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Abstract 
 
Over the last 15 years we have identified hundreds of inherited variants that increase the risk 
of developing cancer. Polygenic risk scores (PRS) summarize the genetic risk of each individual 
by accounting for the unique combination of risk alleles in their genome. So far, most studies 
of PRS in cancer have focused on their predictive value: i.e. to what extent the PRS can predict 
which individuals will develop a particular cancer type. In parallel, for most cancers, we have 
identified several subtypes based on their somatic molecular properties. However, little is 
known about the relationship between the somatic molecular subtypes of cancer and PRS and 
it is possible that PRS preferentially predict specific cancer subtypes. Since cancer subtypes 
can have very different outcomes, treatment options and molecular vulnerabilities, 
answering this question is very important to understand the consequences that widespread 
PRS use would have in which tumors are detected early. 
 
Here we used data from The Cancer Genome Atlas (TCGA) to study the correlation between 
PRS for different forms of cancer and the landscape of somatic alterations in the tumors 
developed by each patient. We first validated the predictive power of 8 different PRS in TCGA 
and describe how PRS for some cancer types are associated with specific molecular subtypes 
or somatic cancer driver events. Our results highlight important questions that could improve 
the predictive power of PRS and that need to be answered before their widespread clinical 
implementation. 
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Introduction 
 
Over the last fifteen years the biomedical scientific community has collectively done many 
genome wide association studies (GWAS) to identify hundreds of germline polymorphisms 
associated different types of cancer. Although variable across cancer types, the variants 
discovered so far explain a relatively large fraction of the heritability of many forms of the 
disease. For example, the 170 variants associated with breast cancer1 or the 147 variants 
associated with prostate cancer2 explain 40% and 28%, respectively, of these diseases’ 
heritability.  
 
Given the complex genetic architecture of most forms of cancer, which usually involve dozens 
or hundreds of loci, polygenic risk scores (PRS) have emerged as an attractive way to integrate 
the information of all these variants for each individual to summarize their risk for different 
cancer types3. There are now PRS for breast4–6, prostate2, lung7 or thyroid8 cancers among 
many others. In general, PRS are used to predict cancer risk, and beginning to be tested in 
clinical settings. The goal is to adjust individual conducts accordingly and, in some cases, 
assess the need to adapt screening strategies9. 
 
In parallel, the study of the relations between genetic predisposition and cancer risk has 
crystalized in multiple lines of evidence showing interactions between germline variants and 
tumor associated somatic mutations10–14. A particularly interesting aspect is the potential 
collaboration of the germline variants with cancer driver somatic mutations in cancer 
activation, an oncogenic mechanism which remain poorly understood and that could help us 
understand, for example, why some individuals develop cancer despite having only a few, or 
even non-detectable somatic driver mutations. Given the interplay between germline and 
somatic variants, it is possible that PGRS for some cancer types preferentially identify specific 
cancer subtypes, like for example in breast cancer: higher PGRS correlate with estrogen 
receptor positive tumors5. 
 
Here we used The Cancer Genome Atlas15 (TCGA) to systematically study the relation between 
PRS and the somatic landscape of the tumors they predict. We first tested the capacity of 
current PRS to correctly predict TCGA cancer types and molecular subtypes. For the significant 
PRS we then tested the correlation with the specific cancer driver mutations. Our results show 
that there is indeed a strong association between PRS and certain cancer subtypes and 
somatic mutations. We further elaborate on the important implications of these observations 
for both, the study of the interplay of germline and somatic variants as oncogenic mechanisms 
as well as for the implementation of PRS for specific cancer types in the clinic. 
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Results 
 
Polygenic risk scores as predictors of TCGA cancer types 
 
We used data from the GWAS catalog16 and the recently published Oncoarray studies17 to 
create 32 different PGRS for 19 different cancer types. In brief, to create the PGRS from the 
Oncoarray studies we clumped all the loci that were genome-wide statistically significant (p < 
5 e-8) in each cohort (glioma18, lung19, breast1, colorectal20, ovarian21 or prostate cancer2) to 
find the variant in each locus with the strongest signal. Then, we assigned a weight to each 
risk variant equivalent to log of the odds ratio observed in the corresponding study. In the 
case of PGRS derived from the GWAS catalog, we only kept the lead genome-wide significant 
variants (p < 5e-8) identified in studies focused on European ancestry with more than 2000 
individuals. We assigned a weight equivalent to the log of the odds ratio for the reported risk 
allele. We then used the germline genotypes of TCGA samples derived from SNParray data to 
quantify each PRS in each TCGA individual (Methods). As expected, PRS that predict the same 
or similar cancer types correlate with each other across the TCGA cohorts (Figure S1). In the 
end, we selected the best PRS for each of the 8 cancer types where at least one PRS had 
enough predictive power (Methods). 
 

 
 
Figure 1 – Performance of the PRS in The Cancer Genome Atlas. a) We calculated the area under the ROC 
curve (y-axis) for all the cancer PRS that we create (x-axis). We classified each PRS into predictive (red bars) and 
not predictive (grey bars) depending on whether they had an AUC > 0.55 and a significant enrichment in cases 
between the top and bottom quintiles (FRD < 0.001) or not. b) ROC curve for the Oncoarray PRAD PRS. c) 
Boxplots showing the distribution of the Oncoarray PRAD PRS values for the TCGA patients we studied. Each 
dot is a patient and they are grouped according to whether they have had prostate cancer (orange, left) or not (gray, 
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right). d) Density curves for the Oncoarray PRAD PRS, following the same color scheme as c and with the y-axis 
aligned with c. e) Odds ratios (y-axis) when comparing the number of cases of each PRS (different panels) across 
the deciles (x-axis) with the middle quintile (40-60% of the distribution). 
 
One of the concerns about any PRS is that it might not be predictive in cohorts beyond the 
one where it was developed. Moreover, most PRS are developed using cohorts that only have 
cases and healthy controls. Therefore, the predictive power of the different PRS in TCGA, a 
new dataset that consists only of patients that suffered different cancer types, remains 
unknown. 
 
To identify the PRS that predict the correct cancer type in TCGA, we first calculated the fold-
enrichment in cases across individuals at the extreme deciles of the PRS when compared to 
those in the intermediate range of the PRS (Figure 1, S2 and S3), as well as their area under 
the ROC curve (AUC). Out of the 27 different PRS, 14 had an AUC above 0.55, a significant 
enrichment of cases in the top quintile compared to the bottom one (two-sided Fisher’s test 
FDR < 0.001) and showed a distribution consistent with the correct prediction of the targeted 
cancer type: depletion of cases at the bottom of the PRS and enrichment of cases at the top 
(Figure 1).  
 
Since some of the 14 PRS target the same or similar cancer types and others only have a 
relatively low predictive power, we selected the top 8 different PRS that predict 8 different 
cancer types (breast, colorectal, prostate, glioma, thyroid, endometrial, melanoma and 
kidney) to continue our analyses (Figure 1c). Moreover, when including each these 8 PGRS to 
a simple model with demographic variables (age and sex), the accuracy of the model 
increased, showing that the predictive power of PGRS is independent of these demographic 
variables (Figure S4). 
 
Finally, we also tested to what extent the PGRS built for a specific cancer could also be 
predicting other forms of the disease. To test that idea, we extended the fold-enrichment 
analysis per deciles to see if other cancer types than the intended one also showed an 
enrichment at one of the extremes (Figure S5). By that measure, four of the eight PGRS that 
we studied (breast, colorectal, kidney and melanoma) are, indeed, specific to the intended 
cancer type. On the other hand, the remaining PGRS (glioma, thyroid, endometrial and 
prostate) where depleted in cases of other cancer types at the top 20% of individuals, 
suggesting a negative genetic correlation between the target cancer type and other forms of 
the disease. Remarkably, the cross-predictions between the PGRSs and other cancer types 
were not consistent with each other. For example, while there were less endometrial cancer 
patients amongst those with the highest thyroid cancer PGRS, the opposite is not true, as the 
number of thyroid cancer patients at the top of the endometrial cancer PGRS is approximately 
the expect (OR ~ 0.9, p > 0.7). Moreover, there are no correlations between the PGRS of 
cancer types that cross-predict (Figure S1).  
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Interactions between cancer subtypes and PRS 
 
Some cancer PRS are known to predict with better accuracy specific subtypes of the disease. 
For example, the PRS for breast cancer has better predictive power for those tumors that are 
estrogen receptor positive rather than those that are estrogen receptor negative5. Such 
preferential predictive power points to interactions between the germline and somatic 
genomes allowing us, among others, to improve the predictive power of PRS and better 
understand the oncogenic mechanisms of these genetic variants. Therefore, quantifying and 
understanding the interactions between PRS and the landscape of somatic variants in 
different cancer types is of utmost importance. We used the deep molecular characterization 
of tumor samples in TCGA to explore this phenomenon with deeper detail.  
 
We first tested whether the association between PRS and different subtypes in the 8 cancer 
types that we could predict with a PRS. Overall, we detected statistically significant 
differences in the PRS values of molecular subtypes of prostate (p < 0.01), thyroid (p < 2e-4) 
and endometrial cancer (p < 0.001) (Figure 2). In prostate cancer, we found marked 
differences between the two most predominant subtypes in TCGA, “ERG” and “other”, with 
the latter having much higher PRS than the former. The “Other” subtype includes all samples 
without mutations in ERG, ETV1, ETV4, FLI1, SPOP, IDH1 and FOXA1. These are samples with 
mutations in PTEN, TP53 or PIK3CA among others (Figure 2a-d). In endometrial cancer the 
subtype copy-number low was the one with the highest PRS values, whereas samples from 
the MSI subtype had the same PRS values as samples from other cancer types and patients 
with the copy number high subtype had intermediate PRS (Figure 2e-h). In the case of thyroid 
cancer, the samples that belong to the mRNA subtype 5 had the highest PRS values, whereas 
the samples belonging to the other subtypes had PRS values only slightly above averages 
(Figure 2i-l). 
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Figure 2 – Polygenic risk scores can be biased towards specific cancer molecular subtypes. a) Boxplot 
showing the distribution of PRS (y-axis) depending on the prostate cancer subtype (x-axis). b) Barplot showing 
the fraction of samples (y-axis) that belong to the different prostate cancer molecular subtypes depending on the 
PRS values (x-axis). c) Same as b but in absolute value (y-axis). d) ROC curves for the different molecular 
subtypes. Curves are colored depending on the prostate cancer subtype. The original prostate cancer curve is 
shown in black and the diagonal as a trimmed gray line. Plots e-h show the same data but for endometrial cancer 
and plots i-l for thyroid cancer. 
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Patients with tumors driven by certain somatic driver mutations have different PRS 
 
The prevalence of some somatic driver mutations correlates with the ancestry of cancer 
patients22 or the germline alleles in certain loci13. This, together with the differences in the 
PRS values of tumors belonging to different somatic molecular subtypes (Figure 2), made us 
wonder if our PRS could also correlate with the presence of somatic driver mutations. 
 

 
 
Figure 3 – Patients with thyroid tumors driven by BRAF somatic mutations have higher PRS. a) Boxplot 
showing the distribution of PRS (y-axis) depending on the somatic mutation status of the thyroid tumor (x-axis). 
b) Barplot showing the fraction of samples (y-axis) that are BRAF mutated (red) or BRAF wild-type (blue) on 
the PRS values (x-axis). c) Same as b but in absolute value (y-axis). d) ROC curves for the thyroid tumor 
depending on their BRAF status. The original thyroid cancer curve is shown in black and the diagonal as a trimmed 
gray line. 
 
To test this hypothesis, we compared the PRS values of tumors with and without the most 
common driver mutations in each cancer type (those present in at least 20 patients). Our 
analysis revealed four different associations between PRS and somatic driver mutations (FDR 
< 0.1, Figure S6). In breast cancer, samples with TP53 somatic mutations have lower PRS 
values. Given the higher prevalence of TP53 mutations in ER negative breast tumors, this 
agrees with this breast cancer subtype having higher PRS than ER positive tumors5. In the case 
of thyroid papillary carcinoma, tumors with mutations in BRAF have higher PRS values, 
agreeing with the molecular subtype association that we found (Figure 3). We also found that 
brain tumors with somatic mutations in TGFBR2 and PTEN had lower and higher PRS values 
respectively (Figure S6). Finally, since both, the frequency of some driver alterations23 and the 
effect of some germline risk variants24, can have different effects depending on the biological 
sex, we thought that it is likely that biological sex also plays a role in the interactions between 
PRS and the somatic landscape of the tumors. To test this hypothesis, we tested whether the 
association between PRS and driver events was different depending on the biological sex 
(Figure S7). We only found two such instances, (FDR < 0.2): APC in colorectal cancer and 
CDKN2A in kidney clear cell carcinoma. In the first case the PRS values of female colorectal 
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cancer patients are higher if their tumor also has an APC mutation than if their tumor has not. 
This difference is not seen in male patients. In the second example, female kidney cancer 
patients have higher PRS if their tumors also have a CDKN2A somatic mutation, whereas this 
is not the case in male patients. Overall, our results show potential interactions between PRS 
and somatic driver events. 
 
Towards driver-specific PRS 
 
So far, we have described correlations between PRS and different aspects of the somatic 
evolution of the tumor, such as the molecular subtype or the presence of certain somatic 
driver mutations. However, since each PRS summarizes the risk across all loci known to be 
associated with a certain cancer type, it is possible that these somatic events only correlate 
with a subset of all the loci that make a PRS. In that case, the correlation between the germline 
genome and the somatic events would be obscured as the PRS includes loci that do not 
correlate with the somatic event of interest. 
 
For example, our brain cancer PRS does not distinguish between IDH1 mutated and IDH1 wild-
type brain cancers (Figure 4, left). However, Eckel-Passow et. al. recently identified a subset 
of 8 glioma risk loci that correlate with somatic IDH1 mutations25. Following their findings, we 
used their classification to deconvolute our brain cancer PRS into two different ones: one PRS 
specific to IDH1-mutated gliomas and another for non-IDH1 mutated gliomas. Reproducing 
the findings from Eckel-Passow et. al., our brain cancer IDH1-mutated and the IDH1 wild-type 
PRS were specific for those tumors with or without an IDH1 somatic mutation (Figure 4, 
middle and right, respectively). Notably, the IDH1-mutated PRS was specific for brain cancers, 
as patients with somatic IDH1 mutations from other cancer types had the same PRS values as 
those with no IDH1 mutations. These results suggest that it might be possible to deconvolute 
the existing PRS for different cancer types to build driver-specific PRS that predict certain 
cancer-type and driver event combinations.  
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Figure 4 – Deconvolution of glioma PRS. We classified the germline variants from the original glioma PRS 
depending on whether they are associated with IDH1 somatic mutations or not to create two new PRS. Then, we 
calculated the values of these three PRS (glioma -left panel-, IDH1-mutated glioma -middle panel- or IDH1 wild-
type glioma -right panel-) for each TCGA patient (y-axis). Each dot represents a TCGA patient, and they are 
grouped according to their IDH1 somatic mutation status and whether they are glioma/glioblastoma patients or 
not. 
 
To try to build driver-specific PRS with TCGA data, we looked for associations between the 
individual germline variants from each PRS and the different somatic driver genes in each 
cancer type. However, our overall results show that the limited sample size of TCGA does not 
seem to have enough statistical power to find enough associations between germline variants 
and somatic driver genes to build other driver-specific PRS (Figure S7). This, together with the 
associations that we previously identified between PRS and cancer subtypes and driver genes, 
highlight the importance of generating cohorts with matching germline and somatic mutation 
profiles. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.316851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316851
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Discussion 
 
Polygenic scores (PRS) can potentially help identify patients with different genetic risk of 
suffering many diseases26, including various forms of cancer. However, given the growing 
evidence showing widespread associations between the germline and somatic genomes in 
cancer, we need to better understand how they associate with other important variables, 
such as tumor subtypes5 or other somatic alterations25. 
 
Here we used data from The Cancer Genome Atlas (TCGA) to better understand how PRS for 
different cancer types might preferentially predict patients with tumors that belong to certain 
subtypes or have specific somatic mutations. First, we validated some PRS in TCGA. Out of the 
27 different PRS that we tested, 16 predicted the correct cancer type (AUC > 0.55 and Fisher’s 
test enrichment in cases between extreme quintiles FDR < 0.05). Since TCGA has a thorough 
characterization of the somatic genome, this allowed us to find associations between eight of 
these PRS and tumor subtypes or somatic cancer driver events. Finally, we also found 
evidence that other associations between PRS and somatic alterations might yet still to be 
discovered, but we could not detect them likely due to relatively low statistical power of 
TCGA. 
 
There are different potential explanations for the association of these PRS with specific tumor 
subtypes. For example, some tumor subtypes are more common than others, which could 
bias the variants and weights identified in GWAS. This would, in turn, affect the composition 
and predictive power of the PRS derived from the GWAS results. This could be the case of the 
bias that we observed in prostate cancer subtypes. While there aren’t yet comprehensive 
molecular epidemiological studies looking at the prevalence of somatic alterations in different 
cancer types, ERG-driven prostate tumors represent around a quarter of the 1627 tumors 
analyzed in the ACCR-GENIE27 database (418 tumors, 25%), whereas almost half (788 tumors, 
48%) belong the “other” subtype. If the composition of the prostate cancer GWAS studies 
follows this proportion, then the variants identified would likely be biased towards the 
“other” subtype, making it more predictable than the ERG-driven tumors. 
 
Another possibility is that some cancer subtypes might depend more on the germline 
background, whereas others might be more driven by the somatic mutations their cells 
acquire. This could potentially be the case of the endometrial cancer associations we 
observed, where patients with tumors from the copy-number low subtype have higher PRS 
than the ones with tumors that are either copy-number high or have microsatellite instability 
(MSI). Our hypothesis is that, after a certain number of somatic alterations, a cell can become 
cancerous regardless of its germline background. This hypothesis agrees with our observation 
that MSI and copy-number high endometrial tumors can barely be predicted with the 
endometrial cancer PRS. On the other hand, if an individual has a pro-oncogenic germline 
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background, a few somatic alterations might be enough to trigger cancer growth. This would 
be the case of the copy-number low subtype. 
 
A third possibility is that the genetic architecture of different cancer subtypes is different. This 
could be the case of the association we found between thyroid cancer PRS and BRAF somatic 
mutations. In this case it could be that acquiring and BRAF mutation is more likely to end in 
thyroid cancer depending on the germline background of the patient, particularly the alleles 
at rs1588635. Moreover, our analysis grouped together all the different somatic alterations 
in a given driver gene. We and others have previously shown that different mutations within 
the same gene can lead to distinct phenotypes. The same is true for different types of 
alterations: a missense mutation in a gene might have a different effect than a copy-number 
alteration or a methylation. Therefore, it is also possible that each somatic mutation and/or 
mutation type within a driver gene depends or interacts differently with the germline 
background of the patient. 
 
Finally, we also showed how PRS can potentially be deconvoluted to identify subsets of 
variants that create new driver-specific PRS. In our case we validated the brain cancer IDH1-
mutated and a brain cancer IDH1 wild-type PRS by classifying the variants from the glioma 
PRS according to their association with IDH1 mutation status. While TCGA does not have 
enough statistical power to deconvolute the rest of PRS, we believe that bigger cohorts with 
matching germline and somatic data should be able to identify new associations that allow to 
build more driver-specific PRS. These could, potentially, be combined with other tests that 
look for somatic mutations in cell-free DNA28 to diagnose suspected cancer patients. We 
expect that the combination of both approaches would outperform each test alone. 
 
Clinical implications 
 
The clinical usefulness of a PRS is largely determined by its predictive power (albeit other 
factors such as disease incidence, the type of available interventions for the disease or the 
intended use of the PRS also play an important role). For instance, a recent study29 suggested 
that a breast cancer PRS can help decide mammography screening strategies even if it has a 
modest AUC (0.6-0.7), but can only be useful for more radical clinical interventions that can 
have serious adverse effects, such as preventive use of tamoxifen, once it reaches a much 
higher discriminatory power (AUC > 0.8). It is clear that none of the PRS that we studied have 
this predictive power at the cancer type level. However, our molecular subtype analysis 
revealed that, in some cases, the AUC of the subtypes that are better predicted is notably 
higher than that of the global cancer type. For example, in prostate cancer the PRS has an 
overall AUC of 0.65 and the odds ratio of cases between the extreme quintiles is 5.5-fold (p < 
1e-15). For tumors from the subtype “other” these values increase to 0.72 and 16-fold (p < 
7e-8) respectively. In endometrial cancer patients, the original AUC is 0.59 and the 
enrichment in cases is 2.5-fold (p < 2e-6). For the copy-number low subtype these numbers 
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increase to 0.65 and 5.8-fold (p < 2e-6) respectively. In the case of thyroid cancer, the original 
values are 0.63 for the AUC and 3.8-fold enrichment (p < 5e-14), which increase to 0.75 and 
35 fold-enrichment (p < 8e-10) for the THCA-5 subtype. These values are much closer to being 
clinically useful, even more when considering the BRAF-mutated thyroid cancer is the most 
aggressive form of the disease29. 
 
Our study also has several limitations. For example, since the predictive power of PRS can 
depend on the genetic ancestry of the individual30, we focused our analyses on TCGA patients 
with European ancestry. Therefore, we do not know to what extent our results can be 
extrapolated to other ancestries. However, the frequency of somatic alterations in some 
cancer genes varies depending on the genetic ancestry of the patient22, so it is likely that PRS 
built with data from other ancestries can also have similar biases as to the ones we have 
observed. Also, TCGA is relatively small, making it unfit to comprehensively explore the 
landscape of interactions between PRS and somatic properties of tumors, particularly for 
driver events, as most of them are only present in a few dozens of patients. 
 
In conclusion, our results show that the accuracy of PRS for any cancer type can differ 
depending on the different somatic properties of the tumor. Together with recent evidence 
that PRS predictive power differs depending on sex, age or socio-economic status31, our 
results suggest that should PRS be widely adopted in screening and cancer prevention 
programs, this could have important consequences in which subtypes are properly diagnosed. 
Moreover, since GWAS studies have mostly been done without accounting for the somatic 
subtypes and driver alterations, it is likely that the biases detected here are only a small 
fraction of the total. We believe that creating cohorts with matching germline and somatic 
genomes will identify new germline-somatic interactions and help find new germline loci that 
are specific of certain tumor features. This will improve the predictive power of PRS, which is 
critical before their widespread implementation in the clinic. 
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Methods 

Data and code availability 

The TCGA birdseed genotyping data and clinical data can be found at the legacy archive of the 
GDC (https://portal.gdc.cancer.gov/legacy-archive). The Cancer Genome Atlas (TCGA) 
quality-controlled Genome Wide SNP 6.0 genotyping data imputed to Haplotype Reference 
Consortium are controlled access files and will be made accessible to researchers with proper 
dbGAP authorization. These data have been deposited to Synapse (Available upon acceptance 
for publication). 

 
Curation of the germline genotypes from The Cancer Genome Atlas 

Germline genotype data for common variants used in heritability analysis and Genome-Wide 
Association Studies (GWAS) were obtained from Affymetrix Genome Wide SNP 6.0 arrays 
(TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive). Birdseed genotyping files 
representing 905,600 variants for 11,521 samples were downloaded. 

Birdseed files were read in R v3.5.0 using the Affymetrix SNP Array 6.0 (release 35) annotation 
file, and 905,422 variants were successfully loaded and analyzed in PLINK version 1.9. Samples 
were cross-referenced against previously whitelisted genotyping samples32. Based on 
established TCGA barcode identifiers, samples annotated with Analyte code “G” (Whole 
Genome Amplification) were further excluded. A final set of 10,946 whitelisted samples with 
Analyte code “D” (DNA) were retained for quality assessment. 
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Stringent quality control measures were applied to the SNP genotyping data33. SNPs and 
individuals with greater than 5% missingness were excluded; leaving a total of 861,351 
variants and 10,917 samples for subsequent analysis. 

Initial Principal Component Analysis (PCA) ancestry analysis was performed to facilitate 
heterozygosity calculations. PCA without linkage-disequilibrium pruning was performed in 
PLINK 1.9 (Chang et al., 2015), and visual examination of the concordance of the principal 
component plots with the self-reported race and ethnicity annotations revealed that the first 
3-4 PCs captured population structure information, while PCs 5-6 captured outliers. PCA initial 
ancestry clusters were determined by performing both k-means and partition around 
medoids (PAM) clustering on either the first three or first four PCs. We computed gap 
statistics and average silhouette widths iteratively for number of clusters, k=1 to 10 for k-
means and PAM methods respectively to find the optimal number of clusters for each 
method. We found PAM using the three PCs yielding 4 optimal clusters to show high 
concordance with self-reported race/ethnicity (ancestry cluster 1 = European, cluster 2 = 
Asian, cluster 3 = African, cluster 4 = American). Based on the initial ancestry cluster 
assignments, heterozygosity was calculated in PLINK 1.9 within each initial PCA-based 
ancestry cluster and a total of 250 samples with heterozygosity >3*SD above the ancestry 
mean were removed. 

Selection of a representative sample for each individual was then conducted. Individuals 
represented by more than one sample, blood-derived normal samples were preferentially 
selected; for those with more than one blood-derived samples, samples with higher call rates 
were retained. After these steps, a total of 10,128 unique individuals remained for 
subsequent analysis. 

Final filtering steps for SNPs were conducted across the 10,128 unique individuals and 
restricted to autosomal chrs. Hardy-Weinberg Equilibrium (HWE) was calculated in PLINK 1.9 
across individuals within largest ancestry cluster (European ancestry cluster 1). SNPs that 
deviated from the expectation under HWE (p < 1x10-6) within the European ancestry cluster 
were excluded with the exception of SNPs previously associated with any cancer as reported 
in the GWAS catalog (p < 5x10-8) (Rashkin et al., 2019) since they may deviate from HWE in 
cancer patients. Minor allele frequency (MAF) was calculated and variants with MAF < 0.005 
were excluded. Finally, duplicate SNPs with identical genomic first position were removed. A 
total of 838,948 autosomal chr variants for 10,128 unique individuals passed after the 
aforementioned QC steps. 

Genotype imputation 

The quality-controlled genotyping file was stranded and imputed against the Haplotype 
Reference Consortium (HRC) (Loh et al., 2016a; McCarthy et al., 2016). Prior to HRC stranding, 
all palindromic SNPs (A/T or G/C) were removed. Stranding was then performed using the 
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McCarthy Group tools (HRC-1000G-check-bim-v4.29), which compares our data genotyping 
alleles to the corresponding SNP alleles from HRC (v1.1 HRC.r1- 
1.GRCh37.wgs.mac5.sites.tab), leaving 680,389 correctly matched variants for imputation. 
Phasing and imputation were performed using a standard pipeline on the Michigan 
Imputation Server (MIS). Phasing was performed using Eagle version v2.3 (Loh et al., 2016b) 
on the variant call file (VCF). To reduce the run time, the VCF file was divided into 22 files 
corresponding to individual autosomal chromosomes. By default, Eagle restricts analysis to 
bi-allelic variants that exist in both the target and reference data. Minimac3 was used to run 
the imputation. For each of the 22 VCF files, the MIS breaks the dataset into non-overlapping 
chunks prior to imputation. For HRC imputation, the HRC r1.1.2016 reference panel was 
selected using mixed population for QC, with a total of 39,127,678 SNPs returned after 
imputation. 

Final ancestry calls 

PCA was performed on the final quality-controlled genotyping file and final PAM-based 
ancestry clusters were computed for the 10,128 individuals for optimal k=4. We found very 
high concordance of initial and final ancestry assignments (99.98% matching, the 2 samples 
varying between initial and final ancestry cluster computation assigned to NA). 

The four ancestry cluster are as follows: (1) PAM ancestry cluster 1 is concordant with 
European ancestry, capturing 97.27% of individuals self-reporting as White, as well as 82.16% 
of individuals with self-reported non-Hispanic/non-Latino ancestry and 45.96% with self-
reported Hispanic/Latino ancestry; (2) ancestry cluster 2 with African ancestry, capturing of 
97.53% of individuals self-reporting as Black/African-American race; (3) ancestry cluster 3 
with Asian ancestry, capturing 90.88% of individuals self-reporting as Asian and 88.89% self-
reporting as Native Hawaiian/Pacific Islander; and (4) ancestry cluster 4 with a subgroup of 
individuals with American ancestry capturing 60% of individuals self-reporting as American 
Indian /Alaska Native and 47.2% with self-reported Hispanic/Latino ethnicity (Carrot-Zhang J 
et al, manuscript submitted). 

PC’s 1-7 show further population sub-structure in the Asian and European ancestry clusters. 
PAM ancestry sub-clusters were computed using PC’s 1-7 for individuals within the Asian 
ancestry cluster which yielded two optimal sub-clusters, and within the European ancestry 
cluster which yielded three optimal sub-clusters (GDC Publication Page Figure S2-B). Of note, 
72.46% of European sub-cluster 3 self-reports as Asian (15.94% have no race reported). 
Ancestry clusters, sub-clusters, self-reported race and ethnicity and PC’s 1-7 are provided for 
each individual. We used in our analyses only those samples with genetic European ancestry 
(n = 8304). 

Building the polygenic risk scores from the GWAS catalog 
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We downloaded the GWAS Catalog on May 2020. We then manually filtered the variants to 
include only those associated to cancer, obtained in studies from european population, with 
more than 2000 individuals and a p-value below 5e-8. We used liftover to map the variants 
from GRCh38 to GRCh37. We assigned the weights associated to each variant as the log of 
the odds ratio for the risk allele to the cancer type according to the GWAS catalog. Finally, we 
manually mapped the different cancer phenotypes to the cancer types studied in TCGA. 

Building the polygenic risk scores from Oncoarray 

For the breast cancer PRS we used the 313 SNPs identified in Mavaddat et. al.5. According to 
their study, they first identified 305 SNPs associated with overall breast cancer (p < 1e-5). This 
305-SNP PRS was supplemented with 6 additional SNPs associated with ER-positive at p value 
< 10−6 and, in addition, by two known rare breast cancer susceptibility variants in the BRCA2 
and CHEK2 genes, bringing the total number of SNPs included to 313.  

In the case of colorectal cancer we used the variants, risk alleles and odds ratios from Law et. 
al.20. For glioma and glioblastoma we used those described in Melin et. al. 18 and for ovarian 
cancer those from Phelan et. al. 21. 

Finally, for the prostate cancer, lung squamous carcinoma and lung adenocarcinoma PRS we 
downloaded the summary data from Schumacher et. al. 2 and McKay et. al. 19, filtered all the 
alleles that did not reach genome-wide significance (p > 5e-8) and used plink to clump all the 
remaining variants with the following parameters: --clump-p1 5e-8 --clump-r2 0.1 

 
Evaluation of the PRS 

We calculated the PRS for each patient for each cancer type with plink using the --score 
parameter. The correlation between PRS for different cancer types was calculated with the R 
package “corrplot” using the “hclust” function. 

The fold-enrichment analyses were calculated using a two-sided Fisher’s test. We compared 
the number of patients from the intended cancer type in different deciles of TCGA (10%, 20%, 
30%, 70%, 80% and 90%) to those between the 40% and 60% of the distribution. 

To calculate the AUC of the different PRS we used the R package “pROC” and set the patients 
from the intended cancer type as positives and the rest of TCGA patients as negatives. For 
sex-specific cancers (prostate, endometrial, testicular and ovarian) as well as for breast cancer 
we used only the subset of TCGA with the appropriate sex for our analyses. 

To compare the performance of the PRS to the model with demographic variables (age and, 
when appropriate, sex), we created three models: one with only the PRS values, another with 
the demographic variables and a third with both. Then, for each model, we calculated the 
Nagelkerke’s pseudo-R and the AUC with R packages “rcompanion” and “pROC” respectively. 
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Finally, to calculate the cross-cancer predictions we used the same approach as for the fold-
enrichment analysis explained above, but using each of the not-intended cancer types as the 
target cancer for each PRS. 

 
Correlation between PRS and cancer subtypes 
 
We used the cancer subtypes from TCGAbiolinks34, available in Thorsson et. al.32. The 
subtypes are defined according to the main subtype used in the TCGA publication describing 
each cohort from each cancer type. Then, for each of the final 8 PRS that we analyzed in detail, 
we selected subtypes with 50 or more patients of European Ancestry in the intended cancer 
type. Finally, we compared the PRS in each cancer subtype using the Kruskal-Wallis test from 
the R package “ggpubr”. 
 
Correlation between PRS and driver events 
 
We used the cancer driver events from Sanchez-Vega et. al.35. In brief, they considered a 
cancer driver gene as somatically mutated if it was affected by a somatic mutation, copy-
number variant event or change in methylation. Of the three driver levels (pathways, genes 
and individual variants), we used the gene-level for our analysis, but the results were similar 
using the pathway and individual variant levels. We also included the IDH1 driver mutations 
from Bailey et. al. 36, as they were not in35. In the end we had matching driver and PRS data 
for 6941 patients. We used Wilcoxon-test to compare the PRS values of the patients from the 
different cancer types with the somatic driver mutation to those without it. 
 
References 
 
1. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. 

Nature 551, 92–94 (2017). 
2. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 

new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018). 
3. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of 

polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). 
4. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model 

incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019). 
5. Mavaddat, N. et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast 

Cancer Subtypes. Am. J. Hum. Genet. 104, 21–34 (2019). 
6. Shieh, Y. et al. A polygenic risk score for breast cancer in U.S. Latinas and Latin-

American women. JNCI J. Natl. Cancer Inst. (2019) doi:10.1093/jnci/djz174. 
7. Dai, J. et al. Identification of risk loci and a polygenic risk score for lung cancer: a 

large-scale prospective cohort study in Chinese populations. Lancet Respir. Med. 7, 
881–891 (2019). 

8. Liyanarachchi, S. et al. Assessing thyroid cancer risk using polygenic risk scores. Proc. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.316851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316851
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

Natl. Acad. Sci. U. S. A. 117, 5997–6002 (2020). 
9. Lewis, C. M. & Vassos, E. Polygenic risk scores: From research tools to clinical 

instruments. Genome Medicine vol. 12 44 (2020). 
10. Houlahan, K. E. et al. Genome-wide germline correlates of the epigenetic landscape of 

prostate cancer. Nat. Med. 1–12 (2019) doi:10.1038/s41591-019-0579-z. 
11. Liu, W. et al. Functional EGFR germline polymorphisms may confer risk for EGFR 

somatic mutations in non-small cell lung cancer, with a predominant effect on exon 
19 microdeletions. Cancer Res. 71, 2423–2427 (2011). 

12. Carter, H. et al. Interaction landscape of inherited polymorphisms with somatic 
events in cancer. Cancer Discov. 7, 410–423 (2017). 

13. Liu, W. et al. Functional EGFR germline polymorphisms may confer risk for EGFR 
somatic mutations in non-small cell lung cancer, with a predominant effect on exon 
19 microdeletions. Cancer Res. 71, 2423–7 (2011). 

14. Ramroop, J. R., Gerber, M. M. & Toland, A. E. Germline Variants Impact Somatic 
Events during Tumorigenesis. Trends Genet. 35, 515–526 (2019). 

15. Ding, L. et al. Perspective on Oncogenic Processes at the End of the Beginning of 
Cancer Genomics. Cell 173, 305-320.e10 (2018). 

16. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide 
association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 
47, D1005–D1012 (2019). 

17. Amos, C. I. et al. The oncoarray consortium: A network for understanding the genetic 
architecture of common cancers. Cancer Epidemiol. Biomarkers Prev. 26, 126–135 
(2017). 

18. Melin, B. S. et al. Genome-wide association study of glioma subtypes identifies 
specific differences in genetic susceptibility to glioblastoma and non-glioblastoma 
tumors. Nat. Genet. 49, 789–794 (2017). 

19. McKay, J. D. et al. Large-scale association analysis identifies new lung cancer 
susceptibility loci and heterogeneity in genetic susceptibility across histological 
subtypes. Nat. Genet. 49, 1126–1132 (2017). 

20. Law, P. J. et al. Association analyses identify 31 new risk loci for colorectal cancer 
susceptibility. Nat. Commun. 10, (2019). 

21. Phelan, C. M. et al. Identification of 12 new susceptibility loci for different histotypes 
of epithelial ovarian cancer. Nat. Genet. 49, 680–691 (2017). 

22. Yuan, J. et al. Integrated Analysis of Genetic Ancestry and Genomic Alterations across 
Cancers. Cancer Cell 34, 549-560.e9 (2018). 

23. Yuan, Y. et al. Comprehensive Characterization of Molecular Differences in Cancer 
between Male and Female Patients. Cancer Cell 29, 711–722 (2016). 

24. Ostrom, Q. T. et al. Sex-specific glioma genome-wide association study identifies new 
risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci. Rep. 
8, (2018). 

25. Eckel-Passow, J. E. et al. Using germline variants to estimate glioma and subtype risks. 
Neuro. Oncol. 21, 451–461 (2019). 

26. Gibson, G. On the utilization of polygenic risk scores for therapeutic targeting. PLoS 
Genet. 15, (2019). 

27. Sweeney, S. M. et al. AACR project genie: Powering precision medicine through an 
international consortium. Cancer Discov. 7, 818–831 (2017). 

28. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.316851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316851
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

multi-analyte blood test. Science (80-. ). 359, 926–930 (2018). 
29. Gail, M. H. & Pfeiffer, R. M. Breast cancer risk model requirements for counseling, 

prevention, and screening. J. Natl. Cancer Inst. 110, 994–1002 (2018). 
30. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health 

disparities. Nat. Genet. 51, 584–591 (2019). 
31. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an 

ancestry group. Elife 9, (2020). 
32. Thorsson, V. et al. The Immune Landscape of Cancer. Immunity 48, 812-830.e14 

(2018). 
33. Sayaman, R. W. et al. Germline genetic contribution to the immune landscape of 

cancer. bioRxiv Immunol. 2020.01.30.926527 (2020) doi:10.1101/2020.01.30.926527. 
34. Colaprico, A. et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis 

of TCGA data. Nucleic Acids Res. 44, e71 (2016). 
35. Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. 

Cell 173, 321-337.e10 (2018). 
36. Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and 

Mutations. Cell 173, 371–385 (2018). 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.316851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316851
http://creativecommons.org/licenses/by-nc-nd/4.0/

