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Highlights
e Spike-density component analysis (SCA) was validated on children ERPs
o SCA extracted overlapping neural components from auditory ERPs (AEPs)
e Child AEPs were modelled at the individual level

Abstract

Overlapping neurophysiological signals are the main obstacle preventing from using cortical event-
related potentials (ERPs) in clinical settings. Children ERPs are particularly affected by this problem,
as their cerebral cortex is still maturing. To overcome this problem, we applied a new version of
Spike-density Component Analysis (SCA), an analysis method recently introduced, to isolate with
high accuracy the neural components of auditory ERP responses (AEPs) in 8-year-old children.
Electroencephalography was used with 33 children to record AEPs to auditory stimuli varying in
spectrotemporal features. Three different analysis approaches were adopted: the standard ERP
analysis procedure, SCA with template-match (SCA-TM), and SCA with half-split average
consistency (SCA-HSAC). SCA-HSAC most successfully allowed the extraction of AEPs for each
child, revealing that the most consistent components were P1 and N2. An immature N1 component
was also detected.

Superior accuracy in isolating neural components at the individual level even in children was
demonstrated for SCA-HSAC over other SCA approaches. Reliable methods of extraction of
neurophysiological signals at the individual level are crucial for the application of cortical AEPs for
routine diagnostic exams in clinical settings both in children and adults.

Keywords: Auditory event-related potentials (AEP); Spike-density component analysis; ERP
analysis; Cortical maturation; Children


https://doi.org/10.1101/2020.09.25.313809
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.313809; this version posted September 27, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Auditory event-related potentials (AEPs) reflect changes in brain activity in response to auditory
stimuli such as clicks, tones, or speech sounds. The earliest responses to auditory stimuli originate in
the brainstem structures within the first 10ms from the stimulus onset and are referred to as brainstem
auditory evoked responses (BAERs). In turn, longer latency components originate from cortical areas
and are generally referred to as cortical auditory ERPs (CAEPs or AEPs) (Oken & Phillips, 2009).
Over the past few decades, research has shown that CAEPs reflect cortical processes attributable to
perceptual and cognitive functions, and changes in their amplitude and latency can reflect sensory
deficits (Cone-wesson & Wunderlich, 2003; Eggermont & Ponton, 2002; Oken & Phillips, 2009) as
well as cognitive impairments (Akshoomoff & Courchesne, 1994; Baldeweg et al., 2004; Ceponiené
et al., 2009; Friedman, 2003; R Naitdnen et al., 2012; Sunohara et al., 1999; Wiersema et al., 2005).
Furthermore, several studies demonstrated CAEP as putative indices of experience-dependent
plasticity in learning processes (Lappe et al., 2008; Naétinen, 2009; Shahin et al., 2003, 2004; Trainor
et al., 2011) and auditory recovery following cochlear implantation (Mehta et al., 2019; Petersen et
al., 2020; Sharma et al., 2002, 2015). However, there are certain limitations attributed to the nature
of CAEPs that currently constrain their usage in clinical settings, enabling only BAERs to be adopted
in clinical practice.

The main limitation of CAEPs is represented by the difficulty in achieving reliable single neural
responses at the individual level. Such high inter-subject variability is mostly imputable to individual
differences in brain structures and to each CAEP being the summation of a series of components
originating by different cortical sources and overlapping over time (Ceponiené et al., 2005; Picton et
al., 1974; Ruhnau et al., 2011; Sussman et al., 2008). Consequently, cortical evoked responses are
easily masked by other interfering signals, such as earlier or subsequent components and strong
endogenous oscillations such as alpha waves. These phenomena challenge the isolation of single
CAEP components, causing inaccurate approximations and unreliable estimations (Oken & Phillips,
2009; Scharf & Nestler, 2018) that lead to low CAEPs replication rates at the single-subject level
(Luck & Gaspelin, 2017).

To tackle this problem, the recent study by Haumann and colleagues (Haumann et al., 2020) utilized
spike-density component analysis (SCA), a novel method that allows us to isolate overlapping neural
components from magneto- and electroencephalography (MEG and EEG) signals. SCA is based on
the principle that the same stochastic pattern observed from intracranial recording in single neurons
and larger neuronal assemblies (Maimon & Assad, 2009; Stein et al., 2005) is reflected in the larger-
scale cortical activity measured with M/EEG (Shin, 2002). Under this assumption, it models the
spatial topography, the polarity, and the temporal shape of single neural components by means of
Gaussian probability density functions (Beauducel, 2018). The analysis procedure involves
decomposing the individual average waveforms into their constituent spatiotemporal components.
SCA decomposition provides a more accurate representation of AEPs in adults than decompositions
performed with independent component analysis (ICA) and principal component analysis (PCA) or
extractions done with conventional averaging methods (Haumann et al. 2020).

The first results obtained with SCA have demonstrated its high accuracy in extracting neural
components of interest from both MEG and EEG signals recorded with adults. The component of
interest for every adult subject was automatically selected from the SCA decomposition using a
template matching procedure in which each individual ERP waveform was compared to the group-
level average ERP and, if matching, the component was extracted (Haumann et al. 2020).

However, an additional challenge arises when studying a developing brain in a children population
that is not characterized with the same structural and functional organization as an already matured
brain of an adult (Bishop et al., 2007; Ceponiene et al., 2002; Lippé et al., 2009; Picton et al., 1974;
Ruhnau et al., 2011; Tonnquist-Uhlén et al., 1995).
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Ongoing maturational processes occurring across development affect the neural responses recorded
at the scalp (Wunderlich & Cone-Wesson, 2006). While the obligatory cortical responses in adults
are constituted by the P1-N1-P2 complex (occurring in within 50ms-300ms), in infants and children
they are represented by P1 and N2 (Albrecht et al., 2000; Caviness et al., 1996; Snook et al., 2005;
Tonnquist-Uhlén et al., 1995). Before 10 years of age, N1/P2 emerge only in response to stimuli
presented with interstimulus intervals (ISIs) longer than 1s. N1 amplitude progressively increases
throughout development and the ISI length required for its appearance gradually decreases with age,
whereas P1 and N2 amplitudes decrease (Ceponiene et al., 2002; Kushnerenko et al., 2002; Sussman
et al., 2008). Moreover, changes in amplitude are accompanied by a general shortening of the CAEPs
latency (Bishop et al., 2007; éeponiene et al., 2002; Habibi et al., 2016; Ruhnau et al., 2011;
Wunderlich & Cone-Wesson, 2006). Therefore, it has been suggested that N1 components, although
already present in early stages of life, might be masked by the most prominent P1 and N2 until
adolescence (Ceponiene etal., 2002, 2005; Paetau et al., 1995; Sharma et al., 1997) and only stabilize
in adulthood (Ponton et al., 2000). In addition, children’s neural responses are less stable and less
homogeneous among individuals of the same age, due to different developmental rates (McIntosh et
al., 2014; Mueller et al., 2008; Snyder et al., 2002).

Therefore, in the case of children, constraining the analyses by comparing individual responses to the
average group signal does not represent the optimal strategy in this case, as it assumes that the latency
values and scalp topographies are consistent across all participants. Hence, in this study, we
complement the standard SCA procedure (SCA template matching or SCA-TM), with an additional
approach, namely the half-split average consistency (Carter et al., 2010) applied to SCA (SCA-
HSAC). SCA-HSAC extracts neural components from the individual waveforms by searching for the
most consistent neural components in the SCA decomposition of each subject’s averaged data, thus
enabling components extractions at the single-subject level. This allows us to model neural responses
with higher inter- and intra-subject reliability

In this study, we tested this approach on the data from 8-year old children, whose obligatory CAEPs
were recorded with EEG. The CAEPs were elicited by auditory stimuli differing by their
spectrotemporal properties, consisting of sounds played on three different instruments: piano, flute,
and violin. Differences in acoustic features such as spectral properties are known to be reflected in
changes of adult AEPs, both in normal and impaired hearing adults (Jones et al., 1998; Seol et al.,
2011; Shahin et al., 2005). We, therefore, hypothesized that SCA would also highlight the differences
in response to stimuli characterized by distinct spectrotemporal features.

In summary, the present study aimed to: 1) validate that child EEG signals (affected by the
maturational changes occurring in early life) can be decomposed into SCA components and that
child’s AEPs can be identified from the SCA decompositions, 2) model neurophysiological
differences in children responses to the spectral properties of sound with SCA. The main hypotheses
in this regard were: a) SCA-HSAC would provide similar or more accurate results to SCA with
template matching and conventional children CAEP waveforms (containing component mixtures), b)
SCA would retain or increase effect sizes for effects of different instrument sounds on ERP
amplitudes, when compared to the original ERP amplitudes.

Material and methods
Participants

We analysed data recorded from 33 eight-year-old (99.84+4.5 months) children, 18 females and 15
males from a pool of 40 children, recruited from the second-grade pupils of a public school in
Silkeborg Kommune, Denmark. All participants were in normal health condition and had normal
hearing according to the information provided by their parents who filled the children and family
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background questionnaire (Kliuchko, 2017; Miillensiefen et al., 2014; Ukkola-Vuoti et al., 2013)
Originally, informed written consent for the study was received from parents of 40 children. The oral
information about the study participation was also explained to each child prior to a measurement.
One child did not give assent to participate in the study, two children withdrew during the preparation
or recording, and one child was not in the school on the measurement day. Data from three of the
subjects were excluded from the final dataset due to bad quality. The research protocol was approved
by the Institutional Review Board (case number DNC-IRB-2019-004) and was conducted in
accordance with the principles of the Declaration of Helsinki. Information about the study and
participation invitation were distributed to all parents via the school’s intranet.

Stimuli and Procedure

The stimuli in this study consisted of tones with three different timbres (piano, flute and violin) and
two frequencies, corresponding to musical pitch F and C of the 4™ and 5 octave respectively. Piano
tones were generated using the sample sounds of Wizoo acoustic piano from the software 'Alicia's
Keys' in Cubase (Steinberg Media Technologies GmBH). Flute and violin tones were created by
transforming the timbre of the piano sounds on Adobe Audition (Adobe Systems Incorporated). All
sounds were normalized. Each tone had a duration of 300ms (5ms rise and fall) and the presentation
order of the three stimuli types were randomized. The tones were separated by an interstimulus
interval (ISI) of variable duration 2s (£ 0.5s). A total of 144 tones (trials) were presented. The three
conditions were evenly distributed across the stimulation. Before the above-mentioned stimulation,
participants were presented with a no-standard musical multifeature MMN paradigm (Kliuchko et al.,
2016) in two blocks with the total duration of approximately 14 minutes. These data will be reported
in a separate paper.

The sound stimuli were presented with the presentation software (Neurobehavioral Systems, Albany,
USA) through headphones. The loudness of the stimuli was set constant for all subjects. Prior to the
measurement, a soundcheck was done to assure that the sound level was comfortable for each
participant. All measurements were carried out in the premises of the school on the same day.
Participants sat in a chair in the middle of the room, in front of a table with a laptop that played
cartoons or kids shows of the child’s personal choice. During the preparation, the show was played
with sound, which was then switched off during the measurement. The participants were instructed
to watch the cartoons and ignore the sounds in their headphones. They were also asked to sit as still
as possible during the recording. A neck pillow and a small stool to place feet on were used to further
reduce potential movements. Researchers were out of sight to a participant but present in the room
during the recording.

EEG data acquisition and preprocessing

Brain activity was recorded using a mobile EEG setup and a 32 channels cap (EasyCap, actiCap) with
Ag-AgCl electrodes. Eye movements and blinks were tracked by placing electrooculography (EOG)
electrodes on the external eye corners, above the left eyebrow, and on the cheek below the right eye.
An additional electrode was placed on the nose and used as an offline reference. The channel used as
an online reference was FCz. EEG signals were taken with a 1000Hz sampling rate.

EEG data were first analyzed with Matlab-based opensource toolbox EEGLAB (Delorme & Makeig,
2004) and with the ERPIlab plugin (Lopez-Calderon & Luck, 2014). Raw data were re-referenced
offline to the average of the left and right mastoids and downsampled to S00Hz. After filtering with
a 1Hz high-pass filter and a 30Hz low-pass filter, the EEG signals were notch-filtered at 45-55Hz
with the CleanLine plugin (Mullen, 2012), to filter out line frequency noise. The data were inspected
by eye and a maximum of three noisy channels were removed. Independent component analysis (ICA)
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was then applied to remove eye artefacts and a maximum of four artefactual components was rejected.
After ICA, the removed channels were interpolated. 500ms epochs (100ms pre-stimulus and 400ms
post-stimulus), time-locked to the presentation of each tone, were created. Epochs were removed if
they involved an amplitude change exceeding a threshold of +100uV.

Three different methods were used to obtain the final ERP signal, giving rise to three different average
waveforms. An “original waveform” was obtained by averaging the epoched files. The other two
waveforms were obtained by applying SCA decomposition on the averaged epoched data: the SCA
components of interest were isolated individually. In particular, SCA components were extracted with
two different approaches: one approach involved matching the individually extracted components to
the grand average waveform, obtained by the average across all subjects (SCA with template match)
(Haumann et al., 2020); the other approach instead, involved extracting the components that were
most consistently present across half of the trials from the individual waveforms (SCA with half-split
average consistency). The two SCA-based methods gave rise to the “SCA-TM” and “SCA-HSAC”
waveforms respectively.

Spike density component analysis (SCA)

The spike density component analysis (SCA) method (Haumann et al., 2020) is an open-source, Field-
Trip-compatible (version 19093, Donders Institute for Brain, Cognition and Behaviour/Max Planck
Institute, Nijmegen, the Netherlands) Matlab (MathWorks, Natick, Massachusetts) function. SCA
allows to isolate neural sources with high temporal and spatial resolution, by modelling their spatial
topography, polarity and temporal shape with temporal Gaussian functions. The SCA function is
applied to the average individual waveforms (the epoched files) with the following assumptions: a)
EEG waveforms in the time domain can be modelled with a Gaussian function; b) components have
a signal-to-noise and interference ratios SNIR>1; ¢) components differ in time, width across time or
topography.

The analysis proceeds as follows. First, the SCA function finds the maximum amplitude across
channels and time. The component waveform is modelled by estimating the Gaussian function
parameters and fitting it to the signal. Then, the component weighting matrix is estimated by means
of linear regression and multiplied by the channel weight vector. Finally, the component waveform
is subtracted from the multichannel waveforms, and residual waveforms are obtained. This operation
is repeated iteratively, based on minimizing the sum of the residual waveforms across channels and
time. The resulting file contains all the overlapping components that have been modelled individually,
each one with its spatial topography and temporal morphology.

Template matching (TM)

Once that the EEG waveforms have been decomposed with SCA at the individual level, the SCA
components of interest (reflecting P1 and N2 in this case) are isolated from the rest of the EEG signal.
The previously validated SCA pipeline (referred to as SCA-TM) implied the extraction of the
component of interest of each subject by matching individual components with the grand average
waveform across all subjects. This is done by means of an automatized method that involves
comparing the component with the average waveform and extracting it when the two signals match
(Haumann et al., 2020). A weakness of template matching is that it requires the evoked responses to
be morphologically homogenous within groups, i.e., similar in latency and width within a group. This
is expected to be problematic in relation to children that undergo relatively large changes in ERP
morphology related to brain maturation processes.

Half-split average consistency (HSAC)
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Given the high latency differences across child subjects in this study, we also adopted a half-split
average consistency procedure, an improvement to the former approach that allows to extract the
most consistent components from the individual average waveforms. Carter et al. (2010) suggested a
visual inspection of signal reliability in clinical procedures. This involved dividing half-split averages
into odd and even numbered trials and detecting whether the AEP of interest is visible or not. Adding
more half-split averages allows more reliable statistical inference of the signal consistency. However,
a large total number of trial combinations is possible: e.g., with just a small sample of only 10 trials
there is already 10!/(10/2)!=30240 total possible combinations of half-split averages. The half-split
average consistency approach (referred to as SCA-HSAC) solves this problem by repeatedly taking
half of the total number of trials in a randomized manner with an equal chance of drawing each trial
from a uniform distribution (by means of a Monte Carlo simulation) and finding the most consistent
components across the half-split averages (HSAs).

Components were considered as consistent when they were found in 70% of the half-split averages.
The half-split average consistency was tested for each component. The testing procedure involved
subtracting all the components other than the tested one from the HSAs. Next, the HSAs were
transformed into component space using the sum of the HSAs across EEG channels weighted by the
channel weights for the tested SCA component:

HSA waveform in component space = %Z? W;HSA;

(where i is the channel number, W is the channel weight for the SCA component, HSA is the half-
split average waveform).

Further, the computational processing speed and accuracy of the component identification was
increased by initially constraining the analysis to specific channels, latencies and polarities prior to
the HSAC testing. In this case, a region of interest (ROI) constraint was applied for P1 extraction by
searching for positive peaks in one of 12 frontal channels (F3, Fz, F4, FCI, FC2, FC5, FC6, F7, F8,
C3, Cz, C4), whereas N2 extraction included a ROI with negative peaks over 20 channels
(F3,Fz,F4,FCI, Fpl, Fp2, FC5, FC6, F7, F8, T7, T8, CP1, CP2, CP5, CP6, FC2,C3,Cz,C4). Latency
ranges for component identification were 0-130ms for P1 and 200-350ms for N2. The choice of the
channels and latencies was made on the basis of the channels showing the strongest amplitudes across
participants for the component of interest while allowing variability across the individual children.

The pipeline of the SCA decomposition is illustrated in Figure 1. We compared the efficiency of the
conventional method for ERP extraction with the SCA template match (SCA-TM) and half-split
average consistency approaches (SCA-HSAC).


https://doi.org/10.1101/2020.09.25.313809
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.25.313809; this version posted September 27, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A SCA decomposition

Multichannel waveform

Gaussian fit to peak (SNIR>1)

20

4

Component regression on channel

—
4

Extracted components

Q)

ms

20

Grand average waveform

SCA template match (SCA-TM)

Matching each SCA component
to the grand average

Extracted ERP

400
ms

U

trials

Extracted HSAC ERP

ms

400

> /\
= N A
-10 \/
-100 400 " g
ms C SCA half-split average consistency (SCA-HSAC)
Component projection on channel
20 Distribution of trial ) Half-split
A occurrences Single trials alf-split averages
B PN\
1’
-10 i
-100 400 B
ms 0
¢

Half-split averages for most
consistent component

HSA consistency

Component consistency
across half-split averages

plsignal)=.70 ‘

Components amplitude

Figure 1. Overview of the spike density component analysis (SCA) pipeline. The original waveform is decomposed into
its components by fitting Gaussian temporal functions and projecting the component signal to its topography (A). For
every subject, the components of interest are extracted if they match the grand average waveform, with the template
matching approach (B), or by searching for the most consistent components across half of the trials with the half-split

average consistency approach (C).

ERP Analyses

Amplitude values were identified automatically within a time window of 50ms (for P1) and 30ms
(for N2) around the maximum peak of the grand average waveform for each condition. Mean
amplitude values were calculated as the average value across the same channels (12 frontal channels
for P1 and 20 frontal and frontoposterior channels for N2) that were used in the SCA-HSAC
extraction. Latency values were identified automatically by searching the maximum peak within a 0-
130ms time window for P1, 130-200 for P2 and 200-350ms for N2. Time constraints were chosen by
visual inspection of the individual waveforms across all conditions.

Statistical analyses

Statistical analyses were performed on MATLAB. The normality of the data distribution was assessed

visually (hist function) and with the Kolmogorov-Smirnov test for normal distribution (kstest
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function). As the data were not normally distributed, non-parametric tests were performed.
Friedman’s ANOVA (friedman function) was used to test differences among repeated measures
across the three conditions (Table 2). The Wilcoxon signed-rank test (signrank function) was used as
a paired-test and the relative » value as a measure of an effect size of spectral sound differences on
P1 and N2 (Table 3). Analyses were conducted on the three average waveforms: the original
waveform, the SCA-HSAC waveform and the SCA-TM.

Results

Median and interquartile range values for P1 and N2 amplitude and latency are reported in Table 1;
results from Friedman’s ANOVA in Table 2 and results from the Wilcoxon-signed rank test for the
amplitudes and latencies in Table 3.

Explained variance with SCA

SCA decomposition successfully modelled an average of 178 SCA components per child for the piano
condition, 184 for the flute, and 189 components for the violin condition. The explained variance of
the total signal by the SCA components was equal to 99.996% for each condition.

SCA with half-split average consistency

As expected, the half-split average procedure successfully extracted P1 and N2 for all children,
confirming that the most consistent components at this developmental stage are P1 and N2 (Figure
2). Furthermore, SCA-HSAC allowed extracting P2 components, although not clearly identifiable
from the grand average waveforms. However, P2 was not as consistent as P1/N2 across the subjects:
P2 was extracted for 29/33 subjects in the piano conditions, 30/33 in the flute condition, and 28/33 in
the violin condition. Therefore, only P1 and N2 will be discussed more in detail.

P1 and N2 topography maps showed their characteristic peak at frontocentral electrodes. Waveforms
and topoplots for P1 and N2 in the three conditions are illustrated in Figure 2. Moreover, visual

Table 1. Median and respective interquartile range (IQR) of amplitude and latency values for each condition.

Amplitude (nV) Latency (ms)
EIF Condition | Original Ilg Eg:c IQR STCI\‘}' IQR | Original Ilg }SISI‘:C Ilg Sﬁ\‘:' IQR
Piano 6.84 3.88 6.99 4.04 6.85 | 4.65 83 6 86 12 82 15
P1 Flute 8.59 28 9.17 3.39 835 | 538 94 14 96 24 92 18
Violin 7.82 3.6 7.64 437 7.53 5.58 92 16 94 30 88 26
Piano -6.64 | 335 2711 3.75 -6.98 | 3.88 259 21 253 21 254 18
N2 Flute -4.08 | 2.77 -3.79 319 | -3.94 | 3.38 262 32 262 22 268 22
Violin 334 | 283 -3.27 346 | 216 | 3.71 270 39 260 39 252 21
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inspection of the components extracted with SCA also revealed an N1-like response (Figure 3),
peaking around 90ms-150ms. However, neither SCA-HSAC nor SCA-TM allowed to extract it from
each subject.

SCA with template matching

The template match procedure only successfully matched the components to the grand average
waveform for both P1 and N2 and across all conditions for 17/33 participants. The individual P1
components were not matched for 2/33 subjects in every condition (with the subjects without a match
being different in every condition). The individual N2 responses instead, were not matched for 2/33
subjects in the piano condition, for 5/33 in the flute condition and 12/33 in the violin condition. Thus,
as expected, the TM method failed to identify more of the child ERPs, although, they were visible in
the original ERP waveforms.

Effects of instrument sound on ERPs
P1 amplitude

Friedman’s ANOVA on the original waveforms revealed significant differences across piano, flute,
and violin conditions (*r(2)=20.06, P<.001). Paired-test analyses with Wilcoxon signed-rank test
indicated a significant difference between piano and flute and between piano and violin, with the
piano amplitude being considerably smaller than the flute and violin amplitude (Table 3). No
significant differences were found between flute and violin conditions.

ANOVA on waveforms analysed with SCA-HSAC and SCA-TM confirmed the significant
differences across conditions found in the original waveforms (SCA-HSAC: ¥*r(2)=14.97, P<.001;
SCA-TM: ¥*r(2)= 9.66, P<.001). Piano amplitude was significantly smaller than the flute condition
both in SCA-HSAC and in SCA-TM, although SCA-HSAC revealed greater differences between the
two conditions, closer than SCA-TM to the original value (Table 3). Analogously, a significant
difference was found between piano and violin conditions, with a greater effect for the SCA-HSAC
waveform compared to the SCA-TM one (Table 3). No significant differences were found between
flute and violin conditions.

Table 2. Results from Friedman's ANOVA: degrees of freedom (dF), p-value (P) and chi-squared ()(2).

Amplitude Latency
ERP | waveform | dF P 1 dF P 1
Original | 98 <.001 20.06 98 <.001 19.44
P1 | SCA-HSAC | 98 <.001 14.97 98 <.01 11.10
SCA-TM | 98 <.01 9.66 98 <.001 18.06
Original | 98 <.001 22.06 98 <.05 6.73
N2 | SCA-HSAC | 98 <.001 25.88 98 144 3.88
SCA-TM | 98 <.001 35.09 98 <.001 13.15
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Effect sizes on the SCA-TM waveform were lower than both those of the SCA-HSAC and those of
the original waveform (Table 3), probably due to the lower number of subjects for whom the template
match was successful.

P1 latency

Significant differences across the three conditions were also found in P1 latency (y*r(2)=19.44,
P<.001). Similar to P1 amplitude, piano latency was significantly shorter than those of both flute and
violin (Table 3). The contrast between flute and violin instead, did not indicate significant differences.

As visible in Table 3, similar findings from the Friedman’s test were found in SCA-HSAC
(x*r(2)=11.10, P<.005) and SCA-TM (x*r(2)=18.06, P<.001) waveforms. Wilcoxon-signed rank
showed a significantly shorter latency for piano in contrast to flute conditions. Similarly, the piano
vs violin contrast revealed a significantly shorter latency for piano. In both contrasts, a greater
difference between the two conditions was found in the original waveform and SCA-TM compared
to the SCA-HSAC. No significant differences were found between flute and violin latencies.

Table 3. r values for effect size from the Wilcoxon-signed rank test. The difference between the conditions is moderate when
0.3<r<0.5, large when r>0.5

ERP Amplitude Latency
Paired conditions | Original SCA-HSAC | SCA-TM Original SCA-HSAC | SCA-TM
Piano vs Flute -.66%** - T4FEE - 45%* - 70%*** - 50%* -.62%**
P1 Piano vs Violin - TOxE* -.68*** -43% - 1R - 55k -3
Flute vs Violin .09 27 .10 .03 -.08 .06
Piano vs Flute L66F** JJ2HEFE OT7FFF -.10 - 43%* - 47
N2 Piano vs Violin B1HEE B1Hx* 84Fx* -37* -.16 17
Flute vs Violin A43* 40% O5FHE -25 22 53%**

Significance is indicated as * if p<.05, ** if p<.01 and *** if p<.001
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Figure 3. Original (black), SCA-HSAC (red) and SCA-TM (blue) waveforms of P1 and N2 and relative topographies for
piano, flute and violin conditions (A). The thicker lines represent the grand average across the channels considered for
the statistical analyses, whereas the thinner lines represent the individual waveforms of single subjects. Mean amplitude
and latency values of each condition in the three methods for P1 (B) and N2 (C). Significance levels are indicated by *
p<.05, ** p<.01 and *** p<.001.
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N2 amplitude

Significant differences across conditions were also found for N2 amplitude (x*r(2)=20.06, P<0.001),
whereas paired-test analyses on the piano vs flute and piano vs violin conditions showed a
significantly larger amplitude for piano compared both to flute and violin (Table 3). Furthermore, the
flute vs violin contrast revealed that flute amplitude was significantly bigger than that of violin,
although the difference was smaller than in the other contrasts (Table 3).

Differences across conditions were significant also in SCA-HSAC (y*r(2)=25.88, P<.001) and SCA-
TM (x*r(2)=35.09, P<.001) waveforms. Paired-test analyses confirmed the results of the original
waveform: piano amplitude was significantly larger than flute and violin in both SCA-HSAC and
SCA-TM waveforms as well as flute had a larger amplitude compared to violin, with a greater effect
size for the SCA-TM waveform compared to the SCA-HSAC and the original waveforms (Table 3).

N2 latency

Original N2 latency values were significantly different across conditions (y*r(2)=6.73, P<.05). Piano
vs violin contrast revealed a significantly shorter latency for the piano compared to the violin
condition (Table 3). The piano vs flute and flute vs piano contrast instead, did not reveal significant
differences.

Friedman’s test revealed significant differences across conditions for SCA-TM (x*r(2)=13.15,
P<.001) but not for SCA-HSAC waveforms (y*r(2)=3.88, P=0.14). The piano vs flute contrast showed
similar significantly shorter piano latencies compared to flute latencies in both SCA-HSAC and SCA-
TM waveforms (Table 3). The piano vs violin contrast did not render significant differences in either
waveform. Interestingly, a significant difference in SCA-TM but not in SCA-HSAC nor in the
original waveform was found between flute and violin (Table 3). However, as the SCA-TM did not
succeed in extracting the components for 12/33 subjects in the violin condition, such significance
might be less reliable due to the smaller sample considered.

Application of SCA to isolate Pl from interfering NI component

Further visual inspection on the SCA components revealed a weak frontocentral negativity
(maximum peaks at channels Fpl, Fp2, Fz, F3, F4, FC1, FC2, Cz, C4, CP2) with reversed polarity
near the mastoids (Figure 3), as typical of components originating in the auditory cortex. The negative
AEP occurred between the two main positive peaks (P1 and P2) or, if P2 was not present or not
detectable, right after the first main positive peak, within the time window 90-160ms (piano:
Mdn=114, IQR=24; flute: Mdn=114, IQR=30; violin: M=124, IQR=24). The peaking latency of such
negative component often partially overlapped the earlier P1 in children, which might have caused
confounding effects between P1 and N1 components. This might explain the longer latencies and
increased between-subject variance in P1 latency following SCA-HSAC extraction compared to the
original waveform, as well as the greater effect size for the original waveforms of the piano vs flute
(r=-.70) and the piano vs violin (r=-.71) contrasts, compared to those obtained with the SCA methods
(SCA-HSAC: r=-.50, r=-.55; SCA-TM: r=-.62, r=-.63). The median amplitudes were -3.10uV
(IQR=2.80), -2.90uV (IQR=1.60), and -2.50uV (IQR=2.10) for the piano, flute, and violin
respectively.
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Discussion

In this study we applied SCA for obtaining high-accuracy children’s AEP signals to sounds with
different spectrotemporal characteristics.

Waveforms analyzed with SCA outperformed over those analyzed with conventional ERP analysis
methods. Two different approaches were adopted for the SCA analysis: SCA-TM and SCA-HSAC.
SCA-HSAC revealed to be the most accurate approach for the extraction of child AEPs, providing
improved estimations of the brain signals at the individual level. The higher accuracy is reflected by
the complete number of children for which AEPs were identified, the resemblance of the HSAC-SCA
waveform features to those of the original waveforms (as indicated by the similar amplitude and the
effect size values) and the ability of SCA-HSAC to isolate P1 from an NIl-like overlapping
component. Additionally, HSAC-SCA indicated P1 and N2 as the most consistent components across
all subjects, in line with previous findings showing the predominance of P1 and N2 responses in early
stages of brain development (Ceponiené et al., 2005; Paetau et al., 1995; Picton et al., 1974; Ruhnau
et al., 2011; Sharma et al., 1997; Sussman et al., 2008). Conversely, SCA-TM revealed a limitation
in extracting components from a sample with non-homogeneous latencies.

The main differences across methods were found in the latency values. Specifically, P1 latency with
SCA-HSAC revealed smaller effect sizes for piano vs flute and piano vs violin contrasts, compared
to the original and the SCA-TM waveform. Manual inspection of the components extracted with SCA
revealed a negative frontocentral component between P1 and P2 with the typical latency (90-160ms)
and frontocentral topography of N1 (Ceponiene et al., 2002; Nitinen & Picton, 1987; Sharma et al.,
2015; Tonnquist-Uhlén et al., 1995; Wunderlich & Cone-Wesson, 2006). It has previously been
suggested that shorter latency of P1 in original EEG waveforms might be due to the fusion of the N1
component with P1, which can lead to overestimating the effects attributed to P1 amplitude and
latency (Ceponiene et al. 2002). Following SCA decomposition, P1 amplitude and latency increased,
most likely due to the subtraction of the overlapping N1. Likewise, the greater inter-subject variance
and the lower effect sizes in P1 latency found in SCA-HSAC results could be explained by the
removal of such negativity.

Regarding N2 latency, contrasting findings were provided by different approaches. In the original
waveform, the AEP latency to piano sounds was significantly shorter than that to violin, whereas they
were significantly shorter only to flute sounds in both SCA waveforms. The differences in latency
between responses to piano and flute sounds after SCA might reflect the removal of interfering
components that were masking N2 in piano responses, as flute latency value was not affected by SCA
decomposition. Similarly, the difference between piano and violin found in the original waveform
might have been caused by the overlapping of an earlier component that affected piano latency and
that was removed after SCA. In addition, flute latency was shorter than violin latency in the SCA-
TM waveform. However, as the violin condition provided the least successful results in SCA-TM
(21/33 matches), this effect might be solely due to the lower number of subjects considered.

The most prominent difference in respect to the spectrotemporal properties of the stimuli was
represented by the responses to the piano tones, which were consistent across all three methods.
Compared to the other conditions, P1 component for the piano sounds had larger amplitude and
shorter latency, whereas N2 amplitude was smaller. Furthermore, the N1-like component had its
greatest amplitude for piano tones, which highlighted the presence of N1 already in the original
waveform.

P1 and N2 amplitudes and latencies are known to decline with age during development, whereas N1

and P2 amplitudes gradually increase, to eventually become the dominant AEP components in

adulthood (Ponton et al., 2000; Shahin et al., 2003; Tremblay et al., 2014). Changes in AEP
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morphology are thought to reflect cortical maturation processes such as changes in myelination
(Albrecht et al., 2000; Caviness et al., 1996; Snook et al., 2005; Tonnquist-Uhlén et al., 1995) and
cortical folding (Moore & Guan, 2001), favoring the selection of the most efficient networks for
processing the information (Ceponiene et al., 1998).

In this regard, it has been suggested that changes in P1 and N2 features in early life might reflect
differences in higher-level cognitive skills, playing a role comparable to that of P2 and N1 in adults
(Ceponiene et al., 2002; Johnstone et al., 1996). For instance, enhanced P1 amplitude was found in
children that received musical training as an index of experience-dependent plasticity (Habibi et al.,
2016; Shahin et al., 2004), whereas previous studies in adults have linked enhanced N1/P2 to timbre
discrimination (Jones et al., 1998; Meyer et al., 2006) and experience-dependent plasticity (Shahin et
al., 2003; Tremblay et al., 2014) in adults. Our findings indicated the most prominent response to
piano sounds, compared to the other two conditions. The auditory stimulation studied here was
presented after another paradigm (musical multifeature or MuMufe), aiming to evoke mismatch
negativity (MMN). The MuMufe involved the presentation of standard stimuli played on the piano,
interleaved by deviant tones differing by six spectral properties (flute, violin, mistuning, omission,
slide, and intensity). Notwithstanding, all three timbres — piano, flute, and violin — were present in
this paradigm. However, piano sounds were presented 21 times more frequently than either violin or
flute sounds. We, therefore, hypothesized that the reduced P1 and enhanced N2 amplitude for the
piano condition that we observed in our results is a short-term plasticity effect, following the repeated
presentation of piano sounds. We cannot rule out, however, that this observation could be an effect
of an overall familiarity of our subjects with the sound of a piano. Habibi et al. (2016) described more
prominent group differences between musically trained and non-trained children in their ERP
responses to piano tones compared to those to violin and pure tones, despite the violin was the
instrument the children played. Habibi and colleagues hypothesized that this could be due to the
children having greater exposure to the sound of the piano since in their training program it was used
in various music activities, e.g., for teaching music theory, altogether taking place more often than
instrumental training. At the time of recording, subjects in our study did not follow any special
musical training, though, they may have been exposed to the piano during regular musical activities
in the school or kindergarten.

According to our initial hypotheses, SCA-HSAC demonstrated to provide reliable results at the
individual level, compared to the conventional analysis approaches and the SCA-TM procedure.
Moreover, differences in latencies following SCA reflected the separation of overlapping neural
signals, providing a more reliable estimate of the true peaking latency of single responses. This
allowed highlighting differences in responses to distinct sound features that were not visible in the
waveforms analyzed with standard methods and eliminate spurious significances. We, therefore,
propose that the ability to model neural signals at the individual level, together with the property of
extracting the most consistent components, make of SCA-HSAC a promising tool for the use of ERPs
in clinical settings.
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