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Abstract
Bacterial division is an inherently stochastic process. However,
theoretical tools to simulate and study the stochastic transient dy-
namics of cell-size are scarce. Here, we present a general theo-
retical approach based on the Chapman-Kolmogorov formalism to
describe these stochastic dynamics including continuous growth
and division events as jump processes. Using this approach, we
analyze the effect of different sources of noise on the dynamics
of the size distribution. Oscillations in the distribution central mo-
ments were found as consequence of the discrete translation in-
variance of the system with period of one doubling time, these
oscillations are found in both the central moments of the size dis-
tribution and the auto-correlation function and do not disappear
including stochasticity on division times or size heterogeneity on
the population but only after include noise in either growth rate or
septum position.

Introduction
Recent experiments involving time-lapse microscopy [1], single-
cell tracking [2, 3], and gene tagging [4] have revealed how cell
size stochasticity, and division events play an important role in the
random fluctuations of bio-molecular concentrations [5–8]. This
with important consequences for phenotype variability and cell
heterogeneity over a clonal population of microorganisms [9].

Methods approaching the bacterial size control include the dis-
crete stochastic maps (DSMs) [10]. These models define the
known as division strategy as a map that takes cell size at birth sb

to a targeted cell size at division sd trough a deterministic function
sd = f (sb) plus stochastic fluctuations that have to be fitted from
experiment. DSMs, however, are unable to reproduce cell size
transient dynamics at arbitrary infinitesimal time intervals without
further extension.

To solve this continuous dynamics of the distributions describ-
ing stochastic processes usually the Chapman-Kolgomorov for-
malism (CK) is used [11]. CK solutions corresponds to the dis-
tributions of all the possible stochastic hybrid trajectories at a
given time. Among the processes that can be modeled by CK
it can be included continuous size growth and division as a jump
process requiring the definition of a continuous rate of division.
In fact, these models are also known as Continuous Rate Mod-
els (CRM) [10]. Recently, [12] proposed a power-law function to
explain observations in E. coli bacteria cells. Instead, [13] sug-
gested a convoluted function of size and cycle progression is re-
quired. [14] proposed a deconvoluted version by introducing divi-
sion as a multistep process where the occurrence rate of these
steps is a function of the size. Despite these recent attempts,

there is a lack of a complete formalism describing the phenomena
related to bacterial division.

Here, we propose the CK formalism as a framework for studying
single-cell transient dynamics. We present how to overcome the
non-locality of the division jumps and how to model the division
steps. These steps being analogous to the experimental accumu-
lation of FtsZ to trigger the division [15, 16]. These equations are
solved using both simulations and numerical methods. Analytical
expressions are also presented in the cases where it was possi-
ble. We also present modifications to the division rates to define
multiple division strategies. Then, we will show how stochasticity
on division influence the size distribution dynamics and how this
dynamics changes considering additional sources of noise like a
distribution of initial sizes with finite variance, the noise in sep-
tum position and in cell-to-cell growth rate. We discuss how this
approach could be coupled to simulations of gene expression.

Theoretical details

The population balance Equation
Consider the distribution p(s; t) of sizes s at a given time t solv-
ing the Chapman-Kolmogorov equations (CKE). This distribution
is related to the histograms of bacterial populations. Some at-
tempts have described the dynamics of this distributions includ-
ing effects due to the increasing of population number and the
mother-daughter correlations [17–19]. In our framework, we con-
sider a cell population with an asymptotically large number. After
each division, only one of the descendants is tracked such as the
number of bacteria in the population remains constant in similar
way observed in experiments such as those using Mother Ma-
chine micro-fluids [3]. Then, ρ(s; t) can be normalized:∫

p(s, t)ds = 1 (1)

To describe the distribution dynamics, let an individual cell grow in
size s as per

ds = g(s, t)dt , s(0) = s0, (2)

where g(s, t) is the size change per unit time. Some studies have
considered the constant growth [17, 20, 21] we will focus con ex-
ponential growth rate (g(s) = µs) with µ being the growth rate and
s0 is the initial cell size. Since (2) defines a deterministic process,
the change in the size distribution p(s, t|s0) conditioned on initial
size s0 can be obtained by solving

∂

∂t
p(s, t|s0) = − ∂

∂s

[
g(s, t)p(s, t|s0)

]
. (3)
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Expression (3) is known as the CKE in its differential version
(dCKE), and its solution for this deterministic process is given by

p(s, t|s0) = δ(s − s(t)), (4)

where s(t) is the solution of equation (2).
Considering division as a jump process switch-

ing, at a time t , from cell size s′ to size s at
rates W (s|s′, t), equation (3) can be written as

∂

∂t
p(s, t|s0) =

∂

∂s

[
g(s, t)p(s, t|s0)

]
+
∫

ds′
[
W (s|s′, t)p(s′, t|s0)−W (s′|s, t)p(s, t|s0)

]
(5)

If perfect symmetric splitting is considered through the condition
(δ(s′− 2s)) and |W (s′|s, t)| = h(s, s′), the division rates W (s|s′, t)
can be written as:

W (s|s′, t) = δ(s′ − 2s)h(s, s′). (6)

Some studies have explored the particular case where h(s) =
ks with k being a constant and discarding the dependence upon
s′ [17,22]. This, resulting on:

∂p
∂t

(s, t) = −∂(g(s)p(t , s))
∂s

− (ks)p(t , s) + (k2s)p(t , 2s). (7)

Which is also known as the Population Balance Equation for a
fixed population number [17]. Some theoretical methods like mo-
ment closure were used in past studies to solve (7) but stable
solutions were not found already [17].

The Chapman-Kolmogorov equation in-
cluding division events.
To overcome these instabilities, other studies reparametrize the
size distribution adding an additional variable: the number of divi-
sions n ∈ {0, 1, 2, · · · } [22]. In this case, the probability distribu-
tion is now p(s, n; t) with transition rates satisfying:

W (s′, n′|s, n) = δ(s′ − s
2

)δn′,n+1h(s′, s). (8)

This is, after division, not only the size is halved but the number
of divisions n, increase by one unit. In the particular case where
h(s, s′) = ks, the associated CKE is:

∂

∂t
p(s, n; t|x0) =

∂

∂s

[
g(s)p(s, n; t|x0)

]
︸ ︷︷ ︸

Drift by growth

+
[
k (2s)p(2s, n − 1; t|x0)− k (s)p(s, n; t|x0)

]︸ ︷︷ ︸
Jumps by divisions

, (9)

where x0 = (s0, n0).

The inclusion of the new variable n breaks the non-locality of
the operator W (s|s′, t) that makes (5) hard to solve. Instead
W (s, n|s′, n − 1, t) performs jumps between independent sub-
spaces that can be merged together later with marginal sums.

Using this new variable n, exponential growth and s(0) = s0

equation (9) has closed solutions

p(s, n; t) = δ(s − s(n, t))Pn(t), (10)

where Pn(t) is the probability to get divided n times at time t . We
will present its associated equation later. s(n, t) corresponds to
the bacterial size after n divisions at a time t . To explain how to
solve this size, let us consider the size s(1, t) at time t after one
division. If t1 < t is the time when division occurs, this size is:

s(1, t) =
s0eµt1

2
eµ(t−t1). (11)

So, having the general sequence of division times 0 < t1 < t2 <

· · · < tn−1 < tn < t , s(n, t) satisfies:

s(n, t) = s0

(
n∏

i=1

eµ(ti−ti−1)

2

)
eµ(t−tn)

=
s0

2n
exp

(
µ

n∑
i=1

(ti − ti−1) + µ(t − tn)

)

=
s0

2n
eµ(t−t0) =

s0eµt

2n
, (12)

where we used t0 = 0 and the telescopic properties of the sum.
Using this result (12) and (10), (9) is separated to the system of

equations:

p(s; t) =
∞∑
n=0

p(s, n; t) =
∞∑
n=0

δ

(
s − s0eµt

2n

)
Pn(t)

dP0

dt
= −ks0eµt P0

...
dPn

dt
= −ks0eµt

2n
Pn +

ks0eµt

2n−1
Pn−1

..., (13)
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defining the dynamics of every Pn(t).

The division strategy
Focusing on the jump process between the state n − 1 to n, or
simply, one division, we can modify the space n ∈ 0, 1, 2, · · · to
n ∈ {0, 1} and truncate (13) to:

dP0

dt
= −h(s)P0

dP1

dt
= h(s)P0, (14)

Where a general size dependent splitting rate function h(s) can be
used. This system can be integrated under the initial conditions
P0(0) = 1 and P1(0) = 0. Thus, the probability P1(t) –to simplify
notation, P(t)–that the cell divides in the time interval (0, t) evolves
according to:

P(t) = 1− exp

(
−
∫ t

0
h(s(t ′))dt ′

)
. (15)

In the particular case of h(s), proportional to the size, this is, h(s) =
ks, assuming exponential growth as well, the integration on time
has to be done using the implicit formula:

h(t) = ks(t) = ks0eµt . (16)

Once P(t) is obtained, the probability density function ρ(t) for
the time of division can be obtained as:

ρ(t) =
dP(t)

dt
. (17)

A transformation of variables, allows us to get the distribution of
sizes at division ρ(sd ):

ρ(sd ) = ρ(t(sd ))
dt

dsd
, (18)

where, if we assume exponential growth t(sd ) = 1
µ ln

(
sd
s0

)
, then,

dt
dsd

= 1
µsd

. Using this ρ(sd ), one can calculate the mean size at
division by integrating:

〈sd〉 =
∫ ∞

sb

sdρ(sd )dsd . (19)

Hence, we can calculate the mean added size per cell cycle 〈∆〉 =
〈sd〉 − sb as a function of the size at birth sb. This relationship
defines the division strategy.

The multi-step Single division
In the general case, division does not correspond to a single jump
process, instead, division occurs once bacteria have reached
some goal steps M. If the occurrence rate of these steps is pro-
portional to the cell size s by the constant kd , the probability Pm(t)
of having done m < M steps at time t can be modelled following:

dP0

dt
= −kd s(t)P0

...
dPm

dt
= kd s(t)Pm−1 − kd s(t)Pm

...
dPM

dt
= kd s(t)PM−1. (20)

PM is the probability of reaching the target steps M or equivalently,
the probability of a division event to occur. Once the division event
happens, the process is reset to zero steps and size is halved.

Using this PM (t) and the growth regime (4), if the procedure
(18) is followed, the probability density ρ(sd |sb) of size at division
sd given the size at birth sb in a cell cycle, satisfies:

ρ(sd |sb) =

(
kd

µ

)M (sd − sb)(M−1)

(M − 1)!
exp

(
−kd

µ
(sd − sb)

)
(21)

Defining the added size before division ∆ = sd − sb, from , we
observe that 〈∆〉 = 〈sd〉 − sb is independent on the size at birth
sb and is related to the growth rate µ, the objective steps M and
the step occurrence rate kd per size unit, satisfying:

〈∆〉 = M
µ

kd
(22)

.

The solution of the CKE including multiple
divisions
Using a similar procedure as (13) now with the additional variable
m, the probability of have a size s, have done m division steps and
n divisions up to time t can be written now as:

p(s, n, m; t) = δ(s − s(n, t))Pm,n (23)

Cell size s(n, t) follows, again, the equation (12). While, the
probability Pm,n(t) of have done m division steps and n division
events up to time t , can be estimated through the master equation
system:

dP0,0

dt
= −kd s0eµt P0,0

dP1,0

dt
= kd s0eµt P0,0 − kd s0eµt P1,0

...
dPm,n

dt
=

s0eµt

2n
Pm−1,n −

s0eµt

2n
Pm,n

...
dPM,n

dt
= kd

s0eµt

2n
PM−1,n − kd

s0eµt

2n
PM,n

dP0,n+1

dt
= kd

s0eµt

2n
PM,n − kd

s0eµt

2n+1
P0,n+1

..., (24)

where we showed the selection rule defining the divisions as
jumps between states (M, n−1) to (0, n) and the division steps as
jumps between states (m, n) to (m+1, n). These jumps happening
at rate h = kd s(n, t) with s(n, t) following the equation (12).

Numerical estimation of size dy-
namics
Solution of (24) can be obtained using different methods. Analyti-
cally, one can start from the initial conditions:

Pm,n(t = 0) = δn,0δm,0, (25)
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with δi ,j , the Kronecker delta. Hence, Pm,n(t) can be obtained
knowing Pm−1,n(t) with m ∈ 1, ..., M and P0,n(t), can be estimated
from PM,n−1(t). Both, using, using the closed recurrence expres-
sion:

Pm,n(t) =
kd s0

2n
exp

[
− ks0

µ2n
eµt
] ∫ t

0
Kn(t ′)Pm−1,n(t ′)dt ′

P0,n(t) =
kd s0

2n−1
exp

[
− ks0

µ2n
eµt
] ∫ t

0
Kn(t ′)PM,n−1(t ′)dt ′

with

Kn(τ ) = exp

[
µτ +

ks0

µ2n
eµτ

]
P0,0(t) = exp

[
−kd s0

µ

(
eµt − 1

)]
(26)

The Finite State Projection Algorithm
In general, in (24), while the number of possible steps m ∈
{0, 1, · · · , M} has finite cardinality, the number of possible divi-
sions n ∈ {0, 1, · · · } is infinite. Thus, making impossible the
complete solution of (24) using methods like Matrix exponential.
As we explained before [22], this infinite set can be projected into
a finite set using the known Finite State Projection (FSP) algo-
rithm [23]. Using this approach, the number of equations in (24)
are truncated up to a maximum divisions N and the number of
possible division states is now finite. Hence, known methods for
solving these finite systems can be used to estimate size dynam-
ics during infinitesimal periods of time.

From Pm,n(t), the size distribution ρ(s|s0) given the starting size
s0 and the moments of this size distribution: the mean size 〈s〉
and the variance var(s) = 〈s2〉 − 〈s〉2, can be estimated from the
equations:

ρ(s|s0) =
N∑

n=0

δ

(
s − s0

eµt

2n

)
Pn

〈s〉 =
N∑

n=0

s0
eµt

2n
Pn

var(s) =
N∑

n=0

((
s0

eµt

2n

)2

− 〈s〉2
)

Pn, (27)

with Pn =
∑M

m=0 Pm,n and δ(x), the Dirac-delta distribution.
The computing of these moments was done considered that all

cells began at initial size s(0) = s0, this is, ρ(s0) = δ(s0 − s(0)).
However, if a general density function ρ(s0) is considered, the size
distribution ρ(s) is a convolution of solutions of (27):

ρ(s) =
∫
ρ(s|s0)ρ(s0)ds0 (28)

Stochastic simulation of size dy-
namics
Let the single step process shown in (14). While (14) was pre-
sented to modeling the division as a single step process, in gen-
eral, these equations are also valid for a division step. Setting

explicitly the dependence h = kd s, the system describing the sin-
gle step process is now:

dP0

dt
= −kd s0eµt P0

dP1

dt
= kd s0eµt P0. (29)

If P0(0) = 1 and P1(0) = 0, P1(t), or simply P(t), has solution:

P(t) = 1− exp

(
−
∫ t

0
kd s(t ′)dt ′

)
= 1− exp

[
−s0

kd

µ

(
eµt − 1

)]
, (30)

while the associated density function is:

ρ(t) =
dP(t)

dt

= s0
kd

µ
exp

[
µt − s0

kd

µ

(
eµt − 1

)]
. (31)

The main idea behind the stochastic simulation algorithm is to
generate random time events τs distributed as (31). Following the
Gillespie’s method [24], we generate a random number r uniformly
distributed in the interval (0, 1) and from the cumulative function
(30), τs is obtained matching P(t) and r thus, solving for t :

τs =
1
µ

ln

[
1− µ

s0kd
ln(r )

]
, (32)

where we take advantage of the fact that 1− r is distributed as r .
This τs is the time to the occurrence of the next division step.

Additional details to model the cell
division

The asymmetric splitting
The main assumption proposing (12) is that after each division,
the cell size is perfectly halved. However, this is not the case in
a realistic situation. Experimentally, some stochastic fluctuations
in the septum position are found. In some growth conditions, this
noise can be as high as 5% [25,26].

Considering again the size at time t after one division, if the
division occurred at time t1 < t . If the size is not perfectly halved
but multiplied by a random variable b1, centered on 0.5 and also
known as division ratio, the size at time t is now:

s(1, t) = s0eµ(t1−t0)b1eµ(t−t1) (33)

If the sequence of division ratios {b1, b2, · · · , bn} is known, the
size after n division at time t is given by:

s(n, t) = s0eµt
n∏

k=1

bk . (34)

Theoretically, bk can be approximated to a beta distributed vari-
able centered on 0.5 with variance fitted from experiments.
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Figure 1: Time dynamics of the first Pn for different division strategies and division steps (M) with ρ(sb) = δ(sb − sb).

Cell-to-cell noise in growth rate

Other important stochastic variable is the cell-to-cell growth rate
[27, 28]. This fluctuation can be as high as 10% [3]. We can
assume that after a division k , a new growth rate µk is chosen
randomly from a distribution centered on µ and cell grows during
that cycle with rate µk . If symmetric splitting is considered again,
the size at time t after n divisions is now:

s(n, t) =
s0

2n

(
n−1∏
k=0

exp (µk (tk+1 − tk ))

)
exp (µn(t − tn)) (35)

Numerically, we modeled these µk as a gamma distributed vari-
able centered on the mean growth rate µ, with the experimental
variance and no correlation with past cycles. This last assumption
might be incorrect and these correlation between cycles can be
studied in deeper studies [26].

A general CKE incluing additional souces
of noise
A general CKE, assuming exponential growth, can be mod-
eled with growth rate distributed with given distribution ρ(µ):

∂p(s; t)
∂t

=
∫ [

∂

∂s
(µsp(s; t))

]
ρ(µ)dµ +

∫
h(s|s′)p(s′; t)ds′ − h(s)p(s; t). (36)

The division rate h(s|s′) in general depends on hidden variables
like the number steps but can estimated, at least numerically [29–
31]. This In the case of single step division, this rate can be written
as h(s|s′) = ksρ(s, s′) with

∫
ρ(s, s′)ds′ = ρ(s) and ρ(s) being the

distribution of size at birth. In the therm ρ(s, s′) non-symmetric
division can also considered. h(s), in the last therm, is obtained
from h(s) =

∫
h(s′|s)ds′. We already do not have a closed solution

to (36) and numerical methods could be hard to implement.

Different division strategies
Depending on the mapping sd = f (sb), or traditionally, between
the relationship between added size ∆ = sd − sb and sb, three
main division strategies have been defined for exponentially grow-
ing bacteria: the timer, adder and sizer strategies [32]. Differing
from the slope of ∆ vs sb for timer this slope is +1; -1 in sizer
strategy and for null-valued for adder.

The adder strategy, observed for instance, in E. coli and B. sub-
tilis [3], is considered the most common strategy in bacteria. In
some bacterial populations, however, division strategies with in-
termediate slopes for ∆ vs. sb have also been observed [14, 32].
This has led to the definition of the timer-like strategy, for slopes
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between 0 and 1, and of the sizer-like strategy, for slopes between
−1 and 0.

These deviations from the adder can be obtained if the step rate
(h) is not proportional to the size but proportional to a power (λ)
of the size [14]. This is:

h = kd sλ (37)

A multi-step process similar to that described by (24) can be pro-
posed. As was explained in past studies [14], if division is trig-
gered by the occurrence of M steps happening at rate (37), the
distribution of size at division sd given the size at birth sb is [14]:

ρ(sd |sb) =(
kd sλ−1

d

µ

)
exp

[
− kd

µλ
(sλd − sλb )

] ( kd
µλ (sλd − sλb )

)M−1

(M − 1)!
(38)

Timer strategy (Added size has a slope of -1 with size at birth)
is obtained if λ→ 0 and sizer strategy (Added size is proportional
to the size at birth) is obtained if λ → ∞. The adder is obtained
when λ = 1.

Considering the non-linear step rate given by (37) and a similar
method like (31), the general stochastic time is given by:

τs(λ) =
1
λµ

ln

[
1− λµ

kd sλ0
ln(r )

]
(39)

The mean cell size at birth
The main variables defining the mean cell size are the growth rate
µ, the number of division steps M and the division steps occur-
rence rate kd . If adder strategy is considered (λ = 1), the mean
added size 〈∆〉 follows the relationship (22).

Since there is already a discussion about the nature of kd , the
inference of its actual value is not straightforward. For the adder,
this kd can be inferred from their mean added size using (22) and
by observing that this 〈∆〉 is independent on the size at birth sb.
In different division strategies (λ 6= 1), 〈∆〉 is now function of sb.
Now, the typical size as explained in past studies [14, 17], sb, is
the size at birth that is perfectly doubled by the division strategy:

sb = sb : 〈sd〉(sb) = 2sb (40)

This, since after division, the cell, with sd = 2sb, splits on a half
and the size of its offspring is sb again.

In general, sb, is dependent on kd , µ and λ and is one of the
variables that can be measured most easily if we assume that
this sb is actually the mean size at birth in a steady growing cell
population. Hence, other variables like kd can be estimated from
this sb using (40) and root-finding algorithms.

Illustrating examples
To observe the dynamics of the probability of get divided n times
at time t , we present, in Figure 1, time trends of some Pn(t)s for
different λs and Ms with initial condition Pn,m(0) = δn,0δm,0. .

A numerical analysis of the behavior in Figure 1 allows us to
find that, in the limit of t →∞, the distribution of Pns satisfies

lim
i→∞
‖Pn(t)− Pn+1(t + τ )‖ = 0. (41)

Which implies asymptotic invariance of the system under transla-
tion on, simultaneously, n→ n+1 and t → t +τ over the Pn. Since
sbeµt

2n also satisfies this invariance, we expect ρ(s|t , sb) to show pe-
riodic properties in the limit t → ∞. This periodicity was already
discussed in some theoretical papers [33–35]. This convergence
is shown in Appendix A.

Three different scenarios in size dynamics can be explored us-
ing our formalism. Figure 2 a. shows the mean size dynamics
obtained from a simulation of 5000 cells, all of them with the same
starting size and beginning with zero division steps or equiva-
lently, starting from their most recent division. We assumed that
they have the same growth rate and get split perfectly symmetric.
Simulation was done using the stochastic times (32) and numeri-
cal estimation was done solving the master equation (24, both of
them, having perfect adjustment to each other. Ten examples of
cell cycles were plotted on the background to observe how vari-
able the distributions are. The dynamics of this variability, quanti-
fied by the coefficient of variation C2

v (s) = var(s)
〈s〉2 , is also shown in

Figure 2.e. As main effect observed, we can highlight the oscil-
lations in both 〈s〉 and C2

v (s) with period equal to τ , the doubling
time. The oscillations in the C2

v (s) present their peaks just when
bacteria are dividing on average and their valleys when bacteria
are growing. The dynamics of the size distribution can be seen in
supplemental video 1.

In Figure 2. b., the mean dynamics corresponds to cells with
an initial distribution with finite variance (C2

v (s, t = 0) = 0.02). This
distribution was assumed to be Gamma distribution since it is well
defined from its mean size and the C2

v (s). Simulations, on the
other hand, were modified by using random initial sizes, numer-
ical estimation was done by performing the convolution (28) and
approaching the integral to a numerical Riemann sum. Dynamics
on cell size variability are also presented in Figure 2. f. Similar os-
cillations were found in both the mean and the variability but with
less amplitude than the first case. The dynamics of this distribu-
tion appears in supplemental video 2.

A third scenario consists on the assumption that bacteria do
not split perfectly on a half but in a beta distributed independent
stochastic variable centered on 0.5 and with a given variability
C2

v = 0.002. Growth rate could be considered stochastic as well
with variability set to C2

v = 0.02. The dynamics of the mean size
(Fig 1.c.) and its variability (Fig 1.g.) are presented. We plot-
ted ten cycles in the background of Figure 2.c. to show some
examples of typical single-cell size dynamics. Since this noise is
not considered in equation (24), the numerical approach is hard
to compute and thus not presented in Figure 2. The distribution
dynamics can be seen in supplementary video 3.

We also estimate the division strategy using both simulations
and numerical estimations. Data from stochastic simulations can
be obtained using the stochastic division times (39) and exponen-
tial growth (4) while the trends in added size and its variability can
be obtained from the distribution of size at division (38) being both
dependent on the exponent λ. In Figure 2 d. we present the mean
added size δ as function of the mean size at birth sb for three dif-
ferent λ. These λ were chosen to represent three of the most
important division strategies: timer-like (0 < λ < 1, where we
choose λ = 0.5) with its characteristic positive slope on ∆ vs s)b,
Adder (λ = 1) with no correlation between ∆ and sb and sizer-like
(1 < λ <∞, where we choose λ = 2) with a negative slope in ∆
vs sb. Fluctuations over these trends are also shown in Figure 2
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Figure 2: Main properties of bacterial cell division explored using PyEcoLib. a) Mean cell size 〈s〉 and e) Its variability C2
v (s) along the

time considering only stochastic division. b) Mean cell size and f) Its variability along the time considering both stochastic division and
an initial size distribution with finite variance. c) Mean cell size and g) Its variability along the time considering stochastic division and
noise in cell-to-cell growth rate and septal position. d) mean added size ∆ vs the size at birth sb and h) the fluctuations C2

v (∆) vs sb

for different division strategies. Timer-like (λ = 0.5), adder (λ = 1) and sizer-like (λ = 2). Simulations (dots) and numerical estimations
(lines) are shown. M = 10 division steps were considered in all cases.

h. where it can be seen that sizer-like shows positive correlation
in C2

v (∆) vs sb, adder strategy shows no-correlation and timer-like
shows a negative correlation. To understand better the properties
of the robust oscillations on the dynamics of the central moments
presented in Figure 3.a and 3.b., we studied the auto-correlation
fuction of the size. This auto-correlation γ(t ′) is defined through
the formula:

γ(t ′) = lim
T→∞

1
T

∫ T

0

〈
[
(s(t)− 〈s(t)〉)(s(t + t ′)− 〈s(t + t ′)〉)

]
〉

σ(t)σ(t + t ′)
dt ,

(42)
with σ(t) being the standard deviation of the size at time t and 〈x〉
is the mean value of the random variable x

How the auto-correlation dynamics changes along the time is
presented on Figure 3. a. where we present four different cases:
a single division step, which size dynamics have been presented
already [22]. This auto-correlation decays exponentially to zero.
By increasing the division steps, for instance to 10 steps, oscilla-
tions appear around a decaying trend. For a division almost deter-
ministic, for instance 50 steps, these oscillations have higher am-
plitude around zero. When noise on both growth rate and septum
position is considered, these oscillations are damped in the same
way found in size dynamics, converging to zero. This asymptotic
decorrelation let the distribution reach a stationary distribution (at
t = 10τ ) with fixed moments which is presented in Figure 3. b. for
M = 10 and the noises explained above.

Discussion
In this article, we present a theoretical scheme to estimate the
stochastic dynamics of the cell size for a population of constant
number. This approach, based on the Chapman-Kolmogorov for-
malism, assumed that the population number remains constant
along the time. Although the framework can be extended to a ex-
ponentially growing population, simulation could be unstable since

0 1 2 3 4 5
t ′/τ

−0.25

0.00

0.25

0.50

0.75

1.00

γ(
t′ )

a)
1 steps
10 steps
50 steps
50 steps + Noise

0.5 1.0 1.5 2.0 2.5 3.0
Size (fl)

0.0

0.2

0.4

0.6

0.8

1.0

ρ(
s)

b)

Figure 3: a) Cell size auto-correlation γ(t ′) for different time pe-
riods t ′ for four different division conditions: one division step
(dashed, blue line), 10 division steps (dotted, orange line), 50 di-
vision steps (green, dash-dot line) and 50 division steps including
noise in growth rate and septum position (red continuous line).
b) Simulation of stationary state of the histogram of bacterial size
with all the noise sources considered.
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the number of cells in these populations grows exponentially on
time. We think to consider this case of CKE in future studies.

Additionally to the estimation of size dynamics, our framework
can be also used for: Simulate most of the division strategies
found in E. coli : timer-like, adder and sizer-like [10, 32]. Estimate
the distribution of division times, size at division and size at birth.
Noise in both septal ring placing and cell-to-cell growth rate can
be considered as well [26].

As is shown in Figure 2, oscillations in both, the mean size 〈s〉
and C2

v (s), were found. When only stochasticity on division times
is considered, these oscillations are maintained over an arbitrary
long period of time having lower amplitude when an initial size dis-
tribution with finite variance is considered. Some damping occurs
if other sources of noise like the cell-to-cell growth rate variability
and septum position are added.

This robustness on the oscillations can be understood as result
of the asymptotic periodic properties of the probability Pn of have
n divisions at time n. These probabilities are invariant under the
simultaneous transformation n → n + 1 and t → t + τ originat-
ing the oscillations. This invariance under this transformation, is
broken when other noise sources are considered.

These properties found in size dynamics can be also obtained
using the classical Discrete Stochastic Maps. A clear correspon-
dence between DSM and our model can be found when the adder
strategy is considered. In this case, the stochastic map between
size at birth sb and size at division is:

sd = sb + ∆ + ε, (43)

with ε being an independent random variable with zero mean and
a distribution fitted from experiments. If exponential growth is con-
sidered, the cell-cycle duration τd , as random variable, can be
obtained from (43):

τd =
1
µ

ln

[
1 +

∆

sb

(
1 +

ε

∆

)]
(44)

where, using (22), some analogy to (32) can be found. Using
these times with parameters fitted from the data, similar oscilla-
tions in both size trends and auto-correlation can be obtained.

The main difference with DSMs is found where deviations from
the adder are considered. Using the CRMs, the fluctuations (ε) in
the division strategy (43) will depend on the size at birth unlike the
DSM where these fluctuations are not related to any other vari-
able. Some preliminary observations on the dependence of the
fluctuations on added size with the size at birth in sizer-like divi-
sion in E coli have been reported [14,36] but further observations
are needed.

Including cell size stochasticity to gene expression can be
an important tool to understand the origin of the fluctuations in
molecule concentration. Some efforts have already been done
to understand these effects in simple regulatory networks [37–39]
but our formalism can improve this study to more complex gene
regulatory architectures. Other effects such as the division strat-
egy, the noise in growth rate and the asymmetric cell splitting can
be also studied using our framework.

Appendix
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P n

−
1(
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τ)
||
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Figure A1: Distance between the probabilities Pn(t) and Pn−1(t −
τ ) for two different division steps (red dots: M = 1) (green squares:
M = 10).

A The asymptotic periodicity of
the system

To check the property (41), we calculate numerically the distance
between the probabilities Pn(t) and Pn−1(t − τ ) using the expres-
sion:

‖Pn(t)− Pn−1(t − τ )‖ =
∫
|Pn(t)− Pn−1(t − τ )|dt , (A1)

the results are presented in Figure A1 where we can check how
this distance decays asymptotically to zero as n increases.

B Size dynamics for different
growth conditions and division
rates

Past studies suggested that the periodicity under translations in
τ and n is an exclusive property of the exponential growth [33].
Thus, if other growth conditions are considered, the symmetry un-
der these translations is broken and the robust oscillations are no
expected.

We simulated the size dynamics of different possible growth
and division rates in similar way explained in past studies [17].
Thus, we define the growth law as (2), where exponential growth is
defined as g(s, t) = µs and the linear growth is given by g(s, t) = µ
with µ being a constant.

On the other hand, the division rate is defined by the function h
as (6). In figure A2, we compare two division rates for the linear
growth, one of these are h = k and the other is h = ks with k a
constant. These rates define the occurrence of a given division
steps. In figure A2 we considered M = 10 steps to trigger the
division.

In Figure A2.a. we present the dynamics of the mean cell size
〈s〉 along the time with some single trajectories in the background
(gray lines) presented to compare them to the mean trend. While
in Figure A2.c. we present its variability C2

v (s) along the time for for
a linear growth g = µ and constant division rate h = k . b) 〈s〉 vs t
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Figure A2: Mean cell size 〈s〉 and its variability C2
v (s) along the

time for different growth and splitting rates. a) 〈s〉 vs t and c)
C2

v (s) vs t both for a linear growth g = µ and constant division rate
h = k . b) 〈s〉 vs t and d) C2

v (s) vs t both for a linear growth g = µ
and a division rate proportional to the cell size h = ks.

and d) C2
v (s) vs t both for a linear growth g = µ and a division rate

por portional to the cell size h = ks. Perfectly symmetric splitting
and no-noise in growth rate is considered.
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