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Abstract

Most adults experience episodes of gingivitis, which can progress to the irreversible, chronic
state of periodontitis. However the mechanistic roles of plaque in gingivitis onset and progression
to periodontitis remain elusive. Here, we integrated the longitudinal multi-omics data from plague
metagenome, metabolome and salivary cytokines in 40 adults who transit from naturally-
occurring gingivitis (NG), to healthy gingivae (baseline) and then to experimental gingivitis (EG).
During EG, rapid and consistent aterations in plague microbiota, metabolites and salivary
cytokines emerged as early as 24-72 hours after pause of oral hygiene, defining an asymptomatic
‘sub-optimal health’ (SoH) stage. SoH also features a steegp and synergetic decrease of plague-
derived betaine and Rothia spp., suggesting an anti-gum-inflammation mechanism by health-
promoting microbial residents. Global, cross-cohort meta-analysis revealed a high Microbiome-
based Periodontitis Index at SoH state, due to its convergent taxonomical and functional profiles
towards those of periodontitis. In contrast, caries SoH features a microbial signature very distinct
from caries. Thus SoH is a universal state of polymicrobial inflammations with disease-specific
features, which is key to maintaining a disease-preventive plague.

I ntroduction

Gingivitis, the inflammatory lesion of the tooth-supporting soft tissues, is one of the most
common oral diseases in humans and has been a global health burden for centuries (1-5). It results
from a dysregulated immuno-inflammatory response which is induced by dysbiotic plaque
biofilm (6). Manifested with various clinical signs and symptoms, the gingival condition of
gingivitisis affected by both local and systemic factors (4). Notably, this inflammatory lesion can
be resolved (i.e., reversible) following appropriate professional care. Whereas, uncontrolled
gingivitis can progress to the irreversible periodontitis, which is characterized by destruction of
tooth-supporting tissues and alveolar bone in susceptible individuals, eventually leading to tooth
loss (7) and an increased risk of systemic diseases like diabetes and cardiovascular disease (8-10).
Thus, prognosis and early diagnosis of gingivitis are of great importance in promoting oral health
and general well-being (11).
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However, how gingivitis is initiated remains elusive (11). In natural human populations,
gingivitis symptoms can be reversible and volatile, as numerous internally or externally imposed
disturbances including oral hygiene practices (persona or professional), or impairment of
immune system, injury, diet and oral state can all affect disease development and confound
disease prevention and monitoring (12). Population-wide microbiome associations have unveiled
the compositional shifts of plague during gingivitis progression (13-17), and the functional
potential of oral microbiome in gingivitis onset was profiled via metagenomics and
metatranscriptomic approaches (15, 18, 19). However, due to the lack of longitudinal perspective
that includes each of the players of microbiota, their metabolites and host immune response, the
molecular mechanisms underlying gingivitis onset and progression remain ill defined (13, 19).

As for periodontitis, the irreversible and detrimental stage of gum inflammation resulted from
chronical, uncontrolled gingivitis, a distinct phylogenetic structure of oral microbiota in diseased
hosts versus healthy ones was revealed via 16S rRNA gene or metagenome sequencing (20-23).
In particular, multiple separate cohort studies have probed the functional potentia of
periodontitis-associated microbiota via metagenome (15, 18, 19, 24, 25) or metatranscriptome
(26, 27). However, the inherent mechanistic link of gingivitis and periodontitis, which is crucial
to clinical prevention and treatment of both diseases, has remained elusive, due to (i) the high
degree of heterogeneity among host hosts and variation in experimental procedures among the
microbiome profiling endeavors, and (ii) the inability to track both microbiome and host factor
and interrogate their interaction over the full course of gingivitis-to-periodontitis progression
within an individual.

To address these key challenges, herein we leveraged a longitudinal, multi-omics experimental
design that includes personalized microbial, metabolite and host immuno-response profiles, to
provide a high-temporal-resolution, system-level, mechanism-based landscape of the transition
from periodontal health, to onset of gum inflammation and eventually to gingivitis (Fig. 1). These
efforts unveil a microbiome-defined ‘ sub-optimal health’ (SoH) stage of gingivitis, at just 24-72
hours after pause of oral-hygiene-practice, which is symptom-free yet carries a microbial
signature highly similar to periodontitis. Despite its lack of symptoms, SoH features a steep
decrease of microbe-produced betaine, whose abundance is synergetic with Rothia spp. yet
negatively correlated with bleeding, suggesting an anti-gum-inflammation mechanism by health-
promoting residents of plague. Discovery of this microbiome-defined, symptom-free SoH stage is
valuable to prevention and intervention of periodontal diseases. Moreover, meta-analysis of past
gingivitis, periodontitis and caries microbiome studies revealed a high Microbiome-based
Periodontitis Index for the gum SoH state, yet in contrast, caries SoH features a microbial
signature very distinct from caries, suggesting SoH as a shared state of chronic polymicrobial
inflammations that carries disease-specific features.
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85 Reaults

86  An experimentally tractable model of gingivitisonset and progression

87 To control for the many confounding factors (e.g., individuality in initial gum health state or in

88  oral-hygiene behavior) for host—microbiome dysbiosis during gingivitis (i.e., the earlier stage of
89 periodontal disease), we designed for a 40-adult cohort an experimentally tractable model of
90 gingivitis onset and progression (13, 16) (Fig. 1, Table Sl). Specifically, on Day -21 (natural
91 gingivitis, or NG), all 40 adults were randomized into two groups: either high (15 to 25; 20
92  subjects) or low (0 to 10; 20 subjects) bleeder (Methods; Fig. 1a). These hosts then underwent a
93 rigorous ora hygiene regimen (dental scaling) for three weeks, resulting in grestly reduced
94  bleeding (median gingival bleeding of 1) on the baseline state of Day O (“Basdling”, i.e., a healthy
95 gingival state). Next, the subjects underwent a four-week program inducing experimental
96 gingivitis (EG), which greatly and consistently elevated gingival bleeding, until Day 28 (p<0.01
97 for gingival bleeding; i.e., the diseased state; Fig. 1b). Notably, the between-group symptomatic
98 difference at NG (p=1e-22, t-test), the basis for the high-/low-bleeding stratification of hosts at
99 NG (i.e, Day -21), is much greater than any of the subsequent time points (both before and after
100 Basdine) (Fig. 1b). In fact, mild or marginal difference in bleeding between high and low
101 bleeders was observed at the seven subsequent time points (p<0.05, t-test), but no such
102 symptomatic difference is found at Day 1 or 3 (p>0.05, t-test). This suggested that disease
103  severity in natural population (i.e., NG) is not necessarily deterministic among individual hosts,
104  and the high-bleeders can recover aimost as rapidly and thoroughly as low-bleeders if they follow
105 aproper oral hygiene practice.

106 Integrated longitudinal profiles of both microbial and host immune programs were unveiled via
107 275 supragingival plague (simultaneously for taxonomy and metabolome, via 16S rRNA
108  amplicon sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based
109 mass spectrometry, respectively) and 192 matching saliva samples (cytokine profile via
110 multiplexed bead immunoassay) collected by professional dentists. The plaque microbiome,
111 plague metabolome and salivary cytokines were profiled at time points that fully span the entire
112 49-day NG-Basdline-EG course (from Day -21 to Day 28 day) while densdly sampled the
113  trangtion from Baseline (0 day) to the onset of EG (e.g., Day 1, 3and 7; Fig. 1a, Fig. S1), so that
114  thetertiary interplay can be temporally monitored, especially at disease onset.

115 Symptomatic severity (i.e., bleeding) contributed greatly to the first principal coordinate in
116 PCoA of plague microbiome (Fig. 1c) or metabolome (Fig. 1d). For plaque-related
117  measurements, although inter-individual variation accounts for majority of symptomatic variance
118  (40-45%; Fig. 1f), disease status (9-11%) or time point (16-23%) also explains much of it (Fig.
119 1lc-d, f). In contrast, no significant correlation was found between bleeding and salivary cytokine
120 profile (Figs. 1le-f). Notably, time point still explains 9% variation in cytokine profile (although
121 theinter-individual factor accounts for 54%) in fact, many salivary cytokines respond to gingivitis
122 development only at the initial time points post Baseline such as Day 3 or 7 but did not further
123 increase afterwards when hosts accumulated even more bleedings. This suggests that the oral
124 host-microbe interplay is the most intensive at the onset stages of gingivitis.

125 Therefore, we hypothesized the Day 1-3 after dental scaling as the “SoH” stage (Fig. 1b). At
126  this stage, we did not detect within-host temporal difference in clinical symptoms (i.e., from Day
127 1 to 3 after dental scaling) (p>0.05, paired t-test, Fig. 2a), however, the microbiome in the
128  supragingival plague and even host immune molecules might have dramatically changed due to
129  thedetrimental environmental disruptionsin EG induction (i.e., poor oral hygiene).

130  Profound disruption of plague microbiota/metabolome and salivary cytokines at SoH

131 To quantitatively measure the shifts in the plague microbiome and host immunity in the
132 emergence of clinical symptoms, we established a unified metric to measure the temporal changes
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133 in multi-omics data from Baseline to EG. Between-timepoints classifiers of host gingival status
134  were built from plague microbiota, metabolome and salivary cytokine profiles, via the random
135 forests (RF) algorithm. On top of those RF models, we employed a model-accuracy metric
136 (AUROC) as a proxy to quantify the temporal changes of each measurement type at each of the
137 timepoints (i.e,, Day -21, 1, 3, 7, 14, and 28) from Day 0. Furthermore, to dissect the multi-omics
138  associations, we compared temporal changesin AUROC values of RF classifiers related to plaque
139  microbiome, plaque metabolome, and salivary cytokines together with those from the clinical
140 symptoms (Fig. 2a). Unexpectedly, the AUROC of RF classifiers for plague microbiota rapidly
141  shifted in the first 3 days (0.75 at Day 1 and 0.87 at Day 3) from Basdline: it already resembled
142  Day-28 microbiota (severe gingivitis stage; AUROC=0.89) as early as Day 3 (Fig. 2a), and
143  actually saturated after Day 3. Therefore, a microbial SoH stage occurred earlier than the
144 emergence of clinical symptoms. In concordance with plague microbiota, the AUROC on the
145  plague metabolome increased quickly from 0.58 (Day 1) to 0.92 (Day 7) within 7 days yet did not
146  plateau until after 14 days (AUROC=0.97), suggesting the plague metabolome was persistently
147  shifting toward a gingivitislike state. However, the most abrupt changes in the plague
148  metabolome also took place in the first three days after dental scaling (Fig. 2a), indicating that
149  plague metabolome change also precedes the development of bleeding symptoms, well before
150 they are detectable by professionals. Notably, despite the concordant changes over time between
151  plague microbiota and metabolome, the saturation of the AUROC of metabolome-based RF
152 classifiers was 7 days later than that of microbiota-based classifiers (Fig. 2a), suggesting
153  microbiome-shift dependent changes in the plague metabolisms during gingivitis onset.

154 Interestingly, in the SoH stage, the immune response was even more pronounced than both
155  plague microbiota and metabolome (Fig. 2a). The AUROC reached up to almost 0.99 at either
156  Day 3 to 7, while the median gingiva bleeding within this period (1 for Day 3 and 2 for Day 7)
157  was relatively low. In contrast, the AUROC at Day -21 (i.e., naturally occurring gingivitis) and
158  Day 28 were all even lower than that in the SoH stage, while the median gingival bleeding was
159 relatively high (8 for Day 28, 11 for Day -21). This suggests that the alterations in the cytokine
160 profiles are not necessarily associated with disease severity but are a response to the intensity or
161  magnitude of organismal and metabolite changes in the plague microbiome.

162 The longitudinal concurrent metabolomics and 16S amplicon microbial community profiling
163  from dental plague samples elucidated the reassembling process of supragingival plague biofilms
164  after dental scaling (Fig. 2a). A key question then is to identify potential microbial and metabolic
165 factors that drive the microbial dysbiosis in the plaque. Thus, to compare the microbiome
166  responses across different stages of disease progression, we performed differential abundance
167  analysis on the CLR-transformed relative abundances of each genus-level taxon between a given
168 timepoint (Day -21, 1, 3, 7, 14 and 28) and Baseline (Day 0), and compared the results across the
169  stages of EG (Wilcoxon rank-sum test with the Bonferroni correction) (Fig. 2b). The microbial
170 markers persistently enriched/depleted with gingivitis progression (such as Porphyromonas and
171  Rothia), were termed ‘ persistent responders’, while those genera transiently enriched/depleted at
172 the early stage of gingivitis progression (i.e., Day 1-3) were ‘early responders’ (such as Gemella).
173 Similarly, for plaque metabolome, we identified a series of persistent and early responders in
174  gingivitis development: over 50 metabolites were persistently over- or under-represented during
175  disease development and therefore provided a clue to path-physiology of gingivitis (Figs. 2a, d).
176 Accordingly, time-resolved, differentially abundant cytokinesin saliva at Day -21, 3, 7 and 28
177 were also identified (as compared to Day O; Fig. 2c). Eleven out of the 27 salivary cytokines, such
178  as eotaxin, IL-5, MiP1-beta, IFN gamma, basic FGF, and GSF, altered early, within 72 hours
179  from Basdline (i.e., at the SoH stage), yet did not exhibit any significant difference from Baseline
180 in later, gingivitis-developed timepoints (e.g., Day 28, the most severe gingivitis states along the
181 course). In fact, the SoH stage is featured by a prominent activation of both pro- and anti-
182  inflammatory cytokines that stabilized in later stages of EG (Fig. 2a, c). Notably, cytokine
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183  alterations are more correlated with particular phases such as SoH than with gingivitis severity,
184  which underscores the importance of high-resolution temporal view of the host-microbiome
185 interplay.

186  Integrated microbiome-metabolome dynamic profiles of oral biofilms underlying SoH

187 To identify plague microbial activities that underlie gingivitis onset and progression, we
188  constructed a cross-measurement type association network that incorporated both microbial taxa
189  and metabolome from the 261 plagque samples. To revedl trends in the data, Procrustes analysis
190 was used to direct compare the different omics data sets (of identical internal structure) on a
191  singleprincipal coordinates (PC) analysis (Fig. S3). Overall, strong correlation between microbial
192 taxa and metabolome of all plague samples was observed along the NG-Baseline-EG course
193  (r=0.53). In fact, such agreement between microbial taxa and metabolomics did not vary with the
194  gingivitis progression (Fig. S3), suggesting the key roles of microbes-derived metabolites in this
195  Process.

196 We then built a co-occurrence network from the multi-omics data for biomarker discovery, by
197  calculating the correlation matrix of all features via Spearman’s correlation analysis. The resulting
198  network contained 27,942 total significant edges ([rho|>0.6, FDR p<0.05) and 1196 nodes that
199  gpan features from all three types of measurement. A filtered subnetwork was further built from
200 29 bacterial genera, 304 metabolites, and 8 salivary cytokines that were differentially abundant
201 between Day 0 and 28 (Fig. 3a). Between-metabolites associations accounted for the vast
202 majority (over 99%) of edges, clearly revealing complex and strong association among
203 metabolites. In addition, 51 strong co-associations between microbial genera and metabolites
204 were found, highlighting the impact of gingivitis onset and progression on microbe-dependent
205  metabolisms in plague. Among these, the Rothia-betaine link is one of the most prominent
206 featuresin the network (red arrows in Fig. 3a). As a gingivitis-depleted bacterial marker, Rothia
207 had the most links to metabolites (n=14) and exhibited the strongest association with the
208 metabolite of betaine (i.e., trimethylglycine or TMG; rho=0.7; Fig. 3a), which is also gingivitis-
200 depleted. In fact, the abundance of betaine and Rothia are highly synergic along the full 49-day
210 course (Fig. 3b); moreover, both were negatively correlated with symptomatic severity of
211 gingivitis: depleted from NG to Baseline and then enriched again from Basdline to EG, with the
212 peaking of betaine and Rothia coincident with the maximal healthy state of gingivae at Baseline
213 (Fig. 3b). Notably, the depletion rates of betaine and Rothia post during EG induction are not
214  constant: they both steeply decreased during the SoH stage and then gradually stabilized (Fig.
215 3b); in particular, for Rothia, at Day 3 its level already dropped to 21% of its peak at Day O, then
216 it bottomed at Day 7 and stayed so for the remaining 21 days). These observations suggest that
217 the SoH stage, despite the lack of clinically observable changes in bleeding (vs. Baseline), is the
218  most active and consequential phase in both microbiome structural change and the gingivitis-
219 driving microbial metabolism.

220 Coincidentally, in addition to its synergy with heath-enriched bacteria such as Rothia, betaineis
221 negatively linked to many gingivitis-enriched ones such as Peptostreptococcus, Prevotella, and
222 Treponema etc (Fig. 3a). This suggests an important, perhaps protective, role of betaine in
223 gingival inflammation. Accumulating evidence has shown that betaine plays an anti-inflammatory
224 role in multiple inflammatory diseases, potentially by balancing hyperosmosis and protecting
225  cells from shrinkage and death (28). Similarly, the positive link to betaine and the negative
226 association with gingivitis severity indicate that Rothia is perhaps beneficial to gingival health
227 and it potentialy contributes to betaine metabolism in plaque.

228 On the other hand, only three out of the 27 cytokines tested are present in the network (Fig.
229  3a). MiP1l-betais enriched in healthy gingivae, yet IL-9 is enriched in gingivitis and negatively
230  correlated with MiP1-beta (Fig. 3a): in fact, IL-9 is significantly downregulated at Day 3 and Day
231 7 and upregulated at Day 28 (versus Day O; Fig. 2d). However, no specific associations between
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232 salivary cytokines and plaque taxa or plague metabolites were found over the process of EG
233 induction (Fig. 3a).

234 ldentifying microbiome links between gingivitis-SoH and periodontitisvia meta-analysis

235 To derive a microbiome-based view of the gingivitis to periodontitis transition (a process that
236 can take decades), we conducted a meta-analysis of published microbiomes for gingival plagues,
237 of sufficient sample size (>20 human adults) and with disease-associated (i.e., case or control
238 labels) or time-revolved metadata (i.e., baseline or time point labels) (Table 1). Among the
239  datasets found (all 16S rRNA amplicon based), six were publicly accessible, thus collectively
240 1505 oral microbiome samples reanalyzed from raw sequences (via Paralel-Meta 3.0 (29) and
241 Ora Core microbiota database; Table 1; Fig. 4a, b), for taxonomic profiles and metabolic
242 functions (viaPICRUSt (29, 30); Fig. S5b).

243 We first tested whether the reported microbiome associations with the oral disease states or the
244 anti-gingivitis treatments can be recapitulated (Table 1). To compare across studies such disease-
245  responses of microbiome, we first grouped all data into ten “datasets’. Each dataset can include
246 samples from case and control groups in a cross-sectional study (e.g., “UK_Periodontitis™) or
247  samples at the basdine and subsequent time points in a longitudinal study of EG (such as
248 “CN_EG 2014”) or an anti-gingivitis treatment (such as “CN_AntiG_brush_plus rinse”). Next,
249  for each dataset, we built a genus-level RF classifier to distinguish disease states (gingivitis,
250  periodontitis, or dental caries) from the health states longitudinally or cross-sectionally, and then
251  compared their AUROC across datasets.

252 Surprisingly, periodontal disease status can be classified between hosts or within hosts
253  (AUROC>0.7) in al studies (Fig. 4a). Notably, the states of gingivitis or chronic periodontitis are
254 highly distinguishable by plague microbiome (AUROC>0.9) in six out of eight related datasets
255 (Fig. 4a). We then asked whether and to what extent the microbiome-based RF classifiers of
256  periodontal disease states can be applicable from one dataset to another (Fig. 4b). For gingivitis,
257  we observed very limited degradation in prediction accuracy for the cross-trained RF models from
258  one cohort to another (AUROC ranges from 0.88 to 0.99 in either self-validation or prediction).
259  Moreover, a RF classifier trained on periodontitis can be readily applicable to gingivitis or vice
260 versa (AUROC>0.75 in either self-validation or prediction), despite the large technical difference
261 (or other non-disease-related biological differences) between studies/cohorts in the microbiome
262 data that frequently confound such cross-applications (Fig. $4a). Thus, the gingivitis and
263 periodontitis classifiers share a large number of microbial markers, suggesting a high degree of
264  similarity in the underlying microbiome.

265 Then, the microbial signatures associated with gingivitis or periodontitis were compared across
266  these datasets (Methods). Firstly, we asked whether the identified microbial response to
267  gingivitis onset (i.e., SoH) or progression is consistent with reported gingivitis microbiome in
268  these independent cohorts. Here 1023 samples (N=931 from China; N=92 from UK) from five
269  gingivitis-related datasets were compared, each with a longitudinal design that tracks microbiome
270  dynamics along gingivitis progression or retrogression. For cross-study comparison of microbial
271 responses, statistical analyses on samples from the baseline and the last time point in each study
272 were performed (with univariate tests on genus-level CLR-transformed relative abundances
273 conducted for each dataset independently and the results compared across studies; Wilcoxon
274 rank-sum test with the Bonferroni correction). Notably, the gingivitis-associated microbiomes are
275 highly reproducible across studies (Fig. 4c). In the EG datasets, microbiome shifts are
276  characterized by enrichment of a large proportion of ‘pathogenic’ or pathogen-associated genera
277 and depletion of a few commensal oral bacteria (consistent across studies; Fig. 4c). The EG-
278  associated microbiome identified from our previous study (i.e., “CN_EG _2014") harbored the
279 broadest spectrum of microbial shifts (N=41), among which >60% of microbial markers (e.g.,
280 Rothia, Haemophilus, Actinomyces, Streptococcus, Selenomonas, Prevotella, Leptotrichia,
281 uncultured Lachnospiraceae, and TM7) actually overlapped with those identified in other
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282 gingivitis-progression studies (including the present gum SoH study; Fig. 4c). Moreover, the two
283 anti-gingivitis treatments of brush alone and brush plus rinse(16)) are both characterized by
284  enrichment of health-associated bacteria yet depletion of ‘pathogenic bacterial; in fact, the
285 microbial taxa shifted toward the healthy state during gingivitis retrogression have largely
286 overlapped with markers of the EG studies (e.g., Lautropia, Rothia, Granulicatella, TM7 and
287 Leptotrichia; Fig. 4c), yet in exact opposite directions of abundance change,

288 Secondly, we tested whether or to what extent the stage-specific plaques of gingivitis are linked
289  to those of periodontitis. Specifically, 260 samples were collected from two case-control studies
200 (UK, N=92; US, N=178) on periodontitis microbiome: the UK_Periodontitis dataset where
201 Kistler et a. profiled plaque microbiome of chronic periodontitis (15) and the US_Periodontitis
292  dataset where Griffen et al. compared subgingival plague microbiota from 29 periodontally
203 healthy controls and 29 subjects with chronic periodontitis (including periodontally healthy and
204 diseased sites) from a US cohort (23). Notably, the periodontitis microbiomes feature a large
205 number of generathat overlap with those identified in the EG or even the SoH stage of gingivitis
206  (Fig. 4b-c; Fig. $4). The microbiome shifts responding to chronic periodontitis in the US or UK
297  cohorts were characterized by an enrichment of gingivitisenriched genera (such as
208  Porphyromonas, Leptotrichia, Selenomonas, TM7, Prevotella, uncultured Lachnospiraceae,
209 Campylobacter, Fusobacterium and Tannerella) and a depletion of gingivitis-depleted ones (such
300 as Rothia, Haemophilus, Actinomyces, Streptococcus and Kingella). Importantly, those gingivitis-
301 associated microbes were al identified as so in the Chinese cohorts. Considering the potential
302 heterogeneity between cohorts (i.e., geographic locations) or technical inter-study batch effects
303 (such as 454 vs. lllumina sequencing platform, different primer sets etc.), the very limited
304 variation in microbial response to periodontal diseases across the two UK/US periodontitis
305 cohorts and the China gingivitis cohort is remarkable.

306 To validate the similarity in microbiome signature between gingivitis and periodontitis, we
307  built aRF classifier of the chronic periodontitis on the plague microbiome, and applied this model
308 to a given sample from any of the gingivitis stages for estimating its microbiome-based
300 probability of periodontitis (which we proposed as “Microbiome-based Periodontitis Index” or
310 MPI; Fig. 4d). In the training dataset (i.e., US_Peridontitis), MPI of the healthy controls are on
311  average only 10%, while reach up to 99% averagely in periodontitis patients. In our present study,
312  MPI increase progressively along the EG process, a pattern that is consistent with the other EG
313 datasets. In particular, MPI at Day 7 (end of the gum SoH stage), with a median at ~62%, is
314 dgignificantly higher than that at Day 0, suggesting the emergence of a periodontitis-like
315 microbiome at this stage, due to the aforementioned, profound changes in plague microbiome,
316  plague metabolome and host immunity that take place at SoH.

317  Comparing microbiome dynamicsin the development of gum inflammation and caries

318 Next, we put the temporal microbial shifts along gingivitis development in a broader context
319 that includes not just periodontitis but dental caries, via meta-analysis of the SoH, UK_EG,
320 UK _Periodontitis, US Periodontitis and early childhood caries (ECC) datasets(31). We classified
321  the disease or pre-clinical status using RF models based on either the species-level taxonomic
322 profile or the predicted functional profile (by PICRUSt) along stages of disease development in
323 al studies (Fig. 5a). Surprisingly, AUROC of species-level-taxonomy based RF classifiers for
324 plaque at Day 3 reached 0.85 (function-based classifiers: 0.81), which is already quite close to the
325 0.88 a Day 28 (function-based classifiers: 0.85). Thus plaque functional profiles already
326 resembles that of the severe gingivitis stage within 24 hours after dental scaling (Fig. 5a), and
327 actually saturates after 24 hours. The discriminative power of this function-based classifier
328 (AUROC=0.78) is nearly equivalent to that distinguishing chronic periodontitis patients from
329  healthy individuals from the UK cohort (AUROC=0.82; DAYO0_VS DD), suggesting an ultra-
330 rapid assemblage of functional components in the plague biofilm that highly resemble those in
331 periodontitis patients. In contrast, in ECC development, oral microbiome did not show as
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332 pronounced changes in the early stage (AUROC=0.52; H VS RelativeH) as those in the late stage
333 (AUROC=0.68; H VSC,; Fig. 5a).

334 Moreover, to test whether microbiome successions are concordant between the devel opmental
335  stages of these oral chronic inflammations, we quantitatively compared the microbial differential
336 abundance profiles between time points or disease severities. For each dataset, the differential
337  abundance (i.e. mean log2 fold change) of microbial features in the plague/saliva microbiome
338  from healthy baseline to a given developmental stage of disease was measured (Fig. 5a-b, Fig.
339  Sba). For two given microbial signatures (e.g. DayO vs. Day -21 and DayO vs. Day 28 in the SoH
340  study), we first ranked the features by the degree of differential abundances in each of them and
341  then calculated the Pearson’s correlation between these two feature ranking lists. To reveal the
342 patterns driving the temporal difference in microbiome across diseases, we next performed PCoA
343 via the correlation-based distance metric of all pairs of feature ranking lists, with each dot in
344  PCOA corresponding to a pattern of microbial ateration between the healthy baseline and a
345  particular disease developmental stage (instead of a microbiome sample; Fig. 5c-d).

346 Intriguingly, at the species level, the microbiome differences along gingivitis development are
347 more pronounced than those from periodontitis or dental caries (Fig. 5c¢). During gingivitis
348  progression, along PC1, the profile of microbiome alteration between the baseline (Day 0) and a
349  given time point would increasingly resemble that between health and periodontitis in either the
350 USor the UK cohort. Notably, the microbial taxonomical response to severe gingivitis (e.g. DayO
351 vs. Day -21, and DayO vs. Day 28 in the SoH study) is highly similar to that of chronic
352  periodontitis. Thus, taxonomic perturbations during dysbiosis are highly consistent between
353  gingivitis and chronic periodontitis, while the taxonomic responses to the periodontal diseases and
354  dental caries are quite distinct (Fig. 5¢).

355 Notably, during gingivitis development, functional potential of microbiome is relatively
356  conservative over time, particularly after the SoH stage (Fig. 5d). In fact, our results suggest that
357  the gingivitis-associated community in dental plague biofilm actually assembles rather rapidly in
358 thevery early stage (i.e., the SoH stage), to form a “climax” -like community configuration that is
359  very similar to the periodontitis-associated community (Fig. 5d). In contrast, ECC-associated
360 microbiomes at the onset stage (i.e., SoH) are actually very distinct from those at the late stage
361  (31). AsECC develops, the primary oral microbial communities (i.e. health-associated) evolvesto
362 aconvergent state, due to selection of a changed microenvironment of teeth (such as acidification
363 (32)), and such a “climatic” state that corresponds to a reliable caries stage, is very distinctive
364 from that in the “new onset” stage of caries (i.e., RelativeH, when no clinically detectable
365 symptoms are apparent in teeth (31)) in terms of taxonomic composition or functional profile
366 (Fig. 5a, c, d). For example, the cariogenic pathogen of Streptococcus mutans are highly enriched
367  inthe climax community, yet hardly present at the new onset (i.e., SoH) stage (31); in contrast, at
368 the SoH stage of ECC, Prevotella spp. exhibit a much stronger statistical power in predicting
369  caries onset than Streptococcus mutans (17). Therefore, the distinct temporal patterns of microbial
370  succession in plague-induced pathogenesis, as well as their distinct rates of microbiome change
371 relative to symptom development, appear to be a common stage of such chronic, polymicrobial
372 inflammations that carries disease-specific features.

373

374  Discussion

375 Despite the technological challenges, integrating the human dental plague microbiota and
376  metabolomics profiles enables an in-depth and mechanistic understanding towards periodontal
377  disease etiology. Simultaneous analysis of dental plague samples via DNA sequencing and LC-
378 MS/MS has been hindered by (i) the low biomass of dental plaque sampled with high temporal
379  resolution from each host and (ii) the difficulty to reconcile the distinct sample preprocessing
380 procedures for DNA sequencing and LC-MS/MS on a plague sample (e.g., the organic solvent
381  extraction in LC-MS/MS can reduce the DNA quality for sequencing). Therefore, in our new
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382  dtrategy, two dental plaque samples (up to 14 teeth each) were collected (for each subject) from 1
383 and 3 (plague A) or 2 and 4 guadrants (plaque B) for sequencing and LC-MS/MS respectively
384 (randomly assigned, to eliminate potential bias). This is particularly enabling for recording the
385 integrated metagenome-metabolome choreography of plaque, when sampled at high temporal
386  resolution, and particularly during the SoH phase (just 0~3 days away from Basdline, with
387  especialy low plague biomass).

388 The link and digtinction temporal dynamics among host symptoms, immune factors, plague
389  structure and plague metabolome unveiled how plaque microbiota drove gingivitis onset and
300 progression. Most importantly, an asymptomatic “SoH” state of gingivae, from O to 3 days after
391  dental prophylaxis and pause of oral hygiene, was uncovered, when actually the most intense
392 host-microbiome interactions take place, i.e, rapid and consistent alterations in plague
303 microbiota, metabolite pool and sadlivary cytokines. In particular, during this pre-clinical-
304  symptom, very transient gingival state of SoH, plague residents (e.g., Rothia spp.) and metabolites
305 (eq., betaine) that are strongly negatively correlated with gum-bleeding (over the entire 49-day
306 NG-Baseline-EG process) undergo a steep decrease, while at least eleven salivary cytokines
397  dramatically change in response (six up-regulated and five down-regulated as compared to Day 0)
308 and then rapidly plateau. In contrast, such alterations were not seen in subsequent phases of
309  gingivitis development (e.g., from Day 7 to 28), even for those with much higher symptomatic
400  severity.

401 Betaine was not previoudy linked to gingivitis development, despite its being recognized as
402  maintaining cell osmotic pressure which can promote cell survival under the high hyperosmotic
403  pressure potentially due to inflammation and diseases (28). Interestingly, it is a present an
404  ingredient in toothpaste for relieving dry mouth (33). In our plague samples, betaine consistently
405  and continuously declined as the gingivitis developed (particularly in the SoH stage), suggesting a
406  protective role against gum inflammation. Notably, its concentration in the plague was highly
407  correlated with healthy-gum-enrich and gingivitis-depleted plague residents such as Rothia spp..
108  Therefore, the health-associated members of plague might have served as a source of betaine that
409  possibly to protect the gum from gingivitis, which underscores the importance of maintaining a
410  hedlthy plague.

411 Notably, although taxonomic shift in plague took place as early as 24 hours after dental
412 prophylaxis (by acquiring microbial colonizers from saliva (11, 20)), it was accompanied by a
413  delayed functional shift as revealed by plaque metabolome. This suggests that establishment of
414  primary colonists in plague altered within 48 hours (i.e., at or by Day 3) the plague metabolome,
415  which then dicits both gingival inflammation and subsequent plague development, starting a
416  detrimental cycle: periodontal tissue destruction by plague dyshbiosis provides nutrients for
417  bacterial growth, which further promotes dyshiosis and tissue inflammation (11). Therefore,
418  despite its apparent Baseline-like symptom, the SoH phase is a transient yet crucial time window
419  to prevent or abolish the start of such vicious cycles.

420 Surprisingly, the implication of this SoH stage finds support from our meta-analysis of past oral
421 microbiome studies, which reveals a microbiome-mediated link between the very early (i.e., SoH
422 of gingivitis) and very late stage (periodontitis) of the periodontal disease which can span decades
423  and affects over half of the global population. Gingivitis and periodontitis patients can share a
424  dignificant number of bacteria genera (18-20, 23), and periodontal treatments can result in
425  depletion of disease-associated bacteria and enrichment of health-associated ones in plague (16,
26 17, 34). However, systematically tracking microbial associations across different stages for
427  chronic periodontal diseases remains a challenge, since it is impractical to create or modulate
428  advanced disease states directly in humans, while clinical studies can only induce mild or
429  moderate disease states (notably, this holds true for many chronic diseases). Moreover, technical
430  variations such as inter-study differences in the sequencing protocol, 16S databases or statistical
431 methods prevent comparing microbial associations across studies (35). For example, microbiome
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432  data are compositional (36), however in many past studies, traditional statistical methods such as
433 t-test or Wilcoxon rank-sum test were widely and inappropriately used on the raw abundance data
434  for microbia marker discovery; in fact, once accounting for the compositionality issues in
435  dtatistical analysis, it is far less clear whether the reported microbial associations can be
436 recapitulated (36).

437 To tackle these issues, we re-analyzed from raw data all published and accessible microbiome
438 datasets with consistent parameters and RF models. Our results profoundly relate gingivitis to
439  periodontitis via plague microbiome. Specifically, (i) the oral microbiome responses to a disease
440  state, either gingivitis or periodontitis, can be highly consistent across human populations, while
441  this is not the case for most of the other chronic diseases (31, 35); (ii) the plague residents
142 specifically responding to periodontal inflammation are quite consistent between the very early
443  stage of gingivitis (i.e., SoH) and the eventually irreversible and detrimental state of periodontitis,
444  despite their decade-long temporal gap and the large host- or technology-related variation among
445  cohortg/studies. Thisisin contrast to early childhood caries (ECC), where plague microbiomes at
446  the new onset stage are very distinct from that of the late stage. The patterns and nature of such
447 microbiome change underlying chronic disease development, whether conserved or divergent
448  among the many chronic inflammations in oral or other human body sites, can shed new light on
449  disease etiology and help precise diagnosis, prevention and treatment.

450 In summary, by tracking the choreography of plague microbiome structure, plaque metabolome
451  and host immune-response during gingivitis onset and progression, we unraveled a microbiome-
452 defined SoH stage of gingivitis, i.e., the just 24-72 hours after pausing oral hygiene. Although
453  trandent and asymptomatic, SoH is a crucia phase when the most intensive changes in plaque
454  structure and metabolism as well as host immune factors take place, and carries a microbial
455  gignature highly similar to periodontitis. In light of the epidemic of periodontal disease (1-5) and
456  theinsufficient public health awareness on oral hygiene (a significant portion of world population
457 il fails to brush teeth daily), our findings underscore the importance of intervening at the SoH
458  stage of gingivitis via proper oral hygiene practices, so as to maintain a healthy, periodontitis-
459  preventative plague. In addition, since SoH appears to be a shared stage that carries disease-
460  specific microbial, metabolomic and immunological features, it would be promising to define and
461  compare the SoH states of additional chronic polymicrobia inflammations, which should lay the
162  foundation for exploiting their usesin predictive and personalized medicine.

163

464 Materialsand Methods

465 Overall design of the study

166 The *experimental gingivitis notion was established as a non-invasive model in humans for the
467  pathogenesis gingivitis (13). This single-center, examiner-blind, controlled clinical trial was
468  conducted at Procter & Gamble (Beijing) Technology Co., Ltd. Oral Care Department, with
469  approval from the P&G Beijing Technical Center (China) Institutional Review Board and in
470  accordance with the World Medical Association Declaration of Helsinki (1996 amendment). ICH
471 Guidelines for Good Clinical Practice (GCPs) were followed. All participants gave written
472 informed consent prior to the study.

473 Overview of human cohort

474 A total of 40 volunteers who met all inclusion criteria participated in this study and all
475  completed it (Table S2). Clinical examination of gingival tissues using Mazza index (reference)
476  was conducted at all of the visits by a qualified dental examiner (Fig. 1a). For each subject,
477  supragingival plague and salivary samples were collected by professional dentists at Day -21
478 (NG), Day 0 (Basdline), Day 1 (EG), Day 3 (EG), Day 7 (EG), Day 14 (EG) and Day 28 (EG), in
479  alongitudinal manner (Fig. 1a). The optimal gingival health state on Day 0 was achieved through
480  dental prophylaxis and rigorous oral hygiene during the oral hygiene phase prior to Basdline.
481  Dental prophylaxis including super and subgingival whole-mouth cleaning on a total of 28 teeth
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482 was performed on Day -21, Day -14, and Day -7. Subjects were instructed to brush with a sodium
483  fluoride dentifrice three minutes each time twice daily in the oral hygiene phase. On the contrary,
484  inthe EG phase from Day 0 to Day 28, only rinsing with purified water was allowed for each of
485  the subjects.

486 Clinical assessment

187 A qualified dental examiner performed oral tissue assessments on the study participants at Day
488  -21, Day -14, Day -7, Day O, Day 1, Day 3, Day 7, Day 14 and Day 28. Assessment of the oral
489  soft tissue is conducted via a visual examination of the oral cavity and perioral area. The
490  structures examined include the gingiva (free and attached), hard and soft palate,
491  oropharynx/uvula, buccal mucosa, tongue, floor of the mouth, labial mucosa,
492  mucobuccal/mucolabial folds, lips, and the perioral area. Assessment of the oral hard tissues was
493  conducted via a visual examination of the dentition and restorations. Gingivitis was assessed
494  based on the Mazza Index (13): sampling was performed on the mesiofacial and the distolingual
495  of each tooth, for a maximum of 56 sites.

496  Saliva sample collection

497 At the Day -21, Day 0, Day 1, Day 3, Day 7, Day 14, Day 28 vidts, subjects were asked, prior
198  to plaque sampling, to expectorate approximately 10 mL of unstimulated salivainto alabeled tube
199  (Fig. 1a). The samples were frozen at -20°C immediately after collection until use for cytokine
500  profiling.

501  Plaque sample collection

502 Gingival plague from each of the 40 subjects was collected at Day -21, Day 0, Day 1, Day 3,
503 Day 7, Day 14 and Day 28 (Fig. la). Specifically, subjects were refrained from oral hygiene
504  practice include tooth brushing, flossing or mouth rinsing in the morning of sampling and
505  supragingival plaque samples along the gingival margin were collected after GI examination
506 using a gracey curette by a qualified dentist. At each time point, to ensure sufficient amount of
507 plaque for analysis, samples were taken from each subject’s maxillary right and mandibular |eft
508  quadrants or maxillary left and mandibular right quadrants alternatively. All samples were stored
509  under -70°C until use.

510  Plaque microbiome structure analyses

511 Genomic DNA was extracted from the plagues. Barcoded 16S rRNA amplicons (V1-V3
512 hypervariable region) of all the 261 samples were sequenced via lllumina Miseq. All 16S rRNA
513  raw sequences were pre-processed following the standard QIIME (v.1.9.1) pipdine (37).
514  Downstream bioinformatics analysis was performed using Paralel-Meta 3 (29), a software
515  package for comprehensive taxonomical and functional comparison of microbial communities.
516  Clustering of OTUs was conducted at the 97% similarity level using the OralCore database (38).
517 Taxonomically assigned sequences were further agglomerated at the genus level for structural
518  comparison of microbiomes.

519 LC-MS/MSdata acquisition for plaque metabolome

520 Prior to LC-MS/MS analysis, plaque samples were prepared using the following procedures.
521 For extraction, 1 mL 40:40:20 (in volume) MeOH/ACN/Water was added to the pre-weighted
522 supragingival plague in 2 mL PP tube and vortexed for 1 minute. Plaque pallets in the extraction
523 solvent were incubated in 95°C water bath for 1 hour and then centrifuged at 3000rpm and
524  subsequently transferred to another 2 mL PP tube. For complete extraction, 500 puL extraction
525  solvent was added as described above into the original tube and then vortexed for 10s and
526  centrifuged at 3000rpm for 10 minutes. Each of the final extraction solutions was combined with
527 the other obtained in the last step. Each liquid extraction was dried completely with nitrogen and
528  then stored in -80°C freezer until use.

529 Non-targeted metabolomic analysis was performed using Q Exactive orbitrap (Thermo, CA).
530  After resuspension of the dried extract, each of the samples (luL supernatant) was loaded to
531 normal phase chromatography column, then eluted to the orbitrap mass spectrometer with an


https://doi.org/10.1101/2020.09.26.315127
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.26.315127; this version posted September 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

532 agueous phase containing SmM ammonium acetate as eluent from 1% to 99% within 15 min. The
533  stationary phase was 95% acetonitrile with 5mM ammonium acetate. Data with mass range m/z
534 100-1500 was acquired at the positive ion mode using data dependent MS/MS acquisition. The
535  full scan and fragment spectra were collected with resolution of 70,000 and 17,500 respectively.
536  The source parameters are as follows: spray voltage: 3000v; capillary temperature: 320°C; heater
537 temperature: 300°C; sheath gas flow rate: 35; auxiliary gas flow rate: 10. Metabolite identification
538  was based on Tracefinder search with home-built database containing 529 compounds.

539 Targeted metabolomic experiments were performed on TSQ Quantiva (Thermo, CA). C18
540  based reverse phase chromatography was utilized with 10mM tributylamine, 15mM acetic acid in
541 water (pH ~6) and 100% methanol as mobile phase A and B respectively. This analysis focused
542 on TCA cycle, glycolysis pathway, pentose phosphate pathway, amino acids and purine
543 metabolism. A 25-minute gradient from 5% to 90% mobile B was used. Positive-negative ion
544 switching mode was performed for data acquisition. Cycle time was set as 1 second and totally
545 138 ion pairs were included. The resolution for Q1 and Q3 are both 0.7FWHM. The source
346  voltage was 3500v for positive and 2500v for negative ion mode. Sweep gas was turned on at
547 1(arb) flow rate.

548 LC-MS/MSdataanalysisfor plague metabolome

549 For targeted metabolomics, triple quadrupole mass spectrometer (TSQ Quantiva, Thermo) was
550  used for the analysis in MRM mode. All the ion transitions and retention times were optimized
551  using chemical standards. Tracefinder (Thermo, USA) was applied for metabolite identification
552 and peak integration. The peaks were manually checked for the analysis. Pooled QC samples
553  wereinserted in the batch to ensure system stability.

354 For untargeted metabolomics, orbitrap mass spectrometer (QExactive, Thermo) was used for
555 the analysis in DDA mode. An in-house database containing MSMS spectra of over 1500
556  metabolites was incorporated for metabolite identification. Tracefinder (Thermo, USA) was used
557  for metabolite identification based on MSMS fragment matching. LS score was applied to
558  confirm the confidence of metabolite identification. Only the metabolites with LS score > 30 were
559  considered as confident confirmation. Otherwise, they were assigned as putative identification.
560  The peaks were manually checked for the analysis. Pooled QC samples were inserted in the batch
561  to ensure system stability.

362 Normalization was performed before statistical analysis. The missing values were replaced
563  with half of the minimum values in all the samples. Peak areas were normalized relative to the
564 mean of the total area of a sample. Both targeted and untargeted metabolomics data were
565  combined and imported into the R software (version 3.6.2) for multivariate analysis.

566  Quantification of salivary cytokines using multiplexed bead immunoassay

367 We collected 194 salivary samples at Day -21, 0, 3, 7 and 28 from 40 subjects who were
568  selected for quantification of inflammatory cytokines (Fig. 1a). All samples were sub-packed (1.0
569 mL samplein 1.5 mL EP tube) and stored at -80°C until measurements. Samples were thawed in
570  an ice bath and vortexed, followed by centrifugation at 3000 rpm for 5 min at 4°C. Supernatants
571 were collected for further cytokine assays. Levels of the following 27 cytokines were analyzed
572 using a BioPlex Pro™ Human Cytokine 27-plex Assay kit (#M500K CAFQY, Bio-Rad, Hercules,
573  CA, USA) in accordance with the manufacturer’ sinstructions: L-1p, IL-1a, IL-2, IL-4, IL-5, IL-6,
574 IL-7,1L-8, IL-9, IL-10, IL-12(p70), I1L-13, IL-15, IL-17, Eotaxin, Basic FGF, G-CSF, GM-CSF,
575  IFN-y, IP-10, MCP-1, MIP-1a, MIP-1p, PDGF-BB, RANTES, TNF-a and VEGF. Mean
576  fluorescence intensities of the 192 salivary samples and 8 standards were detected via a Luminex
577  FLEXMAP 3D System (Luminex Corp., Austin, TX, USA). Cytokine concentrations were
578  calculated by xPONENT build 4.2.1441.0 (Luminex Corp.) using a five-parameter fit algorithm.
579  Vaues obtained from the reading of samples below the sensitivity limit of detection (LOD) or
580 above the upper limit of the sensitivity method were interpolated usng a CUBIC SPINE
581  interpolation to calculate cytokine concentrations.
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582 Statistical analyses

583 All statistical analyses were performed using R software (version 3.6.2). PCoA analysis on a
584  range of distance metrics was performed in R using the vegan and ape package. Quantifications of
585  variance explained in plague microbiome, metabolome and salivary cytokines profiles were
586  calculated usng PERMANOVA with the “adonis’ function in the R package vegan (as shown in
587  Fig. Sl). The total variance explained by each variable was calculated independently of other
588  variables, and should thus be considered the total variance explainable by that variable. The
589  differential abundance analyses of all measurement types were tested. First, an appropriate
500 transformation/normalization method was applied: central-log-ratio (CLR) transformation for
591  microbial taxonomic profiles. The transformed abundances were then used to perform differential
592  abundance analyses between time points or groups using custom R functions (at
593  https://github.com/shihuang047/crossRanger). To construct the co-occurrence network of
594  molecular features from the multi-omics datasets, we identified significant associations between
595  them using the Spearman correlation (rhoj>0.6; FDR p<0.05). Network was visualized in
596  Cytoscape (Version 3.7.1). The code and all the datasets used in this study are publicly available
597  at http://mse.ac.cn/SoH.html.

598
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739
740  Fig. 1. The longitudinal multi-omics landscape of gingivitis onset and progresson in a

741 human population. (a) Experimental design. Among the 40 hedlthy adult volunteers that
742 participated, 20 were healthy subjects (with < 10 Mazza bleeding sites), and the rest of them were
743 unhealthy ones (Mazza bleeding sites from 15 to 25) at the start (Day -21 or NG). This study
744 yielded clinical measures (at nine time points), oral microbiome and metabolome data from
745  supragingival plague samples (at seven time points), and host immune response data from
746  salivary samples (at five time points) for each of the 40 subjects. (b) Temporal changes in the
747 clinica symptoms for volunteers. Boxes represent the interquartile range (IQR) and the lines
748  insde represent the median. Whiskers denote the lowest and highest values within 1.5x IQR. (c
749 and d) Principal coordinates analysis (PCoA) based on the genus-level Bray—Curtis dissimilarity
750 of (c) plague microbiomes (16S-amplicon sequencing), and (d) metabolome profiles (LC-
751 MSIMS); were shown. (€) Principal component analysis (PCA) of the salivary cytokine profiles.
752  Each dot in PCoA or PCA represents a plaque or saliva sample and is included in an dlipse
753  whose color indicates time point. Each dot is also sized based on the severity of symptom (gum
754  bleeding). (f) Comparing the quantitative variation in all measurements explained by the major
755  factors. PERMANOVA shows that inter-individual variation is the largest factor for all
756  measurement types, while time and disease phenotype also capture sizable variations. Asterisks:
757  FDR-corrected statistical significance (FDR * p< 0.05, ** p <0.01, *** p<0.001)

758
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759
760  Fig. 2. A plague-microbiome-defined SoH stage that takes place earlier than the emergence

761  of clinical symptoms. (a) The symptomatic change (i.e., mean bleeding difference) within hosts
762 (n=40), between each of the time points (Day -21, Day 1, Day 3, Day 7, Day 14, Day 28) and
763  Basdine (Day 0). Color of bars shows FDR-corrected statistical significance: in particular, Day 1-
764 3 are the “SoH” stage when no change in clinical symptoms as compared to Baseline was
765  observed within the hosts. The scatter plots show the AUROC (the y axe on the right) of
766  classification models using plague microbiota, plaque metabolome or salivary cytokines between
767  Day 0 and each of the other time points (Day -21, Day 1, Day 3, Day 7, Day 14 and Day 28). In
768 (b, c and d) we identified molecular features from each measurement type that were differentialy
769  abundant at a time point as compared to Day 0. (b) The heatmap for the mean log2 fold changes
770 of microbial responders (with significance threshold Bonferroni p<0.05) in plaque during the
771 onset and progression of NG. (¢) The heatmap for the mean log2 fold change of both early and
772 persistent metabolite responders (with significance threshold Bonferroni p<0.05) in plaque. On
773  the x axis, “pos’'/“neg’ after a chemical compound name indicates acquisition via a
774  positive/negative ionization mode in the non-targeted metabolomic approach, while “TSQ”
775  indicates acquisition via from the targeted metabolomic approach. (d) Heatmap for the mean log2
776 fold change of cytokines at each time point (Day -21, 3, 7 and 28) versus basdline (Day 0). Blue
777 denotes reduction while red shows enrichment (versus Baselinge). Asterisk: Bonferroni-corrected
778 statistical significance (* p <0.05). No asterisk: no significant change.

779
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780
781  Fig. 3. The interplay of plaque taxa, plaque metabolites and salivary cytokines during

782  gingivitis retrogression, onset and progression. (a) Network analysis of microbial taxa and
783  metabolites in the temporal program of NG-Baseline-EG. Negative correlations are shown in
784  green, poditive in blue and predictive taxa in gray. Edge weights represent the strength of
785  correlation. Rothia and betaine have the largest number of connections (i.e., they are the hub
786  nodes) and are highly correlated to each other. For node of metabolites, “pos’/“neg” indicates
787  acquisition by a positive/negative mode in the non-targeted metabolomic approach, while “TSQ”
788 indicates acquisition from the targeted metabolomic approach. (b) The temporal co-variation of
789  betaine and Rothia, along the process of gingivitis retrogression and induction. The bar plot
790 indicates the clinical symptoms (i.e., mean bleeding) at each of the time points (Day -21, Day 0O,
791 Day 1, Day 3, Day 7, Day 14, Day 28). Color of bars shows statistical significance in bleeding
792 between a given time point and Baseline (Day 0): significant (blue) and not significant (grey).
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795  Fig. 4. Meta-analysis of existing gingival microbiome datasets revealed smilar microbial
796  signature between gingivitisSoH and periodontitis. (a) Most periodontal disease progression
797  or retrogression show microbiome alterations, with consistent disease-associated shifts that differ
798  in their extent and direction. Panels from left to right: (i) sample size for each study; (ii) area
799  under the ROC curve (AUROC) for the genus-level random forest classifiers (X-axis starts at 0.5,
300 the expected value for a classifier that assigns labels randomly, and AUROCs < 0.5 are not
301 shown); (iii) number of genera with q < 0.05 (Wilcoxon rank-sum test, Bonferroni correction) for
302  each data set (if a study reveals no significant associations, no points are shown). (iv) direction of
303 the shifts in microbiome structure, i.e., the percentage of associated genera that are enriched in
304 disease. (b) Cross-prediction matrix reporting prediction performance as AUROC values obtained
305 using a random forest model on the genus-level relative abundance. Matrix values refer to the
306 AUROC values obtained by training the classifier on the dataset of corresponding row and then
307  applying it to the dataset of corresponding column. The prediction accuracy between gingivitis
308 and periodontitis is remarkably high, suggesting a strong microbial link between these two
309 periodontal diseases. Moreover, the prediction accuracy between anti-gingivitis treatments is
310 higher than that between EG experiments, suggesting anti-gingivitis treatments often result in
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311  very similar microbiome responses, regardless of the difference in cohorts. (c) Heat map for log2
312  mean fold change of all plague genera between the last day of treatments and Baseline in each of
313  the longitudinal studies (or between case and control groups in the cross-sectional studies). Blue
314  denotes reduction in relative abundances of genera (red: enrichment) versus Baseline. Those
315  gignificant fold changes (Bonferroni-corrected p<0.05) are marked by asterisks, while not-
316  gignificant fold changes (Bonferroni-corrected p>0.05) are indicated as blank in the heatmap.
317  Text color of the genus names indicates those showing highly consistent enrichment (red) or
318  reduction (blue) in the periodontal disease state across data sets. (d) A Random Forests classifier
319  of periodontitis was built based on the subgingival microbiomesin a US periodontitis cohort, and
320  then applied to all the other datasets in the meta-analyses, so as to model the estimated probability
321 of periodontitis for the gingivitis patients. Asterisks. FDR-corrected statistical significance (FDR
322 * p<0.05).
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Fig. 5. Comparing temporal microbial shiftsalong disease development between periodontal
diseases and caries. (a) Most oral disease progression show microbiome alterations, with
consistent disease-associated shifts that differ in their extent and direction. Panels from left to
right: (i) sample size for each study; (ii) area under the ROC curve (AUROC) for the species-level
RF classifiers (x-axis starts a 0.5, the expected value for a classifier that assigns labels randomly;
those with AUROCs < 0.5 are not shown); (iii) number of species with g < 0.05 (Wilcoxon rank-
sum test, Bonferroni correction) for each data set. (iv) direction of the shifts in microbiome
structure, i.e., percentage of associated species that are disease enriched. (v-vii) Similar analysis
conducted on the imputed functional profiles from 16S rRNA sequencing data. (b) Heat map for
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log2 mean fold change of bacterial species between a (pre-)diseased state and the healthy baseline
in each. Blue denotes reduction in relative abundances of species (red: enrichment) versus
Basdine. Significant fold-changes (Bonferroni-corrected p<0.05) are marked by asterisks, while
insggnificant fold-changes (Bonferroni-corrected p>0.05) as blank in the heatmap. We next
performed PCoA based on the mean log2 fold change data of species (c) or predicted functional
pathways (d) that are associated with two oral diseases. Each dot in the PCA plots represents a
process of microbiome alterations from health to the onset or progression stage of a given oral
disease. The dots are colored by diseases. The lines with arrows represent the path that microbial
alterations occurred along the disease devel opment.
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Table 1. The gingival-inflammation micr obiome datasets used in the meta-analysis.
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