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Abstract. Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS)
experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest depend on how
optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-based brain-computer interfaces
(BCls), where developing robust systems with few optodes is crucial for clinical applications. Available resources
often dictate the approach researchers use for optode-layout design. Here we compared four approaches that
incrementally incorporated subject-specific magnetic resonance imaging (MRI) information while participants
performed mental-calculation, mental-rotation and inner-speech tasks. The literature-based approach (LIT) used a
literature review to guide the optode layout design. The probabilistic approach (PROB), employed individual
anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The
individual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth approach used individual
anatomical, functional and vascular information of the same subject (f'VASC). The four approaches resulted in
different optode layouts and the more informed approaches outperformed the minimally informed approach (LIT) in
terms of signal quality and sensitivity. Further, PROB, iFMRI and fVASC approaches resulted in a similar outcome.
We conclude that additional individual MRI data leads to a better outcome, but that not all the modalities tested here
are required to achieve a robust setup. Finally, we give preliminary advice to efficiently using resources for developing
robust optode layouts for BCI and neurofeedback applications.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable optical imaging method
used to measure brain activity via hemodynamic responses involving increased oxygen

consumption and cerebral blood flow 13, These physiological changes lead to local changes in the
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concentrations of oxy- (A[HbO]) and deoxy-hemoglobin (A[HbR]), which can be detected because
near-infrared light is absorbed by hemoglobin located in blood vessels * .

When setting up an fNIRS experiment, optical sensors (‘optodes’) are placed on the scalp,
which can be classified into sources (emitters) and detectors (receivers). Light emitted from a
source is propagated through extracerebral and cerebral tissues up to a few centimeters, where
some photons are scattered and absorbed before light reaches the detectors °. The spatial resolution
of fNIRS is therefore in the range of 5-10mm # depending on the way source-detector pairs (or
‘channels’) are arranged on the scalp °. The distance between a source and detector pair, along
with the anatomical tissues between them determines the depth of light penetration and the
sensitivity to underlying cortex . Therefore, the quality of the fNIRS signal can differ dramatically
between optode layouts.

This effect of optode layout is particularly relevant for applications requiring sparse optode
layouts, such as brain-computer interfaces (BCIls). BCls provide an alternative means of motor-
independent communication for clinical populations suffering from severe motor disabilities * by
enabling users to send commands via brain activity in the absence of motor output "8, FNIRS is a
promising choice for implementing BCls due to its portability, safety and relatively low cost  1°.
However, it remains a challenging undertaking to develop efficient, accurate and robust systems
using the limited number of optodes required for fNIRS-BCI systems to remain portable and
comfortable for clinical applications. Indeed, a number of fNIRS-based BCI studies using small
optode layouts ¢ have reported variability in the number of participants able to reach the
minimum accuracy (70% in a two-class BCI) required for practical BCI use *’. This variability

may originate from individual anatomical & *° or functional differences *° that affect fNIRS signal
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quality/sensitivity and therefore might be improved by designing optode layouts for individual
users that account for such differences.

Researchers often define a region of interest (ROI) in line with their research question and
design an optode layout in a grid-like fashion to target a specific brain area *. The simplest and
most common optode-layout design is to assign source and detector locations on the head to cover
a given cortical ROI according to the standardized 10-20 electroencephalography (EEG) system
or its extended versions 2. These locations can be related to the underlying assumed cortical
structure 2% 22 or to the standard Montreal Neurological Institute (MNI) stereotactic coordinates 23
26, This procedure has proven effective for many applications but may be suboptimal for use in
BCls. In this study, we were interested in whether incorporating additional neuroimaging data such
as anatomical or functional magnetic resonance imaging (MRI or fMRI) can improve optode-
layout design for use in BCls.

The selection of the ROIs in the procedure described above are commonly based on
anatomically defined coordinates only. However, ROIs derived from functional neuroimaging
techniques such as fMRI could increase the spatial specificity of ROI definition by accounting for
individual local differences in elicited brain activity for a given task. Once an ROl is defined, the
fNIRS community has developed several approaches to optimize optode-layout designs using
light-sensitivity profiles 1. Light-sensitivity profiles are probabilistic models of photon absorption
based on the tissues found between source and detector optodes %’. Software packages, toolboxes
and pipelines compute these profiles using Monte Carlo simulations to optimize optode layouts *
527-30 thus promising an increase on signal quality and sensitivity for BCI applications. However,
light sensitivity profile models require anatomical head data, either from an MRI-derived atlas or

from subject-specific MRI data. MRI atlases are an appealing option for computing profiles, as
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they do not require additional MRI measurements, which may be expensive, time-consuming or
generally unavailable. That said, subject-specific MRI data better capture specific anatomical and
vascular features and therefore could improve the robustness of fNIRS setups across individuals.
Considering subject-specific vascular information may be particularly relevant as vascular
structures are highly scattering and absorbing media 3! and can influence the estimates of light
sensitivity profiles 2.

Naturally, available resources for collecting additional data must dictate the approach
researchers use to design optode layouts. We therefore asked the following question: What is the
potential gain of incorporating (anatomical, functional, vascular) MRI data when optimizing
optode-layout designs for fNIRS-based BCIs? With this question in mind, we selected four
approaches that incrementally incorporated the amount of individual information from the same
participant to design subject-specific optode layouts. The first layout was the literature-based
approach (hereinafter referred to as LIT), where optodes were selected based on a literature review.
LIT represents the scenario where no additional individual MRI information is available. The
second setup was the probabilistic approach (referred to as PROB), which employed individual
anatomical data together with a probabilistic functional map derived from an independent dataset
to inform optode placement. PROB illustrates a situation where individual fMRI data is not
available, but subject-specific anatomical information and functional data from other individuals
is accessible. The third setup was the individual fMRI approach, which used anatomical data and
functional activation maps of the same individual (referred to as iFMRI). Finally, the fourth setup
was the vascular approach, which used individual anatomical, functional and vascular information

of the same subject (referred to as fVASC).
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We assessed whether different approaches resulted in distinct optode layouts and assessed
whether the quality of the fNIRS signal and the detected task-related activation (fNIRS sensitivity)
differed across optode layouts. Participants were asked to perform three mental-imagery tasks
commonly used for hemodynamic BCls, see Table S3: mental-calculation, mental-rotation and
inner-speech. We designed approach-specific optode layouts using Monte Carlo simulations and
an algorithmic procedure that used two main constraints: 1) the inter-optode distance did not
exceed the 25-40mm range in order to provide a reasonable signal-to-noise ratio * and 2) the
optode layout for each approach consisted of two channels that shared a common source.
Importantly, the second constraint allowed us to compare the four approaches within the same
functional fNIRS run. We hypothesized that each approach would lead to different optode-layout
designs and that the signal-to-noise ratio of resulting fNIRS signal would improve with more
individualized approaches. Our results show that the four approaches indeed result in different
optode layouts and that the more individualized approaches (PROB, iFMRI, and fVASC)
outperform the minimally informed approach (LIT) in terms of fNIRS signal quality and
sensitivity. Further, we find that PROB, iFMRI, and fVASC approaches produce similar signal
quality and sensitivity. Finally, we give preliminary recommendations to help researchers

efficiently use resources for developing robust and convenient optode layouts for fNIRS-BCls.

2 Materials and Methods

This experiment consisted of three separate sessions that took place in the following order: one
f/IMRI session, a neuronavigation session and an fNIRS session. The first two sessions aimed at
gathering necessary information for designing optode layouts, while the fNIRS session aimed at

acquiring data to assess/compare the designed optode layouts (see Fig.1).
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Fig 1. Overview of the present study. The study consisted of three separate sessions: one (f)MRI, one
neuronavigation and one fNIRS session. The first two sessions aimed at collecting necessary information to create the
different optode layouts for each participant. Specifically, the LIT approach used a literature review to design the
optode layout. The PROB approach used probabilistic functional MRI maps, individual anatomical data and head-
anatomy information for channel selection. The iFMRI approach used individual anatomical data and individual
functional activation maps, together with head-anatomy information for channel selection. Finally, the fVASC
approach used individual anatomical, functional and vascular data, together with head-anatomy information for
channel selection. Monte Carlo simulations were used to select the best channel pair for each approach, mental-
imagery task and participant. The selected channels were used during the fNIRS session to obtain information on
signal quality and to measure functional activity elicited by the mental-imagery tasks.

Twenty-one participants (eleven females) were recruited for the f/MRI session. From these
participants, seventeen (eleven females) took part in the neuronavigation session and sixteen (ten
females) participated in the fNIRS session (see Table 1 for a summary) as some participants
became unavailable over the sessions. Participants did not have a history of neurological disease
and had a normal or corrected-to-normal vision. The experiment conformed to the Declaration of
Helsinki and was approved by the ethics committee of the Faculty of Psychology and
Neuroscience, Maastricht University. Informed consent was obtained from each participant before

starting the experiment. Participants received financial compensation after each session.

Table 1. Summary of participants’ characteristics and involvement of different experimental sessions.
Participant ID f/MRI Neuronavigation fNIRS Gender Age range Handedness
(N=21) (N=17) (N=16)
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P01 YES YES YES Female 25-30 Left
P02 YES YES YES Female 25-30 Right
P03 YES YES YES Male 25-30 Left
P04 YES YES YES Female 25-30 Right
P05 YES YES YES Female 25-30 Right
P06 YES YES YES Female 40-45 Right
P07 YES NO NO Male 25-30 Right
P08 YES NO NO Male 30-35 Right
P09 YES YES YES Male 25-30 Right
P10 YES YES YES Female 25-30 Left
P11 YES YES YES Female 25-30 Right
P12 YES YES NO Female 25-30 Right
P13 YES NO NO Male 20-25 Right
P14 YES YES YES Male 30-35 Right
P15 YES YES YES Male 30-35 Right
P16 YES YES YES Male 25-30 Right
P17 YES YES YES Female 20-25 Right
P18 YES NO NO Male 25-30 Right
P19 YES YES YES Female 20-25 Left
P20 YES YES YES Female 20-25 Right
P21 YES YES YES Female 25-30 Right

2.1 f/MRI session

2.1.1 Data acquisition

In this one-hour long session, anatomical, functional and (brain- and scalp) vascular data were
acquired at a Siemens Magnetom Prisma Fit 3 Tesla (T) scanner at the Maastricht Brain Imaging
Center, Maastricht, The Netherlands (see Fig. 2).

We used an magnetization prepared-rapid gradient echo (MPRAGE) sequence to collect structural
T1-weighted MRI data, with the following parameters: repetition time (TR)=2250ms, echo time
(TE)=2.21ms, inversion time (T1)=900ms, flip angle (FA)=9°, number of slices=192, 1-mm
isotropic resolution, duration=5:05min. 2D Gradient Echo echo-planar imaging sequence with a
TR=1s, number of slices=36, and 3-mm isotropic resolution was used to acquire functional data.

Cerebral and pial vascular data was collected using 2D- and 3D- Time-of-Flight (TOF) sequences
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(FA=60°/18°, TR=21ms/20ms, TE=4.83/3.3ms, number of slabs=1/5, number of slices in
slab=75/40, with distance factor=-33/-20%, 0.7-mm isotropic resolution, duration=9:11/4:56min).
Finally, scalp-vascular data was obtained with a Multi-Echo Gradient Echo (GE) sequence with
four different echoes (TR=34ms, TE1/TE2/TE3/TE4=3.02/8.56/15.11/23.91ms, number of

slices=192, 0.7-mm isotropic resolution, duration= 8:06min).

2.1.2 Experimental design

Participants performed one ~13-min long functional run, where they were acoustically cued to rest
(“Rest”) or perform one of the three mental-imagery tasks, namely inner- (covert) speech
(“Speech”), mental-calculation (“Calculate”) or mental-rotation (“Rotate”). The order of the task
trials (eight per mental task) was randomized. They were instructed to covertly recite a text they
knew by heart (e.g., a poem) when they heard “Speech”. Participants were asked to calculate
multiplication tables of multiples of 7, 8, or 9 up to the decuple when they heard “Calculate”.
When they heard “Rotate”, participants had to imagine a diver jumping from a tower into the water
while he spins around several times in the air. Participants were trained on the tasks for
approximately 10min before entering the MRI scanner. During training, they had to recite overtly
the chosen text and the multiplication tables for the inner-speech and mental-calculation tasks,
respectively to ensure the speed was consistent, and to repeat the same procedure covertly until
they felt comfortable with the tasks. As for the mental-rotation task, participants watched short
clips of a jumping diver until they could comfortably imagine the movement. We instructed
participants to perform the mental-imagery tasks, which lasted 10s, until they heard the instruction
“Rest”. During resting period, participants were requested not to do any specific mental activity
and not to do/think about anything in particular for 20s (see Fig. 2 for a visualization of the run).

Participants were asked to keep their eyes closed throughout the functional run. After the session,
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participants’ strategies were noted down and saved for the fNIRS session. BrainStim v1.1.0.1
stimuli presentation software (Gijsen, S., Maastricht University, The Netherlands) was used for

both, the f/MRI and fNIRS sessions.

Session 1 (N=21) : f/MRI

30s 10s 20s Mental-imagery tasks:
<> <> <= gery
- - - - - - e - |nner_speech

T o7 Bl Mental-calculation

* D) ~. - Bl Mental-rotation
12min 40s
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Put subject  Anatomy run Functional run Vasculature runs Subject out

in scanner ~1h -

Fig 2. Schematic representation of session 1. Twenty-one participants underwent a one-hour long experiment in the
MRI scanner, during which individual anatomical, functional and vascular data were collected. During the functional
run, participants had to perform inner-speech, mental-calculation or mental-rotation for 10s each with interleaved
resting periods of 20s. Task order was randomized

2.1.3 Data analysis
Unless stated otherwise, all f/MRI data analyses were performed in Brain\Voyager QX v2.8 (Brain
Innovation B.V., Maastricht, Netherlands).

2.1.3.1 Structural data

Structural images were aligned to the plane containing the anterior and posterior commissures,
corrected for spatial-intensity inhomogeneities and brain-masked. The white/grey matter
(WM/GM) and grey matter/cerebrospinal (GM/CSF) boundaries were detected using automatic
segmentation tools. These images were inspected, manually corrected when necessary and used to
create WM and GM reconstructions of the cortical surface. In addition, the (head) skin surface was
automatically segmented and reconstructed. These reconstructions were used for the

neuronavigation session (see below).
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Cortex-based alignment (CBA) is a whole-cortex alignment scheme 343" which uses curvature
information of the cortical surface to iteratively reduce misalignment across participants and in
turn increase functional overlap on the group level . We used this approach to define our
probabilistic functional maps. For that, individual WM reconstructions of each hemisphere were
aligned to a dynamically generated group average (N=21).

2.1.3.2 Functional data

Data were pre-processed using inter-scan slice-time correction, 3D rigid-body motion correction
(applying Trilinear interpolation for detection/sinc interpolation, for correction), and temporal
high-pass filtering with a general linear model (GLM) Fourier basis set of 3 cycles/run. Functional
data of 3-mm iso-voxel resolution were spatially co-registered to the structural image by using a
gradient-based intensity-driven fine-tuning alignment.

Generation of individual functional maps

We first calculated a voxel-wise GLM. The model contained a separate boxcar predictor for each
of the mental-imagery task conditions convolved with a standard double-gamma hemodynamic
response function (onset time=0s, response undershoot ratio/time to response peak=6s/6s, time to
undershoot peak=16s, response/undershoot dispersion=1s/1s), and six additional predictors
estimated from the motion-estimation procedure in BrainVVoyager QX (translation and rotation in
X, y and z direction). Individual functional maps were created in volume space by contrasting the
particular mental-imagery task predictor vs. the rest condition (for each of the three tasks
separately) in the voxels that were part of the fNIRS-coverage mask. This mask was created to
mask out active voxels from deeper regions, as we did not expect the fNIRS signal to be sensitive
to these regions 3°, see supplementary materials Sec. A.1 and Fig. S1 for details. Activation maps

were corrected using a cluster threshold that allowed for a 5-% loss of active voxels. These

10
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functional maps were then sampled to surface activation maps (from -1mm to +3mm from the
GM/WM segmentation boundary).

Generation of probabilistic maps

While it is not uncommon for researchers to have previously acquired anatomical MRI data of the
same participant 3% 40 having individual anatomical and functional data of the same participant
represents a less likely scenario . In the absence of individual functional data, probabilistic
functional maps can be generated from other individuals whose functional data are available.
Probabilistic functional maps were created separately for each participant and mental-imagery
task following a leave-one-subject-out procedure #1. For each participant, surface activation maps
from the remaining participants were aligned using individual transformation files derived from
the CBA approach. It should be noted that MR vs. Rest map from P08 was excluded from
subsequent analyses as the participant reported not being able to perform the mental-imagery task
correctly and having used an alternative cognitive strategy instead. Thus, the probabilistic maps
for each participant were created based on N=20 participants for the 1S and MC tasks and based
on N=19 participants for the MR task. We discarded mesh vertices that were active in less than
20% of the sample size for each task and hemisphere. The resulting probabilistic maps for each
hemisphere were transformed back into individual volume space (by interpolating from -1mm to
+3mm from the GM/WM segmentation boundary) and smoothed with a 2mm full-width-half-
maximum kernel. The final maps (three per participant) were used as region of interests for Monte

Carlo simulations (see Sec. 2.3.2). Examples of probabilistic maps are shown in Fig S2.
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2.1.3.1 Vascular data
Cerebral and Pial vasculature

2D and 3D TOF data were aligned individually to an up-sampled version (0.7-mm isotropic
resolution) of the anatomical data of the same session for each participant, following the same co-
registration approach as for functional maps described above. Vascular data were segmented with
automatic segmentation tools in BrainVoyager QX (intensity-based segmentation) and the
software Segmentator (intensity gradient-based segmentation #?) and manually corrected when
necessary. The latter was done using ITK-snap “ and BrainVoyager QX. The segmented vascular
structures from 2D and 3D TOF data were then combined and were down-sampled to 1-mm
isotropic resolution. The analyses procedures are summarized in a flow-chart diagram (Fig. S3)
and an example reconstruction is shown in Fig. S4.

Scalp vasculature

All four echo images derived from the multi-echo GE protocol were first aligned to the 0.7-mm
isotropic resolution anatomical images for each participant. We then isolated the extracerebral
tissues by masking out the brain using FSL BET v5.0 *. Depending on which image(s) showed
higher contrast for vascular structures, segmentation was performed manually in BrainVVoyager
QX using a combination of the four echoes or using the later echo images, i.e., TEz=15ms and
TE4=23ms, which showed higher contrast for vascular structures than earlier echoes. The
segmented vascular structures were then down-sampled to 1-mm isotropic resolution. The analyses
procedures are also summarized in the flow-chart diagram provided in Fig. S3 and an example

reconstruction is shown in Fig. S4.
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2.2 Neuronavigation session

Seventeen of the originally included 21 participants underwent this session, as P07, P08, P13 and
P18 dropped out of the study. A neuronavigation system (Zebris CMS20 ultrasound system, Zebris
Medical GmbH, Isny, Germany) in combination with Brain\Voyager QX 2.1 TMS Neuronavigator
software (Brain Innovation, Maastricht, Netherlands) was used to acquire the coordinates of 130
EEG positions for each participant (see Fig. 3). These 130 locations were determined based on the
layout of EasyCap 128Ch ActiCap (EasyCap GmbH, Herrsching, Germany) whose size was
selected based on individual head sizes. First, the head circumference for each participant was
measured using a measuring tape. The cap was placed on and was secured using a chin band. Next,
its position was adjusted so that the Cz location would be exactly half the nasion-inion distance.
The inion was defined as the top part of the pronounced structure in the occipital region. In order
to ensure that the cap was not tilted or shifted to one side, the distance between the left and right
pre-auricular points was measured and the cap was gently moved in this virtual coronal plane until
Cz was located half this distance. The preauricular points were defined as the location where the
mandibular bone moves with the opening and closing of the mouth. Finally, the cap was secured
with medical tape on the forehead to prevent any unwanted cap shift. The Cz location details (in
terms of nasion-inion and pre-auricular distance) together with the cap size were noted down for
the fNIRS session.

Single ultrasound markers (three in total) were attached to the participant’s head using adhesive
stickers. Next, three reference points (inion and left and right preauricular points) defined on the
participant’s head were used for the co-registration of the structural MRI image with the
participant’s head in the external (real) world. Once these steps were completed, the 130 EEG

locations marked on the cap were digitized. The session lasted approximately 1h.
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Fig 3. Schematic (left) and reconstructed (right) locations recorded during the Neuronavigation session. This
layout is an extension of the international 10-20 system, it contains 130 locations and the nomenclature is based on 2°.
The Cz location is indicated with a red circle. The schematic representation is based on the NIRx montage editor
template, while the reconstructed locations belong to participant P04.

2.3 fNIRS session

2.3.1 Participants

P12 dropped out of the study. Thus, 16 of the 17 participants that participated in the fMRI and
neuronavigation sessions took part in this session, out of which ten were female (mean

age=29.81+5.22).
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2.3.2 Designing approach-specific optode layouts

This process can be divided into three main stages: channel sensitivity computation, channel
selection and building a participant-specific layout (see Fig. 4 for a summary). The first stage
aimed at computing the channel-sensitivity profiles using Monte Carlo simulations. Each of the
four approaches had a unique combination of ROI definition/type, software and brain model used
to compute the simulations. During the second stage, the most-informative channels were selected
for each of the four approaches, based on the solution to an optimization problem subject to a set
of constraints. The first and second stages were repeated until approach- and task-specific optode
layouts were created (twelve per participant, since there were three tasks and four approaches).
The last stage aimed at combining all optode layouts into a single one individually for each

participant.

2.3.2.1 Channel sensitivity to ROl computation

All four approaches (LIT, PROB, iFMRI, fVASC) were based on the light sensitivity profiles to a

given ROI, but they differed in the following aspects (see Table 2 for a summary):

1. Software for Monte Carlo simulations

The LIT approach represents a scenario where no individual MRI anatomical data is
available and the target ROI is selected based on a literature review. Given such scenario,
FOLD toolbox *° provides an easy way to compute the sensitivity profiles to the selected
ROIs. This is because FOLD uses atlas head models as inputs to the Monte Carlo simulation
and offers different brain parcellation atlases for ROI definition in the target head-model
space. In addition, it is freely available, easy to install and has a user-friendly graphical

interface. FOLD uses MCX package *° to compute the light sensitivity profiles of optodes
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placed in pre-defined locations on the scalp, namely points corresponding to the extended
10-10 and 10-5 systems (130 points in total). It then provides a list of channels with the
highest sensitivity to the ROI that can be exported for subsequent computations. PROB,
iIFMRI and fVASC approaches represent scenarios where individual MR anatomical data
are accessible. Since FOLD does not offer the option of using individual head models to
compute Monte Carlo simulations, these were computed using the MCX package directly
through its MATLAB interface (v2015b, The MathWorks, Inc., Natick, Massachusetts,

United States).

2. Head models and tissue segmentations

Monte Carlo simulations require the anatomical head models to be segmented into different
tissues. This is necessary for photon-transport simulations as different tissues of the human
head present different optical properties (absorption, scattering, anisotropy and refraction).
For the LIT approach, we used the MNI Colin27 head atlas (the default atlas available in
FOLD). FOLD uses a five-layer segmentation of the MNI Colin27, which consists of scalp,
skull, CSF, GM and WM tissues. For the remaining approaches, a five-layered model was
created from the individual anatomical images using a hybrid segmentation algorithm “°,
This algorithm, developed in MATLAB and available upon request from the authors, takes
as input the standard GM and WM segmentations of a T1-weighted image from FreeSurfer
and applies sequential morphological operations implemented in iso2mesh tools to
accurately reconstruct skull, scalp, and CSF layer thickness. The GM and WM segmentation
images were created in FreeSurfer v06 “¢ using the standard processing stream (recon —all,
which took ~10 h per participant). The resulting tissues from the hybrid segmentation

algorithm were converted into compatible BrainVoyager QX files to visually inspect and
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manually correct them if necessary. Although GM and WM segmentation files had been
created in BrainVoyager QX in a previous step (see Sec. 2.1.3.1), the automatic segmentation
in BrainVVoyager usually disregards the cerebellum. We thus used the segmentations from
FreeSurfer to create a head model for Monte Carlo simulations. From the corrected
segmentation files, a single image file was created by assigning integer values ranging from
1 to 5 to the different tissues (as in FOLD). Specifically, voxels corresponding to scalp were
assigned the value 1, voxels corresponding to skull were assigned value 2, CSF 3, GM 4 and
WM 5. The remaining voxels were assigned value 0 (air). We ensured that voxels inside the
head were not assigned the value 0 by first identifying them and subsequently assigning the
value dictated by their direct neighbors.

The fVASC approach differed from the PROB-based and the iFMRI-based approaches
in that vascular structures were included in the head model. For that, both pial/brain and
scalp vasculature segmentations were combined and included as the sixth layer. To prevent
voxels being assigned to two different tissues simultaneously, all voxels considered as
vascular tissue were removed from the remaining five tissues. Importantly, our
segmentations could not distinguish veins from arteries and all voxels were treated as veins.

Both, five- and six-layered models are shown in Fig. S5.

3. Optical properties

For comparability purposes across approaches, we used the average optical properties across
four NIRS wavelengths (690, 750, 780 and 830nm) as in FOLD. We defined the optical
properties of vascular structures based on the scattering, absorption and anisotropy values
provided by 3. We refer the reader to the Supplementary Tables S1 and S2 for computation

details and Table 2 summary table of the optical properties used in the present study.
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4, ROI selection and definition

The ROIs for the LIT approach were selected based on a literature review of the three mental-
imagery tasks used in this study (we refer the reader to the supplementary materials Sec. A.2
and Tables S3 and S4 for a summary of the reviewed studies and the selected ROlIs,
respectively). These ROIs were defined in the MNI Colin27 brain based on the Jilich
histological atlas available in FOLD. The selected ROIs for the PROB-based approach were
the active regions of the individual probabilistic mental-imagery maps. For iFMRI and the
fVASC approaches, individual mental-imagery contrast maps were used as ROIs (see Sec.

2.1.3.2).

5. Inter-optode distance

FOLD performs the Monte Carlo simulations on neighboring optical positions of 10-10/10-
5 systems only (that have a median inter-optode distance of 36mm) to avoid too long
distances that cannot provide measurements with a proper signal-to-noise ratio *°. For PROB,
iIFMRI and fVASC approaches, we only considered channels whose inter-optode distance
was in the range of 20-45mm for Monte Carlo simulations. The number of channels differed
across participants as the inter-optode distance could differ with varying head size/shapes

across participants (see Table 3 for participant’s cap size).

6. Computation of the sensitivity of a channel to a given ROI

Monte Carlo simulations are used to calculate the fluence distribution produced by a source
transmitting light into a highly scattering medium %. By taking the product of the source and
detector fluence distributions (also known as adjoint field), the photon measurement density
function can be calculated #’. This is equivalent to the light sensitivity profiles mentioned

earlier. FOLD calculates channel-wise normalized sensitivity profiles from the adjoint field
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by scaling the adjoint field with the sum of sensitivity of all voxels, so that each voxel
represents percentage sensitivity to the whole volume. Then, the sensitivity of a channel to
a given ROI is computed as a weighted mean of the voxels within the ROI to the sensitivity

of voxels corresponding to the brain (GM and WM):

nVoxROI
S€NSchk * Wk

(1)

chanSens, brainSens, - w’

k=1

where nVoxROI corresponds to the number of voxels comprising the target ROI, sensch
is the normalized sensitivity value for channel ch and voxel k, brainSensch is the normalized
sensitivity of channel ch of all GM and WM voxels, and w corresponds to the value (weight)
of the voxel k in the target ROI (adapted from 0).

The four approaches differed in the nVoxROI and the w parameters. The LIT approach
assumed that all voxels belonging to a particular (anatomical) ROI contributed equally to the
computation of the sensitivity of a channel to a given ROI and thus all weights were set to
one. The PROB approach used probabilistic functional maps that represent the percent
overlap of voxels across participants and thus weights ranged between 0 and 100%. As for
iIFMRI and fVASC, they relied on individual functional activation maps whose weights

represent t-statistic values and ranged between 0 and 15.

For the LIT approach, channel sensitivity to a given ROl was computed separately for 10-10
and 10-5 systems as they cannot be computed simultaneously in FOLD. FOLD allows choosing
the minimum value of the channel sensitivity to a given ROI to select/discard channels. We set

this threshold to 0% in order to select all channels that were somewhat sensitive to the target ROI
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and combined the list of output channels for every ROIs that was used for each mental-imagery
task. If a channel appeared multiple times for a task, we selected the highest sensitivity value
among all instances. As for the remaining three approaches, all channels that were considered for
the Monte Carlo simulations together with their associated sensitivity values were selected as input

to the next step.

Table 2. Comparison between Monte Carlo simulation approaches.

FOLD DIRECT MCX

Approach where software is LT PROB, iFMRI, fVASC

used

Number of simulated 108

photons

Source modelling Pencil source

Detector modelling Pencil source

Source/detector locations 130 points according to extended 10-20 EEG 130 points according to extended 10-20
systems (defined using Mesh2EEG?) EEG system + subject-tailored (derived

from Neuronavigation session)
Channel definition criterion Neighboring optical positions on 10-10 / 10- Inter optode distance range of 20-45mm
5 systems (median inter-optode distance of
36mm)

Anatomical model MNI Colin 27 Individual anatomy (Individual space)

Number of tissues 5 5-6

Wavelength (nm) mean(690, 750, 780 830)

Optical properties Used? Tissue Ms (mm-1) g pa (mm-) n Used?
Yes Scalp 0.72 0.01 0.017275 1 Yes
Yes Skull 0.92 0.01 0.011925 1 Yes
Yes CSF 0.01 0.01 0.002500 1 Yes
Yes Gray matter 1.10 0.01 0.019500 1 Yes
Yes White matter 1.35 0.01 0.016900 1 Yes
no Vasculature 1.35 0.01 0.016900 1 Yes

Resolution 2x2x2 mm 1xIximm

ROI type Anatomical (Literature review + Juelich brain Functionally derived

parcellation)
Output type Anatomical sensitivity (in %) to a given ROI Anatomical sensitivity (in %) to a given ROI
Platform for MCX simulations Ubuntu 16.04.02 LTS (Xenial Xeurs) with Ubuntu 16.04.4 LTS, Intel(R) Xeon(R) CPU
Intel Xeon E52650 v3 2.3 GHz, GeForce Gtx E5-2697 v2 @ 2.70GHz, 256 GB RAM, Tesla
770 and CUDA 8.0 K20Xm and CUDA 9.1.85

Multimodal Neuroimaging Laboratory; ps/g/ua/n: scattering/anisotropy/absorption/refraction parameters.

2.3.2.2 Optimization of the optode layout

We determined the most informative set of channels (separately for each approach and mental-
imagery tasks) by maximizing their total sensitivity to the target ROI. The maximization problem

was subject to two constraints:
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1) The inter-optode distance did was limited to the 25-40mm range. We used individual inter-
optode distance measures derived from the neuronavigation session for this step. It is important to
note that this was applied to all four layouts (thus including the layout based on the LIT approach).
The FOLD toolbox (used for LIT approach) uses near-neighbor channels with a median inter-
optode distance of all channels to be 36mm, in MNI space®. We used this additional information
to ensure that (1) all channels were in the 25-40mm range in the subject-specific space, and that
(2) the signal-quality standards for all approaches were as similar as possible.

2) The optode layout for each approach consisted of two channels that shared a common detector
(thus including three optodes per approach). Since we did not distinguish between sources and
detectors in the Monte Carlo simulations, it is important to realize that the sensitivity of the channel
will remain the same whether one considers optode X a source and optode Y a detector, or vice-
versa. However, due to the second constraint, the algorithm may select a different channel pair that
maximizes the total sensitivity to the ROI depending on which optode is considered a source or a
detector. To ensure that as many candidate channels as possible were considered during the
optimization approach, the optimization problem was solved twice: (1) using the original channel
pool that consisted of all optode pairs that were considered for the Monte Carlo simulations (on
average, there were 633.25 channels [SD=44.13] across participants); (2) considering their
swapped versions (sources were considered detectors and vice-versa).

We followed an iterative approach to address the optimization problem. It begins with the
construction of an empty solution, where no optode pair is selected. The algorithm then prunes the
optode pairs that do not satisfy the inter-optode distance range constraint. Next, the algorithm ranks
all possible optode pairs according to their contribution to the total sensitivity and selects one pair

as the seed in each iteration. The algorithm then transfers the selected optode pair to the solution
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matrix and it removes from the list the channels that do not share the same detector. Next, it selects
the first channel from this list (i.e., the one with the highest sensitivity). Since the target number
of channels (=2) has been reached after this step, the accumulated total sensitivity of the selected
two channels and the source-detector indices are stored in the solution matrix. These steps are
repeated until all optode pairs are used as seeds. Finally, the two channels that lead to the highest
total sensitivity for either constraint set constitute the selected channels for creating the setup.

2.3.2.3 Creating the setup
Mental-imagery task selection

Two out of the three mental-imagery tasks that participants performed during the f/MRI session
were selected for the fNIRS session. This measure was necessary as pilot measurements performed
with optode layouts designed to account for all three tasks elicited high discomfort in participants.
This decision ensured that the optode setup would maximally consist of 24 optodes (3 optodes per
layout x 4 approaches x 2 motor-imagery tasks), which should constitute a reasonably comfortable
setup for participants and thus should prevent them from withdrawing from fNIRS recordings due
to setup-related discomfort 350, This selection was carried out at the individual subject level. For
that, we first calculated the number of overlapping channels across all four layouts for each mental-
imagery task, and selected the two tasks with the least number of overlapping channels. An
additional step was used in case this approach was not sufficient to select the two tasks, where we
computed the center of gravity (COG) for all four layouts per mental-imagery task and calculated
the distance between COGs. The tasks with the least number of overlapping channels and highest
distance between them were the selected tasks. See Supplementary Table S5 for a summary of the
mental-imagery task selection procedure and Table 3 for the resulting selected task pair per

participant.
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Combining all channels into a single layout

The eight layouts (four per task) were combined manually into a single one. This was first carried
out digitally to simulate the final arrangement using schematic representations of source and
detector positions. It consisted of two steps: an initial step combined all four layouts for each
mental-imagery tasks and both layouts were combined into one in the second step. It could be that
the source-detector arrangement was not compatible across layouts (within or across mental tasks),
since a source in a given channel cannot be a detector in another one (or vice versa). To account
for such possibility, we first swapped sources for detectors in the problematic spots. This step
solved the compatibility problem in all but four participants (P05, P16, P17 and P19). For these
participants, using a different mental-imagery task combination solved the issue (see
Supplementary Table S5). Since the fNIRS system used in this study uses lighter wires for sources
than for detectors, we rearranged sources and detector positions in all participants (when possible)
to maximize the number of sources while preserving the channels defined in the optimization step.
It is important to note that each participant ended up with a unique optode layout, with a varying

number of optodes (see Table 3 and Fig. S6).
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Optode layout creation
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Fig 4. Summary of the key steps involved in optode-layout design for each of the four approaches evaluated in
the present study. The process was divided into three main stages: (1) channel sensitivity to ROl computation, (2)
channel selection and (3) building a subject-specific layout. For the first stage, each of the four approaches had a
unique combination of ROI definition/type, software and brain model used to compute the Monte Carlo simulations.
During the second stage, the most-informative channels were selected for each of the four approaches and two mental-
imagery tasks. The last stage combined all the layouts into one. LOO = leave-one-out; COG = center of gravity; NN
= neuronavigation.

2.3.3 Experimental design

The fNIRS experiment consisted of one session that lasted approximately 1.5h. During this time,
participants performed six, around 8-min long functional runs. In each of the runs, participants
were acoustically cued to perform one of the two mental-imagery tasks selected for them or to rest.
Six, 10-s long trials were presented for each mental-imagery task, interleaved with a jittered rest
condition with mean duration of 22s (jittering was of + 2s), see Fig. 5. Thus, participants performed
60 trials for each mental-imagery task across the six runs. Trials were pseudo-randomized across
runs. Participants were instructed to use the same strategy they used in the scanner (first session).
For that, participants were given a document prior to the fNIRS experiment where their strategies
had been noted down. Participants were asked to avoid any potential jaw movements during the

functional runs and to keep their eyes closed throughout the run.
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Session 3 (N=16) : fNIRS
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Fig 5. Schematic representation of a functional run during the fNIRS session. During each mental-task period,
participants were acoustically cued to perform one of the two mental-imagery tasks for 10s while keeping their eyes
closed. When participants heard “rest”, they were asked to stop the task and await the next instruction. Abbreviations:
IS= inner-speech; MC = mental-calculation; MR= mental-rotation.

2.3.4 fNIRS signal acquisition

fNIRS data were recorded using a continuous-wave system (NIRScout-816, NIRx, Medizintechnik
GmbH, Berlin, Germany). The optode setup varied across participants, but they had some features
in common: all setups contained eight sources and eight short-distance channels (SDC). The SDCs
were formed by short-distance detectors placed at 8mm from a given source. The inter-optode
distance of the standard channels (here on called normal-distance channels, NDC) ranged from 25-
40mm. Sources emitted light at wavelengths 760nm and 850nm, and the light intensity acquired
at the detector side was sampled at 7.8125Hz. The fNIRS cap was placed for each participant
according to the measurements taken during the neuronavigation session. Besides the standard cap
fixation (using the chin band), the fNIRS cap (EasyCap 128Ch ActiCap, EasyCap GmbH,
Herrsching, Germany) was fixated onto the participant’s head with three medical tape stripes
(connecting the cap and the participant’s forehead) to assure the cap would not shift during the
measurements. In addition, a black, plastic overcap was placed on top of the fNIRS cap to

additionally prevent ambient light from reaching the spring-loaded optodes.
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Table 3. Subject-specific fNIRS-session summary and optode-layout information.

Participant  Cap Size Mental # Runs # Optodes # NDC 10D (mm)
ID (cm) tasks S|D channels Mean | Std. dev.
P01 56 MC MR 6 8 7 13 29,92 2,60
P02 56 IS MC 6 8 9 16 29,00 3,48
P03* 58 IS MR 6 8 6 16 34,06 6,84
P04 56 MC MR 6 8 10 15 31,60 4,79
P05 60 IS MC 6 8 4 12 30,67 4,52
P06 56 MC MR 6 8 9 14 31,07 4,20
P09 60 MC MR 6 8 5 9 29,33 4,42
P10 56 MC MR 6 8 7 10 30,40 4,12
P11 56 MC MR 6 8 4 12 30,17 3,19
P14 58 MC MR 5 8 6 11 31,09 3,14
P15 58 MC MR 5 8 5 10 31,70 4,64
P16 58 MC MR 6 8 8 12 31,58 3,42
P17 56 MC MR 6 8 5 11 30,18 4,33
P19 56 MC MR 6 8 7 12 29,83 2,79
P20 56 MC MR 6 8 10 15 31,13 4,50
pP21* 54 IS MR 6 8 10 14 29,07 3,25

Note: P03 and P21 were excluded from data analysis (see participant exclusion criteria)
Abbreviations: NDC= normal distance channels; IOD= inter-optode distance; MC = mental-calculation; MR= mental- rotation.

2.3.5 fNIRS data analysis
2.3.5.1 Participant exclusion criteria

Two of the sixteen participants, P03 and P21, were excluded from subsequent analysis for different
reasons. The optode layout for PO3 was created based on a different inter-optode distance range
criterion than the rest of the participants (25-45mm vs. 25-40mm). This is because P03 was the
first participant who participated in the fNIRS session and the original inter-optode distance range
was expected to provide reasonable signal quality. However, this range proved to be suboptimal
as four NDC and three SDC did not survive the coefficient of variation threshold (CV < 7.5%), a
metric used to estimate the signal-to-noise ratio for each channel ®. Given the restricted number

of channels comprising each layout, we created the layouts for the rest of the participants using a
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more conservative inter-optode distance range criterion (25-40mm range, see first constraint in
Sec. 2.3.3) to ensure that all (or as many as possible) channels survive the CV threshold. Thus,
P03 was excluded for comparability reasons. As for P21, the data was corrupted and could not be

retrieved.
2.3.5.2 Preprocessing

For every subject and run, the raw optical intensity data series were converted into changes in
optical density (OD) values using Homer2 %2, CV values were calculated for the entire run for
each channel and those with a CV >=7.5% were discarded from the analysis (see Fig. S7). Next,
the motion detection algorithm hmrMotionArtifactByChannel was applied to the OD time-series
to identify motion artifacts in each channel. We used the following parameters: AMPThresh=0.15,
tMotion=0.5 and tMask=2. The SDThresh parameter ranged between 8 and 10 across participants.
Motion artifact identification was visually assessed by experimenter AB and was manually
corrected in case it was necessary. Motion artifacts were divided into spikes and baseline shifts.
Baseline shifts were corrected using hmrSplinelnterp algorithm in Homer2 (p=0.99), while
hmrMotionCorrectWavelet algorithm in Homer2 (iqr=0.5) was used to correct for the spike
artifacts only in the channels where motion artifacts had been detected (Fig. S8 summarizes the
detected number of motion events per participant). Then, motion-corrected OD data were
transformed to change in concentration values through the modified Beer-Lambert law with an

age-specific differential path length factor for each participant 3.
2.3.5.3 Assessment of degree of layout (dis)similarity across approaches
The first goal of this study was to assess whether the resulting optode layouts differed across

approaches. To do so, for each pair of approach-specific layouts we calculated the number of
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overlapping channels and the Euclidian distance between their centers of gravity. These
calculations were carried out for each mental-imagery task at the single-subject level and were
averaged across participants afterwards. In addition, frequency maps for each approach were

computed.
2.3.5.4 Single-run estimates calculation

The Short Separation Regression approach (SSR °%) was applied on the unfiltered A{[HbO]- and
A[HbR]-NDC data to remove signal from extra-cerebral layers of the head. This was done for each
NDC and chromophore by using the SDC closest to the NDC as the regressor. The SDC-corrected
time course was used as input for the ar_irls algorithm in NIRS Brain AnalyzIR Toolbox *°. This
algorithm uses an autoregressive (AR) model for correcting motion and serially correlated errors
in fNIRS. The function was adapted to use the ordinary least squares method instead of the
robustfit approach. The maximum AR model order to be considered was set to four times the
sampling rate. The design matrix included the two task predictors convolved with a standard
hemodynamic response function. The default hemodynamic response function from SPM12 was
used (double gamma function, the onset of response and undershoot 6s and 16s, respectively,
dispersion 1s, response to undershot ratio 6). The task predictor for A[HbR] was -1/3 of the A[HbO]
amplitude. In addition, a set of low frequency discrete cosine terms were defined as confound
predictors using the dctmtx function in NIRS Brain AnalyzIR Toolbox with a cut-off frequency of

0.009Hz.
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2.3.5.5 Multi-run ROI analysis

We combined the information from both channels comprising each layout to run an ROI analysis
as described in Santosa and colleagues® and expanded their procedure to account for multiple

runs:

Bror = CBchannel (2)

Covge = cCovgcT (3)

where in this study Schannel 1S the multi-run beta estimate and the Covg,.; is the multi-run covariance
matrix estimated from the concatenated residual time courses and the design matrix. Finally, c is
the contrast vector whose coefficients are 0 if the channel does not belong to the ROl and is 0.5 in

the two channels that belong to the ROI.
2.3.5.6 Multi-run block averages and contrast-to-noise ratio

The SDC-corrected and unfiltered A[HbO] and A[HbR] time courses were filtered using a zero-
phase, band-pass finite impulse response filter of order 1000, with cutoff frequencies of [0.008,
0.25Hz]. Block averages were computed for each channel and mental-imagery task by taking the
average of all trials and runs 4s before the onset of the task until 15s after the offset of the task.
The Contrast-to-Noise Ratio (CNR) as was calculated for each channel, ROl and chromophore
using the formula described by “®:

|mean(dur) — mean(pre)|

Jvar(dur) + var(pre)

(4)

where pre represents the rest period from 4s before onset of task to 0s; and dur represents the task

period from 5-15s post task-onset, as in °°.
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2.3.5.7 Statistical analysis

The second goal of this study was to compare the fNIRS-signal quality and sensitivity obtained
from the optodes placed according to the four different approaches. Group differences across
approaches in terms of CNR and ROI t-estimates were assessed using a non-parametric ANOVA
(Friedman test) and follow-up Wilcoxon paired signed rank tests, one-sided and corrected for
multiple comparison with the Benjamini-Hochberg method. Group differences were computed
considering: (1) each mental-imagery task separately and (2) all mental-imagery tasks together. In
addition, we quantified the number of participants that showed significant increase in the ROI

activation.
2.3.5.8 fNIRS data projection onto cortical surface and comparison with fMRI data

We used the inverse distance weighting (IDW) method described in °’ to interpolate fNIRS data
on the cortical surface. In short, each fNIRS channel position was defined as the point in the scalp
half way between the corresponding source and detector position. The cortical projection of each
channel was determined by taking the point in the brain reconstruction closest to the channel
position in the scalp. A sphere of radius r was centered in the projected cortical point and the
voxels inside the sphere that were labeled as GM were assigned a weight depending on how far
from the center they were located. The weight (w) was calculated as 1/d?, where d is the Euclidian
distance between the projected point (center of the sphere) and a given voxel inside the sphere. At

each cortical vertex k inside the sphere, the interpolated fNIRS data was computed as:

LW * f
n (5)

s(k) =

where n is the number of cortical projection points and f is the amplitude of the fNIRS channel

value. Here we used two cortical projection points as two channels comprised a given layout. The
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channel-specific amplitude was calculated as the average value of the normalized fNIRS signal
(computed as the channel time course divided by its peak value) in the range of 3s after task onset
to 5s after task offset. In total, four spheres with varying radii (r = {10, 15, 20, 25} mm) were used.

We used channel-specific projection weights and projection spheres to compute spatially
weighted fMRI block averages to assess the temporal correlation between fNIRS and fMRI
signals. First, voxels inside the sphere of radius r that were labeled as GM were selected and mental
imagery-specific events were extracted from each voxel’s time courses. Task-specific ROI
averages were computed by weighting the contribution of each voxel according to the projection
weights. The standard error of the weighted average was estimated using bootstrapping (with 100
resamples and sample size equal to 60% of the initial number of voxels). These steps were repeated
for every channel across all layouts in each participant. Finally, the temporal correlations of fNIRS
and fMRI block averages were computed using Spearman’s correlation.

Next to channel-specific projection weights, layout-specific projection weights were also
calculated. Their computation differed in that for the latter we used the center of gravity of each
layout on the scalp to determine the cortical projection point. Layout projection weights were used
to extract the peak and spatially weighted mean t-estimates of individual fMRI activation of the

voxels labeled as GM to assess how well the fNIRS ROIs targeted individual activation maps.

3 Results

3.1. Using different information sources for optode placement results in different optode-layout

designs

Figure 6 shows the mean percent overlap (top panel) and mean Euclidian distance between the

COGs of each pair of optode layouts across participants (bottom panel). The color of each cell
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indicates the standard error of the mean. The LIT approach contained no channels that overlapped
with the remaining approaches for neither mental-calculation (MC) nor mental-rotation (MR)
tasks. Channels placed according to the PROB approach partially overlapped with those from
iIFMRI and fVASC approaches for MC task. Channels from iFMRI and fVASC approaches
overlapped the most, with an average 85.71% [SE = 8.17] for MC and 41.67% [SE = 14.86] for
MR. Regarding IS task, PO5 showed an overlapping channel between PROB and fVASC layouts
(P02 had none). The mean Euclidian distance between the COGs was considerably high (>55mm)
for almost all pair of layouts, which indicates that layouts were located in spatially separated areas.
IFMRI and fVASC layouts were located, on average, in close proximity for the MC task (6.45mm
[SE =5.64]) and to a lesser extent for MR (42.22 mm [SE = 13.32]). Similarly, the frequency maps
shown in the Fig. S9 indicate that (1) the selected channels vary considerably across participants
for PROB, iIFMRI and fVASC approaches; and (2) iFMRI and fVASC show the highest and most
similar spatial extension for MC and MR tasks. As for inner-speech (IS) task, the Euclidean
distance ranged between 9.08 mm (PROB- fVASC) and 100.19 mm (LIT- iFMRI) for P05 and

between 26.83 mm (LIT-PROB) and 75.98 mm (LIT- iFMRI) for P02 (not shown in Fig. 6).
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Fig 6. Assessment of degree of layout (dis)similarity across approaches. (a) Average number of overlapping
channels for each pair of approach-specific layouts for MC (left) and MR (right) tasks. The numbers in each cell
represent the average number of overlapping channels (a) or the average Euclidian distance between COG (b) for each
pair of approach-specific layouts for MC (left) and MR (right) tasks. Colors represent the standard error of the mean.
Abbreviations: MC = mental-calculation; MR= mental-rotation.

3.2. Significant differences in fNIRS-signal quality across the four optode-placement approaches

The Friedman test was computed separately for each chromophore (A[HbO] and A[HDbR]) and
considering (1) all mental-imagery tasks together and (2) each mental-imagery task separately. For
A[HbO], CNR significantly differed across layouts (Fr = 41.63, df 4,14, p < 0.0001) when all
mental imagery tasks were considered together. CNR also differed significantly across layouts for
MC (Fr = 24.67, df 3,14 p<0.0001) and MR (Fr = 25.72, df 3,12 p<0.0001). Post-hoc pairwise
comparison results with the Wilcoxon signed-rank test and the Benjamini-Hochberg correction

method are summarized in Fig. 7. These tests revealed significant differences when all mental-
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imagery tasks were considered together. Specifically, optodes placed using the LIT approach
measured significantly lower CNR values compared to the other three approaches (1) when all
mental-imagery tasks were considered together (q[FDR]<0.001), (2) for MC only (q[FDR]LiT-rroB
<0.01, q[FDR]uiT-irmr1 <0.001 and q[FDR]LiT-fvasc <0.05) and (3) for MR only (q[FDR] <0.001).
In addition, channels placed according to the PROB-derived layout reached significantly lower
CNR values than those from the fMRI (gq[FDR]pros-irmri <0.001) and fVASC (q[FDR] pros-fvasc
<0.05) approaches.

As for A[HbR], CNR significantly differed across layouts (Fr = 18.32, df 4,14, p <0.001) when
all mental imagery tasks were considered together. CNR also differed significantly across layouts
for MC (Fr = 7.98, df 3,14, p<0.05) and MR (Fr = 8.23, df 3,12, p<0.05). Post-hoc pairwise
comparisons revealed that the LIT approach reached significantly lower CNR values when all
tasks were considered together for all other layouts (Q[FDR]LiT-pros<0.05, q[FDR]LiT-iFrmr1 <0.001
and g[FDR]uit-fvasc <0.01). It also reached significantly lower CNR values compared to the iFMRI

layout for the MR task (q[FDR]Lit-irmr1 <0.01).
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Fig 7. CNR-based group comparison across layouts. Results were evaluated separately for A[HbO] (a) and A[HbR]
(b), when all three mental-imagery tasks were considered together as well as separately for MC and MR tasks (left,
middle and right column, respectively). LIT performed significantly worse than the PROB, iFMRI and fVASC
approaches for both chromophores when all tasks were considered together. A similar pattern was observed for MC
and MR tasks for A[HbQ]. Gray dots represent single-subject CNR values for a given mental-imagery task. Whiskers
represent the 1.5 times the inter-quartile range. Significant parwise differences (calculated using Wilcoxon signed-
rank test, one-sided and corrected for multiple comparisons) are indicated with asterisks: *** = ¢[FDR] < 0.001; **
g[FDR] < 0.01;* q[FDR] < 0.05. Abbreviations: MC = mental-calculation; MR= mental-rotation.

3.3 Significant differences in fNIRS-sensitivity across the four optode-placement approaches

3.3.1. T-statistics

For A[HbO], ROI t-statistics significantly differed across layouts (Fr = 31.66, df 3,14, p < 0.0001)
when all mental-imagery tasks were considered together (see Fig. 8). It also differed significantly
across layouts for MC (Fr = 23.18, df 3,14 p<0.0001) and MR (Fr = 14.06, df 3,12 p<0.005). Post-
hoc pairwise comparisons (signed-rank tests, one-sided) revealed that optodes placed using LIT
approach measured significantly lower t-statistics compared to the other three approaches (1) when
all mental-imagery tasks were considered together (q[FDR]<0.001), (2) for MC only (q[FDR]vLr-

proB <0.01 and q[FDR]viT-irmrI; LiT-fvasc <0.001) and (3) for MR only (q[FDR] <0.01).
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A[HbR] ROI t-statistics significantly differed across layouts (Fr = 27.48, df 3,14, p < 0.0001)
when all mental imagery tasks were considered together. It also differed significantly across
layouts for MC (Fr = 15.46, df 3,14, p<0.01) and MR (Fr = 10.56, df 3,12, p<0.05). Post-hoc
pairwise comparisons showed a similar trend as HbO: LIT approach measured significantly lower
CNR values compared to the other three approaches for almost all comparisons. In addition, the
optodes placed according to the PROB approach measured significantly lower CNR than iFMRI

(a[FDR]proB-irmr1 <0.01) and fVASC (g[FDR]proB-fvasc <0.05).
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Fig 8. t-statistic based group comparison across layouts. Results were evaluated separately for A[HbO] (a) and
A[HbR] (b), when all three mental-imagery tasks were considered together as well as separately for MC and MR tasks
(left, middle and right column, respectively). LIT performed significantly worse than the PROB, iFMRI and fVASC
approaches for both chromophores when all tasks were considered together. A similar pattern was observed for MC
and MR tasks for both chromophores. Gray dots represent single-subject t-values for a given mental-imagery task.
Whiskers represent the 1.5 times the inter-quartile range. Significant parwise differences (calculated using Wilcoxon
signed-rank test, one-sided and corrected for multiple comparisons) are indicated with asterisks: *** = g[FDR] <
0.001; ** q[FDR] < 0.01; *q[FDR] < 0.05. Abbreviations: MC = mental-calculation; MR= mental-rotation.

3.3.2. Percent of participants with significantly active ROIs

Figure 9 shows the percent of participants that resulted in significant activation for each
mental-imagery task. For both chromophores, the percent of participants with significant ROI

activation increased with increasing the amount of individualized information, and plateaued after
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including individualized functional maps (for MC task) or was slightly reduced after including
vascular information (MR task). For the IS task, PROB and fVASC approaches and PROB and
iIFMRI approaches contained significant ROI activation for both participants (100%) regarding
A[HbO] and A[HbR], respectively. As for MC and MR tasks, the number of participants with
significant activation was higher for more individualized approaches than the LIT approach.
Specifically, for the MC task, the LIT approach contained significant ROI activation in 7% (one)
participant for both chromophores, while the PROB approach reached significant ROI activation
in 57% (eight) and 43% (six) participants for A[HbO] and A[HbR], respectively. iFMRI and
fVASC approaches contained significant ROI activation in 79% (eleven) participants for both
chromophores. For the MR task, the LIT approach reached significant activation in 0% and 17%
(two) participants, while the PROB approach reached significant activation in 42% (five) and 33%
(four) of the participants, while iIFMRI and fVASC approaches contained significant ROI
activation in 33% (four) and 42% (five) participants for both chromophores, respectively. Figure
S10-A shows examples of participants with typical hemodynamic responses (a positive deflection
in A[HbO] and a negative deflection in A[HbR]) for the four approach-specific optode layouts,
while Fig. S10-B shows examples of participants with weak/inverted hemodynamic responses for

the four approach-specific layouts.
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Fig 9. Percent of participants that resulted in significant activation for each mental-imagery task, optode layout
and chromophore. For both chromophores, the percent of participants with significant ROl activation increased with
increasing the amount of individualized information used to create optode layouts until a certain point: it plateaued
after including individualized functional maps (for MC task) or was slightly reduced after including vascular
information (MR task). Abbreviations: 1S= inner-speech; MC = mental-calculation; MR= mental-rotation.

3.4. Spatial specificity of fNIRS-ROIs

To assess how well the fNIRS ROlIs targeted individual fMRI activation maps, we computed
weighted average and peak fMRI responses within the regions of the cortex interrogated by fNIRS
channels. The two plots in Fig. 10a show results for sphere with r=20mm that both the average and
peak responses for LIT are significantly lower than the other approaches (significance assessed by
signed rank test, one-sided FDR corrected). Using different sphere sizes did not affect the results
(data not shown). The temporal correlation between fNIRS and fMRI time courses (bottom plots
in Fig. 10b) showed a similar tendency but with smaller differences for A[HbO] (and examples of

both fNIRS and fMRI time courses are shown in Fig. S11).
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Fig 10. Assessment of layout specificity to fMRI activation maps (a) and of the temporal correlation between
fNIRS and fMRI time courses (b). Peak and average values extracted from fMRI activation maps were highest for
channels placed according to iFMRI and fVASC approaches and lowest for the LIT approach, independent of the size
of projection spheres used to extract the values (data not shown). Times courses of channels placed according to the
LIT approach showed significantly lower temporal correlations with fMRI-signal time courses than following the
iFMRI and fVASC approaches. Significance was assessed with Wilcoxon paired signed tests (one-tailed) and was
corrected for multiple comparisons. *** q[FDR] <0.001; ** q[FDR]<0.01; *q[FDR]<0.05

4 Discussion

Designing optode layouts is an essential but challenging step in the preparation of an fNIRS
experiment as the quality of the measured signal and the sensitivity to underlying cortex depends
on how sources and detectors are arranged on the scalp. This becomes particularly relevant for

fNIRS-based BCI and neurofeedback applications, where developing robust systems that use
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limited number of optodes is crucial to remain practical and comfortable for clinical applications.
From the many approaches and tools currently available to optimize optode-layout design, we
selected and compared four approaches that incrementally incorporated individual information of
participants (LIT, PROB, iFMRI and fVASC) while participants performed mental-imagery tasks
typically used in fNIRS-BCI experiments. Our results show that the four approaches resulted in
different optode layouts and that the degree of overlap varied across approaches, with the highest
overlap and smallest distance between iIFMRI and fVASC layouts. Further, time course data of
channels placed according to the LIT approach showed significantly lower CNR and t-values than
those of the channels placed according to the remaining approaches. In addition, we observed no
significant difference between PROB, iFMRI and fVASC approaches when all three mental tasks

were considered together.

4.1 Understanding the difference in performance across layouts

Lower performance of the LIT approach

Concurrent fNIRS-fMRI studies show agreement in the hemodynamic signal measured by both
modalities (at least in the motor cortex), both temporally 8 and spatially °8, but inferior in spatial
resolution when assessed with fNIRS. To assess how well the fNIRS ROIs targeted individual
fMRI activation maps, we computed weighted average and peak fMRI responses within the
regions of the cortex interrogated by fNIRS channels. As shown in Fig. 10, the average and peak
responses for LIT were significantly lower than the remaining approaches. The temporal
correlation between fNIRS and fMRI time courses showed a similar tendency. These observations
were expected since PROB, iFMRI and fVASC approaches were based on fMRI information.

However, if the individual fMRI map is used as the ground-truth measure of cerebral activity due
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to its superior resolution and higher SNR, Fig. 10 shows that the LIT approach could not capture
the underlying signal as good as the other approaches.

Several factors may have contributed to that. First, the head model used for Monte Carlo
simulations for LIT differed from the other three approaches (Colin27 head atlas vs. subject-
specific anatomical model, respectively). Although head atlases are good approximations, the
tissue geometries may significantly differ from other adult individuals *°. Second, the ROI
selection procedure for LIT differed from the PROB, iFMRI and fVASC approaches in that the
ROI selection for LIT was based on a literature review, while the other three approaches relied on
functional contrast maps. Due to the small number of participants for the IS task (N=2), the
following lines will focus only on MC and MR tasks. The mental-imagery instructions used in this
study differed from the reviewed studies, which may have contributed to a suboptimal selection of
the ROIs for the LIT approach. Indeed, the majority of reviewed papers that reported using mental
arithmetic used strategies that aimed at increasing the working memory demand and thus mainly
measured brain activation in the frontal lobe. Examples of tasks used in these studies are
subtraction to visually presented 3-digit or 2-digit numbers, or addition or multiplication of
visually presented single or double digits to/with single or double digits > 14 5%72, Here, we asked
participants to recite common multiplication tables, which is considered an easy task and thus may
have elicited lower responses in frontal and parietal areas when compared to more complex
multiplication problems "3. Regarding mental rotation, most of the reviewed work used visually
presented cues that had to be mentally rotated, such as geometric object, alphanumeric character
or hand rotations ®- 7484, In this study, we did not visually present the object to be mentally rotated,
as participants were asked to imagine a diver spinning in the air while keeping their eyes closed.

In addition, unlike the reported studies, there was no reference object to compare to the rotated
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object. The lack of visual support and a reference object could cause the recruitment of the areas
involved in the task to be slightly different or to be recruited to a lesser extent. However, we would
like to note that since we did not test the performance of approaches that use anatomical ROIs
defined on individual head models, we cannot disentangle if the lower performance of the LIT

approach is due to the head model used or whether it is due to the nature of the ROI.

No significant difference between fVASC and iFMRI layouts

The fVASC and the iFMRI approaches only differed in the number of tissues used during Monte
Carlo simulations: the fVASC condition included an additional participant-specific vascular
information. Including an additional vascular information did not result in a significant difference
compared to the iIFMRI layout at the group level. This is mainly because the generated layouts
were very similar between them, as indicated by the channel overlap across layouts and the
Euclidian distance (Fig. 6). This high similarity seems to be driven by the functional ROIs, which
was the same for both approaches. Our decision to use a small number of optodes for each layout,
the constraints to select them, and segmentation-related factors (see the limitations section 4.2)

may have also limited the improvements expected from the fVASC approach.

PROB performs similar to iFMRI and fVASC

Here we defined probabilistic functional activation maps for each participant and task from an
independent dataset using a leave-one-subject-out scheme. This approach resulted in an improved
sensitivity that is comparable with the improvement observed when using individual data of a
given participant. Specifically, we observed that CNR and t-statistics performed similarly for the
PROB approach compared to the iFMRI and fVASC approaches. Further, Figure 10 also shows

that, descriptively speaking, the peak and average values captured by channels defined based on
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the PROB approach are closer to those of iFMRI and fVASC approaches than the LIT approach
is. This is because PROB approach-based activation maps show high spatial correspondence when
compared to the reference fMRI maps for each participant and mental task. Indeed, the average
spatial correlation (assessed by Spearman correlation) between probabilistic maps and individual
activation was 0.63 when all tasks are considered together and of 0.63 for MC and 0.64 for MR
tasks. For IS the values ranged between 0.52 and 0.66. These values, together with the results
presented in this study, suggest that using probabilistic maps based on a reasonable number of
participants and defined on individual anatomical space can be used for any new participant (as
long as the functional maps used to create the probabilistic maps are based on the same task or are

closely related to it).

4.2 Optode-layout design and its limitations

Cost function, constraints and optimization problem

The optode layout for each of the four approaches consisted of two channels that shared one optode
and that maximized the total sensitivity to the preselected ROI. The cost function to be maximized
was the same as in °, but the algorithmic approach to solve the optimization problem was tailored
to account for the constraints imposed by our particular research question(s) and experimental
design. This entails that our algorithmic approach may not be (and was not designed to be)
generalizable to other experimental designs. Importantly, although the approach by ° is very
effective in covering focal ROlIs, it fails to provide an appropriate solution when the ROl is

extended or consists of multiple noncontiguous regions *°, as was the case in this study.
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Mental-imagery task selection

From the three mental-imagery tasks participants had to perform inside the MRI scanner, each
participant performed two tasks during the fNIRS session. The selection of these two tasks was
subject-specific and followed several pre-defined criteria. Combining approach-specific layouts
for both mental-imagery tasks caused incompatible source and detector placements in some
participants. The decisions taken to overcome these problems, together with the subject-specific
task selection led to an unequal number of participants for each task (Nis = 2, Nmc = 14, Nvr =12),
which made the group analysis for IS task unfeasible. To overcome the incompatibility problem,
future studies could test the performance of different layouts in different runs/sessions (by using a
given layout at a time), whose order could be counter-balanced to account for run/session effects.
In addition, a single mental-imagery task could be studied at a time (instead of multiple tasks as in

this study).

Monte Carlo simulations

Our light sensitivity profiles may contain estimation errors due to a number of simplifications.
First, the head models used in this study did not consider that the skull can contain cancellous and
cortical bone, and the soft tissue may contain fat and muscle that have different optical properties
8, Second, both sources and detectors were modeled as pencil sources instead of separately being
modelled according to their function (they emit or detect light) and technical characteristics. Third,
we did not distinguish between arteries and veins when defining the head model. Even if our
decision can be justified by the relatively small difference in optical properties between veins and
arteries compared to the remaining tissues, we cannot discard potential divergence in the results if
arteries and veins had been distinguished. Optical properties also differ depending on the diameter

of blood vessels 8, which we did not take into account in the current study. Finally, our vascular
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maps depended on manual segmentation procedures, which may have introduced variability.
Future studies may overcome these limitations by mapping superficial (scalp/skull) vasculature
with more optimized MRI sequences &, and by distinguishing between arteries and veins and their

diameters 8889,

4.3. Implications for BCI applications

In fNIRS-BCI applications for motor-independent communication and control, brain responses
from a set of tasks are discriminated by exploiting information in distributed patterns of brain
activity using multi-channel pattern analysis ( the equivalent to multi-voxel pattern analysis in
fMRI studies). Alternatively, univariate analysis in combination with temporal encoding
paradigms can be used, where participants perform a (number of) task(s) in a specific time window
and evoke brain activation in a single (distinct) brain location(s) 1012 16.%0.91 For ejther approach,
it is important to ensure there is a set of channels that contains sufficient task-related information
to discriminate responses.

The present study constitutes a relevant pre-step for these BCI applications as it compared
approaches that used different amount of individualized information to design task-specific,
optimized optode layouts that should result in informative channels. Neurofeedback applications
can also benefit from layouts that ensure sufficient task-related information and improved spatial
specificity. Our results show that the percent of participants with significant ROI activation
increased when increasing the amount of individualized information to create the optode setup,
but only until a certain point. Indeed, adding vasculature information did not increase the percent
of participants for MC and reduced this number for MR. Although all participants showed
significant activation levels for every mental task during the fMRI run, none of the approaches
using fMRI information managed to get all participants to have significant ROIls for MC and MR
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tasks. It is unclear whether a given level of fMRI activation is enough to guarantee the detection
of task-related fNIRS signal. Even if both neuroimaging methods measure the hemodynamic
response to neural activity, fNIRS is highly dependent on the individual anatomical features, such
as the scalp-brain distance (which differs across the head) ), the presence of hair, etc.'®. In addition,
our TNIRS results might have been affected by the discrete spatial locations used in this study (130
EEG positions). Spatially unrestricted optode placement would likely improve the results

substantially®?.

4.4 Recommendations for optode placement and the way forward

Effective optode-layout design balances a number of potential tradeoffs. The extended layouts
based on the international 10-20 system or its extensions can be used to study functional network
dynamics and are adequate when target ROIs are not easy to define %. In addition, although the
target ROl may not be optimally sampled (due to unavoidable regions not covered by a source-
detector pair when creating optode layouts and the lower spatial resolution associated to fNIRS
compared to fMRI), the chance of completely missing it is relatively low. That said, smaller setups
are preferred in fNIRS-BCI applications due to their superior practicability and patient comfort.
However, they run a much higher risk of missing signal from the target ROI due to anatomical or
functional differences between individuals. As a result, small BCI setups are likely to benefit from
supplementary f/MRI data investigated in the present work. The recommendations and conclusions
presented here therefore focus on this particular fNIRS application.

Considering that any additional individualized information has an associated
acquisition/analysis cost, it is worth asking, especially when temporal/monetary/material resources
are limited: how much individual information is worth to include for designing optode layouts?
Figure 11 shows the predicted percent improvement in performance (in terms of t-statistics [top]
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and CNR [bottom]) vs. the additional time required to acquire/analyze the data relative to the LIT
layout, here considered the “baseline” approach. Points above the line indicate that the percent
improvement of a given performance measure is higher than the temporal resources spent to
achieve that gain. The figure suggests that including individual anatomical data (PROB layout) or
including both, individual anatomical and functional data (iFMRI layout), improves the
performance while efficiently using temporal resources. It also suggests that the fVASC approach

in its current form is not as cost-effective.

% improvement

A[HbO A[HbR
0.3 [HbO] 0.3 [HbR]
0.2 0.2
o o
8 8
(a) £ o0 L o0
o % % - o ~
n: —— - - D: — -
-0.1 -0.1 UT
0 2 4 6 8101214 16 18 20 0 2 4 6 8 101214 16 18 20 PROB
extra time (in h) extra time (in h) EMRI
VASC
A[HbO] A[HbR]
0.04 0.04
0.03 0.03
0.02 0.02
: - g
(b) Z 0.01 _ - Z 001 -
0 - 0 -
-0.01 -0.01
-0.02 -0.02

0 2 4 6 8 1012 14 16 18 20
extra time (in h)

0 2 4 6 8 1012 14 16 18 20
extra time (in h)

Fig 11. Percent improvement in performance (in terms of t-statistics (a) and CNR (b)) vs. the additional time
required to acquire/analyze the data (in hours). All values are relative to the LIT approach (in light pink), here
considered the “baseline”. The bigger white circles represent the median of the percent improvement in t-
statistics/CNR values for each layout when all three tasks are considered together. The dashed line represents the
predicted percent improvement in performance for a given processing time. Points above/below the line indicate that
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the percent improvement of a given performance measure is higher/lower than the temporal resources spent to achieve
that gain.

The analysis described above focused only on a small part of the multi-dimensional problem
related to cost-effectiveness. Naturally, costs and benefits of including more individualized
information for creating clinically practical layouts should be assessed in that very context. For
example, in certain (rare) cases such as long-term BClIs in ‘locked-in’ patients, using individual
(HMRI data may result in increased ability to communicate, i.e., provide considerable benefit. In
that case, even though using individual (f)MRI is more resource-demanding, the benefits could
outweigh the costs.

In view of these observations, we encourage researchers to use individual functional and
anatomical data for designing optode layouts when possible, but when anatomical data is available
and functional data is not, probabilistic functional maps constitute a promising and economic
alternative. FMRI-based probabilistic functional maps of the human ventral occipital cortex %,
human motion complex %, face selective areas % °, finger dominance in the primary
somatosensory cortex ° or across the whole cortex ¢ are freely available or available on demand.
However, we could not find any published work on probabilistic mental-imagery maps, which
could be beneficial for optode placement in BCI research. To improve this situation, the
probabilistic functional maps of the three mental-imagery tasks used in this study (in MNI space)
are available upon request. Finally, in the absence of functional and anatomical information, ROI
selection should be guided by relevant body of work or meta-analyses that describe tasks closely
related to the ones to be used during the fNIRS session. In parallel, a larger setup could be initially
employed in a “localizer” run to determine the most informative channels which could be
subsequently scaled down to consider only the most informative channels. In the present study,

once the target ROIs were selected, we used FOLD 2° for designing our optode layout due to its
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user-friendly features. However, other toolboxes such as Array Designer * and software, such as
NIRStorm (a BrainStorm plugin for fNIRS analysis 28), also offer promising and flexible tools that

were not explored in the present study.

5 Conclusions

In this paper, we compared four approaches to design small fNIRS optode layouts that represent
various scenarios research groups may encounter when planning fNIRS-BCI experiments. By
providing the insights of such comparisons, we hope to have offered an informative framework so
that researchers can efficiently use resources for developing robust and convenient fNIRS-BCI

systems for clinical use.
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Table 3. Subject-specific fNIRS-session summary and optode-layout information.

64


https://doi.org/10.1101/2020.09.27.315390
http://creativecommons.org/licenses/by-nc-nd/4.0/

