

1
2 **Title:** Longitudinal multi-omics along gingivitis development reveal a suboptimal-health gum
3 state with periodontitis-like microbiome
4

5 **Authors**

6 Shi Huang^{1,6,*}, Tao He², Feng Yue³, Victor Xu⁴, Spring Wang³, Pengfei Zhu^{1,6}, Fei Teng^{1,6}, Zheng
7 Sun^{1,6}, Xiaohui Liu⁴, Gongchao Jing^{1,6}, Xiaoquan Su^{1,6}, Lijian Jin⁵, Jiquan Liu³, Jian Xu

8 **Affiliations**

9 10 Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese
11 Academy of Sciences, Qingdao, Shandong, China

12 2 Procter & Gamble Company, Global Oral Care Clinical Operations, Mason, Ohio, USA

13 3 Procter & Gamble Innovation Center, Beijing, China

14 4 School of Life Sciences, Tsinghua University, Beijing, China

15 5 Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China

16 6 University of Chinese Academy of Sciences, Beijing 100049, China

17 *Correspondence to: J.X. (xujian@qibebt.ac.cn) and S.H. (huangshi@qibebt.ac.cn)

18 **Abstract**

19 20 Most adults experience episodes of gingivitis, which can progress to the irreversible, chronic
21 state of periodontitis. However the mechanistic roles of plaque in gingivitis onset and progression
22 to periodontitis remain elusive. Here, we integrated the longitudinal multi-omics data from plaque
23 metagenome, metabolome and salivary cytokines in 40 adults who transit from naturally-
24 occurring gingivitis (NG), to healthy gingivae (baseline) and then to experimental gingivitis (EG).
25 During EG, rapid and consistent alterations in plaque microbiota, metabolites and salivary
26 cytokines emerged as early as 24-72 hours after pause of oral hygiene, defining an asymptomatic
27 'sub-optimal health' (SoH) stage. SoH also features a steep and synergetic decrease of plaque-
28 derived betaine and *Rothia* spp., suggesting an anti-gum-inflammation mechanism by health-
29 promoting microbial residents. Global, cross-cohort meta-analysis revealed a high Microbiome-
30 based Periodontitis Index at SoH state, due to its convergent taxonomical and functional profiles
31 towards those of periodontitis. In contrast, caries SoH features a microbial signature very distinct
32 from caries. Thus SoH is a universal state of polymicrobial inflammations with disease-specific
33 features, which is key to maintaining a disease-preventive plaque.

34 **Introduction**

35 36 Gingivitis, the inflammatory lesion of the tooth-supporting soft tissues, is one of the most
37 common oral diseases in humans and has been a global health burden for centuries (1-5). It results
38 from a dysregulated immuno-inflammatory response which is induced by dysbiotic plaque
39 biofilm (6). Manifested with various clinical signs and symptoms, the gingival condition of
40 gingivitis is affected by both local and systemic factors (4). Notably, this inflammatory lesion can
41 be resolved (i.e., reversible) following appropriate professional care. Whereas, uncontrolled
42 gingivitis can progress to the irreversible periodontitis, which is characterized by destruction of
43 tooth-supporting tissues and alveolar bone in susceptible individuals, eventually leading to tooth
44 loss (7) and an increased risk of systemic diseases like diabetes and cardiovascular disease (8-10).
45 Thus, prognosis and early diagnosis of gingivitis are of great importance in promoting oral health
46 and general well-being (11).

47 However, how gingivitis is initiated remains elusive (11). In natural human populations,
48 gingivitis symptoms can be reversible and volatile, as numerous internally or externally imposed
49 disturbances including oral hygiene practices (personal or professional), or impairment of
50 immune system, injury, diet and oral state can all affect disease development and confound
51 disease prevention and monitoring (12). Population-wide microbiome associations have unveiled
52 the compositional shifts of plaque during gingivitis progression (13-17), and the functional
53 potential of oral microbiome in gingivitis onset was profiled via metagenomics and
54 metatranscriptomic approaches (15, 18, 19). However, due to the lack of longitudinal perspective
55 that includes each of the players of microbiota, their metabolites and host immune response, the
56 molecular mechanisms underlying gingivitis onset and progression remain ill defined (13, 19).

57 As for periodontitis, the irreversible and detrimental stage of gum inflammation resulted from
58 chronological, uncontrolled gingivitis, a distinct phylogenetic structure of oral microbiota in diseased
59 hosts versus healthy ones was revealed via 16S rRNA gene or metagenome sequencing (20-23).
60 In particular, multiple separate cohort studies have probed the functional potential of
61 periodontitis-associated microbiota via metagenome (15, 18, 19, 24, 25) or metatranscriptome
62 (26, 27). However, the inherent mechanistic link of gingivitis and periodontitis, which is crucial
63 to clinical prevention and treatment of both diseases, has remained elusive, due to (i) the high
64 degree of heterogeneity among host hosts and variation in experimental procedures among the
65 microbiome profiling endeavors, and (ii) the inability to track both microbiome and host factor
66 and interrogate their interaction over the full course of gingivitis-to-periodontitis progression
67 within an individual.

68 To address these key challenges, herein we leveraged a longitudinal, multi-omics experimental
69 design that includes personalized microbial, metabolite and host immuno-response profiles, to
70 provide a high-temporal-resolution, system-level, mechanism-based landscape of the transition
71 from periodontal health, to onset of gum inflammation and eventually to gingivitis (Fig. 1). These
72 efforts unveil a microbiome-defined ‘sub-optimal health’ (SoH) stage of gingivitis, at just 24-72
73 hours after pause of oral-hygiene-practice, which is symptom-free yet carries a microbial
74 signature highly similar to periodontitis. Despite its lack of symptoms, SoH features a steep
75 decrease of microbe-produced betaine, whose abundance is synergistic with *Rothia* spp. yet
76 negatively correlated with bleeding, suggesting an anti-gum-inflammation mechanism by health-
77 promoting residents of plaque. Discovery of this microbiome-defined, symptom-free SoH stage is
78 valuable to prevention and intervention of periodontal diseases. Moreover, meta-analysis of past
79 gingivitis, periodontitis and caries microbiome studies revealed a high Microbiome-based
80 Periodontitis Index for the gum SoH state, yet in contrast, caries SoH features a microbial
81 signature very distinct from caries, suggesting SoH as a shared state of chronic polymicrobial
82 inflammations that carries disease-specific features.

83

84

85 Results

86 An experimentally tractable model of gingivitis onset and progression

87 To control for the many confounding factors (e.g., individuality in initial gum health state or in
88 oral-hygiene behavior) for host–microbiome dysbiosis during gingivitis (i.e., the earlier stage of
89 periodontal disease), we designed for a 40-adult cohort an experimentally tractable model of
90 gingivitis onset and progression (13, 16) (**Fig. 1, Table S1**). Specifically, on Day -21 (natural
91 gingivitis, or NG), all 40 adults were randomized into two groups: either high (15 to 25; 20
92 subjects) or low (0 to 10; 20 subjects) bleeder (**Methods; Fig. 1a**). These hosts then underwent a
93 rigorous oral hygiene regimen (dental scaling) for three weeks, resulting in greatly reduced
94 bleeding (median gingival bleeding of 1) on the baseline state of Day 0 (“Baseline”, i.e., a healthy
95 gingival state). Next, the subjects underwent a four-week program inducing experimental
96 gingivitis (EG), which greatly and consistently elevated gingival bleeding, until Day 28 ($p<0.01$
97 for gingival bleeding; i.e., the diseased state; **Fig. 1b**). Notably, the between-group symptomatic
98 difference at NG ($p=1e-22$, *t*-test), the basis for the high-/low-bleeding stratification of hosts at
99 NG (i.e., Day -21), is much greater than any of the subsequent time points (both before and after
100 Baseline) (**Fig. 1b**). In fact, mild or marginal difference in bleeding between high and low
101 bleeders was observed at the seven subsequent time points ($p<0.05$, *t*-test), but no such
102 symptomatic difference is found at Day 1 or 3 ($p>0.05$, *t*-test). This suggested that disease
103 severity in natural population (i.e., NG) is not necessarily deterministic among individual hosts,
104 and the high-bleeders can recover almost as rapidly and thoroughly as low-bleeders if they follow
105 a proper oral hygiene practice.

106 Integrated longitudinal profiles of both microbial and host immune programs were unveiled via
107 275 supragingival plaque (simultaneously for taxonomy and metabolome, via 16S rRNA
108 amplicon sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based
109 mass spectrometry, respectively) and 192 matching saliva samples (cytokine profile via
110 multiplexed bead immunoassay) collected by professional dentists. The plaque microbiome,
111 plaque metabolome and salivary cytokines were profiled at time points that fully span the entire
112 49-day NG-Baseline-EG course (from Day -21 to Day 28 day) while densely sampled the
113 transition from Baseline (0 day) to the onset of EG (e.g., Day 1, 3 and 7; **Fig. 1a, Fig. S1**), so that
114 the tertiary interplay can be temporally monitored, especially at disease onset.

115 Symptomatic severity (i.e., bleeding) contributed greatly to the first principal coordinate in
116 PCoA of plaque microbiome (**Fig. 1c**) or metabolome (**Fig. 1d**). For plaque-related
117 measurements, although inter-individual variation accounts for majority of symptomatic variance
118 (40-45%; **Fig. 1f**), disease status (9-11%) or time point (16-23%) also explains much of it (**Fig.**
119 **1c-d, f**). In contrast, no significant correlation was found between bleeding and salivary cytokine
120 profile (**Figs. 1e-f**). Notably, time point still explains 9% variation in cytokine profile (although
121 the inter-individual factor accounts for 54%) in fact, many salivary cytokines respond to gingivitis
122 development only at the initial time points post Baseline such as Day 3 or 7 but did not further
123 increase afterwards when hosts accumulated even more bleedings. This suggests that the oral
124 host-microbe interplay is the most intensive at the onset stages of gingivitis.

125 Therefore, we hypothesized the Day 1-3 after dental scaling as the “SoH” stage (**Fig. 1b**). At
126 this stage, we did not detect within-host temporal difference in clinical symptoms (i.e., from Day
127 1 to 3 after dental scaling) ($p>0.05$, paired *t*-test, **Fig. 2a**), however, the microbiome in the
128 supragingival plaque and even host immune molecules might have dramatically changed due to
129 the detrimental environmental disruptions in EG induction (i.e., poor oral hygiene).

130 Profound disruption of plaque microbiota/metabolome and salivary cytokines at SoH

131 To quantitatively measure the shifts in the plaque microbiome and host immunity in the
132 emergence of clinical symptoms, we established a unified metric to measure the temporal changes

133 in multi-omics data from Baseline to EG. Between-timepoints classifiers of host gingival status
134 were built from plaque microbiota, metabolome and salivary cytokine profiles, via the random
135 forests (RF) algorithm. On top of those RF models, we employed a model-accuracy metric
136 (AUROC) as a proxy to quantify the temporal changes of each measurement type at each of the
137 timepoints (i.e., Day -21, 1, 3, 7, 14, and 28) from Day 0. Furthermore, to dissect the multi-omics
138 associations, we compared temporal changes in AUROC values of RF classifiers related to plaque
139 microbiome, plaque metabolome, and salivary cytokines together with those from the clinical
140 symptoms (**Fig. 2a**). Unexpectedly, the AUROC of RF classifiers for plaque microbiota rapidly
141 shifted in the first 3 days (0.75 at Day 1 and 0.87 at Day 3) from Baseline: it already resembled
142 Day-28 microbiota (severe gingivitis stage; AUROC=0.89) as early as Day 3 (**Fig. 2a**), and
143 actually saturated after Day 3. Therefore, a microbial SoH stage occurred earlier than the
144 emergence of clinical symptoms. In concordance with plaque microbiota, the AUROC on the
145 plaque metabolome increased quickly from 0.58 (Day 1) to 0.92 (Day 7) within 7 days yet did not
146 plateau until after 14 days (AUROC=0.97), suggesting the plaque metabolome was persistently
147 shifting toward a gingivitis-like state. However, the most abrupt changes in the plaque
148 metabolome also took place in the first three days after dental scaling (**Fig. 2a**), indicating that
149 plaque metabolome change also precedes the development of bleeding symptoms, well before
150 they are detectable by professionals. Notably, despite the concordant changes over time between
151 plaque microbiota and metabolome, the saturation of the AUROC of metabolome-based RF
152 classifiers was 7 days later than that of microbiota-based classifiers (**Fig. 2a**), suggesting
153 microbiome-shift dependent changes in the plaque metabolisms during gingivitis onset.

154 Interestingly, in the SoH stage, the immune response was even more pronounced than both
155 plaque microbiota and metabolome (**Fig. 2a**). The AUROC reached up to almost 0.99 at either
156 Day 3 to 7, while the median gingival bleeding within this period (1 for Day 3 and 2 for Day 7)
157 was relatively low. In contrast, the AUROC at Day -21 (i.e., naturally occurring gingivitis) and
158 Day 28 were all even lower than that in the SoH stage, while the median gingival bleeding was
159 relatively high (8 for Day 28, 11 for Day -21). This suggests that the alterations in the cytokine
160 profiles are not necessarily associated with disease severity but are a response to the intensity or
161 magnitude of organismal and metabolite changes in the plaque microbiome.

162 The longitudinal concurrent metabolomics and 16S amplicon microbial community profiling
163 from dental plaque samples elucidated the reassembling process of supragingival plaque biofilms
164 after dental scaling (**Fig. 2a**). A key question then is to identify potential microbial and metabolic
165 factors that drive the microbial dysbiosis in the plaque. Thus, to compare the microbiome
166 responses across different stages of disease progression, we performed differential abundance
167 analysis on the CLR-transformed relative abundances of each genus-level taxon between a given
168 time point (Day -21, 1, 3, 7, 14 and 28) and Baseline (Day 0), and compared the results across the
169 stages of EG (Wilcoxon rank-sum test with the Bonferroni correction) (**Fig. 2b**). The microbial
170 markers persistently enriched/depleted with gingivitis progression (such as *Porphyromonas* and
171 *Rothia*), were termed ‘persistent responders’, while those genera transiently enriched/depleted at
172 the early stage of gingivitis progression (i.e., Day 1-3) were ‘early responders’ (such as *Gemella*).
173 Similarly, for plaque metabolome, we identified a series of persistent and early responders in
174 gingivitis development: over 50 metabolites were persistently over- or under-represented during
175 disease development and therefore provided a clue to path-physiology of gingivitis (**Figs. 2a, d**).

176 Accordingly, time-resolved, differentially abundant cytokines in saliva at Day -21, 3, 7 and 28
177 were also identified (as compared to Day 0; **Fig. 2c**). Eleven out of the 27 salivary cytokines, such
178 as eotaxin, IL-5, MiP1-beta, IFN gamma, basic FGF, and GSF, altered early, within 72 hours
179 from Baseline (i.e., at the SoH stage), yet did not exhibit any significant difference from Baseline
180 in later, gingivitis-developed timepoints (e.g., Day 28, the most severe gingivitis states along the
181 course). In fact, the SoH stage is featured by a prominent activation of both pro- and anti-
182 inflammatory cytokines that stabilized in later stages of EG (**Fig. 2a, c**). Notably, cytokine

183 alterations are more correlated with particular phases such as SoH than with gingivitis severity,
184 which underscores the importance of high-resolution temporal view of the host-microbiome
185 interplay.

186 Integrated microbiome-metabolome dynamic profiles of oral biofilms underlying SoH

187 To identify plaque microbial activities that underlie gingivitis onset and progression, we
188 constructed a cross-measurement type association network that incorporated both microbial taxa
189 and metabolome from the 261 plaque samples. To reveal trends in the data, Procrustes analysis
190 was used to direct compare the different omics data sets (of identical internal structure) on a
191 single principal coordinates (PC) analysis (**Fig. S3**). Overall, strong correlation between microbial
192 taxa and metabolome of all plaque samples was observed along the NG-Baseline-EG course
193 ($r=0.53$). In fact, such agreement between microbial taxa and metabolomics did not vary with the
194 gingivitis progression (**Fig. S3**), suggesting the key roles of microbes-derived metabolites in this
195 process.

196 We then built a co-occurrence network from the multi-omics data for biomarker discovery, by
197 calculating the correlation matrix of all features via Spearman's correlation analysis. The resulting
198 network contained 27,942 total significant edges ($|\rho|>0.6$, FDR $p<0.05$) and 1196 nodes that
199 span features from all three types of measurement. A filtered subnetwork was further built from
200 29 bacterial genera, 304 metabolites, and 8 salivary cytokines that were differentially abundant
201 between Day 0 and 28 (**Fig. 3a**). Between-metabolites associations accounted for the vast
202 majority (over 99%) of edges, clearly revealing complex and strong association among
203 metabolites. In addition, 51 strong co-associations between microbial genera and metabolites
204 were found, highlighting the impact of gingivitis onset and progression on microbe-dependent
205 metabolisms in plaque. Among these, the *Rothia*-betaine link is one of the most prominent
206 features in the network (red arrows in **Fig. 3a**). As a gingivitis-depleted bacterial marker, *Rothia*
207 had the most links to metabolites ($n=14$) and exhibited the strongest association with the
208 metabolite of betaine (i.e., trimethylglycine or TMG; $\rho=0.7$; **Fig. 3a**), which is also gingivitis-
209 depleted. In fact, the abundance of betaine and *Rothia* are highly synergic along the full 49-day
210 course (**Fig. 3b**); moreover, both were negatively correlated with symptomatic severity of
211 gingivitis: depleted from NG to Baseline and then enriched again from Baseline to EG, with the
212 peaking of betaine and *Rothia* coincident with the maximal healthy state of gingivae at Baseline
213 (**Fig. 3b**). Notably, the depletion rates of betaine and *Rothia* post during EG induction are not
214 constant: they both steeply decreased during the SoH stage and then gradually stabilized (**Fig.**
215 **3b**); in particular, for *Rothia*, at Day 3 its level already dropped to 21% of its peak at Day 0, then
216 it bottomed at Day 7 and stayed so for the remaining 21 days). These observations suggest that
217 the SoH stage, despite the lack of clinically observable changes in bleeding (vs. Baseline), is the
218 most active and consequential phase in both microbiome structural change and the gingivitis-
219 driving microbial metabolism.

220 Coincidentally, in addition to its synergy with health-enriched bacteria such as *Rothia*, betaine is
221 negatively linked to many gingivitis-enriched ones such as *Peptostreptococcus*, *Prevotella*, and
222 *Treponema* etc (**Fig. 3a**). This suggests an important, perhaps protective, role of betaine in
223 gingival inflammation. Accumulating evidence has shown that betaine plays an anti-inflammatory
224 role in multiple inflammatory diseases, potentially by balancing hyperosmosis and protecting
225 cells from shrinkage and death (28). Similarly, the positive link to betaine and the negative
226 association with gingivitis severity indicate that *Rothia* is perhaps beneficial to gingival health
227 and it potentially contributes to betaine metabolism in plaque.

228 On the other hand, only three out of the 27 cytokines tested are present in the network (**Fig.**
229 **3a**). MiP1-beta is enriched in healthy gingivae, yet IL-9 is enriched in gingivitis and negatively
230 correlated with MiP1-beta (**Fig. 3a**): in fact, IL-9 is significantly downregulated at Day 3 and Day
231 7 and upregulated at Day 28 (versus Day 0; **Fig. 2d**). However, no specific associations between

232 salivary cytokines and plaque taxa or plaque metabolites were found over the process of EG
233 induction (**Fig. 3a**).

234 Identifying microbiome links between gingivitis-SoH and periodontitis via meta-analysis

235 To derive a microbiome-based view of the gingivitis to periodontitis transition (a process that
236 can take decades), we conducted a meta-analysis of published microbiomes for gingival plaques,
237 of sufficient sample size (>20 human adults) and with disease-associated (i.e., case or control
238 labels) or time-revolved metadata (i.e., baseline or time point labels) (**Table 1**). Among the
239 datasets found (all 16S rRNA amplicon based), six were publicly accessible, thus collectively
240 1505 oral microbiome samples reanalyzed from raw sequences (via Parallel-Meta 3.0 (29) and
241 Oral Core microbiota database; **Table 1**; **Fig. 4a, b**), for taxonomic profiles and metabolic
242 functions (via PICRUSt (29, 30); **Fig. S5b**).

243 We first tested whether the reported microbiome associations with the oral disease states or the
244 anti-gingivitis treatments can be recapitulated (**Table 1**). To compare across studies such disease-
245 responses of microbiome, we first grouped all data into ten “datasets”. Each dataset can include
246 samples from case and control groups in a cross-sectional study (e.g., “UK_Periodontitis”) or
247 samples at the baseline and subsequent time points in a longitudinal study of EG (such as
248 “CN_EG_2014”) or an anti-gingivitis treatment (such as “CN_AntiG_brush_plus_rinse”). Next,
249 for each dataset, we built a genus-level RF classifier to distinguish disease states (gingivitis,
250 periodontitis, or dental caries) from the health states longitudinally or cross-sectionally, and then
251 compared their AUROC across datasets.

252 Surprisingly, periodontal disease status can be classified between hosts or within hosts
253 (AUROC>0.7) in all studies (**Fig. 4a**). Notably, the states of gingivitis or chronic periodontitis are
254 highly distinguishable by plaque microbiome (AUROC>0.9) in six out of eight related datasets
255 (**Fig. 4a**). We then asked whether and to what extent the microbiome-based RF classifiers of
256 periodontal disease states can be applicable from one dataset to another (**Fig. 4b**). For gingivitis,
257 we observed very limited degradation in prediction accuracy for the cross-trained RF models from
258 one cohort to another (AUROC ranges from 0.88 to 0.99 in either self-validation or prediction).
259 Moreover, a RF classifier trained on periodontitis can be readily applicable to gingivitis or vice
260 versa (AUROC>0.75 in either self-validation or prediction), despite the large technical difference
261 (or other non-disease-related biological differences) between studies/cohorts in the microbiome
262 data that frequently confound such cross-applications (**Fig. S4a**). Thus, the gingivitis and
263 periodontitis classifiers share a large number of microbial markers, suggesting a high degree of
264 similarity in the underlying microbiome.

265 Then, the microbial signatures associated with gingivitis or periodontitis were compared across
266 these datasets (**Methods**). *Firstly*, we asked whether the identified microbial response to
267 gingivitis onset (i.e., SoH) or progression is consistent with reported gingivitis microbiome in
268 these independent cohorts. Here 1023 samples (N=931 from China; N=92 from UK) from five
269 gingivitis-related datasets were compared, each with a longitudinal design that tracks microbiome
270 dynamics along gingivitis progression or retrogression. For cross-study comparison of microbial
271 responses, statistical analyses on samples from the baseline and the last time point in each study
272 were performed (with univariate tests on genus-level CLR-transformed relative abundances
273 conducted for each dataset independently and the results compared across studies; Wilcoxon
274 rank-sum test with the Bonferroni correction). Notably, the gingivitis-associated microbiomes are
275 highly reproducible across studies (**Fig. 4c**). In the EG datasets, microbiome shifts are
276 characterized by enrichment of a large proportion of ‘pathogenic’ or pathogen-associated genera
277 and depletion of a few commensal oral bacteria (consistent across studies; **Fig. 4c**). The EG-
278 associated microbiome identified from our previous study (i.e., “CN_EG_2014”) harbored the
279 broadest spectrum of microbial shifts (N=41), among which >60% of microbial markers (e.g.,
280 *Rothia*, *Haemophilus*, *Actinomyces*, *Streptococcus*, *Selenomonas*, *Prevotella*, *Leptotrichia*,
281 uncultured *Lachnospiraceae*, and TM7) actually overlapped with those identified in other

282 gingivitis-progression studies (including the present gum SoH study; **Fig. 4c**). Moreover, the two
283 anti-gingivitis treatments of brush alone and brush plus rinse(16) are both characterized by
284 enrichment of health-associated bacteria yet depletion of ‘pathogenic bacteria/; in fact, the
285 microbial taxa shifted toward the healthy state during gingivitis retrogression have largely
286 overlapped with markers of the EG studies (e.g., *Lautropia*, *Rothia*, *Granulicatella*, TM7 and
287 *Leptotrichia*; **Fig. 4c**), yet in exact opposite directions of abundance change,

288 *Secondly*, we tested whether or to what extent the stage-specific plaques of gingivitis are linked
289 to those of periodontitis. Specifically, 260 samples were collected from two case-control studies
290 (UK, N=92; US, N=178) on periodontitis microbiome: the UK_Periodontitis dataset where
291 Kistler et al. profiled plaque microbiome of chronic periodontitis (15) and the US_Periodontitis
292 dataset where Griffen et al. compared subgingival plaque microbiota from 29 periodontally
293 healthy controls and 29 subjects with chronic periodontitis (including periodontally healthy and
294 diseased sites) from a US cohort (23). Notably, the periodontitis microbiomes feature a large
295 number of genera that overlap with those identified in the EG or even the SoH stage of gingivitis
296 (**Fig. 4b-c**; **Fig. S4**). The microbiome shifts responding to chronic periodontitis in the US or UK
297 cohorts were characterized by an enrichment of gingivitis-enriched genera (such as
298 *Porphyromonas*, *Leptotrichia*, *Selenomonas*, TM7, *Prevotella*, uncultured *Lachnospiraceae*,
299 *Campylobacter*, *Fusobacterium* and *Tannerella*) and a depletion of gingivitis-depleted ones (such
300 as *Rothia*, *Haemophilus*, *Actinomyces*, *Streptococcus* and *Kingella*). Importantly, those gingivitis-
301 associated microbes were all identified as so in the Chinese cohorts. Considering the potential
302 heterogeneity between cohorts (i.e., geographic locations) or technical inter-study batch effects
303 (such as 454 vs. Illumina sequencing platform, different primer sets etc.), the very limited
304 variation in microbial response to periodontal diseases across the two UK/US periodontitis
305 cohorts and the China gingivitis cohort is remarkable.

306 To validate the similarity in microbiome signature between gingivitis and periodontitis, we
307 built a RF classifier of the chronic periodontitis on the plaque microbiome, and applied this model
308 to a given sample from any of the gingivitis stages for estimating its microbiome-based
309 probability of periodontitis (which we proposed as “Microbiome-based Periodontitis Index” or
310 MPI; **Fig. 4d**). In the training dataset (i.e., US_Peridontitis), MPI of the healthy controls are on
311 average only 10%, while reach up to 99% averagely in periodontitis patients. In our present study,
312 MPI increase progressively along the EG process, a pattern that is consistent with the other EG
313 datasets. In particular, MPI at Day 7 (end of the gum SoH stage), with a median at ~62%, is
314 significantly higher than that at Day 0, suggesting the emergence of a periodontitis-like
315 microbiome at this stage, due to the aforementioned, profound changes in plaque microbiome,
316 plaque metabolome and host immunity that take place at SoH.

317 Comparing microbiome dynamics in the development of gum inflammation and caries

318 Next, we put the temporal microbial shifts along gingivitis development in a broader context
319 that includes not just periodontitis but dental caries, via meta-analysis of the SoH, UK_EG,
320 UK_Periodontitis, US_Periodontitis and early childhood caries (ECC) datasets(31). We classified
321 the disease or pre-clinical status using RF models based on either the species-level taxonomic
322 profile or the predicted functional profile (by PICRUSt) along stages of disease development in
323 all studies (**Fig. 5a**). Surprisingly, AUROC of species-level-taxonomy based RF classifiers for
324 plaque at Day 3 reached 0.85 (function-based classifiers: 0.81), which is already quite close to the
325 0.88 at Day 28 (function-based classifiers: 0.85). Thus plaque functional profiles already
326 resembles that of the severe gingivitis stage within 24 hours after dental scaling (**Fig. 5a**), and
327 actually saturates after 24 hours. The discriminative power of this function-based classifier
328 (AUROC=0.78) is nearly equivalent to that distinguishing chronic periodontitis patients from
329 healthy individuals from the UK cohort (AUROC=0.82; DAY0_VS_DD), suggesting an ultra-
330 rapid assemblage of functional components in the plaque biofilm that highly resemble those in
331 periodontitis patients. In contrast, in ECC development, oral microbiome did not show as

332 pronounced changes in the early stage (AUROC=0.52; H VS RelativeH) as those in the late stage
333 (AUROC=0.68; H VS C; **Fig. 5a**).

334 Moreover, to test whether microbiome successions are concordant between the developmental
335 stages of these oral chronic inflammations, we quantitatively compared the microbial differential
336 abundance profiles between time points or disease severities. For each dataset, the differential
337 abundance (i.e. mean log₂ fold change) of microbial features in the plaque/saliva microbiome
338 from healthy baseline to a given developmental stage of disease was measured (**Fig. 5a-b, Fig.**
339 **S5a**). For two given microbial signatures (e.g. Day0 vs. Day -21 and Day0 vs. Day 28 in the SoH
340 study), we first ranked the features by the degree of differential abundances in each of them and
341 then calculated the Pearson's correlation between these two feature ranking lists. To reveal the
342 patterns driving the temporal difference in microbiome across diseases, we next performed PCoA
343 via the correlation-based distance metric of all pairs of feature ranking lists, with each dot in
344 PCoA corresponding to a pattern of microbial alteration between the healthy baseline and a
345 particular disease developmental stage (instead of a microbiome sample; **Fig. 5c-d**).

346 Intriguingly, at the species level, the microbiome differences along gingivitis development are
347 more pronounced than those from periodontitis or dental caries (**Fig. 5c**). During gingivitis
348 progression, along PC1, the profile of microbiome alteration between the baseline (Day 0) and a
349 given time point would increasingly resemble that between health and periodontitis in either the
350 US or the UK cohort. Notably, the microbial taxonomical response to severe gingivitis (e.g. Day0
351 vs. Day -21, and Day0 vs. Day 28 in the SoH study) is highly similar to that of chronic
352 periodontitis. Thus, taxonomic perturbations during dysbiosis are highly consistent between
353 gingivitis and chronic periodontitis, while the taxonomic responses to the periodontal diseases and
354 dental caries are quite distinct (**Fig. 5c**).

355 Notably, during gingivitis development, functional potential of microbiome is relatively
356 conservative over time, particularly after the SoH stage (**Fig. 5d**). In fact, our results suggest that
357 the gingivitis-associated community in dental plaque biofilm actually assembles rather rapidly in
358 the very early stage (i.e., the SoH stage), to form a “climax”-like community configuration that is
359 very similar to the periodontitis-associated community (**Fig. 5d**). In contrast, ECC-associated
360 microbiomes at the onset stage (i.e., SoH) are actually very distinct from those at the late stage
361 (31). As ECC develops, the primary oral microbial communities (i.e. health-associated) evolves to
362 a convergent state, due to selection of a changed microenvironment of teeth (such as acidification
363 (32)), and such a “climatic” state that corresponds to a reliable caries stage, is very distinctive
364 from that in the “new onset” stage of caries (i.e., RelativeH, when no clinically detectable
365 symptoms are apparent in teeth (31)) in terms of taxonomic composition or functional profile
366 (**Fig. 5a, c, d**). For example, the cariogenic pathogen of *Streptococcus mutans* are highly enriched
367 in the climax community, yet hardly present at the new onset (i.e., SoH) stage (31); in contrast, at
368 the SoH stage of ECC, *Prevotella spp.* exhibit a much stronger statistical power in predicting
369 caries onset than *Streptococcus mutans* (17). Therefore, the distinct temporal patterns of microbial
370 succession in plaque-induced pathogenesis, as well as their distinct rates of microbiome change
371 relative to symptom development, appear to be a common stage of such chronic, polymicrobial
372 inflammations that carries disease-specific features.

374 Discussion

375 Despite the technological challenges, integrating the human dental plaque microbiota and
376 metabolomics profiles enables an in-depth and mechanistic understanding towards periodontal
377 disease etiology. Simultaneous analysis of dental plaque samples via DNA sequencing and LC-
378 MS/MS has been hindered by (i) the low biomass of dental plaque sampled with high temporal
379 resolution from each host and (ii) the difficulty to reconcile the distinct sample preprocessing
380 procedures for DNA sequencing and LC-MS/MS on a plaque sample (e.g., the organic solvent
381 extraction in LC-MS/MS can reduce the DNA quality for sequencing). Therefore, in our new

382 strategy, two dental plaque samples (up to 14 teeth each) were collected (for each subject) from 1
383 and 3 (plaque A) or 2 and 4 quadrants (plaque B) for sequencing and LC-MS/MS respectively
384 (randomly assigned, to eliminate potential bias). This is particularly enabling for recording the
385 integrated metagenome-metabolome choreography of plaque, when sampled at high temporal
386 resolution, and particularly during the SoH phase (just 0~3 days away from Baseline, with
387 especially low plaque biomass).

388 The link and distinction temporal dynamics among host symptoms, immune factors, plaque
389 structure and plaque metabolome unveiled how plaque microbiota drove gingivitis onset and
390 progression. Most importantly, an asymptomatic “SoH” state of gingivae, from 0 to 3 days after
391 dental prophylaxis and pause of oral hygiene, was uncovered, when actually the most intense
392 host-microbiome interactions take place, i.e., rapid and consistent alterations in plaque
393 microbiota, metabolite pool and salivary cytokines. In particular, during this pre-clinical-
394 symptom, very transient gingival state of SoH, plaque residents (e.g., *Rothia* spp.) and metabolites
395 (e.g., betaine) that are strongly negatively correlated with gum-bleeding (over the entire 49-day
396 NG-Baseline-EG process) undergo a steep decrease, while at least eleven salivary cytokines
397 dramatically change in response (six up-regulated and five down-regulated as compared to Day 0)
398 and then rapidly plateau. In contrast, such alterations were not seen in subsequent phases of
399 gingivitis development (e.g., from Day 7 to 28), even for those with much higher symptomatic
400 severity.

401 Betaine was not previously linked to gingivitis development, despite its being recognized as
402 maintaining cell osmotic pressure which can promote cell survival under the high hyperosmotic
403 pressure potentially due to inflammation and diseases (28). Interestingly, it is at present an
404 ingredient in toothpaste for relieving dry mouth (33). In our plaque samples, betaine consistently
405 and continuously declined as the gingivitis developed (particularly in the SoH stage), suggesting a
406 protective role against gum inflammation. Notably, its concentration in the plaque was highly
407 correlated with healthy-gum-enrich and gingivitis-depleted plaque residents such as *Rothia* spp..
408 Therefore, the health-associated members of plaque might have served as a source of betaine that
409 possibly to protect the gum from gingivitis, which underscores the importance of maintaining a
410 healthy plaque.

411 Notably, although taxonomic shift in plaque took place as early as 24 hours after dental
412 prophylaxis (by acquiring microbial colonizers from saliva (11, 20)), it was accompanied by a
413 delayed functional shift as revealed by plaque metabolome. This suggests that establishment of
414 primary colonists in plaque altered within 48 hours (i.e., at or by Day 3) the plaque metabolome,
415 which then elicits both gingival inflammation and subsequent plaque development, starting a
416 detrimental cycle: periodontal tissue destruction by plaque dysbiosis provides nutrients for
417 bacterial growth, which further promotes dysbiosis and tissue inflammation (11). Therefore,
418 despite its apparent Baseline-like symptom, the SoH phase is a transient yet crucial time window
419 to prevent or abolish the start of such vicious cycles.

420 Surprisingly, the implication of this SoH stage finds support from our meta-analysis of past oral
421 microbiome studies, which reveals a microbiome-mediated link between the very early (i.e., SoH
422 of gingivitis) and very late stage (periodontitis) of the periodontal disease which can span decades
423 and affects over half of the global population. Gingivitis and periodontitis patients can share a
424 significant number of bacteria genera (18-20, 23), and periodontal treatments can result in
425 depletion of disease-associated bacteria and enrichment of health-associated ones in plaque (16,
426 17, 34). However, systematically tracking microbial associations across different stages for
427 chronic periodontal diseases remains a challenge, since it is impractical to create or modulate
428 advanced disease states directly in humans, while clinical studies can only induce mild or
429 moderate disease states (notably, this holds true for many chronic diseases). Moreover, technical
430 variations such as inter-study differences in the sequencing protocol, 16S databases or statistical
431 methods prevent comparing microbial associations across studies (35). For example, microbiome

432 data are compositional (36), however in many past studies, traditional statistical methods such as
433 *t*-test or Wilcoxon rank-sum test were widely and inappropriately used on the raw abundance data
434 for microbial marker discovery; in fact, once accounting for the compositionality issues in
435 statistical analysis, it is far less clear whether the reported microbial associations can be
436 recapitulated (36).

437 To tackle these issues, we re-analyzed from raw data all published and accessible microbiome
438 datasets with consistent parameters and RF models. Our results profoundly relate gingivitis to
439 periodontitis via plaque microbiome. Specifically, (i) the oral microbiome responses to a disease
440 state, either gingivitis or periodontitis, can be highly consistent across human populations, while
441 this is not the case for most of the other chronic diseases (31, 35); (ii) the plaque residents
442 specifically responding to periodontal inflammation are quite consistent between the very early
443 stage of gingivitis (i.e., SoH) and the eventually irreversible and detrimental state of periodontitis,
444 despite their decade-long temporal gap and the large host- or technology-related variation among
445 cohorts/studies. This is in contrast to early childhood caries (ECC), where plaque microbiomes at
446 the new onset stage are very distinct from that of the late stage. The patterns and nature of such
447 microbiome change underlying chronic disease development, whether conserved or divergent
448 among the many chronic inflammations in oral or other human body sites, can shed new light on
449 disease etiology and help precise diagnosis, prevention and treatment.

450 In summary, by tracking the choreography of plaque microbiome structure, plaque metabolome
451 and host immune-response during gingivitis onset and progression, we unraveled a microbiome-
452 defined SoH stage of gingivitis, i.e., the just 24-72 hours after pausing oral hygiene. Although
453 transient and asymptomatic, SoH is a crucial phase when the most intensive changes in plaque
454 structure and metabolism as well as host immune factors take place, and carries a microbial
455 signature highly similar to periodontitis. In light of the epidemic of periodontal disease (1-5) and
456 the insufficient public health awareness on oral hygiene (a significant portion of world population
457 still fails to brush teeth daily), our findings underscore the importance of intervening at the SoH
458 stage of gingivitis via proper oral hygiene practices, so as to maintain a healthy, periodontitis-
459 preventative plaque. In addition, since SoH appears to be a shared stage that carries disease-
460 specific microbial, metabolomic and immunological features, it would be promising to define and
461 compare the SoH states of additional chronic polymicrobial inflammations, which should lay the
462 foundation for exploiting their uses in predictive and personalized medicine.

463 464 Materials and Methods

465 Overall design of the study

466 The 'experimental gingivitis' notion was established as a non-invasive model in humans for the
467 pathogenesis gingivitis (13). This single-center, examiner-blind, controlled clinical trial was
468 conducted at Procter & Gamble (Beijing) Technology Co., Ltd. Oral Care Department, with
469 approval from the P&G Beijing Technical Center (China) Institutional Review Board and in
470 accordance with the World Medical Association Declaration of Helsinki (1996 amendment). ICH
471 Guidelines for Good Clinical Practice (GCPs) were followed. All participants gave written
472 informed consent prior to the study.

473 Overview of human cohort

474 A total of 40 volunteers who met all inclusion criteria participated in this study and all
475 completed it (**Table S2**). Clinical examination of gingival tissues using Mazza index (reference)
476 was conducted at all of the visits by a qualified dental examiner (**Fig. 1a**). For each subject,
477 supragingival plaque and salivary samples were collected by professional dentists at Day -21
478 (NG), Day 0 (Baseline), Day 1 (EG), Day 3 (EG), Day 7 (EG), Day 14 (EG) and Day 28 (EG), in
479 a longitudinal manner (**Fig. 1a**). The optimal gingival health state on Day 0 was achieved through
480 dental prophylaxis and rigorous oral hygiene during the oral hygiene phase prior to Baseline.
481 Dental prophylaxis including super and subgingival whole-mouth cleaning on a total of 28 teeth

482 was performed on Day -21, Day -14, and Day -7. Subjects were instructed to brush with a sodium
483 fluoride dentifrice three minutes each time twice daily in the oral hygiene phase. On the contrary,
484 in the EG phase from Day 0 to Day 28, only rinsing with purified water was allowed for each of
485 the subjects.

486 **Clinical assessment**

487 A qualified dental examiner performed oral tissue assessments on the study participants at Day
488 -21, Day -14, Day -7, Day 0, Day 1, Day 3, Day 7, Day 14 and Day 28. Assessment of the oral
489 soft tissue is conducted via a visual examination of the oral cavity and perioral area. The
490 structures examined include the gingiva (free and attached), hard and soft palate,
491 oropharynx/uvula, buccal mucosa, tongue, floor of the mouth, labial mucosa,
492 mucobuccal/mucolabial folds, lips, and the perioral area. Assessment of the oral hard tissues was
493 conducted via a visual examination of the dentition and restorations. Gingivitis was assessed
494 based on the Mazza Index (13): sampling was performed on the mesiofacial and the distolinguinal
495 of each tooth, for a maximum of 56 sites.

496 **Saliva sample collection**

497 At the Day -21, Day 0, Day 1, Day 3, Day 7, Day 14, Day 28 visits, subjects were asked, prior
498 to plaque sampling, to expectorate approximately 10 mL of unstimulated saliva into a labeled tube
499 (**Fig. 1a**). The samples were frozen at -20°C immediately after collection until use for cytokine
500 profiling.

501 **Plaque sample collection**

502 Gingival plaque from each of the 40 subjects was collected at Day -21, Day 0, Day 1, Day 3,
503 Day 7, Day 14 and Day 28 (**Fig. 1a**). Specifically, subjects were refrained from oral hygiene
504 practice include tooth brushing, flossing or mouth rinsing in the morning of sampling and
505 supragingival plaque samples along the gingival margin were collected after GI examination
506 using a gracey curette by a qualified dentist. At each time point, to ensure sufficient amount of
507 plaque for analysis, samples were taken from each subject's maxillary right and mandibular left
508 quadrants or maxillary left and mandibular right quadrants alternatively. All samples were stored
509 under -70°C until use.

510 **Plaque microbiome structure analyses**

511 Genomic DNA was extracted from the plaques. Barcoded 16S rRNA amplicons (V1-V3
512 hypervariable region) of all the 261 samples were sequenced via Illumina Miseq. All 16S rRNA
513 raw sequences were pre-processed following the standard QIIME (v.1.9.1) pipeline (37).
514 Downstream bioinformatics analysis was performed using Parallel-Meta 3 (29), a software
515 package for comprehensive taxonomical and functional comparison of microbial communities.
516 Clustering of OTUs was conducted at the 97% similarity level using the OralCore database (38).
517 Taxonomically assigned sequences were further agglomerated at the genus level for structural
518 comparison of microbiomes.

519 **LC-MS/MS data acquisition for plaque metabolome**

520 Prior to LC-MS/MS analysis, plaque samples were prepared using the following procedures.
521 For extraction, 1 mL 40:40:20 (in volume) MeOH/ACN/Water was added to the pre-weighted
522 supragingival plaque in 2 mL PP tube and vortexed for 1 minute. Plaque pellets in the extraction
523 solvent were incubated in 95°C water bath for 1 hour and then centrifuged at 3000rpm and
524 subsequently transferred to another 2 mL PP tube. For complete extraction, 500 µL extraction
525 solvent was added as described above into the original tube and then vortexed for 10s and
526 centrifuged at 3000rpm for 10 minutes. Each of the final extraction solutions was combined with
527 the other obtained in the last step. Each liquid extraction was dried completely with nitrogen and
528 then stored in -80°C freezer until use.

529 Non-targeted metabolomic analysis was performed using Q Exactive orbitrap (Thermo, CA).
530 After resuspension of the dried extract, each of the samples (1uL supernatant) was loaded to
531 normal phase chromatography column, then eluted to the orbitrap mass spectrometer with an

532 aqueous phase containing 5mM ammonium acetate as eluent from 1% to 99% within 15 min. The
533 stationary phase was 95% acetonitrile with 5mM ammonium acetate. Data with mass range m/z
534 100-1500 was acquired at the positive ion mode using data dependent MS/MS acquisition. The
535 full scan and fragment spectra were collected with resolution of 70,000 and 17,500 respectively.
536 The source parameters are as follows: spray voltage: 3000v; capillary temperature: 320°C; heater
537 temperature: 300°C; sheath gas flow rate: 35; auxiliary gas flow rate: 10. Metabolite identification
538 was based on Tracefinder search with home-built database containing 529 compounds.

539 Targeted metabolomic experiments were performed on TSQ Quantiva (Thermo, CA). C18
540 based reverse phase chromatography was utilized with 10mM tributylamine, 15mM acetic acid in
541 water (pH ~6) and 100% methanol as mobile phase A and B respectively. This analysis focused
542 on TCA cycle, glycolysis pathway, pentose phosphate pathway, amino acids and purine
543 metabolism. A 25-minute gradient from 5% to 90% mobile B was used. Positive-negative ion
544 switching mode was performed for data acquisition. Cycle time was set as 1 second and totally
545 138 ion pairs were included. The resolution for Q1 and Q3 are both 0.7FWHM. The source
546 voltage was 3500v for positive and 2500v for negative ion mode. Sweep gas was turned on at
547 1(arb) flow rate.

548 **LC-MS/MS data analysis for plaque metabolome**

549 For targeted metabolomics, triple quadrupole mass spectrometer (TSQ Quantiva, Thermo) was
550 used for the analysis in MRM mode. All the ion transitions and retention times were optimized
551 using chemical standards. Tracefinder (Thermo, USA) was applied for metabolite identification
552 and peak integration. The peaks were manually checked for the analysis. Pooled QC samples
553 were inserted in the batch to ensure system stability.

554 For untargeted metabolomics, orbitrap mass spectrometer (QExactive, Thermo) was used for
555 the analysis in DDA mode. An in-house database containing MS/MS spectra of over 1500
556 metabolites was incorporated for metabolite identification. Tracefinder (Thermo, USA) was used
557 for metabolite identification based on MS/MS fragment matching. LS score was applied to
558 confirm the confidence of metabolite identification. Only the metabolites with LS score > 30 were
559 considered as confident confirmation. Otherwise, they were assigned as putative identification.
560 The peaks were manually checked for the analysis. Pooled QC samples were inserted in the batch
561 to ensure system stability.

562 Normalization was performed before statistical analysis. The missing values were replaced
563 with half of the minimum values in all the samples. Peak areas were normalized relative to the
564 mean of the total area of a sample. Both targeted and untargeted metabolomics data were
565 combined and imported into the R software (version 3.6.2) for multivariate analysis.

566 **Quantification of salivary cytokines using multiplexed bead immunoassay**

567 We collected 194 salivary samples at Day -21, 0, 3, 7 and 28 from 40 subjects who were
568 selected for quantification of inflammatory cytokines (**Fig. 1a**). All samples were sub-packed (1.0
569 mL sample in 1.5 mL EP tube) and stored at -80°C until measurements. Samples were thawed in
570 an ice bath and vortexed, followed by centrifugation at 3000 rpm for 5 min at 4°C. Supernatants
571 were collected for further cytokine assays. Levels of the following 27 cytokines were analyzed
572 using a BioPlex Pro™ Human Cytokine 27-plex Assay kit (#M500KCAF0Y, Bio-Rad, Hercules,
573 CA, USA) in accordance with the manufacturer's instructions: L-1 β , IL-1 α , IL-2, IL-4, IL-5, IL-6,
574 IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, Eotaxin, Basic FGF, G-CSF, GM-CSF,
575 IFN- γ , IP-10, MCP-1, MIP-1 α , MIP-1 β , PDGF-BB, RANTES, TNF- α and VEGF. Mean
576 fluorescence intensities of the 192 salivary samples and 8 standards were detected via a Luminex
577 FLEXMAP 3D System (Luminex Corp., Austin, TX, USA). Cytokine concentrations were
578 calculated by xPONENT build 4.2.1441.0 (Luminex Corp.) using a five-parameter fit algorithm.
579 Values obtained from the reading of samples below the sensitivity limit of detection (LOD) or
580 above the upper limit of the sensitivity method were interpolated using a CUBIC SPINE
581 interpolation to calculate cytokine concentrations.

582 **Statistical analyses**

583 All statistical analyses were performed using R software (version 3.6.2). PCoA analysis on a
584 range of distance metrics was performed in R using the vegan and ape package. Quantifications of
585 variance explained in plaque microbiome, metabolome and salivary cytokines profiles were
586 calculated using PERMANOVA with the “adonis” function in the R package vegan (as shown in
587 **Fig. S1**). The total variance explained by each variable was calculated independently of other
588 variables, and should thus be considered the total variance explainable by that variable. The
589 differential abundance analyses of all measurement types were tested. First, an appropriate
590 transformation/normalization method was applied: central-log-ratio (CLR) transformation for
591 microbial taxonomic profiles. The transformed abundances were then used to perform differential
592 abundance analyses between time points or groups using custom R functions (at
593 <https://github.com/shihuang047/crossRanger>). To construct the co-occurrence network of
594 molecular features from the multi-omics datasets, we identified significant associations between
595 them using the Spearman correlation ($|\rho| > 0.6$; FDR $p < 0.05$). Network was visualized in
596 Cytoscape (Version 3.7.1). The code and all the datasets used in this study are publicly available
597 at <http://mse.ac.cn/SoH.html>.

598 **599 References and Notes**

1. S. Filoche, L. Wong, C. H. Sissons, Oral biofilms: emerging concepts in microbial ecology. *J Dent Res* **89**, 8-18 (2010).
2. X. Su, G. Jing, D. McDonald, H. Wang, Z. Wang, A. Gonzalez, Z. Sun, S. Huang, J. Navas, R. Knight, J. Xu, Identifying and Predicting Novelty in Microbiome Studies. *MBio* **9**, e02099-18 (2018).
3. P. E. Petersen, D. Bourgeois, H. Ogawa, S. Estupinan-Day, C. Ndiaye, The global burden of oral diseases and risks to oral health. *Bull World Health Organ* **83**, 661-669 (2005).
4. I. L. C. Chapple, B. L. Mealey, T. E. Van Dyke, P. M. Bartold, H. Dommisch, P. Eickholz, M. L. Geisinger, R. J. Genco, M. Glogauer, M. Goldstein, T. J. Griffin, P. Holmstrup, G. K. Johnson, Y. Kapila, N. P. Lang, J. Meyle, S. Murakami, J. Plemons, G. A. Romito, L. Shapira, D. N. Tatakis, W. Teughels, L. Trombelli, C. Walter, G. Wimmer, P. Xenoudi, H. Yoshie, Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. *J Clin Periodontol* **45 Suppl 20**, S68-S77 (2018).
5. J. Meyle, I. Chapple, Molecular aspects of the pathogenesis of periodontitis. *Periodontol 2000* **69**, 7-17 (2015).
6. S. Offenbacher, S. P. Barros, D. W. Paquette, J. L. Winston, A. R. Biesbrock, R. G. Thomason, R. D. Gibb, A. W. Fulmer, J. P. Tiesman, K. D. Juhlin, S. L. Wang, T. D. Reichling, K. S. Chen, B. Ho, Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans. *J Periodontol* **80**, 1963-1982 (2009).
7. R. C. Williams, Periodontal disease. *N Engl J Med* **322**, 373-382 (1990).
8. S. S. Dominy, C. Lynch, F. Ermini, M. Benedyk, A. Marczyk, A. Konradi, M. Nguyen, U. Haditsch, D. Raha, C. Griffin, L. J. Holsinger, S. Arastu-Kapur, S. Kaba, A. Lee, M. I. Ryder, B. Potempa, P. Mydel, A. Hellvard, K. Adamowicz, H. Hasturk, G. D. Walker, E. C. Reynolds, R. L. M. Faull, M. A. Curtis, M. Dragunow, J. Potempa, Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. *Sci Adv* **5**, eaau3333 (2019).
9. B. Shi, R. Lux, P. Klokkevold, M. Chang, E. Barnard, S. Haake, H. Li, The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. *ISME J* **14**, 519-530 (2020).

532 10. D. T. Graves, J. D. Correa, T. A. Silva, The Oral Microbiota Is Modified by Systemic
533 Diseases. *J Dent Res* **98**, 148-156 (2019).

534 11. M. Kilian, I. L. Chapple, M. Hannig, P. D. Marsh, V. Meuric, A. M. Pedersen, M. S.
535 Tonetti, W. G. Wade, E. Zaura, The oral microbiome - an update for oral healthcare
536 professionals. *Br Dent J* **221**, 657-666 (2016).

537 12. G. A. van der Weijden, M. F. Timmerman, M. Piscaer, I. Snoek, U. van der Velden, P. N.
538 Galgut, Effectiveness of an electrically active brush in the removal of overnight plaque
539 and treatment of gingivitis. *J Clin Periodontol* **29**, 699-704 (2002).

540 13. S. Huang, R. Li, X. Zeng, T. He, H. Zhao, A. Chang, C. Bo, J. Chen, F. Yang, R. Knight, J.
541 Liu, C. Davis, J. Xu, Predictive modeling of gingivitis severity and susceptibility via oral
542 microbiota. *ISME J* **8**, 1768-1780 (2014).

543 14. S. Huang, F. Yang, X. W. Zeng, J. Chen, R. Li, T. Wen, C. Li, W. Wei, J. Q. Liu, L. Chen,
544 C. Davis, J. Xu, Preliminary characterization of the oral microbiota of Chinese adults with
545 and without gingivitis. *BMC Oral Health* **11**, 33 (2011).

546 15. J. O. Kistler, V. Booth, D. J. Bradshaw, W. G. Wade, Bacterial community development in
547 experimental gingivitis. *PLoS One* **8**, e71227 (2013).

548 16. S. Huang, Z. Li, T. He, C. Bo, J. Chang, L. Li, Y. He, J. Liu, D. Charbonneau, R. Li, J. Xu,
549 Microbiota-based Signature of Gingivitis Treatments: A Randomized Study. *Sci Rep* **6**,
550 24705 (2016).

551 17. F. Teng, T. He, S. Huang, C. P. Bo, Z. Li, J. L. Chang, J. Q. Liu, D. Charbonneau, J. Xu, R.
552 Li, J. Q. Ling, Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by
553 inhibiting dental plaque maturation. *Int J Oral Sci* **8**, 182-190 (2016).

554 18. J. F. Wang, J. Qi, H. Zhao, S. He, Y. F. Zhang, S. C. Wei, F. Q. Zhao, Metagenomic
555 sequencing reveals microbiota and its functional potential associated with periodontal
556 disease. *Sci Rep* **3**, 1843 (2013).

557 19. E. M. Nowicki, R. Shroff, J. A. Singleton, D. E. Renaud, D. Wallace, J. Drury, J. Zirnheld,
558 B. Colleti, A. D. Ellington, R. J. Lamont, D. A. Scott, M. Whiteley, Microbiota and
559 Metatranscriptome Changes Accompanying the Onset of Gingivitis. *MBio* **9**, e00575-
560 00518 (2018).

561 20. J. Wang, Z. Jia, B. Zhang, L. Peng, F. Zhao, Tracing the accumulation of in vivo human
562 oral microbiota elucidates microbial community dynamics at the gateway to the GI tract.
563 *Gut* **69**, 1355-1356 (2019).

564 21. Y. Li, J. He, Z. He, Y. Zhou, M. Yuan, X. Xu, F. Sun, C. Liu, J. Li, W. Xie, Y. Deng, Y. Qin,
565 J. D. VanNostrand, L. Xiao, L. Wu, J. Zhou, W. Shi, X. Zhou, Phylogenetic and functional
566 gene structure shifts of the oral microbiomes in periodontitis patients. *ISME J* **8**, 1879-
567 1891 (2014).

568 22. L. Abusleme, A. K. Dupuy, N. Dutzan, N. Silva, J. A. Burleson, L. D. Strausbaugh, J.
569 Gamonal, P. I. Diaz, The subgingival microbiome in health and periodontitis and its
570 relationship with community biomass and inflammation. *ISME J* **7**, 1016-1025 (2013).

571 23. A. L. Griffen, C. J. Beall, J. H. Campbell, N. D. Firestone, P. S. Kumar, Z. K. Yang, M.
572 Podar, E. J. Leys, Distinct and complex bacterial profiles in human periodontitis and
573 health revealed by 16S pyrosequencing. *ISME J* **6**, 1176-1185 (2012).

574 24. S. M. Dabdoub, S. M. Ganesan, P. S. Kumar, Comparative metagenomics reveals
575 taxonomically idiosyncratic yet functionally congruent communities in periodontitis. *Sci
576 Rep* **6**, 38993 (2016).

577 25. B. Shi, M. Chang, J. Martin, M. Mitreva, R. Lux, P. Klokkevold, E. Sodergren, G. M.
578 Weinstock, S. K. Haake, H. Li, Dynamic changes in the subgingival microbiome and their
579 potential for diagnosis and prognosis of periodontitis. *MBio* **6**, e01926-01914 (2015).

580 26. A. E. Duran-Pinedo, T. Chen, R. Teles, J. R. Starr, X. Wang, K. Krishnan, J. Frias-Lopez,
581 Community-wide transcriptome of the oral microbiome in subjects with and without

582 periodontitis. *ISME J* **8**, 1659-1672 (2014).

583 27. S. Yost, A. E. Duran-Pinedo, R. Teles, K. Krishnan, J. Frias-Lopez, Functional signatures
584 of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome
585 analysis. *Genome Med* **7**, 27 (2015).

586 28. G. Zhao, F. He, C. Wu, P. Li, N. Li, J. Deng, G. Zhu, W. Ren, Y. Peng, Betaine in
587 Inflammation: Mechanistic Aspects and Applications. *Front Immunol* **9**, 1070 (2018).

588 29. G. Jing, Z. Sun, H. Wang, Y. Gong, S. Huang, K. Ning, J. Xu, X. Su, Parallel-META 3:
589 Comprehensive taxonomical and functional analysis platform for efficient comparison of
590 microbial communities. *Sci Rep* **7**, 40371 (2017).

591 30. M. G. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C.
592 Clemente, D. E. Burkepile, R. L. Vega Thurber, R. Knight, R. G. Beiko, C. Huttenhower,
593 Predictive functional profiling of microbial communities using 16S rRNA marker gene
594 sequences. *Nat Biotechnol* **31**, 814-821 (2013).

595 31. F. Teng, F. Yang, S. Huang, C. Bo, Z. Z. Xu, A. Amir, R. Knight, J. Ling, J. Xu, Prediction
596 of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. *Cell Host
597 Microbe* **18**, 296-306 (2015).

598 32. F. Yang, X. Zeng, K. Ning, K. L. Liu, C. C. Lo, W. Wang, J. Chen, D. Wang, R. Huang, X.
599 Chang, P. S. Chain, G. Xie, J. Ling, J. Xu, Saliva microbiomes distinguish caries-active
700 from healthy human populations. *ISME J* **6**, 1-10 (2012).

701 33. I. Rantanen, J. Tenovuo, K. Pienihäkkinen, E. Söderling, Effects of a betaine-containing
702 toothpaste on subjective symptoms of dry mouth: a randomized clinical trial. *J Contemp
703 Dent Pract* **4**, 11-23 (2003).

704 34. C. Chen, C. Hemme, J. Beleno, Z. J. Shi, D. Ning, Y. Qin, Q. Tu, M. Jorgensen, Z. He, L.
705 Wu, J. Zhou, Oral microbiota of periodontal health and disease and their changes after
706 nonsurgical periodontal therapy. *ISME J* **12**, 1210-1224 (2018).

707 35. C. Duvallet, S. M. Gibbons, T. Gurry, R. A. Irizarry, E. J. Alm, Meta-analysis of gut
708 microbiome studies identifies disease-specific and shared responses. *Nat Commun* **8**, 1784
709 (2017).

710 36. J. T. Morton, C. Marotz, A. Washburne, J. Silverman, L. S. Zaramela, A. Edlund, K.
711 Zengler, R. Knight, Establishing microbial composition measurement standards with
712 reference frames. *Nat Commun* **10**, 2719 (2019).

713 37. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello,
714 N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights,
715 J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J.
716 Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J.
717 Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing
718 data. *Nat Methods* **7**, 335-336 (2010).

719 38. A. L. Griffen, C. J. Beall, N. D. Firestone, E. L. Gross, J. M. Difranco, J. H. Hardman, B.
720 Vriesendorp, R. A. Faust, D. A. Janies, E. J. Leys, CORE: a phylogenetically-curated 16S
721 rDNA database of the core oral microbiome. *PLoS One* **6**, e19051 (2011).

722

723

724

725 Acknowledgments

726 **General:** We thank Jiahui Li and Duane Charbonneau for their support of this work. **Funding:**
727 This work was funded by a Joint Research Program between Chinese Academy of Sciences and
728 Procter & Gamble Company. **Author contributions:** The project was conceptualized by J.L.,
729 J.X. and T.H.. Data collection was performed primarily by F.Y., X.L. and T.H.. Data analysis and
730 interpretation were mainly performed by S.H., J.X., T.H., P.Z., V.X., S.W., G.J. and F.Y.. J.X.,
731 S.H., T.H., J.L., F.Y., V.X., S.W. and L.J. wrote the manuscript. All authors approved the final

732 submission. **Competing interests:** The authors declare no conflict of interest. **Data and**
733 **materials availability:** All data needed to evaluate the conclusions in the paper are present in the
734 paper and/or the Supplementary Materials. Additional data related to this paper may be requested
735 from the authors.

736
737

738

Figures and Tables



739

740 **Fig. 1. The longitudinal multi-omics landscape of gingivitis onset and progression in a**
 741 **human population.** (a) Experimental design. Among the 40 healthy adult volunteers that
 742 participated, 20 were healthy subjects (with < 10 Mazza bleeding sites), and the rest of them were
 743 unhealthy ones (Mazza bleeding sites from 15 to 25) at the start (Day -21 or NG). This study
 744 yielded clinical measures (at nine time points), oral microbiome and metabolome data from
 745 supragingival plaque samples (at seven time points), and host immune response data from
 746 salivary samples (at five time points) for each of the 40 subjects. (b) Temporal changes in the
 747 clinical symptoms for volunteers. Boxes represent the interquartile range (IQR) and the lines
 748 inside represent the median. Whiskers denote the lowest and highest values within 1.5x IQR. (c)
 749 and (d) Principal coordinates analysis (PCoA) based on the genus-level Bray–Curtis dissimilarity
 750 of (c) plaque microbiomes (16S-amplicon sequencing), and (d) metabolome profiles (LC-
 751 MS/MS); were shown. (e) Principal component analysis (PCA) of the salivary cytokine profiles.
 752 Each dot in PCoA or PCA represents a plaque or saliva sample and is included in an ellipse
 753 whose color indicates time point. Each dot is also sized based on the severity of symptom (gum
 754 bleeding). (f) Comparing the quantitative variation in all measurements explained by the major
 755 factors. PERMANOVA shows that inter-individual variation is the largest factor for all
 756 measurement types, while time and disease phenotype also capture sizable variations. Asterisks:
 757 FDR-corrected statistical significance (FDR * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$)

758

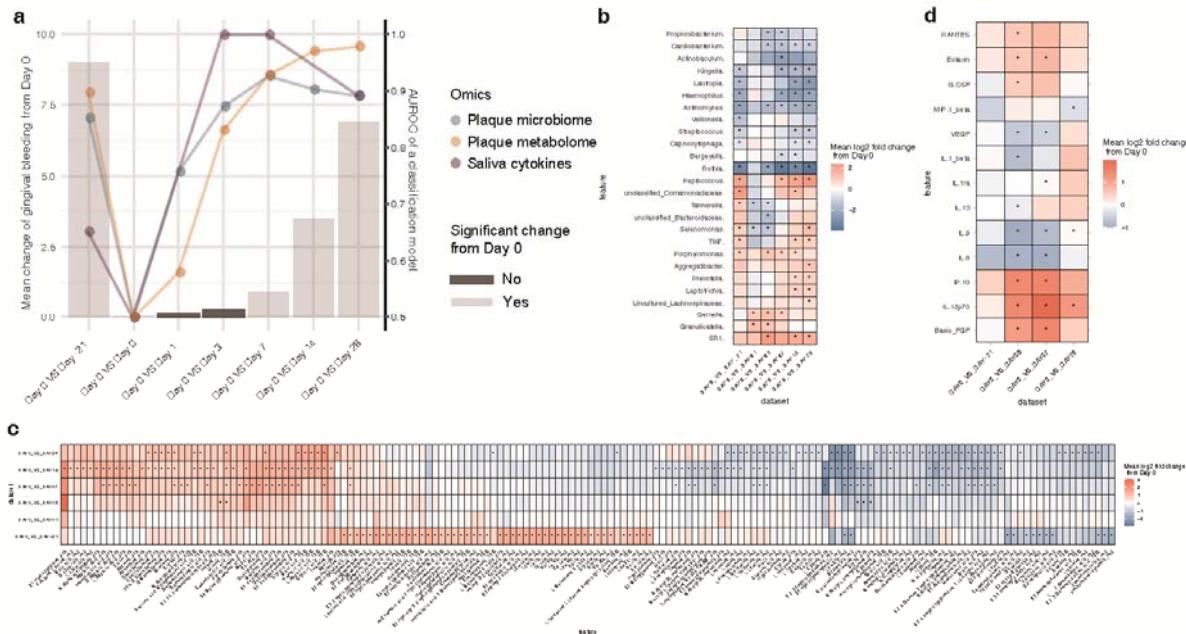
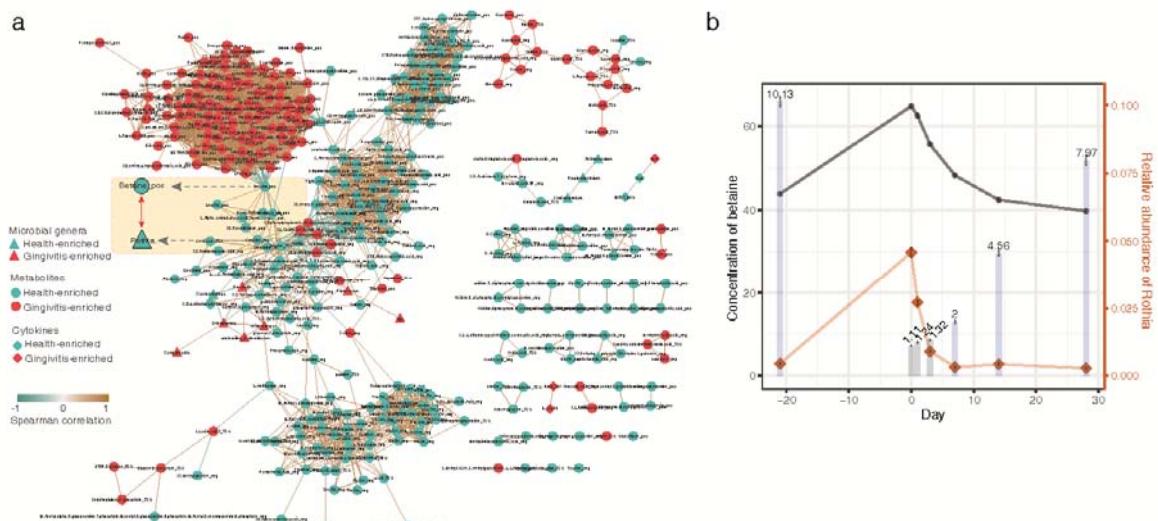
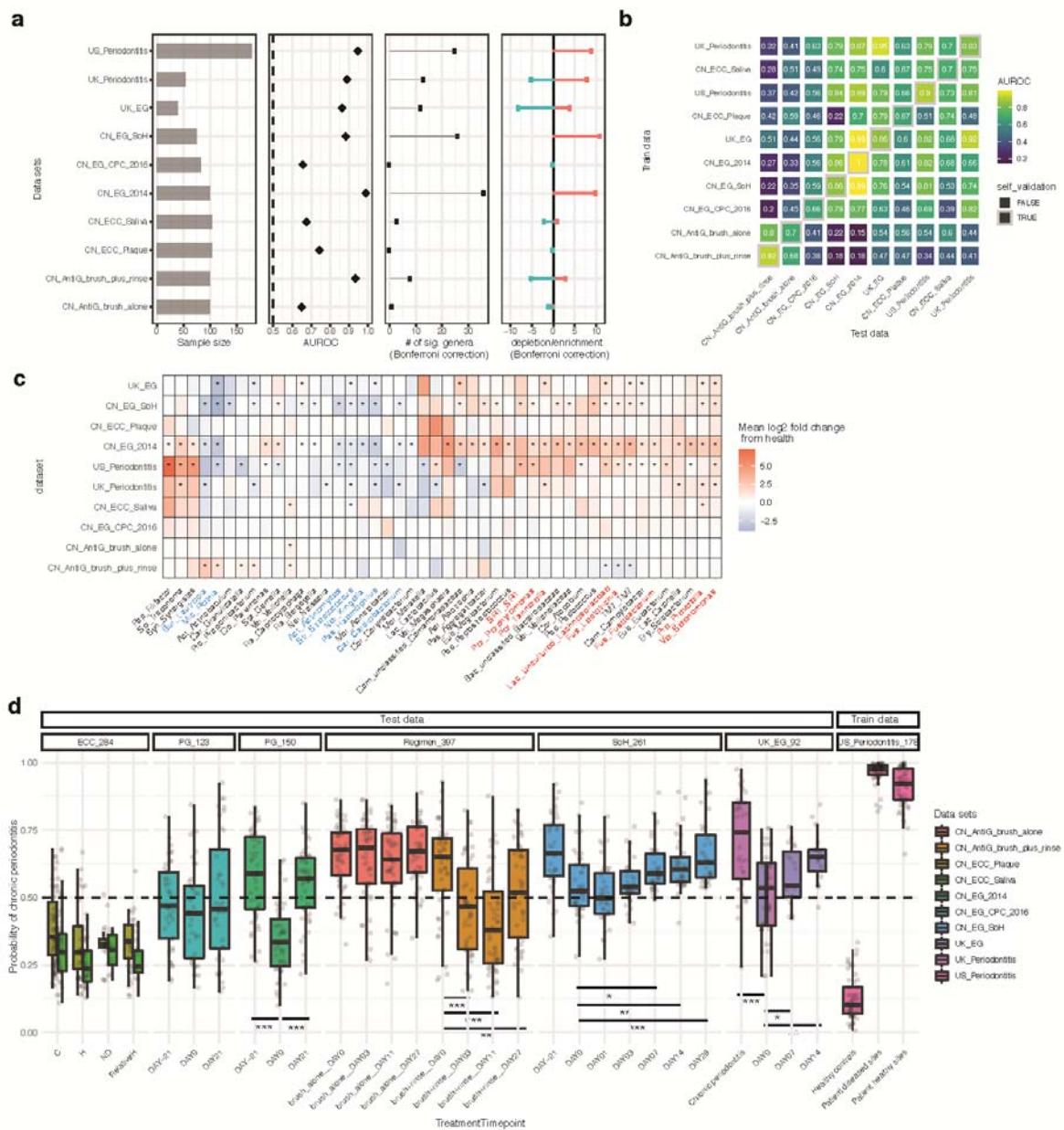


Fig. 2. A plaque-microbiome-defined SoH stage that takes place earlier than the emergence of clinical symptoms. (a) The symptomatic change (i.e., mean bleeding difference) within hosts (n=40), between each of the time points (Day -21, Day 1, Day 3, Day 7, Day 14, Day 28) and Baseline (Day 0). Color of bars shows FDR-corrected statistical significance: in particular, Day 1-3 are the “SoH” stage when no change in clinical symptoms as compared to Baseline was observed within the hosts. The scatter plots show the AUROC (the y axis on the right) of classification models using plaque microbiota, plaque metabolome or salivary cytokines between Day 0 and each of the other time points (Day -21, Day 1, Day 3, Day 7, Day 14 and Day 28). In (b, c and d) we identified molecular features from each measurement type that were differentially abundant at a time point as compared to Day 0. (b) The heatmap for the mean log2 fold changes of microbial responders (with significance threshold Bonferroni $p < 0.05$) in plaque during the onset and progression of NG. (c) The heatmap for the mean log2 fold change of both early and persistent metabolite responders (with significance threshold Bonferroni $p < 0.05$) in plaque. On the x axis, “pos”/“neg” after a chemical compound name indicates acquisition via a positive/negative ionization mode in the non-targeted metabolomic approach, while “TSQ” indicates acquisition via from the targeted metabolomic approach. (d) Heatmap for the mean log2 fold change of cytokines at each time point (Day -21, 3, 7 and 28) versus baseline (Day 0). Blue denotes reduction while red shows enrichment (versus Baseline). Asterisk: Bonferroni-corrected statistical significance ($^* p \leq 0.05$). No asterisk: no significant change.

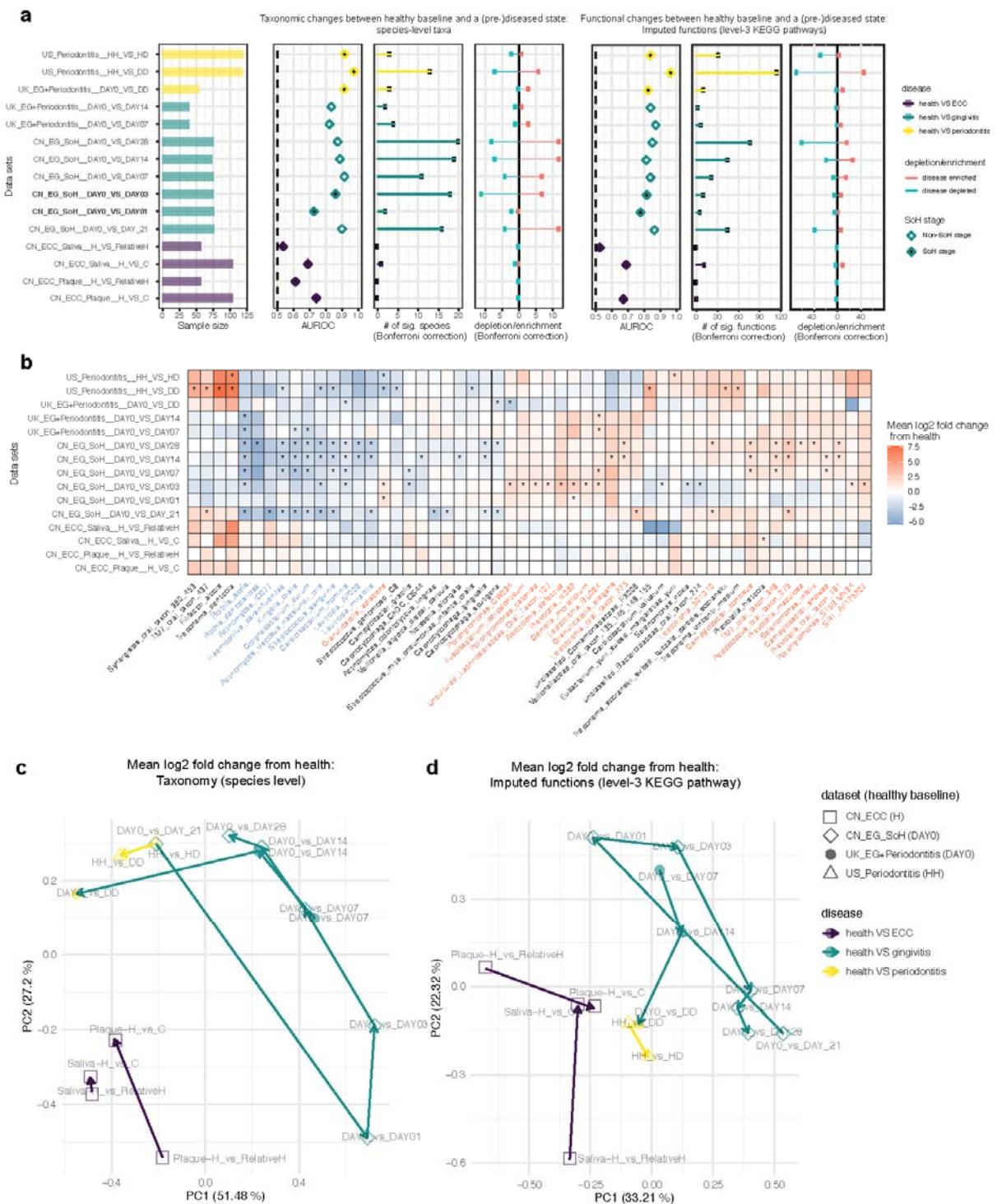


780
781 **Fig. 3. The interplay of plaque taxa, plaque metabolites and salivary cytokines during**
782 **gingivitis retrogression, onset and progression. (a)** Network analysis of microbial taxa and
783 metabolites in the temporal program of NG-Baseline-EG. Negative correlations are shown in
784 green, positive in blue and predictive taxa in gray. Edge weights represent the strength of
785 correlation. *Rothia* and betaine have the largest number of connections (i.e., they are the hub
786 nodes) and are highly correlated to each other. For node of metabolites, “pos”/“neg” indicates
787 acquisition by a positive/negative mode in the non-targeted metabolomic approach, while “TSQ”
788 indicates acquisition from the targeted metabolomic approach. **(b)** The temporal co-variation of
789 betaine and *Rothia*, along the process of gingivitis retrogression and induction. The bar plot
790 indicates the clinical symptoms (i.e., mean bleeding) at each of the time points (Day -21, Day 0,
791 Day 1, Day 3, Day 7, Day 14, Day 28). Color of bars shows statistical significance in bleeding
792 between a given time point and Baseline (Day 0): significant (blue) and not significant (grey).
793



794
795 **Fig. 4. Meta-analysis of existing gingival microbiome datasets revealed similar microbial**
796 **signature between gingivitis-SoH and periodontitis. (a)** Most periodontal disease progression
797 or retrogression show microbiome alterations, with consistent disease-associated shifts that differ
798 in their extent and direction. Panels from left to right: (i) sample size for each study; (ii) area
799 under the ROC curve (AUROC) for the genus-level random forest classifiers (X-axis starts at 0.5,
800 the expected value for a classifier that assigns labels randomly, and AUROCs < 0.5 are not
801 shown); (iii) number of genera with $q < 0.05$ (Wilcoxon rank-sum test, Bonferroni correction) for
802 each data set (if a study reveals no significant associations, no points are shown). (iv) direction of
803 the shifts in microbiome structure, i.e., the percentage of associated genera that are enriched in
804 disease. (b) Cross-prediction matrix reporting prediction performance as AUROC values obtained
805 using a random forest model on the genus-level relative abundance. Matrix values refer to the
806 AUROC values obtained by training the classifier on the dataset of corresponding row and then
807 applying it to the dataset of corresponding column. The prediction accuracy between gingivitis
808 and periodontitis is remarkably high, suggesting a strong microbial link between these two
809 periodontal diseases. Moreover, the prediction accuracy between anti-gingivitis treatments is
810 higher than that between EG experiments, suggesting anti-gingivitis treatments often result in

311 very similar microbiome responses, regardless of the difference in cohorts. **(c)** Heat map for log2
312 mean fold change of all plaque genera between the last day of treatments and Baseline in each of
313 the longitudinal studies (or between case and control groups in the cross-sectional studies). Blue
314 denotes reduction in relative abundances of genera (red: enrichment) versus Baseline. Those
315 significant fold changes (Bonferroni-corrected $p<0.05$) are marked by asterisks, while not-
316 significant fold changes (Bonferroni-corrected $p>0.05$) are indicated as blank in the heatmap.
317 Text color of the genus names indicates those showing highly consistent enrichment (red) or
318 reduction (blue) in the periodontal disease state across data sets. **(d)** A Random Forests classifier
319 of periodontitis was built based on the subgingival microbiomes in a US periodontitis cohort, and
320 then applied to all the other datasets in the meta-analyses, so as to model the estimated probability
321 of periodontitis for the gingivitis patients. Asterisks: FDR-corrected statistical significance (FDR
322 * $p\leq 0.05$).
323



324
325

Fig. 5. Comparing temporal microbial shifts along disease development between periodontal diseases and caries. (a) Most oral disease progression show microbiome alterations, with consistent disease-associated shifts that differ in their extent and direction. Panels from left to right: (i) sample size for each study; (ii) area under the ROC curve (AUROC) for the species-level RF classifiers (x-axis starts at 0.5, the expected value for a classifier that assigns labels randomly; those with AUROCs < 0.5 are not shown); (iii) number of species with $q < 0.05$ (Wilcoxon rank-sum test, Bonferroni correction) for each data set. (iv) direction of the shifts in microbiome structure, i.e., percentage of associated species that are disease enriched. (v-vii) Similar analysis conducted on the imputed functional profiles from 16S rRNA sequencing data. (b) Heat map for

334 log₂ mean fold change of bacterial species between a (pre-)diseased state and the healthy baseline
335 in each. Blue denotes reduction in relative abundances of species (red: enrichment) versus
336 Baseline. Significant fold-changes (Bonferroni-corrected $p < 0.05$) are marked by asterisks, while
337 insignificant fold-changes (Bonferroni-corrected $p > 0.05$) as blank in the heatmap. We next
338 performed PCoA based on the mean log₂ fold change data of species (**c**) or predicted functional
339 pathways (**d**) that are associated with two oral diseases. Each dot in the PCA plots represents a
340 process of microbiome alterations from health to the onset or progression stage of a given oral
341 disease. The dots are colored by diseases. The lines with arrows represent the path that microbial
342 alterations occurred along the disease development.

Table 1. The gingival-inflammation microbiome datasets used in the meta-analysis.

Dataset	Disease related	Sampling niche	Sampling method	Ref.	Target region	Primer	Seq platform	DNA extraction kit	Sample size	Host population size	Host geolocation	Data source
CN_SoH	Gingivitis	Supragingival plaque	Plaque were collected with sterile Gracey curettes and then removed from the curettes with a cotton-tipped swab.	this study	V1-3	5F-534R	Miseq	QIAamp DNA Mini Kit	261	40	Beijing, China	http://mse.ac.cn/SoH.html
CN_EG_2014	Gingivitis	Supragingival Plaque	Supragingival plaque samples (along the gingival-line within 2 mm depth) from two entire quadrants (1&3 or 2&4) were collected by sterile Gracey curette at each visit.	(13)	V1-3	5F-534R	454	Bead-Beating and Lytic-Enzyme-Cocktail Master-Mix were used for bacterial lysis; DNeasy® Blood & Tissue Mini Kits also used.	150	50	Beijing, China	SRP022235 SRP022233
CN_EG_CPC_2016	Gingivitis	Supragingival Plaque	Same as above	(17)	V1-3	5F-534R	454	Same as above.	123	41	Beijing, China	SRP022233
CN_AntiG	Gingivitis	Supragingival Plaque	Same as above	(16)	V1-3	5F-534R	454	Same as above.	398	99	Beijing, China	SRP045295
UK_EG+Peridontitis	Gingivitis, Peridontitis	Supragingival and subgingival plaque	Supragingival plaques were collected using a sterile curette from all the mandibular teeth with the exception of the third molars. Subgingival plaques were collected by inserting a curette to the full depth of pockets >6 mm, after the removal of supragingival plaque.	(15)	V1-3	27F-519R	454	GenElute Bacterial DNA Extraction Kit (Sigma-Aldrich).	92	20+20	London, UK	SRP026653

US_Periodontitis	Periodontitis	Subgingival plaque	After removing supragingival plaque and drying the target sites, subgingival samples were collected by insertion of four medium paper points for 10s into three sites. Deep and shallow sites were sampled separately from subjects with periodontitis.	(23)	V1-2; V4	27F-342R	454	QIAamp DNA mini kits	87= 29(periodontitis shallow) +29 (periodontitis deep pocket)+ 29(Health)	58	USA	SRP009299
ECC	Early childhood caries	Subgingival plaque and saliva	Dental plaques collected from all erupted deciduous teeth by brushing for 1 min via a sterile toothbrush. Unstimulated saliva produced during 5 minute was collected in 50 ml sterile tubes.	⁽³¹⁾	V1-V3	5F-534R	454	The MO BIO PowerSoil DNA Isolation kit with minor modifications	284	50	Guangzhou, China	SRP04094, SRP040947

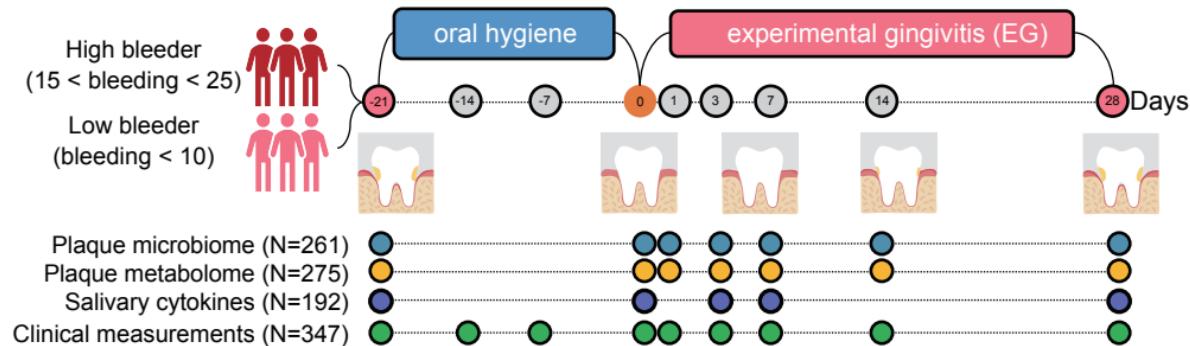
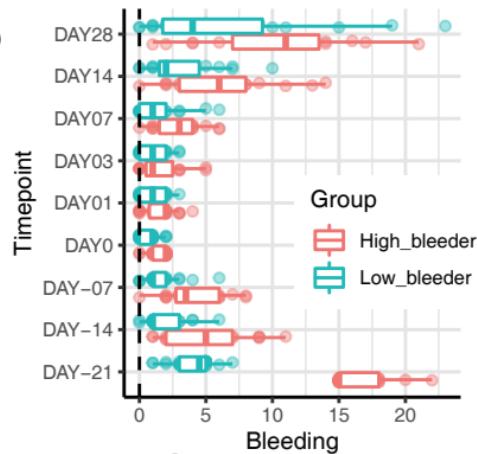
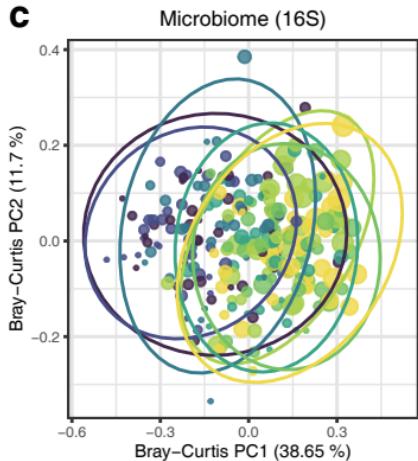
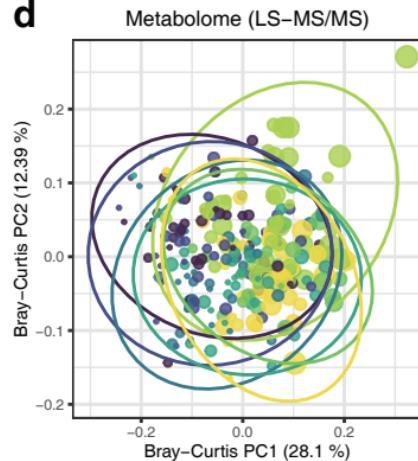
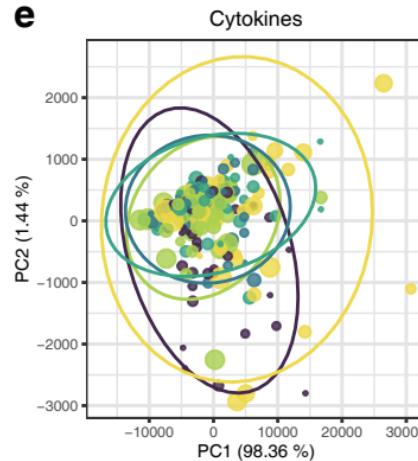
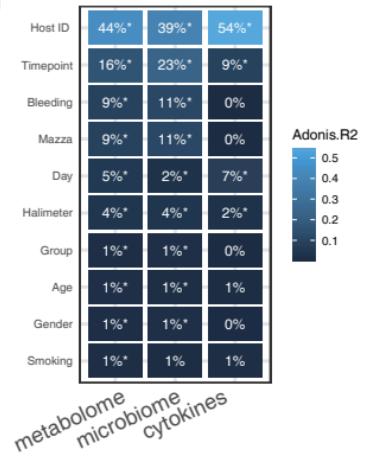
Fig. 1**a****b****c****d****e****f**

Fig. 2

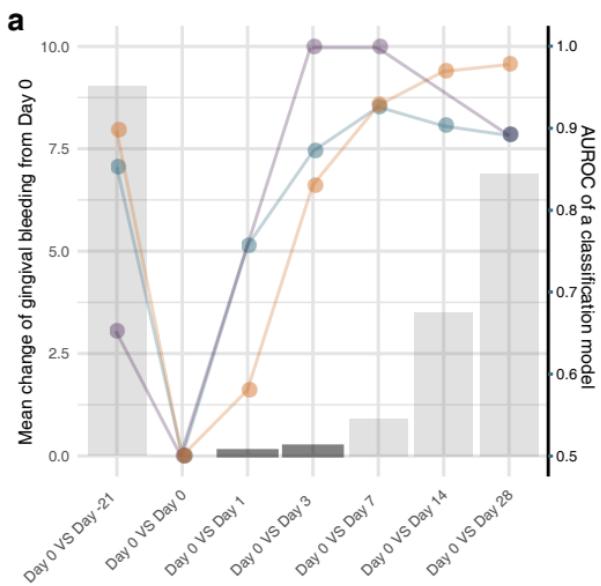
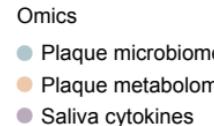
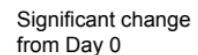
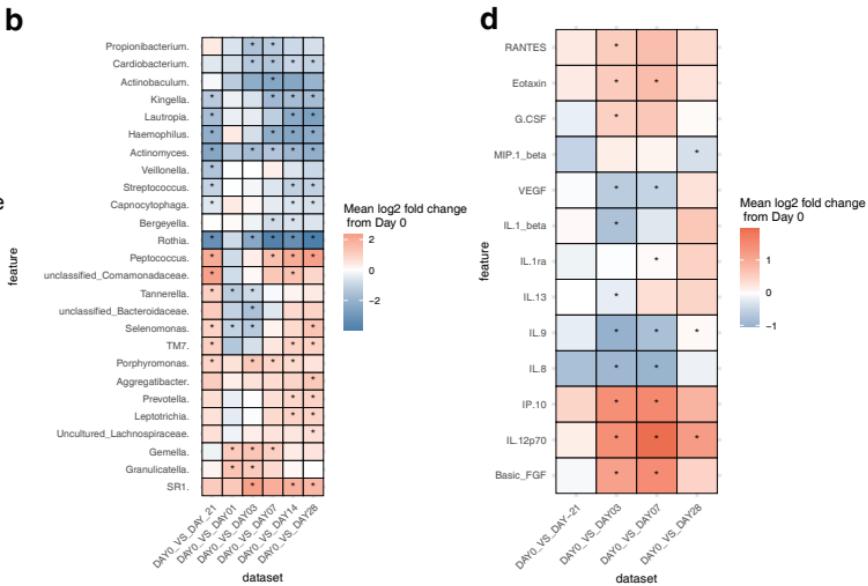
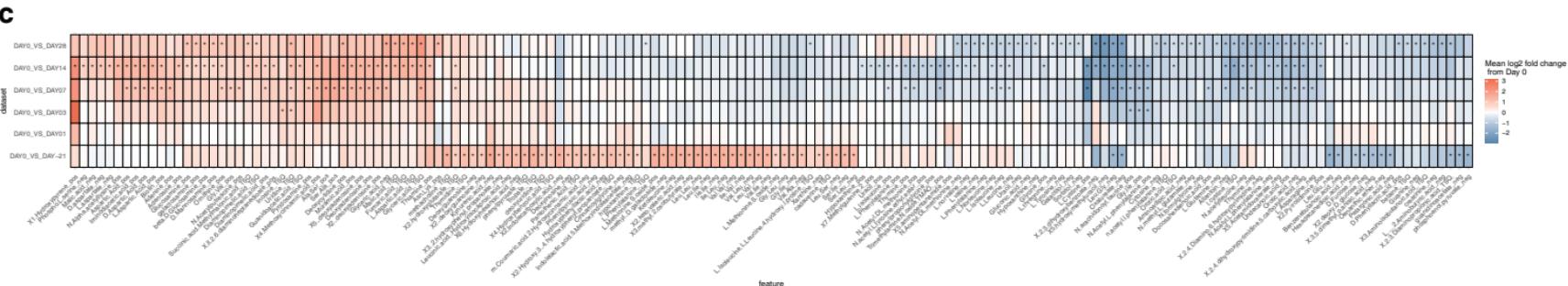
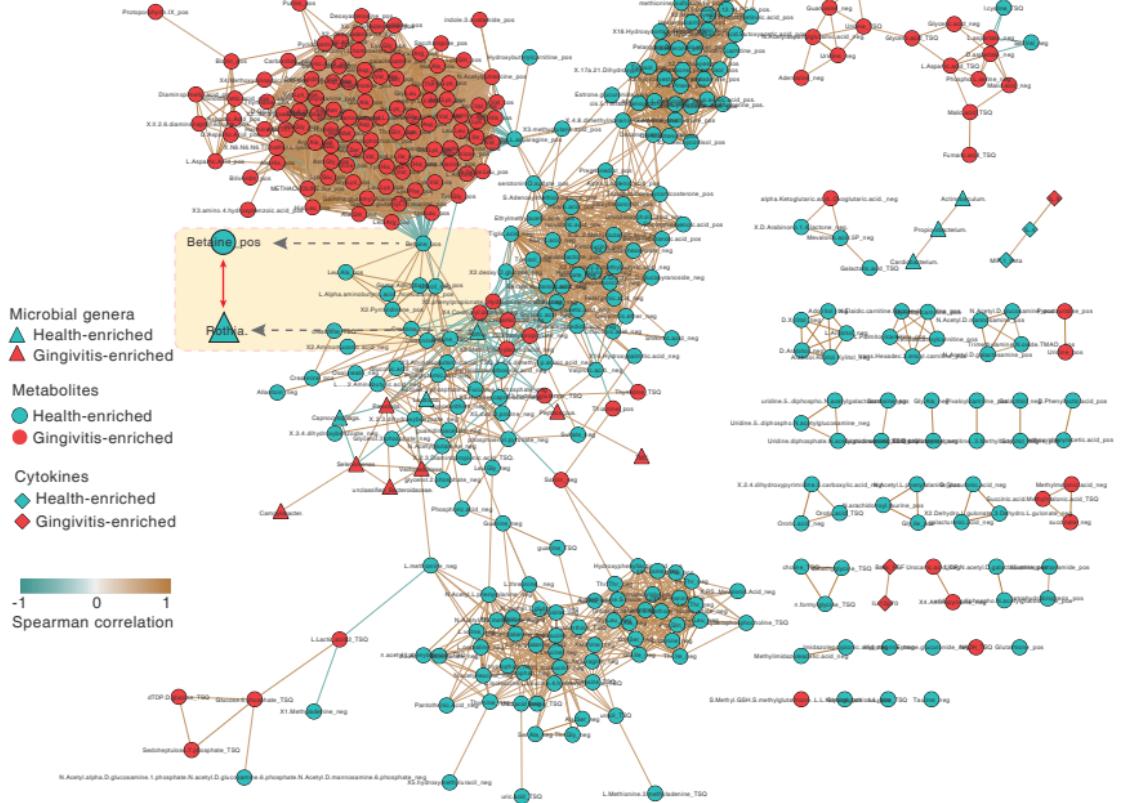


Fig. 3

a



b

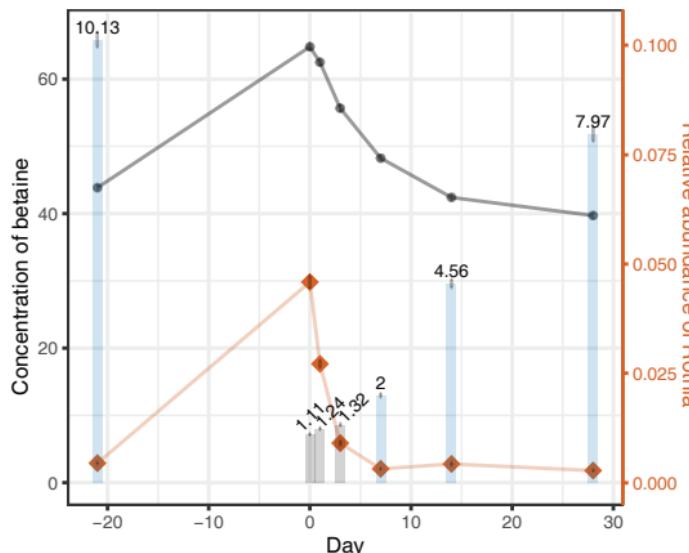


Fig. 4

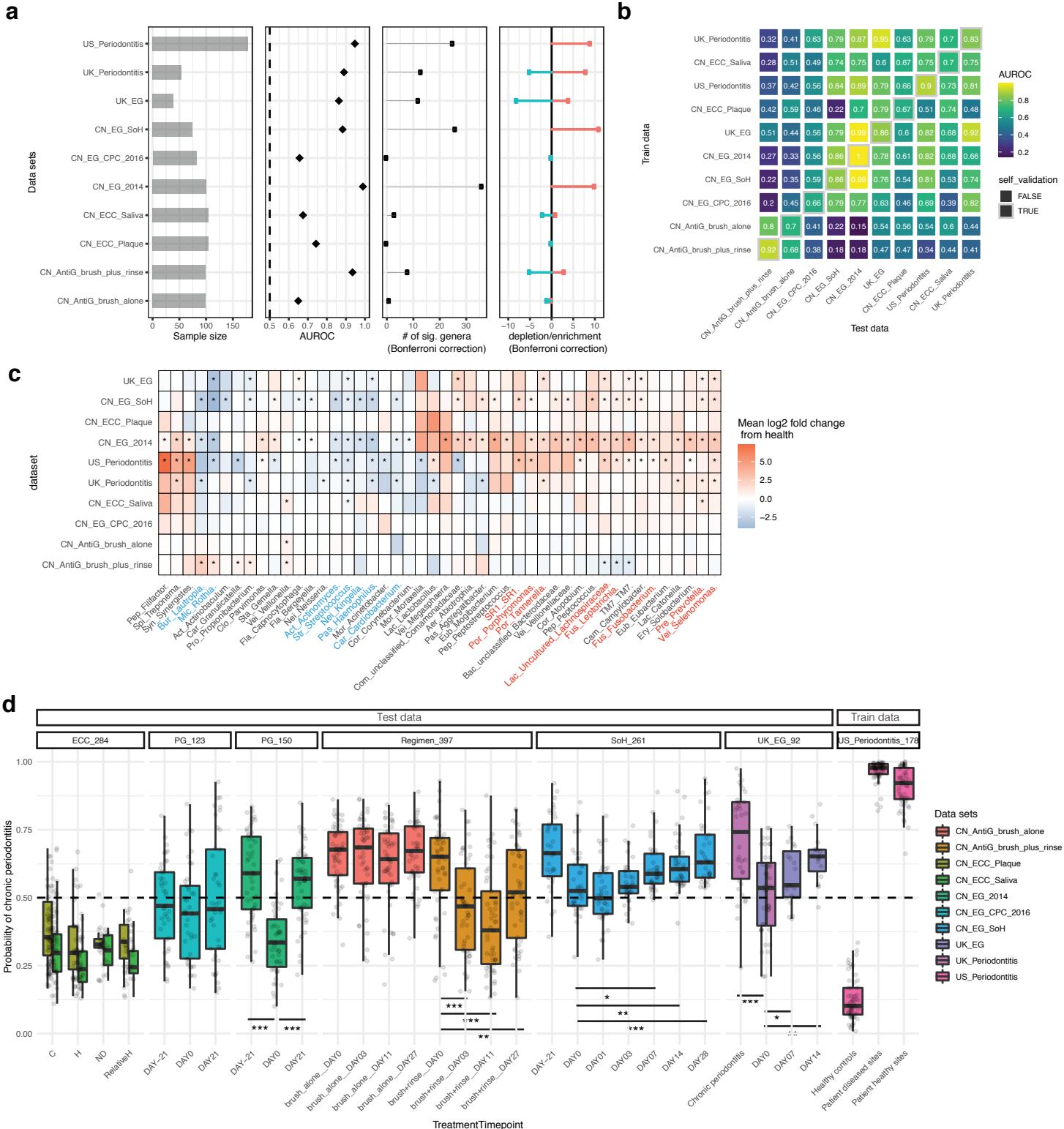


Fig. 5

