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Abstract
Motivation: Facing the increasing gap between high-throughput sequence data and limited functional
insights, computational protein function annotation provides a high-throughput alternative to experimental
approaches. However, current methods can have limited applicability while relying on data besides
sequences, or lack generalizability to novel sequences, species and functions.
Results: To overcome aforementioned barriers in applicability and generalizability, we propose a novel
deep learning model, named Transformer-based protein function Annotation through joint sequence–
Label Embedding (TALE). For generalizbility to novel sequences we use self attention-based transformers
to capture global patterns in sequences. For generalizability to unseen or rarely seen functions, we also
embed protein function labels (hierarchical GO terms on directed graphs) together with inputs/features
(sequences) in a joint latent space. Combining TALE and a sequence similarity-based method, TALE+
outperformed competing methods when only sequence input is available. It even outperformed a state-
of-the-art method using network information besides sequence, in two of the three gene ontologies.
Furthermore, TALE and TALE+ showed superior generalizability to proteins of low homology and
never/rarely annotated novel species or functions compared to training data, revealing deep insights
into the protein sequence–function relationship. Ablation studies elucidated contributions of algorithmic
components toward the accuracy and the generalizability.
Availability: The data, source codes and models are available at https://github.com/Shen-Lab/TALE
Contact: yshen@tamu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The explosive growth of protein sequence data in the past few decades,
largely thanks to next-generation sequencing technologies, has provided
enormous information and opportunities for biological and pharmaceutical
research. In particular, the complex and intricate relationship between
sequences, structures, and functions of proteins is fascinating. As
experimental function annotation of proteins is often outpaced by sequence
determination, computational alternatives have become both fundamental
in exploring the sequence-function relationship and practical in predicting
functions for growing un-annotated sequences (including de novo designs).
According to the 2020_01 release of UniProt (UniProtConsortium, 2019),
there were around 5.6×105 nonredundant sequences manually annotated
in Swiss-Prot but over two orders of magnitude more (around 1.8×108)
sequences awaiting full manual annotation in TrEMBL.

Protein functions are usually described based on Gene Ontology (GO),
the world’s largest source of systematic representation of gene functions
(Ashburner et al., 2000). There are more than 40,000 GO terms across
three domains: Molecular Function Ontology (MFO), Biological Process
Ontology (BPO) and Cellular Component Ontology (CCO). Within each

ontology, GO terms are structured hierarchically as a directed acyclic graph
(DAG) with a root node. Each protein can be annotated with more than one
GO term on three ontologies (thus a multi-label classification problem).
If a protein is annotated with one GO term, then can also be annotated
by all corresponding ancestral GO terms. Such a hierarchical constraint is
present in many other ontologies as well, such as text ontology (Baker and
Korhonen (2017)) and image ontology (Deng et al. (2009)).

From the perspective of input type, computational methods for protein
function annotation can be classified as sequence- (Fa et al., 2018;
Kulmanov and Hoehndorf, 2020; Zhou et al., 2019a), structure- (Yang
et al., 2015), network- (You et al., 2019; Kulmanov et al., 2018), and
literature-based (Kahanda and Ben-Hur, 2017; You et al., 2018a), whereas
all but sequence-only methods have limited scope of usage due to data
availability. Specifically, although structural information is important for
understanding protein functions (e.g. (Stewart et al., 1998; Wrapp et al.,
2020)), it is often not readily available: 0.01% of the TrEMBL sequences
(UniProt 2020_01) have corresponding structural entries in Protein Data
Bank (PDB), and this ratio increases to 1% if considering structural models
in SWISS-MODEL Repository (SWR). Similarly, only around 7% of the
TrEMBL sequences have interaction entries in STRINGdb (Szklarczyk
et al., 2016), not to mention that the network information can be noisy
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and incomplete. We note that structure, network, and literature data can
be especially missing for novel sequences where computational function
annotation is needed the most. We therefore focus on sequence-based
methods in this study.

Predicting protein function from sequence alone is a challenging
problem where each sequence can belong to multiple labels and labels
are organized hierarchically. Critical Assessment of protein Function
Annotation (CAFA) has provided an enabling platform for method
development (Radivojac et al., 2013; Jiang et al., 2016; Friedberg and
Radivojac, 2017; Zhou et al., 2019b) and witnessed still-limited power
or scope of current methods. Sequence similarity-based methods (Jones
et al., 2005; Buchfink et al., 2015) leverage sequence homology, although
their success is often limited to homologues and alignments to detect
homology can be still costly. Recently, deep learning has emerged as a
promising approach (Kulmanov et al., 2018; Kulmanov and Hoehndorf,
2020) to improve the accuracy, where sequences are often inputs/features
and GO terms are labels. However, as deep learning is a data-hungry
technique, these methods often have to get rid of a large number of GO
terms (labels) with few annotations, leading to narrow applicability. For
instance, DeepGOPlus (Kulmanov and Hoehndorf, 2020) only considered
over 5,000 GO terms with at least 50 annotated sequences each, which
only accounts for less than 12% of all GO terms.

We set out to overcome aforementioned barriers and boost the
generalizability to low sequence homology as well as unseen or rarely
seen functions (also known as tail labels). To that end, we propose a
novel approach named Transformer-based protein function Annotation
through joint sequence–Label Embedding (TALE). Our contributions are
as follows. First, TALE replaces previously-used convolutional neural
networks (CNN) with self-attention-based transformers (Vaswani et al.,
2017) which has made a major breakthrough in natural language processing
and recently in protein sequence embedding (Rives et al., 2019; Duong
et al., 2020; Elnaggar et al., 2020). Compared to CNN, transformers
can deal with global dependencies within the sequence in just one layer,
which helps detect global sequence patterns for function prediction much
easier than CNN-based methods do. Second, TALE embeds sequence
inputs/features and hierarchical function labels (GO terms) into a latent
space. By considering similarities among function labels and sequence
features, TALE can easily deal with tail labels. Unlike previous methods
that only consider GO terms as flat labels and enforce hierarchy ad
hoc after training, TALE considers the hierarchy among labels through
regularization during training. Last, we propose TALE+, by using an
ensemble of top three TALE models and a sequence similarity-based
method, DIAMOND (Buchfink et al., 2015), in convex combination
(similar to DeepGoPlus) to reach the best of both worlds.

Over all Swiss-Prot sequences experimentally-annotated and released
since 2017, we have empirically compared TALE and TALE+ to six
baseline methods including NetGO (You et al., 2019), the upgraded version
of GoLabeler (You et al., 2018b), the top performer in the latest CAFA.
TALE+ outperforms all other methods in all three ontologies when only
sequence information is used. Importantly, TALE and TALE+ significantly
improve against state-of-the-art methods in challenging cases where test
proteins are of low similarity (in sequence, species, and label) to training
examples. The results prove that our model can generalize well to novel
sequences, novel species and novel functions.

The rest of the paper is organized as follows. We will first discuss in
Methods the data set used in the study. We will then introduce TALE
and TALE+ models in details besides baselines and end the section
with evaluation metrics. We will start the Results section with overall
performance comparison. We will then delve into the analysis on model
generalizability in sequence, species and function. Lastly, we will report
an ablation study to delineate the major algorithm contributors to TALE’s
improved generalizability.

Ontology MFO BPO CCO
#Seq in Training Set 30541 43107 38601

#Seq in Validation Set 2454 3492 2139
#Seq in Train. + Val. 32995 46599 40740

#Seq in Test Set 1559 2610 1907
#Seq in Test Set without network information 465 726 511

#GO terms 6421 20673 2677

Table 1. Statistics of sequences and GO terms in various ontologies and datasets.

2 Methods
2.1 Datasets

We use functionally annotated protein sequences from UniProtKB/Swiss-
Prot and hierarchical relationships between function labels (GO terms)
from Gene Ontology.

2.1.1 Functionally-annotated Protein Sequences
We downloaded 561,176 protein sequences from UniProtKB/Swiss-Prot
2019_09. We filtered these sequences based on the following criteria: (1)
sequences whose lengths are above 1,000 or who contain non-standard
amino acids were removed, which constitute 3.3% of all sequences;
(2) consistent with Critical Assessment of protein Function Annotation
(CAFA) (Zhou et al., 2019b), only sequences with high-quality function
annotations were retained, i.e., those with at least one annotation within
the following 8 experimental evidence codes: EXP, IDA, IPI, IMP, IGI,
IEP, TAS, and IC.

2.1.2 Time-split Datasets
We split the resulting dataset according to the time when sequences were
released in Swiss-Prot. Specifically, we extract the sequences by the end of
2012 to be the training set, those between 2013 and 2016 to be the validation
set, and those since 2017 to be the test set. The statistics of sequences and
GO terms over these datasets and three ontologies are shown in Table 1.
We will train all models on the training set and tune their hyperparameters
with the validation set. And finally we will retrain models under their
optimal hyperparameters, using both the training and the validation sets,
and assess them on the test set.

2.1.3 Hierarchical Relationships between GO Terms
We downloaded the identities and the hierarchical relationships between
function labels (GO terms) from Gene Ontology (Ashburner et al., 2000)
(data-version: releases/2020-01-01). We consider ‘is a’ and ‘part of’
relationships in all three ontologies: Molecular Function Ontology (MFO),
Biological Process Ontology (BPO) and Cellular Component Ontology
(CCO); and do not consider cross-ontology relationships for now. In
this way we had three separate ontologies, each of whose topology is
a directed acyclic graph (DAG). For each annotation in each ontology, we
additionally propagated annotations all the way from the corresponding
GO term to the root node. Lastly, 14,929 out of 44,700 GO terms without
a single annotated sequence were removed and not considered in this study.

2.2 TALE and TALE+

We will describe the details of our methods in this subsection. The
overall architecture of TALE is shown in Fig. 1. The model has two
inputs: a protein sequence and the label matrix (for capturing hierarchical
relationships between all GO terms). It is worth mentioning that the
label matrix is a constant matrix for a given ontology, thus being fixed
during both stages of training and inference. The model itself consists of
feature (sequence) embedding, label (function) embedding, joint similarity
modules, as well as fully-connected and output (softmax) layers. We will
introduce these components in the following subsections.
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Fig. 1: The architecture of TALE. Note that the GO label matrix is fixed
for each ontology.

Notations. We use upper-case boldfaced letters to denote a matrix (e.g.
X), lower-case boldfaced letters to denote a vector (e.g. x), and lower-
case letters to denote a scalar (e.g. x). We use subscripts of a matrix to
denote a specific row, column, or element (e.g. Xi for the ith row of X;
X,i for the ith column; and Xi,j for the entry in the ith row and the j-th
column of X). We also use subscripts to denote scalar components of a
vector (e.g. xi for the ith entry of the vector x). We use superscript T on
a matrix to represent its transpose.

2.2.1 Sequence Embedding
LetA denote the set of 20 standard amino acids plus the padding symbol.
For a given input protein sequence s ∈ An×1 of lengthn, we embed each
character (residue) into an h-dimensional continuous latent space through
a trainable lookup matrixW seq and positional embedding, as described in
(Vaswani et al., 2017). The embedded matrix X ∈ Rn×h is fed through
a transformer encoder that consist of multiple multi-head attention layers.
In this study, we used 6 layers and 2 heads for each layer. The advantage
of such “self-attention” layers compared to convolution layers is that self-
attention can easily and quickly capture long-term dependencies within a
whole sequence, whereas convolution can only capture dependencies of
residues within a neighborhood determined by convolutional kernals. We
denote the output matrix of the transformer encoder with P ∈ Rn×h,
where h is the hidden dimension.

2.2.2 Label Embedding
For each given ontology represented as a directed acyclic graph (DAG),
we first perform topological sorting of its nodes (GO terms or labels) and
assign an index to each node based on its order in the sorted array. We then
embed node i into a c-dimensional binary vector Υi ∈ {0, 1}1×c where
c is the number of labels or GO terms. In this way we embed all nodes
within the ontology with a label matrix Υ ∈ {0, 1}c×c where its ith row
Υi ∈ {0, 1}1×c is the embedding vector for node i and its element Υi,j

is 1 if node j is an ancestor of node i and 0 otherwise: Υi,j = 1 (∀j ∈
Anc(i)), where Anc(i) denotes the set containing all ancestors of node
i (plus i itself). Similar to the sequence embedding, we use a trainable
lookup matrix W label ∈ Rc×h to encode Υ as Q ∈ Rc×h, where

Qi = Υi ·W label. (1)

Unlike sequence input, the label matrix Υ is fixed for each ontology and
thus not needed to be further encoded using a transformer encoder.

2.2.3 Joint Sequence–Label Similarity
We inspect the contributions of individual amino acids to individual
function labels, by calculating the matrix product between P and Q to
measure the joint similarity between the sequence and the label:

M = softmax(P ·QT ), (2)

where the softmax is row-wised. Mi,j suggests the “closeness” or
similarity score between amino acid i and label j. For each amino acid i,
we further consider the contributions from other amino acids, by applying
a 1D convolutional layer to M (along the row direction with the columns
as channels), followed by a max-pooling layer. The output of the max-
pooling layer is first normalized, and then used for weighting the sequence
encoding matrix P :

e = P T · a, (3)

where a ∈ Rn×1 is the output of the max-pooling after column-wise
softmax.

2.2.4 Fully-connected and Output Layers
The output of the joint similarity module, e ∈ Rh×1, would go through
two fully-connected (FC) layers, with the sigmoid activation function
at the second FC layer. The output of the model ŷ ∈ Rc×1 is the
predicted probabilities for individual GO terms in the ontology, where
the ith component is the predicted probability of label i for a given input
sequence.

2.2.5 Loss and Hierarchical Regularization
To train model parameters, we first consider the binary cross-entropy loss:

L′ = −
1

c

c∑
i=1

yi × ŷi + (1− yi)× (1− ŷi) (4)

However, if we only use L′, trained models may make predictions
violating the hierarchical constraint of function annotation. For instance,
the predicted score (probability) of a child GO term may be larger than
the scores of ancestors. To mitigate such hierarchical violation, we then
introduce an additional, hierarchical regularization term:

R =
1

|E|
∑

(i,j)∈E
max(0, ŷj − ŷi) =

1

|E|
∑

(i,j)∈E
ReLU(ŷj − ŷi),

(5)
where E is the set of all edges in the ontology graph, and (i, j) is one

edge inE pointing from node i to j. Therefore, our overall loss function is
a weighted sum of both terms: L = L′+λR, where λ, the regularization
constant to control the balance between the two terms, is treated as a
hyper-parameter and tuned along with other hyper-parameters using the
validation set.

2.2.6 Ensemble Model of TALE+
So far we have introduced all components of TALE. In order to reduce the
variance of predicted scores and their generalization errors, we consider
to first use the simple average of the outputs of top 3 models based on the
validation set, as the final TALE predictions.

Similar to DeepGOPlus (Kulmanov and Hoehndorf, 2020), we
further use a convex combination of TALE (the simple average) and
DIAMONDScore as final outputs of TALE+:

ŷTALE+ = α(ŷTALE, 1+ŷTALE, 2+ŷTALE, 3)/3+(1−α)ŷDIAMOND (6)

where ŷTALE,i is the ith best TALE model based on the validation set. The
DIAMONDScore method will be introduced in Sec. 2.3.2. After tuning
on the validation set, the best αs for three ontologies were set to be 0.4 for
MFO, 0.5 for BPO, and 0.7 for CCO. TALE can be regarded as a special
case of TALE+ when α = 1.

2.3 Baseline and State-of-the-Art Methods

We compare TALE and TALE+ to six competing methods, including
baselines, latest published methods and top performers in CAFA.
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2.3.1 Naive Approach
One simple approach is to use the background frequency of individual GO
terms in the training set to annotate every query sequence: p(i) = Ni

Ntrain
,

where i is the ith GO term,Ni is the number of sequences in the training set
annotated with the ith GO term, andNtrain is the total number of sequences
in the training set. This simple approach is called “naive” approach in
CAFA and is used as the baseline approach for comparing methods.

2.3.2 DIAMONDScore
DIAMONDScore is a sequence similarity-based function annotation
method. For a query sequence q, we use DIAMOND (Buchfink et al.,
2015) to find its similar sequences (homologs) in the training set and
obtain a bitscore for each pair of query sequence and a homolog in the
training set: bitscore(q, s), s ∈ S(q), where S(q) denotes the set of
training sequences that are similar to the query sequence under an E-value
cutoff of 0.001. Then for the ith GO term GOi, we calculate the predicted
probability associated with q as:

ŷDIAMOND,i(q) =

∑
s∈S(q) yi(s) · bitscore(q, s)∑

s∈S(q) bitscore(q, s)
(7)

where yi(s) is the label of ith GO term for the training sequence s.

2.3.3 DeepGO, DeepGOCNN and DeepGOPlus
DeepGO (Kulmanov et al., 2018) is a deep learning method that uses 1D
convolutional networks on protein sequences for structural outputs (i.e.
hierarchical classification of protein functions). In addition, DeepGO use
protein-protein interaction (PPI) features.

DeepGOCNN and DeepGOPlus are recently published improvements
(Kulmanov and Hoehndorf, 2020). Compared to DeepGO, DeepGOCNN
ignores the PPI features, trainable embedding and structural outputs.
In this way, DeepGOCNN is more efficient and applicable for a much
larger portion of proteins and GO terms. Then DeepGOPlus combines the
outputs of DeepGOCNN and those of DIAMONDScore through convex
combination.

2.3.4 NetGO
NetGO (You et al., 2019) is a hybrid method, which merges the network
information into its previous sequence-based method GOLabeler (You
et al., 2018b). GOLabeler is the winner of CAFA3 and uses a “learning to
rank” framework to rank GO terms.

2.4 Implementation

Our models were implemented in Tensorflow 1.13 (Abadi et al., 2016) and
trained for 100 epochs using Adam (Kingma and Ba, 2014) on a single
Nvidia Tesla K80 GPU. The hyperperameters were tuned on the validation
set mainly based on Fmax, a major assessment metric used in CAFA (see
Sec.2.5 for definition). AuPRUC was used as a tie-breaker when Fmax
values are within 0.003. The list of hyperparameters and their optimal
values are provided in the Supplemental Table S1. The curves for training
loss and validation accuracy of the best single TALE model are shown in
Figure S1 for each ontology.

For DeepGO, DeepGOCNN and DeepGOPlus, we used their published
codes on Github and trained the models on our datasets. For DeepGOCNN
and DeepGOPlus, we tuned the hyperparameters on our validation set.
Specifically, we set the ‘max_kernel’ to be 64, and ‘nb_filters’ to be 256.
The learning rate of Adam optimization algorithm was set to be 1e-3. The
constant α after tuning was 0.5 in MFO, 0.6 in BPO, and 0.6 in CCO.
We have also shown the number of trainable parameters of DeepGOPlus
(same as DeepGOCNN) against TALE+ in Table S2. It can be seen that
the amount of trainable parameters in TALE (considering top 3 models
for each of the three ontologies, i.e., 9 models in total) is below 40% of
DeepGOPlus.

For NetGO, we only have access to its webserver.

2.5 Evaluation

For a test set Dtest, we choose to use two evaluation metrics: Fmax and
AuPRC. Fmax is the official, protein-centric evaluation metric used in
CAFA. It is the maximum score of the geometric average of averaged
precision and recall over proteins for all thresholds:

Fmax = max
t

(
2Pre(t) · Rec(t)
Pre(t) + Rec(t)

), (8)

where Pre(t) and Rec(t) are the averaged precision and recall at threshold
t. Specifically,

Pre(t) =
1

Q(t)

Q(t)∑
k=1

yk · ŷi(t)

|ŷk(t)|1

Rec(t) =
1

|Dtest|

|Dtest|∑
k=1

yk · ŷk(t)

|yk|1
,

(9)

whereQ(t) is the number of samples which contain at least one non-zero
label inDtest; yi is the true label vector of kth sample inDtest, and ŷk(t)

is the predicted label vector of the kth sample in Dtest at threshold t. For
the calculation, we iterated t incrementally from 0 to 1 at a stepsize of
0.01.

AuPRC is a standard metric in machine learning for evaluating the
binary classification performance, especially suitable for highly imbalance
data, which is often the case in protein function annotation. In multi-
label classification, we concatenate all the label vectors and use canonical
AuPRC (single-label) to evaluate the performance.

3 Results
We perform comprehensive evaluation of our models from several
perspectives. We will start with comparing them to aforementioned
competing methods on various ontologies and test sets. We will proceed
to assess the capability of all models to generalize to novel sequences,
novel species, and novel functions relative to the training set. And we will
conclude with an ablation study for TALE and TALE+ to delineate the
contributions of their various algorithm components to performances and
generalizability.

3.1 Performance on the test set

We compare TALE and TALE+ with competing methods over the test
set and show the results in Table 2. Overall, TALE+ achieved the best
performance in biological process (BPO) and cellular component (CCO);
and had the second best in molecular function (MFO). The best performer
in MFO, NetGO was also the second best performer in BPO and the third
in CCO. Specifically, compared to NetGO, TALE+ improved Fmax from
0.425 to 0.438 (by 3%) in BPO and from 0.672 to 0.728 (by 8%) in
CCO; and it had worse Fmax (0.679 vs. 0.691) in MFO. TALE alone
without adding similarity-based DIAMONDScore outperformed all other
methods except our own TALE+ in CCO: compared to NetGO, TALE
alone improved Fmax from 0.672 to 0.699 (by 4%). It is noteworthy that
NetGO uses additional network information that is not used in TALE or
TALE+. Such network information is often not available to proteins and, in
such cases, TALE+ outperformed NetGO in all three ontologies including
MFO, as will be shown in Table 3,

The performance difference among the three ontologies can be
attributed to the structure and complexity of the ontology as well
as the available annotations (Jiang et al., 2016). Similarity-based
DIAMONDScore performed much better than the naive approach (and
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Fmax AuPRC
Ontology MFO BPO CCO MFO BPO CCO

Naive 0.399 0.278 0.634 0.320 0.194 0.589
DIAMONDScore 0.600 0.377 0.564 0.533 0.249 0.476

DeepGO 0.432 0.258 0.587 0.355 0.201 0.516
DeepGOCNN 0.458 0.310 0.599 0.345 0.176 0.506
DeepGOPlus 0.635 0.398 0.661 0.562 0.258 0.590

NetGO 0.691 0.425 0.672 0.615 0.316 0.642
TALE 0.585 0.363 0.699 0.564 0.280 0.685

TALE+ 0.679 0.438 0.728 0.613 0.316 0.711
Table 2. The performance of TALE and TALE+ against competing methods
on the test set. Note that both DeepGO and NetGO use network information
besides sequence, whereas other methods including TALE and TALE+ use
sequence alone.

Fmax AuPRC
Ontology MFO BPO CCO MFO BPO CCO

Naive 0.412 0.267 0.558 0.320 0.183 0.544
DIAMONDScore 0.603 0.344 0.549 0.545 0.233 0.438

DeepGO 0.413 0.266 0.576 0.343 0.223 0.507
DeepGOCNN 0.459 0.307 0.611 0.342 0.181 0.470
DeepGOPlus 0.631 0.372 0.660 0.569 0.255 0.524

NetGO 0.645 0.375 0.642 0.605 0.274 0.531
TALE 0.538 0.343 0.746 0.481 0.243 0.682

TALE+ 0.671 0.416 0.756 0.613 0.291 0.687
Table 3. The performance of TALE+ against competing methods on the portion
of test set that does not have network information available.

well among all methods) in MFO but worse in CCO. This observation
echos the hypothesis that sequence similarity may carry more information
on basic biochemical annotations than cellular components. Interestingly,
CCO is also the ontology where TALE and TALE+ did the best – even
TALE alone was better than all methods other than TALE+ and adding
similarity-based DIAMONDScore to TALE resulted in less help than it
did in MFO and BPO.

3.2 Performance on the test set without network
information

Protein-protein interaction (PPI) network information can be very useful
in boosting the accuracy of computational protein function annotation.
However, its availability can be limited and, when available, its quality
can also be limited (noisy and incomplete). Table 1 shows that 70% of
our test set has corresponding network information in STRINGdb, which
is already biased considering that all test sequences have already been
functionally annotated with experiments until now. In reality, only 7% of
TrEMBLE sequences have corresponding STRINGdb entries available,
regardless of the quality of the network information. The ratio can be
even worse for de novo designed protein sequences. Therefore, a reliable
sequence-only function annotation method is necessary especially when
network information is not available.

We thus did performance analysis over the portion of the test set without
network information, i.e, the test sequences whose network information
cannot be found in STRINGdb (see statistics in Table 1). In this case alone
we used the version of DeepGO codes without network features. As shown
in Table 3, TALE+ significantly outperformed all competing methods in
all three ontologies. Compared to NetGO, TALE+ improved Fmax from
0.645 to 0.671 (by 4%) in MFO, from 0.375 to 0.416 (by over 10%) in
BPO, and from 0.642 to 0.756 (by nearly 18%) in CCO.

3.3 Generalizability from the training set to the test set

Despite the improved performances of our models, questions remain on
their practical utility. Are they useful in cases where function annotation
is needed the most? Sequence-based protein property prediction (e.g.,
fold, structure, and function) is needed the most in the “midnight” zone
where similarity to known annotated sequences is too low to sustain
the assumption that similar inputs (sequences) imply similar outputs
(aforementioned properties). Similarly, it is also needed the most in the
midnight zone in another sense, where examples for some specific function
labels are never or rarely seen in known annotated sequences (thus these
functions are referred to as tail labels).

Besides the practical questions on model applicability in the midnight
zone, fundamental biological questions also remain. Have these machine
learning models learned anything fundamental in structure–function
relationships? Or are they merely mimicking patterns in training data using
a complicated function (such as a neural network) that could overfit?

To answer the questions above, we examine our models and competing
ones in their generalizability from the training set to the test set. Models
considered include DIAMOND, DeepGOCNN, TALE and TALE+. (We
couldn’t include the NetGO webserver as its training set is not accessible.)
Specifically, we examine the generalizability of these models from three
perspectives: sequence, species, and label (function) as follows.

3.3.1 Sequence generalizability
To analyze the generalizability to novel sequences, we split the test set into
bins of various sequence-identity levels compared to the training set and
examine various models’ accuracy (Fmax) over these bins. Specifically,
sequence identity between a test sequence and the training set is measured
by the maximum sequence identity (MSI). The distributions of test
sequences in MSI are shown in Fig. S2. We partition the test sequences
into 10 bins equal-spaced in MSI and show the sequence counts (gray dots)
and the Fmax scores (colored bars) in these bins (Fig. 2).

As shown in Fig. 2, sequence similarity-based method DIAMOND
performed poorly compared to deep learning-based models, when
sequence identity is below 30% (a “midnight” zone). Without a surprise,
it was the best or close-to-best performer in MFO, BPO, and CCO, when
sequence identity is above 40%, 50%, and 60%, respectively. Between
DeepGOCNN and TALE that do not use sequence-similarity scores from
other sources, TALE outperformed DeepGOCNN in all bins except
above 90% (MFO), 80% (BPO), and 90% (CCO); and it significantly
outperformed DeepGOCNN in the “midnight” bins. TALE+ had the best
performance in nearly every combination of ontology and bin. As a
convex combination of DIAMONDScore and TALE, TALE+ maintained
the impressive performances of TALE in the low sequence-identity cases
and significantly improved from TALE in the high sequence-identity cases
using the similarity-based information.

3.3.2 Species generalizability
To analyze the generalizability to new species, we count for every test
sequence the Number of training Samples of the Same Species (NSSS)
and identify those in new species never seen in the training set (NSSS=0).
The statistics are in Table S2 and the distributions of the test sequences in
NSSS are in Fig. S3. We further remove test sequences whose maximum
sequence identities to the training set are above 40%. The remaining test
sequences are thus in new species and low homology compared to the
training set (see statistics in Table S3).

Fig. 3 shows the counts (gray dots) and the Fmax scores of various
models (colored bars) over prokaryotes (bacteria and archaea) and
eukaryotes. Again, TALE significantly outperformed the similarity-based
DIAMOND and deep learning-based DeepGOCNN for nearly all six
combinations of clades and ontologies (except being edged by DIAMOND
for eukaryotic MFO). Similarity-based DIAMOND performed poorly and
provided negligible boost to TALE+ for BPO and CCO in these cases.
Interestingly, all methods performed better for new eukaryotic species
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Fig. 2: The Fmax performances of four models in three ontologies, over 10 bins of increasing sequence-identity ranges. Low sequence identity indicate
low homology between a test sequence and the training set. Sequence statistics over the bins are also provided.

than for new prokaryotic species in almost every ontology (except for
deep learning-based methods in BPO).
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Fig. 3: The Fmax performances of four models in three ontologies, over
eukaryotes and prokaryotes with NSSS=0 (new species) and MSI 6 40%

(low homology).

3.3.3 Function generalizability
To analyze the generalizability to new or rarely annotated functions (GO
labels), we first calculate the frequency of the ith label in the training set:

f(i) =
1

|Dtrain|

|Dtrain|∑
j=1

yi,j , (10)

where |Dtrain| is the number of samples in the training set and the binary
yi,j is for the ith label of the jth sample in the training set. Then for the
kth test sample, we calculate its overall label frequency (LF) in the training
set as:

LF(k) =
1

|yk|1

c∑
j=1

f(j) · yk,j (11)

where the binary yk,j is for the jth label of the ith sample in the test set,
and yk is the stacked vector over all labels.

The distributions of test sequences in LF(·) are shown in Fig. S4. We
split the test set based into 10 equal-spaced LF(·) bins and provide the
histograms of the sequences over these bins in Fig. 4 (gray dots).

As shown in Fig. 4, the performances of similarity-based
DIAMONDScore, especially in MFO and CCO, did deteriorate noticeably
as the (average) label frequency of a test sequence decreases. Interestingly,
deep learning alone does not necessarily lead to better performances in
such scenarios, as DeepGOCNN actually had worse performances in all
ontologies compared to DIAMOND when the test sequences’ function
labels are the least frequent in the training set (less than 10%). In this

context, the much-improved performances of TALE and TALE+ in the
low label-frequency (LF) bins attest to the advantage of our models.
Interestingly, adding similarity-based DIAMONDScore to TALE, did not
always lead to a further improved TALE+, as seen in BPO (one low and
one high LF bins) and CCO (one high LF bin).

In total, similarity-based DIAMOND did not generalize well to novel
sequences in low homology (and new species) compared to the training
ones, whereas deep learning-based DeepGOCNN performed poorly for
never or rarely annotated functions (tail labels). TALE outperformed
both methods in all generalizability tests, echoing our earlier rationale
that joint embedding of sequences and hierarchical function labels to
address their similarities would significantly improve the performance for
novel sequences and tail labels. Combining TALE and similarity-based
DIAMOND into TALE+ could further enhance the performances in some
cases. Generalizability analysis based on equal-populated bins also led to
similar conclusions (see details in SI Sec. 6).

3.4 Ablation Study

To rigorously delineate the contributions of algorithmic innovations that
we have made in TALE and TALE+ to their improved performances
and superior generalizability, we perform the following ablation study.
Starting with DeepGOCNN, we incrementally add algorithm components
and introduce variants to eventually become TALE and TALE+:

• B1: replacing the convolutional layers in DeepGOCNN with the
transformer encoder plus the input embeddings. Unlike Eq. (3) where
a is the output from joint label embedding, the output of the encoder
here P ∈ Rn×h would be simply row-averaged to obtain e;

• B2: replacing the DeepGOCNN post-training correction of
hierarchical violations in B1 with the additional loss term of
hierarchical regularization (Eq. 5);

• B3: adding label embedding to B2 for joint sequence–label embedding.

TALE is using the average prediction of the ensemble of top-3 B3 models
(based on the validation set) and TALE+ is a convex combination of TALE
and DIAMONDScore.

The overall performances of the above models over the test set are
summarized in Fig. 5(a). Exact Fmax and AuPRC values and detailed
analyses are in SI Sec. 7. We note that, from DeepGOCNN to TALE+,
both Fmax and AuPRC are gradually increasing over model variants.
In MFO and BPO, the convex combination with DIAMONDScore (and
ensemble average) had the largest contributions to the overall Fmax
increases, whereas transformers did so to the AuPRC improvements. In
CCO, the transformers, hierarchical regularization, and label embedding
(jointly with sequence embedding) played the central role in improving
both measures, while similarity-based DIAMONDScore also helped Fmax
but not AuPRC.

Various generalizability of the above models is also assessed over test
sequences with MSI6 30%, in new species (and with MSI640%), or
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Fig. 4: The Fmax performances of four models in three ontologies, over 10 bins of increasing function/label frequencies (for each test sequence, average
label frequencies in the training set, measured by LF(·)). Low LF bins indicate functions rarely annotated in the training set.
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Fig. 5: The Fmax performances of various models in the ablation study for (a) the overall test set as well as test sequences (b) with MSI630%, (c) in
new eukaryotic or prokaryotic species and with MSI640%, or (c) label frequency 6 20%.

never or rarely (LF620%), as summarized in Fig. 5(b)–(d), respectively.
Exact Fmax and AuPRC values and detailed analyses are in SI Sec. 8.
Transformers and/or joint sequence–label embedding were the biggest
contributors to nearly all AuPRC and most Fmax in all generalizability
types and all ontologies considered. Sequence similarity often contributes
significantly to generalizability (measured by Fmax) in MFO and
occasionally in BPO.

4 Conclusion
In this paper, we have developed a novel transformer-based deep learning
model named TALE, with joint embedding of sequence inputs and
hierarchical function labels. The transformer architecture could learn
sequence embedding while considering the long-term dependency within
the sequence, which could generalize better to sequences with low
similarity to the training set. To further generalize to tail labels (functions
never or rarely annotated in the training set), we learn the label embedding,
jointly with the sequence embedding, and use their joint similarity to
measure the contribution of each amino acid to each label. The similarity
matrix is further used to reweigh the contributions of each amino acid
toward final predictions. In addition, we use TALE+, a convex combination
of TALE and a similarity-based method, DIAMOND, to further improve
model performances and generalizability.

Our results on a time-split test set demonstrate that TALE+
outperformed all sequence-based methods in all three ontologies
and outperformed the state-of-the-art hybrid method (using network
information) in BPO and CCO. When network information is not
available, TALE+ outperformed all competing methods in all ontologies.
Importantly, both TALE and TALE+ showed superior generalizability
to sequences of low homology (and in never or rarely annotated
species) and rarely annotated functions, echoing the rationales of
our algorithm development. Ablation studies indicate that our newly
introduced algorithmic components, especially transformer encoders and
joint sequence–label embedding, contributed the most to such sequence,
species, and function generalizability, whereas sequence similarity-based
DIAMONDScore also helped.

Both TALE and TALE+ are fast models that can annotate 1,000
sequences within a couple of minutes on a mid-range GPU (Nvidia K80).
These high-throughput annotators with both accuracy and generalizability
would help close the increasing gap between high-throughput biological
data and deep biological insights. In future, integrating additional data
beyond protein sequences, particularly protein interaction networks, would
further help close the gap especially for the ontologies of biological
processes and cellular components.
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