is available at

https://cloud.stanna.at/sharing/qiNOu9QPO .
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METHODS

Patients and cell lines

The collection and research use of human tumor specimen was conducted according to the
guidelines of the Council for International Organizations of Medical Sciences (CIOMS) and
World Health Organization (WHQO) and has been approved by the local ethics committees of
the Medical University of Vienna (EK1216/2018, EK2220/2016).

Neuroblastoma cell lines

Five patient-derived neuroblastoma cell lines were used for validation of biomarkers and
identification of the best sample preparation conditions. STA-NB-2, -4 and -10 have been
established from primary tumors, and STA-NB-8 and STA-NB-12 from DTCs of bone marrow
aspirates. INSS (International Neuroblastoma Staging System) and MYCN amplification status
for all neuroblastoma cell lines were described previously’® and are listed in Table S2. Cells
were maintained in RPMI1640-Glutamax-1 (GIBCO) supplemented with 1% Pen/Strep
(GIBCO), 10% FCS (PAA Laboratories), 1 mM sodium pyruvate (PAN Biotech) and 25 mM
HEPES (PAN Biotech). All neuroblastoma cell lines were cultivated at 37°C and 5% CO2.

Bone marrow aspirates

Bilateral bone marrow aspirates were collected according to the SIOPEN/HR-NBL-1 study
protocol or standard of care during routine diagnostics at initial diagnosis and at clinical
response evaluation time points. Samples were shipped at room temperature within 4 hours
or at 4°C within 24 hours. Bone marrow-derived MNCs were isolated by density gradient
centrifugation (LymphoprepTM, AXIS-SHIELD PoC AS).

For the validation of antibodies, neuroblastoma cell lines were mixed with tumor-free bone
marrow-derived MNCs to obtain a tumor cell suspension of 5% neuroblastoma cell line in bone
marrow-derived MNCs.

For single-cell analysis, eight bone marrow aspirates (Table 2) were collected at different time
points along the therapy protocol from four neuroblastoma patients with metastatic (INRG

stage M or Ms) disease (Table 3).
Peripheral blood-derived MNCs

Left over samples of peripheral blood from routine diagnostics was collected and peripheral

blood-derived MNCs were isolated, washed and counted as described for bone marrow-
derived MNCs. Neuroblastoma cell lines were spiked into peripheral blood-derived MNCs to
obtain a tumor cell content of 5%. The cell mixture was cultivated in the presence 0.125% (v/v)
anti-CD3/CD28 beads (Thermo Fisher Scientific) and 1% (v/v) IFNy (Peprotech) for 5 days.

Page 20 of 27


https://doi.org/10.1101/2020.09.30.321539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321539; this version posted September 30, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lazic et al Single-cell multiplex imaging of bone marrow metastases

Biomarker identification by data mining

DTC-associated biomarkers were identified based on data mining of previously generated
RNA-seq datasets and proteomics data, and guided by public databases. The following
prioritization scheme was employed:

Differential gene expression analysis

RNA-Seq data (GEO repository available under accession number GSE94035) of primary
tumors (n=16), enriched bone marrow-derived diagnostic (n=22) and relapse DTCs (n=20),
and the corresponding bone marrow-derived MNCs (n=28) of in total 53 stage M
neuroblastoma patients was processed as previously described!® and used for the
identification of potential DTC biomarkers. Genes with significantly higher (DEseq2’4, FDR-
adjusted p < 0.001, log2FC = 4) transcript levels (FC, fold change) in DTCs as compared to
bone marrow-derived MNCs were selected (n=1,594) and further filtered for those with an
equal or higher transcription (DEseq2, FDR-adjusted p : 0.01 + 0.7, log2FC = 0) at the time

point of relapse as compared to diagnosis (n=921).

Protein databases and literature search

The remaining genes were manually annotated with the cellular location of the encoded protein
according to protein databases UniProt’”® and The Human Protein Atlas’®, and only proteins
localized on the cell membrane by at least one database were further considered (n=134, see
Data and code availability).

Detailed literature search using the search terms [neuroblastoma], [tumor] and [metastasis]
was carried in the PubMed database (pubmed.nchi.nim.nih.gov) resulting in 99 candidates
(see Data and code availability), from which five (TAG1, DCLK1, FAIM2, PRAME and TACC2)

were selected based on detailed examination of available literature and commercial availability

of respective antibodies.

Proteomics data

Proteomics data of eight peripheral-nerve-associated fibroblasts, 3 in-house established
patient-derived neuroblastoma cell lines (STA-NB-10, STA-NB-2, STA-NB-7) and 6
corresponding neuroblastoma primary tumors was previously generated’” and is available on

the ProteomeXchange Consortium (proteomecentral.proteomexchange.org) with the dataset

identifier PXD018267. The proteomics dataset was used to confirm the expression of the five
candidates selected above as well as seven other biomarkers (CD56, NCAM-L1, PD-L1, VIM,
PROM1, B7-H3 and PD1), which were added based on their relevance in neuroblastoma as

previously reported. 20:32.33,34,35
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Biomarker validation

Cytospin slide preparation

50,000 cells (cell lines) or 250,000 cells (spike-in and patients samples) were applied onto
poly-L-lysine hydrobromide (PLL) (Sigma Aldrich) -coated microscope cover glasses (24x60
mm, Assistent) using filter paper (4 ml, CytoSepTM) and funnel chamber (4 ml, CytoSepTM)
of a Hettich cyto-centrifuge (Hettich). Three different centrifugation and fixation methods were
tested in the present study (Table S1, Fig. S1b, Fig. S2a). The optimized protocol for
processing patient samples is detailed in Table S1 and involves PFA (paraformaldehyde)
followed by acetone (AC) fixation (PFA-AC). Chemicals used for fixation, acetone and 4% PFA,
were ordered from Carl Roth GmbH. Slides were dried for 2 min after fixation and stored at -
80°C until further analyses.

IF Staining

Antibodies (Table S4) were diluted in 2% BSA/PBS. Slides were incubated with primary
antibody solutions for 1 h at room temperature, washed in PBS twice followed by secondary
antibodies for 1 h at room temperature. After washing, slides were incubated with the nuclear
stain DAPI (2 pg/ml) for 2 min and covered with antifade medium Vectashield (Vector

Laboratories).

Validation procedure

DTC-related biomarkers were validated based on an intuitive validation procedure (Fig. S1a).
First, IF-staining of individual biomarkers was performed on neuroblastoma cell lines prepared
with the AC and PFA based protocol (Table S1, Fig. S1b). Thereafter, slides were assessed
visually using a Zeiss Axioplan two microscope in five criteria (nuclear morphology,
background noise, cell debris, staining intensity, staining quality) to evaluate the impact of the
respective sample preparation protocol (AC or PFA) on cell morphology and antigenicity.
Scores from one to five were assigned to each criterion with five corresponding to the best
result. Accordingly, the maximum score for one slide was 25. Overall scores for all five
neuroblastoma cell lines, incubated with the corresponding antibody, were summed up for
each fixation method separately, and a mean score was calculated as a qualitative metric
(Table S3). Antibodies with a mean score below 13 for both AC and PFA based fixation were
considered invalid and not further validated. For all other antibodies, images of the slides
prepared with the better sample preparation protocol (higher mean score) were acquired using
the automated scanning system, Metafer 4 (software version V3.11.8 WK, Metasystems) and
63x magnification (Fig. S1c).

Antibodies that were successfully validated on neuroblastoma cell lines, were additionally

tested on two cytospin samples of neuroblastoma cell lines and bone marrow-derived MNCs
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or peripheral blood-derived MNCs (for validation of PD-L1, PD-1) prepared with the PFA-AC
protocol (Table S1, Fig. S2a). Slides were then visually inspected and imaged automatically
as above (Fig. S2b).

For sequential IF-staining by MELC, antibodies, which passed the validation procedure, were
combined with already validated antibodies specific to bone marrow hematopoietic and
mesenchymal cells (Table S4). Staining sequence and panel were refined in several pilot
MELC rounds and finally resulted in a 20-plex biomarker panel (Table 1, Fig. 1e and f).

Multi Epitope Ligand Cartography

MELC was employed for multiplex IF-staining of the herein established 20-plex antibody panel,
as described.*

Briefly, MELC is based on repetitive cycles of antibody staining and photobleaching. After
system start, four field of views are selected and calibration (brightfield and darkframe) images
are acquired. Prior to every staining and photobleaching cycle with the acquisition of the
corresponding fluorescence tag and post-bleaching image, the slide is washed with PBS and
a phase contrast image is taken.

Camera (ApogeeKX4,Apogee Instruments) and light source maintain the same position; the
motor-controlled xy stage of the inverted fluorescence microscope (Leica DMIREZ2, Leica
Microsystems; x20 air lens; numerical aperture, 0.7) moves in between field of views. Images
with a resolution of 2018 x 2018 pixels are acquired, with one pixel corresponding to 0.45 pm
at a 20x magnification. Thus the whole image covers a field of view covering 908.1 x 908.1
pm.

Additionally, negative control secondary antibodies were implemented, which were applied to

the sample prior to indirect staining of the respective primary antibody.

Interphase fluorescence in situ hybridization (iFISH)

The MELC pre-processed sample BM 1.1 was fixed in 4% paraformaldehyde at 4°C overnight
for subsequent analysis by iFISH. iIFISH was performed as previously described.”®
Predigestion of cells was carried out in 0.005% pepsin in 0.01 NHCL for 25 min. Since the
sample originated from a patient with a chromosome 17q gain, a labeled 17g-specific probe
(XL Iso (17q), Metasystems probes) was used. Denaturation was performed at 80°C. Nuclei
were counterstained with nuclear stain DAPI (2 pg/ml) for 2 min and covered with antifade
medium Vectashield (Vector Laboratories). Slides were imaged with the Zeiss Axioplan 2

microscope and the ISIS software (version 5.7.4, Metasystems).
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DeepFLEX

Main parameters used by methods integrated in the pipeline are listed below. Further

parameters are detailed in Table S8.

Image processing

Images were registered, as previously described* (Fig. S4a). Then, flat field correction using
brightfield and darkframe calibration images was performed to eradicate gross variations in
illumination (Fig. S4b). Accumulative background noise caused by residual post-bleaching
signals was eliminated by subtracting post-bleaching images from successive fluorescence
tag images (Fig. S4c). To reduce vignetting (reduction of image brightness toward periphery
compared to image center), intensity distributions were corrected using regularized energy
minimization on the set of all fluorescence tag images from our eight samples via CIDRE*5
(aithub.com/smithk/cidre); (Fig. S4d).

Segmentation
For accurate nuclei and cell segmentation, annotated datasets*® of propidium iodide or phase

contrast images were created, respectively. We trained the deep learning architecture Mask
R-CNN for instance-aware segmentation, as previously described.*” Briefly, after augmenting
the training dataset with automatically generated artificial images, we used image tiling and
rescaling to segment MELC images in order to make them compatible with the input size
(256x256 pixels) of the trained Mask R-CNN. The fluorescence tag image (nuclear stain
propidium iodide) was segmented into a labeled nucleus mask (Fig. S4f), while phase contrast
images (which are acquired prior to each IF staining) were segmented into labeled cell masks
(Fig. S4e) for each of the 20 markers. Inferred objects were only counted as cells if they were
reproduced in all of the 20 cell and the nucleus mask (Fig. S4g). We furthermore removed cells
affected by image artifacts or located in poorly illuminated image corners by user-guided region
selection (Fig. S4h).

Feature extraction

The segmentation masks were used as a reference to generate multi-channel single-cell
images (Fig. Sba), based on which intensity and morphological features were extracted (Fig.
S5b, Table S5). The morphology of the cell nucleus was described by the features size,
perimeter, roundness and solidity. To describe the morphology of the cell, the features size
and perimeter were extracted. We used three intensity features to quantitate marker
abundance: mean intensity, total intensity and mean of the top 20% intensities (less dependent
on cell size). Intensity was measured per cell, per nucleus, and per cell cytoplasm and
membrane (= cell - nucleus). After feature extraction, cells with a larger nucleus than cell

segmentation mask were excluded.
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Normalization

To eliminate unspecific staining caused by secondary antibodies and to increase the signal-
to-noise ratio, features extracted from the second secondary antibody were divided by features
extracted from the negative control secondary antibody (Fig. S5c).

To further remove unspecific binding of primary antibodies and batch variation in staining
intensity, autofluorescence, and illumination, we applied RESTORE*
(gitlab.com/Chang_Lab/cycif int norm) to predict a background level (threshold separating

signal and noise/background) for each marker in each image based on a mutually exclusive
counterpart. Mutually exclusive marker pairs (Table S6) were selected based on biological
knowledge and a data-driven approach using singular value decomposition, as described.*®
Background levels were then inferred for each field of view and each intensity feature,
separately. Guided by generated scatter plots (Fig. S5d, top), we selected the background
level predicted by sparse subspace clustering (o = 0). If no positive signals were present in the
analyzed field of view for a certain marker by visual inspection, the respective background level
was set to the maximum intensity value.

Subsequently, all values below the background level were randomly set within a range
between 0 and 0.02, while all values exceeding the background level (corresponding to
signals) were linearly scaled to a range between 0.02 and 1. Thereby, influence of background
variation on the subsequently applied single-cell analysis was eliminated, while foreground
signals were stretched to a larger dynamic range.

Morphological features were linearly scaled between 0 and 1. Upon RESTORE normalization
and scaling, batch effects were successfully removed (Fig. S5d, bottom).

Single-cell analysis

Normalized features were converted into an FCS file format and loaded into Cytosplore®®
(cytosplore.org, version 2.3.1), an interactive tool providing methods for single-cell analysis. A-
tSNE" (approximated and user steerable t-distributed Stochastic Neighbor Embedding,
perplexity = 30) and subsequent clustering by GMS® (Gaussian Mean Shift, o = 45) clustering
was computed on the complete single-cell dataset of eight bone marrow samples and resulted
in 10 clusters, which were exported as FCS files together with the CSV file of the corresponding
heatmap (Fig. 2b and c). The latter were imported into python to allow further quantitative and
explorative analysis (Fig. 2d, Fig. 3a-d, Fig. 4a-d, Fig S7-S9) with the python (version 3.7) data

visualization library seaborn (seaborn.pydata.org, version 0.10.rc0), (Fig. S5e). Hierarchical

clustering was performed using the complete-link / Voorhees algorithm?® provided by seaborn.
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TABLES

Table 1] All primary and secondary antibodies, which passed the validation procedure and were included in the final 20-plex
MELC panel. n.r. not relevant

Catalogue- Optimal
Conjugate  Class|Host|Isotype Clone Supplier Number Dilution

Antibody

B7-H3 PE human IgG1 REA1094 Miltenyi Biotec 130-118-570 1:40

recombinant human REA780
CD20 PE IgG1 Miltenyi Biotec 130-111-338 1:20

monoclonal mouse
CD25 PE 19G HI25a ImmunoTools 21810254 1:20

monoclonal mouse 21620034
CD3 PE 19G1 UCHT1 ImmunoTools 1:20

monoclonal mouse
CD4 PE 1gG2a,k VIT4 Miltenyi Biotec 130-113-214 1:20

monoclonal mouse
CD45 PE 1gG1 HI30 ImmunoTools 21810454 1:20

monoclonal mouse
CD8 PE 1gG1 HIT8a ImmunoTools 21810084 1:20

monoclonal chinese
GD2 FITC hamser/humanized  ch14.18/deltaCHO Tubingen n.r. 1:100

monoclonal mouse
HLA-DR PE 1gG1 HI43 ImmunoTools 21819984 1:20

Propidium
lodide Pl n.r. n.r. Genaxxon bioscience M3181.0010 1:1000

Gta Ch FITC polyclonal goat IgG ThermoFisher A16055 1:500
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Swa Rb FITC polyclonal swine IgG Dako F0205 1:50

Table 2 | Sample set comprised of eight bone marrow samples. Tumor cell content detected by DeepFLEX was compared to
AIPF, the standard method used in the diagnostic routine. AIPF, Automatic Immunofluorescence Plus FISH; BM-MNCs, bone
marrow-derived mononuclear cells; left/right, bone marrow aspirate from left/right puncture side (pooled for analysis by

DeepFLEX); TVD, topotecan-vincristine-doxorubicin; MAT, myeloablative therapy with autologous stem cell transplantation.
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BM1.1 diagnosis 800,000 (81,000) 500,000 (840,000) 4,827 (7,672) 629,171 (7,672)
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b post induction
2 BM1.2 chemotherapy 0 (5,300,000) 0(841) 0(841)
BM1.3 StzﬁgeRD 0 (1,830,000) 0 (2,590,000) 0(1,381) 0(1,381)
post induction
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o post induction
o
) BM2.2 L TVD Il 1 (4,420,000) 8 (7,474) 1070 (7,474)
BM2.3 post MAT 0 (3,070,000) 0 (1,020) 0 (1,020)
™
2 BM3.1 relapse 75,000 (1,070,000) 75,000 (1,340,000) 223 (7,788) 28,633 (7,788)
<
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Table 3 | Patient set. INRG, International Neuroblastoma Risk Group Staging System, HRNBL1, High Risk Neuroblastoma study

1; LINES, Low and Intermediate Risk Neuroblastoma European Study; MNA, MYCN amplification; neg, negative; pos, positive;

Patient_ID sex age(igéiri]?ﬁ;l)osis INRG Cs“trlljigsl event c:i?/i/ MNA 179 gain
NB1 F 54 M HRNBL1 no alive neg pos
NB2 M 8.5 M no no alive neg pos
NB3 F 86 M HRNBL1 yes dead pos neg
NB4 F 5 Ms LINES no alive neg neg
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a, Flow chart of experimental approach. b, 5 potential disseminated tumor cell (DTC) biomarkers identified by data mining of RNA-seq data, proteomics data (LC-MS/MS)
and literature. Top: mRNA transcription (RNA-seq) in neuroblastoma primary tumors (TU), diagnostic (dx) and relapse (rel) DTCs and bone marrow-derived mononuclear cells
(BM-MNGs). DESeq2, FDR-adjusted p value: ns, p> 0.05, *, p < 0.05; **, p < 0.01; ***, p < 0.001. Bottom: Protein expression in NB peripheral-nerve-associated fibroblasts
(PF), neuroblastoma cells lines and TU samples. LFQ, Label Free Quantification; FPM, fragments per million. ¢, Extension of potential DTC biomarkers by immune checkpoint
molecules (PD-L1, PD-1, B7-H3), mesenchymal-type neuroblastoma cell markers (VIM, PROM1), therapeutic target NCAM-L1 and diagnostic neuroblastoma marker CD56.
DESeq2, FDR-adjusted p value: ns, p>0.05, *, p < 0.05; **, p < 0.01; ***, p < 0.001. d, Representative MELC images of newly identified DTC biomarkers DCLK1, FAIM2 and
TAGT on separate samples stained by MELC. Top: DCLK1 (green) and GD2 (red) on BM-MNCs and neuroblastoma cells line STA-NB-10 (mixed 20:1); center: FAIM2 (green) and
GD2 (red) on BM-MNCs and neuroblastoma cell line STA-NB-2 (20:1), bottom: TAGT (green) on peripheral blood-derived MNCs and neuroblastoma cell line STA-NB-4 (20:1)
stimulated with IFNy and anti-CD3/28 beads. Nuclei were counterstained with DAPI (blue). e, Representative MELC images of our single-cell 20-plex panel on one patient
bone marrow sample. f, Single-cell 20-plex panel composed of DTC, myeloid, lymphoid, mesenchymal and HSPC (hematopoietic stem and progenitor cell) markers.
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single cells clustered colored by cell type. Dimensionality reduction was performed by A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor Embed-
ding) and subsequent clustering by GMS (Gaussian Mean Shift) in Cytosplore.®® ¢, Heatmap showing the median feature expression of all created clusters with feature-wise
scaling. n, nucleus; ¢, cell. 9 columns per marker represent, from left to right, mean intensity, total intensity and mean of the highest 20% of pixel values in the (I) nucleus,
(I1) cell'and (111) cytoplasm/membrane. DTCs, disseminated tumor cells; Myel., myelocytes; MO/MO, monoaytes/macrophages; HSPC, hematopoietic stem and progenitor
cells; T-h cells, T-helper cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic mixed cell population. d, Representative gallery images of all cell types. For FAIM2, PD-1
and VIM we introduced negative controls (NC) to be used for normalization during data processing. Hence, for these four biomarkers, the ratio between right column and
left column (NC) represents the true signal.
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Mes. cells, mesenchymal cells; HSPC, hematopoietic stem and progenitor cells; T-h cells, T-helper cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic mixed cell popu-
lation. b, A-tSNE plot of 35,700 single cells colored by sample and pie chart showing sample size. ¢, A-tSNE plot of 35,700 single cells highlighted by samples with hi?h (top,
BM 1.1, BM 3.1) and low (bottom, BM 1.2, BM 1.3, BM 2.1, BM 2.2, BM 2.3, BM 4.1) tumor cell infiltration and colored by cell type. Dimensionality reduction was performed
by A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor Embedding) and subsequent clustering by GMS (Gaussian Mean Shift) in Cytosplore.*® d, FISH

analysis with chromosome 17g-specific probe on MELC-preprocessed sample BM 1.1, collected from a patient with 17q gain. Nucleus segmentation mask (left, large) pseu-

do-colored according to cell type and based on propidium iodide image (right, large) acquired during MELC. 6 copies of 17q (red) were detected on DTCs (D, orange) and 2 on
myelocytes (M, brown). The 17p reference probe did not yield interpretable results due to preprocessing of the sample by MELC. Nuclei were counterstained with DAPI (blue).
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a, Clustermap (hierarchical clustering by Voorhees®) showing normalized single-cell feature values of DTCs. n, nudleus; , cell. 9 columns per marker represent, from right
to left, mean intensity, total intensity and mean of the highest 20% of pixel values in the (I) nucleus, (I1) cell and (Ill) cytoplasm/membrane. Color bar on the right shows 30
sub-clusters. Color bar on the left shows corresponding bone marrow sample. b, Representative gallery images of 6 selected cells from different DTC sub-clusters reflecting
DTC heterogenelt?/ For FAIM2 we introduced negative controls (NC) to be used as back?round threshold levels during data processing. Hence, for this biomarker, the ratio
between right column and left column (NC) represents the true signal. ¢, Proportion of 30 DTC sub-clusters in highly tumor-infiltrated bone marrow samples (BM 1.1,BM
3.1). d, Scatter plots showing correlations of DTC marker (D276 versus (D56 (left), and FAIM2 versus CD56 (right) for all cells of the DTC cluster. Mean of the highest 20% of
pixel values in the cytoplasm/membrane was used as measure for marker abundance.
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