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Abstract 19 

Most adults experience episodes of gingivitis, which can progress to the irreversible, chronic 20 
state of periodontitis. However the mechanistic roles of plaque in gingivitis onset and progression 21 
to periodontitis remain elusive. Here, we integrated the longitudinal multi-omics data from plaque 22 
metagenome, metabolome and salivary cytokines in 40 adults who transit from naturally-23 
occurring gingivitis (NG), to healthy gingivae (baseline) and then to experimental gingivitis (EG). 24 
During EG, rapid and consistent alterations in plaque microbiota, metabolites and salivary 25 
cytokines emerged as early as 24-72 hours after pause of oral hygiene, defining an asymptomatic 26 
‘sub-optimal health’ (SoH) stage. SoH also features a steep and synergetic decrease of plaque-27 
derived betaine and Rothia spp., suggesting an anti-gum-inflammation mechanism by health-28 
promoting microbial residents. Global, cross-cohort meta-analysis revealed a high Microbiome-29 
based Periodontitis Index at SoH state, due to its convergent taxonomical and functional profiles 30 
towards those of periodontitis. In contrast, caries SoH features a microbial signature very distinct 31 
from caries. Thus SoH is a universal state of polymicrobial inflammations with disease-specific 32 
features, which is key to maintaining a disease-preventive plaque. 33 
 34 
Introduction 35 

Gingivitis, the inflammatory lesion of the tooth-supporting soft tissues, is one of the most 36 
common oral diseases in humans and has been a global health burden for centuries (1-5). It results 37 
from a dysregulated immuno-inflammatory response which is induced by dysbiotic plaque 38 
biofilm (6). Manifested with various clinical signs and symptoms, the gingival condition of 39 
gingivitis is affected by both local and systemic factors (4). Notably, this inflammatory lesion can 40 
be resolved (i.e., reversible) following appropriate professional care. Whereas, uncontrolled 41 
gingivitis can progress to the irreversible periodontitis, which is characterized by destruction of 42 
tooth-supporting tissues and alveolar bone in susceptible individuals, eventually leading to tooth 43 
loss (7) and an increased risk of systemic diseases like diabetes and cardiovascular disease (8-10). 44 
Thus, prognosis and early diagnosis of gingivitis are of great importance in promoting oral health 45 
and general well-being (11). 46 
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However, how gingivitis is initiated remains elusive (11). In natural human populations, 47 
gingivitis symptoms can be reversible and volatile, as numerous internally or externally imposed 48 
disturbances including oral hygiene practices (personal or professional), or impairment of 49 
immune system, injury, diet and oral state can all affect disease development and confound 50 
disease prevention and monitoring (12). Population-wide microbiome associations have unveiled 51 
the compositional shifts of plaque during gingivitis progression (13-17), and the functional 52 
potential of oral microbiome in gingivitis onset was profiled via metagenomics and 53 
metatranscriptomic approaches (15, 18, 19). However, due to the lack of longitudinal perspective 54 
that includes each of the players of microbiota, their metabolites and host immune response, the 55 
molecular mechanisms underlying gingivitis onset and progression remain ill defined (13, 19).  56 

As for periodontitis, the irreversible and detrimental stage of gum inflammation resulted from 57 
chronical, uncontrolled gingivitis, a distinct phylogenetic structure of oral microbiota in diseased 58 
hosts versus healthy ones was revealed via 16S rRNA gene or metagenome sequencing (20-23). 59 
In particular, multiple separate cohort studies have probed the functional potential of 60 
periodontitis-associated microbiota via metagenome (15, 18, 19, 24, 25) or metatranscriptome 61 
(26, 27). However, the inherent mechanistic link of gingivitis and periodontitis, which is crucial 62 
to clinical prevention and treatment of both diseases, has remained elusive, due to (i) the high 63 
degree of heterogeneity among host hosts and variation in experimental procedures among the 64 
microbiome profiling endeavors, and (ii) the inability to track both microbiome and host factor 65 
and interrogate their interaction over the full course of gingivitis-to-periodontitis progression 66 
within an individual.   67 

To address these key challenges, herein we leveraged a longitudinal, multi-omics experimental 68 
design that includes personalized microbial, metabolite and host immuno-response profiles, to 69 
provide a high-temporal-resolution, system-level, mechanism-based landscape of the transition 70 
from periodontal health, to onset of gum inflammation and eventually to gingivitis (Fig. 1). These 71 
efforts unveil a microbiome-defined ‘sub-optimal health’ (SoH) stage of gingivitis, at just 24-72 72 
hours after pause of oral-hygiene-practice, which is symptom-free yet carries a microbial 73 
signature highly similar to periodontitis. Despite its lack of symptoms, SoH features a steep 74 
decrease of microbe-produced betaine, whose abundance is synergetic with Rothia spp. yet 75 
negatively correlated with bleeding, suggesting an anti-gum-inflammation mechanism by health-76 
promoting residents of plaque. Discovery of this microbiome-defined, symptom-free SoH stage is 77 
valuable to prevention and intervention of periodontal diseases. Moreover, meta-analysis of past 78 
gingivitis, periodontitis and caries microbiome studies revealed a high Microbiome-based 79 
Periodontitis Index for the gum SoH state, yet in contrast, caries SoH features a microbial 80 
signature very distinct from caries, suggesting SoH as a shared state of chronic polymicrobial 81 
inflammations that carries disease-specific features. 82 
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 84 
Results  85 
An experimentally tractable model of gingivitis onset and progression  86 

To control for the many confounding factors (e.g., individuality in initial gum health state or in 87 
oral-hygiene behavior) for host–microbiome dysbiosis during gingivitis (i.e., the earlier stage of 88 
periodontal disease), we designed for a 40-adult cohort an experimentally tractable model of 89 
gingivitis onset and progression (13, 16) (Fig. 1, Table S1). Specifically, on Day -21 (natural 90 
gingivitis, or NG), all 40 adults were randomized into two groups: either high (15 to 25; 20 91 
subjects) or low (0 to 10; 20 subjects) bleeder (Methods; Fig. 1a). These hosts then underwent a 92 
rigorous oral hygiene regimen (dental scaling) for three weeks, resulting in greatly reduced 93 
bleeding (median gingival bleeding of 1) on the baseline state of Day 0 (“Baseline”, i.e., a healthy 94 
gingival state). Next, the subjects underwent a four-week program inducing experimental 95 
gingivitis (EG), which greatly and consistently elevated gingival bleeding, until Day 28 (p<0.01 96 
for gingival bleeding; i.e., the diseased state; Fig. 1b). Notably, the between-group symptomatic 97 
difference at NG (p=1e-22, t-test), the basis for the high-/low-bleeding stratification of hosts at 98 
NG (i.e., Day -21), is much greater than any of the subsequent time points (both before and after 99 
Baseline) (Fig. 1b). In fact, mild or marginal difference in bleeding between high and low 100 
bleeders was observed at the seven subsequent time points (p<0.05, t-test), but no such 101 
symptomatic difference is found at Day 1 or 3 (p>0.05, t-test). This suggested that disease 102 
severity in natural population (i.e., NG) is not necessarily deterministic among individual hosts, 103 
and the high-bleeders can recover almost as rapidly and thoroughly as low-bleeders if they follow 104 
a proper oral hygiene practice. 105 

Integrated longitudinal profiles of both microbial and host immune programs were unveiled via 106 
275 supragingival plaque (simultaneously for taxonomy and metabolome, via 16S rRNA 107 
amplicon sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based 108 
mass spectrometry, respectively) and 192 matching saliva samples (cytokine profile via 109 
multiplexed bead immunoassay) collected by professional dentists. The plaque microbiome, 110 
plaque metabolome and salivary cytokines were profiled at time points that fully span the entire 111 
49-day NG-Baseline-EG course (from Day -21 to Day 28 day) while densely sampled the 112 
transition from Baseline (0 day) to the onset of EG (e.g., Day 1, 3 and 7; Fig. 1a, Fig. S1), so that 113 
the tertiary interplay can be temporally monitored, especially at disease onset. 114 

Symptomatic severity (i.e., bleeding) contributed greatly to the first principal coordinate in 115 
PCoA of plaque microbiome (Fig. 1c) or metabolome (Fig. 1d). For plaque-related 116 
measurements, although inter-individual variation accounts for majority of symptomatic variance 117 
(40-45%; Fig. 1f), disease status (9-11%) or time point (16-23%) also explains much of it (Fig. 118 
1c-d, f). In contrast, no significant correlation was found between bleeding and salivary cytokine 119 
profile (Figs. 1e-f). Notably, time point still explains 9% variation in cytokine profile (although 120 
the inter-individual factor accounts for 54%) in fact, many salivary cytokines respond to gingivitis 121 
development only at the initial time points post Baseline such as Day 3 or 7 but did not further 122 
increase afterwards when hosts accumulated even more bleedings. This suggests that the oral 123 
host-microbe interplay is the most intensive at the onset stages of gingivitis. 124 

Therefore, we hypothesized the Day 1-3 after dental scaling as the “SoH” stage (Fig. 1b). At 125 
this stage, we did not detect within-host temporal difference in clinical symptoms (i.e., from Day 126 
1 to 3 after dental scaling) (p>0.05, paired t-test, Fig. 2a), however, the microbiome in the 127 
supragingival plaque and even host immune molecules might have dramatically changed due to 128 
the detrimental environmental disruptions in EG induction (i.e., poor oral hygiene).  129 
Profound disruption of plaque microbiota/metabolome and salivary cytokines at SoH  130 

To quantitatively measure the shifts in the plaque microbiome and host immunity in the 131 
emergence of clinical symptoms, we established a unified metric to measure the temporal changes 132 
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in multi-omics data from Baseline to EG. Between-timepoints classifiers of host gingival status 133 
were built from plaque microbiota, metabolome and salivary cytokine profiles, via the random 134 
forests (RF) algorithm. On top of those RF models, we employed a model-accuracy metric 135 
(AUROC) as a proxy to quantify the temporal changes of each measurement type at each of the 136 
timepoints (i.e., Day -21, 1, 3, 7, 14, and 28) from Day 0. Furthermore, to dissect the multi-omics 137 
associations, we compared temporal changes in AUROC values of RF classifiers related to plaque 138 
microbiome, plaque metabolome, and salivary cytokines together with those from the clinical 139 
symptoms (Fig. 2a). Unexpectedly, the AUROC of RF classifiers for plaque microbiota rapidly 140 
shifted in the first 3 days (0.75 at Day 1 and 0.87 at Day 3) from Baseline: it already resembled 141 
Day-28 microbiota (severe gingivitis stage; AUROC=0.89) as early as Day 3 (Fig. 2a), and 142 
actually saturated after Day 3. Therefore, a microbial SoH stage occurred earlier than the 143 
emergence of clinical symptoms. In concordance with plaque microbiota, the AUROC on the 144 
plaque metabolome increased quickly from 0.58 (Day 1) to 0.92 (Day 7) within 7 days yet did not 145 
plateau until after 14 days (AUROC=0.97), suggesting the plaque metabolome was persistently 146 
shifting toward a gingivitis-like state. However, the most abrupt changes in the plaque 147 
metabolome also took place in the first three days after dental scaling (Fig. 2a), indicating that 148 
plaque metabolome change also precedes the development of bleeding symptoms, well before 149 
they are detectable by professionals. Notably, despite the concordant changes over time between 150 
plaque microbiota and metabolome, the saturation of the AUROC of metabolome-based RF 151 
classifiers was 7 days later than that of microbiota-based classifiers (Fig. 2a), suggesting 152 
microbiome-shift dependent changes in the plaque metabolisms during gingivitis onset.  153 

Interestingly, in the SoH stage, the immune response was even more pronounced than both 154 
plaque microbiota and metabolome (Fig. 2a). The AUROC reached up to almost 0.99 at either 155 
Day 3 to 7, while the median gingival bleeding within this period (1 for Day 3 and 2 for Day 7) 156 
was relatively low. In contrast, the AUROC at Day -21 (i.e., naturally occurring gingivitis) and 157 
Day 28 were all even lower than that in the SoH stage, while the median gingival bleeding was 158 
relatively high (8 for Day 28, 11 for Day -21). This suggests that the alterations in the cytokine 159 
profiles are not necessarily associated with disease severity but are a response to the intensity or 160 
magnitude of organismal and metabolite changes in the plaque microbiome. 161 

The longitudinal concurrent metabolomics and 16S amplicon microbial community profiling 162 
from dental plaque samples elucidated the reassembling process of supragingival plaque biofilms 163 
after dental scaling (Fig. 2a). A key question then is to identify potential microbial and metabolic 164 
factors that drive the microbial dysbiosis in the plaque. Thus, to compare the microbiome 165 
responses across different stages of disease progression, we performed differential abundance 166 
analysis on the CLR-transformed relative abundances of each genus-level taxon between a given 167 
time point (Day -21, 1, 3, 7, 14 and 28) and Baseline (Day 0), and compared the results across the 168 
stages of EG (Wilcoxon rank-sum test with the Bonferroni correction) (Fig. 2b). The microbial 169 
markers persistently enriched/depleted with gingivitis progression (such as Porphyromonas and 170 
Rothia), were termed ‘persistent responders’, while those genera transiently enriched/depleted at 171 
the early stage of gingivitis progression (i.e., Day 1-3) were ‘early responders’ (such as Gemella). 172 
Similarly, for plaque metabolome, we identified a series of persistent and early responders in 173 
gingivitis development: over 50 metabolites were persistently over- or under-represented during 174 
disease development and therefore provided a clue to path-physiology of gingivitis (Figs. 2a, d). 175 

Accordingly, time-resolved, differentially abundant cytokines in saliva at Day -21, 3, 7 and 28 176 
were also identified (as compared to Day 0; Fig. 2c). Eleven out of the 27 salivary cytokines, such 177 
as eotaxin, IL-5, MiP1-beta, IFN gamma, basic FGF, and GSF, altered early, within 72 hours 178 
from Baseline (i.e., at the SoH stage), yet did not exhibit any significant difference from Baseline 179 
in later, gingivitis-developed timepoints (e.g., Day 28, the most severe gingivitis states along the 180 
course). In fact, the SoH stage is featured by a prominent activation of both pro- and anti-181 
inflammatory cytokines that stabilized in later stages of EG (Fig. 2a, c). Notably, cytokine 182 
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alterations are more correlated with particular phases such as SoH than with gingivitis severity, 183 
which underscores the importance of high-resolution temporal view of the host-microbiome 184 
interplay. 185 
Integrated microbiome-metabolome dynamic profiles of oral biofilms underlying SoH  186 

To identify plaque microbial activities that underlie gingivitis onset and progression, we 187 
constructed a cross-measurement type association network that incorporated both microbial taxa 188 
and metabolome from the 261 plaque samples. To reveal trends in the data, Procrustes analysis 189 
was used to direct compare the different omics data sets (of identical internal structure) on a 190 
single principal coordinates (PC) analysis (Fig. S3). Overall, strong correlation between microbial 191 
taxa and metabolome of all plaque samples was observed along the NG-Baseline-EG course 192 
(r=0.53). In fact, such agreement between microbial taxa and metabolomics did not vary with the 193 
gingivitis progression (Fig. S3), suggesting the key roles of microbes-derived metabolites in this 194 
process.  195 

We then built a co-occurrence network from the multi-omics data for biomarker discovery, by 196 
calculating the correlation matrix of all features via Spearman’s correlation analysis. The resulting 197 
network contained 27,942 total significant edges (|rho|>0.6, FDR p<0.05) and 1196 nodes that 198 
span features from all three types of measurement. A filtered subnetwork was further built from 199 
29 bacterial genera, 304 metabolites, and 8 salivary cytokines that were differentially abundant 200 
between Day 0 and 28 (Fig. 3a). Between-metabolites associations accounted for the vast 201 
majority (over 99%) of edges, clearly revealing complex and strong association among 202 
metabolites. In addition, 51 strong co-associations between microbial genera and metabolites 203 
were found, highlighting the impact of gingivitis onset and progression on microbe-dependent 204 
metabolisms in plaque. Among these, the Rothia-betaine link is one of the most prominent 205 
features in the network (red arrows in Fig. 3a). As a gingivitis-depleted bacterial marker, Rothia 206 
had the most links to metabolites (n=14) and exhibited the strongest association with the 207 
metabolite of betaine (i.e., trimethylglycine or TMG; rho=0.7; Fig. 3a), which is also gingivitis-208 
depleted. In fact, the abundance of betaine and Rothia are highly synergic along the full 49-day 209 
course (Fig. 3b); moreover, both were negatively correlated with symptomatic severity of 210 
gingivitis: depleted from NG to Baseline and then enriched again from Baseline to EG, with the 211 
peaking of betaine and Rothia coincident with the maximal healthy state of gingivae at Baseline 212 
(Fig. 3b). Notably, the depletion rates of betaine and Rothia post during EG induction are not 213 
constant: they both steeply decreased during the SoH stage and then gradually stabilized (Fig. 214 
3b); in particular, for Rothia, at Day 3 its level already dropped to 21% of its peak at Day 0, then 215 
it bottomed at Day 7 and stayed so for the remaining 21 days). These observations suggest that 216 
the SoH stage, despite the lack of clinically observable changes in bleeding (vs. Baseline), is the 217 
most active and consequential phase in both microbiome structural change and the gingivitis-218 
driving microbial metabolism.  219 

Coincidentally, in addition to its synergy with heath-enriched bacteria such as Rothia, betaine is 220 
negatively linked to many gingivitis-enriched ones such as Peptostreptococcus, Prevotella, and 221 
Treponema etc (Fig. 3a). This suggests an important, perhaps protective, role of betaine in 222 
gingival inflammation. Accumulating evidence has shown that betaine plays an anti-inflammatory 223 
role in multiple inflammatory diseases, potentially by balancing hyperosmosis and protecting 224 
cells from shrinkage and death (28). Similarly, the positive link to betaine and the negative 225 
association with gingivitis severity indicate that Rothia is perhaps beneficial to gingival health 226 
and it potentially contributes to betaine metabolism in plaque.  227 

On the other hand, only three out of the 27 cytokines tested are present in the network (Fig. 228 
3a). MiP1-beta is enriched in healthy gingivae, yet IL-9 is enriched in gingivitis and negatively 229 
correlated with MiP1-beta (Fig. 3a): in fact, IL-9 is significantly downregulated at Day 3 and Day 230 
7 and upregulated at Day 28 (versus Day 0; Fig. 2d). However, no specific associations between 231 
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salivary cytokines and plaque taxa or plaque metabolites were found over the process of EG 232 
induction (Fig. 3a).  233 
Identifying microbiome links between gingivitis-SoH and periodontitis via meta-analysis 234 

To derive a microbiome-based view of the gingivitis to periodontitis transition (a process that 235 
can take decades), we conducted a meta-analysis of published microbiomes for gingival plaques, 236 
of sufficient sample size (>20 human adults) and with disease-associated (i.e., case or control 237 
labels) or time-revolved metadata (i.e., baseline or time point labels) (Table 1). Among the 238 
datasets found (all 16S rRNA amplicon based), six were publicly accessible, thus collectively 239 
1505 oral microbiome samples reanalyzed from raw sequences (via Parallel-Meta 3.0 (29) and 240 
Oral Core microbiota database; Table 1; Fig. 4a, b), for taxonomic profiles and metabolic 241 
functions (via PICRUSt (29, 30); Fig. S5b).  242 

We first tested whether the reported microbiome associations with the oral disease states or the 243 
anti-gingivitis treatments can be recapitulated (Table 1). To compare across studies such disease-244 
responses of microbiome, we first grouped all data into ten “datasets”. Each dataset can include 245 
samples from case and control groups in a cross-sectional study (e.g., “UK_Periodontitis”) or 246 
samples at the baseline and subsequent time points in a longitudinal study of EG (such as 247 
“CN_EG_2014”) or an anti-gingivitis treatment (such as “CN_AntiG_brush_plus_rinse”). Next, 248 
for each dataset, we built a genus-level RF classifier to distinguish disease states (gingivitis, 249 
periodontitis, or dental caries) from the health states longitudinally or cross-sectionally, and then 250 
compared their AUROC across datasets.  251 

Surprisingly, periodontal disease status can be classified between hosts or within hosts 252 
(AUROC>0.7) in all studies (Fig. 4a). Notably, the states of gingivitis or chronic periodontitis are 253 
highly distinguishable by plaque microbiome (AUROC>0.9) in six out of eight related datasets 254 
(Fig. 4a). We then asked whether and to what extent the microbiome-based RF classifiers of 255 
periodontal disease states can be applicable from one dataset to another (Fig. 4b). For gingivitis, 256 
we observed very limited degradation in prediction accuracy for the cross-trained RF models from 257 
one cohort to another (AUROC ranges from 0.88 to 0.99 in either self-validation or prediction). 258 
Moreover, a RF classifier trained on periodontitis can be readily applicable to gingivitis or vice 259 
versa (AUROC>0.75 in either self-validation or prediction), despite the large technical difference 260 
(or other non-disease-related biological differences) between studies/cohorts in the microbiome 261 
data that frequently confound such cross-applications (Fig. S4a). Thus, the gingivitis and 262 
periodontitis classifiers share a large number of microbial markers, suggesting a high degree of 263 
similarity in the underlying microbiome. 264 

Then, the microbial signatures associated with gingivitis or periodontitis were compared across 265 
these datasets (Methods). Firstly, we asked whether the identified microbial response to 266 
gingivitis onset (i.e., SoH) or progression is consistent with reported gingivitis microbiome in 267 
these independent cohorts. Here 1023 samples (N=931 from China; N=92 from UK) from five 268 
gingivitis-related datasets were compared, each with a longitudinal design that tracks microbiome 269 
dynamics along gingivitis progression or retrogression. For cross-study comparison of microbial 270 
responses, statistical analyses on samples from the baseline and the last time point in each study 271 
were performed (with univariate tests on genus-level CLR-transformed relative abundances 272 
conducted for each dataset independently and the results compared across studies; Wilcoxon 273 
rank-sum test with the Bonferroni correction). Notably, the gingivitis-associated microbiomes are 274 
highly reproducible across studies (Fig. 4c). In the EG datasets, microbiome shifts are 275 
characterized by enrichment of a large proportion of ‘pathogenic’ or pathogen-associated genera 276 
and depletion of a few commensal oral bacteria (consistent across studies; Fig. 4c). The EG-277 
associated microbiome identified from our previous study (i.e., “CN_EG_2014”) harbored the 278 
broadest spectrum of microbial shifts (N=41), among which >60% of microbial markers (e.g., 279 
Rothia, Haemophilus, Actinomyces, Streptococcus, Selenomonas, Prevotella, Leptotrichia, 280 
uncultured Lachnospiraceae, and TM7) actually overlapped with those identified in other 281 
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gingivitis-progression studies (including the present gum SoH study; Fig. 4c). Moreover, the two 282 
anti-gingivitis treatments of brush alone and brush plus rinse(16)) are both characterized by 283 
enrichment of health-associated bacteria yet depletion of ‘pathogenic bacteria/; in fact, the 284 
microbial taxa shifted toward the healthy state during gingivitis retrogression have largely 285 
overlapped with markers of the EG studies (e.g., Lautropia, Rothia, Granulicatella, TM7 and 286 
Leptotrichia; Fig. 4c), yet in exact opposite directions of abundance change,  287 

Secondly, we tested whether or to what extent the stage-specific plaques of gingivitis are linked 288 
to those of periodontitis. Specifically, 260 samples were collected from two case-control studies 289 
(UK, N=92; US, N=178) on periodontitis microbiome: the UK_Periodontitis dataset where 290 
Kistler et al. profiled plaque microbiome of chronic periodontitis (15) and the US_Periodontitis 291 
dataset where Griffen et al. compared subgingival plaque microbiota from 29 periodontally 292 
healthy controls and 29 subjects with chronic periodontitis (including periodontally healthy and 293 
diseased sites) from a US cohort (23). Notably, the periodontitis microbiomes feature a large 294 
number of genera that overlap with those identified in the EG or even the SoH stage of gingivitis 295 
(Fig. 4b-c; Fig. S4). The microbiome shifts responding to chronic periodontitis in the US or UK 296 
cohorts were characterized by an enrichment of gingivitis-enriched genera (such as 297 
Porphyromonas, Leptotrichia, Selenomonas, TM7, Prevotella, uncultured Lachnospiraceae, 298 
Campylobacter, Fusobacterium and Tannerella) and a depletion of gingivitis-depleted ones (such 299 
as Rothia, Haemophilus, Actinomyces, Streptococcus and Kingella). Importantly, those gingivitis-300 
associated microbes were all identified as so in the Chinese cohorts. Considering the potential 301 
heterogeneity between cohorts (i.e., geographic locations) or technical inter-study batch effects 302 
(such as 454 vs. Illumina sequencing platform, different primer sets etc.), the very limited 303 
variation in microbial response to periodontal diseases across the two UK/US periodontitis 304 
cohorts and the China gingivitis cohort is remarkable. 305 

To validate the similarity in microbiome signature between gingivitis and periodontitis, we 306 
built a RF classifier of the chronic periodontitis on the plaque microbiome, and applied this model 307 
to a given sample from any of the gingivitis stages for estimating its microbiome-based 308 
probability of periodontitis (which we proposed as “Microbiome-based Periodontitis Index” or 309 
MPI; Fig. 4d). In the training dataset (i.e., US_Peridontitis), MPI of the healthy controls are on 310 
average only 10%, while reach up to 99% averagely in periodontitis patients. In our present study, 311 
MPI increase progressively along the EG process, a pattern that is consistent with the other EG 312 
datasets. In particular, MPI at Day 7 (end of the gum SoH stage), with a median at ~62%, is 313 
significantly higher than that at Day 0, suggesting the emergence of a periodontitis-like 314 
microbiome at this stage, due to the aforementioned, profound changes in plaque microbiome, 315 
plaque metabolome and host immunity that take place at SoH.  316 
Comparing microbiome dynamics in the development of gum inflammation and caries 317 

Next, we put the temporal microbial shifts along gingivitis development in a broader context 318 
that includes not just periodontitis but dental caries, via meta-analysis of the SoH, UK_EG, 319 
UK_Periodontitis, US_Periodontitis and early childhood caries (ECC) datasets(31). We classified 320 
the disease or pre-clinical status using RF models based on either the species-level taxonomic 321 
profile or the predicted functional profile (by PICRUSt) along stages of disease development in 322 
all studies (Fig. 5a). Surprisingly, AUROC of species-level-taxonomy based RF classifiers for 323 
plaque at Day 3 reached 0.85 (function-based classifiers: 0.81), which is already quite close to the 324 
0.88 at Day 28 (function-based classifiers: 0.85). Thus plaque functional profiles already 325 
resembles that of the severe gingivitis stage within 24 hours after dental scaling (Fig. 5a), and 326 
actually saturates after 24 hours. The discriminative power of this function-based classifier 327 
(AUROC=0.78) is nearly equivalent to that distinguishing chronic periodontitis patients from 328 
healthy individuals from the UK cohort (AUROC=0.82; DAY0_VS_DD), suggesting an ultra-329 
rapid assemblage of functional components in the plaque biofilm that highly resemble those in 330 
periodontitis patients. In contrast, in ECC development, oral microbiome did not show as 331 
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pronounced changes in the early stage (AUROC=0.52; H VS RelativeH) as those in the late stage 332 
(AUROC=0.68; H VS C; Fig. 5a).  333 

Moreover, to test whether microbiome successions are concordant between the developmental 334 
stages of these oral chronic inflammations, we quantitatively compared the microbial differential 335 
abundance profiles between time points or disease severities. For each dataset, the differential 336 
abundance (i.e. mean log2 fold change) of microbial features in the plaque/saliva microbiome 337 
from healthy baseline to a given developmental stage of disease was measured (Fig. 5a-b, Fig. 338 
S5a). For two given microbial signatures (e.g. Day0 vs. Day -21 and Day0 vs. Day 28 in the SoH 339 
study), we first ranked the features by the degree of differential abundances in each of them and 340 
then calculated the Pearson’s correlation between these two feature ranking lists. To reveal the 341 
patterns driving the temporal difference in microbiome across diseases, we next performed PCoA 342 
via the correlation-based distance metric of all pairs of feature ranking lists, with each dot in 343 
PCoA corresponding to a pattern of microbial alteration between the healthy baseline and a 344 
particular disease developmental stage (instead of a microbiome sample; Fig. 5c-d).  345 

Intriguingly, at the species level, the microbiome differences along gingivitis development are 346 
more pronounced than those from periodontitis or dental caries (Fig. 5c). During gingivitis 347 
progression, along PC1, the profile of microbiome alteration between the baseline (Day 0) and a 348 
given time point would increasingly resemble that between health and periodontitis in either the 349 
US or the UK cohort. Notably, the microbial taxonomical response to severe gingivitis (e.g. Day0 350 
vs. Day -21, and Day0 vs. Day 28 in the SoH study) is highly similar to that of chronic 351 
periodontitis. Thus, taxonomic perturbations during dysbiosis are highly consistent between 352 
gingivitis and chronic periodontitis, while the taxonomic responses to the periodontal diseases and 353 
dental caries are quite distinct (Fig. 5c).  354 

Notably, during gingivitis development, functional potential of microbiome is relatively 355 
conservative over time, particularly after the SoH stage (Fig. 5d). In fact, our results suggest that 356 
the gingivitis-associated community in dental plaque biofilm actually assembles rather rapidly in 357 
the very early stage (i.e., the SoH stage), to form a “climax”-like community configuration that is 358 
very similar to the periodontitis-associated community (Fig. 5d). In contrast, ECC-associated 359 
microbiomes at the onset stage (i.e., SoH) are actually very distinct from those at the late stage 360 
(31). As ECC develops, the primary oral microbial communities (i.e. health-associated) evolves to 361 
a convergent state, due to selection of a changed microenvironment of teeth (such as acidification 362 
(32)), and such a “climatic” state that corresponds to a reliable caries stage, is very distinctive 363 
from that in the “new onset” stage of caries (i.e., RelativeH, when no clinically detectable 364 
symptoms are apparent in teeth (31)) in terms of taxonomic composition or functional profile 365 
(Fig. 5a, c, d). For example, the cariogenic pathogen of Streptococcus mutans are highly enriched 366 
in the climax community, yet hardly present at the new onset (i.e., SoH) stage (31); in contrast, at 367 
the SoH stage of ECC, Prevotella spp. exhibit a much stronger statistical power in predicting 368 
caries onset than Streptococcus mutans (17). Therefore, the distinct temporal patterns of microbial 369 
succession in plaque-induced pathogenesis, as well as their distinct rates of microbiome change 370 
relative to symptom development, appear to be a common stage of such chronic, polymicrobial 371 
inflammations that carries disease-specific features. 372 
 373 
Discussion  374 

Despite the technological challenges, integrating the human dental plaque microbiota and 375 
metabolomics profiles enables an in-depth and mechanistic understanding towards periodontal 376 
disease etiology. Simultaneous analysis of dental plaque samples via DNA sequencing and LC-377 
MS/MS has been hindered by (i) the low biomass of dental plaque sampled with high temporal 378 
resolution from each host and (ii) the difficulty to reconcile the distinct sample preprocessing 379 
procedures for DNA sequencing and LC-MS/MS on a plaque sample (e.g., the organic solvent 380 
extraction in LC-MS/MS can reduce the DNA quality for sequencing). Therefore, in our new 381 
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strategy, two dental plaque samples (up to 14 teeth each) were collected (for each subject) from 1 382 
and 3 (plaque A) or 2 and 4 quadrants (plaque B) for sequencing and LC-MS/MS respectively 383 
(randomly assigned, to eliminate potential bias). This is particularly enabling for recording the 384 
integrated metagenome-metabolome choreography of plaque, when sampled at high temporal 385 
resolution, and particularly during the SoH phase (just 0~3 days away from Baseline, with 386 
especially low plaque biomass). 387 

The link and distinction temporal dynamics among host symptoms, immune factors, plaque 388 
structure and plaque metabolome unveiled how plaque microbiota drove gingivitis onset and 389 
progression. Most importantly, an asymptomatic “SoH” state of gingivae, from 0 to 3 days after 390 
dental prophylaxis and pause of oral hygiene, was uncovered, when actually the most intense 391 
host-microbiome interactions take place, i.e., rapid and consistent alterations in plaque 392 
microbiota, metabolite pool and salivary cytokines. In particular, during this pre-clinical-393 
symptom, very transient gingival state of SoH, plaque residents (e.g., Rothia spp.) and metabolites 394 
(e.g., betaine) that are strongly negatively correlated with gum-bleeding (over the entire 49-day 395 
NG-Baseline-EG process) undergo a steep decrease, while at least eleven salivary cytokines 396 
dramatically change in response (six up-regulated and five down-regulated as compared to Day 0) 397 
and then rapidly plateau. In contrast, such alterations were not seen in subsequent phases of 398 
gingivitis development (e.g., from Day 7 to 28), even for those with much higher symptomatic 399 
severity.  400 

Betaine was not previously linked to gingivitis development, despite its being recognized as 401 
maintaining cell osmotic pressure which can promote cell survival under the high hyperosmotic 402 
pressure potentially due to inflammation and diseases (28). Interestingly, it is at present an 403 
ingredient in toothpaste for relieving dry mouth (33). In our plaque samples, betaine consistently 404 
and continuously declined as the gingivitis developed (particularly in the SoH stage), suggesting a 405 
protective role against gum inflammation. Notably, its concentration in the plaque was highly 406 
correlated with healthy-gum-enrich and gingivitis-depleted plaque residents such as Rothia spp.. 407 
Therefore, the health-associated members of plaque might have served as a source of betaine that 408 
possibly to protect the gum from gingivitis, which underscores the importance of maintaining a 409 
healthy plaque.  410 

Notably, although taxonomic shift in plaque took place as early as 24 hours after dental 411 
prophylaxis (by acquiring microbial colonizers from saliva (11, 20)), it was accompanied by a 412 
delayed functional shift as revealed by plaque metabolome. This suggests that establishment of 413 
primary colonists in plaque altered within 48 hours (i.e., at or by Day 3) the plaque metabolome, 414 
which then elicits both gingival inflammation and subsequent plaque development, starting a 415 
detrimental cycle: periodontal tissue destruction by plaque dysbiosis provides nutrients for 416 
bacterial growth, which further promotes dysbiosis and tissue inflammation (11). Therefore, 417 
despite its apparent Baseline-like symptom, the SoH phase is a transient yet crucial time window 418 
to prevent or abolish the start of such vicious cycles. 419 

Surprisingly, the implication of this SoH stage finds support from our meta-analysis of past oral 420 
microbiome studies, which reveals a microbiome-mediated link between the very early (i.e., SoH 421 
of gingivitis) and very late stage (periodontitis) of the periodontal disease which can span decades 422 
and affects over half of the global population. Gingivitis and periodontitis patients can share a 423 
significant number of bacteria genera (18-20, 23), and periodontal treatments can result in 424 
depletion of disease-associated bacteria and enrichment of health-associated ones in plaque (16, 425 
17, 34). However, systematically tracking microbial associations across different stages for 426 
chronic periodontal diseases remains a challenge, since it is impractical to create or modulate 427 
advanced disease states directly in humans, while clinical studies can only induce mild or 428 
moderate disease states (notably, this holds true for many chronic diseases). Moreover, technical 429 
variations such as inter-study differences in the sequencing protocol, 16S databases or statistical 430 
methods prevent comparing microbial associations across studies (35). For example, microbiome 431 
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data are compositional (36), however in many past studies, traditional statistical methods such as 432 
t-test or Wilcoxon rank-sum test were widely and inappropriately used on the raw abundance data 433 
for microbial marker discovery; in fact, once accounting for the compositionality issues in 434 
statistical analysis, it is far less clear whether the reported microbial associations can be 435 
recapitulated (36).  436 

To tackle these issues, we re-analyzed from raw data all published and accessible microbiome 437 
datasets with consistent parameters and RF models. Our results profoundly relate gingivitis to 438 
periodontitis via plaque microbiome. Specifically, (i) the oral microbiome responses to a disease 439 
state, either gingivitis or periodontitis, can be highly consistent across human populations, while 440 
this is not the case for most of the other chronic diseases (31, 35); (ii) the plaque residents 441 
specifically responding to periodontal inflammation are quite consistent between the very early 442 
stage of gingivitis (i.e., SoH) and the eventually irreversible and detrimental state of periodontitis, 443 
despite their decade-long temporal gap and the large host- or technology-related variation among 444 
cohorts/studies. This is in contrast to early childhood caries (ECC), where plaque microbiomes at 445 
the new onset stage are very distinct from that of the late stage. The patterns and nature of such 446 
microbiome change underlying chronic disease development, whether conserved or divergent 447 
among the many chronic inflammations in oral or other human body sites, can shed new light on 448 
disease etiology and help precise diagnosis, prevention and treatment.  449 

In summary, by tracking the choreography of plaque microbiome structure, plaque metabolome 450 
and host immune-response during gingivitis onset and progression, we unraveled a microbiome-451 
defined SoH stage of gingivitis, i.e., the just 24-72 hours after pausing oral hygiene. Although 452 
transient and asymptomatic, SoH is a crucial phase when the most intensive changes in plaque 453 
structure and metabolism as well as host immune factors take place, and carries a microbial 454 
signature highly similar to periodontitis. In light of the epidemic of periodontal disease (1-5) and 455 
the insufficient public health awareness on oral hygiene (a significant portion of world population 456 
still fails to brush teeth daily), our findings underscore the importance of intervening at the SoH 457 
stage of gingivitis via proper oral hygiene practices, so as to maintain a healthy, periodontitis-458 
preventative plaque. In addition, since SoH appears to be a shared stage that carries disease-459 
specific microbial, metabolomic and immunological features, it would be promising to define and 460 
compare the SoH states of additional chronic polymicrobial inflammations, which should lay the 461 
foundation for exploiting their uses in predictive and personalized medicine. 462 
 463 
Materials and Methods 464 
Overall design of the study 465 

The ‘experimental gingivitis’ notion was established as a non-invasive model in humans for the 466 
pathogenesis gingivitis (13). This single-center, examiner-blind, controlled clinical trial was 467 
conducted at Procter & Gamble (Beijing) Technology Co., Ltd. Oral Care Department, with 468 
approval from the P&G Beijing Technical Center (China) Institutional Review Board and in 469 
accordance with the World Medical Association Declaration of Helsinki (1996 amendment). ICH 470 
Guidelines for Good Clinical Practice (GCPs) were followed. All participants gave written 471 
informed consent prior to the study.  472 
Overview of human cohort  473 

A total of 40 volunteers who met all inclusion criteria participated in this study and all 474 
completed it (Table S2). Clinical examination of gingival tissues using Mazza index (reference) 475 
was conducted at all of the visits by a qualified dental examiner (Fig. 1a). For each subject, 476 
supragingival plaque and salivary samples were collected by professional dentists at Day -21 477 
(NG), Day 0 (Baseline), Day 1 (EG), Day 3 (EG), Day 7 (EG), Day 14 (EG) and Day 28 (EG), in 478 
a longitudinal manner (Fig. 1a). The optimal gingival health state on Day 0 was achieved through 479 
dental prophylaxis and rigorous oral hygiene during the oral hygiene phase prior to Baseline. 480 
Dental prophylaxis including super and subgingival whole-mouth cleaning on a total of 28 teeth 481 
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was performed on Day -21, Day -14, and Day -7. Subjects were instructed to brush with a sodium 482 
fluoride dentifrice three minutes each time twice daily in the oral hygiene phase. On the contrary, 483 
in the EG phase from Day 0 to Day 28, only rinsing with purified water was allowed for each of 484 
the subjects.  485 
Clinical assessment  486 

A qualified dental examiner performed oral tissue assessments on the study participants at Day 487 
-21, Day -14, Day -7, Day 0, Day 1, Day 3, Day 7, Day 14 and Day 28. Assessment of the oral 488 
soft tissue is conducted via a visual examination of the oral cavity and perioral area. The 489 
structures examined include the gingiva (free and attached), hard and soft palate, 490 
oropharynx/uvula, buccal mucosa, tongue, floor of the mouth, labial mucosa, 491 
mucobuccal/mucolabial folds, lips, and the perioral area. Assessment of the oral hard tissues was 492 
conducted via a visual examination of the dentition and restorations. Gingivitis was assessed 493 
based on the Mazza Index (13): sampling was performed on the mesiofacial and the distolingual 494 
of each tooth, for a maximum of 56 sites.  495 
Saliva sample collection  496 

At the Day -21, Day 0, Day 1, Day 3, Day 7, Day 14, Day 28 visits, subjects were asked, prior 497 
to plaque sampling, to expectorate approximately 10 mL of unstimulated saliva into a labeled tube 498 
(Fig. 1a). The samples were frozen at -20°C immediately after collection until use for cytokine 499 
profiling.   500 
Plaque sample collection  501 

Gingival plaque from each of the 40 subjects was collected at Day -21, Day 0, Day 1, Day 3, 502 
Day 7, Day 14 and Day 28 (Fig. 1a). Specifically, subjects were refrained from oral hygiene 503 
practice include tooth brushing, flossing or mouth rinsing in the morning of sampling and 504 
supragingival plaque samples along the gingival margin were collected after GI examination 505 
using a gracey curette by a qualified dentist. At each time point, to ensure sufficient amount of 506 
plaque for analysis, samples were taken from each subject’s maxillary right and mandibular left 507 
quadrants or maxillary left and mandibular right quadrants alternatively. All samples were stored 508 
under -70°C until use.  509 
Plaque microbiome structure analyses  510 

Genomic DNA was extracted from the plaques. Barcoded 16S rRNA amplicons (V1-V3 511 
hypervariable region) of all the 261 samples were sequenced via Illumina Miseq. All 16S rRNA 512 
raw sequences were pre-processed following the standard QIIME (v.1.9.1) pipeline (37). 513 
Downstream bioinformatics analysis was performed using Parallel-Meta 3 (29), a software 514 
package for comprehensive taxonomical and functional comparison of microbial communities. 515 
Clustering of OTUs was conducted at the 97% similarity level using the OralCore database (38). 516 
Taxonomically assigned sequences were further agglomerated at the genus level for structural 517 
comparison of microbiomes.  518 
LC-MS/MS data acquisition for plaque metabolome  519 

Prior to LC-MS/MS analysis, plaque samples were prepared using the following procedures. 520 
For extraction, 1 mL 40:40:20 (in volume) MeOH/ACN/Water was added to the pre-weighted 521 
supragingival plaque in 2 mL PP tube and vortexed for 1 minute. Plaque pallets in the extraction 522 
solvent were incubated in 95°C water bath for 1 hour and then centrifuged at 3000rpm and 523 
subsequently transferred to another 2 mL PP tube. For complete extraction, 500 μL extraction 524 
solvent was added as described above into the original tube and then vortexed for 10s and 525 
centrifuged at 3000rpm for 10 minutes. Each of the final extraction solutions was combined with 526 
the other obtained in the last step. Each liquid extraction was dried completely with nitrogen and 527 
then stored in -80°C freezer until use. 528 

Non-targeted metabolomic analysis was performed using Q Exactive orbitrap (Thermo, CA). 529 
After resuspension of the dried extract, each of the samples (1uL supernatant) was loaded to 530 
normal phase chromatography column, then eluted to the orbitrap mass spectrometer with an 531 
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aqueous phase containing 5mM ammonium acetate as eluent from 1% to 99% within 15 min. The 532 
stationary phase was 95% acetonitrile with 5mM ammonium acetate. Data with mass range m/z 533 
100-1500 was acquired at the positive ion mode using data dependent MS/MS acquisition. The 534 
full scan and fragment spectra were collected with resolution of 70,000 and 17,500 respectively. 535 
The source parameters are as follows: spray voltage: 3000v; capillary temperature: 320°C; heater 536 
temperature: 300°C; sheath gas flow rate: 35; auxiliary gas flow rate: 10. Metabolite identification 537 
was based on Tracefinder search with home-built database containing 529 compounds. 538 

Targeted metabolomic experiments were performed on TSQ Quantiva (Thermo, CA). C18 539 
based reverse phase chromatography was utilized with 10mM tributylamine, 15mM acetic acid in 540 
water (pH ~6) and 100% methanol as mobile phase A and B respectively. This analysis focused 541 
on TCA cycle, glycolysis pathway, pentose phosphate pathway, amino acids and purine 542 
metabolism. A 25-minute gradient from 5% to 90% mobile B was used. Positive-negative ion 543 
switching mode was performed for data acquisition. Cycle time was set as 1 second and totally 544 
138 ion pairs were included. The resolution for Q1 and Q3 are both 0.7FWHM. The source 545 
voltage was 3500v for positive and 2500v for negative ion mode. Sweep gas was turned on at 546 
1(arb) flow rate. 547 
LC-MS/MS data analysis for plaque metabolome  548 

For targeted metabolomics, triple quadrupole mass spectrometer (TSQ Quantiva, Thermo) was 549 
used for the analysis in MRM mode. All the ion transitions and retention times were optimized 550 
using chemical standards. Tracefinder (Thermo, USA) was applied for metabolite identification 551 
and peak integration. The peaks were manually checked for the analysis. Pooled QC samples 552 
were inserted in the batch to ensure system stability.  553 

For untargeted metabolomics, orbitrap mass spectrometer (QExactive, Thermo) was used for 554 
the analysis in DDA mode. An in-house database containing MS/MS spectra of over 1500 555 
metabolites was incorporated for metabolite identification. Tracefinder (Thermo, USA) was used 556 
for metabolite identification based on MS/MS fragment matching. LS score was applied to 557 
confirm the confidence of metabolite identification. Only the metabolites with LS score > 30 were 558 
considered as confident confirmation. Otherwise, they were assigned as putative identification. 559 
The peaks were manually checked for the analysis. Pooled QC samples were inserted in the batch 560 
to ensure system stability. 561 

Normalization was performed before statistical analysis. The missing values were replaced 562 
with half of the minimum values in all the samples. Peak areas were normalized relative to the 563 
mean of the total area of a sample. Both targeted and untargeted metabolomics data were 564 
combined and imported into the R software (version 3.6.2) for multivariate analysis.  565 
Quantification of salivary cytokines using multiplexed bead immunoassay  566 

We collected 194 salivary samples at Day -21, 0, 3, 7 and 28 from 40 subjects who were 567 
selected for quantification of inflammatory cytokines (Fig. 1a). All samples were sub-packed (1.0 568 
mL sample in 1.5 mL EP tube) and stored at -80°C until measurements. Samples were thawed in 569 
an ice bath and vortexed, followed by centrifugation at 3000 rpm for 5 min at 4°C. Supernatants 570 
were collected for further cytokine assays. Levels of the following 27 cytokines were analyzed 571 
using a BioPlex Pro™ Human Cytokine 27-plex Assay kit (#M500KCAF0Y, Bio-Rad, Hercules, 572 
CA, USA) in accordance with the manufacturer’s instructions: L-1β, IL-1α, IL-2, IL-4, IL-5, IL-6, 573 
IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, Eotaxin, Basic FGF, G-CSF, GM-CSF, 574 
IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF. Mean 575 
fluorescence intensities of the 192 salivary samples and 8 standards were detected via a Luminex 576 
FLEXMAP 3D System (Luminex Corp., Austin, TX, USA). Cytokine concentrations were 577 
calculated by xPONENT build 4.2.1441.0 (Luminex Corp.) using a five-parameter fit algorithm. 578 
Values obtained from the reading of samples below the sensitivity limit of detection (LOD) or 579 
above the upper limit of the sensitivity method were interpolated using a CUBIC SPINE 580 
interpolation to calculate cytokine concentrations. 581 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.26.315127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Statistical analyses  582 
All statistical analyses were performed using R software (version 3.6.2). PCoA analysis on a 583 

range of distance metrics was performed in R using the vegan and ape package. Quantifications of 584 
variance explained in plaque microbiome, metabolome and salivary cytokines profiles were 585 
calculated using PERMANOVA with the “adonis” function in the R package vegan (as shown in 586 
Fig. S1). The total variance explained by each variable was calculated independently of other 587 
variables, and should thus be considered the total variance explainable by that variable. The 588 
differential abundance analyses of all measurement types were tested. First, an appropriate 589 
transformation/normalization method was applied: central-log-ratio (CLR) transformation for 590 
microbial taxonomic profiles. The transformed abundances were then used to perform differential 591 
abundance analyses between time points or groups using custom R functions (at 592 
https://github.com/shihuang047/crossRanger). To construct the co-occurrence network of 593 
molecular features from the multi-omics datasets, we identified significant associations between 594 
them using the Spearman correlation (|rho|>0.6; FDR p<0.05). Network was visualized in 595 
Cytoscape (Version 3.7.1). The code and all the datasets used in this study are publicly available 596 
at http://mse.ac.cn/SoH.html. 597 
 598 
 599 
References and Notes 600 
1. S. Filoche, L. Wong, C. H. Sissons, Oral biofilms: emerging concepts in microbial ecology. 601 

J Dent Res 89, 8-18 (2010). 602 
2. X. Su, G. Jing, D. McDonald, H. Wang, Z. Wang, A. Gonzalez, Z. Sun, S. Huang, J. Navas, 603 

R. Knight, J. Xu, Identifying and Predicting Novelty in Microbiome Studies. MBio 9, 604 
e02099-18 (2018). 605 

3. P. E. Petersen, D. Bourgeois, H. Ogawa, S. Estupinan-Day, C. Ndiaye, The global burden 606 
of oral diseases and risks to oral health. Bull World Health Organ 83, 661-669 (2005). 607 

4. I. L. C. Chapple, B. L. Mealey, T. E. Van Dyke, P. M. Bartold, H. Dommisch, P. Eickholz, 608 
M. L. Geisinger, R. J. Genco, M. Glogauer, M. Goldstein, T. J. Griffin, P. Holmstrup, G. K. 609 
Johnson, Y. Kapila, N. P. Lang, J. Meyle, S. Murakami, J. Plemons, G. A. Romito, L. 610 
Shapira, D. N. Tatakis, W. Teughels, L. Trombelli, C. Walter, G. Wimmer, P. Xenoudi, H. 611 
Yoshie, Periodontal health and gingival diseases and conditions on an intact and a reduced 612 
periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the 613 
Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin 614 
Periodontol 45 Suppl 20, S68-S77 (2018). 615 

5. J. Meyle, I. Chapple, Molecular aspects of the pathogenesis of periodontitis. Periodontol 616 
2000 69, 7-17 (2015). 617 

6. S. Offenbacher, S. P. Barros, D. W. Paquette, J. L. Winston, A. R. Biesbrock, R. G. 618 
Thomason, R. D. Gibb, A. W. Fulmer, J. P. Tiesman, K. D. Juhlin, S. L. Wang, T. D. 619 
Reichling, K. S. Chen, B. Ho, Gingival transcriptome patterns during induction and 620 
resolution of experimental gingivitis in humans. J Periodontol 80, 1963-1982 (2009). 621 

7. R. C. Williams, Periodontal disease. N Engl J Med 322, 373-382 (1990). 622 
8. S. S. Dominy, C. Lynch, F. Ermini, M. Benedyk, A. Marczyk, A. Konradi, M. Nguyen, U. 623 

Haditsch, D. Raha, C. Griffin, L. J. Holsinger, S. Arastu-Kapur, S. Kaba, A. Lee, M. I. 624 
Ryder, B. Potempa, P. Mydel, A. Hellvard, K. Adamowicz, H. Hasturk, G. D. Walker, E. C. 625 
Reynolds, R. L. M. Faull, M. A. Curtis, M. Dragunow, J. Potempa, Porphyromonas 626 
gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment 627 
with small-molecule inhibitors. Sci Adv 5, eaau3333 (2019). 628 

9. B. Shi, R. Lux, P. Klokkevold, M. Chang, E. Barnard, S. Haake, H. Li, The subgingival 629 
microbiome associated with periodontitis in type 2 diabetes mellitus. ISME J 14, 519-530 630 
(2020). 631 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.26.315127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10. D. T. Graves, J. D. Correa, T. A. Silva, The Oral Microbiota Is Modified by Systemic 632 
Diseases. J Dent Res 98, 148-156 (2019). 633 

11. M. Kilian, I. L. Chapple, M. Hannig, P. D. Marsh, V. Meuric, A. M. Pedersen, M. S. 634 
Tonetti, W. G. Wade, E. Zaura, The oral microbiome - an update for oral healthcare 635 
professionals. Br Dent J 221, 657-666 (2016). 636 

12. G. A. van der Weijden, M. F. Timmerman, M. Piscaer, I. Snoek, U. van der Velden, P. N. 637 
Galgut, Effectiveness of an electrically active brush in the removal of overnight plaque 638 
and treatment of gingivitis. J Clin Periodontol 29, 699-704 (2002). 639 

13. S. Huang, R. Li, X. Zeng, T. He, H. Zhao, A. Chang, C. Bo, J. Chen, F. Yang, R. Knight, J. 640 
Liu, C. Davis, J. Xu, Predictive modeling of gingivitis severity and susceptibility via oral 641 
microbiota. ISME J 8, 1768-1780 (2014). 642 

14. S. Huang, F. Yang, X. W. Zeng, J. Chen, R. Li, T. Wen, C. Li, W. Wei, J. Q. Liu, L. Chen, 643 
C. Davis, J. Xu, Preliminary characterization of the oral microbiota of Chinese adults with 644 
and without gingivitis. BMC Oral Health 11, 33 (2011). 645 

15. J. O. Kistler, V. Booth, D. J. Bradshaw, W. G. Wade, Bacterial community development in 646 
experimental gingivitis. PLoS One 8, e71227 (2013). 647 

16. S. Huang, Z. Li, T. He, C. Bo, J. Chang, L. Li, Y. He, J. Liu, D. Charbonneau, R. Li, J. Xu, 648 
Microbiota-based Signature of Gingivitis Treatments: A Randomized Study. Sci Rep 6, 649 
24705 (2016). 650 

17. F. Teng, T. He, S. Huang, C. P. Bo, Z. Li, J. L. Chang, J. Q. Liu, D. Charbonneau, J. Xu, R. 651 
Li, J. Q. Ling, Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by 652 
inhibiting dental plaque maturation. Int J Oral Sci 8, 182-190 (2016). 653 

18. J. F. Wang, J. Qi, H. Zhao, S. He, Y. F. Zhang, S. C. Wei, F. Q. Zhao, Metagenomic 654 
sequencing reveals microbiota and its functional potential associated with periodontal 655 
disease. Sci Rep 3, 1843 (2013). 656 

19. E. M. Nowicki, R. Shroff, J. A. Singleton, D. E. Renaud, D. Wallace, J. Drury, J. Zirnheld, 657 
B. Colleti, A. D. Ellington, R. J. Lamont, D. A. Scott, M. Whiteley, Microbiota and 658 
Metatranscriptome Changes Accompanying the Onset of Gingivitis. MBio 9, e00575-659 
00518 (2018). 660 

20. J. Wang, Z. Jia, B. Zhang, L. Peng, F. Zhao, Tracing the accumulation of in vivo human 661 
oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. 662 
Gut 69, 1355-1356 (2019). 663 

21. Y. Li, J. He, Z. He, Y. Zhou, M. Yuan, X. Xu, F. Sun, C. Liu, J. Li, W. Xie, Y. Deng, Y. Qin, 664 
J. D. VanNostrand, L. Xiao, L. Wu, J. Zhou, W. Shi, X. Zhou, Phylogenetic and functional 665 
gene structure shifts of the oral microbiomes in periodontitis patients. ISME J 8, 1879-666 
1891 (2014). 667 

22. L. Abusleme, A. K. Dupuy, N. Dutzan, N. Silva, J. A. Burleson, L. D. Strausbaugh, J. 668 
Gamonal, P. I. Diaz, The subgingival microbiome in health and periodontitis and its 669 
relationship with community biomass and inflammation. ISME J 7, 1016-1025 (2013). 670 

23. A. L. Griffen, C. J. Beall, J. H. Campbell, N. D. Firestone, P. S. Kumar, Z. K. Yang, M. 671 
Podar, E. J. Leys, Distinct and complex bacterial profiles in human periodontitis and 672 
health revealed by 16S pyrosequencing. ISME J 6, 1176-1185 (2012). 673 

24. S. M. Dabdoub, S. M. Ganesan, P. S. Kumar, Comparative metagenomics reveals 674 
taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Sci 675 
Rep 6, 38993 (2016). 676 

25. B. Shi, M. Chang, J. Martin, M. Mitreva, R. Lux, P. Klokkevold, E. Sodergren, G. M. 677 
Weinstock, S. K. Haake, H. Li, Dynamic changes in the subgingival microbiome and their 678 
potential for diagnosis and prognosis of periodontitis. MBio 6, e01926-01914 (2015). 679 

26. A. E. Duran-Pinedo, T. Chen, R. Teles, J. R. Starr, X. Wang, K. Krishnan, J. Frias-Lopez, 680 
Community-wide transcriptome of the oral microbiome in subjects with and without 681 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.26.315127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

periodontitis. ISME J 8, 1659-1672 (2014). 682 
27. S. Yost, A. E. Duran-Pinedo, R. Teles, K. Krishnan, J. Frias-Lopez, Functional signatures 683 

of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome 684 
analysis. Genome Med 7, 27 (2015). 685 

28. G. Zhao, F. He, C. Wu, P. Li, N. Li, J. Deng, G. Zhu, W. Ren, Y. Peng, Betaine in 686 
Inflammation: Mechanistic Aspects and Applications. Front Immunol 9, 1070 (2018). 687 

29. G. Jing, Z. Sun, H. Wang, Y. Gong, S. Huang, K. Ning, J. Xu, X. Su, Parallel-META 3: 688 
Comprehensive taxonomical and functional analysis platform for efficient comparison of 689 
microbial communities. Sci Rep 7, 40371 (2017). 690 

30. M. G. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C. 691 
Clemente, D. E. Burkepile, R. L. Vega Thurber, R. Knight, R. G. Beiko, C. Huttenhower, 692 
Predictive functional profiling of microbial communities using 16S rRNA marker gene 693 
sequences. Nat Biotechnol 31, 814-821 (2013). 694 

31. F. Teng, F. Yang, S. Huang, C. Bo, Z. Z. Xu, A. Amir, R. Knight, J. Ling, J. Xu, Prediction 695 
of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host 696 
Microbe 18, 296-306 (2015). 697 

32. F. Yang, X. Zeng, K. Ning, K. L. Liu, C. C. Lo, W. Wang, J. Chen, D. Wang, R. Huang, X. 698 
Chang, P. S. Chain, G. Xie, J. Ling, J. Xu, Saliva microbiomes distinguish caries-active 699 
from healthy human populations. ISME J 6, 1-10 (2012). 700 

33. I. Rantanen, J. Tenovuo, K. Pienihäkkinen, E. Söderling, Effects of a betaine-containing 701 
toothpaste on subjective symptoms of dry mouth: a randomized clinical trial. J Contemp 702 
Dent Pract 4, 11-23 (2003). 703 

34. C. Chen, C. Hemme, J. Beleno, Z. J. Shi, D. Ning, Y. Qin, Q. Tu, M. Jorgensen, Z. He, L. 704 
Wu, J. Zhou, Oral microbiota of periodontal health and disease and their changes after 705 
nonsurgical periodontal therapy. ISME J 12, 1210-1224 (2018). 706 

35. C. Duvallet, S. M. Gibbons, T. Gurry, R. A. Irizarry, E. J. Alm, Meta-analysis of gut 707 
microbiome studies identifies disease-specific and shared responses. Nat Commun 8, 1784 708 
(2017). 709 

36. J. T. Morton, C. Marotz, A. Washburne, J. Silverman, L. S. Zaramela, A. Edlund, K. 710 
Zengler, R. Knight, Establishing microbial composition measurement standards with 711 
reference frames. Nat Commun 10, 2719 (2019). 712 

37. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, 713 
N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, 714 
J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. 715 
Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. 716 
Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing 717 
data. Nat Methods 7, 335-336 (2010). 718 

38. A. L. Griffen, C. J. Beall, N. D. Firestone, E. L. Gross, J. M. Difranco, J. H. Hardman, B. 719 
Vriesendorp, R. A. Faust, D. A. Janies, E. J. Leys, CORE: a phylogenetically-curated 16S 720 
rDNA database of the core oral microbiome. PLoS One 6, e19051 (2011). 721 
 722 

 723 
 724 
Acknowledgments 725 
General: We thank Jiahui Li and Duane Charbonneau for their support of this work. Funding: 726 
This work was funded by a Joint Research Program between Chinese Academy of Sciences and 727 
Procter & Gamble Company. Author contributions: The project was conceptualized by J.L., 728 
J.X. and T.H.. Data collection was performed primarily by F.Y., X.L. and T.H.. Data analysis and 729 
interpretation were mainly performed by S.H., J.X., T.H., P.Z., V.X., S.W., G.J. and F.Y.. J.X., 730 
S.H., T.H., J.L., F.Y., V.X., S.W. and L.J. wrote the manuscript. All authors approved the final 731 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.26.315127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

submission. Competing interests: The authors declare no conflict of interest. Data and 732 
materials availability: All data needed to evaluate the conclusions in the paper are present in the 733 
paper and/or the Supplementary Materials. Additional data related to this paper may be requested 734 
from the authors. 735 
 736 

737 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.26.315127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figures and Tables 738 

 739 
Fig. 1. The longitudinal multi-omics landscape of gingivitis onset and progression in a 740 
human population. (a) Experimental design. Among the 40 healthy adult volunteers that 741 
participated, 20 were healthy subjects (with < 10 Mazza bleeding sites), and the rest of them were 742 
unhealthy ones (Mazza bleeding sites from 15 to 25) at the start (Day -21 or NG). This study 743 
yielded clinical measures (at nine time points), oral microbiome and metabolome data from 744 
supragingival plaque samples (at seven time points), and host immune response data from 745 
salivary samples (at five time points) for each of the 40 subjects. (b) Temporal changes in the 746 
clinical symptoms for volunteers. Boxes represent the interquartile range (IQR) and the lines 747 
inside represent the median. Whiskers denote the lowest and highest values within 1.5x IQR. (c 748 
and d) Principal coordinates analysis (PCoA) based on the genus-level Bray–Curtis dissimilarity 749 
of (c) plaque microbiomes (16S-amplicon sequencing), and (d) metabolome profiles (LC-750 
MS/MS); were shown. (e) Principal component analysis (PCA) of the salivary cytokine profiles. 751 
Each dot in PCoA or PCA represents a plaque or saliva sample and is included in an ellipse 752 
whose color indicates time point. Each dot is also sized based on the severity of symptom (gum 753 
bleeding). (f) Comparing the quantitative variation in all measurements explained by the major 754 
factors. PERMANOVA shows that inter-individual variation is the largest factor for all 755 
measurement types, while time and disease phenotype also capture sizable variations. Asterisks: 756 
FDR-corrected statistical significance (FDR * p≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001) 757 

758 
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 759 
Fig. 2. A plaque-microbiome-defined SoH stage that takes place earlier than the emergence 760 
of clinical symptoms. (a) The symptomatic change (i.e., mean bleeding difference) within hosts 761 
(n=40), between each of the time points (Day -21, Day 1, Day 3, Day 7, Day 14, Day 28) and 762 
Baseline (Day 0). Color of bars shows FDR-corrected statistical significance: in particular, Day 1-763 
3 are the “SoH” stage when no change in clinical symptoms as compared to Baseline was 764 
observed within the hosts. The scatter plots show the AUROC (the y axe on the right) of 765 
classification models using plaque microbiota, plaque metabolome or salivary cytokines between 766 
Day 0 and each of the other time points (Day -21, Day 1, Day 3, Day 7, Day 14 and Day 28). In 767 
(b, c and d) we identified molecular features from each measurement type that were differentially 768 
abundant at a time point as compared to Day 0. (b) The heatmap for the mean log2 fold changes 769 
of microbial responders (with significance threshold Bonferroni p<0.05) in plaque during the 770 
onset and progression of NG. (c) The heatmap for the mean log2 fold change of both early and 771 
persistent metabolite responders (with significance threshold Bonferroni p<0.05) in plaque. On 772 
the x axis, “pos”/“neg” after a chemical compound name indicates acquisition via a 773 
positive/negative ionization mode in the non-targeted metabolomic approach, while “TSQ” 774 
indicates acquisition via from the targeted metabolomic approach. (d) Heatmap for the mean log2 775 
fold change of cytokines at each time point (Day -21, 3, 7 and 28) versus baseline (Day 0). Blue 776 
denotes reduction while red shows enrichment (versus Baseline). Asterisk: Bonferroni-corrected 777 
statistical significance (* p ≤ 0.05). No asterisk: no significant change.  778 

779 
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 780 
Fig. 3. The interplay of plaque taxa, plaque metabolites and salivary cytokines during 781 
gingivitis retrogression, onset and progression. (a) Network analysis of microbial taxa and 782 
metabolites in the temporal program of NG-Baseline-EG. Negative correlations are shown in 783 
green, positive in blue and predictive taxa in gray. Edge weights represent the strength of 784 
correlation. Rothia and betaine have the largest number of connections (i.e., they are the hub 785 
nodes) and are highly correlated to each other. For node of metabolites, “pos”/“neg” indicates 786 
acquisition by a positive/negative mode in the non-targeted metabolomic approach, while “TSQ” 787 
indicates acquisition from the targeted metabolomic approach. (b) The temporal co-variation of 788 
betaine and Rothia, along the process of gingivitis retrogression and induction. The bar plot 789 
indicates the clinical symptoms (i.e., mean bleeding) at each of the time points (Day -21, Day 0, 790 
Day 1, Day 3, Day 7, Day 14, Day 28). Color of bars shows statistical significance in bleeding 791 
between a given time point and Baseline (Day 0): significant (blue) and not significant (grey).  792 

793 
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 794 
Fig. 4. Meta-analysis of existing gingival microbiome datasets revealed similar microbial 795 
signature between gingivitis-SoH and periodontitis. (a) Most periodontal disease progression 796 
or retrogression show microbiome alterations, with consistent disease-associated shifts that differ 797 
in their extent and direction. Panels from left to right: (i) sample size for each study; (ii) area 798 
under the ROC curve (AUROC) for the genus-level random forest classifiers (X-axis starts at 0.5, 799 
the expected value for a classifier that assigns labels randomly, and AUROCs < 0.5 are not 800 
shown); (iii) number of genera with q < 0.05 (Wilcoxon rank-sum test, Bonferroni correction) for 801 
each data set (if a study reveals no significant associations, no points are shown). (iv) direction of 802 
the shifts in microbiome structure, i.e., the percentage of associated genera that are enriched in 803 
disease. (b) Cross-prediction matrix reporting prediction performance as AUROC values obtained 804 
using a random forest model on the genus-level relative abundance. Matrix values refer to the 805 
AUROC values obtained by training the classifier on the dataset of corresponding row and then 806 
applying it to the dataset of corresponding column. The prediction accuracy between gingivitis 807 
and periodontitis is remarkably high, suggesting a strong microbial link between these two 808 
periodontal diseases. Moreover, the prediction accuracy between anti-gingivitis treatments is 809 
higher than that between EG experiments, suggesting anti-gingivitis treatments often result in 810 
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very similar microbiome responses, regardless of the difference in cohorts. (c) Heat map for log2 811 
mean fold change of all plaque genera between the last day of treatments and Baseline in each of 812 
the longitudinal studies (or between case and control groups in the cross-sectional studies). Blue 813 
denotes reduction in relative abundances of genera (red: enrichment) versus Baseline. Those 814 
significant fold changes (Bonferroni-corrected p<0.05) are marked by asterisks, while not-815 
significant fold changes (Bonferroni-corrected p>0.05) are indicated as blank in the heatmap. 816 
Text color of the genus names indicates those showing highly consistent enrichment (red) or 817 
reduction (blue) in the periodontal disease state across data sets. (d) A Random Forests classifier 818 
of periodontitis was built based on the subgingival microbiomes in a US periodontitis cohort, and 819 
then applied to all the other datasets in the meta-analyses, so as to model the estimated probability 820 
of periodontitis for the gingivitis patients. Asterisks: FDR-corrected statistical significance (FDR 821 
* p≤ 0.05).  822 

823 
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 824 
Fig. 5. Comparing temporal microbial shifts along disease development between periodontal 825 
diseases and caries. (a) Most oral disease progression show microbiome alterations, with 826 
consistent disease-associated shifts that differ in their extent and direction. Panels from left to 827 
right: (i) sample size for each study; (ii) area under the ROC curve (AUROC) for the species-level 828 
RF classifiers (x-axis starts at 0.5, the expected value for a classifier that assigns labels randomly; 829 
those with AUROCs < 0.5 are not shown); (iii) number of species with q < 0.05 (Wilcoxon rank-830 
sum test, Bonferroni correction) for each data set. (iv) direction of the shifts in microbiome 831 
structure, i.e., percentage of associated species that are disease enriched. (v-vii) Similar analysis 832 
conducted on the imputed functional profiles from 16S rRNA sequencing data. (b) Heat map for 833 
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log2 mean fold change of bacterial species between a (pre-)diseased state and the healthy baseline 834 
in each. Blue denotes reduction in relative abundances of species (red: enrichment) versus 835 
Baseline. Significant fold-changes (Bonferroni-corrected p<0.05) are marked by asterisks, while 836 
insignificant fold-changes (Bonferroni-corrected p>0.05) as blank in the heatmap. We next 837 
performed PCoA based on the mean log2 fold change data of species (c) or predicted functional 838 
pathways (d) that are associated with two oral diseases. Each dot in the PCA plots represents a 839 
process of microbiome alterations from health to the onset or progression stage of a given oral 840 
disease. The dots are colored by diseases. The lines with arrows represent the path that microbial 841 
alterations occurred along the disease development.  842 
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 843 
Table 1. The gingival-inflammation microbiome datasets used in the meta-analysis.  844 
 845 

Dataset Disease 
related 

Sampling 
niche Sampling method Ref. Target 

region Primer Seq 
platform 

DNA 
extraction kit 

Sample 
size 

Host 
populati
on size 

Host 
geolocation 

Data 
source 

CN_SoH Gingivitis 
Supragingival 
plaque 

Plaque were collected with 
sterile Gracey curettes and 
then removed from the 
curettes with a cotton-
tipped swab. 

this 
study 

 V1-3  5F–534R Miseq 
QIAamp DNA 
Mini Kit 

261 40 Beijing, China 
http://mse.a
c.cn/SoH.ht
ml) 

CN_EG_ 2014 Gingivitis 
Supragingival 
Plaque 

Supragingival plaque 
samples (along the 
gingival-line within 2 mm 
depth) from two entire 
quadrants (1&3 or 2&4) 
were collected by sterile 
Gracey curette at each 
visit. 

(13)  V1-3  5F–534R 454 

Bead-Beating and 
Lytic-Enzyme-
Cocktail Master-
Mix were used for 
bacterial lysis; 
DNeasy® Blood 
& Tissue Mini 
Kits also used. 

150 50 Beijing, China 
SRP022235
, 
SRP022233 

CN_EG_CPC_
2016 

Gingivitis 
Supragingival 
Plaque 

Same as above (17)  V1-3   5F–534R 454 Same as above. 123 41 Beijing, China SRP022233 

CN_AntiG Gingivitis 
Supragingival 
Plaque 

Same as above (16)  V1-3  5F–534R 454 Same as above. 398 99 Beijing, China SRP045295 

UK_EG+Perio
dontitis 

Gingivitis, 
Peridontitis 

Supragingival 
and 
subgingival 
plaque 

Supragingival plaques 
were collected using a 
sterile curette from all the 
mandibular teeth with the 
exception of the third 
molars. Subgingival 
plaques were collected by 
inserting a curette to the 
full depth of pockets >6 
mm, after the removal of 
supragingival plaque. 

(15)  V1-3  27F-519R 454 

GenElute 
Bacterial DNA 
Extraction Kit 
(Sigma-Aldrich). 

92 20+20 London, UK SRP026653 

.
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US_Periodontit
is 

Periodontiti
s 

Subgingival 
plaque 

After removing 
supragingival plaque and 
drying the target sites, 
subgingival samples were 
collected by insertion of 
four medium paper points 
for 10s into three sites. 
Deep and shallow sites 
were sampled separately 
from subjects with 
periodontitis. 

(23)  V1-2; V4 27F-342R 454 
QIAamp DNA 
mini kits 

87= 
29(period
ontitis 
shallow) 
+29 
(periodon
titis deep 
pocket)+ 
29(Healt
h) 

58 USA SRP009299 

ECC 
Early 
childhood 
caries 

Subgingival 
plaque and 
saliva 

Dental plaques collected 
from all erupted deciduous 
teeth by brushing for 1 min 
via a sterile toothbrush. 
Unstimulated saliva 
produced during 5 minute 
was collected in 50 ml 
sterile tubes. 

(31) V1-V3 5F–534R 454 

The MO BIO 
PowerSoil DNA 
Isolation kit with 
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