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Abstract. Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS) 

experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest depend on how 

optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-based brain-computer interfaces 

(BCIs), where developing robust systems with few optodes is crucial for clinical applications. Available resources 

often dictate the approach researchers use for optode-layout design. Here we compared four approaches that 

incrementally incorporated subject-specific magnetic resonance imaging (MRI) information while participants 

performed mental-calculation, mental-rotation and inner-speech tasks. The literature-based approach (LIT) used a 

literature review to guide the optode layout design. The probabilistic approach (PROB), employed individual 

anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The 

individual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth approach used individual 

anatomical, functional and vascular information of the same subject (fVASC). The four approaches resulted in 

different optode layouts and the more informed approaches outperformed the minimally informed approach (LIT) in 

terms of signal quality and sensitivity. Further, PROB, iFMRI and fVASC approaches resulted in a similar outcome. 

We conclude that additional individual MRI data leads to a better outcome, but that not all the modalities tested here 

are required to achieve a robust setup. Finally, we give preliminary advice to efficiently using resources for developing 

robust optode layouts for BCI and neurofeedback applications. 

 
Keywords: functional near-infrared spectroscopy, functional magnetic resonance imaging, optode layout design, 

mental imagery. 
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1 Introduction 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable optical imaging method 

used to measure brain activity via hemodynamic responses involving increased oxygen 

consumption and cerebral blood flow 1-3. These physiological changes lead to local changes in the 
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concentrations of oxy- (Δ[HbO]) and deoxy-hemoglobin (Δ[HbR]), which can be detected because 

near-infrared light is absorbed by hemoglobin located in blood vessels 3, 4.  

When setting up an fNIRS experiment, optical sensors (‘optodes’) are placed on the scalp, 

which can be classified into sources (emitters) and detectors (receivers). Light emitted from a 

source is propagated through extracerebral and cerebral tissues up to a few centimeters, where 

some photons are scattered and absorbed before light reaches the detectors 5. The spatial resolution 

of fNIRS is therefore in the range of 5-10mm 4 depending on the way source-detector pairs (or 

‘channels’) are arranged on the scalp 6. The distance between a source and detector pair, along 

with the anatomical tissues between them determines the depth of light penetration and the 

sensitivity to underlying cortex 1. Therefore, the quality of the fNIRS signal can differ dramatically 

between optode layouts.  

This effect of optode layout is particularly relevant for applications requiring sparse optode 

layouts, such as brain-computer interfaces (BCIs). BCIs provide an alternative means of motor-

independent communication for clinical populations suffering from severe motor disabilities 7 by 

enabling users to send commands via brain activity in the absence of motor output 7, 8. FNIRS is a 

promising choice for implementing BCIs due to its portability, safety and relatively low cost 9, 10. 

However, it remains a challenging undertaking to develop efficient, accurate and robust systems 

using the limited number of optodes required for fNIRS-BCI systems to remain portable and 

comfortable for clinical applications. Indeed, a number of fNIRS-based BCI studies using small 

optode layouts 11-16 have reported variability in the number of participants able to reach the 

minimum accuracy (70% in a two-class BCI) required for practical BCI use 17. This variability 

may originate from individual anatomical 18, 19 or functional differences 15 that affect fNIRS signal 
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quality/sensitivity and therefore might be improved by designing optode layouts for individual 

users that account for such differences. 

Researchers often define a region of interest (ROI) in line with their research question and 

design an optode layout in a grid-like fashion to target a specific brain area 1. The simplest and 

most common optode-layout design is to assign source and detector locations on the head to cover 

a given cortical ROI according to the standardized 10-20 electroencephalography (EEG) system 

or its extended versions 20. These locations can be related to the underlying assumed cortical 

structure 21, 22 or to the standard Montreal Neurological Institute (MNI) stereotactic coordinates 23-

26. This procedure has proven effective for many applications but may be suboptimal for use in 

BCIs. In this study, we were interested in whether incorporating additional neuroimaging data such 

as anatomical or functional magnetic resonance imaging (MRI or fMRI) can improve optode-

layout design for use in BCIs.  

The selection of the ROIs in the procedure described above are commonly based on 

anatomically defined coordinates only. However, ROIs derived from functional neuroimaging 

techniques such as fMRI could increase the spatial specificity of ROI definition by accounting for 

individual local differences in elicited brain activity for a given task. Once an ROI is defined, the 

fNIRS community has developed several approaches to optimize optode-layout designs using 

light-sensitivity profiles 1. Light-sensitivity profiles are probabilistic models of photon absorption 

based on the tissues found between source and detector optodes 27. Software packages, toolboxes 

and pipelines compute these profiles using Monte Carlo simulations to optimize optode layouts 1, 

5, 27-30, thus promising an increase on signal quality and sensitivity for BCI applications. However, 

light sensitivity profile models require anatomical head data, either from an MRI-derived atlas or 

from subject-specific MRI data. MRI atlases are an appealing option for computing profiles, as 
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they do not require additional MRI measurements, which may be expensive, time-consuming or 

generally unavailable. That said, subject-specific MRI data better capture specific anatomical and 

vascular features and therefore could improve the robustness of fNIRS setups across individuals. 

Considering subject-specific vascular information may be particularly relevant as vascular 

structures are highly scattering and absorbing media 31 and can influence the estimates of light 

sensitivity profiles 32. 

Naturally, available resources for collecting additional data must dictate the approach 

researchers use to design optode layouts. We therefore asked the following question: What is the 

potential gain of incorporating (anatomical, functional, vascular) MRI data when optimizing 

optode-layout designs for fNIRS-based BCIs? With this question in mind, we selected four 

approaches that incrementally incorporated the amount of individual information from the same 

participant to design subject-specific optode layouts. The first layout was the literature-based 

approach (hereinafter referred to as LIT), where optodes were selected based on a literature review. 

LIT represents the scenario where no additional individual MRI information is available. The 

second setup was the probabilistic approach (referred to as PROB), which employed individual 

anatomical data together with a probabilistic functional map derived from an independent dataset 

to inform optode placement. PROB illustrates a situation where individual fMRI data is not 

available, but subject-specific anatomical information and functional data from other individuals 

is accessible. The third setup was the individual fMRI approach, which used anatomical data and 

functional activation maps of the same individual (referred to as iFMRI). Finally, the fourth setup 

was the vascular approach, which used individual anatomical, functional and vascular information 

of the same subject (referred to as fVASC).  
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We assessed whether different approaches resulted in distinct optode layouts and assessed 

whether the quality of the fNIRS signal and the detected task-related activation (fNIRS sensitivity) 

differed across optode layouts. Participants were asked to perform three mental-imagery tasks 

commonly used for hemodynamic BCIs, see Table S3: mental-calculation, mental-rotation and 

inner-speech. We designed approach-specific optode layouts using Monte Carlo simulations and 

an algorithmic procedure that used two main constraints: 1) the inter-optode distance did not 

exceed the 25-40mm range in order to provide a reasonable signal-to-noise ratio 33 and 2) the 

optode layout for each approach consisted of two channels that shared a common source. 

Importantly, the second constraint allowed us to compare the four approaches within the same 

functional fNIRS run. We hypothesized that each approach would lead to different optode-layout 

designs and that the signal-to-noise ratio of resulting fNIRS signal would improve with more 

individualized approaches. Our results show that the four approaches indeed result in different 

optode layouts and that the more individualized approaches (PROB, iFMRI, and fVASC) 

outperform the minimally informed approach (LIT) in terms of fNIRS signal quality and 

sensitivity. Further, we find that PROB, iFMRI, and fVASC approaches produce similar signal 

quality and sensitivity. Finally, we give preliminary recommendations to help researchers 

efficiently use resources for developing robust and convenient optode layouts for fNIRS-BCIs. 

2 Materials and Methods 

This experiment consisted of three separate sessions that took place in the following order: one 

f/MRI session, a neuronavigation session and an fNIRS session. The first two sessions aimed at 

gathering necessary information for designing optode layouts, while the fNIRS session aimed at 

acquiring data to assess/compare the designed optode layouts (see Fig.1).  
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Fig 1. Overview of the present study. The study consisted of three separate sessions: one (f)MRI, one 

neuronavigation and one fNIRS session. The first two sessions aimed at collecting necessary information to create the 

different optode layouts for each participant. Specifically, the LIT approach used a literature review to design the 

optode layout. The PROB approach used probabilistic functional MRI maps, individual anatomical data and head-

anatomy information for channel selection. The iFMRI approach used individual anatomical data and individual 

functional activation maps, together with head-anatomy information for channel selection. Finally, the fVASC 

approach used individual anatomical, functional and vascular data, together with head-anatomy information for 

channel selection. Monte Carlo simulations were used to select the best channel pair for each approach, mental-

imagery task and participant. The selected channels were used during the fNIRS session to obtain information on 

signal quality and to measure functional activity elicited by the mental-imagery tasks. 

 

Twenty-one participants (eleven females) were recruited for the f/MRI session. From these 

participants, seventeen (eleven females) took part in the neuronavigation session and sixteen (ten 

females) participated in the fNIRS session (see Table 1 for a summary) as some participants 

became unavailable over the sessions. Participants did not have a history of neurological disease 

and had a normal or corrected-to-normal vision. The experiment conformed to the Declaration of 

Helsinki and was approved by the ethics committee of the Faculty of Psychology and 

Neuroscience, Maastricht University. Informed consent was obtained from each participant before 

starting the experiment. Participants received financial compensation after each session.  

Table 1. Summary of participants’ characteristics and involvement of different experimental sessions. 

Participant ID f/MRI 
(N=21) 

Neuronavigation 
(N=17) 

fNIRS 
(N=16) 

 

Gender Age range Handedness 
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P01 YES YES YES Female 25-30 Left 

P02 YES YES YES Female 25-30 Right 

P03 YES YES YES Male 25-30 Left 

P04 YES YES YES Female 25-30 Right 

P05 YES YES YES Female 25-30 Right 

P06 YES YES YES Female 40-45 Right 

P07 YES NO NO Male 25-30 Right 

P08 YES NO NO Male 30-35 Right 

P09 YES YES YES Male 25-30 Right 

P10 YES YES YES Female 25-30 Left 

P11 YES YES YES Female 25-30 Right 

P12 YES YES NO Female 25-30 Right 

P13 YES NO NO Male 20-25 Right 

P14 YES YES YES Male 30-35 Right 

P15 YES YES YES Male 30-35 Right 

P16 YES YES YES Male 25-30 Right 

P17 YES YES YES Female 20-25 Right 

P18 YES NO NO Male 25-30 Right 

P19 YES YES YES Female 20-25 Left 

P20 YES YES YES Female 20-25 Right 

P21 YES YES YES Female 25-30 Right 

 

2.1 f/MRI session 

2.1.1 Data acquisition  

In this one-hour long session, anatomical, functional and (brain- and scalp) vascular data were 

acquired at a Siemens Magnetom Prisma Fit 3 Tesla (T) scanner at the Maastricht Brain Imaging 

Center, Maastricht, The Netherlands (see Fig. 2). 

We used an magnetization prepared-rapid gradient echo (MPRAGE) sequence to collect structural 

T1-weighted MRI data, with the following parameters: repetition time (TR)=2250ms, echo time 

(TE)=2.21ms, inversion time (TI)=900ms, flip angle (FA)=9°, number of slices=192, 1-mm 

isotropic resolution, duration=5:05min. 2D Gradient Echo echo­planar imaging sequence with a 

TR=1s, number of slices=36, and 3-mm isotropic resolution was used to acquire functional data. 

Cerebral and pial vascular data was collected using 2D­ and 3D­ Time-of-Flight (TOF) sequences 
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(FA=60º/18º, TR=21ms/20ms, TE=4.83/3.3ms, number of slabs=1/5, number of slices in 

slab=75/40, with distance factor=-33/-20%, 0.7-mm isotropic resolution, duration=9:11/4:56min). 

Finally, scalp-vascular data was obtained with a Multi­Echo Gradient Echo (GE) sequence with 

four different echoes (TR=34ms, TE1/TE2/TE3/TE4=3.02/8.56/15.11/23.91ms, number of 

slices=192, 0.7-mm isotropic resolution, duration= 8:06min). 

2.1.2 Experimental design 

Participants performed one ~13-min long functional run, where they were acoustically cued to rest 

(“Rest”) or perform one of the three mental-imagery tasks, namely inner- (covert) speech 

(“Speech”), mental-calculation (“Calculate”) or mental-rotation (“Rotate”). The order of the task 

trials (eight per mental task) was randomized. They were instructed to covertly recite a text they 

knew by heart (e.g., a poem) when they heard “Speech”. Participants were asked to calculate 

multiplication tables of multiples of 7, 8, or 9 up to the decuple when they heard “Calculate”. 

When they heard “Rotate”, participants had to imagine a diver jumping from a tower into the water 

while he spins around several times in the air. Participants were trained on the tasks for 

approximately 10min before entering the MRI scanner. During training, they had to recite overtly 

the chosen text and the multiplication tables for the inner-speech and mental-calculation tasks, 

respectively to ensure the speed was consistent, and to repeat the same procedure covertly until 

they felt comfortable with the tasks. As for the mental-rotation task, participants watched short 

clips of a jumping diver until they could comfortably imagine the movement. We instructed 

participants to perform the mental-imagery tasks, which lasted 10s, until they heard the instruction 

“Rest”. During resting period, participants were requested not to do any specific mental activity 

and not to do/think about anything in particular for 20s (see Fig. 2 for a visualization of the run). 

Participants were asked to keep their eyes closed throughout the functional run. After the session, 
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participants’ strategies were noted down and saved for the fNIRS session. BrainStim v1.1.0.1 

stimuli presentation software (Gijsen, S., Maastricht University, The Netherlands) was used for 

both, the f/MRI and fNIRS sessions. 

 

 
Fig 2. Schematic representation of session 1. Twenty-one participants underwent a one-hour long experiment in the 

MRI scanner, during which individual anatomical, functional and vascular data were collected.  During the functional 

run, participants had to perform inner-speech, mental-calculation or mental-rotation for 10s each with interleaved 

resting periods of 20s. Task order was randomized 

2.1.3 Data analysis 

Unless stated otherwise, all f/MRI data analyses were performed in BrainVoyager QX v2.8 (Brain 

Innovation B.V., Maastricht, Netherlands). 

2.1.3.1 Structural data 

Structural images were aligned to the plane containing the anterior and posterior commissures, 

corrected for spatial-intensity inhomogeneities and brain-masked. The white/grey matter 

(WM/GM) and grey matter/cerebrospinal (GM/CSF) boundaries were detected using automatic 

segmentation tools. These images were inspected, manually corrected when necessary and used to 

create WM and GM reconstructions of the cortical surface. In addition, the (head) skin surface was 

automatically segmented and reconstructed. These reconstructions were used for the 

neuronavigation session (see below). 
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Cortex-based alignment (CBA) is a whole-cortex alignment scheme 34-37 which uses curvature 

information of the cortical surface to iteratively reduce misalignment across participants and in 

turn increase functional overlap on the group level 38. We used this approach to define our 

probabilistic functional maps. For that, individual WM reconstructions of each hemisphere were 

aligned to a dynamically generated group average (N=21). 

2.1.3.2 Functional data 

Data were pre-processed using inter-scan slice-time correction, 3D rigid-body motion correction 

(applying Trilinear interpolation for detection/sinc interpolation, for correction), and temporal 

high-pass filtering with a general linear model (GLM) Fourier basis set of 3 cycles/run. Functional 

data of 3-mm iso-voxel resolution were spatially co-registered to the structural image by using a 

gradient-based intensity-driven fine-tuning alignment. 

Generation of individual functional maps 

We first calculated a voxel-wise GLM. The model contained a separate boxcar predictor for each 

of the mental-imagery task conditions convolved with a standard double-gamma hemodynamic 

response function (onset time=0s, response undershoot ratio/time to response peak=6s/6s, time to 

undershoot peak=16s, response/undershoot dispersion=1s/1s), and six additional predictors 

estimated from the motion-estimation procedure in BrainVoyager QX (translation and rotation in 

x, y and z direction). Individual functional maps were created in volume space by contrasting the 

particular mental-imagery task predictor vs. the rest condition (for each of the three tasks 

separately) in the voxels that were part of the fNIRS-coverage mask. This mask was created to 

mask out active voxels from deeper regions, as we did not expect the fNIRS signal to be sensitive 

to these regions 39, see supplementary materials Sec. A.1 and Fig. S1 for details. Activation maps 

were corrected using a cluster threshold that allowed for a 5-% loss of active voxels. These 
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functional maps were then sampled to surface activation maps (from -1mm to +3mm from the 

GM/WM segmentation boundary).  

Generation of probabilistic maps 

While it is not uncommon for researchers to have previously acquired anatomical MRI data of the 

same participant 38, 40, having individual anatomical and functional data of the same participant 

represents a less likely scenario 38. In the absence of individual functional data, probabilistic 

functional maps can be generated from other individuals whose functional data are available.  

Probabilistic functional maps were created separately for each participant and mental-imagery 

task following a leave-one-subject-out procedure 41. For each participant, surface activation maps 

from the remaining participants were aligned using individual transformation files derived from 

the CBA approach. It should be noted that MR vs. Rest map from P08 was excluded from 

subsequent analyses as the participant reported not being able to perform the mental-imagery task 

correctly and having used an alternative cognitive strategy instead. Thus, the probabilistic maps 

for each participant were created based on N=20 participants for the IS and MC tasks and based 

on N=19 participants for the MR task. We discarded mesh vertices that were active in less than 

20% of the sample size for each task and hemisphere. The resulting probabilistic maps for each 

hemisphere were transformed back into individual volume space (by interpolating from -1mm to 

+3mm from the GM/WM segmentation boundary) and smoothed with a 2mm full-width-half-

maximum kernel. The final maps (three per participant) were used as region of interests for Monte 

Carlo simulations (see Sec. 2.3.2). Examples of probabilistic maps are shown in Fig S2. 
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2.1.3.1 Vascular data 

Cerebral and Pial vasculature 

2D and 3D TOF data were aligned individually to an up-sampled version (0.7-mm isotropic 

resolution) of the anatomical data of the same session for each participant, following the same co-

registration approach as for functional maps described above. Vascular data were segmented with 

automatic segmentation tools in BrainVoyager QX (intensity-based segmentation) and the 

software Segmentator (intensity gradient-based segmentation 42) and manually corrected when 

necessary. The latter was done using ITK-snap 43 and BrainVoyager QX. The segmented vascular 

structures from 2D and 3D TOF data were then combined and were down-sampled to 1-mm 

isotropic resolution. The analyses procedures are summarized in a flow-chart diagram (Fig. S3) 

and an example reconstruction is shown in Fig. S4. 

Scalp vasculature 

All four echo images derived from the multi-echo GE protocol were first aligned to the 0.7-mm 

isotropic resolution anatomical images for each participant. We then isolated the extracerebral 

tissues by masking out the brain using FSL BET v5.0 44. Depending on which image(s) showed 

higher contrast for vascular structures, segmentation was performed manually in BrainVoyager 

QX using a combination of the four echoes or using the later echo images, i.e., TE3=15ms and 

TE4=23ms, which showed higher contrast for vascular structures than earlier echoes. The 

segmented vascular structures were then down-sampled to 1-mm isotropic resolution. The analyses 

procedures are also summarized in the flow-chart diagram provided in Fig. S3 and an example 

reconstruction is shown in Fig. S4.  
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2.2 Neuronavigation session 

Seventeen of the originally included 21 participants underwent this session, as P07, P08, P13 and 

P18 dropped out of the study. A neuronavigation system (Zebris CMS20 ultrasound system, Zebris 

Medical GmbH, Isny, Germany) in combination with BrainVoyager QX 2.1 TMS Neuronavigator 

software (Brain Innovation, Maastricht, Netherlands) was used to acquire the coordinates of 130 

EEG positions for each participant (see Fig. 3). These 130 locations were determined based on the 

layout of EasyCap 128Ch ActiCap (EasyCap GmbH, Herrsching, Germany) whose size was 

selected based on individual head sizes. First, the head circumference for each participant was 

measured using a measuring tape. The cap was placed on and was secured using a chin band. Next, 

its position was adjusted so that the Cz location would be exactly half the nasion-inion distance. 

The inion was defined as the top part of the pronounced structure in the occipital region. In order 

to ensure that the cap was not tilted or shifted to one side, the distance between the left and right 

pre-auricular points was measured and the cap was gently moved in this virtual coronal plane until 

Cz was located half this distance. The preauricular points were defined as the location where the 

mandibular bone moves with the opening and closing of the mouth. Finally, the cap was secured 

with medical tape on the forehead to prevent any unwanted cap shift. The Cz location details (in 

terms of nasion-inion and pre-auricular distance) together with the cap size were noted down for 

the fNIRS session.  

Single ultrasound markers (three in total) were attached to the participant’s head using adhesive 

stickers. Next, three reference points (inion and left and right preauricular points) defined on the 

participant’s head were used for the co-registration of the structural MRI image with the 

participant’s head in the external (real) world. Once these steps were completed, the 130 EEG 

locations marked on the cap were digitized. The session lasted approximately 1h.  
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Fig 3. Schematic (left) and reconstructed (right) locations recorded during the Neuronavigation session. This 

layout is an extension of the international 10-20 system, it contains 130 locations and the nomenclature is based on 20. 

The Cz location is indicated with a red circle. The schematic representation is based on the NIRx montage editor 

template, while the reconstructed locations belong to participant P04. 

 

2.3 fNIRS session 

2.3.1 Participants 

P12 dropped out of the study. Thus, 16 of the 17 participants that participated in the fMRI and 

neuronavigation sessions took part in this session, out of which ten were female (mean 

age=29.81±5.22).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.27.315390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315390
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

2.3.2 Designing approach-specific optode layouts 

This process can be divided into three main stages: channel sensitivity computation, channel 

selection and building a participant-specific layout (see Fig. 4 for a summary). The first stage 

aimed at computing the channel-sensitivity profiles using Monte Carlo simulations. Each of the 

four approaches had a unique combination of ROI definition/type, software and brain model used 

to compute the simulations. During the second stage, the most-informative channels were selected 

for each of the four approaches, based on the solution to an optimization problem subject to a set 

of constraints.  The first and second stages were repeated until approach- and task-specific optode 

layouts were created (twelve per participant, since there were three tasks and four approaches). 

The last stage aimed at combining all optode layouts into a single one individually for each 

participant.  

 

2.3.2.1 Channel sensitivity to ROI computation  

All four approaches (LIT, PROB, iFMRI, fVASC) were based on the light sensitivity profiles to a 

given ROI, but they differed in the following aspects (see Table 2 for a summary):  

1. Software for Monte Carlo simulations  

The LIT approach represents a scenario where no individual MRI anatomical data is 

available and the target ROI is selected based on a literature review. Given such scenario, 

FOLD toolbox 30 provides an easy way to compute the sensitivity profiles to the selected 

ROIs. This is because FOLD uses atlas head models as inputs to the Monte Carlo simulation 

and offers different brain parcellation atlases for ROI definition in the target head-model 

space. In addition, it is freely available, easy to install and has a user-friendly graphical 

interface. FOLD uses MCX package 45 to compute the light sensitivity profiles of optodes 
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placed in pre-defined locations on the scalp, namely points corresponding to the extended 

10-10 and 10-5 systems (130 points in total). It then provides a list of channels with the 

highest sensitivity to the ROI that can be exported for subsequent computations. PROB, 

iFMRI and fVASC approaches represent scenarios where individual MRI anatomical data 

are accessible. Since FOLD does not offer the option of using individual head models to 

compute Monte Carlo simulations, these were computed using the MCX package directly 

through its MATLAB interface (v2015b, The MathWorks, Inc., Natick, Massachusetts, 

United States).  

2. Head models and tissue segmentations 

Monte Carlo simulations require the anatomical head models to be segmented into different 

tissues. This is necessary for photon-transport simulations as different tissues of the human 

head present different optical properties (absorption, scattering, anisotropy and refraction). 

For the LIT approach, we used the MNI Colin27 head atlas (the default atlas available in 

FOLD). FOLD uses a five-layer segmentation of the MNI Colin27, which consists of scalp, 

skull, CSF, GM and WM tissues. For the remaining approaches, a five-layered model was 

created from the individual anatomical images using a hybrid segmentation algorithm 40. 

This algorithm, developed in MATLAB and available upon request from the authors, takes 

as input the standard GM and WM segmentations of a T1-weighted image from FreeSurfer 

and applies sequential morphological operations implemented in iso2mesh tools to 

accurately reconstruct skull, scalp, and CSF layer thickness. The GM and WM segmentation 

images were created in FreeSurfer v06 46 using the standard processing stream (recon –all, 

which took ~10 h per participant). The resulting tissues from the hybrid segmentation 

algorithm were converted into compatible BrainVoyager QX files to visually inspect and 
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manually correct them if necessary. Although GM and WM segmentation files had been 

created in BrainVoyager QX in a previous step (see Sec. 2.1.3.1), the automatic segmentation 

in BrainVoyager usually disregards the cerebellum. We thus used the segmentations from 

FreeSurfer to create a head model for Monte Carlo simulations. From the corrected 

segmentation files, a single image file was created by assigning integer values ranging from 

1 to 5 to the different tissues (as in FOLD). Specifically, voxels corresponding to scalp were 

assigned the value 1, voxels corresponding to skull were assigned value 2, CSF 3, GM 4 and 

WM 5. The remaining voxels were assigned value 0 (air). We ensured that voxels inside the 

head were not assigned the value 0 by first identifying them and subsequently assigning the 

value dictated by their direct neighbors.  

The fVASC approach differed from the PROB-based and the iFMRI-based approaches 

in that vascular structures were included in the head model. For that, both pial/brain and 

scalp vasculature segmentations were combined and included as the sixth layer. To prevent 

voxels being assigned to two different tissues simultaneously, all voxels considered as 

vascular tissue were removed from the remaining five tissues. Importantly, our 

segmentations could not distinguish veins from arteries and all voxels were treated as veins. 

Both, five- and six-layered models are shown in Fig. S5. 

3. Optical properties 

For comparability purposes across approaches, we used the average optical properties across 

four NIRS wavelengths (690, 750, 780 and 830nm) as in FOLD. We defined the optical 

properties of vascular structures based on the scattering, absorption and anisotropy values 

provided by 31. We refer the reader to the Supplementary Tables S1 and S2 for computation 

details and Table 2 summary table of the optical properties used in the present study.  
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4. ROI selection and definition 

The ROIs for the LIT approach were selected based on a literature review of the three mental-

imagery tasks used in this study (we refer the reader to the supplementary materials Sec. A.2 

and Tables S3 and S4 for a summary of the reviewed studies and the selected ROIs, 

respectively). These ROIs were defined in the MNI Colin27 brain based on the Jülich 

histological atlas available in FOLD. The selected ROIs for the PROB-based approach were 

the active regions of the individual probabilistic mental-imagery maps. For iFMRI and the 

fVASC approaches, individual mental-imagery contrast maps were used as ROIs (see Sec. 

2.1.3.2).  

5. Inter-optode distance  

FOLD performs the Monte Carlo simulations on neighboring optical positions of 10-10/10-

5 systems only (that have a median inter-optode distance of 36mm) to avoid too long 

distances that cannot provide measurements with a proper signal-to-noise ratio 30. For PROB, 

iFMRI and fVASC approaches, we only considered channels whose inter-optode distance 

was in the range of 20-45mm for Monte Carlo simulations. The number of channels differed 

across participants as the inter-optode distance could differ with varying head size/shapes 

across participants (see Table 3 for participant’s cap size). 

6. Computation of the sensitivity of a channel to a given ROI 

Monte Carlo simulations are used to calculate the fluence distribution produced by a source 

transmitting light into a highly scattering medium 39. By taking the product of the source and 

detector fluence distributions (also known as adjoint field), the photon measurement density 

function can be calculated 47. This is equivalent to the light sensitivity profiles mentioned 

earlier. FOLD calculates channel-wise normalized sensitivity profiles from the adjoint field 
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by scaling the adjoint field with the sum of sensitivity of all voxels, so that each voxel 

represents percentage sensitivity to the whole volume.  Then, the sensitivity of a channel to 

a given ROI is computed as a weighted mean of the voxels within the ROI to the sensitivity 

of voxels corresponding to the brain (GM and WM):  

chanSensch = 100 · ∑
sensch,k · wk

brainSensch · w′

𝑛𝑉𝑜𝑥𝑅𝑂𝐼

𝑘=1

 (1) 

 

where nVoxROI corresponds to the number of voxels comprising the target ROI, sensch,k 

is the normalized sensitivity value for channel ch and voxel k, brainSensch is the normalized 

sensitivity of channel ch of all GM and WM voxels, and w corresponds to the value (weight) 

of the voxel k in the target ROI (adapted from 30).  

The four approaches differed in the nVoxROI and the w parameters. The LIT approach 

assumed that all voxels belonging to a particular (anatomical) ROI contributed equally to the 

computation of the sensitivity of a channel to a given ROI and thus all weights were set to 

one. The PROB approach used probabilistic functional maps that represent the percent 

overlap of voxels across participants and thus weights ranged between 0 and 100%. As for 

iFMRI and fVASC, they relied on individual functional activation maps whose weights 

represent t-statistic values and ranged between 0 and 15. 

 

For the LIT approach, channel sensitivity to a given ROI was computed separately for 10-10 

and 10-5 systems as they cannot be computed simultaneously in FOLD. FOLD allows choosing 

the minimum value of the channel sensitivity to a given ROI to select/discard channels. We set 

this threshold to 0% in order to select all channels that were somewhat sensitive to the target ROI 
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and combined the list of output channels for every ROIs that was used for each mental-imagery 

task. If a channel appeared multiple times for a task, we selected the highest sensitivity value 

among all instances. As for the remaining three approaches, all channels that were considered for 

the Monte Carlo simulations together with their associated sensitivity values were selected as input 

to the next step.  

Table 2. Comparison between Monte Carlo simulation approaches. 

 FOLD DIRECT MCX 
Approach where software is 
used 

LIT PROB, iFMRI, fVASC 

Number of simulated 
photons 

108 

Source modelling Pencil source 

Detector modelling Pencil source 

Source/detector locations 130 points according to extended 10-20 EEG 
systems  (defined using Mesh2EEG1) 

130 points according to extended 10-20 
EEG system + subject-tailored (derived 

from Neuronavigation session) 

Channel definition criterion Neighboring optical positions on 10-10 / 10-
5 systems (median inter-optode distance of 

36mm) 

Inter optode distance range of 20-45mm 

Anatomical model MNI Colin 27 Individual anatomy (Individual space) 

Number of tissues 5 5-6 

Wavelength (nm) mean(690, 750, 780 830) 

Optical properties Used? Tissue µs (mm-1) g µa (mm-1) n Used? 

 Yes Scalp 0.72 0.01 0.017275 1 Yes 

 Yes Skull 0.92 0.01 0.011925 1 Yes 

 Yes CSF 0.01 0.01 0.002500 1 Yes 

 Yes Gray matter 1.10 0.01 0.019500 1 Yes 

 Yes White matter 1.35 0.01 0.016900 1 Yes 

 no Vasculature 1.35 0.01 0.016900 1 Yes 

Resolution 2x2x2 mm 1x1x1mm 

ROI type Anatomical (Literature review + Juelich brain 
parcellation) 

Functionally derived 

Output type Anatomical sensitivity (in %) to a given ROI Anatomical sensitivity (in %) to a given ROI 

Platform for MCX simulations Ubuntu 16.04.02 LTS (Xenial Xeurs) with 
Intel Xeon E52650 v3 2.3 GHz, GeForce Gtx 

770 and CUDA 8.0 

Ubuntu 16.04.4 LTS, Intel(R) Xeon(R) CPU 
E5-2697 v2 @ 2.70GHz, 256 GB RAM, Tesla 

K20Xm and CUDA 9.1.85 
1Multimodal Neuroimaging Laboratory; µs/g/µa/n: scattering/anisotropy/absorption/refraction parameters.  

 

2.3.2.2 Optimization of the optode layout 

We determined the most informative set of channels (separately for each approach and mental-

imagery tasks) by maximizing their total sensitivity to the target ROI. The maximization problem 

was subject to two constraints: 
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1) The inter-optode distance did was limited to the 25-40mm range. We used individual inter-

optode distance measures derived from the neuronavigation session for this step. It is important to 

note that this was applied to all four layouts (thus including the layout based on the LIT approach). 

The FOLD toolbox (used for LIT approach) uses near-neighbor channels with a median inter-

optode distance of all channels to be 36mm, in MNI space30. We used this additional information 

to ensure that (1) all channels were in the 25-40mm range in the subject-specific space, and that 

(2) the signal-quality standards for all approaches were as similar as possible. 

2) The optode layout for each approach consisted of two channels that shared a common detector 

(thus including three optodes per approach). Since we did not distinguish between sources and 

detectors in the Monte Carlo simulations, it is important to realize that the sensitivity of the channel 

will remain the same whether one considers optode X a source and optode Y a detector, or vice-

versa. However, due to the second constraint, the algorithm may select a different channel pair that 

maximizes the total sensitivity to the ROI depending on which optode is considered a source or a 

detector. To ensure that as many candidate channels as possible were considered during the 

optimization approach, the optimization problem was solved twice: (1) using the original channel 

pool that consisted of all optode pairs that were considered for the Monte Carlo simulations (on 

average, there were 633.25 channels [SD=44.13] across participants); (2) considering their 

swapped versions (sources were considered detectors and vice-versa).  

We followed an iterative approach to address the optimization problem. It begins with the 

construction of an empty solution, where no optode pair is selected. The algorithm then prunes the 

optode pairs that do not satisfy the inter-optode distance range constraint. Next, the algorithm ranks 

all possible optode pairs according to their contribution to the total sensitivity and selects one pair 

as the seed in each iteration. The algorithm then transfers the selected optode pair to the solution 
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matrix and it removes from the list the channels that do not share the same detector. Next, it selects 

the first channel from this list (i.e., the one with the highest sensitivity). Since the target number 

of channels (=2) has been reached after this step, the accumulated total sensitivity of the selected 

two channels and the source-detector indices are stored in the solution matrix. These steps are 

repeated until all optode pairs are used as seeds. Finally, the two channels that lead to the highest 

total sensitivity for either constraint set constitute the selected channels for creating the setup.  

2.3.2.3 Creating the setup  

Mental-imagery task selection 

Two out of the three mental-imagery tasks that participants performed during the f/MRI session 

were selected for the fNIRS session. This measure was necessary as pilot measurements performed 

with optode layouts designed to account for all three tasks elicited high discomfort in participants. 

This decision ensured that the optode setup would maximally consist of 24 optodes (3 optodes per 

layout × 4 approaches × 2 motor-imagery tasks), which should constitute a reasonably comfortable 

setup for participants and thus should prevent them from withdrawing from fNIRS recordings due 

to setup-related discomfort 48-50
. This selection was carried out at the individual subject level. For 

that, we first calculated the number of overlapping channels across all four layouts for each mental-

imagery task, and selected the two tasks with the least number of overlapping channels. An 

additional step was used in case this approach was not sufficient to select the two tasks, where we 

computed the center of gravity (COG) for all four layouts per mental-imagery task and calculated 

the distance between COGs. The tasks with the least number of overlapping channels and highest 

distance between them were the selected tasks. See Supplementary Table S5 for a summary of the 

mental-imagery task selection procedure and Table 3 for the resulting selected task pair per 

participant. 
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Combining all channels into a single layout 

The eight layouts (four per task) were combined manually into a single one. This was first carried 

out digitally to simulate the final arrangement using schematic representations of source and 

detector positions. It consisted of two steps: an initial step combined all four layouts for each 

mental-imagery tasks and both layouts were combined into one in the second step. It could be that 

the source-detector arrangement was not compatible across layouts (within or across mental tasks), 

since a source in a given channel cannot be a detector in another one (or vice versa). To account 

for such possibility, we first swapped sources for detectors in the problematic spots. This step 

solved the compatibility problem in all but four participants (P05, P16, P17 and P19). For these 

participants, using a different mental-imagery task combination solved the issue (see 

Supplementary Table S5). Since the fNIRS system used in this study uses lighter wires for sources 

than for detectors, we rearranged sources and detector positions in all participants (when possible) 

to maximize the number of sources while preserving the channels defined in the optimization step. 

It is important to note that each participant ended up with a unique optode layout, with a varying 

number of optodes (see Table 3 and Fig. S6).  
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Fig 4. Summary of the key steps involved in optode-layout design for each of the four approaches evaluated in 

the present study. The process was divided into three main stages: (1) channel sensitivity to ROI computation, (2) 

channel selection and (3) building a subject-specific layout. For the first stage, each of the four approaches had a 

unique combination of ROI definition/type, software and brain model used to compute the Monte Carlo simulations. 

During the second stage, the most-informative channels were selected for each of the four approaches and two mental-

imagery tasks. The last stage combined all the layouts into one. LOO = leave-one-out; COG = center of gravity; NN 

= neuronavigation. 

2.3.3 Experimental design 

The fNIRS experiment consisted of one session that lasted approximately 1.5h. During this time, 

participants performed six, around 8-min long functional runs. In each of the runs, participants 

were acoustically cued to perform one of the two mental-imagery tasks selected for them or to rest. 

Six, 10-s long trials were presented for each mental-imagery task, interleaved with a jittered rest 

condition with mean duration of 22s (jittering was of ± 2s), see Fig. 5. Thus, participants performed 

60 trials for each mental-imagery task across the six runs. Trials were pseudo-randomized across 

runs. Participants were instructed to use the same strategy they used in the scanner (first session). 

For that, participants were given a document prior to the fNIRS experiment where their strategies 

had been noted down. Participants were asked to avoid any potential jaw movements during the 

functional runs and to keep their eyes closed throughout the run.  
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Fig 5. Schematic representation of a functional run during the fNIRS session. During each mental-task period, 

participants were acoustically cued to perform one of the two mental-imagery tasks for 10s while keeping their eyes 

closed. When participants heard “rest”, they were asked to stop the task and await the next instruction. Abbreviations: 

IS= inner-speech; MC = mental-calculation; MR= mental-rotation.   

 

 

2.3.4 fNIRS signal acquisition 

fNIRS data were recorded using a continuous-wave system (NIRScout-816, NIRx, Medizintechnik 

GmbH, Berlin, Germany). The optode setup varied across participants, but they had some features 

in common: all setups contained eight sources and eight short-distance channels (SDC). The SDCs 

were formed by short-distance detectors placed at 8mm from a given source. The inter-optode 

distance of the standard channels (here on called normal-distance channels, NDC) ranged from 25-

40mm. Sources emitted light at wavelengths 760nm and 850nm, and the light intensity acquired 

at the detector side was sampled at 7.8125Hz. The fNIRS cap was placed for each participant 

according to the measurements taken during the neuronavigation session. Besides the standard cap 

fixation (using the chin band), the fNIRS cap (EasyCap 128Ch ActiCap, EasyCap GmbH, 

Herrsching, Germany) was fixated onto the participant’s head with three medical tape stripes 

(connecting the cap and the participant’s forehead) to assure the cap would not shift during the 

measurements. In addition, a black, plastic overcap was placed on top of the fNIRS cap to 

additionally prevent ambient light from reaching the spring-loaded optodes.  
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Table 3. Subject-specific fNIRS-session summary and optode-layout information. 

Participant 

ID 

Cap Size 

(cm) 

Mental 

tasks 
#  Runs 

#  Optodes   

S | D 

#  NDC 

channels 

      IOD  (mm) 

        Mean     | Std. dev. 

P01 56 MC MR 6 8 7 13 29,92  2,60 

P02 56 IS MC 6 8 9 16 29,00  3,48 

P03* 58 IS MR 6 8 6 16 34,06  6,84 

P04 56 MC MR 6 8 10 15 31,60  4,79 

P05 60 IS MC 6 8 4 12 30,67  4,52 

P06 56 MC MR 6 8 9 14 31,07  4,20 

P09 60 MC MR 6 8 5 9 29,33  4,42 

P10 56 MC MR 6 8 7 10 30,40  4,12 

P11 56 MC MR 6 8 4 12 30,17  3,19 

P14 58 MC MR 5 8 6 11 31,09  3,14 

P15 58 MC MR 5 8 5 10 31,70  4,64 

P16 58 MC MR 6 8 8 12 31,58  3,42 

P17 56 MC MR 6 8 5 11 30,18  4,33 

P19 56 MC MR 6 8 7 12 29,83  2,79 

P20 56 MC MR 6 8 10 15 31,13  4,50 

P21* 54 IS MR 6 8 10 14 29,07  3,25 

Note: P03 and P21 were excluded from data analysis (see participant exclusion criteria) 

Abbreviations: NDC= normal distance channels; IOD= inter-optode distance; MC = mental-calculation; MR= mental-  rotation.   

 

2.3.5 fNIRS data analysis 

2.3.5.1  Participant exclusion criteria 

Two of the sixteen participants, P03 and P21, were excluded from subsequent analysis for different 

reasons. The optode layout for P03 was created based on a different inter-optode distance range 

criterion than the rest of the participants (25-45mm vs. 25-40mm). This is because P03 was the 

first participant who participated in the fNIRS session and the original inter-optode distance range 

was expected to provide reasonable signal quality. However, this range proved to be suboptimal 

as four NDC and three SDC did not survive the coefficient of variation threshold (CV < 7.5%), a 

metric used to estimate the signal-to-noise ratio for each channel 51. Given the restricted number 

of channels comprising each layout, we created the layouts for the rest of the participants using a 
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more conservative inter-optode distance range criterion (25-40mm range, see first constraint in 

Sec. 2.3.3) to ensure that all (or as many as possible) channels survive the CV threshold. Thus, 

P03 was excluded for comparability reasons. As for P21, the data was corrupted and could not be 

retrieved.  

2.3.5.2 Preprocessing 

For every subject and run, the raw optical intensity data series were converted into changes in 

optical density (OD) values using Homer2 52.  CV values were calculated for the entire run for 

each channel and those with a CV >=7.5% were discarded from the analysis (see Fig. S7). Next, 

the motion detection algorithm hmrMotionArtifactByChannel was applied to the OD time-series 

to identify motion artifacts in each channel. We used the following parameters: AMPThresh=0.15, 

tMotion=0.5 and tMask=2. The SDThresh parameter ranged between 8 and 10 across participants. 

Motion artifact identification was visually assessed by experimenter AB and was manually 

corrected in case it was necessary. Motion artifacts were divided into spikes and baseline shifts. 

Baseline shifts were corrected using hmrSplineInterp algorithm in Homer2 (p=0.99), while 

hmrMotionCorrectWavelet algorithm in Homer2 (iqr=0.5) was used to correct for the spike 

artifacts only in the channels where motion artifacts had been detected (Fig. S8 summarizes the 

detected number of motion events per participant). Then, motion-corrected OD data were 

transformed to change in concentration values through the modified Beer-Lambert law with an 

age-specific differential path length factor for each participant 53.  

2.3.5.3 Assessment of degree of layout (dis)similarity across approaches  

The first goal of this study was to assess whether the resulting optode layouts differed across 

approaches. To do so, for each pair of approach-specific layouts we calculated the number of 
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overlapping channels and the Euclidian distance between their centers of gravity. These 

calculations were carried out for each mental-imagery task at the single-subject level and were 

averaged across participants afterwards. In addition, frequency maps for each approach were 

computed. 

2.3.5.4 Single-run estimates calculation 

The Short Separation Regression approach (SSR 54) was applied on the unfiltered Δ[HbO]- and 

Δ[HbR]-NDC data to remove signal from extra-cerebral layers of the head. This was done for each 

NDC and chromophore by using the SDC closest to the NDC as the regressor. The SDC-corrected 

time course was used as input for the ar_irls algorithm in NIRS Brain AnalyzIR Toolbox 55. This 

algorithm uses an autoregressive (AR) model for correcting motion and serially correlated errors 

in fNIRS. The function was adapted to use the ordinary least squares method instead of the 

robustfit approach. The maximum AR model order to be considered was set to four times the 

sampling rate. The design matrix included the two task predictors convolved with a standard 

hemodynamic response function. The default hemodynamic response function from SPM12 was 

used (double gamma function, the onset of response and undershoot 6s and 16s, respectively, 

dispersion 1s, response to undershot ratio 6). The task predictor for Δ[HbR] was -1/3 of the Δ[HbO] 

amplitude.  In addition, a set of low frequency discrete cosine terms were defined as confound 

predictors using the dctmtx function in NIRS Brain AnalyzIR Toolbox with a cut-off frequency of 

0.009Hz.  
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2.3.5.5 Multi-run ROI analysis 

We combined the information from both channels comprising each layout to run an ROI analysis 

as described in Santosa and colleagues55 and expanded their procedure to account for multiple 

runs: 

𝛽𝑅𝑂𝐼 = 𝑐𝛽𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (2) 

𝐶𝑜𝑣𝑅𝑂𝐼 = 𝑐𝐶𝑜𝑣𝛽𝑐𝑇 (3) 

 

where in this study βchannel is the multi-run beta estimate and the Covβroi is the multi-run covariance 

matrix estimated from the concatenated residual time courses and the design matrix. Finally, c is 

the contrast vector whose coefficients are 0 if the channel does not belong to the ROI and is 0.5 in 

the two channels that belong to the ROI.  

2.3.5.6 Multi-run block averages and contrast-to-noise ratio 

The SDC-corrected and unfiltered Δ[HbO] and Δ[HbR] time courses were filtered using a zero-

phase, band-pass finite impulse response filter of order 1000, with cutoff frequencies of [0.008, 

0.25Hz]. Block averages were computed for each channel and mental-imagery task by taking the 

average of all trials and runs 4s before the onset of the task until 15s after the offset of the task.  

The Contrast-to-Noise Ratio (CNR) as was calculated for each channel, ROI and chromophore 

using the formula described by 48: 

|𝑚𝑒𝑎𝑛(𝑑𝑢𝑟) − 𝑚𝑒𝑎𝑛(𝑝𝑟𝑒)|

√𝑣𝑎𝑟(𝑑𝑢𝑟) + 𝑣𝑎𝑟(𝑝𝑟𝑒)
 (4) 

where pre represents the rest period from 4s before onset of task to 0s; and dur represents the task 

period from 5-15s post task-onset, as in 56.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.27.315390doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.27.315390
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

2.3.5.7 Statistical analysis 

The second goal of this study was to compare the fNIRS-signal quality and sensitivity obtained 

from the optodes placed according to the four different approaches. Group differences across 

approaches in terms of CNR and ROI t-estimates were assessed using a non-parametric ANOVA 

(Friedman test) and follow-up Wilcoxon paired signed rank tests, one-sided and corrected for 

multiple comparison with the Benjamini-Hochberg method. Group differences were computed 

considering: (1) each mental-imagery task separately and (2) all mental-imagery tasks together. In 

addition, we quantified the number of participants that showed significant increase in the ROI 

activation. 

2.3.5.8 fNIRS data projection onto cortical surface and comparison with fMRI data 

We used the inverse distance weighting (IDW) method described in 57 to interpolate fNIRS data 

on the cortical surface.  In short, each fNIRS channel position was defined as the point in the scalp 

half way between the corresponding source and detector position. The cortical projection of each 

channel was determined by taking the point in the brain reconstruction closest to the channel 

position in the scalp. A sphere of radius r was centered in the projected cortical point and the 

voxels inside the sphere that were labeled as GM were assigned a weight depending on how far 

from the center they were located. The weight (w) was calculated as 1/d2, where d is the Euclidian 

distance between the projected point (center of the sphere) and a given voxel inside the sphere. At 

each cortical vertex k inside the sphere, the interpolated fNIRS data was computed as: 

𝑠(𝑘) =  
∑ 𝑤𝑖 ∗ 𝑓𝑖 

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (5) 

 

where n is the number of  cortical projection points and f is the amplitude of  the fNIRS channel 

value. Here we used two cortical projection points as two channels comprised a given layout. The 
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channel-specific amplitude was calculated as the average value of the normalized fNIRS signal 

(computed as the channel time course divided by its peak value) in the range of 3s after task onset 

to 5s after task offset. In total, four spheres with varying radii (r = {10, 15, 20, 25} mm) were used. 

We used channel-specific projection weights and projection spheres to compute spatially 

weighted fMRI block averages to assess the temporal correlation between fNIRS and fMRI 

signals. First, voxels inside the sphere of radius r that were labeled as GM were selected and mental 

imagery-specific events were extracted from each voxel’s time courses. Task-specific ROI 

averages were computed by weighting the contribution of each voxel according to the projection 

weights. The standard error of the weighted average was estimated using bootstrapping (with 100 

resamples and sample size equal to 60% of the initial number of voxels).  These steps were repeated 

for every channel across all layouts in each participant. Finally, the temporal correlations of fNIRS 

and fMRI block averages were computed using Spearman’s correlation. 

Next to channel-specific projection weights, layout-specific projection weights were also 

calculated. Their computation differed in that for the latter we used the center of gravity of each 

layout on the scalp to determine the cortical projection point. Layout projection weights were used 

to extract the peak and spatially weighted mean t-estimates of individual fMRI activation of the 

voxels labeled as GM to assess how well the fNIRS ROIs targeted individual activation maps.  

3 Results 

3.1. Using different information sources for optode placement results in different optode-layout 

designs 

Figure 6 shows the mean percent overlap (top panel) and mean Euclidian distance between the 

COGs of each pair of optode layouts across participants (bottom panel). The color of each cell 
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indicates the standard error of the mean. The LIT approach contained no channels that overlapped 

with the remaining approaches for neither mental-calculation (MC) nor mental-rotation (MR) 

tasks. Channels placed according to the PROB approach partially overlapped with those from 

iFMRI and fVASC approaches for MC task. Channels from iFMRI and fVASC approaches 

overlapped the most, with an average 85.71% [SE = 8.17] for MC and 41.67% [SE = 14.86] for 

MR. Regarding IS task, P05 showed an overlapping channel between PROB and fVASC layouts 

(P02 had none).  The mean Euclidian distance between the COGs was considerably high (>55mm) 

for almost all pair of layouts, which indicates that layouts were located in spatially separated areas. 

IFMRI and fVASC layouts were located, on average, in close proximity for the MC task (6.45mm 

[SE = 5.64]) and to a lesser extent for MR (42.22 mm [SE = 13.32]). Similarly, the frequency maps 

shown in the Fig. S9 indicate that (1) the selected channels vary considerably across participants 

for PROB, iFMRI and fVASC approaches; and (2) iFMRI and fVASC show the highest and most 

similar spatial extension for MC and MR tasks. As for inner-speech (IS) task, the Euclidean 

distance ranged between 9.08 mm (PROB- fVASC) and 100.19 mm (LIT- iFMRI) for P05 and 

between 26.83 mm (LIT-PROB) and 75.98 mm (LIT- iFMRI) for P02 (not shown in Fig. 6).  
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Fig 6. Assessment of degree of layout (dis)similarity across approaches. (a) Average number of overlapping 

channels for each pair of approach-specific layouts for MC (left) and MR (right) tasks. The numbers in each cell 

represent the average number of overlapping channels (a) or the average Euclidian distance between COG (b) for each 

pair of approach-specific layouts for MC (left) and MR (right) tasks. Colors represent the standard error of the mean. 

Abbreviations: MC = mental-calculation; MR= mental-rotation.   

 

3.2. Significant differences in fNIRS-signal quality across the four optode-placement approaches  

The Friedman test was computed separately for each chromophore (Δ[HbO] and Δ[HbR]) and 

considering (1) all mental-imagery tasks together and (2) each mental-imagery task separately. For 

Δ[HbO], CNR significantly differed across layouts (Fr = 41.63, df 4,14, p < 0.0001) when all 

mental imagery tasks were considered together. CNR also differed significantly across layouts for 

MC (Fr = 24.67, df 3,14 p<0.0001) and MR (Fr = 25.72, df 3,12 p<0.0001). Post-hoc pairwise 

comparison results with the Wilcoxon signed-rank test and the Benjamini-Hochberg correction 

method are summarized in Fig. 7. These tests revealed significant differences when all mental-
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imagery tasks were considered together. Specifically, optodes placed using the LIT approach 

measured significantly lower CNR values compared to the other three approaches (1) when all 

mental-imagery tasks were considered together (q[FDR]<0.001), (2) for MC only (q[FDR]LIT-PROB 

<0.01, q[FDR]LIT-iFMRI <0.001 and q[FDR]LIT-fVASC <0.05) and (3) for MR only (q[FDR] <0.001). 

In addition, channels placed according to the PROB-derived layout reached significantly lower 

CNR values than those from the fMRI (q[FDR]PROB-iFMRI <0.001) and fVASC (q[FDR] PROB-fVASC 

<0.05) approaches. 

As for Δ[HbR], CNR significantly differed across layouts (Fr = 18.32, df 4,14, p < 0.001) when 

all mental imagery tasks were considered together. CNR also differed significantly across layouts 

for MC (Fr = 7.98, df 3,14, p<0.05) and MR (Fr = 8.23, df 3,12, p<0.05).  Post-hoc pairwise 

comparisons revealed that the LIT approach reached significantly lower CNR values when all 

tasks were considered together for all other layouts (q[FDR]LIT-PROB<0.05, q[FDR]LIT-iFMRI <0.001 

and q[FDR]LIT-fVASC <0.01). It also reached significantly lower CNR values compared to the iFMRI 

layout for the MR task (q[FDR]LIT-iFMRI <0.01). 
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Fig 7. CNR-based group comparison across layouts. Results were evaluated separately for Δ[HbO] (a) and Δ[HbR] 

(b), when all three mental-imagery tasks were considered together as well as separately for MC and MR tasks (left, 

middle and right column, respectively). LIT performed significantly worse than the PROB, iFMRI and fVASC 

approaches for both chromophores when all tasks were considered together. A similar pattern was observed for MC 

and MR tasks for Δ[HbO]. Gray dots represent single-subject CNR values for a given mental-imagery task. Whiskers 

represent the 1.5 times the inter-quartile range. Significant parwise differences (calculated using Wilcoxon signed-

rank test, one-sided and corrected for multiple comparisons) are indicated with asterisks: ***  =  q[FDR] < 0.001; ** 

q[FDR] < 0.01;* q[FDR] < 0.05. Abbreviations: MC = mental-calculation; MR= mental-rotation. 

 

3.3 Significant differences in fNIRS-sensitivity across the four optode-placement approaches  

3.3.1. T-statistics 

For Δ[HbO], ROI t-statistics significantly differed across layouts (Fr = 31.66, df 3,14, p < 0.0001) 

when all mental-imagery tasks were considered together (see Fig. 8). It also differed significantly 

across layouts for MC (Fr = 23.18, df 3,14 p<0.0001) and MR (Fr = 14.06, df 3,12 p<0.005). Post-

hoc pairwise comparisons (signed-rank tests, one-sided) revealed that optodes placed using LIT 

approach measured significantly lower t-statistics compared to the other three approaches (1) when 

all mental-imagery tasks were considered together (q[FDR]<0.001), (2) for MC only (q[FDR]LIT-

PROB <0.01 and q[FDR]LIT-iFMRI; LIT-fVASC <0.001) and (3) for MR only (q[FDR] <0.01).  
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Δ[HbR] ROI t-statistics significantly differed across layouts (Fr = 27.48, df 3,14, p < 0.0001) 

when all mental imagery tasks were considered together. It also differed significantly across 

layouts for MC (Fr = 15.46, df 3,14, p<0.01) and MR (Fr = 10.56, df 3,12, p<0.05). Post-hoc 

pairwise comparisons showed a similar trend as HbO: LIT approach measured significantly lower 

CNR values compared to the other three approaches for almost all comparisons. In addition, the 

optodes placed according to the PROB approach measured significantly lower CNR than iFMRI 

(q[FDR]PROB-iFMRI <0.01) and fVASC (q[FDR]PROB-fVASC <0.05). 

 

 
Fig 8. t-statistic based group comparison across layouts. Results were evaluated separately for Δ[HbO] (a)  and 

Δ[HbR] (b), when all three mental-imagery tasks were considered together as well as separately for MC and MR tasks 

(left, middle and right column, respectively). LIT performed significantly worse than the PROB, iFMRI and fVASC 

approaches for both chromophores when all tasks were considered together. A similar pattern was observed for MC 

and MR tasks for both chromophores. Gray dots represent single-subject t-values for a given mental-imagery task. 

Whiskers represent the 1.5 times the inter-quartile range. Significant parwise differences (calculated using Wilcoxon 

signed-rank test, one-sided and corrected for multiple comparisons) are indicated with asterisks: ***  =  q[FDR] < 

0.001; ** q[FDR] < 0.01; *q[FDR] < 0.05. Abbreviations: MC = mental-calculation; MR= mental-rotation. 

3.3.2. Percent of participants with significantly active ROIs 

 

Figure 9 shows the percent of participants that resulted in significant activation for each 

mental-imagery task. For both chromophores, the percent of participants with significant ROI 

activation increased with increasing the amount of individualized information, and plateaued after 
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including individualized functional maps (for MC task) or was slightly reduced after including 

vascular information (MR task). For the IS task, PROB and fVASC approaches and PROB and 

iFMRI approaches contained significant ROI activation for both participants (100%) regarding 

Δ[HbO] and Δ[HbR], respectively. As for MC and MR tasks, the number of participants with 

significant activation was higher for more individualized approaches than the LIT approach. 

Specifically, for the MC task, the LIT approach contained significant ROI activation in 7% (one) 

participant for both chromophores, while the PROB approach reached significant ROI activation 

in 57% (eight) and 43% (six) participants for Δ[HbO] and Δ[HbR], respectively. iFMRI and 

fVASC approaches contained significant ROI activation in 79% (eleven) participants for both 

chromophores. For the MR task, the LIT approach reached significant activation in 0% and 17% 

(two) participants, while the PROB approach reached significant activation in 42% (five) and 33% 

(four) of the participants, while iFMRI and fVASC approaches contained significant ROI 

activation in 33% (four) and 42% (five) participants for both chromophores, respectively. Figure 

S10-A shows examples of participants with typical hemodynamic responses (a positive deflection 

in Δ[HbO] and a negative deflection in Δ[HbR]) for the four approach-specific optode layouts, 

while Fig. S10-B shows examples of participants with weak/inverted hemodynamic responses for 

the four approach-specific layouts.  
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Fig 9. Percent of participants that resulted in significant activation for each mental-imagery task, optode layout 

and chromophore. For both chromophores, the percent of participants with significant ROI activation increased with 

increasing the amount of individualized information used to create optode layouts until a certain point: it plateaued 

after including individualized functional maps (for MC task) or was slightly reduced after including vascular 

information (MR task). Abbreviations: IS= inner-speech; MC = mental-calculation; MR= mental-rotation. 

3.4. Spatial specificity of fNIRS-ROIs 

To assess how well the fNIRS ROIs targeted individual fMRI activation maps, we computed 

weighted average and peak fMRI responses within the regions of the cortex interrogated by fNIRS 

channels. The two plots in Fig. 10a show results for sphere with r=20mm that both the average and 

peak responses for LIT are significantly lower than the other approaches (significance assessed by 

signed rank test, one-sided FDR corrected). Using different sphere sizes did not affect the results 

(data not shown). The temporal correlation between fNIRS and fMRI time courses (bottom plots 

in Fig. 10b) showed a similar tendency but with smaller differences for Δ[HbO] (and examples of 

both fNIRS and fMRI time courses are shown in Fig. S11). 
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Fig 10. Assessment of layout specificity to fMRI activation maps (a) and of the temporal correlation between 

fNIRS and fMRI time courses (b). Peak and average values extracted from fMRI activation maps were highest for 

channels placed according to iFMRI and fVASC approaches and lowest for the LIT approach, independent of the size 

of projection spheres used to extract the values (data not shown). Times courses of channels placed according to the 

LIT approach showed significantly lower temporal correlations with fMRI-signal time courses than following the 

iFMRI and fVASC approaches. Significance was assessed with Wilcoxon paired signed tests (one-tailed) and was 

corrected for multiple comparisons. *** q[FDR] <0.001; ** q[FDR]<0.01; *q[FDR]<0.05 

 

4 Discussion 

Designing optode layouts is an essential but challenging step in the preparation of an fNIRS 

experiment as the quality of the measured signal and the sensitivity to underlying cortex depends 

on how sources and detectors are arranged on the scalp. This becomes particularly relevant for 

fNIRS-based BCI and neurofeedback applications, where developing robust systems that use 
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limited number of optodes is crucial to remain practical and comfortable for clinical applications. 

From the many approaches and tools currently available to optimize optode-layout design, we 

selected and compared four approaches that incrementally incorporated individual information of 

participants (LIT, PROB, iFMRI and fVASC) while participants performed mental-imagery tasks 

typically used in fNIRS-BCI experiments. Our results show that the four approaches resulted in 

different optode layouts and that the degree of overlap varied across approaches, with the highest 

overlap and smallest distance between iFMRI and fVASC layouts. Further, time course data of 

channels placed according to the LIT approach showed significantly lower CNR and t-values than 

those of the channels placed according to the remaining approaches. In addition, we observed no 

significant difference between PROB, iFMRI and fVASC approaches when all three mental tasks 

were considered together.   

4.1 Understanding the difference in performance across layouts 

Lower performance of the LIT approach 

Concurrent fNIRS-fMRI studies show agreement in the hemodynamic signal measured by both 

modalities (at least in the motor cortex), both temporally 48 and spatially 58, but inferior in spatial 

resolution when assessed with fNIRS. To assess how well the fNIRS ROIs targeted individual 

fMRI activation maps, we computed weighted average and peak fMRI responses within the 

regions of the cortex interrogated by fNIRS channels.  As shown in Fig. 10, the average and peak 

responses for LIT were significantly lower than the remaining approaches. The temporal 

correlation between fNIRS and fMRI time courses showed a similar tendency. These observations 

were expected since PROB, iFMRI and fVASC approaches were based on fMRI information. 

However, if the individual fMRI map is used as the ground-truth measure of cerebral activity due 
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to its superior resolution and higher SNR, Fig. 10 shows that the LIT approach could not capture 

the underlying signal as good as the other approaches.   

Several factors may have contributed to that. First, the head model used for Monte Carlo 

simulations for LIT differed from the other three approaches (Colin27 head atlas vs. subject-

specific anatomical model, respectively). Although head atlases are good approximations, the 

tissue geometries may significantly differ from other adult individuals 39. Second, the ROI 

selection procedure for LIT differed from the PROB, iFMRI and fVASC approaches in that the 

ROI selection for LIT was based on a literature review, while the other three approaches relied on 

functional contrast maps. Due to the small number of participants for the IS task (N=2), the 

following lines will focus only on MC and MR tasks. The mental-imagery instructions used in this 

study differed from the reviewed studies, which may have contributed to a suboptimal selection of 

the ROIs for the LIT approach. Indeed, the majority of reviewed papers that reported using mental 

arithmetic used strategies that aimed at increasing the working memory demand and thus mainly 

measured brain activation in the frontal lobe. Examples of tasks used in these studies are 

subtraction to visually presented 3-digit or 2-digit numbers, or addition or multiplication of 

visually presented single or double digits to/with single or double digits 13, 14, 59-72. Here, we asked 

participants to recite common multiplication tables, which is considered an easy task and thus may 

have elicited lower responses in frontal and parietal areas when compared to more complex 

multiplication problems 73. Regarding mental rotation, most of the reviewed work used visually 

presented cues that had to be mentally rotated, such as geometric object, alphanumeric character 

or hand rotations 61, 74-84. In this study, we did not visually present the object to be mentally rotated, 

as participants were asked to imagine a diver spinning in the air while keeping their eyes closed. 

In addition, unlike the reported studies, there was no reference object to compare to the rotated 
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object. The lack of visual support and a reference object could cause the recruitment of the areas 

involved in the task to be slightly different or to be recruited to a lesser extent. However, we would 

like to note that since we did not test the performance of approaches that use anatomical ROIs 

defined on individual head models, we cannot disentangle if the lower performance of the LIT 

approach is due to the head model used or whether it is due to the nature of the ROI.  

No significant difference between fVASC and iFMRI layouts 

The fVASC and the iFMRI approaches only differed in the number of tissues used during Monte 

Carlo simulations: the fVASC condition included an additional participant-specific vascular 

information. Including an additional vascular information did not result in a significant difference 

compared to the iFMRI layout at the group level. This is mainly because the generated layouts 

were very similar between them, as indicated by the channel overlap across layouts and the 

Euclidian distance (Fig. 6). This high similarity seems to be driven by the functional ROIs, which 

was the same for both approaches. Our decision to use a small number of optodes for each layout, 

the constraints to select them, and segmentation-related factors (see the limitations section 4.2) 

may have also limited the improvements expected from the fVASC approach. 

PROB performs similar to iFMRI and fVASC 

Here we defined probabilistic functional activation maps for each participant and task from an 

independent dataset using a leave-one-subject-out scheme. This approach resulted in an improved 

sensitivity that is comparable with the improvement observed when using individual data of a 

given participant. Specifically, we observed that CNR and t-statistics performed similarly for the 

PROB approach compared to the iFMRI and fVASC approaches. Further, Figure 10 also shows 

that, descriptively speaking, the peak and average values captured by channels defined based on 
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the PROB approach are closer to those of iFMRI and fVASC approaches than the LIT approach 

is. This is because PROB approach-based activation maps show high spatial correspondence when 

compared to the reference fMRI maps for each participant and mental task. Indeed, the average 

spatial correlation (assessed by Spearman correlation) between probabilistic maps and individual 

activation was 0.63 when all tasks are considered together and of 0.63 for MC and 0.64 for MR 

tasks. For IS the values ranged between 0.52 and 0.66. These values, together with the results 

presented in this study, suggest that using probabilistic maps based on a reasonable number of 

participants and defined on individual anatomical space can be used for any new participant (as 

long as the functional maps used to create the probabilistic maps are based on the same task or are 

closely related to it). 

4.2 Optode-layout design and its limitations 

Cost function, constraints and optimization problem 

The optode layout for each of the four approaches consisted of two channels that shared one optode 

and that maximized the total sensitivity to the preselected ROI. The cost function to be maximized 

was the same as in 5, but the algorithmic approach to solve the optimization problem was tailored 

to account for the constraints imposed by our particular research question(s) and experimental 

design. This entails that our algorithmic approach may not be (and was not designed to be) 

generalizable to other experimental designs. Importantly, although the approach by 5 is very 

effective in covering focal ROIs, it fails to provide an appropriate solution when the ROI is 

extended or consists of multiple noncontiguous regions 1, 5, as was the case in this study.  
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Mental-imagery task selection 

From the three mental-imagery tasks participants had to perform inside the MRI scanner, each 

participant performed two tasks during the fNIRS session. The selection of these two tasks was 

subject-specific and followed several pre-defined criteria. Combining approach-specific layouts 

for both mental-imagery tasks caused incompatible source and detector placements in some 

participants. The decisions taken to overcome these problems, together with the subject-specific 

task selection led to an unequal number of participants for each task (NIS = 2, NMC = 14, NMR =12), 

which made the group analysis for IS task unfeasible. To overcome the incompatibility problem, 

future studies could test the performance of different layouts in different runs/sessions (by using a 

given layout at a time), whose order could be counter-balanced to account for run/session effects. 

In addition, a single mental-imagery task could be studied at a time (instead of multiple tasks as in 

this study).  

Monte Carlo simulations  

Our light sensitivity profiles may contain estimation errors due to a number of simplifications. 

First, the head models used in this study did not consider that the skull can contain cancellous and 

cortical bone, and the soft tissue may contain fat and muscle that have different optical properties 

85. Second, both sources and detectors were modeled as pencil sources instead of separately being 

modelled according to their function (they emit or detect light) and technical characteristics. Third, 

we did not distinguish between arteries and veins when defining the head model. Even if our 

decision can be justified by the relatively small difference in optical properties between veins and 

arteries compared to the remaining tissues, we cannot discard potential divergence in the results if 

arteries and veins had been distinguished. Optical properties also differ depending on the diameter 

of blood vessels 86, which we did not take into account in the current study. Finally, our vascular 
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maps depended on manual segmentation procedures, which may have introduced variability. 

Future studies may overcome these limitations by mapping superficial (scalp/skull) vasculature 

with more optimized MRI sequences 87, and by distinguishing between arteries and veins and their 

diameters 88, 89.  

4.3. Implications for BCI applications 

In fNIRS-BCI applications for motor-independent communication and control, brain responses 

from a set of tasks are discriminated by exploiting information in distributed patterns of brain 

activity using multi-channel pattern analysis ( the equivalent to multi-voxel pattern analysis in 

fMRI studies). Alternatively, univariate analysis in combination with temporal encoding 

paradigms can be used, where participants perform a (number of) task(s) in a specific time window 

and evoke brain activation in a single (distinct) brain location(s) 10-12, 16, 90, 91. For either approach, 

it is important to ensure there is a set of channels that contains sufficient task-related information 

to discriminate responses.  

The present study constitutes a relevant pre-step for these BCI applications as it compared 

approaches that used different amount of individualized information to design task-specific, 

optimized optode layouts that should result in informative channels. Neurofeedback applications 

can also benefit from layouts that ensure sufficient task-related information and improved spatial 

specificity. Our results show that the percent of participants with significant ROI activation 

increased when increasing the amount of individualized information to create the optode setup, 

but only until a certain point. Indeed, adding vasculature information did not increase the percent 

of participants for MC and reduced this number for MR. Although all participants showed 

significant activation levels for every mental task during the fMRI run, none of the approaches 

using fMRI information managed to get all participants to have significant ROIs for MC and MR 
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tasks. It is unclear whether a given level of fMRI activation is enough to guarantee the detection 

of task-related fNIRS signal. Even if both neuroimaging methods measure the hemodynamic 

response to neural activity, fNIRS is highly dependent on the individual anatomical features, such 

as the scalp-brain distance (which differs across the head) ), the presence of hair, etc.18. In addition, 

our fNIRS results might have been affected by the discrete spatial locations used in this study (130 

EEG positions). Spatially unrestricted optode placement would likely improve the results 

substantially92.  

4.4 Recommendations for optode placement and the way forward  

Effective optode-layout design balances a number of potential tradeoffs. The extended layouts 

based on the international 10-20 system or its extensions can be used to study functional network 

dynamics and are adequate when target ROIs are not easy to define 92. In addition, although the 

target ROI may not be optimally sampled (due to unavoidable regions not covered by a source-

detector pair when creating optode layouts and the lower spatial resolution associated to fNIRS 

compared to fMRI), the chance of completely missing it is relatively low. That said, smaller setups 

are preferred in fNIRS-BCI applications due to their superior practicability and patient comfort. 

However, they run a much higher risk of missing signal from the target ROI due to anatomical or 

functional differences between individuals. As a result, small BCI setups are likely to benefit from 

supplementary f/MRI data investigated in the present work. The recommendations and conclusions 

presented here therefore focus on this particular fNIRS application.  

Considering that any additional individualized information has an associated 

acquisition/analysis cost, it is worth asking, especially when temporal/monetary/material resources 

are limited: how much individual information is worth to include for designing optode layouts? 

Figure 11 shows the predicted percent improvement in performance (in terms of t-statistics [top] 
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and CNR [bottom]) vs. the additional time required to acquire/analyze the data relative to the LIT 

layout, here considered the “baseline” approach. Points above the line indicate that the percent 

improvement of a given performance measure is higher than the temporal resources spent to 

achieve that gain. The figure suggests that including individual anatomical data (PROB layout) or 

including both, individual anatomical and functional data (iFMRI layout), improves the 

performance while efficiently using temporal resources. It also suggests that the fVASC approach 

in its current form is not as cost-effective.  

 
Fig 11. Percent improvement in performance (in terms of t-statistics (a) and CNR (b)) vs. the additional time 

required to acquire/analyze the data (in hours). All values are relative to the LIT approach (in light pink), here 

considered the “baseline”. The bigger white circles represent the median of the percent improvement in t-

statistics/CNR values for each layout when all three tasks are considered together. The dashed line represents the 

predicted percent improvement in performance for a given processing time. Points above/below the line indicate that 
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the percent improvement of a given performance measure is higher/lower than the temporal resources spent to achieve 

that gain. 

 

The analysis described above focused only on a small part of the multi-dimensional problem 

related to cost-effectiveness. Naturally, costs and benefits of including more individualized 

information for creating clinically practical layouts should be assessed in that very context. For 

example, in certain (rare) cases such as long-term BCIs in ‘locked-in’ patients, using individual 

(f)MRI data may result in increased ability to communicate, i.e., provide considerable benefit. In 

that case, even though using individual (f)MRI is more resource-demanding, the benefits could 

outweigh the costs.  

In view of these observations, we encourage researchers to use individual functional and 

anatomical data for designing optode layouts when possible, but when anatomical data is available 

and functional data is not, probabilistic functional maps constitute a promising and economic 

alternative. FMRI-based probabilistic functional maps of the human ventral occipital cortex 93, 

human motion complex 94, face selective areas 95, 96, finger dominance in the primary 

somatosensory cortex 97 or across the whole cortex 36 are freely available or available on demand. 

However, we could not find any published work on probabilistic mental-imagery maps, which 

could be beneficial for optode placement in BCI research. To improve this situation, the 

probabilistic functional maps of the three mental-imagery tasks used in this study (in MNI space) 

are available upon request. Finally, in the absence of functional and anatomical information, ROI 

selection should be guided by relevant body of work or meta-analyses that describe tasks closely 

related to the ones to be used during the fNIRS session. In parallel, a larger setup could be initially 

employed in a “localizer” run to determine the most informative channels which could be 

subsequently scaled down to consider only the most informative channels. In the present study, 

once the target ROIs were selected, we used FOLD 30 for designing our optode layout due to its 
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user-friendly features. However, other toolboxes such as Array Designer 1 and software, such as 

NIRStorm (a BrainStorm plugin for fNIRS analysis 28), also offer promising and flexible tools that 

were not explored in the present study.  

 

5 Conclusions 

In this paper, we compared four approaches to design small fNIRS optode layouts that represent 

various scenarios research groups may encounter when planning fNIRS-BCI experiments. By 

providing the insights of such comparisons, we hope to have offered an informative framework so 

that researchers can efficiently use resources for developing robust and convenient fNIRS-BCI 

systems for clinical use. 
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