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Abstract:  18 

Pangenomes – the cumulative set of genes encoded by a species – arise from evolutionary forces 19 

including horizontal gene transfer (HGT), drift, and selection. The relative importance of drift and 20 

selection in shaping pangenome structure has been recently debated, and the role of sequence 21 

evolution (point mutations) within mobile genes has been largely ignored, with studies focusing 22 

mainly on patterns of gene presence or absence. The effects of drift, selection, and HGT on 23 

pangenome evolution likely depends on the time scale being studied, ranging from ancient (e.g., 24 

between distantly related species) to recent (e.g., within a single animal host), and the unit of 25 

selection being considered (e.g., the gene, whole genome, microbial species, or human host). To 26 

shed light on pangenome evolution within microbiomes on relatively recent time scales, we 27 

investigate the selective pressures acting on mobile genes using a dataset that previously identified 28 

such genes in the gut metagenomes of 176 Fiji islanders. We mapped the metagenomic reads to 29 

mobile genes to call single nucleotide variants (SNVs) and calculate population genetic metrics 30 

that allowed us to infer deviations from a neutral evolutionary model. We found that mobile gene 31 

sequence evolution varied more by gene family than by human social attributes, such as household 32 

or village membership, suggesting that selection at the level of gene function is most relevant on 33 

these short time scales. Patterns of mobile gene sequence evolution could be qualitatively 34 

recapitulated with a simple evolutionary simulation, without the need to invoke an adaptive 35 

advantage of mobile genes to their bacterial host genome. This suggests that, at least on short time 36 

scales, a majority of the pangenome need not be adaptive. On the other hand, a subset of gene 37 

functions including defense mechanisms and secondary metabolism showed an aberrant pattern of 38 

molecular evolution, consistent with species-specific selective pressures or negative frequency-39 

dependent selection not seen in prophages, transposons, or other gene categories. That mobile 40 

genes of different functions behave so differently suggests stronger selection at the gene level, 41 

rather than at the genome level. While pangenomes may be largely adaptive to their bacterial hosts 42 

on longer evolution time scales, here we show that, on shorter "human" time scales, drift and gene-43 

specific selection predominate.   44 
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INTRODUCTION 45 

Human gut microbial communities (or microbiomes) impact diverse aspects of human health, such 46 

as food digestion, nutritional uptake, immunity, and inflammation1,2. The gut microbiome is 47 

shaped by both ecological factors, such as shifts in species abundance or strain replacements, and 48 

evolutionary forces, such as mutation, horizontal gene transfer (HGT), drift and selection3. In 49 

particular, microbes in the gut dynamically and frequently exchange genetic material through 50 

HGT4, resulting in pangenomes (the total set of genes observed in all members of a species or 51 

population) which are often much larger than an individual genome size 5-7. Some studies have 52 

shown that horizontally transferred (mobile) genes could contribute to environmental adaptation, 53 

notably through the propagation of antibiotic resistance5. However, there are contexts in which 54 

pangenome evolution could be driven more by drift than by selection. For instance, the evolution 55 

of endosymbionts or intracellular pathogens, which have small effective population sizes, is 56 

generally driven by drift, resulting in small pangenomes8. In contrast, selection seems to play a 57 

bigger role in free-living microbes, like hydrothermal vent bacteria9. Whether pangenome 58 

evolution is mainly driven by selection (an adaptive model) or drift (a non-adaptive or neutral 59 

model) is a question that has generated some controversy 6,7,10,11. 60 

 61 

Answering this question depends on the time scale being studied. For example, long-term 62 

evolution (e.g. among distantly related species or among all extant members of a species) versus 63 

near-term evolution (e.g. among a locally coexisting population of a species) may experience 64 

different regimes of drift and selection. On long time scales, using data from distantly related 65 

genomes that diverged millions of years ago 6,7, and at the whole-genome scale, adaptive and non-66 

adaptive models have been proposed and are still a source of contention. A model in which gene 67 

gain by HGT is predominantly adaptive provides a good fit to distantly related genomes from the 68 

NCBI database7. In that work, Sela and collaborators developed a model of prokaryotic genome 69 

size evolution that includes gene gain, gene loss, and their fitness effects 1. In their model, gene 70 

gain and loss maintain genome size equilibrium and have opposite fitness effects. The model also 71 

accounts for species effective population size (Ne), which measures genetic diversity and 72 

effectiveness of selection in a population, and is dependent on census population size and its 73 

fluctuations11 as well as on varying intensities of purifying, positive, or fluctuating natural 74 
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selection. From simulations of this model, they found that a scenario in which gene gain is, on 75 

average, slightly beneficial best fits genome size and nucleotide diversity data from 707 76 

prokaryotic genomes. Based on a synthesis of population genomic data and models including Sela 77 

and collaborators’ model 7, another group led by McInerney and collaborators argued that an 78 

adaptive model best explains pangenome evolution because more diverse pangenomes tend to arise 79 

in species with larger Ne due to beneficial gene gain, higher efficacy of selection, and a large 80 

number of micro-niches available to the species 6.  81 

 82 

In contrast, Andreani and collaborators observed that genome fluidity, defined as the ratio between 83 

the number of unique gene families and the average number of gene families between random 84 

genome pairs, significantly correlates with synonymous nucleotide diversity in 90 bacterial 85 

species. Although this does not exclude a role for selection, the observation is most parsimoniously 86 

explained by a neutral model. Similarly, Bobay and Ochman observed that gene turnover does not 87 

significantly correlate with dN/dS, which measures selection on protein-coding genes 11. They also 88 

found that Ne correlates positively with pangenome size for most of the 153 analyzed prokaryotic 89 

species. Similar to McInerney and collaborators, they attributed this to an increased effectiveness 90 

of selection in species with larger Ne and that most of the accessory genes, those that are present 91 

in some but not all strains of a species, are slightly beneficial 6. The fact that Bobay and Ochman  92 

found evidence for both adaptive and neutral pangenome evolution may seem contradictory 11. 93 

However, they reconciled these observations by proposing a nearly neutral model of drift-barrier 94 

evolution. This model describes the balance between selection and drift. More precisely, it assumes 95 

that most accessory genes in the pangenome are slightly beneficial, such that they can be 96 

considered neutral when Ne is small, but they can escape the effects of drift and spread when the 97 

selective coefficient s exceeds 1/Ne.  98 

 99 

Resolving the balance of evolutionary forces influencing pangenomes also depends on the 100 

biological scale or unit of evolution. For example, the consequences of selection at the level of 101 

single genes, whole genomes, microbial species or human hosts could yield different patterns. The 102 

studies above focused on adaptation at the whole-genome level, but selection also acts at the level 103 

of individual genes9,12,13. Mobile genes in particular may have their own Ne, which could be distinct 104 
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from the Ne of the whole genome of a species13. For example, there is an entire class of mobile 105 

genes, including phage and other “selfish” elements that have effectively instantaneous HGT 106 

rates14. Other mobile genes may provide rapid adaptive value to their bacterial hosts, such as in 107 

the gut microbiome of humans with different diets or lifestyles1. Therefore, based on their patterns 108 

of presence or absence, some mobile genes appear to be selected to favour their own replication 109 

(selfish) while others may provide benefits to their bacterial or even human hosts15. 110 

 111 

All the studies above investigated pangenome evolution among distantly related genomes over 112 

relatively ancient time scales. Yet selective pressures might differ on recent and shorter 113 

evolutionary time scales, such as within local populations of bacteria over dozens rather than 114 

millions of years. However, a targeted investigation of the population genetics of mobile genes on 115 

short time scales is still missing. To study pangenome evolution on shorter evolutionary time scales 116 

and at the level of individual genes, we used a dataset from Brito and collaborators  composed of 117 

37,853 mobile genes involved in recent HGT events in the human gut 1. We mapped metagenomic 118 

reads from a cohort of 176 Fiji islander gut microbiomes to this set of mobile genes. From the 119 

mapped reads, we identified single nucleotide variants (SNVs) segregating within microbiomes, 120 

from which we calculated population genetic metrics such as dN/dS and Tajima's D that contain 121 

information about evolutionary and demographic history of mobile genes. In contrast to studies 122 

over longer evolutionary time scales, which have concluded that pangenome evolution is adaptive, 123 

we find that many aspects of pangenome molecular evolution on shorter time scales can be 124 

explained without invoking any adaptive benefit of mobile genes to their human hosts. However, 125 

a small subset of genes with distinct functions show dramatically different signature of molecular 126 

evolution, suggesting that selection acts at the level of gene function. Our results suggest that while 127 

host-related selective pressures may be strong over long evolutionary time scales, selection at the 128 

level of individual genes might predominate over shorter "human" time scales. 129 

  130 
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RESULTS AND DISCUSSION 131 

 132 

Gene mobility correlates positively but not strongly with metagenomic coverage 133 

To study pangenome evolution on time scales on the order of a human lifespan, we used an existing 134 

collection of mobile genes identified in 387 isolate genomes from the Human Microbiome Project 135 

(HMP) and 180 single-cell genomes from the Fiji Community Microbiome Project (FijiCOMP). 136 

Selected single-cell genomes came from 31 different genera and had less than 10% putative 137 

contamination called by CheckM1,16. The mobile genes were identified in genomic regions 138 

containing at least 500bp with >99% nucleotide identity over >50% of their sequence length 139 

between distantly related single-cell bacterial genomes (<97% identity in 16S rRNA), suggesting 140 

that HGT occurred within an individual human gut microbiome1. Ribosomal genes, which tend to 141 

be highly conserved, were excluded from this set of mobile genes as they could represent false-142 

positive HGT events1. This procedure is strict, yielding likely true positive HGT events, at the 143 

expense of many false negatives1,17. We considered only genes with at least 10X metagenomic 144 

sequence coverage, and only metagenomes with at least 500 genes passing this coverage threshold. 145 

These filters yielded a total of 7,990 mobile genes out of the 37,853 genes present in the original 146 

dataset, and 175 out of 176 metagenomes, each from a different person from Fiji. We operationally 147 

defined gene mobility as the number of single-cell genomes in which a mobile gene was found. 148 

Gene mobility ranged from 1-16 species (mean = 2.73, standard deviation = 2.42; Figure S1) and 149 

is probably an underestimate of the true HGT rate because it was estimated from a limited sample 150 

(180 genomes) of the diversity in Fijian islanders’ gut. This could also be explained by small or 151 

incomplete assemblies of the single-cell genomes. Nonetheless, this dataset provides allows us to 152 

assess the balance of evolutionary forces in the pangenome on short timescales. 153 

 154 

We began by asking whether our mobility metric behaves as expected in quantifying the 155 

spread of mobile genes in the gut. Assuming that genes with higher mobility will occur in more 156 

species, we expect them to be more deeply covered by metagenomic sequence reads. Consistent 157 

with this expectation, we found that a gene's mobility is positively correlated with its depth of 158 

metagenomic read coverage (Figure 1 and Table S1C). The expectation of a positive correlation 159 
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is not guaranteed because some mobile genes, such as selfish elements, have deleterious effects18 160 

and can be subject to negative frequency-dependent selection 12,19,20 such that they are carried only 161 

by a fraction of individuals within a species, even if prevalent across species. The correlation 162 

between gene mobility and coverage is significantly positive in 169 out of 175 gut metagenomes 163 

(Bonferroni-adjusted p-value < 2.2x10-16), but the adjusted R2 and slope values are relatively 164 

modest (Figure 1, Figure S2). Varying selective pressures across mobile genes (e.g. deleterious 165 

effects and negative frequency-dependent selection) might by responsible for reducing the scaling 166 

between gene mobility and coverage, but not enough to flatten the relationship completely. We 167 

conclude that gene mobility, even if estimated from a relatively small sample of 180 gut bacterial 168 

genomes, behaves approximately as expected: generally leading to higher gene copy numbers. 169 

 170 

Figure 1. The correlation between gene mobility and metagenomic sequencing coverage is positive 171 

but widely variable. The boxplots and violin plots show the distributions of adjusted R2 values (blue) and 172 

slopes (red) across samples (individuals from Fiji) for the correlation between coverage (average depth per 173 

site) and gene mobility. The black dots represent the 169 samples (out of 175 tested) in which the correlation 174 

is significant (t test, Bonferroni-adjusted p-value < 0.05). Examples of this correlation in four randomly 175 

selected samples are shown in Figure S2. 176 

 177 

 178 
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Estimating population genetic metrics from metagenomic data 179 

The relationship between metagenomic coverage and gene mobility is generally positive but varies 180 

substantially across individuals (Figure 1). We therefore sought to ask whether this variation could 181 

be explained by either gene-specific factors (e.g. gene mobility and COG functional categories1,19) 182 

or human-specific factors, such age, diet, or social networks. Both gene-specific and human-183 

specific factors are known to influence the patterns of mobile gene presence/absence across 184 

bacterial genomes14 and human hosts1,20-22, yet it is unclear if these patterns are explained by 185 

selection or drift. Here, we used the tools of population genetics to study molecular evolution of 186 

mobile genes based on their patterns of single nucleotide variants (SNVs) segregating in gut 187 

metagenomes. We quantified mobile gene sequence evolution using four population genetic 188 

metrics that detect selection and capture deviations from a neutral evolutionary model:  189 

(1) 𝜃!, the nucleotide diversity calculated from the average number of pairwise nucleotide 190 

differences among metagenomic reads, 191 

(2) 	𝜃", the nucleotide diversity calculated from the normalized number of 192 

segregating/polymorphic sites in metagenomic reads,  193 

(3) Tajima’s D, the normalized difference between 𝜃! and 𝜃", and  194 

(4) dN/dS, the ratio of nonsynonymous to synonymous substitution rates, measuring 195 

selective constraints at the protein level.  196 

We note that our estimate of dN/dS, based on mapping metagenomic reads that could come 197 

from the same or different species, is a mixture of within-species polymorphism (often called 198 

pN/pS) and between-species divergence (dN/dS), but we refer to this hybrid metric as dN/dS for 199 

simplicity. We further note that 𝜃! and 𝜃" are two different estimators of the population mutation 200 

rate,	𝜃 = 2Neµ, where µ is the mutation rate and Ne is the effective population size. This difference 201 

in the two estimators is captured by Tajima’s D. In particular, Tajima’s D<0 indicates more low-202 

frequency mutations than expected under a standard neutral model with no selection and a constant 203 

population size21. This genetic signature can be the result of a population expansion, purifying 204 

selection, or a very recent selective sweep. Conversely, Tajima’s D>0 indicates more intermediate- 205 

or high-frequency mutations than expected under a neutral model (Figure S3). It can be explained 206 

by population contraction, balancing selection, or negative frequency-dependent selection.  207 
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The above metrics were calculated for every gene in each sample by mapping metagenomic 208 

reads and calling SNVs after applying a 10X sequencing coverage filter (Methods). Consistent 209 

with previous estimates across multiple kingdoms of life22, we observe that 𝜃! and 𝜃" distributions 210 

across samples span 3 to 4 orders of magnitude (Figure S4). Also consistent with previous 211 

estimates in bacteria over different time scales3,7,23, dN/dS tends to be less than one, suggesting the 212 

predominance of purifying selection at the protein level (Figure S4). Our estimates of these 213 

population genetic metrics from metagenomic data are thus within an expected range and appear 214 

to behave as expected.  215 

 216 

Population genetic metrics vary more across mobile genes than across host attributes  217 

With these metrics in hand, we asked whether mobile gene evolution is mainly driven by bacterial- 218 

or human host-specific selective pressures. To do so, we determined whether population genetic 219 

metrics varied more across gene families or across individuals. We first compared distributions of 220 

pairwise differences for each metric using the Kolmogorov-Smirnov test, and found much greater 221 

variation between genes than between individuals (Figures 2 and S4). This result indicates that, 222 

on short time scales, the selective pressures quantified by the four metrics may be less affected by 223 

person-specific factors, such as lifestyle or social networks, than by gene functions within a 224 

microbial cell. In other words, although some mobile genes may enable adaptations to personalized 225 

factors such as diet1, sequence evolution is relatively unaffected by these factors on short time 226 

scales (within an individual). In contrast, population genetic metrics vary substantially more across 227 

genes, suggesting that selective pressures act predominantly at the level of gene function.  228 

 229 
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Figure 2. Mobile gene evolution varies more widely across genes than across samples (people). Each 230 

panel shows the distribution of the variation of population genetic metrics among samples (red) or among 231 

gene families (black) through the distribution of log10(DKS) statistics. The DKS statistic from the 232 

Kolmogorov-Smirnov test measures the maximal distance between a pair of cumulative distributions – in 233 

this case, across either samples or genes. Panels a, b, c and d represent the variation of 𝜃!, 𝜃", Tajima’s D 234 

and dN/dS respectively. We down-sampled the 37,853 genes to the same size as the number of samples set 235 

to avoid the potential bias toward more variation in the larger dataset of genes (999 sub-samples). This 236 

figure presents the result for 999 sub-samples of 175 genes and shows that there is more variation across 237 

genes than across samples/individuals for all the population genetics metrics (KS test, P < 2.2 x 10-16). See 238 

Figure S4 for example distributions across genes and samples. 239 

 240 

To validate that person-specific factors have weak effects on mobile gene sequence 241 

evolution, we used a linear regression where the continuous response variable is one of the 242 

population genetics metrics and the qualitative/categorical explanatory variable is a host attribute 243 

(Methods). Because the statistical significance of such an analysis is affected by sample size, we 244 

selected mobile genes with less than 30% missing values across the 172 samples for which 245 
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metadata were available, for a total of 1333 tested genes. Host age and sex did not show any 246 

significant effects on mobile gene sequence evolution. However, a person’s household or village 247 

significantly influenced the evolution of just a few mobile genes (1.13% to 4.25% of the 1333 248 

tested genes; Figure 3A). In this small subset of significant genes, the correlations between 249 

population genetic metrics and household (adjusted R2 ~0.6 to ~0.68) were stronger than 250 

correlations with village (adjusted R2 < 0.3), and these results were robust to varying the quality 251 

filters applied to the data (Figure S5). The small set of genes significantly influenced by household 252 

and village could be representative of very specific family/village selective pressures such as diet. 253 

Annotations of these genes show that they are involved in a set of functions involved in 254 

carbohydrates, lipids, secondary metabolites and ions transport or metabolism, and potential 255 

antibiotic resistance through ABC-type multidrug transporter system (Tables S2). Some of these 256 

functions are similar to those identified by Brito et al. as differentially abundant among villages 257 

or households1. Therefore, although village- or household-specific selective pressures do not 258 

explain much of the variation in population genetic metrics across genes, we cannot exclude rare 259 

instances in which social networks or lifestyles drive the evolution of few mobile genes over short 260 

time scales.  261 
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 262 

Figure 3. Gene function explains more variation in mobile gene sequence evolution than host 263 

attributes. A) Adjusted R2 values for the categorical regressions between population genetic metrics (color-264 

coded) and host attributes. We only considered genes with at least 10X coverage in a sample, and we also 265 

required that mobile gene should have less than 30% missing values across samples, for a total of 1333 266 

genes included in this analysis. The four strongest and most prevalent correlations between population 267 

genetics metrics and host factors are shown. Not shown are village significantly correlated with 𝜃" (0.15% 268 

of genes), Tajima’s D (0.15%) and dN/dS (0%) and household significantly correlated with 𝜃" (0.23%). 269 

Host age and sex did not show any significant effects on mobile gene sequence evolution. Each black point 270 
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represents a mobile gene for which the categorical regression is significant. The percentage of significant 271 

genes out of the total number of genes tested is indicated in parentheses along the x-axis. For dN/dS, the 272 

sample size was reduced to n = 255 genes because an additional filter requiring mutations to be seen in a 273 

least 5 metagenomic reads was applied before computing dN/dS, which can other be sensitive to sequencing 274 

errors (Methods). B) Adjusted R2 values of the categorical regressions between a population genetic metric 275 

and the COG family of the gene. Each black point represents a sample for which the categorical regression 276 

is significant. The percentage of significant samples out of the total number of samples tested is indicated 277 

in parenthesis along the x-axis. Only 172 out of 175 samples for which metadata was available are included 278 

in this analysis. We only considered genes with at least 10X coverage in a sample. We only included genes 279 

with a COG family annotation and required that each COG family be represented by at least 2 genes. 280 

Finally, we only included genes present in 30% or more of the samples, for a total of 512 genes included in 281 

the analysis. 282 

 283 

 Although host factors seem to have relatively little effect on the sequence evolution of most 284 

mobile genes on short time scales, selective pressures at the level of the genes might be more 285 

important. Indeed, we observed higher variations of population genetics metrics between genes 286 

than between samples (Figures 2), which could be explained by gene attributes such as their 287 

cellular function. To test this hypothesis, we used linear regressions between population genetics 288 

metrics and gene families based on the following set of conditions: 289 

(1) the gene should have at least 10X coverage to limit the impact of sequencing errors and 290 

to have confidence in the variant calling,  291 

(2) the gene should have an available COG family annotation (the explanatory variable in 292 

the regression),  293 

(3) the COG family should be represented by at least 2 genes within the dataset to avoid 294 

low sample sizes, and,  295 

(4) the mobile gene should have less than 30% missing values across samples, for a total 296 

of 512 tested genes.  297 

 In contrast to human factors, gene functions defined by COG families explained more of 298 

the variation in mobile gene sequence evolution across samples. For 𝜃", 𝜃!, and Tajima’s D, COG 299 
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families explained from ~20% to ~60% of the variance in >50% of the samples (Figure 3B). For 300 

dN/dS, COG families explained up to 83% of the variance in 12.8% of samples. To ensure that this 301 

result was robust to differential sampling of genes (n=512) and individuals (n=172) in this analysis, 302 

we downsampled to n=172 genes and confirmed that human host factors explain much less 303 

variation in mobile gene evolution compared to gene functions (Figure S6). A caveat of this 304 

analysis is that the strong explanatory power of gene functions on the population genetic metrics 305 

is based on COG functions being sufficiently well-represented in the dataset. Indeed, the strength 306 

of the correlations decreases with the stringency of the filters due to a decrease of sample size 307 

(Figure S7). As rarer genes (those present in fewer samples) are included in the analysis, fewer 308 

samples show significant correlations between Tajima's D and COG function, going from ~50% 309 

of samples when a gene can be absent in at most 30% of samples (Figure 3B) to ~10% significant 310 

when a gene can be absent in 70% of samples (Figure S7). It is therefore difficult to make 311 

conclusions about rare genes that are under-sampled in the dataset. However, for the more 312 

prevalent mobile genes, COG functions appear to explain much of their short-term molecular 313 

evolution. 314 

 315 

Higher gene mobility is associated with low-frequency SNVs in the gut microbiome 316 

In addition to gene- or environment-specific selective pressures, the rate of HGT is also expected 317 

to affect mobile gene molecular evolution, as it allows genes to spread across different species, 318 

possibly altering their population size and thus the efficacy of selection4,13. To first order, each 319 

human host represents a distinct short-term evolutionary trial. Thus, to study the influence of HGT 320 

rate on molecular evolution within each of the human guts sampled, we correlated gene mobility 321 

with the population genetic metrics described above: dN/dS, 𝜃!,	𝜃", and Tajima’s D. All 322 

correlation results reported below are robust whether or not we include gene length and coverage 323 

as covariates in linear regressions (Figure S8).  324 

 325 

Using this regression approach, we first observed that the correlation between dN/dS and gene 326 

mobility was significant and positive in 144 out of 175 samples (Figure S8), but with a low average 327 

adjusted R2 of 0.03 (s.d. = 0.02). Although this result is consistent with slightly increasing positive 328 
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or relaxed purifying selection with increasing gene mobility, we refrain from drawing strong 329 

conclusions due to the weak R2 values. We next observed that 159 out of 175 samples had a 330 

somewhat stronger significant correlation between 𝜃" and gene mobility (linear regression with 331 

Bonferroni-adjusted p-value < 0.05), and all the significant correlations were positive (mean 332 

adjusted R2 = 0.06; s.d. = 0.05). This is consistent with a model in which mobile genes accumulate 333 

SNVs that remain at low frequency (as measured by 𝜃" ,	which is sensitive to these low-frequency 334 

mutations) as they spread across species. We also observed that 𝜃!, which is more sensitive to 335 

intermediate-frequency mutations, decreases with gene mobility (Figure 4A). Among samples in 336 

which 𝜃! versus gene mobility regression results were significant (164 out of 175 samples with 337 

Bonferroni-adjusted p-value < 0.05), ~95% of them exhibited this negative correlation (mean 338 

adjusted R2 = 0.08; sd = 0.05). As a result, Tajima's D (which reflects the difference between 339 

𝜃!	and 𝜃") is significantly negatively correlated with gene mobility in ~83% of samples (Figure 340 

4A). Even if the R2 value are modest, we note that the trends are highly repeatable across samples. 341 

Reasons for the relatively low R2 values could include noise in the gene mobility metric (based on 342 

a small sample of genomes) and/or variable selective pressures across genes. There are several 343 

reasons for this enrichment of low-frequency SNVs (resulting in lower Tajima's D values) in more 344 

mobile genes, including purifying selection keeping deleterious mutations at low frequency, 345 

recovery of new polymorphism after a recent selective sweep, or population expansion. This result 346 

suggests that HGT can spread genes across species faster than SNVs are able to rise to high 347 

frequency.   348 
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 349 

Figure 4. Gene mobility is negatively correlated with Tajima's D in real and simulated microbiomes. 350 

A) Real data from Fiji. The heatmap shows the slope of a regression model in which either 𝜃!, 𝜃" or 351 

Tajima’s D is the response variable and gene mobility is the explanatory variable (across samples). 352 

Regression p-values were obtained through a t-test. The heatmap contains non-significant regressions 353 

results after Bonferroni p-value filter (black), negative significant correlations (red) and positive significant 354 

correlations (blue). Data standardization was performed before each regression to respect the t-test's 355 

assumption of normality. Heatmap rows and columns were clustered with Euclidean distance and complete 356 

linkage clustering.  357 

B) Representation of simulation events over two generations. In the first generation, a gene gain event 358 

occurs through HGT. Gene gain is represented by the transfer of gene from a donor cell to a recipient cell 359 

and increases the genome size of this recipient cell. The probability of future gene gain or gene loss events 360 

(Pgain and Ploss respectively) is determined by the difference between the current genome size of the cell (x) 361 

and the equilibrium genome size (x0). At equilibrium, the probability of gene gain and gene loss is the same 362 

by definition (Pgain=Ploss). An increase of genome size until it exceeds the equilibrium point (x > x0) leads 363 

to gene loss being more likely than gene gain (Pgain<Ploss). Gene gain also increases the fitness (f > fWT) of 364 

the recipient cell based on the selection coefficient of the transferred gene (sgain). In the model, each gene 365 

has its own selective coefficient which is drawn from an exponential distribution exp(λ) with an expected 366 
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value of 1/λ. Gene gain is either slightly beneficial or neutral in this model and has the opposite fitness 367 

effect of gene loss, which is slightly deleterious or neutral (-sgain = sloss where sgain >= 0). Gene loss decreases 368 

the genome size of the target cell and in case this decrease leads to a smaller genome size than equilibrium, 369 

the probability of gene gain becomes higher than the probability of gene loss (Pgain>Ploss). Gene loss also 370 

decreases the fitness of the target cell (f < fWT) based on the selection coefficient of the lost gene (sloss). 371 

Finally, as represented in the second generation, mutations can also occur and change the fitness of the cell 372 

based on a selective coefficient (smutation) which is drawn from a distribution (Methods). 373 

C) Simulated data. The heatmap shows the slope of a regression model in which either 𝜃!, 𝜃" or Tajima’s 374 

D is the response variable and gene mobility is the explanatory variable (across simulation replicates). 375 

Simulations with different parameter for HGT rate and or distributions of selective coefficients (s ~ exp(λ)) 376 

are color-coded (n=10 replicates per simulation).  377 

 378 

A subset of gene functions experiences a divergent regime of natural selection 379 

Having established that Tajima’s D correlates negatively with gene mobility while coverage tends 380 

to correlate positively with mobility (Figure 1), we sought to determine if these general trends 381 

apply equally to all gene families. While the trends are significant across samples, the large 382 

variations observed across genes (Figure 2; Figure S4) could represent evolutionary regimes that 383 

are specific to some gene families. To test this hypothesis, we used linear mixed models with gene 384 

mobility as a predictor of either Tajima's D or coverage as a response variable, while controlling 385 

for random variations across gut microbiome samples and allowing the response to vary across 386 

COG categories (Methods). This analysis was performed on genes with at least 10X coverage and 387 

available COG annotations (n= 3608 mobile genes). 388 

 389 

As expected, based on the overall positive relationship observed (Figure 1), coverage and 390 

gene mobility are positively and significantly correlated across most COG categories (Figure 5A). 391 

COG category X (mobilome, prophages, and transposons) stood out as the strongest contributor to 392 

this positive relationship, consistent with this signal being driven by genes with the highest 393 

mobility. Removing sample identity or COG category from the linear mixed models significantly 394 

decreased the fit of the models, suggesting that they both significantly contribute to explaining 395 

variation in the mobility-coverage and Tajima’s D-coverage relationships (Tables S1A and S1B). 396 
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We also confirmed that Tajima's D is negatively correlated with gene mobility (Figure 5A), as 397 

observed in the regression analysis (Figure 4A). Deviations from this correlation could thus reveal 398 

signatures of selection that are specific to certain gene families. These COG categories for which 399 

Tajima's D significantly increases with mobility, include P (Inorganic ion transport and 400 

metabolism), I (Lipid transport and metabolism), Q (Secondary metabolites biosynthesis, transport 401 

and catabolism), V (Defense mechanisms) and O (Posttranslational modification, protein turnover, 402 

chaperones), representing ~30% of gene families (Figure S9). There are several explanations for 403 

why these gene families maintain or accumulate intermediate-frequency SNVs (i.e. an increase in 404 

Tajima's D) while being transferred to many new species (Figure 5B). The first explanation is a 405 

population contraction, or in this context, a reduction of the number of gene copies across species. 406 

However, this is unlikely for these subsets of genes because their coverage, which is a proxy of 407 

the relative abundance, increases with mobility. The second explanation is that these genes could 408 

be subject to species-specific selective pressures that fix mutations in some species but not others, 409 

resulting in intermediate SNV frequencies in the bulk metagenome. The third potential explanation 410 

is that negative frequency-dependent selection, which is thought to be an important force shaping 411 

pangenome evolution20,24, is acting on these genes, within species, between species, or both. Thus, 412 

the last two scenarios, which rely on the presence of distinct selective pressures on these subsets 413 

of genes, most likely explain how some mobile genes can maintain or accumulate intermediate-414 

frequency SNVs as they spread across species.  415 
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 416 

Figure 5. Gene mobility regressions reveal a minority of genes with distinct signals of selection. A) 417 

Linear mixed model regression slopes per COG category. This figure illustrate COG categories regression 418 

slopes for the linear mixed models "Coverage	~	Gene	mobility	 + 	Sample	 + 	COG	category" and 419 

"	Tajima′s	D	~	Gene	mobility	 + 	Sample	 + 	COG	category " with "	Sample" and "	COG	category" being 420 

considered as random effects. Data were normalized using the Box-Cox transformation to ensure the 421 

condition of residual normality was accounted for before building the linear mixed model (Coverage Box-422 

Cox λ = -0.01; Gene mobility Box-Cox λ = -0.005). We only used the 99.6% of Tajima’s D values that 423 
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were negative and thus inversed their sign before applying Box-Cox transformation, which only works with 424 

positive values. We then performed the linear mixed model regression "	−Tajima′s	D	~	Gene	mobility	 +425 

	Sample	 + 	COG	category "and inversed the sign of its slope (-Tajima’s D Box-Cox λ = 2). The sign of the 426 

slopes was consistent with simple linear regressions. The asterisks at the tip of each bar indicate the 427 

significance of the simple linear regressions "Coverage	~	Gene	mobility" and 428 

"	Tajima′s	D	~	Gene	mobility" respectively for the associated COG category (*=Significant; N.S. = Not 429 

Significant; Cut-off: Bonferroni-adjusted p-value < 0.05).  430 

B) Schematic of the evolutionary scenarios compared using linear regressions. Scenario 1 represents the 431 

situation in which mobile genes Tajima’s D is negatively correlated with gene mobility because HGT is 432 

faster than fixation of mutated alleles (red stars). Scenario 2 represents the situation in which Tajima’s D 433 

correlates positively with mobility. These genes maintain intermediate frequency mutations (blue stars) 434 

despite being frequently transferred to new species due to negative frequency-dependent selection or 435 

species-specific selective pressures that fix mutations in some species but not others. Note that the gene 436 

copies (dots or stars) illustrated here could come from members of the same or different species in the 437 

microbiome. 438 

 439 

Simple evolutionary simulations recapitulate the observed effects of HGT on mobile gene 440 

sequence evolution  441 

To better understand potential mechanisms underlying the relationship between gene mobility and 442 

sequence evolution observed in the Fiji microbiome data, we implemented the explicit simulation 443 

of HGT and sequence evolution in SodaPop, a forward evolutionary simulation toolkit 25 444 

(https://github.com/arnaud00013/SodaPop). Similar to Sela et al., gene gain and loss are 445 

constrained to maintain genome size equilibrium and to have opposite fitness effects (Figure 4B)7. 446 

We used an updated version of the Sodapop model, which originally simulates protein sequence 447 

evolution with the distribution of fitness effects mutations derived from biophysics-based protein 448 

fitness landscapes 25. Briefly, we simulated a Wright-Fisher process for asexual populations 25 with 449 

10 bacterial species. Each simulation included 5,000 cells in total, divided into 10 species, run for 450 

105 generations. Each gene has an explicit sequence which evolves by a Jukes-Cantor point 451 

mutation model 28, including synonymous sites that do not affect fitness and nonsynonymous sites 452 

with a distribution of fitness effects of which 30% are lethal26 (Methods). Genomes also experience 453 

HGT events, with explicit gene gain and loss events. The rates of these two events are updated at 454 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.319558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319558
http://creativecommons.org/licenses/by-nc/4.0/


 21 

each generation for each cell to maintain an equilibrium around the genome size x0, set to 500 455 

genes (Figure 4B) 7. Genomes larger than x0 are prone to gene loss, but genomes smaller than x0 456 

are prone to gene gain. We also modeled gene gain and loss selection coefficients, specific to each 457 

gene and drawn from an exponential distribution with parameter λ (Methods). We kept simulated 458 

population sizes small due to memory limitations. To make sure this limitation does not cause 459 

excessive effects of drift (e.g. the accumulation of deleterious mutations leading to extinction, also 460 

known as Muller’s Ratchet 27) we forced species relative abundances to remain constant. We also 461 

set a relatively high mutation rate of 10-7 mutations per site per generation to compensate for the 462 

small population sizes and to ensure that enough mutations were generated in a reasonable number 463 

of generations. Genome size equilibrium was reached for every simulation, indicating robustness 464 

to variable starting conditions (Figures S12). Altogether, this model allows us to test if the 465 

relationships between gene mobility and population genetic metrics observed in the real data can 466 

be observed under varying rates of HGT and adaptive benefit of acquired genes.  467 

 468 

We found that the simulation could recapitulate the major features observed in the real Fiji 469 

microbiome data without requiring that mobile genes provide adaptive value to a human host or to 470 

its bacterial genome. First, the simulations can recapitulate the shape of the observed distribution 471 

of gene mobility (Figure S1). A caveat is that simulations are far from including all the complexity 472 

of the gut microbiome, i.e. the number of species, population structures and other features not 473 

simulated, and the distributions were only compared for one illustrative set of input parameters 474 

(Figure S1). Thus, we do not claim that our model can provide a precise quantitative description 475 

of gene mobility in the gut microbiome, but rather that it can recapitulate the major qualitative 476 

features. 477 

 478 

Second, the simulations recover the positive correlation between gene mobility and census 479 

population size (metagenomic coverage) observed in the real data (Figure 1). The positive 480 

correlation was always stronger in the simulations (mean adjusted R2 of 0.705 across all parameter 481 

settings, standard deviation = 0.190) compared to the real data (mean adjusted R2 of 0.085 across 482 

all parameter settings, standard deviation = 0.076). This suggests that factors not included in the 483 
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model, such as negative frequency-dependent selection and noise in the gene mobility metric, 484 

reduced the strength of the correlation in the real data. The positive correlation was stronger in 485 

simulations with relatively lower HGT rate but was largely unaffected by whether HGT events 486 

were neutral or adaptive to host cell fitness (Table S3). This suggests that relatively high HGT 487 

rates could also explain the weaker correlation between gene mobility and coverage observed in 488 

the real data.  489 

 490 

Third, we assessed whether the simulations could reproduce the observed correlations 491 

between population genetics metrics and gene mobility. Simulations recapitulated most of the 492 

observed effects of HGT on nucleotide diversity in real data. Specifically, Tajima’s D correlates 493 

negatively with gene mobility in simulations, with a median adjusted R2 of 0.32 (mean = 0.23; sd 494 

= 0.13) compared to a median adjusted R2 of 0.01 (mean = 0.01; sd = 0.01) in the real data and 495 

reproducible across ~87% of simulations compared to ~83% of the samples in the real data (Figure 496 

4). The variation in this correlation is explained more by HGT rate than by HGT fitness effects 497 

(neutral or adaptive selective coefficients on gene gain/loss). This can be seen in the heatmap, in 498 

which simulations cluster by HGT rate rather than HGT fitness effect (Figure 4C). Along the same 499 

lines, we performed a K-S test on the slopes of the regression between Tajima’s D and mobility 500 

and observed that this slope varies more because of HGT rate than HGT fitness effect (Figure 501 

S10). Simulations also predict that dN/dS also correlates positively but weakly with mobility, but 502 

only at intermediate HGT rates (Figure S11). A similar pattern is observed in the real data, in 503 

which dN/dS correlates weakly with mobility (Figure S8). Overall, real microbiome data is 504 

recapitulated by our simple evolutionary model, which includes only selection for a stable genome 505 

size, without the need to invoke adaptive advantage of mobile genes to their bacterial genomes, or 506 

to include any human host factors whatsoever.   507 
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CONCLUSION 508 

Pangenome evolution has been studied primarily on long evolutionary time scales by comparing 509 

relatively distantly related genomes. Studies of these long time scales have largely concluded, 510 

although with some debate, that pangenomes are predominantly adaptive – that selection plays a 511 

bigger role in pangenome evolution than drift. Here we have refocused the study of pangenome 512 

evolution to shorter time scales, that is within individual gut microbiomes in which gene transfer 513 

events likely occurred within a human lifespan. Based on microbiome data from a Fiji cohort, we 514 

found that mobile gene sequence evolution is more influenced by selective pressures at the level 515 

of gene function than at human host level. Of course, there were many unmeasured human host 516 

factors which could impose selective pressures that we were unable to study. However, 517 

complementary evolutionary simulation results showed that mobile genes need not provide any 518 

special adaptive value to their human host or microbial genomes in order to recapitulate the 519 

qualitative patterns of molecular evolution observed in the real data. 520 

 These observed patterns of molecular evolution based on population genetic metrics 521 

provide clues about the balance of evolutionary forces acting on mobile genes in microbiomes 522 

within a human lifespan. We found that most genes accumulate low-frequency mutations as they 523 

spread within and between bacterial species. One interpretation of this result is that most mobile 524 

genes are under purifying selection to maintain a conserved function, even as they spread across 525 

species, such that most mutations are deleterious and kept at low frequency. Another non-exclusive 526 

interpretation is that low-frequency mutations could also represent rapid spread of a gene, before 527 

mutations are able to rise to higher frequency. In contrast, a minority of genes involved in few 528 

specific cellular functions, such as defense mechanisms (COG category V), accumulate 529 

intermediate frequency alleles as they spread in new species, possibly due to negative frequency-530 

dependent selection within species and/or fixation of beneficial mutations within some species but 531 

not others. Further investigation will be needed to explore the nature of these variable selective 532 

pressures.  533 

 Similarly to Bobay and Ochman (2018), we observed a very weak correlation between gene 534 

mobility and dN/dS, which measures selection in protein-coding regions. Bobay and Ochman 535 

(2018) attributes this trend to a nearly neutral model of pangenome evolution, i.e. drift-barrier 536 

evolution. This assumption that most accessory genes are slightly beneficial could explain why a 537 
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mixture of neutral and adaptive patterns are evident throughout our analysis. Further work is 538 

needed to test the validity of this model in additional datasets.  539 

 Thus, pangenome evolution is the product of a fine balance between drift and selection, 540 

which can shift depending on the time scale and level of biological organization, from gene to 541 

genome to community. In the gut microbiome of a single person, the time scale of evolution may 542 

be too short to easily resolve the balance between drift and selection. Indeed, on very short time 543 

scales during which mutations could still be segregating and HGT occurs more frequently than 544 

mutation fixation, slightly adaptive genes that have been recently transferred could be largely 545 

influenced by drift because of their small Ne, such that their adaptiveness could be effectively 546 

detected only on long time scales, while drift might decide their fate on shorter time scales. In this 547 

context, it is not surprising that simulations identified HGT rate, but not selective coefficients, as 548 

an important driver of molecular evolution. This model seems to fit some other bacterial genomic 549 

datasets11,23 but awaits formal testing. Finally, we suggest that future work on pangenome 550 

evolution should try to understand what factors control shifts in the drift-selection balance and its 551 

interplay with species ecology (Ne, species lifestyle, etc.) and gene ecology (i.e. gene function, to 552 

what extent are genes selfish or cooperative within a genome, etc.), which is probably more 553 

informative than simply settling for either an adaptive model or a non-adaptive model.  554 
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METHODS 555 

 556 

Population genetics of Fijian gut microbiome mobile genes 557 

The Fiji Community Microbiome project provides open access to metagenomes from the gut 558 

microbiomes of 176 individuals. For each of these individuals, we mapped metagenomic sequence 559 

reads to a set of 37,853 mobile genes previously defined as follows from bacterial whole genome 560 

sequences from the Human Microbiome Project (HMP) and FijiCOMP. To be considered mobile, 561 

pairs of genes 500bp or longer had to share >99% nucleotide identity between isolate or single-562 

cell genomes with <97% identity in the 16S rRNA gene1. This procedure selects nearly identical 563 

genes present in distinct species or genera as candidates for very recent HGT, likely within an 564 

individual gut microbiome1,17. An additional filter was applied to remove potential false-positive 565 

HGT events from highly conserved ribosomal proteins, and to keep only reads that aligned with 566 

99% identity across >= 50% of their own length 1. From the mappings, we used Anvi’o to report 567 

Single Nucleotide Variants (SNVs) (--min-coverage-for-variability 10 --min-contig-length 50), 568 

followed by a pipeline to compute population genetics metrics (𝜃!,	𝜃", dN/dS and Tajima’s D) 569 

based on the SNVs. The pipeline scripts are available at 570 

https://github.com/arnaud00013/Fiji_Mobile_Gene_Specific_PopGen_scripts. The Anvi’o SNV 571 

calling module28 has the advantage of being fast and simple to use, can be executed in parallel 572 

(High-Performance Computing), and has filters to control minimum gene coverage or mutation 573 

frequency. For each sample mapping, a gene was retained if its mean site depth was >=	 10. Only 574 

one sample was excluded for having less than 500 genes passing the site depth filter , reducing the 575 

sample size to 175 metagenomes. Among all samples, 7990 unique genes were conserved after 576 

applying the site depth filter. Finally, mobile gene COG annotations, available in the FijiCOMP 577 

data (http://fijicomp.bme.cornell.edu//), were used to define two level of gene functions: COG 578 

gene family (which is more specific), and COG category (which is more general).  579 

 580 

 581 

 582 
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Detecting selection by dN/dS 583 

dN/dS is the non-synonymous to synonymous mutations per site ratio. Different methods have 584 

been developed to estimate dN/dS with the common purpose of inferring selection in protein-585 

coding genes29. More precisely, dN/dS can detect purifying selection (dN/dS<1), neutral evolution 586 

(dN/dS ≈ 1) and positive selection (dN/dS > 1). Because we are working with metagenomic gene 587 

variants, we defined our own estimator of dN/dS: 588 

𝑑𝑁
𝑑𝑆
'

=
𝑁𝑏#$% 𝑁𝑏#$$⁄
𝑁𝑏$% 𝑁𝑏$$⁄  Eq. 1 

where Nbnsm is the number of non-synonymous mutations (SNVs), Nbnss is the number of non-589 

synonymous sites, Nbsm is the number of synonymous mutations (SNVs), and Nbss is the number 590 

of synonymous sites. 591 

 592 

Measuring mobile genes nucleotide diversity at metagenomic level 593 

Because mobile genes are by definition present in multiple species, we calculated population 594 

genetic metrics based on all reads from a metagenome that map to a particular mobile gene. Based 595 

on these mapped reads, we calculated Tajima’s D 21, which measures the difference between 596 

average per-site pairwise nucleotide differences (𝜃!) and the normalized number of polymorphic 597 

sites (𝜃")	:  598 

𝐷&'()%' =
𝜃! − 𝜃"

.𝑉𝑎𝑟' (𝜃! − 𝜃")
 Eq. 2 

where the 𝑉𝑎𝑟'  denotes the expected sampling variance of (𝜃! − 𝜃"). For each sample, we 599 

estimated mobile gene nucleotide diversity from sequence variants detected in the mapping 600 

between metagenomic reads and mobile gene reference sequence from FijiCOMP as follows: 601 

𝜃!' = *+_-.'/$_0"/)11
∑ ⟨4!5 ⟩
"
!#$

 Eq. 3 

where n is the gene length, ci is the depth of the site i of the gene and Nb_reads_pwdiff is the 602 

number of pairwise nucleotide differences, and 603 
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𝜃"' = 7
'8

 Eq. 4 

  

𝑎8 =	3
1
𝑖

#98

):8

 Eq. 5 

where a1 is a normalizing factor that represents the sample size (n). Usually, Tajima’s D is 604 

estimated from a multiple alignment between gene alleles. The sample size used to estimate the 605 

normalizing factor a1 is the number of alleles. Here we use the average depth of coverage at 606 

polymorphic sites as an estimator of the sample size n.  607 

 608 

Effect of gene mobility on metagenomic coverage 609 

We operationally defined gene mobility as the number of single-cell genomes in which a mobile 610 

gene was found and tested if this metric behaves as expected in explaining gene frequencies in 611 

metagenomes. More precisely, we correlated gene mobility with metagenomic coverage with the 612 

expectation that more mobile genes occur in multiple species and should thus be more deeply 613 

covered by metagenomic sequence reads. Linear regression analyses and t-tests were calculated 614 

using the R function "summary.lm()" 30. Data standardization was performed before each 615 

regression to respect the t-test's assumption of normality. 616 

 617 

Assessing variation in sequence evolution across genes and across individuals 618 

To determine whether mobile gene evolution is driven more by gene-specific factors or by host 619 

attributes, we first compared the variation of mobile genes nucleotide diversity (and other 620 

population genetic metric described above) across genes vs. across samples through the 621 

Kolmogorov-Smirnov test (KS test). The KS test involves a statistic D, which measures the 622 

maximal distance between a pair of cumulative distributions. We downsampled the mobile genes 623 

to the same size as the number of samples to avoid the potential bias due to different sized datasets 624 

and repeated this for a total of 999 resamples. We performed this series of KS test with the function 625 

ks.test() from the R package "stats" 30. 626 

 627 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.319558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319558
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Gene function and human host (individual) attributes as predictors of mobile genes evolution  628 

To determine whether mobile gene evolution is driven more by gene function or host attributes, 629 

we performed linear regressions between a continuous response variable and a 630 

qualitative/categorical explanatory variable, which we will refer as a factor. Regressions between 631 

a quantitative continuous variable, e.g. Tajima’s D, and a factor, e.g. gene function family, requires 632 

transforming the factor as it cannot be integrated into a regression equation in its original form 30. 633 

We therefore used the R contrast function "constr.sum()" to transform factors 30. This 634 

transformation allows the regression coefficients to represent how each level/state of the factor 635 

differ. Then, we assess the significance of the regression model with a non-parametric 636 

(permutational) ANOVA 31. This test makes random permutations of the response variable 637 

between the different groups/levels of the factor, and estimates the p-value as the proportion of 638 

permutations with an F-statistic greater than or equal to that observed in the real (unpermuted) 639 

data. This test was implemented in the R library "lmPerm" (v.2.1.0) 30.  640 

For host attribute correlations with population genetic metrics, we focused on 172 samples 641 

with available metadata. Metadata about these samples were extracted from Brito et al. (2016) and 642 

NCBI accession numbers of the corresponding stool metagenomes are publicly available at 643 

http://fijicomp.bme.cornell.edu//data/FijiCOMPmetagenomicsamples.xlsx. Mobile genes selected 644 

for this analysis needed to respect the following conditions: (1) the gene should have at least 10X 645 

coverage to limit the impact of sequencing errors, and (2) mobile gene should have less than 30% 646 

missing values across samples, for a total of 1333 tested genes.  647 

As for linear regressions between population genetics metrics and gene families, we 648 

selected genes based on the following set of conditions : (1) the gene should have at least 10X 649 

coverage to limit the impact of sequencing errors, (2) the gene should have available COG family 650 

annotation, (3) the gene COG family should be represented by at least 2 genes within the dataset 651 

and (4) the mobile gene should have less than 30% missing values across samples, for a total of 652 

512 tested genes. The first two filters are the basic requirements for doing these regressions 653 

analyses. However, the 3rd and 4th filters were chosen respectively to avoid the effects of small 654 

sample size for COG families that are underrepresented in the dataset, and to handle missing values 655 

caused by gene absence across sample or genes with low coverage in gut metagenomes. 656 

 657 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.319558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319558
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Effect of HGT on sequence evolution 658 

To determine the impact of HGT on mobile gene sequence evolution, multiple linear regressions 659 

were performed. In these multiple linear regressions, coverage, Gene Mobility – the number of 660 

species in which a mobile gene has been identified when looking for HGT events – and gene length 661 

were the explanatory variables and the various population genetic metrics were the response 662 

variables. We used the lm() function in R to remove collinearity with QR-decomposition/Gram-663 

Schmidt orthogonalization. Thus, it is possible to assess the effect of Gene Mobility on each 664 

population genetics metrics while controlling for the effect of potential confounders like coverage 665 

and gene length. For each response variable Y tested (𝜃!,	𝜃", dN/dS and Tajima’s D), there are 666 

two regression models: 667 

𝑌	~	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 + 	𝐺𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ Eq. 6 

  

𝑌 ∗	~	𝐺𝑒𝑛𝑒	𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦	 + 	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	 + 	𝐺𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ Eq. 7 

The asterisk represents the fact that the regression controls for the effects of coverage and gene 668 

length, which increase the chance of observing sequencing errors. The adjusted R2 of a correlation 669 

represents the proportion of variable Y variance that is explained by the regression model with a 670 

correction for the number of explanatory parameters included in the model (k) and the sample size 671 

(n): 672 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑅5 	= 	1	 −	
K𝑆𝑆𝑟𝑒𝑠 𝑛 − 𝑘	 − 1M N

K𝑆𝑆𝑡𝑜𝑡𝑎𝑙 𝑛 − 1M N
 Eq. 8 

where SSres is the residual sum of squares and SStotal is the fitted data sum of squares. The type 673 

of correlation (positive or negative) can be determined by the regression coefficient. The 674 

reproducibility of the regressions was measured by the number of samples in which the correlation 675 

is significant.  676 

 677 

Variation across COG categories 678 

To assess how the relationships between gene mobility and Tajima's D or coverage varied across 679 

COG categories, we considered 22 COG categories 32. We then used linear mixed models, through 680 
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the R package lme4, to study the effect of gene mobility on coverage and Tajima’s D across COG 681 

categories 33. A linear mixed model allows to build a linear model between the response variable 682 

and the fixed effects while controlling for random effects. In the regression model, fixed effects 683 

are explanatory variables for which we want to know the relationship with the response variable. 684 

Random effects are grouping factors that explain random variance of the relationship between the 685 

response variable and the fixed effects across a finite number of different groups. To control for 686 

random effects, the algorithm builds a linear model for each group. In the two regression models, 687 

"	COG	category	" and "	Sample" were included as random effects:  688 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	~	𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦	 + 	𝐶𝑂𝐺	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	 + 	𝑆𝑎𝑚𝑝𝑙𝑒 Eq. 9 

 689 

𝑇𝑎𝑗𝑖𝑚𝑎′𝑠	𝐷	~	𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦	 + 	𝐶𝑂𝐺	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	 + 	𝑆𝑎𝑚𝑝𝑙𝑒 Eq. 10 

 690 

We can then test the significance of "	COG	category" for the regression model using a permutation 691 

ANOVA 31. The advantage of such test is that it is non-parametric, making no assumptions about 692 

the distribution underlying the data. For both regressions, we conducted 99,999 permutations of 693 

the response variable between COG categories and then calculated the F-statistic of the regression 694 

after each permutation. Next, we calculated the F-statistic of the original regression and calculated 695 

the p-value as the proportion of permuted data regressions that gave an F-statistic greater than or 696 

equal to the F-statistic from the real (non-permuted) data.  697 

 698 

Additionally, using the R function anova(), we performed likelihood ratio tests between 699 

each linear mixed model and their nested models to test the significance of each random factor, 700 

i.e. "	COG	category	" and "	Sample	" 30,34. Each nested model was obtained by removing one 701 

random factor at a time, thus creating two nested models per response variable Y: 702 

𝑌	~	𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦	 + 	𝐶𝑂𝐺	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	 Eq. 11 

 703 

𝑌	~	𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦	 + 	𝑆𝑎𝑚𝑝𝑙𝑒 Eq. 12 
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The likelihood ratio test compares the likelihood of a nested model to the likelihood of the full 704 

linear mixed model, with the assumption that the test statistic follows a Chi-square distribution. 705 

Thus, we can create each nested model by the removal of a single random factor from the full 706 

linear mixed model and assess the significance of both random factors using a p-value from the 707 

Chi-square distribution 34.  708 

 709 

Simulation of pangenome evolution 710 

We simulated Sela, Wolf and Koonin’s prokaryotic genome size evolution model with few 711 

changes, using the SodaPop simulation tool 7,25. In this model, the selective advantage of gene 712 

gain, i.e. the advantage of having x+1 genes instead of x genes, depends of the genome size, which 713 

is measured by the number of genes in the genome (x). Selection coefficients for gene loss have 714 

the opposite sign as gene gain; thus, gene gain is slightly beneficial while gene loss is slightly 715 

deleterious7. The selection coefficient of gene gain and gene loss can thus be described by the 716 

following formula:  717 

𝑠;')#(𝑥) 	= 	𝑎	 +	𝑏	.	𝑥	 = 	−𝑠=>$$(𝑥) Eq. 13 

where 𝑠;')# is the selection coefficient of gene gain through HGT, "𝑎" is a constant input parameter 718 

of the simulation that allows to improve the fit of the linear expression with the real data, "𝑏" is a 719 

constant input parameter that represents the benefit or cost associated with the gain of a single 720 

gene, x represents genome size (number of genes), and 𝑠=>$$ is the selection coefficient of gene 721 

loss. We modified this formula to simulate a model where each gene has its own constant selective 722 

advantage regardless of genome size (x). To do so, we only needed to set the condition b = 0. This 723 

change allowed us to reproduce the shape of gene mobility distribution in simulation (Figure S1). 724 

In this case: 725 

𝑠;')# 	= 	𝑎	 = 	 𝑠;.#. 	= 	−𝑠=>$$ Eq. 14 

where 𝑠;.#. ~ Exp(λ), λ is an input parameter of the simulation, and 1/λ represents the expected 726 

value of the exponential distribution of selection coefficients.  727 

 728 
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In the model, genome size (x) influence gene gain rate and gene loss rate. Indeed, the more 729 

genome size increases, the more gene gain rate decreases, and the more gene loss rates increases 730 

to find an equilibrium around a certain genome size x0. Therefore, when genome size (x) is smaller 731 

than genome size at equilibrium (x0), the cell has a higher probability of gene gain than loss. To 732 

consider the stochastic component of evolution, the cells and genes that are involved in each gain 733 

or loss events are randomly selected. Also, the number of gain or loss events are drawn from a 734 

Poisson distribution with the gain and loss rates as follows:  735 

𝐺-'?. 	~		𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆	 = 	 𝑠′	.	𝑥A
%) Eq. 15 

 736 

𝐿-'?. 	~		𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆	 = 	 𝑟′	.	𝑥A
&) Eq. 16 

where 𝐺-'?. is the gain rate, i.e. the number of gene gain events per generation, 𝐿-'?. is the loss 737 

rate, i.e. the number of gene loss events per generation, and r’, s’, 𝜆B and 𝜆9 are simulation input 738 

parameters that allow to tune the gain and loss rates.  739 

 740 

We implemented this model in the SodaPop software, which simulates a Wright-Fischer 741 

process for asexual populations 25. In SodaPop, the mutation model is equivalent to Jukes-Cantor 742 

in which all single nucleotide occur at the same constant rate35. We also implemented a distribution 743 

of non-synonymous mutation fitness effect in which 30% of mutations are lethal, as previously 744 

reported in literature26, and 70% are drawn from a normal distribution, N(µ=-0.02, σ=0.01). 745 

Synonymous mutations are all considered neutral unless the user provides data on species codon 746 

usage and the related fitness effects. SodaPop also offers flexibility in the initial setup of the 747 

simulation25. We created scripts to facilitate the creation of the simulation starting conditions 748 

(https://github.com/arnaud00013/SodaPop/tree/Sodapop-pev/tools). The scripts allow to define 749 

each species abundance, gene content, and to define the genes that are mobile 750 

(https://github.com/arnaud00013/SodaPop/blob/Sodapop-pev/tools/Setup_SodaPop_with_PEV. 751 

py). Mobile genes can be transferred and lost while core genes and accessory genes (defined at the 752 

start of the simulation) can only be lost. For each set of simulations sharing the same input 753 

parameters, we ran 10 replicates. Each simulation included 5000 cells, 10 species, 500 genes per 754 

cells at equilibrium and a simulation time of 105 generations and a timestep of 104 generations to 755 
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save simulation data. Population size is small in simulation because of hardware memory 756 

limitations. To avoid undesirable effects, like Muller’s Ratchet, we maintained species abundance 757 

constant. We also established a relatively high mutation rate on the order of 10-7 mutations per site 758 

per generation to compensate for small population sizes. Genome size equilibrium was reached for 759 

every simulation and the model is thus robust to the initial conditions (Figures S12). The software 760 

is available on GitHub (https://github.com/arnaud00013/SodaPop).   761 
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