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Abstract 
 
Noncoding RNA plays important regulatory and functional roles in microorganisms, such as gene 

expression regulation, signaling, protein synthesis, and RNA processing. Given its essential role in 

microbial physiology, it is natural to question whether we can use noncoding RNAs as biomarkers to 

distinguish among environments under different biological conditions, such as those between healthy 
versus disease status. The current metagenomic sequencing technology primarily generates short reads, 

which contain incomplete structural information that may complicate noncoding RNA homology detection. 

On the other hand, de novo assembly of the metagenomics sequencing data remains fragmentary and has 

a risk of missing low-abundant noncoding RNAs. To tackle these challenges, we have developed DRAGoM 

(Detection of RNA using Assembly Graph from Metagenomics data), a novel noncoding RNA homology 

search algorithm. DRAGoM operates on a metagenome assembly graph, rather than on unassembled 

reads or assembled contigs. Our benchmark experiments show DRAGoM’s improved performance and 

robustness over the traditional approaches. We have further demonstrated DRAGoM’s real-world 
applications in disease characterization via analyzing a real case-control gut microbiome dataset for Type-

2 diabetes (T2D). DRAGoM revealed potential ncRNA biomarkers that can clearly separate the T2D gut 

microbiome from those of healthy controls. DRAGoM is freely available from 

https://github.com/benliu5085/DRAGoM. 
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INTRODUCTION 
 
Noncoding RNA (ncRNA) can perform versatile functional roles than just acting as a genetic information 

carrier, and its importance in cellular physiology is increasingly recognized. For example, riboswitch is a 

class of cis-regulator locates in the 5’UTR of its target gene and can alter the gene’s expression efficiency 

by alternating its fold structure upon the binding with small metabolites or ion ligands [1-3]. A different trans-

regulatory mechanism was found to be exerted by bacterial small RNAs (sRNA), which in most cases 

attenuate their target mRNA expressions by sequence complementarity-based binding (in a similar way as 

eukaryotic microRNAs) [4-7]. Noncoding RNAs can also catalyze biochemical reactions (ribozymes) [8], as 
exemplified by the well-known ribosomal RNAs (which catalyze protein synthesis) and group I and II introns 

(which catalyze the excision of themselves from the transcript) [9, 10]. With the prevalence of 

metagenomics [11-16], more microbial genomics sequences, including the previously uncharacterized ones, 

have been deposited into public databases. The amazing richness of microbial genomic data renders an 

unprecedented opportunity for ncRNA study. Indeed, the diversity and richness of microbial ncRNA function 

revealed from analyzing metagenomic data are beyond our existing knowledge [17-20], including the 

discovery of many long noncoding RNA classes such as OLE, GOLLD, and HEARO, with exceptionally 

complicated structures [21]. These discoveries underpin the importance of ncRNA functions in bacterial 
physiology, ecology, and interaction with the environment. 

Despite the importance of functional ncRNAs, their use as biomarkers to characterize environments 

under different biological conditions (e.g., disease vs. healthy) appeared to be less explored than the 

protein-coding genes. Currently, only few ncRNAs (such as 16s rRNA) have been used as proxies to infer 

the taxonomic compositions of microbial communities [22-28]. On the other hand, systematic analyses of a 

broad range of protein-coding gene families have been routine in metagenomics. The analyses typically 

include the quantification of bacterial genes and gene families, the reconstruction of metabolic pathways, 

and the development of mathematical models to characterize microbiomes from different environments [29, 
30]. For example, an increased membrane sugar transportation activity was associated with Type-2 

diabetes (T2D) [31], a more active lactate metabolism may enhance athlete performance [32], and the 

dysfunction of nitrotoluene degradation may cause pediatric Crohn’s disease [33]. In addition to functional 

insights, protein marker gene analyses also offer a higher resolution in taxonomic profiling than using 16s 

rRNA alone [34]. Given the success of functional gene analysis in metagenomics, it is tempting to extend 

the analysis to functional ncRNAs and explore their potential as biomarkers. 

Similar to protein, the key to the success of ncRNA biomarker discovery is the homology search. That 
is, whether we can reliably detect ncRNA reads from metagenomic sequencing datasets and assign them 

into different ncRNA families. Because the function of ncRNA is determined by both its structure and primary 

sequence (in few cases by primary sequence alone, such as microRNA [35-37]), the homology search of 

ncRNA often relies on the conservation of both types of information [38, 39]. They can be further compiled 

into a covariance model (CM) using stochastic context-free grammar (SCFG) to characterize a given 

ncRNA family [40], in a similar way as using profile hidden Markov model (profile-HMM) for protein family 
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representation [41]. In the context of metagenomic sequencing data, the short reads (~100-150bp) may 

only contain partial secondary structure information, leading to inferior ncRNA homology search 

performance. The issue has been partially addressed by the development of the trCYK algorithm for 

homology detection with incomplete secondary structure [42], but its performance remained lower than 
directly operating on complete genomes. On the other hand, while a natural way to resolve this issue is to 

reconstruct complete secondary structure information via de novo genome assembly, assembly itself 

remains fragmentary and challenging [43-46]. Many ncRNA reads, especially the low-abundant ones, may 

not be assembled into contigs and are therefore missed in the subsequent homology stage. 

To tackle the challenge of ncRNA homology search from metagenomic sequencing data, we have 

developed DRAGoM (Detection of ncRNA on Assembly Graph of Metagenomic data). DRAGoM is the first 

ncRNA homology search method that operates on sequence assembly graph, which sets it apart from the 

traditional methods that operate on unassembled reads (hereafter referred to as the “read-based” strategy) 
or assembled contigs (hereafter referred to as the “assembly-based” strategy). Homology search on 

assembly graph has been proven successful for protein [47-49] and protein family [50], and we expect to 

extend the success to ncRNA. Specifically, note that a path in an assembly graph corresponds to a set of 

overlapping reads, which may contain more complete secondary structure information that facilitates 

homology detection. Hence, we can expect DRAGoM to outperform the read-based strategy. Meanwhile, 

using the complete set of paths in the assembly graph without topological simplification (e.g., bubble 

removal and tip trimming [51-53]) and traversal (e.g., as Eulerian paths [54]) is more likely to preserve the 

original metagenome information (such as polymorphism and stain-level sequence variation). As a result, 
DRAGoM could rescue some of the ncRNA reads that are difficult to be assembled and outperform the 

assembly-based strategy. The only concern would be computational efficiency. However, we show that 

with proper path filtering (details in the Materials and Methods section), DRAGoM can be used to profile 

more than one thousand ncRNA families on medium-complexity datasets (e.g., human gut microbiome). 

We have benchmarked DRAGoM with the read-based strategy and the assembly-based strategy. We 

chose CMSearch [55], which has included the trCYK algorithm [42], as the representative of the read-based 

strategy. We selected the string graph assembler SGA [53] and the de Bruijn graph assembler SPAdes [51, 
52] for the assembly-based strategy (their contigs were subsequently searched using CMSearch). Our 

benchmark experiment considered both simulated and real datasets involving the search of an extensive 

collection of Rfam [56] ncRNA families. DRAGoM showed a higher and most robust performance compared 

to the other competitors. DRAGoM also improved homology search of 16s rRNA. Finally, we applied 

DRAGoM on real metagenomic datasets from T2D patient and control samples, and successfully 

discovered many ncRNA biomarkers for characterizing the T2D gut microbiome. The results imply the 

potential clinical applications of ncRNAs as biomarkers for disease diagnosis/prognosis. DRAGoM is freely 

available from https://github.com/benliu5085/DRAGoM. 

 
MATERIALS AND METHODS 
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The DRAGoM Algorithm 
 
The DRAGoM algorithm contains two main stages: (1) the construction of a hybrid assembly graph and (2) 

the identification of homologous ncRNA elements from the resulting hybrid assembly graph. By hybrid 

assembly graph, we mean the assembly graph that results from merging a string graph [57] and a de Bruijn 
graph [58], the two main computational models used in sequence assembly. A string graph is constructed 

based on the suffix-prefix overlaps between reads, whereas a de Bruijn graph is constructed based on the 

shared 𝑘-mers between reads. Each model has its advantages and limitations, with the string graph being 

comparably more accurate but fragmentary. Both models have been integrated to improve sequence 

assembly [59]. To illustrate the idea, we present a toy example in Figure 1(A). The top-left panel shows an 

artificial genome sequence and the corresponding short reads. The bottom-left panel shows the string graph 

constructed from the reads with a minimum overlap length of 4bp. Because of the lower coverage at the 

middle of the artificial genome, only four reads can be overlapped. A missing link (the blue dash line) exists 

between the two subgraphs, leading to a subsequent fragmentary assembly. For the de Bruijn graph 

construction (the top-right panel), all reads can be connected using 3-mers as the vertices. While the de 

Bruijn graph completely recovers all reads, its graph topology is complex and can be traversed in two ways 
(with or without going into the loop). However, note that one of these de Bruijn graph traversals (i.e., with 

the loop) can be aligned to two terminal edges in the string graph (bottom-right panel, underlined 

sequences). Once the corresponding string-graph edges were reconnected using the de Bruijn graph path, 

the resulted hybrid graph perfectly represented the original genome.  

The hybrid graph construction stage of DRAGoM implemented the above intuition. Specifically, SGA 

(version 0.10.15) [53] was used to generate the string graph, and SPAdes (version 3.13.0) [52] was used 

to generate the de Bruijn graph. When running SPAdes, the “--meta” tag was set to indicate metagenomic 
input (also known as “metaSPAdes”). Both programs were run in the paired-end mode. Detailed command 

lines for running both assemblers are available in the Supplementary Methods. The intermediate output of 

SGA (i.e., the .asqg file) was further simplified (using in-house scripts) to condense unbranched paths into 

single edges. Terminal edges (i.e., edges with in-degree or out-degree of 0) of the resulted string graph 

were then aligned with the trusted SPAdes contigs (no coverage hole, see more in Supplementary Methods) 

using BWA [60]. Only alignments with score >45 (per the BWA manual, +1 for a match, -4 for a mismatch, 

and -6 for a gap), alignment length >100, and no clipping at the open end (i.e., the end with a degree of 0 

in the string graph) were considered. Then, for each SPAdes contig, if it had recruited more than one 
alignment, the corresponding terminals in the string graph defined by any pair of alignments were connected 

using the corresponding interval sequence of the SPAdes contig. If a SPAdes contig had recruited only one 

alignment, the corresponding string graph terminal was extended using the contig’s corresponding prefix 

or suffix. SPAdes contigs with no recruited alignment were also retained as isolated vertices in the hybrid 

graph. In a CAMI [44] dataset that contained ~15M vertices in the string graph, ~0.7M such connections 

were made.  
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The second main stage of the DRAGoM algorithm is to identify homologous paths of the querying CM 

from the resulted hybrid assembly graph. Intuitively, one can exhaustively enumerate all hybrid-graph paths 

and align them with the querying CM. However, this naïve approach would be practically infeasible because 

the number of paths grows exponentially with the number of reads in the dataset. We designed a filter-
based heuristic for the speedup (Figure 1(B)). First, the querying CM was aligned to each hybrid-graph 

edge (which corresponds to a condensed path without branching). The edges bearing significant similarity 

to the querying CM were recorded as anchors. This stage allowed the detection of conserved short 

structural components (e.g., the green and purple stem-loops in the CM and the bolded paths in the hybrid 

graph of Figure 1(B)). The anchors were then extended towards both directions, aiming to reconstruct 

complete sequences of the candidate ncRNA homologs (the broken arrows in Figure 1(B)). The extension 

lengths for each anchor were determined by the unaligned prefix and suffix lengths of the CM (with a further 

extension of 10% length to account for potential gaps). Because some edges of the hybrid graph might 
represent similar sequences (e.g., the heavy and light orange edges in Figure 1(B)), all paths resulted from 

extending the anchors were subject to sequence redundancy removal using CD-Hit [61]. Finally, the set of 

non-redundant paths were re-aligned to the querying CM, and the paths passing the gathering score 

threshold were selected as homologs of the corresponding ncRNA family. Individual reads were further 

mapped to the homologous paths for their functional annotations and the quantification of the corresponding 

ncRNA families. More details regarding this stage can be found in Supplementary Methods. 

The above algorithm was implemented as the DRAGoM software package. DRAGoM accepts a set of 

querying CM and a given metagenomics sequencing dataset; it outputs the ncRNA read annotation and 
the quantification of  each querying ncRNA family. DRAGoM was implemented using GNU C++ and Python 

and has been tested under several major Linux distributions (RedHat, Fedora, and Ubuntu). It is freely 

available from https://github.com/benliu5085/DRAGoM under the Creative Commons BY-NC-ND 4.0 

License Agreement (https://creativecommons.org/licenses/by-nc-nd/4.0/).     

 
Benchmark Datasets  
 
We have used six datasets to benchmark the performance of DRAGoM (Table 1). Detailed information 
regarding the reference genomes included in the community, their respective relative abundances, and the 

in-silico simulation command lines is available from Supplementary Table 2. All datasets, except one that 

can be directly downloaded from NCBI SRA, are available from https://cbb.ittc.ku.edu/DRAGoM.html. 

These six benchmark datasets include: 

• DS1 (the REAGO dataset): This simulated dataset represented a low-diversity metagenomic dataset 
that contains microbes from different clades with staggered abundances. The dataset was used in the 

benchmark experiment of REAGO [24]. It was simulated in silico with an average read length of 100nt 

and an expected error rate of 1%, containing 4,653,918 paired-end reads. 

• DS2 (the Streptococci dataset): This simulated dataset represented a community with highly-related 

microbial genomes from the same genus (e.g., streptococcus). The dataset was simulated in silico 
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using eight streptococcus genomes, with an average read length of 100nt and an expected error rate 

of 1%. This dataset contained 600,000 paired-end reads.  

• DS3 (the marine dataset): This dataset represented a subset of microbial metagenome that was 
frequently observed from the marine environment. It was simulated from 28 marine genomes with an 

average read length of 100nt and an expected error rate of 1%, resulted in 3,700,000 paired-end reads. 

• DS4 (the subsampled gut dataset): This dataset represented a real human gut microbiome community 

(SRR341583). To facilitate the generation of ground-truth homology for benchmarking, we subsampled 

the dataset via read mapping against a set of microbial genomes that were frequently found in human 

gut. Only reads mapped to the selected reference genomes were retained, leaving 11,228,362 paired-
end reads for this dataset. 

• DS5 (the subsampled CAMI dataset): This dataset was downloaded from CAMI [44], a comprehensive 

simulated dataset. To focus on the more challenging cases of metagenomics analysis, only reads 

representing low-coverage genomes (<10X) were selected (via read mapping). This dataset contained 

31,311,294 paired-end reads.  

• DS6 (the T2D dataset): This dataset contained twelve samples (six cases and six controls) generated 
for the study of Type-2 Diabetes (T2D) gut microbiome. Specifically, the samples SRR341616, 

SRR341617, SRR341618, SRR341621, SRR341623, and SRR341624 were used as the healthy 

controls; and the samples SRR341583, SRR341584, SRR341585, SRR341586, SRR341587, and 

SRR341588 were used as T2D cases. To eliminate sex bias, all samples selected came from female 

donators. All datasets contain paired-end reads, with sizes ranging from 42M-57M (after quality 

trimming). They were selected to demonstrate the practical applications of DRAGoM. 

Benchmark Experiment Setup 

Given a querying ncRNA family, we define its ground-truth homologs as the reads that can be generated 

or mapped (>60% of their total lengths) to the genomic intervals that were annotated as the ncRNA family 

by CMSearch [55] (under its default stringency cutoff). The command lines used for ground-truth generation 

are available from Supplementary Methods.  
Given the ground-truth definition, we defined true positives (TP) as the identified homologous reads. 

We further defined false positives (FP) as the identified non-homologous reads, and false negatives (FN) 

as missed homologous reads. We further defined recall and precision as: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

and subsequently F-score as: 

𝐹 =
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
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All methods were tested under various stringency cutoffs to generate the receiver operating characteristic 

(ROC) curve. The ROC curves were extrapolated to the points (recall: 0, precision: 1) and (recall: 1, 

precision: 0) to calculate the area under the curve (AUC). 

We benchmarked our graph-based ncRNA homolog search strategy DRAGoM (homolog search 
against assembly graph) with the read-based strategy (homolog search against unassembled reads) and 

the assembly-based strategy (homolog search against assembled contigs). For the read-based strategy, 

we chose CMSearch as the representative; we refer it as “CMSearch” hereafter. For assembly-based 

strategy, we chose SGA (as the representative of string graph assemblers) and SPAdes (as the 

representative of de Bruijn graph assemblers); hereafter we refer them as “SGA+CMSearch” and 

“SPAdes+CMSearch”, respectively. Command lines for executing the programs are available in 

Supplementary Materials. Each method was benchmarked using different sets of querying ncRNA families 

(details available from Supplementary Table 2). The reported performance corresponded to the unweighted 
arithmetic mean among the set of querying ncRNA families. Note that the performance for 16s rRNA was 

reported individually, given its importance in taxonomic profiling. 

 
RESULTS 
 
Performance on Simulated Datasets 

The performances of all tested methods on DS1 (the REAGO dataset, 42 ncRNA families searched) are 

shown in Figure 2. For non-16s rRNA queries (Figure 2(A)), DRAGoM was able to achieve the highest 

recall, representing a gain of 7.3% recall rate as compared to the second-best performer 

SPAdes+CMSearch (Table 2). CMSearch alone performed significantly worse than DRAGoM and 
SPAdes+CMSearch, potentially due to the lack of complete secondary structure information in 

unassembled reads. SGA+CMSearch seemed to be adversely impacted by the low coverage of this dataset 

and showed the lowest recall. However, it did show the highest precision rate. The observation was in line 

with the difference between string graph and de Bruijn graph assemblers observed elsewhere. In terms of 

the peak F-score, DRAGoM achieved 93.6%, followed by 92.2% of SPAdes+CMSearch. In terms of AUC, 

DRAGoM was also the best performer with 96.8%, compared to 93.9% of the second-best method 

SPAdes+CMSearch. For 16s rRNA, all methods performed well (Figure 2(B)). DRAGoM remained the best 

method with a marginal improvement (99.5% F-score and 99.6% AUC, followed by 97.6% F-score and 
98.8% AUC of the second-best method CMSearch, see Table 4). Surprisingly, SPAdes+CMSearch showed 

the lowest sensitivity, potentially due to the polymorphism information lost during the graph simplification 

and traversal stages of SPAdes. Overall, DRAGoM showed a higher performance than any tested method 

and was robust for both non-16s and 16s rRNA searches. 

For DS2 (the Streptococcus dataset, 27 ncRNA families searched), all methods behaved similarly as 

in DS1 for non-16s searches (Figure 3(A)). DRAGoM again performed the best on this dataset (91.4% F-

score and 93.0% AUC), followed by SPAdes+CMSearch (90.2% F-score and 90.7% AUC, see Table 2). 
The lower performances of CMSearch and SGA+CMSearch were also observed as in DS1, and may due 
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to similar reasons as discussed previously. For 16s rRNA (Figure 3(B)), SGA+CMSearch performed the 

best (99.2% F-score and 99.8% AUC), with DRAGoM as the second-best method in F-score  (98.1%) and 

CMSearch in AUC (99.4%, see Table 4). SGA+CMSearch seemed to benefit from its preservation of 

polymorphism information in 16s rRNA by adopting a more conservative graph simplification strategy. On 
the other hand, DRAGoM remained the most sensitive method (with the highest recall rate of 99.9%), but 

its overall performance appeared to be compromised by the lower precision rate due to exhaustive path 

traversal (96.2%, see Table 4). 

For DS3 (simulated marine, 93 ncRNA families searched; see Figure 4) and DS4 (subsampled human 

gut, 60 ncRNA families searched; see Figure 5), these methods also performed similarly as in DS1 and 

DS2. DRAGoM outperformed the other methods in non-16s rRNA queries, reaching 89.9% F-score and 

94.9% AUC for DS3 (Figure 4(A)), and 74.4% F-score and 77.4% AUC for DS4 (Figure 5(A)). The lower 

performance on DS4 because it is a real dataset that contains more experimental noise than the simulated 
ones. SPAdes+CMSearch also remained as the second-best method on both DS3 and DS4. For 16s rRNA, 

DRAGoM performed the best on DS3 (99.1% F-score and 99.3% AUC; see Figure 4(B) and Table 4). On 

DS4, SGA+CMSearch performed the best (96.1% F-score and 96.4% AUC; see Figure 5(B) and Table 4), 

followed by DRAGoM (94.2% F-score and 94.4% AUC). These observations were also consistent with 

those made in DS1 and DS2. 

DS5 (subsampled CAMI) was profiled using the largest number of querying ncRNA families (276); 

hence we categorize the performance of non-16s rRNA searches based on the ncRNA families’ sequence 

identity and average length (Figure 6 and Table 3). Although the performances differed in different 
categories of ncRNA families, DRAGoM consistently showed the best performance. The lowest 

performance gain made by DRAGoM was for the category with <50% sequence identity and 200-400bp 

length, showing a gain of 0.6% in F-score and 2.4% in AUC compared to the second-best method 

SPAdes+CMSearch (Figure 6(B)). The largest gain made by DRAGoM was found in the category with 50-

70% sequence identity and 200-400bp length Interestingly, where the improvement was 11.4% in F-score 

(as compared to SPAdes+CMSearch) and 10.1% in AUC (as compared to CMSearch). Our interpretations 

of the difference in performance gain in different categories of ncRNA families are present in the Discussion 
section. For 16s rRNA, DRAGoM had the best performance F-score (96.4%, Table 4) but the second-best 

performance in AUC (96.8%, compared to the best performance of 97.6% made by CMSearch).  

Taken together, DRAGoM consistently delivered superior search performance in nearly all datasets 

and all categories of querying ncRNA families. Specifically, DRAGoM produced the best ncRNA homology 

prediction for all non-16s rRNA in all datasets, and two out five datasets (DS1 and DS3) for 16s rRNA 

searches (DRAGoM was the second-best method for the other three cases). The assembly-based 

approach SPAdes+CMSearch seemed to be the second-best choice overall. However, the read-based 

approach CMSearch appeared to be the second-best choice when analyzing ncRNA families with sequence 
identity between 70-90% and length between 200-400bp (Figure 6(F)) and in the searches of 16s rRNAs 
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on DS1, DS3, and DS5. Comparably, DRAGoM was the most robust method in addition to its superior 

performance.  

Analyzing a real case-control Type-2 diabetes dataset with DRAGoM 

To showcase real-world applications of DRAGoM, and demonstrate the value of microbial ncRNA in 

characterizing human diseases, we used DRAGoM to profile 1,112 ncRNA families for all twelve samples 

in DS6 (metadata available from Supplementary Table 3). The datasets were first subject to standard quality 

trimming, followed by the DRAGoM homology search, and finally differential abundance significance 

calculation using DESeq2 [62] (details available in Supplementary Methods). Out of the total 1,112 ncRNA 

families searched, 342 of them had recruited at least one read in either of the twelve samples (see 
Supplementary Table 4). The top 50 ncRNA families with the most significant abundance difference were 

used as the potential biomarkers for the characterization of T2D from healthy controls. 

Analysis of the top ncRNA families revealed the gut microbiome’s metabolic and physiological changes 

under the T2D condition. In general, we found that gene expression was more active in the microbes under 

the T2D condition, potentially due to their increased access to glucose and fatty acid in the environment as 

food sources. Specifically, we observed a reduced abundance of RF00032 (histone mRNA 3’UTR stem-

loop, p-value 3.6 × 10!") in T2D samples, which is key to maintaining the chromatin structure. A decreased 

histone abundance level may suggest less packed chromosomes, which is often tied to more active gene 

transcription. We also observed a reduced abundance of RF00106 (RNAi, p-value 1 × 10!# ) in T2D 

samples, which initiates the degradation of its target mRNA upon binding. A lower degradation activity 
would also imply a higher gene expression level. Moreover, the retrotransposition activity was also more 

active, as demonstrated by the higher abundances of group II intron families in under T2D (RF01998 with 

a p-value 1.3 × 10!#; RF02004 with a p-value 1.8 × 10!#; and RF02001 with a p-value 4.4 × 10!#). These 

ncRNA families are often found in transposons, plasmids, insertion sequence islands, and pathogenicity 

islands [63]. However, we do note that the datasets used here were metagenomic rather than 
metatranscriptomic. Hence, the abundance profile may not reflect the actual expression levels of those 

ncRNA families. 

To further investigate whether these ncRNA families can be used as biomarkers to characterize T2D, 

we performed unsupervised hierarchical clustering (see Supplementary Methods) of the abundance profile 

(as RPKM) of the top 50 ncRNA families (Figure 7). All control samples were cluster together, indicating 

that they share the most similar ncRNA abundance profiles. Another four T2D samples (SRR341587, 

SRR341583, SRR341585, and SRR341624) were subsequently clustered with the healthy samples. The 
other two T2D samples (SRR341586 and SRR341588) seemed to have distinctive ncRNA abundance 

profiles relative to the other ten samples, as demonstrated by the ultra-high abundance of the ncRNA 

families shown in the upper half of the heatmap. Principal component analysis (PCA) was also performed 

on the top 50 ncRNAs’ abundances to verify the clustering results (Figure 8). Similar to the clustering result, 

the control samples were also well clustered, but the T2D samples exhibited a higher variance. To 

investigate the potential reasons why these three T2D samples had distinct ncRNA abundance profiles, we 
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further analyzed the available metadata associated with the samples (Supplementary Table 3). We noted 

that SRR341586 had the smallest BMI (Body Mass Index) among all 12 samples (Z-score -2.42). 

SRR341587, on the other hand, was the tallest (Z-score 2.51) and the heaviest (Z-score 2.16) subject. 

SRR341588 had the lowest total cholesterol level (Z-score -2.37). Whether the distinct ncRNA abundance 
profile is due to the above sample selection bias remains unclear and was subject to experimental 

investigation. Another explanation could be that these T2D patients corresponded to different T2D subtypes 

[64] or were in different developmental stages of T2D. 

 
DISCUSSION 
 
We have demonstrated using benchmark data that DRAGoM can improve ncRNA homology search in 

comparison to traditional read-based and assembly-based strategies. In addition to the higher performance, 

another unique advantage of DRAGoM is its robustness. We observed from the benchmark results that the 

homology search performance is both query-dependent and dataset-dependent. For example, in DS5 
(CAMI), SPAdes+CMSearch performed better than CMSearch when searching ncRNA families with identity 

<50% and between 100-200bp long (Figure 6(A)), but worse when searching ncRNA families with identity 

70-90% with the same length range (Figure 6(E)). We conjecture that some factors could have contributed 

to such differences. If the ncRNA families are highly divergent, sequence information alone may not be 

sufficient for its detection. Therefore, the complete secondary structure information needs to be 

reconstructed for its detection. It may explain the higher performance of SPAdes+CMSearch when 

searching low-identify families (Figure 6(A)). On the other hand, reads from highly conserved ncRNA 

families are more easily detected, but may be treated as repeats and be deleted/collapsed during assembly. 
This may explain the higher performance of CMSearch when searching high-identity families (Figure 6(E)). 

Moreover, the homology search performance was also dataset-dependent. For example, CMSearch 

performed better than SGA+CMSearch in the 16s rRNA search against DS3 (Figure 4(B)), but worse 

against DS4 (Figure 5(B)). The assembly-based homology search was more recalcitrant to experimental 

noise (e.g., the experimentally generated DS4), as the homology information loss of a given read due to 

sequencing error may be rescued by its adjacent overlapping reads. This may explain the higher 

performance of SGA+CMSearch when searching 16s rRNA in DS4. Nevertheless, no method 
demonstrated a consistently-high performance in all queries and datasets, except DRAGoM. This 

robustness is another advantage of DRAGoM in addition to its higher performance. 

Because DRAGoM directly operates on an assembly graph, the quality of the assembly graph will likely 

affect the performance of DRAGoM. Currently, string graph and de Bruijn graph dominate the modeling of 

sequence overlap information in de novo assembly. DRAGoM, which is based on the combination of the 

two graphical models, outperformed the use of either of them alone (i.e., SGA+CMSearch and 

SPAdes+CMSearch). The observation is consistent with our current understanding of the two models, 

where each of them has its unique advantages (where the string graph accurately represents the intact 
information and the de Bruijn graph generates more contiguous and complete assembly). 
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SPAdes+CMSearch outperformed SGA+CMSearch in most cases we have observed, suggesting that the 

reconstruction of complete secondary structure is more important than the preservation of polymorphism 

information in ncRNA homology search. However, our conjecture is by no means conclusive, as shown by 

cases where SGA+CMSearch outperformed SPAdes+CMSearch (e.g., Figure 5(B)). 
We expect to further improve the speed of DRAGoM in the future. Specifically, the efficiency bottleneck 

of DRAGoM comes from the fact that it needs to exhaustively align the querying CM with all paths generated 

from anchors. We envision two potential ways to improve DRAGoM’s speed, though improved path filtering 

heuristics and graph simplification techniques. We plan to filter out paths that have inconsistent GC content, 

coverage, and incompatible covariant mutations before the CM alignment. We also expect to reduce the 

complexity of the assembly graph through incorporating additional information, such as paired-end, long-

read, or Hi-C data if applicable [65]. DRAGoM was slower when searching long ncRNA families, as the time 

for CM alignment and the number of candidate paths to align both grow with the length. As a result, for a 
long querying ncRNA family, we plan to break it down into a set of smaller components by temporarily 

removing long-range interactions, align each small component individually, and check if the removed long-

range interactions can be recovered given the alignments. This heuristic has been proven effective in 

speeding up the alignment of RNA structural motifs with pseudo-knots while retaining satisfying alignment 

quality [66].  We anticipate significantly reduced running time of DRAGoM with the above heuristics. 

In addition to the ncRNA family abundance profile, DRAGoM may also be used to improve the 

taxonomic analysis of metagenomic datasets in two ways. First, DRAGoM can improve the traditional 16s 

rRNA-based taxonomic analysis. The existing methods first identify 16s rRNA reads from the metagenomic 
datasets, perform local assembly on the 16s rRNA reads, and then infer the taxonomy [24]. DRAGoM can 

improve this strategy in its first step via providing a more complete and reliable set of 16s rRNA reads. The 

second way that DRAGoM may improve taxonomic analysis is through facilitating the use of ncRNA families 

as taxonomic biomarkers, in a similar way as the protein taxonomic biomarkers [34, 67, 68]. However, the 

current implementation of DRAGoM does not output complete ncRNA genes, because many homologous 

paths appeared to be redundant. We plan to incorporate a more sophisticated algorithm into DRAGoM to 

infer the non-redundant set of homolog paths. One possible way would be via finding the minimum set of 
paths that cover the entire homolog-read assembly graph (as in REAGO [24]). Another way would be using 

the similar statistical methods for isoform prediction and quantification in RNA-seq data analysis [69]. We 

believe that the detection of novel ncRNA taxonomic biomarkers may help us to obtain unbiased and 

comprehensive taxonomic profiles. 

Although we have shown the potential of DRAGoM in identifying ncRNA biomarkers for characterizing 

T2D gut microbiome, the study bears potential limitations. First, the sample size (six cases vs. six controls) 

was not large enough to draw reliable conclusions regarding the ncRNA biomarkers’ predictive power, and 

we expect to include more datasets in the future. Second, all selected samples were from the female 
Chinese Han population, and the discoveries had not been validated on other populations. Therefore, the 

identified ncRNA biomarkers could resulted from overfitting and may not extend to other populations. Third, 
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the functional analysis and interpretation of the biomarkers were purely based on the existing functional 

annotation, and were subject to experimental validation. Some of the most differentially-abundant ncRNA 

families (e.g., RF00124, which ranked the top in our analysis) had no functional annotation either; therefore, 

they were not included in our functional analysis. We believe this issue will be alleviated as more 
experimental evidence is being accumulated and incorporated into ncRNA functional databases. Finally, 

the ncRNA family abundance may not correspond to their final expression levels, as the selected datasets 

were metagenomic instead of metatranscriptomic. We note that metatranscriptomic data could provide 

more direct insights into the physiological status of the microbiome, and could be a better technology for 

understanding ncRNAs function [70]. We are current working on extending DRAGoM to metatranscriptomic 

datasets. 

Finally, once the speed up of DRAGoM is fulfilled, we plan to apply it to identify more ncRNA biomarkers 

for more disease types and couple them with the existing protein biomarker for more accurate diagnoses. 
We plan to disseminate the identified biomarkers for different diseases via publicly available databases, 

which will have a great value for designing cost-effective early-diagnostic approaches based on amplicon 

sequencing or microarrays. In summary, we have developed DRAGoM, a novel algorithm for family-based 

ncRNA homology search against metagenomic sequencing data. We have demonstrated the advantages 

of DRAGoM as compared to the traditional read-based and assembly-based approaches, and its potential 

in bacterial ncRNA biomarker discovery for disease characterization using a real case-control study of T2D. 

DRAGoM is implemented using GNU C++ and Python, and is freely available from  

https://github.com/benliu5085/DRAGoM under the Creative Commons BY-NC-ND 4.0 License Agreement 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).     
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Figure Legends 

Figure 1: A schematic illustration of the DRAGoM algorithm. (A) The construction of the hybrid assembly 
graph. The hybrid graph, resulted from the merge of a de Bruijn graph and a string graph, can perfectly 
represent the original genome used in this toy example. (B) The search of ncRNA homologs against a 
hybrid graph. The green and purple parenthesis in the querying ncRNA CM (covariant model) represent 
local secondary structural components. The thick green and purple lines in the hybrid graph indicate 
anchors for path extension. Arrows indicate path extensions of the corresponding anchors.    

Figure 2: The ROC curves for searching (A) 42 non-16s rRNA ncRNA families and (B) 16s rRNA using the 
corresponding programs against DS1 (the REAGO dataset).  

Figure 3: The ROC curves for searching (A) 27 non-16s rRNA ncRNA families and (B) 16s rRNA using the 
corresponding programs against DS2 (the simulated Streptococcus dataset). 

Figure 4: The ROC curves for searching (A) 93 non-16s rRNA ncRNA families and (B) 16s rRNA using the 
corresponding programs against DS3 (the simulated marine dataset). 

Figure 5: The ROC curves for searching (A) 60 non-16s rRNA ncRNA families and (B) 16s rRNA using the 
corresponding programs against DS4 (the subsampled human gut dataset). 
 
Figure 6: The ROC curves for searching (A) 276 non-16s rRNA ncRNA families and (B) 16s rRNA using 
the corresponding programs against DS5 (the subsampled CAMI dataset). 
 
Figure 7: The clustering heatmap for the top 50 differentially abundant ncRNA families in DS6 (6 healthy 
controls and 6 T2D cases).  
 
Figure 8: The PCA plot for the top 50 differentially abundant ncRNA families in DS6 (6 healthy controls and 
6 T2D cases).  
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Tables 
 
Table 1. Summary of experimental datasets. 

Dataset Description 
No. of 
Genomes 

Abundance No. Reads  
Read 
Length 

Error 
rate 

DS1 REAGO 14 Staggered 4.6M 100 1% 

DS2 Streptococcus 8 5x 0.6M 100 1% 

DS3 Marine 28 5x 3.7M 100 1% 

DS4 Human gut 3,499 Staggered 11.2M 74 - 

DS5 CAMI 4,679 Staggered 31.3M 100 - 

DS6 T2D - - - 74 - 

 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.27.315507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315507
http://creativecommons.org/licenses/by-nc/4.0/


Table 2. Performance summary of the tested methods on DS1-DS4 (for non-16s rRNA queries). The 
highest performance of each category is bolded. 

Dataset Matrices DRAGoM SGA+CMSearch SPAdes+CMSearch CMSearch 
DS1                   Precision 89.2% 95.1% 93.4% 87.6% 

 Recall 98.3% 34.7% 91.0% 63.9% 
 F1 93.6% 50.8% 92.2% 73.9% 

 AUC 96.8% 65.2% 93.9% 77.7% 

DS2                   Precision 88.7% 94.0% 92.0% 91.9% 

 Recall 94.3% 8.4% 88.4% 49.4% 

 F1 91.4% 15.5% 90.2% 64.2% 

 AUC 93.0% 51.3% 90.7% 70.0% 

DS3                   Precision 87.4% 93.6% 91.7% 87.5% 

 Recall 92.4% 4.6% 87.6% 55.7% 

 F1 89.9% 8.7% 89.6% 68.0% 
 AUC 94.9% 49.2% 92.9% 72.9% 

DS4                  Precision 86.4% 95.7% 85.8% 77.6% 
 Recall 65.2% 23.5% 58.4% 36.9% 

 F1 74.4% 37.8% 69.5% 50.0% 

 AUC 77.4% 60.1% 73.3% 58.2% 
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Table 3. Performance summary of the tested methods on DS5 (for non-16s rRNA queries). The highest 
performance of each category is bolded. 

Dataset Matrices DRAGoM SGA+CMSearch SPAdes+CMSearch CMSearch 

Identity: <50%              
length: 100 - 200 

Precision 77.5% 89.2% 77.3% 80.7% 

Recall 81.2% 32.6% 74.3% 50.3% 
F1 79.3% 47.8% 75.8% 61.9% 

AUC 82.4% 61.7% 78.9% 66.4% 

Identity: <50%                 

length: 200 - 400 

Precision 71.3% 73.0% 72.1% 81.4% 
Recall 90.7% 35.2% 87.9% 39.5% 

F1 79.8% 47.5% 79.2% 53.2% 

AUC 87.6% 52.0% 85.2% 62.2% 

Identity: 50 - 70%           
length: 100 - 200 

Precision 85.4% 86.6% 83.4% 79.2% 

Recall 81.8% 40.4% 76.1% 78.1% 
F1 83.6% 55.1% 79.6% 78.6% 

AUC 87.8% 65.4% 82.3% 80.7% 

Identity: 50- 70%                 

length: 200 - 400 

Precision 81.5% 94.1% 78.0% 87.3% 

Recall 87.2% 31.8% 68.4% 61.1% 

F1 84.3% 47.5% 72.9% 71.9% 

AUC 85.3% 63.4% 75.0% 75.2% 

Identity: 70 - 90%                 
length: 100 - 200 

Precision 82.8% 88.8% 85.7% 77.4% 

Recall 85.7% 39.3% 75.7% 82.3% 
F1 84.2% 54.5% 80.4% 79.8% 

AUC 87.5% 65.5% 81.6% 81.6% 

Identity: 70 - 90%                 

length: 200 - 400 

Precision 83.0% 96.3% 88.5% 83.6% 

Recall 89.1% 23.0% 65.5% 73.8% 

F1 86.0% 37.1% 75.3% 78.4% 

AUC 87.5% 59.6% 77.3% 81.7% 

Identity: > 90%                 
length: 100 - 200 

Precision 74.2% 94.6% 81.8% 71.7% 

Recall 92.8% 23.6% 81.5% 85.9% 
F1 82.5% 37.8% 81.7% 78.2% 

AUC 87.7% 59.4% 83.5% 82.3% 

Identity: >90%                

length: 200 - 400 

Precision 90.1% 99.7% 94.2% 83.8% 

Recall 95.7% 17.7% 84.9% 72.3% 

F1 92.8% 30.0% 89.3% 77.6% 

AUC 93.9% 58.7% 89.5% 81.6% 
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Table 4. Performance summary of the tested methods on DS1-DS5 (for 16s rRNA queries). The highest 
performance of each category is bolded. 

Dataset Matrices DRAGoM SGA+CMSearch SPAdes+CMSearch CMSearch 
DS1                   Precision 99.9% 99.0% 100.0% 97.1% 

 Recall 99.2% 96.0% 92.4% 98.1% 
 F1 99.5% 97.5% 96.0% 97.6% 

 AUC 99.6% 98.4% 96.2% 98.8% 

DS2                   Precision 96.2% 98.7% 97.5% 96.5% 

 Recall 99.9% 99.7% 97.4% 99.5% 

 F1 98.1% 99.2% 97.5% 98.0% 

 AUC 98.1% 99.8% 97.5% 99.4% 

DS3                   Precision 99.7% 98.6% 100.0% 96.8% 

 Recall 98.6% 94.9% 87.0% 97.7% 

 F1 99.1% 96.7% 93.0% 97.2% 
 AUC 99.3% 97.4% 93.4% 98.6% 

DS4                  Precision 91.9% 97.2% 97.7% 97.0% 

 Recall 96.5% 95.0% 89.8% 79.8% 

 F1 94.2% 96.1% 93.6% 87.6% 

 AUC 94.4% 96.4% 94.1% 88.3% 

DS5 Precision 95.1% 94.7% 94.6% 94.2% 

 Recall 97.7% 96.9% 92.2% 97.6% 

 F1 96.4% 95.8% 93.4% 95.9% 

 AUC 96.8% 96.6% 94.1% 97.6% 
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