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Abstract:

Pangenomes — the cumulative set of genes encoded by a species — arise from evolutionary forces
including horizontal gene transfer (HGT), drift, and selection. The relative importance of drift and
selection in shaping pangenome structure has been recently debated, and the role of sequence
evolution (point mutations) within mobile genes has been largely ignored, with studies focusing
mainly on patterns of gene presence or absence. The effects of drift, selection, and HGT on
pangenome evolution likely depends on the time scale being studied, ranging from ancient (e.g.,
between distantly related species) to recent (e.g., within a single animal host), and the unit of
selection being considered (e.g., the gene, whole genome, microbial species, or human host). To
shed light on pangenome evolution within microbiomes on relatively recent time scales, we
investigate the selective pressures acting on mobile genes using a dataset that previously identified
such genes in the gut metagenomes of 176 Fiji islanders. We mapped the metagenomic reads to
mobile genes to call single nucleotide variants (SNVs) and calculate population genetic metrics
that allowed us to infer deviations from a neutral evolutionary model. We found that mobile gene
sequence evolution varied more by gene family than by human social attributes, such as household
or village membership, suggesting that selection at the level of gene function is most relevant on
these short time scales. Patterns of mobile gene sequence evolution could be qualitatively
recapitulated with a simple evolutionary simulation, without the need to invoke an adaptive
advantage of mobile genes to their bacterial host genome. This suggests that, at least on short time
scales, a majority of the pangenome need not be adaptive. On the other hand, a subset of gene
functions including defense mechanisms and secondary metabolism showed an aberrant pattern of
molecular evolution, consistent with species-specific selective pressures or negative frequency-
dependent selection not seen in prophages, transposons, or other gene categories. That mobile
genes of different functions behave so differently suggests stronger selection at the gene level,
rather than at the genome level. While pangenomes may be largely adaptive to their bacterial hosts
on longer evolution time scales, here we show that, on shorter "human" time scales, drift and gene-

specific selection predominate.
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INTRODUCTION

Human gut microbial communities (or microbiomes) impact diverse aspects of human health, such
as food digestion, nutritional uptake, immunity, and inflammation2. The gut microbiome is
shaped by both ecological factors, such as shifts in species abundance or strain replacements, and
evolutionary forces, such as mutation, horizontal gene transfer (HGT), drift and selection’. In
particular, microbes in the gut dynamically and frequently exchange genetic material through
HGT?, resulting in pangenomes (the total set of genes observed in all members of a species or
population) which are often much larger than an individual genome size >7. Some studies have
shown that horizontally transferred (mobile) genes could contribute to environmental adaptation,
notably through the propagation of antibiotic resistance®. However, there are contexts in which
pangenome evolution could be driven more by drift than by selection. For instance, the evolution
of endosymbionts or intracellular pathogens, which have small effective population sizes, is
generally driven by drift, resulting in small pangenomes®. In contrast, selection seems to play a
bigger role in free-living microbes, like hydrothermal vent bacteria’. Whether pangenome
evolution is mainly driven by selection (an adaptive model) or drift (a non-adaptive or neutral

model) is a question that has generated some controversy %1011,

Answering this question depends on the time scale being studied. For example, long-term
evolution (e.g. among distantly related species or among all extant members of a species) versus
near-term evolution (e.g. among a locally coexisting population of a species) may experience
different regimes of drift and selection. On long time scales, using data from distantly related
genomes that diverged millions of years ago 7, and at the whole-genome scale, adaptive and non-
adaptive models have been proposed and are still a source of contention. A model in which gene
gain by HGT is predominantly adaptive provides a good fit to distantly related genomes from the
NCBI database’. In that work, Sela and collaborators developed a model of prokaryotic genome
size evolution that includes gene gain, gene loss, and their fitness effects !. In their model, gene
gain and loss maintain genome size equilibrium and have opposite fitness effects. The model also
accounts for species effective population size (N.), which measures genetic diversity and
effectiveness of selection in a population, and is dependent on census population size and its

fluctuations!! as well as on varying intensities of purifying, positive, or fluctuating natural
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75  selection. From simulations of this model, they found that a scenario in which gene gain is, on
76  average, slightly beneficial best fits genome size and nucleotide diversity data from 707
77  prokaryotic genomes. Based on a synthesis of population genomic data and models including Sela
78  and collaborators’ model 7, another group led by McInerney and collaborators argued that an
79  adaptive model best explains pangenome evolution because more diverse pangenomes tend to arise
80 in species with larger N. due to beneficial gene gain, higher efficacy of selection, and a large

81  number of micro-niches available to the species °.
82

83  Incontrast, Andreani and collaborators observed that genome fluidity, defined as the ratio between
84  the number of unique gene families and the average number of gene families between random
85  genome pairs, significantly correlates with synonymous nucleotide diversity in 90 bacterial
86  species. Although this does not exclude a role for selection, the observation is most parsimoniously
87  explained by a neutral model. Similarly, Bobay and Ochman observed that gene turnover does not
88  significantly correlate with dN/dS, which measures selection on protein-coding genes '!. They also
89  found that N, correlates positively with pangenome size for most of the 153 analyzed prokaryotic
90  species. Similar to McInerney and collaborators, they attributed this to an increased effectiveness
91  of selection in species with larger N. and that most of the accessory genes, those that are present
92  in some but not all strains of a species, are slightly beneficial ®. The fact that Bobay and Ochman
93  found evidence for both adaptive and neutral pangenome evolution may seem contradictory !!.
94  However, they reconciled these observations by proposing a nearly neutral model of drift-barrier
95  evolution. This model describes the balance between selection and drift. More precisely, it assumes
96 that most accessory genes in the pangenome are slightly beneficial, such that they can be
97  considered neutral when N, is small, but they can escape the effects of drift and spread when the

98  selective coefficient s exceeds 1/Ne.
99

100  Resolving the balance of evolutionary forces influencing pangenomes also depends on the
101  biological scale or unit of evolution. For example, the consequences of selection at the level of
102  single genes, whole genomes, microbial species or human hosts could yield different patterns. The
103  studies above focused on adaptation at the whole-genome level, but selection also acts at the level

104  ofindividual genes®!'%!3. Mobile genes in particular may have their own N, which could be distinct
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105  from the N. of the whole genome of a species!®. For example, there is an entire class of mobile
106  genes, including phage and other “selfish” elements that have effectively instantaneous HGT
107  rates'*. Other mobile genes may provide rapid adaptive value to their bacterial hosts, such as in
108  the gut microbiome of humans with different diets or lifestyles!. Therefore, based on their patterns
109  of presence or absence, some mobile genes appear to be selected to favour their own replication

110  (selfish) while others may provide benefits to their bacterial or even human hosts!'?.
111

112 All the studies above investigated pangenome evolution among distantly related genomes over
113  relatively ancient time scales. Yet selective pressures might differ on recent and shorter
114  evolutionary time scales, such as within local populations of bacteria over dozens rather than
115  millions of years. However, a targeted investigation of the population genetics of mobile genes on
116  short time scales is still missing. To study pangenome evolution on shorter evolutionary time scales
117  and at the level of individual genes, we used a dataset from Brito and collaborators composed of
118 37,853 mobile genes involved in recent HGT events in the human gut !. We mapped metagenomic
119  reads from a cohort of 176 Fiji islander gut microbiomes to this set of mobile genes. From the
120  mapped reads, we identified single nucleotide variants (SNVs) segregating within microbiomes,
121 from which we calculated population genetic metrics such as dN/dS and Tajima's D that contain
122 information about evolutionary and demographic history of mobile genes. In contrast to studies
123 over longer evolutionary time scales, which have concluded that pangenome evolution is adaptive,
124  we find that many aspects of pangenome molecular evolution on shorter time scales can be
125  explained without invoking any adaptive benefit of mobile genes to their human hosts. However,
126  a small subset of genes with distinct functions show dramatically different signature of molecular
127  evolution, suggesting that selection acts at the level of gene function. Our results suggest that while
128  host-related selective pressures may be strong over long evolutionary time scales, selection at the

129  level of individual genes might predominate over shorter "human" time scales.

130
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131  RESULTS AND DISCUSSION

132
133 Gene mobility correlates positively but not strongly with metagenomic coverage

134  To study pangenome evolution on time scales on the order of a human lifespan, we used an existing
135  collection of mobile genes identified in 387 isolate genomes from the Human Microbiome Project
136  (HMP) and 180 single-cell genomes from the Fiji Community Microbiome Project (FijiCOMP).
137  Selected single-cell genomes came from 31 different genera and had less than 10% putative
138 contamination called by CheckM"!®, The mobile genes were identified in genomic regions
139  containing at least 500bp with >99% nucleotide identity over >50% of their sequence length
140  between distantly related single-cell bacterial genomes (<97% identity in 16S rRNA), suggesting
141  that HGT occurred within an individual human gut microbiome!. Ribosomal genes, which tend to
142 be highly conserved, were excluded from this set of mobile genes as they could represent false-
143 positive HGT events!. This procedure is strict, yielding likely true positive HGT events, at the
144  expense of many false negatives:!”. We considered only genes with at least 10X metagenomic
145  sequence coverage, and only metagenomes with at least 500 genes passing this coverage threshold.
146  These filters yielded a total of 7,990 mobile genes out of the 37,853 genes present in the original
147  dataset, and 175 out of 176 metagenomes, each from a different person from Fiji. We operationally
148  defined gene mobility as the number of single-cell genomes in which a mobile gene was found.
149  Gene mobility ranged from 1-16 species (mean = 2.73, standard deviation = 2.42; Figure S1) and
150  is probably an underestimate of the true HGT rate because it was estimated from a limited sample
151 (180 genomes) of the diversity in Fijian islanders’ gut. This could also be explained by small or
152  incomplete assemblies of the single-cell genomes. Nonetheless, this dataset provides allows us to

153  assess the balance of evolutionary forces in the pangenome on short timescales.
154

155 We began by asking whether our mobility metric behaves as expected in quantifying the
156  spread of mobile genes in the gut. Assuming that genes with higher mobility will occur in more
157  species, we expect them to be more deeply covered by metagenomic sequence reads. Consistent
158  with this expectation, we found that a gene's mobility is positively correlated with its depth of

159  metagenomic read coverage (Figure 1 and Table S1C). The expectation of a positive correlation
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160  is not guaranteed because some mobile genes, such as selfish elements, have deleterious effects!®

161  and can be subject to negative frequency-dependent selection %1920

such that they are carried only
162 by a fraction of individuals within a species, even if prevalent across species. The correlation
163  between gene mobility and coverage is significantly positive in 169 out of 175 gut metagenomes
164  (Bonferroni-adjusted p-value < 2.2x107!6), but the adjusted R’ and slope values are relatively
165 modest (Figure 1, Figure S2). Varying selective pressures across mobile genes (e.g. deleterious
166  effects and negative frequency-dependent selection) might by responsible for reducing the scaling
167  between gene mobility and coverage, but not enough to flatten the relationship completely. We

168  conclude that gene mobility, even if estimated from a relatively small sample of 180 gut bacterial

169  genomes, behaves approximately as expected: generally leading to higher gene copy numbers.

0.8 -

0.6 -
0]
=
S 04
Q
©
= 0.2

0.0 -

Adjusted R? Regression
170 coefficient

171  Figure 1. The correlation between gene mobility and metagenomic sequencing coverage is positive
172 but widely variable. The boxplots and violin plots show the distributions of adjusted R? values (blue) and
173  slopes (red) across samples (individuals from Fiji) for the correlation between coverage (average depth per
174  site) and gene mobility. The black dots represent the 169 samples (out of 175 tested) in which the correlation
175 s significant (¢ test, Bonferroni-adjusted p-value < 0.05). Examples of this correlation in four randomly

176  selected samples are shown in Figure S2.
177

178
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179  Estimating population genetic metrics from metagenomic data

180  The relationship between metagenomic coverage and gene mobility is generally positive but varies
181  substantially across individuals (Figure 1). We therefore sought to ask whether this variation could
182  be explained by either gene-specific factors (e.g. gene mobility and COG functional categories'~!?)
183  or human-specific factors, such age, diet, or social networks. Both gene-specific and human-
184  specific factors are known to influence the patterns of mobile gene presence/absence across

185  bacterial genomes'* and human hosts!2%-2?

, yet it is unclear if these patterns are explained by
186  selection or drift. Here, we used the tools of population genetics to study molecular evolution of
187 mobile genes based on their patterns of single nucleotide variants (SNVs) segregating in gut
188  metagenomes. We quantified mobile gene sequence evolution using four population genetic

189  metrics that detect selection and capture deviations from a neutral evolutionary model:

190 (1) 8,, the nucleotide diversity calculated from the average number of pairwise nucleotide

191  differences among metagenomic reads,

192 (2) 6, the nucleotide diversity calculated from the normalized number of

193  segregating/polymorphic sites in metagenomic reads,
194 (3) Tajima’s D, the normalized difference between 6,; and 6,,,, and

195 (4) dN/dS, the ratio of nonsynonymous to synonymous substitution rates, measuring

196  selective constraints at the protein level.

197 We note that our estimate of dN/dS, based on mapping metagenomic reads that could come
198  from the same or different species, is a mixture of within-species polymorphism (often called
199  pN/pS) and between-species divergence (dN/dS), but we refer to this hybrid metric as dN/dS for
200  simplicity. We further note that 8,; and 6,, are two different estimators of the population mutation
201  rate, 8 = 2N.p, where p is the mutation rate and N, is the effective population size. This difference
202  in the two estimators is captured by Tajima’s D. In particular, Tajima’s D<0 indicates more low-
203  frequency mutations than expected under a standard neutral model with no selection and a constant
204  population size?!. This genetic signature can be the result of a population expansion, purifying
205  selection, or a very recent selective sweep. Conversely, Tajima’s D>( indicates more intermediate-
206  or high-frequency mutations than expected under a neutral model (Figure S3). It can be explained

207 by population contraction, balancing selection, or negative frequency-dependent selection.
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208 The above metrics were calculated for every gene in each sample by mapping metagenomic
209 reads and calling SNVs after applying a 10X sequencing coverage filter (Methods). Consistent
210  with previous estimates across multiple kingdoms of life??, we observe that 6, and ,, distributions
211 across samples span 3 to 4 orders of magnitude (Figure S4). Also consistent with previous
212 estimates in bacteria over different time scales®”3, dN/dS tends to be less than one, suggesting the
213  predominance of purifying selection at the protein level (Figure S4). Our estimates of these
214  population genetic metrics from metagenomic data are thus within an expected range and appear

215  to behave as expected.
216
217  Population genetic metrics vary more across mobile genes than across host attributes

218  With these metrics in hand, we asked whether mobile gene evolution is mainly driven by bacterial-
219  or human host-specific selective pressures. To do so, we determined whether population genetic
220  metrics varied more across gene families or across individuals. We first compared distributions of
221  pairwise differences for each metric using the Kolmogorov-Smirnov test, and found much greater
222  variation between genes than between individuals (Figures 2 and S4). This result indicates that,
223 on short time scales, the selective pressures quantified by the four metrics may be less affected by
224  person-specific factors, such as lifestyle or social networks, than by gene functions within a
225  microbial cell. In other words, although some mobile genes may enable adaptations to personalized
226  factors such as diet', sequence evolution is relatively unaffected by these factors on short time
227  scales (within an individual). In contrast, population genetic metrics vary substantially more across

228  genes, suggesting that selective pressures act predominantly at the level of gene function.

229
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230  Figure 2. Mobile gene evolution varies more widely across genes than across samples (people). Each
231  panel shows the distribution of the variation of population genetic metrics among samples (red) or among
232 gene families (black) through the distribution of logio(Dxks) statistics. The Dgs statistic from the
233 Kolmogorov-Smirnov test measures the maximal distance between a pair of cumulative distributions — in
234 this case, across either samples or genes. Panels a, b, ¢ and d represent the variation of 8,;, 6,,, Tajima’s D
235  and dN/dS respectively. We down-sampled the 37,853 genes to the same size as the number of samples set
236  to avoid the potential bias toward more variation in the larger dataset of genes (999 sub-samples). This
237  figure presents the result for 999 sub-samples of 175 genes and shows that there is more variation across
238 genes than across samples/individuals for all the population genetics metrics (KS test, P < 2.2 x 10™'%). See

239  Figure S4 for example distributions across genes and samples.
240

241 To validate that person-specific factors have weak effects on mobile gene sequence
242  evolution, we used a linear regression where the continuous response variable is one of the
243 population genetics metrics and the qualitative/categorical explanatory variable is a host attribute
244 (Methods). Because the statistical significance of such an analysis is affected by sample size, we

245  selected mobile genes with less than 30% missing values across the 172 samples for which

10
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246  metadata were available, for a total of 1333 tested genes. Host age and sex did not show any
247  significant effects on mobile gene sequence evolution. However, a person’s household or village
248  significantly influenced the evolution of just a few mobile genes (1.13% to 4.25% of the 1333
249  tested genes; Figure 3A). In this small subset of significant genes, the correlations between
250  population genetic metrics and household (adjusted R’ ~0.6 to ~0.68) were stronger than
251 correlations with village (adjusted R? < 0.3), and these results were robust to varying the quality
252 filters applied to the data (Figure S5). The small set of genes significantly influenced by household
253  and village could be representative of very specific family/village selective pressures such as diet.
254  Annotations of these genes show that they are involved in a set of functions involved in
255  carbohydrates, lipids, secondary metabolites and ions transport or metabolism, and potential
256  antibiotic resistance through ABC-type multidrug transporter system (Tables S2). Some of these
257  functions are similar to those identified by Brito et al. as differentially abundant among villages
258  or households!. Therefore, although village- or household-specific selective pressures do not
259  explain much of the variation in population genetic metrics across genes, we cannot exclude rare
260 instances in which social networks or lifestyles drive the evolution of few mobile genes over short

261  time scales.

11
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Figure 3. Gene function explains more variation in mobile gene sequence evolution than host
attributes. A) Adjusted R* values for the categorical regressions between population genetic metrics (color-
coded) and host attributes. We only considered genes with at least 10X coverage in a sample, and we also
required that mobile gene should have less than 30% missing values across samples, for a total of 1333
genes included in this analysis. The four strongest and most prevalent correlations between population
genetics metrics and host factors are shown. Not shown are village significantly correlated with 8,,, (0.15%
of genes), Tajima’s D (0.15%) and dN/dS (0%) and household significantly correlated with 6,, (0.23%).

Host age and sex did not show any significant effects on mobile gene sequence evolution. Each black point

12
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271  represents a mobile gene for which the categorical regression is significant. The percentage of significant
272 genes out of the total number of genes tested is indicated in parentheses along the x-axis. For dN/dS, the
273  sample size was reduced to n = 255 genes because an additional filter requiring mutations to be seen in a
274  least 5 metagenomic reads was applied before computing dN/dS, which can other be sensitive to sequencing
275  errors (Methods). B) Adjusted R? values of the categorical regressions between a population genetic metric
276 and the COG family of the gene. Each black point represents a sample for which the categorical regression
277  is significant. The percentage of significant samples out of the total number of samples tested is indicated
278  in parenthesis along the x-axis. Only 172 out of 175 samples for which metadata was available are included
279  in this analysis. We only considered genes with at least 10X coverage in a sample. We only included genes
280  with a COG family annotation and required that each COG family be represented by at least 2 genes.
281  Finally, we only included genes present in 30% or more of the samples, for a total of 512 genes included in

282  the analysis.

283

284 Although host factors seem to have relatively little effect on the sequence evolution of most
285  mobile genes on short time scales, selective pressures at the level of the genes might be more
286  important. Indeed, we observed higher variations of population genetics metrics between genes
287  than between samples (Figures 2), which could be explained by gene attributes such as their
288  cellular function. To test this hypothesis, we used linear regressions between population genetics

289  metrics and gene families based on the following set of conditions:

290 (1) the gene should have at least 10X coverage to limit the impact of sequencing errors and

291  to have confidence in the variant calling,

292 (2) the gene should have an available COG family annotation (the explanatory variable in
293  the regression),

294 (3) the COG family should be represented by at least 2 genes within the dataset to avoid

295  low sample sizes, and,

296 (4) the mobile gene should have less than 30% missing values across samples, for a total

297  of 512 tested genes.

298 In contrast to human factors, gene functions defined by COG families explained more of

299  the variation in mobile gene sequence evolution across samples. For 8,,, 8, and Tajima’s D, COG
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300 families explained from ~20% to ~60% of the variance in >50% of the samples (Figure 3B). For
301  dN/dS, COG families explained up to 83% of the variance in 12.8% of samples. To ensure that this
302  result was robust to differential sampling of genes (n=512) and individuals (n=172) in this analysis,
303 we downsampled to n=172 genes and confirmed that human host factors explain much less
304  variation in mobile gene evolution compared to gene functions (Figure S6). A caveat of this
305 analysis is that the strong explanatory power of gene functions on the population genetic metrics
306 is based on COG functions being sufficiently well-represented in the dataset. Indeed, the strength
307 of the correlations decreases with the stringency of the filters due to a decrease of sample size
308 (Figure S7). As rarer genes (those present in fewer samples) are included in the analysis, fewer
309 samples show significant correlations between Tajima's D and COG function, going from ~50%
310 ofsamples when a gene can be absent in at most 30% of samples (Figure 3B) to ~10% significant
311  when a gene can be absent in 70% of samples (Figure S7). It is therefore difficult to make
312 conclusions about rare genes that are under-sampled in the dataset. However, for the more
313  prevalent mobile genes, COG functions appear to explain much of their short-term molecular

314  evolution.
315
316  Higher gene mobility is associated with low-frequency SNVs in the gut microbiome

317  In addition to gene- or environment-specific selective pressures, the rate of HGT is also expected
318 to affect mobile gene molecular evolution, as it allows genes to spread across different species,
319  possibly altering their population size and thus the efficacy of selection®!3. To first order, each
320  human host represents a distinct short-term evolutionary trial. Thus, to study the influence of HGT
321  rate on molecular evolution within each of the human guts sampled, we correlated gene mobility
322 with the population genetic metrics described above: dN/dS, 0,,80,,, and Tajima’s D. All
323  correlation results reported below are robust whether or not we include gene length and coverage

324  as covariates in linear regressions (Figure S8).
325

326 Using this regression approach, we first observed that the correlation between dN/dS and gene
327  mobility was significant and positive in 144 out of 175 samples (Figure S8), but with a low average

328  adjusted R’ 0f 0.03 (s.d. = 0.02). Although this result is consistent with slightly increasing positive
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329  or relaxed purifying selection with increasing gene mobility, we refrain from drawing strong
330 conclusions due to the weak R’ values. We next observed that 159 out of 175 samples had a
331  somewhat stronger significant correlation between 6,, and gene mobility (linear regression with
332  Bonferroni-adjusted p-value < 0.05), and all the significant correlations were positive (mean
333 adjusted R’ =0.06; s.d. = 0.05). This is consistent with a model in which mobile genes accumulate
334  SNVs that remain at low frequency (as measured by 6,,,, which is sensitive to these low-frequency
335 mutations) as they spread across species. We also observed that 6,;, which is more sensitive to
336 intermediate-frequency mutations, decreases with gene mobility (Figure 4A). Among samples in
337  which 6, versus gene mobility regression results were significant (164 out of 175 samples with
338  Bonferroni-adjusted p-value < 0.05), ~95% of them exhibited this negative correlation (mean
339  adjusted R? = 0.08; sd = 0.05). As a result, Tajima's D (which reflects the difference between
340 6, and 6,,) is significantly negatively correlated with gene mobility in ~83% of samples (Figure
341  4A). Even if the R? value are modest, we note that the trends are highly repeatable across samples.
342 Reasons for the relatively low R? values could include noise in the gene mobility metric (based on
343  a small sample of genomes) and/or variable selective pressures across genes. There are several
344  reasons for this enrichment of low-frequency SNVs (resulting in lower Tajima's D values) in more
345 mobile genes, including purifying selection keeping deleterious mutations at low frequency,
346  recovery of new polymorphism after a recent selective sweep, or population expansion. This result
347  suggests that HGT can spread genes across species faster than SNVs are able to rise to high
348  frequency.
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Tajima's D

Figure 4. Gene mobility is negatively correlated with Tajima's D in real and simulated microbiomes.
A) Real data from Fiji. The heatmap shows the slope of a regression model in which either 8, 6,, or
Tajima’s D is the response variable and gene mobility is the explanatory variable (across samples).
Regression p-values were obtained through a #-test. The heatmap contains non-significant regressions
results after Bonferroni p-value filter (black), negative significant correlations (red) and positive significant
correlations (blue). Data standardization was performed before each regression to respect the t-test's
assumption of normality. Heatmap rows and columns were clustered with Euclidean distance and complete

linkage clustering.

B) Representation of simulation events over two generations. In the first generation, a gene gain event
occurs through HGT. Gene gain is represented by the transfer of gene from a donor cell to a recipient cell
and increases the genome size of this recipient cell. The probability of future gene gain or gene loss events
(Pgain and Py, respectively) is determined by the difference between the current genome size of the cell (x)
and the equilibrium genome size (xy). At equilibrium, the probability of gene gain and gene loss is the same
by definition (Pg.in=Poss). An increase of genome size until it exceeds the equilibrium point (x > x) leads
to gene loss being more likely than gene gain (Pguin<Plss). Gene gain also increases the fitness (f> fir) of
the recipient cell based on the selection coefficient of the transferred gene (sg.in). In the model, each gene

has its own selective coefficient which is drawn from an exponential distribution exp(4) with an expected
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367  value of //4. Gene gain is either slightly beneficial or neutral in this model and has the opposite fitness
368  effect of gene loss, which is slightly deleterious or neutral (-Sgain = Sioss Where sgqin >= 0). Gene loss decreases
369  the genome size of the target cell and in case this decrease leads to a smaller genome size than equilibrium,
370  the probability of gene gain becomes higher than the probability of gene 108s (Pguin>>Ploss). Gene loss also
371  decreases the fitness of the target cell (f < fr) based on the selection coefficient of the lost gene (siogs).
372 Finally, as represented in the second generation, mutations can also occur and change the fitness of the cell

373  Dbased on a selective coefficient (Smuraiion) Which is drawn from a distribution (Methods).

374  C) Simulated data. The heatmap shows the slope of a regression model in which either 8, 8,, or Tajima’s
375 D is the response variable and gene mobility is the explanatory variable (across simulation replicates).
376  Simulations with different parameter for HGT rate and or distributions of selective coefficients (s ~ exp(1))

377  are color-coded (n=10 replicates per simulation).
378
379 A subset of gene functions experiences a divergent regime of natural selection

380 Having established that Tajima’s D correlates negatively with gene mobility while coverage tends
381  to correlate positively with mobility (Figure 1), we sought to determine if these general trends
382  apply equally to all gene families. While the trends are significant across samples, the large
383  variations observed across genes (Figure 2; Figure S4) could represent evolutionary regimes that
384  are specific to some gene families. To test this hypothesis, we used linear mixed models with gene
385  mobility as a predictor of either Tajima's D or coverage as a response variable, while controlling
386  for random variations across gut microbiome samples and allowing the response to vary across
387  COG categories (Methods). This analysis was performed on genes with at least 10X coverage and
388 available COG annotations (n= 3608 mobile genes).

389

390 As expected, based on the overall positive relationship observed (Figure 1), coverage and
391  gene mobility are positively and significantly correlated across most COG categories (Figure SA).
392 COG category X (mobilome, prophages, and transposons) stood out as the strongest contributor to
393  this positive relationship, consistent with this signal being driven by genes with the highest
394  mobility. Removing sample identity or COG category from the linear mixed models significantly
395  decreased the fit of the models, suggesting that they both significantly contribute to explaining

396  variation in the mobility-coverage and Tajima’s D-coverage relationships (Tables S1A and S1B).
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397  We also confirmed that Tajima's D is negatively correlated with gene mobility (Figure 5A), as
398  observed in the regression analysis (Figure 4A). Deviations from this correlation could thus reveal
399  signatures of selection that are specific to certain gene families. These COG categories for which
400 Tajima's D significantly increases with mobility, include P (Inorganic ion transport and
401  metabolism), I (Lipid transport and metabolism), Q (Secondary metabolites biosynthesis, transport
402  and catabolism), V (Defense mechanisms) and O (Posttranslational modification, protein turnover,
403  chaperones), representing ~30% of gene families (Figure S9). There are several explanations for
404  why these gene families maintain or accumulate intermediate-frequency SNVs (i.e. an increase in
405  Tajima's D) while being transferred to many new species (Figure SB). The first explanation is a
406  population contraction, or in this context, a reduction of the number of gene copies across species.
407  However, this is unlikely for these subsets of genes because their coverage, which is a proxy of
408 the relative abundance, increases with mobility. The second explanation is that these genes could
409  be subject to species-specific selective pressures that fix mutations in some species but not others,
410  resulting in intermediate SNV frequencies in the bulk metagenome. The third potential explanation
411  is that negative frequency-dependent selection, which is thought to be an important force shaping

412 pangenome evolution?*?*

, 1s acting on these genes, within species, between species, or both. Thus,
413  the last two scenarios, which rely on the presence of distinct selective pressures on these subsets
414  of genes, most likely explain how some mobile genes can maintain or accumulate intermediate-

415  frequency SNVs as they spread across species.
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J (Translation, ribosomal structure and biogenesis

D (Cell cycle control, cell division, chromosome partitioning
G (Carbohydrate transport and metabolism
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Figure 5. Gene mobility regressions reveal a minority of genes with distinct signals of selection. A)
Linear mixed model regression slopes per COG category. This figure illustrate COG categories regression
slopes for the linear mixed models "Coverage ~ Gene mobility + Sample + COG category" and
" Tajima’s D ~ Gene mobility + Sample + COG category " with " Sample" and " COG category" being
considered as random effects. Data were normalized using the Box-Cox transformation to ensure the
condition of residual normality was accounted for before building the linear mixed model (Coverage Box-

Cox A = -0.01; Gene mobility Box-Cox A = -0.005). We only used the 99.6% of Tajima’s D values that
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424  were negative and thus inversed their sign before applying Box-Cox transformation, which only works with
425  positive values. We then performed the linear mixed model regression " —Tajima’s D ~ Gene mobility +
426 Sample + COG category "and inversed the sign of its slope (-7ajima’s D Box-Cox A = 2). The sign of the
427  slopes was consistent with simple linear regressions. The asterisks at the tip of each bar indicate the
428  significance of  the simple linear  regressions "Coverage ~ Gene mobility" and
429 " Tajima’s D ~ Gene mobility" respectively for the associated COG category (*=Significant; N.S. = Not
430  Significant; Cut-off: Bonferroni-adjusted p-value < 0.05).

431  B) Schematic of the evolutionary scenarios compared using linear regressions. Scenario 1 represents the
432  situation in which mobile genes Tajima’s D is negatively correlated with gene mobility because HGT is
433 faster than fixation of mutated alleles (red stars). Scenario 2 represents the situation in which Tajima’s D
434  correlates positively with mobility. These genes maintain intermediate frequency mutations (blue stars)
435  despite being frequently transferred to new species due to negative frequency-dependent selection or
436  species-specific selective pressures that fix mutations in some species but not others. Note that the gene
437  copies (dots or stars) illustrated here could come from members of the same or different species in the

438 microbiome.
439

440  Simple evolutionary simulations recapitulate the observed effects of HGT on mobile gene

441  sequence evolution

442  To better understand potential mechanisms underlying the relationship between gene mobility and
443  sequence evolution observed in the Fiji microbiome data, we implemented the explicit simulation
444  of HGT and sequence evolution in SodaPop, a forward evolutionary simulation toolkit 2

445  (https://github.com/arnaud00013/SodaPop). Similar to Sela et al, gene gain and loss are

446  constrained to maintain genome size equilibrium and to have opposite fitness effects (Figure 4B)’.
447  We used an updated version of the Sodapop model, which originally simulates protein sequence
448  evolution with the distribution of fitness effects mutations derived from biophysics-based protein
449 fitness landscapes »°. Briefly, we simulated a Wright-Fisher process for asexual populations 2> with
450 10 bacterial species. Each simulation included 5,000 cells in total, divided into 10 species, run for
451  10° generations. Each gene has an explicit sequence which evolves by a Jukes-Cantor point

452  mutation model 28

, including synonymous sites that do not affect fitness and nonsynonymous sites
453  with a distribution of fitness effects of which 30% are lethal?® (Methods). Genomes also experience

454  HGT events, with explicit gene gain and loss events. The rates of these two events are updated at
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455  each generation for each cell to maintain an equilibrium around the genome size xo, set to 500
456  genes (Figure 4B) 7. Genomes larger than xy are prone to gene loss, but genomes smaller than x
457  are prone to gene gain. We also modeled gene gain and loss selection coefficients, specific to each
458  gene and drawn from an exponential distribution with parameter 4 (Methods). We kept simulated
459  population sizes small due to memory limitations. To make sure this limitation does not cause
460  excessive effects of drift (e.g. the accumulation of deleterious mutations leading to extinction, also
461  known as Muller’s Ratchet %) we forced species relative abundances to remain constant. We also
462  set a relatively high mutation rate of 10”7 mutations per site per generation to compensate for the
463  small population sizes and to ensure that enough mutations were generated in a reasonable number
464  of generations. Genome size equilibrium was reached for every simulation, indicating robustness
465  to variable starting conditions (Figures S12). Altogether, this model allows us to test if the
466  relationships between gene mobility and population genetic metrics observed in the real data can

467  be observed under varying rates of HGT and adaptive benefit of acquired genes.
468

469 We found that the simulation could recapitulate the major features observed in the real Fiji
470  microbiome data without requiring that mobile genes provide adaptive value to a human host or to
471  its bacterial genome. First, the simulations can recapitulate the shape of the observed distribution
472 of gene mobility (Figure S1). A caveat is that simulations are far from including all the complexity
473  of the gut microbiome, i.e. the number of species, population structures and other features not
474  simulated, and the distributions were only compared for one illustrative set of input parameters
475  (Figure S1). Thus, we do not claim that our model can provide a precise quantitative description
476  of gene mobility in the gut microbiome, but rather that it can recapitulate the major qualitative

477  features.
478

479 Second, the simulations recover the positive correlation between gene mobility and census
480 population size (metagenomic coverage) observed in the real data (Figure 1). The positive
481  correlation was always stronger in the simulations (mean adjusted R? of 0.705 across all parameter
482  settings, standard deviation = 0.190) compared to the real data (mean adjusted R’ of 0.085 across

483  all parameter settings, standard deviation = 0.076). This suggests that factors not included in the
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484  model, such as negative frequency-dependent selection and noise in the gene mobility metric,
485  reduced the strength of the correlation in the real data. The positive correlation was stronger in
486  simulations with relatively lower HGT rate but was largely unaffected by whether HGT events
487  were neutral or adaptive to host cell fitness (Table S3). This suggests that relatively high HGT
488  rates could also explain the weaker correlation between gene mobility and coverage observed in

489  the real data.
490

491 Third, we assessed whether the simulations could reproduce the observed correlations
492  between population genetics metrics and gene mobility. Simulations recapitulated most of the
493  observed effects of HGT on nucleotide diversity in real data. Specifically, Tajima’s D correlates
494  negatively with gene mobility in simulations, with a median adjusted R? of 0.32 (mean = 0.23; sd
495 = 0.13) compared to a median adjusted R? of 0.01 (mean = 0.01; sd = 0.01) in the real data and
496  reproducible across ~87% of simulations compared to ~83% of the samples in the real data (Figure
497  4). The variation in this correlation is explained more by HGT rate than by HGT fitness effects
498  (neutral or adaptive selective coefficients on gene gain/loss). This can be seen in the heatmap, in
499  which simulations cluster by HGT rate rather than HGT fitness effect (Figure 4C). Along the same
500 lines, we performed a K-S test on the slopes of the regression between Tajima’s D and mobility
501 and observed that this slope varies more because of HGT rate than HGT fitness effect (Figure
502  S10). Simulations also predict that dN/dS also correlates positively but weakly with mobility, but
503 only at intermediate HGT rates (Figure S11). A similar pattern is observed in the real data, in
504  which dN/dS correlates weakly with mobility (Figure S8). Overall, real microbiome data is
505 recapitulated by our simple evolutionary model, which includes only selection for a stable genome
506  size, without the need to invoke adaptive advantage of mobile genes to their bacterial genomes, or

507  to include any human host factors whatsoever.
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508 CONCLUSION

509  Pangenome evolution has been studied primarily on long evolutionary time scales by comparing
510 relatively distantly related genomes. Studies of these long time scales have largely concluded,
511  although with some debate, that pangenomes are predominantly adaptive — that selection plays a
512  bigger role in pangenome evolution than drift. Here we have refocused the study of pangenome
513  evolution to shorter time scales, that is within individual gut microbiomes in which gene transfer
514  events likely occurred within a human lifespan. Based on microbiome data from a Fiji cohort, we
515  found that mobile gene sequence evolution is more influenced by selective pressures at the level
516  of gene function than at human host level. Of course, there were many unmeasured human host
517  factors which could impose selective pressures that we were unable to study. However,
518 complementary evolutionary simulation results showed that mobile genes need not provide any
519  special adaptive value to their human host or microbial genomes in order to recapitulate the

520 qualitative patterns of molecular evolution observed in the real data.

521 These observed patterns of molecular evolution based on population genetic metrics
522 provide clues about the balance of evolutionary forces acting on mobile genes in microbiomes
523  within a human lifespan. We found that most genes accumulate low-frequency mutations as they
524  spread within and between bacterial species. One interpretation of this result is that most mobile
525  genes are under purifying selection to maintain a conserved function, even as they spread across
526  species, such that most mutations are deleterious and kept at low frequency. Another non-exclusive
527  interpretation is that low-frequency mutations could also represent rapid spread of a gene, before
528  mutations are able to rise to higher frequency. In contrast, a minority of genes involved in few
529  specific cellular functions, such as defense mechanisms (COG category V), accumulate
530 intermediate frequency alleles as they spread in new species, possibly due to negative frequency-
531  dependent selection within species and/or fixation of beneficial mutations within some species but
532 not others. Further investigation will be needed to explore the nature of these variable selective

533  pressures.

534 Similarly to Bobay and Ochman (2018), we observed a very weak correlation between gene
535 mobility and dN/dS, which measures selection in protein-coding regions. Bobay and Ochman
536  (2018) attributes this trend to a nearly neutral model of pangenome evolution, i.e. drift-barrier

537  evolution. This assumption that most accessory genes are slightly beneficial could explain why a
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538  mixture of neutral and adaptive patterns are evident throughout our analysis. Further work is

539  needed to test the validity of this model in additional datasets.

540 Thus, pangenome evolution is the product of a fine balance between drift and selection,
541  which can shift depending on the time scale and level of biological organization, from gene to
542  genome to community. In the gut microbiome of a single person, the time scale of evolution may
543  be too short to easily resolve the balance between drift and selection. Indeed, on very short time
544  scales during which mutations could still be segregating and HGT occurs more frequently than
545  mutation fixation, slightly adaptive genes that have been recently transferred could be largely
546  influenced by drift because of their small N,, such that their adaptiveness could be effectively
547  detected only on long time scales, while drift might decide their fate on shorter time scales. In this
548  context, it is not surprising that simulations identified HGT rate, but not selective coefficients, as
549  an important driver of molecular evolution. This model seems to fit some other bacterial genomic
550  datasets'!?* but awaits formal testing. Finally, we suggest that future work on pangenome
551  evolution should try to understand what factors control shifts in the drift-selection balance and its
552  interplay with species ecology (N, species lifestyle, etc.) and gene ecology (i.e. gene function, to
553  what extent are genes selfish or cooperative within a genome, etc.), which is probably more

554  informative than simply settling for either an adaptive model or a non-adaptive model.

24


https://doi.org/10.1101/2020.09.30.319558
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.319558; this version posted September 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

555 METHODS
556
557  Population genetics of Fijian gut microbiome mobile genes

558  The Fiji Community Microbiome project provides open access to metagenomes from the gut
559  microbiomes of 176 individuals. For each of these individuals, we mapped metagenomic sequence
560 reads to a set of 37,853 mobile genes previously defined as follows from bacterial whole genome
561  sequences from the Human Microbiome Project (HMP) and FijiCOMP. To be considered mobile,
562  pairs of genes 500bp or longer had to share >99% nucleotide identity between isolate or single-
563  cell genomes with <97% identity in the 16S rRNA gene!. This procedure selects nearly identical
564  genes present in distinct species or genera as candidates for very recent HGT, likely within an

565 individual gut microbiome!-!7

. An additional filter was applied to remove potential false-positive
566  HGT events from highly conserved ribosomal proteins, and to keep only reads that aligned with
567  99% identity across >= 50% of their own length !. From the mappings, we used Anvi’o to report
568  Single Nucleotide Variants (SNVs) (--min-coverage-for-variability 10 --min-contig-length 50),
569 followed by a pipeline to compute population genetics metrics (8, 6,,, dN/dS and Tajima’s D)
570  based on the SNVs. The pipeline scripts are available at

571  https://github.com/arnaud00013/Fiji Mobile Gene_Specific PopGen_scripts. The Anvi’o SNV

572 calling module®® has the advantage of being fast and simple to use, can be executed in parallel
573  (High-Performance Computing), and has filters to control minimum gene coverage or mutation
574  frequency. For each sample mapping, a gene was retained if its mean site depth was >= 10. Only
575  one sample was excluded for having less than 500 genes passing the site depth filter , reducing the
576  sample size to 175 metagenomes. Among all samples, 7990 unique genes were conserved after
577  applying the site depth filter. Finally, mobile gene COG annotations, available in the FijiCOMP
578  data (http://fijicomp.bme.cornell.edu//), were used to define two level of gene functions: COG

579  gene family (which is more specific), and COG category (which is more general).
580
581

582
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583  Detecting selection by dN/dS

584  dN/dS is the non-synonymous to synonymous mutations per site ratio. Different methods have
585  been developed to estimate dN/dS with the common purpose of inferring selection in protein-
586  coding genes?. More precisely, dN/dS can detect purifying selection (dN/dS<1), neutral evolution
587  (dN/dS = 1) and positive selection (dN/dS > 1). Because we are working with metagenomic gene

588  variants, we defined our own estimator of dN/dS:

@ _ ansm/anss

= Eq. 1

dS  Nbg,/Nbg
589  where Nbunsm is the number of non-synonymous mutations (SNVs), Nbyss is the number of non-
590  synonymous sites, Nbsm is the number of synonymous mutations (SN'Vs), and Nbss is the number

591  of synonymous sites.
592

593  Measuring mobile genes nucleotide diversity at metagenomic level

594  Because mobile genes are by definition present in multiple species, we calculated population
595  genetic metrics based on all reads from a metagenome that map to a particular mobile gene. Based
596  on these mapped reads, we calculated Tajima’s D 2!, which measures the difference between
597  average per-site pairwise nucleotide differences (6,;) and the normalized number of polymorphic

598  sites (6,) :

811: - ew
\/V/ET(QH - gw)

599  where the Var denotes the expected sampling variance of (8, — 6,,). For each sample, we

Eq.2

DTajima =

600 estimated mobile gene nucleotide diversity from sequence variants detected in the mapping

601  between metagenomic reads and mobile gene reference sequence from FijiCOMP as follows:

o = Nb_reads_pwdiff
- Z?=1(Czi) Eq.3

602  where n is the gene length, c; is the depth of the site i of the gene and Nb_reads pwdiff is the

603  number of pairwise nucleotide differences, and
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S
QW :H Eq.4

a, = z? Eq.5
i=

604  where a; is a normalizing factor that represents the sample size (n). Usually, Tajima’s D is

S

605 estimated from a multiple alignment between gene alleles. The sample size used to estimate the
606 normalizing factor al is the number of alleles. Here we use the average depth of coverage at

607  polymorphic sites as an estimator of the sample size n.
608
609  Effect of gene mobility on metagenomic coverage

610  We operationally defined gene mobility as the number of single-cell genomes in which a mobile
611  gene was found and tested if this metric behaves as expected in explaining gene frequencies in
612  metagenomes. More precisely, we correlated gene mobility with metagenomic coverage with the
613  expectation that more mobile genes occur in multiple species and should thus be more deeply
614  covered by metagenomic sequence reads. Linear regression analyses and t-tests were calculated

615 using the R function "summary.Im()" *°. Data standardization was performed before each

616  regression to respect the t-test's assumption of normality.
617
618  Assessing variation in sequence evolution across genes and across individuals

619  To determine whether mobile gene evolution is driven more by gene-specific factors or by host
620  attributes, we first compared the variation of mobile genes nucleotide diversity (and other
621  population genetic metric described above) across genes vs. across samples through the
622  Kolmogorov-Smirnov test (KS test). The KS test involves a statistic D, which measures the
623  maximal distance between a pair of cumulative distributions. We downsampled the mobile genes
624  to the same size as the number of samples to avoid the potential bias due to different sized datasets
625  and repeated this for a total of 999 resamples. We performed this series of KS test with the function
626  ks.test() from the R package "stats" 3°.

627
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628  Gene function and human host (individual) attributes as predictors of mobile genes evolution

629  To determine whether mobile gene evolution is driven more by gene function or host attributes,
630 we performed linear regressions between a continuous response variable and a
631  qualitative/categorical explanatory variable, which we will refer as a factor. Regressions between
632  aquantitative continuous variable, e.g. Tajima’s D, and a factor, e.g. gene function family, requires
633  transforming the factor as it cannot be integrated into a regression equation in its original form .
634 We therefore used the R contrast function "constr.sum()" to transform factors 3°. This
635 transformation allows the regression coefficients to represent how each level/state of the factor
636  differ. Then, we assess the significance of the regression model with a non-parametric
637  (permutational) ANOVA 3!, This test makes random permutations of the response variable
638  between the different groups/levels of the factor, and estimates the p-value as the proportion of
639  permutations with an F-statistic greater than or equal to that observed in the real (unpermuted)

640  data. This test was implemented in the R library "ImPerm" (v.2.1.0) 3.

641 For host attribute correlations with population genetic metrics, we focused on 172 samples
642  with available metadata. Metadata about these samples were extracted from Brito et al. (2016) and
643  NCBI accession numbers of the corresponding stool metagenomes are publicly available at

644  http:/fijicomp.bme.cornell.edu//data/FijiCOMPmetagenomicsamples.xlsx. Mobile genes selected

645  for this analysis needed to respect the following conditions: (1) the gene should have at least 10X
646  coverage to limit the impact of sequencing errors, and (2) mobile gene should have less than 30%

647  missing values across samples, for a total of 1333 tested genes.

648 As for linear regressions between population genetics metrics and gene families, we
649  selected genes based on the following set of conditions : (1) the gene should have at least 10X
650  coverage to limit the impact of sequencing errors, (2) the gene should have available COG family
651  annotation, (3) the gene COG family should be represented by at least 2 genes within the dataset
652  and (4) the mobile gene should have less than 30% missing values across samples, for a total of
653 512 tested genes. The first two filters are the basic requirements for doing these regressions
654  analyses. However, the 3™ and 4" filters were chosen respectively to avoid the effects of small
655  sample size for COG families that are underrepresented in the dataset, and to handle missing values

656  caused by gene absence across sample or genes with low coverage in gut metagenomes.

657
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658  Effect of HGT on sequence evolution

659  To determine the impact of HGT on mobile gene sequence evolution, multiple linear regressions
660  were performed. In these multiple linear regressions, coverage, Gene Mobility — the number of
661  species in which a mobile gene has been identified when looking for HGT events — and gene length
662  were the explanatory variables and the various population genetic metrics were the response
663  variables. We used the Im() function in R to remove collinearity with QR-decomposition/Gram-
664  Schmidt orthogonalization. Thus, it is possible to assess the effect of Gene Mobility on each
665  population genetics metrics while controlling for the effect of potential confounders like coverage
666  and gene length. For each response variable Y tested (6, 8,,, dN/dS and Tajima’s D), there are

667  two regression models:

Y ~ Coverage + Gene length Eq. 6

Y x ~ Gene Mobility + Coverage + Gene length Eq.7
668  The asterisk represents the fact that the regression controls for the effects of coverage and gene
669  length, which increase the chance of observing sequencing errors. The adjusted R? of a correlation
670  represents the proportion of variable Y variance that is explained by the regression model with a
671  correction for the number of explanatory parameters included in the model (k) and the sample size

672 (n):

(SSreS/ ke 1)
(S.S'total/ B 1)

673  where SSres is the residual sum of squares and SStotal is the fitted data sum of squares. The type

adjusted_R?> = 1 —

Eq. 8

674  of correlation (positive or negative) can be determined by the regression coefficient. The
675  reproducibility of the regressions was measured by the number of samples in which the correlation

676 s significant.
677
678  Variation across COG categories

679  To assess how the relationships between gene mobility and Tajima's D or coverage varied across

680 COG categories, we considered 22 COG categories *2. We then used linear mixed models, through
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681  the R package Ime4, to study the effect of gene mobility on coverage and Tajima’s D across COG
682  categories *. A linear mixed model allows to build a linear model between the response variable
683  and the fixed effects while controlling for random effects. In the regression model, fixed effects
684  are explanatory variables for which we want to know the relationship with the response variable.
685  Random effects are grouping factors that explain random variance of the relationship between the
686  response variable and the fixed effects across a finite number of different groups. To control for

687  random effects, the algorithm builds a linear model for each group. In the two regression models,

688 " COG category " and " Sample" were included as random effects:

Coverage ~ Mobility + COG category + Sample Eq.9
689

Tajima’s D ~ Mobility + COG category + Sample Eq. 10
690

691  We can then test the significance of " COG category" for the regression model using a permutation
692 ANOVA 3! The advantage of such test is that it is non-parametric, making no assumptions about
693 the distribution underlying the data. For both regressions, we conducted 99,999 permutations of
694  the response variable between COG categories and then calculated the F-statistic of the regression
695  after each permutation. Next, we calculated the F-statistic of the original regression and calculated
696  the p-value as the proportion of permuted data regressions that gave an F-statistic greater than or

697  equal to the F-statistic from the real (non-permuted) data.
698

699 Additionally, using the R function anova(), we performed likelihood ratio tests between
700  each linear mixed model and their nested models to test the significance of each random factor,
701  i.e. " COG category" and " Sample " 3%34 Each nested model was obtained by removing one

702  random factor at a time, thus creating two nested models per response variable Y:

Y ~ Mobility + COG category Eq. 11
703

Y ~ Mobility + Sample Eq. 12
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704 The likelihood ratio test compares the likelihood of a nested model to the likelihood of the full
705  linear mixed model, with the assumption that the test statistic follows a Chi-square distribution.
706  Thus, we can create each nested model by the removal of a single random factor from the full
707  linear mixed model and assess the significance of both random factors using a p-value from the

708  Chi-square distribution 34,
709
710  Simulation of pangenome evolution

711 We simulated Sela, Wolf and Koonin’s prokaryotic genome size evolution model with few
712 changes, using the SodaPop simulation tool "%, In this model, the selective advantage of gene
713 gain, i.e. the advantage of having x+1 genes instead of x genes, depends of the genome size, which
714  is measured by the number of genes in the genome (x). Selection coefficients for gene loss have
715  the opposite sign as gene gain; thus, gene gain is slightly beneficial while gene loss is slightly
716  deleterious’. The selection coefficient of gene gain and gene loss can thus be described by the

717  following formula:

Sgain(x) = a + b x = —s;55(x) Eq. 13
718  where 544, is the selection coefficient of gene gain through HGT, "a" is a constant input parameter
719  of the simulation that allows to improve the fit of the linear expression with the real data, "b" is a
720  constant input parameter that represents the benefit or cost associated with the gain of a single
721  gene, X represents genome size (number of genes), and s;,4 1S the selection coefficient of gene
722 loss. We modified this formula to simulate a model where each gene has its own constant selective
723 advantage regardless of genome size (x). To do so, we only needed to set the condition b = 0. This
724  change allowed us to reproduce the shape of gene mobility distribution in simulation (Figure S1).

725  In this case:

Sgain = @ = Sgene = Sloss Eq‘ 14

726 where Sgene ~ Exp()), A is an input parameter of the simulation, and 1/A represents the expected

727  value of the exponential distribution of selection coefficients.

728
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729 In the model, genome size (x) influence gene gain rate and gene loss rate. Indeed, the more
730  genome size increases, the more gene gain rate decreases, and the more gene loss rates increases
731 to find an equilibrium around a certain genome size x0. Therefore, when genome size (x) is smaller
732 than genome size at equilibrium (x0), the cell has a higher probability of gene gain than loss. To
733 consider the stochastic component of evolution, the cells and genes that are involved in each gain
734  or loss events are randomly selected. Also, the number of gain or loss events are drawn from a

735  Poisson distribution with the gain and loss rates as follows:

Grqte ~ Poisson(A = s’-x”) Eq. 15
736

L,gte ~ Poisson(A = 1’ x*) Eq. 16
737  where G, 1s the gain rate, i.e. the number of gene gain events per generation, L, is the loss
738  rate, i.c. the number of gene loss events per generation, and r’, s’, A* and A~ are simulation input

739  parameters that allow to tune the gain and loss rates.
740

741 We implemented this model in the SodaPop software, which simulates a Wright-Fischer
742 process for asexual populations %. In SodaPop, the mutation model is equivalent to Jukes-Cantor
743 in which all single nucleotide occur at the same constant rate®>. We also implemented a distribution
744  of non-synonymous mutation fitness effect in which 30% of mutations are lethal, as previously
745  reported in literature®®, and 70% are drawn from a normal distribution, N(u=-0.02, 6=0.01).
746 Synonymous mutations are all considered neutral unless the user provides data on species codon
747  usage and the related fitness effects. SodaPop also offers flexibility in the initial setup of the
748  simulation®>. We created scripts to facilitate the creation of the simulation starting conditions

749  (https://github.com/arnaud00013/SodaPop/tree/Sodapop-pev/tools). The scripts allow to define

750 each species abundance, gene content, and to define the genes that are mobile

751 (https://github.com/arnaud00013/SodaPop/blob/Sodapop-pev/tools/Setup_SodaPop with PEV.

752 py). Mobile genes can be transferred and lost while core genes and accessory genes (defined at the
753  start of the simulation) can only be lost. For each set of simulations sharing the same input
754  parameters, we ran 10 replicates. Each simulation included 5000 cells, 10 species, 500 genes per

755  cells at equilibrium and a simulation time of 10° generations and a timestep of 10* generations to

32


https://doi.org/10.1101/2020.09.30.319558
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.319558; this version posted September 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

756  save simulation data. Population size is small in simulation because of hardware memory
757  limitations. To avoid undesirable effects, like Muller’s Ratchet, we maintained species abundance
758  constant. We also established a relatively high mutation rate on the order of 10-” mutations per site
759  per generation to compensate for small population sizes. Genome size equilibrium was reached for
760  every simulation and the model is thus robust to the initial conditions (Figures S12). The software

761  is available on GitHub (https://github.com/arnaud00013/SodaPop).
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