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Abstract 11 

Background: Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus 12 

with a high potential for its use as a biopesticide against arthropod pests. The budded form of 13 

the virus causes a systemic infection when it escapes the midgut to enter the hemolymph of 14 

susceptible hosts. Yet, the specific molecular processes underlying the biocidal activity of 15 

AcMNPV on its insect hosts are largely unknown. 16 

Results: In this study, we describe the transcriptional responses in two major pests, Spodoptera 17 

frugiperda and Trichoplusia ni, to determine the host-pathogen responses during AcMNPV 18 

infection, concurrently with the viral response to the host. We assembled species-specific de 19 

novo reference transcriptomes of the hemolymph to identify key transcripts that respond 20 

during pathogenesis in these arthropod models where genomic resources are sparse. We found 21 
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that the suppression of transcriptional processes related to chitin, a metabolite critical for 22 

basement membrane stability and tracheal development are central in establishing a systemic 23 

infection. Synergistic transcriptional support was observed to suggest suppression of immune 24 

responses and induction of oxidative stress indicating disease progression in the host. The 25 

entire AcMNPV core genome was expressed in the host hemolymph and viral genes 26 

predominantly associated with the budded virus replication, structure, and movement were 27 

more abundant than those associated with the occlusion-derived virus. Genes known to directly 28 

arrest host cell cycle and development were among the most abundant AcMNPV transcripts in 29 

infected hosts. Interestingly, several of the host genes (e.g. Chitin synthase) that were targeted 30 

by the pathogen as revealed by our study are also targets of several chemical insecticides 31 

currently used commercially to control arthropod pests. 32 

Conclusions: Our results reveal an extensive overlap between biological processes represented 33 

by genes differently expressed in both hosts, as well as convergence on highly abundant viral 34 

genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic 35 

landscape during systemic infection. Given the diversity of AcMNPV strains that infect a wide 36 

range of insect hosts, our study provides a framework where pathogen strains could be 37 

selected to target specific host genes that facilitates modulation of the infection strength and 38 

specificity of the susceptible hosts. 39 

 40 

Keywords: Baculovirus, hemolymph, chitin metabolism, extracellular matrix organization, 41 

cuticle development, biopesticides 42 
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 43 

Background 44 

Baculoviruses are ubiquitous in nature and affect a wide-range of insects [1]. These 45 

highly virulent viruses are arthropod-specific and mainly infect lepidopteran larvae [2]. 46 

Baculoviruses belong to the family Baculoviridae and have large rod-shaped nucleocapsids with 47 

circular DNA genomes [3–5]. An outer lipoprotein envelope surrounds one or more 48 

nucleocapsids to form a virion which are themselves bundled together within a protein matrix 49 

to form an occlusion-derived virus [3]. Occlusion-derived viruses are large enough to be seen 50 

and quantified using a hemocytometer under a light microscope [6]. In lepidopteran 51 

populations, baculovirus epizootics begin when a larva consumes virus-contaminated foliage 52 

[7]. If enough virus is consumed, a fatal infection occurs. The virus replicates within the larva 53 

until the virus triggers the liquefaction of the insect host, which releases occlusion-derived 54 

viruses onto nearby foliage [7]. After the virus is released, uninfected larvae eat the newly 55 

contaminated foliage and the cycle continues. Overtime, occlusion-derived viruses degrade due 56 

to exposure to ultra-violet light [8]. 57 

Baculoviruses usually have specific host ranges and most of them only infect congeneric 58 

insect species [1]. The most notable exception is the Autographa californica Multicapsid 59 

Nucleopolyhedrovirus (AcMNPV), which infects over 35 species belonging to 11 lepidopteran 60 

families [9]. The unusually broad host range for a baculovirus has made AcMNPV one of the 61 

most promising candidates for bioinsecticide development. AcMNPV is also widely used as a 62 

molecular tool in gene delivery systems and for engineered protein production in insect cell 63 
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cultures [10–13]. Several strains of AcMNPV have been sequenced [14–16]. Their genomes are 64 

~134 kbp in size and contain ~150 tightly spaced genes [14–16]. Due to the host-specific 65 

virulence of individual strains, AcMNPV is a potent biopesticide in integrated pest management 66 

systems that could spare beneficial insects specially in ecologically sensitive areas[17, 18]. 67 

Baculovirus results in two distinct virion phenotypes upon infection in insect hosts [5, 68 

19]. First, the occlusion-derived virus is transmitted among insects primarily via horizontal 69 

transmission when uninfected hosts inadvertently consume the virus. This will often result in a 70 

lethal infection [6].  Second, following infection of the midgut epithelial cells, the budded virus 71 

causes secondary infection in the open circulatory system and, subsequently, invades cells in 72 

other tissue types [20]. Besides horizontal transmission, vertical transmission between mother 73 

and offspring may also occur. However, vertical transmission often results in a "covert" 74 

infection that does not kill the host [7]. 75 

 The fall armyworm (Spodoptera frugiperda) and the cabbage looper (Trichoplusia ni) 76 

are among major agricultural pests vulnerable to AcMNPV infection. These two pests together 77 

pose a significant threat to global food security, affecting over 150 crops including corn, 78 

sorghum, rice, sugarcane, soybean, and cotton [21, 22]. The total yield loss by S. frugiperda 79 

alone in 12 maize producing African countries in 2017 was estimated to be between US$2.48 80 

and $6.19 billion [22]. If appropriate control measures are not applied, these pests together can 81 

exacerbate the problem of food security and livelihood of many small farmers worldwide due 82 

to their wide host range. They are difficult to control due to their rapid spread and the 83 

development of their resistance to many insecticides [23–25]. Therefore, AcMNPV strains that 84 

can naturally infect these serious agricultural pests offer a promising mode of pest control. 85 
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However, it is imperative to understand the mode of infection, disease progression, and 86 

epidemiology of a naturally occurring virus before its commercialization, to minimize 87 

unintentional secondary effects [25]. 88 

Both host species are widespread multivoltine (i.e., multiple generations per year) pests 89 

that attack a number of crops throughout North and South America [26–28]. Females lay eggs 90 

in large clusters consisting of hundreds of individuals [27, 29]. After hatching, S. frugiperda has 91 

six larval instars or development stages before the larvae pupate and later emerge as adults; 92 

whereas, T. ni has five larval instars [30, 31]. These two pests are readily infected in nature by 93 

baculoviruses, particularly when they reach large population densities [2, 32]. A typical disease 94 

outbreak or epizootic occurs when recently hatched first instars or neonates consume 95 

contaminated leaf tissue or egg casings [6]. Once an individual larva is infected, the larva does 96 

not continue to grow or molt to larger instars; whereas, uninfected individuals do. 97 

In vivo studies investigating the genetic basis for AcMNPV infection and the integrated 98 

host responses are quite limited. Most studies exploring transcriptional regulation of these 99 

host-pathogen interactions use cell cultures infected with the virus. The transcriptome 100 

responses of S. frugiperda [33, 34] and T. ni [4, 35] cell cultures infected with AcMNPV have 101 

shown quite divergent transcriptional profiles, which makes it difficult to deduce the impact of 102 

these responses in intact organisms. Recently, Shrestha et al., (2019) described the in vivo 103 

transcriptional response of T. ni during AcMNPV infection. They reported the oral to midgut 104 

tissue-specific transcriptomic responses at the primary stage of infection in 5th instar larvae. In 105 

vivo studies that explore the transcriptional dynamics in response to AcMNPV infections appear 106 

to be even fewer in S. frugiperda. To our knowledge, studies exploring the gene expression 107 
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profile of the AcMNPV during its infection of intact hosts along with the dynamics in host 108 

transcriptomes are also absent either in S. frugiperda or T. ni. 109 

In this study, we report the host-pathogen transcriptional responses of the early 110 

systemic infection phase. The transcriptional profiles in the host hemolymph capture host 111 

responses to the virus as well as the viral responses to the hosts. Our results indicate major 112 

transcriptional changes to support initiation of critical cellular and developmental adjustments 113 

in the host during pathogenesis. 114 

 115 

Results 116 

Lethal effects of AcMNPV on S. frugiperda and T. ni 117 

 Clearly, both S. frugiperda and T. ni were adversely affected by increased doses of 118 

AcMNPV (Fig. 1a and b) resulting in the death of a large proportion of larvae at higher doses. S. 119 

frugiperda required a much larger dose of the virus to become infected as compared to T. ni 120 

(Fig. 1a and b). This was further demonstrated by the fact that the median LD95 for S. 121 

frugiperda was over a magnitude higher than the LD95 for T. ni (Fig. 1c). Given the relatively 122 

good fit of the logistic model to the data and the relatively narrow credible intervals, the 123 

median LD95 for both species was reasonably well estimated. 124 

 125 

De novo assembly and annotation of S. frugiperda and T. ni 4th instar reference 126 

transcriptomes 127 

We report the most curated reference transcriptomes that represent the hemolymph 128 

tissue of S. frugiperda and T. ni currently available. On average, 62 million raw reads were 129 
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obtained for each RNA-seq sample generated for S. frugiperda and T. ni (Supplementary Table 130 

1). The fully assembled transcriptomes are available at NCBI BioProject PRJNA664633. 131 

We selected 17,908 S. frugiperda transcripts (mean length 1,458 nt) and 19,472 T. ni 132 

transcripts (mean length 1,773 nt) to represent the protein-coding reference transcriptomes 133 

(Table 1). The number and length distribution of total protein-coding transcript models in the 134 

current reference transcriptomes (Supplementary Fig. 1a and b) were comparable to the 135 

protein-coding transcripts available for Bombyx mori [37], Helicoverpa armigera [38], 136 

Spodoptera litura [39] and the genome of T. ni [40] (Supplementary Fig. 1c and d). Our 137 

predicted protein coding transcripts mainly contained complete ORFs with start and end 138 

codons included in the transcript model (Supplementary Fig. 2a). We were able to map >75% of 139 

the initial RNA-seq reads to the reference transcriptomes for both species (Supplementary 140 

Table 2). 141 

As D. melanogaster genes provided the most amount of functional attributes available 142 

for an arthropod model, we first annotated 5,878 S. frugiperda and 6,219 T. ni transcript 143 

models based on the D. melanogaster reference models where possible (see methods). The 144 

NCBI insect-Refseq database was used to annotate another 9,273 transcripts from S. frugiperda 145 

and 9,751 transcripts from T. ni (Supplementary Fig. 3a). The remaining transcripts were 146 

subjected to BLATX against the NCBI-nr databases to annotate 1,278 S. frugiperda and 888 T. ni 147 

transcripts. A final pool of remaining transcripts that did not show convincing similarity to other 148 

known eukaryotic transcripts (1,479 S. frugiperda and 2,614 T. ni transcripts) were annotated as 149 

“unknown putative proteins”. 150 
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We assessed the completeness of the reference transcriptomes based on the expected 151 

presence of core genes in metazoans as identified by the BUSCO database [41]. S. frugiperda 152 

and T. ni reference transcriptomes were found to have 87.3% and 87.2% expected BUSCOS 153 

respectively, suggesting that these transcriptomes contain a core gene component comparable 154 

to the high quality lepidopteran genome model of silkworm [42] (Supplementary Fig. 2b). 155 

Furthermore, our S. frugiperda reference transcriptome showed a better BUSCO representation 156 

than the previously published S. frugiperda genome and transcriptome  assemblies [43, 44] 157 

(Supplementary Fig. 2b). Only 36% of RNA-seq reads generated for T. ni in our study mapped to 158 

a genome assembly recently made available for this insect [40], compared to the 84% of 159 

mapped reads to our reference transcriptome. These comparisons confirm the appropriateness 160 

of the use of our reference transcriptomes for our downstream analyses. 161 

 162 

Host transcriptomic responses to the AcMNPV infection 163 

We identified 175 S. frugiperda differently expressed transcripts (DETs) and 138 T. ni 164 

DETs in response to the AcMNPV infection (Fig. 2a and b). The DETs represent ~1% S. frugiperda 165 

and ~0.7% T. ni of respective reference transcriptomes. The relatively small sets of differently 166 

co-expressed genes suggest that the observed transcriptomic response pertains to an active 167 

host responding to the infection, rather than largely missregulated transcriptomes represented 168 

in a dead or a dying host overrun by the pathogen. In addition, the transcriptional responses 169 

between control and infected larvae within a host species differed minimally relative to the 170 

differences between basal transcriptomes of the two hosts (Supplementary Fig. 4). The wide 171 
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divergence observed in the basal transcriptomes of the two host species is not surprising, since 172 

they belong to two different genera. 173 

Our results show that, in both host species, transcripts suppressed due to infection 174 

differed by orders of magnitude compared to those transcripts that were induced by viral 175 

infection (Fig. 2). This is consistent with the trend observed in previous transcriptomic studies in 176 

cell cultures of AcMNPV-infected S. frugiperda and T. ni [33, 34, 36, 45, 46]. Interestingly, we 177 

see extensive similarities across multiple biological processes as deduced from the functional 178 

attributes of DETs in each species, suggesting a shared host response to the AcMNPV pathogen. 179 

Overall, 83.4% S. frugiperda and 89.1% T. ni DETs could be assigned to functionally informative 180 

annotations. This was based on either functional validation of a putative homolog in D. 181 

melanogaster or a homolog reported with a putative function in another lepidopteran host. The 182 

number of Gene Ontology (GO) annotations were used when available but was more limited as 183 

GO annotations largely depended on the sequence similarity of S. frugiperda and T. ni transcript 184 

models to a D. melanogaster gene that also had an assigned GO term. In the following sections, 185 

we highlight the shared host transcriptomic responses via enriched functional processes based 186 

on clustering of functional annotations of DETs. All DETs with functional annotations that had a 187 

fold change of 4 or more in response to the AcMNPV infection were considered. The full list of 188 

DETs and their assigned GO terms (when available) are presented in Supplementary Table 5. 189 

 190 

Chitin metabolism and epithelial membrane associated processes were suppressed in 191 

AcMNPV-infected hosts 192 
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The two largest enriched functional clusters out of six in S. frugiperda and the largest 193 

cluster of the two in T. ni, represented in the “suppressed” set reveal a coordinated 194 

downregulation of chitin-related genes (Fig. 3). Chitin metabolism and its associated pathways 195 

are central to the formation and stability of the extracellular matrix, basement membrane, 196 

cuticle, and the tracheal system that are in close contact with the hemolymph tissue. The genes 197 

associated with this cluster are not limited to those with assigned GO terms (Fig. 4b and 198 

Supplementary Table 4). Among these, genes associated with chitin synthesis (chitin synthase 199 

1/kkv); genes encoding chitin-binding proteins specially in the peritrophic matrix (Gasp) [47, 200 

48]; other genes known for their chitin associated functional roles in cuticle development such 201 

as the Osiris gene family members and Dusky-like (Dyl) that regulate the deposition of chitin on 202 

bristles were significantly down-regulated in S. frugiperda (Supplementary Table 4) [49–52]. 203 

Interrupted chitin metabolism at the cellular level is tightly coupled to the organ integrity, 204 

particularly of the midgut and the tracheal system. Drosophila chs1 mutants with suppressed 205 

expression also show defective tubular structure, irregular tracheal epithelial tube expansion, 206 

and irregular subapical cytoskeletal organization [53]. The host genes serpentine (serp) and 207 

vermiform (verm) that bind to chitin and modify its surface play significant roles in the tracheal 208 

tube development [54–56] together with uninflatable (uif) that regulates tracheal growth and 209 

molting [57]. These and many other cuticle and tracheal growth related genes were highly co-210 

suppressed in infected host tissue (Fig. 4b and Supplementary Table 4). 211 

The budded virus exiting the midgut epithelial cells needs to penetrate the basement 212 

membrane of the gut epithelium before entering the hemocoel and then the basement 213 

membrane of tracheal cells for systemic infections [56]. Collagen is a fundamental component 214 
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of basement membranes of both gut and tracheal epithelia [58, 59]. Therefore, genes 215 

associated with collagen metabolism and other integral components of the basement assembly 216 

are expected candidates for virus regulated transcriptional processes in the host. Transcripts 217 

coding for structural components of the extracellular matrix including collagen were among the 218 

most significantly suppressed in response to the AcMNPV infection in both species (Fig. 4b and 219 

Supplementary Table 4). 220 

We observed multiple transcripts associated with glycoproteins, likely formed in 221 

hemocytes that function in basement membrane stability, highly suppressed coordinately in 222 

both species during AcMNPV infection. Among them, laminins, osteonectins (SPARC), and 223 

papilins are notable. Laminin is the most prevalent glycoprotein in the basement membrane 224 

and is also found in extracellular matrices of tracheal cells. It is formed of three chains coded by 225 

LanA, LanB1, and LanB2 [60–62]. Notably, we found transcripts that represent all three Laminin 226 

chains to be coordinately down-regulated in the infected tissue in both species (Supplementary 227 

Table 4). SPARC, known as a Ca2+ binding extracellular glycoprotein that modulates cellular 228 

interactions with the extracellular matrix [63] was also down-regulated in both hosts during the 229 

budded virus infection stage (Supplementary Table 4). SPARC is particularly expressed during 230 

cellular injury or wounding that require tissue remodeling [64] and functions in basal lamina 231 

assembly and stability [65, 66]. Similarly, transcripts potentially coding for papilins were co-232 

suppressed in infected samples of both hosts (Supplementary Table 4). Papilins expressed in 233 

hemocytes are a prominent group of sulfated glycoproteins that contribute to basement 234 

membrane structure [67–69]. The coordinated suppression of chitin and basement membrane 235 
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associated glycoproteins in our results indicate a strong transcriptomic signal for weakened 236 

membrane stability in infected host tissue during the budded virus invasion into the hemocoel. 237 

 238 

Transcripts associated with hemocyte-induced defenses and immune responses were 239 

suppressed during systemic infection 240 

 Membrane damage in contact with the hemocoel is sensed by hemocytes and these can 241 

initiate immune responses during pathogen invasions. Melanization is a major hemocyte-driven 242 

defense response that leads to blood clotting. Surprisingly, this pathway appeared to be 243 

suppressed as evident from the down-regulation of multiple host genes in both species in 244 

response to the AcMNPV infection. Hemocytin is a key gene that mediates hemocyte 245 

aggregation and hemolymph melanization in lepidopteran innate immunity against pathogens 246 

[70–72]. Hemolectin is specifically expressed in larval hemocytes, and acts as a clotting factor 247 

involved in hemostatis [73–75]. It is also known to initiate immunity responses during pathogen 248 

infections [74, 76] and is thought to play a vital role in encapsulating foreign substances during 249 

metamorphosis in B. mori [75]. Hemocytins and hemolectins were among the most highly 250 

suppressed genes in both S. frugiperda and T. ni infected samples (Fig. 4b and Supplementary 251 

Table 4). 252 

Hemolymph proteases are known for their pivotal roles in defense responses against 253 

many pathogens as well as in development processes such as molting [77, 78]. The specific 254 

regulatory pathways of many of these proteins are not definitive yet, but their collective role as 255 

a functional group in insect immunity and development are established. We found multiple 256 
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proteases in both infected hosts highly suppressed as a prominent group among all suppressed 257 

transcripts (Fig. 4b and Supplementary Table 4). 258 

 259 

Lipid metabolism and oxidative stress emerge as the most prominent functional processes 260 

induced by both hosts in response to infection 261 

The lipid biosynthesis pathways not only affect lipid membranes, but also many other 262 

primary biological processes related to energy metabolism and signaling pathways. 263 

Interestingly, Desaturase1 (Desat1) is induced in S. frugiperda upon AcMNPV infection (Fig. 4a). 264 

Desat1 is reported to be tightly regulated at the transcriptional level [79] and is required for the 265 

biosynthesis of unsaturated fatty acids [80, 81]. Additionally, several fatty acid modification 266 

enzymes, e.g. elongases like jamesbond/bond, and CYP4G, a cytochrome P450 that performs 267 

oxidative decarbonylation of long chain fatty aldehydes [82–84] were co-induced in T. ni. It is 268 

notable that bond and CG16904 together were assigned to 60 GO-terms, exemplifying their 269 

influence in multiple biological functions linked to their primary molecular functions in lipid 270 

metabolism [82–84] (Supplementary Fig. 4 and Supplementary Table 5). 271 

Reactive oxygen species (ROS) generation and induction of oxidative stress are 272 

inevitable when host membranes are disrupted and lipid metabolism is altered during host-273 

pathogen interactions. Supportive of this expectation, all three genes induced in the infected S. 274 

frugiperda hemolymph in addition to Desat1 (i.e. above a 4-fold expression change) relate to 275 

oxidative stress (Fig. 4a). These include transcripts coding for a cytosolic GST and two FAD-276 

glucose dehydrogenases (GLD). GSTs form a broad family of critical defense proteins against 277 

oxidative stress [85, 86] and FAD-glucose dehydrogenase can induce ROS generation as a 278 
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defense response [87]. A recent study has also reported that FAD-glucose dehydrogenase is 279 

induced as a defense response during AcMNPV infections in Helicoverpa zea [88]. 280 

 281 

AcMNPV genome response to the insect hosts 282 

To check whether viral sequences were present in our hemolymph samples, we mapped 283 

RNA-seq reads from both species to the published AcMNPV genome [16] (Supplementary Table 284 

2b). As expected, viral sequences were detected almost exclusively in the infected samples. We 285 

mapped 1.13% and 7.41% of total reads from infected S. frugiperda and T. ni samples, 286 

respectively, to the AcMNPV genome. It was interesting that a small number of reads from T. ni 287 

control samples (<0.01%) were mapped to the AcMNPV genome (Supplementary Table 2b). 288 

While it is not conclusive that these could represent domesticated viral genes expressed at low 289 

levels in the T. ni genome, previous studies have indicated that AcMNPV genes are found in 290 

arthropod genomes as a result of horizontal gene transfer [89, 90]. 291 

The AcMNPV strain E2 genome has 149 protein-coding genes [16]. We detected 148 292 

genes in our viral transcriptome expressed in the hemolymph (Fig 5a and Supplementary Table 293 

6). These transcripts were categorized into nucleocapsid-associated and envelope-associated 294 

genes. Each of these two categories was further divided into their contribution to the formation 295 

of the occlusion-derived virus, budded virus, or their involvement in the formation of both 296 

virion types, following Blissard and Theilmann (2018). Viral genes related to the formation of 297 

the budded virus showed higher expression than those involved in the production of occlusion-298 

derived virus in both nucleocapsid- and envelope-associated categories in samples from both 299 

hosts (Supplementary Fig. 6a & b and Supplementary Table 6). Budded virus compared to the 300 
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occlusion-derived virus is the dominant form expected in the hemocoel during the systemic 301 

infection phase [5]. All viral genes showed higher levels of expression in infected hemolymph of 302 

T. ni compared to that of S. frugiperda (Fig. 5a and Supplementary Table 6). 303 

Baculovirus genes show three sequential stages of expression, marked as early, late, and 304 

very late. The early viral genes are transcribed by RNA polymerase II of the host. A unique 305 

feature of baculoviruses compared to other nuclear-replicating DNA viruses is that these viral 306 

genomes encode a DNA-directed RNA polymerase. This RNA polymerase transcribes the late 307 

and very late viral genes [91]. In the infected hemolymph tissue, we found viral genes that mark 308 

both early and late stages in their expression sequence. For example, a chromatin-like structure 309 

called the virogenic stroma is formed in the center of the nucleus of infected cells. Ac36/pp31 is 310 

an early viral gene reported to be among the two primary viral genes that initiates this 311 

morphological change in the host cells [92, 93]. In contrast Ac74/Bm60, required for the 312 

budded virus production and also found in nucleocapsids of both budded and occlusion-derived 313 

virions, is thought to be expressed at a late stage [94]. Both Ac36 and Ac74 are among the top 314 

10 highly expressed viral genes in infected samples of both hosts (Supplementary Fig. 6c). 315 

Rohrmann (2013) had identified 37 core baculovirus genes that were also highly 316 

conserved in the AcMNPV genome. Half of the top 30 highly expressed AcMNPV genes in 317 

treated samples of both insect species were core genes (Fig. 5a and Supplementary Table 6). 318 

The majority of the viral transcripts in our study were associated with the production of 319 

nucleocapsid and envelope proteins. Many such integral proteins of the nucleocapsid or 320 

envelope are known to function in viral entry and exit pathways. For example, the highly 321 

expressed viral genes, Ac75, Ac76, and Ac143 (Fig. 5a and Supplementary Fig. 6c) perform 322 
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multiple roles associated with the formation of intranuclear microvesicles and production of 323 

the budded virus, while contributing to the structure of the occlusion derived virus envelope 324 

[95–101]. Other highly abundant viral genes that form integral components in the nucleocapsid 325 

or the envelope present in both hosts include Ac131/ Pp34 [15, 102], Ac142/p49  [103, 104]; 326 

Ac94/odv-e25 [97, 98]; and Ac100/p6.9, [92, 99, 101] (Fig. 5 and Supplementary Fig. 5b). The 327 

cellular entry of the budded virus is dependent on GP64 coded by Ac128 while the entry of the 328 

occlusion-derived virus is mediated by the family of PIF genes [5]. Ac128 and the eight PIF genes 329 

(Pif-0/Ac138, Pif-1/Ac119, Pif-2/Ac22, Pif-3/Ac115, Pif-4/Ac96, Pif-5/Ac148, Pif-6/Ac68, Pif-330 

7/Ac110) out of the nine members were among highly expressed viral transcripts detected in 331 

the infected host tissue in our study (Fig. 5a and b). 332 

The viral genes affect cellular, metabolic, and developmental alterations in the host in 333 

addition to initiating viral replication and virion movement in the host cells. Three of these virus 334 

induced host metabolic processes include host membrane degradation, cell cycle arrest, and 335 

developmental arrest that stops molting. The co-expressed viral genes chitinase (Ac126) and 336 

cathepsin (Ac127) are required for the liquefaction of hosts in the late stage of infection [105, 337 

106]. Viral chitinases act on degrading the host chitins and cathepsins are broad-spectrum 338 

proteases that degrade host tissue [107]. Both Ac126 (found at RPKM of 540 in S. frugiperda 339 

and 1227 in T. ni) and Ac127 (found at RPKM of 236 in S. frugiperda and 494 in T. ni) were 340 

highly exprssed in the infected samples in our study (Figure 5b and Supplementary Table 6). 341 

This indicates a strong transcriptional signal about the extensive tissue damage initiated in the 342 

host by the budded virus along with the reciprocal transcriptomic signals in the hosts that 343 

suggest interrupted membrane stability early on during the budded virus infection. 344 
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We detected compelling transcriptomic signals that suggest virus induced host cell cycle 345 

interruption, parallel to signals of host tissue detioration. Ac144/Ac-odv-ec27 is the most highly 346 

expressed AcMNPV gene (expressed at RPKM of 5081.6 in S. frugiperda and 9456.6 in T. ni) 347 

found in infected hosts in our study (Fig. 5a). Ac144 is an essential gene known for its role in 348 

arresting the host cell cycle at the G2/M phase [19, 104]. 349 

 350 

Viral-host co-transcriptional interactions 351 

Several AcMNPV transcripts and their associated proteins are known to directly interact 352 

with host proteins to regulate pathogenicity. We wanted to assess whether such host-parasite 353 

transcript interactions could be elucidated from comparing viral transcripts co-expressed with 354 

host transcripts in the infected hemolymph. 355 

We found the budded virus-associated gene Ac73 (RPKM of 1530.9 in S. frugiperda and 356 

2694.3 in T. ni) (Supplementary Fig. 6c, Supplementary Table 6), that is thought to regulate host 357 

Hsp70 [108, 109] among the top 5% viral genes expressed in our study. S. frugiperda Hsp70 has 358 

been reported to be a required gene to express AcMNPV genes and complete the infection 359 

cycle [110]. Even though the infected hemolymph transcriptomes in our study contain the 360 

transcripts potentially coding for Hsp70 (TR12464|c0_g1_i1, DN38479_c0_g1_i1, 361 

Supplementary Table 3), it was not significantly induced during the time of sampling 362 

(Supplementary Table 4). However, multiple transcripts coding for other molecular chaperones, 363 

protein transport, and modification associated with ER were highly suppressed in infected T. ni 364 

hosts (Fig. 4b). 365 
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Host lipids play multifarious roles in a virus life cycle, right from the entry of the virus 366 

into host cells by endocytosis, during replication in protected membrane vesicles, and till the 367 

virions exit the cell by exocytosis. For example, host fatty acid desaturases are required for virus 368 

replication to alter the fluidity and plasticity of membranes for viral replication complexes 369 

[111]. As described earlier, host Desat1 along with several transcripts associated with fatty acid 370 

synthesis are upregulated in the infected hosts. 371 

Viral entry and egress pathways highly depend on cell shape, entry and exit to the 372 

nucleus, and microvesicles regulated by host actins [90, 112]. A late viral gene, Ac34 induces 373 

nuclear actin polymerization that promotes virus replication, and nuclear export of the virus 374 

[109, 113, 114]. In our study, Ac34 is another highly abundant viral transcript present in the 375 

hemolymph. Reciprocally, we observed a marginal induction in S. frugiperda Act57B 376 

(Supplementary Table 4). Act57B is a major myofibrillar actin gene expressed during larval 377 

stages in Drosophila [115] and encodes a major structural protein found in the hemolymph 378 

[116]. It is unclear whether viral Ac34 directly regulates the host Act57B. Previous studies have 379 

reported that Ac34 directly regulates the host actin-associated Arp2/3 protein complex in the 380 

nucleus [109, 117]. We detected a 100-fold suppression in the levels of transcripts expected to 381 

code for the Arp2/3 complex in infected T. ni hosts. Expression of a couple of transcripts coding 382 

for zipper and cytoplasmic myosin light chain proteins, also known for their roles in regulating 383 

cell shape, was reduced by over 1800-fold in the infected T. ni hemolymph (Supplementary 384 

Table 4). Viral infections are known to suppress host cell apoptosis as a counter defense 385 

mechanism to promote viral replication [109]. The viral gene Ac135 is one such gene known to 386 

suppress apoptosis. Ac135 was abundant (in the 38% highly expressed viral transcripts) in both 387 
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infected hosts in our study (Supplementary Table 6). We found reciprocal coordinated 388 

suppression of several host transcripts associated with apoptosis in infected hosts. For 389 

example, calreticulin (Calr) [118], GDP dissociation inhibitor (Gdi) [119], and death-related 390 

protein (Drp) [120] were coordinately suppressed in infected T. ni hemolymph (Supplementary 391 

Table 4). Notably, the characteristic host apoptosis marker genes known for their defense were 392 

absent in the transcripts identified as significantly induced in the infected hosts. Therefore, we 393 

see a bias in the host transcriptomic signals towards an overall suppression of host apoptosis as 394 

a counterdefense mechanism, favoring the budded virus propagation (Supplementary Table 4). 395 

AcMNPV induced developmental arrest in the host is a known outcome in infected 396 

instars. In support of this expectation, we observed multiple host transcripts associated with 397 

larval developmental arrest. For example, the insect juvenile hormone synthesis genes, 398 

adenosylhomocysteinase and farnesyl pyrophosphate synthase [121], and transcripts encoding 399 

the heme peroxidase, Cysu, required during wing maturation [122], were co-suppressed in the 400 

infected S. frugiperda and T. ni hemolymph (Supplementary Table 4). Similarly, Ac15, a highly 401 

abundant viral gene in infected hosts (RPKM of 295.8 in S. frugiperda and 433.1 in T. ni, Fig. 5b 402 

and Supplementary Table 6) codes for the EGT enzyme that inactivates the insect molting 403 

hormone, ecdysone that would lead to host developmental arrest [123]. 404 

 405 

Discussion 406 

Host transcriptomic signatures suggest impaired membrane integrity enabling viral 407 

proliferation 408 
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In Figure 6 we provide an overview of genes and pathways affected by host-viral 409 

interactions in the hemocoel at the systemic infection stage based on the collective deduction 410 

of our transcriptome-based analyses. Our results provide a compelling set of transcriptomic 411 

signals to support suppression of chitin-associated processes in the infected hosts, which can be 412 

linked to weakened membrane stability, as well as disrupted tracheal development during the 413 

systemic infection phase (Fig. 3, 4, and 6). Chitin-centric processes are fundamental to the 414 

transcriptional regulation that play a key role in integrating various metabolic processes 415 

operating at the cell, organ, and organism levels during pathogenesis. AcMNPV infection via 416 

occlusion derived virus is regulated by the chitin based peritrophic matrix permeability to 417 

virions in the midgut epithelium. The midgut epithelium tissue and the adjacent hemolymph in 418 

contact with the tracheal system form the focal point for systemic infections by the budded 419 

virus [5, 124, 125]. Therefore, analyzing the transcriptional profile associated with chitin in the 420 

host during host-pathogen interactions as suggested by He et al., (2020) would be an important 421 

step in studying the possibility of both using the pathogen and enhancing the virulence of the 422 

pathogen for use as a bioinsecticide. 423 

Chitinases degrade insoluble polysaccharides into soluble oligosaccharides during the 424 

molting process of insects and play indispensable roles in organ morphogenesis, cell division, 425 

and development [124, 126]. Pathogens influence host transcription of chitinases and 426 

associated proteins [127, 128] and can interfere with molting of the insect hosts [129]. 427 

However, in our current study, we did not see a significant suppression of host chitinases. 428 

Instead we found a transcript coding for a putative chitinase in T. ni to be significantly induced 429 

in the infected hemolymph (Fig. 4a). The AcMNPV genome also codes for a chitinase that 430 
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disrupt the cuticle and peritrophic matrix of the insect host [130]. Chitinases coded by 431 

baculovirus genomes have a greater sequence similarity to bacterial chitinases involved in 432 

fungal chitin degradation and are distinct from insect chitinases both in sequence as well as 433 

localization in host tissues [107, 131]. A functional viral chitinase is critical to complete the 434 

infection cycle of the AcMNPV. In our study, the AcMNPV chitinase gene, Ac126, is highly 435 

expressed in both infected hosts (Fig. 5a, b, and Supplementary Fig. 6c). It is possible that the 436 

viral chitinase transcripts, together with the cathepsin transcripts required for liquefaction of 437 

the host, are transcribed early on during budded virus production, but are kept inactive until a 438 

later stage when occlusion bodies are produced toward the completion of the infection cycle. 439 

The stability of basement membranes in the host is critical in mounting an innate 440 

structural barrier against the movement of the virus and containing the infection. Transcripts 441 

associated with the major glycoproteins (collagen, laminin, osteonectin, and papilin) [64–66], 442 

known to function in basement membrane stability, were all coordinately suppressed in both 443 

infected hosts in our study (Fig. 3, 4b, 6, and Supplementary Table 4). Laminin and type IV 444 

collagen are the dominant glycoproteins in the basement membrane and form a stable scaffold 445 

for other glycoproteins to create a network that provides both structural and signaling support 446 

to adjacent tissues [67–69, 132, 133]. Glycoproteins such as osteonectin bind with Ca2+ in the 447 

extracellular matrix and mediate cellular interactions with the matrix. These glycoproteins are 448 

required for membrane assembly, and facilitate tissue remodeling after damage to the 449 

membrane [63, 64]. They are found in fat bodies, basal lamina in the basement membrane, and 450 

in the extracellular layer secreted by epithelial cells and tracheal cells [60, 66]. Viral proteases 451 

especially target the laminins in the basal lamina of tracheal cells, making them more 452 
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susceptible to virus movement, and thereby facilitate systemic infections [134]. Damage to 453 

basement membranes are unavoidable during the systemic infection of the budded virus. 454 

Therefore, the coordinated down-regulation of multiple transcripts coding for both stable and 455 

dynamic components of the basement membranes (>15% of DETs) suggests weakened barriers 456 

in the gut epithelium, hemocytes, and tracheal cells in the host. The coordinated and targeted 457 

suppression of host basement membrane proteins could be under the regulation of the viral 458 

genome in order to facilitate membrane disruption during pathogenesis in susceptible hosts. 459 

 Massive reorganization of lipid membranes is expected as the virus escapes from 460 

midgut to the hemolymph or from the hemolymph to tracheoblasts [135, 136]. A recent study 461 

by Li et al., (2018) demonstrated that fatty acid biosynthesis was induced at early disease stages 462 

and led to the reduction  of virions in S. frugiperda Sf9 cell cultures, possibly as a host defense 463 

response. This supports the proposal that fatty acid synthesis is a key process that modulates 464 

viral infection levels in host cells [138]. In our study, we observed transcripts involved in fatty 465 

acid modifications strongly induced in both hosts in response to the AcMNPV infection (Fig. 4a 466 

and 6). While induced host transcripts were much fewer compared to the suppressed 467 

transcripts (Fig. 2a and b), it is notable that Desat1, stearoyl CoA desaturase, elongases (bond, 468 

CG31523, CG16904), and transcripts potentially coding for cytochrome P450 (CYP4G1) that 469 

collectively function in lipid biosynthesis, were among the few and most induced transcripts in 470 

the infected hosts (Fig. 4a). Taken both hosts together, lipid metabolism accounts for 50% of all 471 

induced DETs that were annotated with a known function (Supplementary Table 4). 472 

Desat1, a key gene in unsaturated fatty acid biosynthesis, was also among the most 473 

induced genes in the tobacco budworm (Heliothis virescens) hemocytes infected with 474 
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Helicoverpa zea single nucleopolyhedrovirus [139]. Although it is associated with starvation 475 

induced autophagy in Drosophila [140, 141], many other integral components of the autophagy 476 

pathway known to be under transcriptional regulation [142] were not noticeably impacted in 477 

our study. 478 

Whether host lipid synthesis genes are primarily involved in disease susceptibility or 479 

resistance is not clear. Distinguishing the specific involvement of these genes is challenging 480 

partly because of inadequate functional characterizations available for many of these genes in 481 

insect hosts. For example, in line with our results, previous studies have shown that CG16904 is 482 

induced during parasitic infections [143], but its function is unknown. Similarly, CYP4G1, a 483 

cytochrome P450 gene involved in cuticular lipid synthesis and highly conserved in insects, has 484 

been identified as the most highly expressed among 85 of CYP450 genes of Drosophila [83]. Yet, 485 

the role of CYP4G1 during viral infections has not been elucidated, despite its direct functional 486 

association with the cuticle development. It is unclear how the host defenses lead to the up-487 

regulation of these transcripts associated with lipid synthesis specifically during viral infections 488 

concurrently to the suppression of chitin-based processes and other structural components of 489 

the basement membrane. Based on the current study from intact infected hosts and supported 490 

by previous cell culture studies, it is imperative that the specific role of lipid synthesis in the 491 

complex host-pathogen interactions during AcMNPV infection are comprehensively 492 

investigated. 493 

 494 

Hemocyte-mediated innate immunity is suppressed during the budded virus infection 495 
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Hemolymph is the primary target tissue we used to deduce biological processes affected 496 

by the budded virus that is known to largely invade the hemocoel. Hemocytes are known to 497 

elicit innate immune responses upon pathogen infections. During an infection, pathogens can 498 

be phagocytosed by hemocytes, agglutinated by hemolectins and other associated proteins in 499 

hemostasis, subjected to the melanization defense response triggered by hemocytes, or 500 

destroyed by oxidants or other antimicrobial compounds produced by hemocytes [144]. In our 501 

study with the AcMNPV budded virus infection progressing into a systemic infection during the 502 

4th instar larvae, we see prominent transcript signals that suggest a suppression of the 503 

hemocyte mediated immune responses rather than transcriptional induction of those primary 504 

genes involved. This inference is supported by the coordinated suppression of hemolectin and 505 

hemocytin transcripts in infected S. frugiperda and T. ni hosts together with other transcripts 506 

such as the von Willebrand clotting factor (Fig. 3, 4b, 6, and Supplementary Table 4). The larval 507 

stage specific clotting factor, Hml and its homolog hemocytin are critical genes associated with 508 

hemostasis in insects [73–75]. 509 

Serine proteases and serine protease inhibitors play vital roles in hemocyte driven 510 

phagocytosis, melanization, and antiviral immune responses in addition to their other 511 

pleotropic functions in insect development [145, 146]. The melanization reaction is tightly 512 

coupled to hemostasis reactions induced by hosts under pathogen infections as an integral part 513 

of the host immune response [70–72]. Lepidopteran hosts are known to use serine proteases 514 

produced in hemocytes to trigger melanization reactions in the hemolymph [77, 147]. Yet, the 515 

detailed functional mechanisms of specific serine proteases in mounting defense responses 516 

against baculoviruses are poorly understood. In our study, a number of serine proteases and 517 
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serine protease inhibitors were co-suppressed in both infected hosts (Fig. 4b and 518 

Supplementary Table 4), implying a defense response compromised by the virus in infected 519 

hosts. It should be noted that both S. frugiperda and T. ni are known to be highly permissive 520 

hosts to AcMNPV infections [148, 149]. 521 

The lepidopteran innate immunity elicited by hemocyte aggregation and hemolymph 522 

melanization against bacterial pathogens is well established [70–72]. However, their role is 523 

largely unexplored under baculovirus infections, partly because, most studies have used cell 524 

lines and not intact tissues. Based on our results, the presence of the budded virus appears to 525 

strongly suppress the host immune responses initiated via hemocytes. 526 

 527 

During disease progression, cellular energy usage is altered with substantial consequences in 528 

redox homeostasis, primary metabolism, and development of the entire organism 529 

Synergistic to maintaining membrane integrity via coordination of chitin and lipid 530 

metabolism, host cell survival depends on being able to maintain energy metabolism and redox 531 

homeostasis to minimize oxidative stress during infection and prevent further damage to 532 

membranes and DNA [150]. The complex regulation of energy metabolism is tightly coupled to 533 

the cellular redox state and plays a central role in viral infections. Therefore, a failure to 534 

maintain homeostasis of these critical pathways suggests early signs of systemic progression of 535 

infection. 536 

We found multiple transcripts potentially coding for integral enzymes in primary energy 537 

metabolism and redox homeostasis suppressed in both host species by AcMNPV infection 538 

(Supplementary Table 4). Lavington et al., (2014) have demostrated that a handful of enzymes 539 
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in the central energy metabolism can shift the flux balance and energy homeostasis. These are 540 

often found to be regulated at the transcriptional levels. Due to their high connectivity to many 541 

primary metabolic pathways, the transcripts of these flux-controlling enzymes can be used to 542 

sense the energy state of the cell. One such key enzyme in maintaining the redox pools and 543 

energy balance is the malic enzyme (coded by Men and Men-b genes) that catalyzes malate to 544 

pyruvate while reducing NADP to NADPH [151, 152]. It has been estimated that 30% of the total 545 

cytosolic NADPH is produced by Men in Drosophila [153, 154] and it is a critical enzyme in 546 

coupling energy metabolism to ROS levels under oxidative stress. Transcripts coding for the 547 

malic enzyme were suppressed with several other glycolytic transcripts in T. ni, suggesting a 548 

transcriptional signal of altered redox balance in this host. Redox imbalances can cause severe 549 

oxidative stress leading to cell fatality. Specially for viral pathogens, host defense responses 550 

primarily include oxidative stress mitigation and ROS scavenging [155, 156]. Notably, three out 551 

of the four significantly induced transcripts in S. frugiperda (Fig. 4a, 6, and Supplementary Table 552 

4) are transcripts that code for enzymes that are induced as a defense response to minimize 553 

oxidative stress [85–87]. To further connect such components into biological pathways and 554 

identity specific molecular targets during baculovirus infections, a critical mass of genetic 555 

studies needs to accumulate on specific gene functions and transcriptomic responses in 556 

multiple lepidopterans. 557 

The overall transcriptomic profiles in both infected hosts also suggest a compromised or 558 

reduced allocation of energy into other critical larval development processes. We identified a 559 

number of transcripts critical for the development of wings, muscles, renal functions, and 560 

neurons in both infected hosts significantly suppressed (Supplementary Table 4). Concurrently, 561 
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we see a substantial fraction of ribosomal protein transcripts down-regulated in infected T. ni 562 

implying altered rates for protein translation and overall metabolism (Supplementary Table 4). 563 

This reduction is also observed in S. frugiperda but to a lesser magnitude. A number of 564 

ribosomal proteins were down-regulated in S. frugiperda in response to the AcMNPV infection 565 

at a significant level (q-value ≥0.95), but the fold change was marginal (less than 4-fold) 566 

(Supplementary Table 4). Taken together, these results suggest that critical cellular and 567 

metabolic processes seem to have been significantly affected, even if only 1% of the 568 

transcriptome in the infected hosts showed significant reduction in response to the AcMNPV 569 

infection. The impaired cellular and metabolic processes consequently may have affected insect 570 

development as suggested by the suppression of several transcripts associated with the insect 571 

juvenile hormone synthesis and molting hormone regulation. In summary, AcMNPV infection 572 

affects multiple processes from cellular to whole organism level. 573 

 574 

Signaling processes associated with AcMNPV infection 575 

 The infected hemocoel of both hosts is expected to carry disease signaling as a systemic 576 

signal to activate immune responses as well as signaling through pheromonal pathways. 577 

Pheromonal signaling in insects is widely studied as a form of chemical signaling that can lead 578 

to aggregation of individuals specially during reproduction [157]. Several studies have 579 

discovered long-chain fatty acids that attract other larvae using novel pheromonal signaling 580 

pathways as a mechanism during immature larval stages to aggregate individuals [158–162]. 581 

While pheromonal signaling involves complex genetic and metabolic networks, Desaturase1 582 

(Desat1) is a key enzyme that is associated with pleiotropic effects on both pheromone 583 
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production and perception [163–165]. Similarly, the lipid elongase gene, bond is also required 584 

for pheromonal signaling and known for its role in conspecific signaling [68]. Desat1 and bond 585 

are co-induced in infected hosts (Fig. 4a and 6), while, fatty acid biosynthesis and pheromone 586 

metabolism were among the enriched functions in response to the AcMNPV infection in our 587 

study (Fig. 6 and Supplementary Fig. 4). The underlying genetic mechanisms of how 588 

pheromonal signaling pathways may have been exapted into a disease signaling pathway is 589 

unknown, but previous studies have confirmed the induction of these pathways in insects 590 

during viral infections [162, 166, 167]. The induction of a pheromonal pathway leading to 591 

conspecific aggregation during baculovirus infections could facilitate disease progression 592 

between individuals as non-infected larvae in close proximity to larvae that are undergoing 593 

liquefaction have a high risk in getting infected in the next disease cycle. Therefore, a 594 

pleiotropic gene such as Desat1 is a likely candidate to be co-opted for behavioral traits evolved 595 

under an arms race between baculoviruses and their lepidopteran hosts. 596 

Alternatively, lipid synthesis genes could play a role in disease signaling systemically 597 

within the infected larvae by triggering ROS signaling [141, 168, 169]. The co-induction we 598 

observed for GST and other oxidative stress indicators (Fig. 4a and 6) in S. frugiperda may 599 

further support this idea of the involvement of ROS pathways in disease signaling. 600 

 601 

The role of AcMNPV genes found in the host hemolymph 602 

The AcMNPV protein-coding genes regulate host cellular and physiological processes as 603 

well as the production of the two distinct types of enveloped virions: the occlusion-derived 604 

virions and the budded virions [15]. Our viral transcript quantification suggests that the budded 605 
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virions are more abundant than occlusion-derived virions in the infected hemolymph samples 606 

(Fig. 5a and Supplementary Fig. 6a and b), an observation also supported by previous studies 607 

[5]. The occlusion-derived virion is primarily involved in the individual-to-individual 608 

transmission, while the budded virion is used for cell-to-cell transmission within an individual. 609 

The transcriptomic signature of the eukaryotic host genome is overrepresented 610 

compared to the viral genome expressed in our RNA samples that capture the host-parasite 611 

interactions. Yet, the specific quantification of transcripts made feasible with RNA-seq data 612 

allows the detection of clear biological signals from the viral parasite in host tissue. The infected 613 

4th instar individuals of T. ni had a higher proportion of viral transcripts per million reads 614 

sequenced as well as a lower viral dose needed to achieve LD95 compared to S. fruigiperda (Fig. 615 

1, 5a, and Supplementary Table 2b). 616 

 617 

Viral entry to cells, assembly, and egress 618 

The two baculovirus virion types have both distinct and shared nucleocapsid and 619 

envelope proteins that serve as structural components, and perform roles in entry and exit 620 

from cells [5]. The budded virions following their initial budding from the midgut epithelial cells 621 

get circulated in the hemolymph where they can bind and enter most cell types in contact with 622 

the hemolymph [5, 149]. Many of the essential genes that function in the egress pathways also 623 

tend to have functions in forming the nucleocapsid or the envelope. For example, Ac75 is a core 624 

gene that is required for exiting the nucleus in the egress pathway used by the budded virus, 625 

and it is involved in the formation of intranuclear microvesicles as well as envelope and 626 
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nucleocapsids of the occlusion-derived virus [170, 171]. It is found to be the second most highly 627 

expressed viral gene in both hosts in our study (Fig. 5b and Supplementary Table 6). 628 

The entry of occlusion-derived virus into the midgut epithelial cells primarily depends on 629 

a protein complex formed of nine core PIF proteins that are integral to the occlusion derived 630 

envelope [5]. It is interesting to note that eight of these nine viral transcripts, PIF-0/Ac138, PIF-631 

1/Ac119, PIF-2/Ac22, PIF-3/Ac115, PIF-4/Ac96, PIF-5/Ac148, PIF-6/Ac68, PIF-7/Ac110 were not 632 

only detected in the infected hemolymph samples in our study, but also found at a very high 633 

expression level ranging from 101 to 728 RPKM in infected samples (Fig. 5a and b). It is unclear 634 

why we observed such a striking signal for PIFs in the hemolymph that could be associated with 635 

the occlusion derived virus. Those samples with any extraneous tissue such as midgut residue 636 

were not used for further processing to avoid contamination of our hemolymph samples used 637 

for RNA extraction. It is possible that these PIF genes are transcribed but not translated until 638 

much later or PIF proteins may have yet-to-be discovered roles in the budded virus stage. 639 

The cell recognition and entry of budded virus into the host cells is primarily controlled 640 

by a single glycoprotein, GP64 coded by the core gene, Ac128 [5]. This is also one of the most 641 

abundant envelope proteins in the budded virus that functions in binding with the host plasma 642 

membrane [172–174]. As expected, we detected very high transcript abundance for Ac128 in 643 

both infected hosts (Fig. 5b, RPKM of 461 in S. frugiperda and 937 in T. ni). Given that Ac128 is 644 

easily detectable in both infected hosts; its essential role in viral entry into cells that can initiate 645 

systemic and irreversible infections leading to the death of the host; and its high sequence 646 

conservation [175, 176], make it an attractive candidate gene in the search for molecular 647 

targets best suited to create host specific biopesticide developemnt. 648 
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 649 

 Viral genes that influence host cell cycle and molting 650 

The host cell cycle regulation affected by the viral genes is among the most invariable 651 

processes expected during host-viral interactions. AcMNPV is known to cause cell cycle arrest in 652 

their lepidopteran hosts [177]. Therefore, in our study it was not surprising to detect a major 653 

cell cycle inhibitor, Ac144/odv-ec27 coding for a cyclin as the highest expressed virus gene in 654 

both host species (Fig. 5a) [19, 104]. A large number of cyclins serve as key checkpoint 655 

regulators in the complex gene regulatory network of the eukaryotic cell cycle [178]. Therefore, 656 

future studies investigating specific gene-to-gene targets of host cyclins and their viral cyclin 657 

inhibitors could identify viral strains targeting a specific host or even a specific developmental 658 

stage of the host to facilitate safer biocontrol using baculoviruses. 659 

Baculoviruses arrest the molting of infected lepidopteran larvae [15, 91]. This process is 660 

primarily governed by the ecdysteroid UDP-glucosyltransferase (EGT), a viral enzyme that 661 

inactivates the insect molting hormone, ecdysone [123]. Ac15 in the AcMNPV genome codes for 662 

EGT. In our study, Ac15 is among the most highly expressed viral transcripts found in the 663 

infected hemolymph of S. frugiperda and T. ni (Fig. 5b, 6, and Supplementary Table 6). Previous 664 

studies also have reported higher EGT activities in the hemolymph compared to other tissue 665 

[179]. There is great interest in the viral induced behavioral effects of lepidopteran hosts since 666 

Hoover et al., demonstrated  the role of EGT on the climbing behavior of gypsy moth larvae 667 

[180]. Subsequent studies have confirmed the role of EGT in influencing behavioral traits of 668 

other hosts including T. ni and Spodoptera exigua [181, 182]. However, much of the genetic 669 
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basis is unknown for these behavioral traits and at least in Spodoptera hosts, EGT alone is 670 

reported to be insufficient to elicit behavioral traits [181]. 671 

 672 

Host transcriptional responses to the budded virus during the systemic infection stage differs 673 

from the midgut responses to the occlusion-derived virus during the primary infection stage 674 

 Shrestha et al., (2019) described the host transcriptomic landscape of the midgut during 675 

the primary infection phase of AcMNPV in T. ni 5th instar larvae primarily caused by the 676 

occlusion-derived virus. The current study that focusses on the systemic infection stage 677 

predominantly caused by the budded virus in 4th instar larvae of two lepidopteran hosts 678 

including T. ni depicts a very different host transcriptomic landscape. The most consistently up-679 

regulated transcripts (at least 16 fold) observed in the midgut in the study by Shrestha et al., 680 

(2019) included, REPAT (REsponse to PAThogens), Atlastin (involved in ER and vesicle 681 

trafficking), cyclic GMP-AMP synthase (cGAS) genes that can bind to cytosolic viral DNA, 3 682 

ubiquitin ligase SIAH, a zinc finger CCHC, a peroxidase, and a chymotrypsin-like serine protease. 683 

None of these transcripts were found to be significantly expressed in response to the infection 684 

in the infected hemolymph in our study. An earlier study had shown increased REPAT in the 685 

midgut of baculovirus infections of Spodoptera exigua larvae [183] similar to the observations 686 

made by Shrestha et al., (2019) for T. ni. These previous observations and the absence of 687 

significant changes to these transcripts in the hemolymph during systemic infections imply that 688 

these host transcripts may be specific to the infection phase or tissue. There is a clear 689 

transcriptomic signal given by multiple key apoptosis-related genes induced in the infected 690 

midgut of T. ni as reported by Shrestha et al., (2019). While we do not observe the induction of 691 
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the same transcripts in our study, several other apoptosis-related genes were suppressed in the 692 

infected hemolymph during systemic infections (Fig. 6). 693 

For certain time points post-infection in the midgut, Shrestha et al., (2019) reported up-694 

regulation for several cuticle-related transcripts. The transcriptomic signal associated with 695 

cuticle-proteins are likely stemming from tracheaoblasts in the hemolymph in our study 696 

contrasting to the transcripts reported by Shrestha et al., (2019) likely coding for cuticle-697 

proteins affected in the peritrophic matrix lining the midgut during the occlusion-derived virus 698 

propagation. The invasion of the budded virus into the tracheal epidermis is essential to the 699 

progression of the systemic infection as the host cannot shed these cells unlike the gut 700 

epithelium infected by the occlusion-derived virus that can be shed as seen in semi permissive 701 

hosts [149]. This may explain why we observe exceedingly more transcripts potentially coding 702 

for cuticle, chitin, and associated membrane processes clearly suppressed as a result of 703 

successful disease progression than in infected midgut cells reported by Shrestha et al., (2019). 704 

The most notable consistently down-regulated genes (by at least 16-fold), during the 705 

occlusion-derived virus invasion of the midgut, mainly included orthologs of flippase, and genes 706 

coding for a number of Cytochrome P450 enzymes, serine proteases, calcium binding protein P, 707 

and dehydroecdysone 3 alpha- reductase as noted by Shrestha et al., (2019). None of these 708 

were significantly changed during the budded virus infection in either host in the current study. 709 

While there were hardly any direct overlap of down-regulated transcripts between the primary-710 

midgut infection and the secondary-systemic infection, we see melanization as a suppressed 711 

pathway in both studies. Shrestha et al., (2019) described the down-regulation of serine 712 

proteases involved in the melanazation cascade similar to our observation for the suppression 713 
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of multiple serine proteases thought to be involved in melanization and other defense 714 

responses (Fig. 5b). Contrasting to the overall observations made by Shrestha et al., (2019) 715 

during the midgut infection, the hemolymph of both hosts in our study during systemic 716 

infection appear to clearly induce transcripts associated with oxidative stress while suppressing 717 

those related to hemostatis, chitin metabolism, and tracheal development. 718 

 719 

Key host genes affected by the AcPNMV infection are targets of commercially available 720 

pesticides used against lepidopteran pests 721 

 The baculovirus genes directly regulate primary metabolic pathways of the host during 722 

viral replication that overwhelms the energy balance of host cells, eventually leading to cell 723 

death. The commonly targeted host genes by the viral pathogen include CHS1, and transcripts 724 

associated with actin driven cellular functions as well as genes involved in insect hormone 725 

regulation. It is interesting to note that many of the chemical insecticides also use the same 726 

genes as primary targets to control lepidopteran pests. However, unlike chemical insecticides, 727 

baculoviruses continue to spread in the field post-host liquification. 728 

 Many insecticides developed against insect pests target chitin biosynthesis as a more 729 

specific and safer alternative to generic insecticides such as pyrethroids and organophosphates. 730 

These chitin synthesis inhibitors largely include the benzoylphenylurea (BPU) group of 731 

insecticides, oxazolines, tetrazines, thiadiazines, thiazolidines, and triazines [184, 185]. All chitin 732 

biosynthesis inhibitors act on chitin synthesis at various stages of the complex biochemical 733 

pathways leading to the interruption of chitin production and cuticle development. The BPUs 734 

are shown to target CHS1 to inhibit chitin metabolism early in the biosynthesis pathway [186]. 735 
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Notably, CHS1/kkv is the main chitin synthase required for epicuticular stability, intact 736 

procuticle, maintenance of epidermal morphology, and sclerotization and pigmentation of the 737 

cuticle [187]. A number of genes associated with chitin synthesis and cuticle modifications 738 

(discussed earlier) are among the most highly suppressed transcript cluster in both hosts during 739 

the systemic infection. 740 

 Pyridalyl is a commonly used potent insecticide against lepidopteran pests [186]. It has 741 

been used to control fall armyworm outbreaks in South Africa [188, 189]. The molecular 742 

mechanism of Pyridalyl generates excessive amounts of ROS that eventually leads to severe 743 

oxidative stress and cell death in lepidopterans [190]. Among the handful of strongly induced 744 

genes during the systemic infections of the budded virus, GST and other genes associated with 745 

oxidative stress are notable (Fig. 4a and Fig. 6). Further induction of these oxidative stress 746 

pathways disproportionately divert energy to oxidative stress responses that could expedite cell 747 

death and, in turn, host death. The current observation made in our study further supports the 748 

insecticidal potential of AcMNPV strains selected to induce host oxidative stress responses 749 

similar to what observed with the Pyridalyl activity. 750 

 Double stranded RNAs (dsRNAs) that mimic insect transcripts have emerged as a 751 

powerful tool for targeted pest control. For example, dsRNAs of actin transcripts used as foliar 752 

sprays have shown to be a promising insecticide for Colorado potato beetles that damage 753 

multiple Solanaceae crops [191]. In line with our findings made in the current study, 754 

baculoviruses are known to target actin-mediated cellular processes. Actin is present in all cells 755 

and customization to target-specific lepidopteran actins or a regulatory gene of actin-mediated 756 

processes is equally achievable with baculoviruses. Further, baculoviruses are more effective as 757 
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delivery agents in controlling host genes than the passive delivery methods available for dsRNA-758 

based insecticides [192]. The use of recombinant baculovirus strains to control pests has been 759 

proposed for over decades and has recently gained more attention as sustainable biopesticides 760 

[193–196]. Transcript level inhibition of the juvenile hormone biosynthesis or alterations to its 761 

regulation is a common target attempted in recombinant baculoviruses developed as potential 762 

biopesticides [197, 198]. Host genes associated with juvenile hormone regulation were 763 

noticeable among suppressed transcripts specially in the infected T. ni even when wild type 764 

AcMNPV strains were used [199] similar to observations made in our current study. 765 

 766 

Conclusions 767 

We identified extensive overlap between biological processes that were represented by 768 

differently expressed genes in the two hosts in response to the virus as well as convergence of 769 

functional clusters of genes expressed in the virus in response to the two hosts. The overall host 770 

transcriptomic signals suggested chitin-associated processes and basement membrane integrity 771 

were compromised together with hemocyte-initiated immune responses in both infected hosts. 772 

Oxidative stress indicators, moderately induced by the viral infection, may play a role in 773 

systemic disease signaling with the induction of selected classes of fatty acids (Fig. 6). The 774 

entire core viral genome was expressed during the systemic infection phase in both hosts, with 775 

a bias towards processes associated with budded virus production and transport. The host-virus 776 

interactions deduced from co-expressed host and viral transcripts indicate an overall 777 

transcriptomic landscape overwhelmed by viral counter defenses that facilitate disease 778 

progression. The specific transcripts and the convergent biological processes, highlighted in our 779 
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study as highly affected during infections, identify key genes and pathways as potential 780 

molecular targets in designing recombinant AcMNPV strains as molecular tools in sustainable 781 

pest management. 782 

 783 

Methods 784 

Insect and virus source material 785 

Given the natural progression of an epizootic in the field and the need to collect a 786 

considerable amount of hemolymph for the transcriptome analysis, we used 4th larvae in the 787 

experiments outlined below. S. frugiperda and T. ni were obtained as eggs from Benzon 788 

Research Inc. (Carlisle, PA, USA). Once the eggs hatched, we reared them in individual one-789 

ounce cups on artificial diet (Southland Products Inc., Lake Village, AR, USA) at 28.9 °C and a 16 790 

hour-light and 8 hour-dark cycle until they reached the 4th instar.  Wild-type AcMNPV strain E2, 791 

which was used in this study, was field collected. To amplify the virus for the experiment, the 792 

virus was passed through Chrysodeixis includens, the soybean looper. 793 

 794 

Determination of LD95 of AcMNPV for S. frugiperda and T. ni 795 

We used a standard dose-response protocol and Bayesian analysis to quantify the lethal 796 

dose at which 95% of the larvae would be expected to succumb to viral infection or the LD95.  797 

For the experiment, thirty recently molted 4th larvae, which were starved for 24 hours, were fed 798 

a known amount of virus on a small diet cube. The virus was suspended in a 3 μl droplet of 799 

deionized water. One set of larvae was used as a control and consumed a diet cube that had 800 

been only inoculated with 3 μls of deionized water. None of the controls became infected. Only 801 
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larvae that consumed the entire diet cube were used in the experiment to ensure that the 802 

larvae received a full dose of the virus. Viral doses varied depending upon the species (Fig. 1). 803 

After consuming the diet cube, larvae were placed on one-ounce cups and reared until 804 

pupation or death. Death resulting from AcMNPV infection was confirmed either by host 805 

liquefaction in the diet cup or by examining hemolymph under a light microscope [7]. For T. ni, 806 

the experiment was conducted twice, since the first set of experiments used doses that were 807 

too high resulting in almost 100% mortality and, thus, making it difficult to estimate the LD95. 808 

The second set of experiments used much lower doses. We combined the data from the two 809 

experiments for the T. ni dose-response analysis. 810 

 To analyze the data, we used a Bayesian framework with vague priors to fit a logistic 811 

regression model [200] for each species. The associated slope and intercept of the fitted model 812 

was used to calculate the LD95. All analyses were conducted in R (R core Team, 2018) using the 813 

JAGS [202] and the R2JAGS packages [203]. For each analysis, three chains were run from 814 

different starting points. The first 10,000 draws from the Bayesian Markov chain Monte Carlo 815 

(MCMC) were removed to account for transient dynamics at the start of the chain. The 816 

remaining 90,000 draws were retained to estimate the parameters of the logistic regression. All 817 

non-discarded draws were retained to ensure precise parameter estimates [204]. After a visual 818 

inspection of the chains for convergence, multiple tests were used to ensure that the chains 819 

had converged including the Gelman-Rubin and the Hiedelberg-Welch tests [205]. The chains 820 

for each analysis were combined to form a posterior distribution. Additionally, we conducted a 821 

posterior predictive check to test whether the predicted model fit the data collected [206]. As 822 

part of the posterior predictive check, Bayesian p-values were calculated. Values near 0.50 823 
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indicate that the model fits the data reasonably well [207]. The Bayesian logistic regression for 824 

both species passed each of the individual tests outlined above. 825 

 826 

Insect treatment with AcMNPV virus 827 

Using the LD95 calculated from the dose-response experiments, 4th instar larvae from 828 

both species were fed the appropriated dose of virus (S. frugiperda, 104.5 OBs; T. ni, 103 OBs) on 829 

a diet cube using the same method as the dose-response experiment. Control larvae were fed a 830 

diet cube inoculated with deionized water. After 30 hours, 30 individuals per sample were used 831 

to extract the hemolymph. 832 

 833 

Extraction of hemolymph total RNA and preparation of RNA-seq libraries 834 

Prior to hemolymph extraction, each individual was chilled to ease the extraction 835 

process. A pre-chilled microcentrifuge tube was filled with a 25 𝜇l solution containing 10 units 836 

of RNAseOut in a 0.1 % PTU dissolved in a PBS solution. The rear proleg of the 4th instar larva 837 

was then cut with micro scissors. We collected hemolymph from the wound and pipetted the 838 

hemolymph into a pre-chilled Eppendorf tube. The solution was then vortexed, immediately 839 

placed in a dewar filled with liquid nitrogen, and stored at -80 °C until needed. 840 

Total RNA was isolated from hemolymph samples using RNeasy Mini Kit (Qiagen, Hilden, 841 

Germany). On-column DNase digestion was carried out with the RNase-free DNase Kit (Qiagen), 842 

followed by a further purification step using RNeasy Mini Spin Columns (Qiagen). The quantity, 843 

quality, and integrity of the total RNA was sequentially assessed using the A260/A280 values 844 
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reported with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE), agarose gel 845 

electrophoresis, and a BioAnalyzer (Agilent Technologies, Inc.). 846 

RNA-seq library preparation and sequencing were done at the University of Illinois at 847 

Urbana-Champaign Roy J. Carver Biotechnology Center. Ribosomal RNA (rRNA) depletion was 848 

performed on the RNA samples using the RiboZero kit (Illumina, San Diego, CA) following the 849 

manufacturer’s instructions. Capturing polyA-enriched RNA from total RNA is a more customary 850 

approach for eukaryotic RNA-seq experiments. However, we decided to use rRNA depleted 851 

samples because we planned to identify both insect and viral transcripts which may not always 852 

contain 3`polyA sequences. The rRNA-depleted samples were used for TruSeq Stranded RNA 853 

Sample Prep kit to produce 5´ to 3´ strand-specific cDNA libraries (Illumina). A TruSeq SBS 854 

sequencing kit version 3 (Illumina) was used following the manufacturer's instructions to 855 

generate the sequencing libraries. All libraries were pooled, barcoded, and multiplexed on two 856 

lanes of an Illumina HiSeq2000 platform to run for 101 cycles. Randomly selected reads of 100 857 

nucleotide lengths from each library were processed and demultiplexed with Casava 1.8.2 that 858 

generated over 370 million reads with quality scores over 30. 859 

 860 

Sequencing, assembly, and annotation of the reference transcriptome 861 

To allow accurate identification of host transcripts from two species, we needed to 862 

create two reference transcriptomes for the hemolymph of 4th instar caterpillars. RNA-seq 863 

reads were processed to generate a reference transcriptome assembly and annotation 864 

following a custom pipeline published previously [208]. Briefly, raw Illumina reads were 865 

subjected to quality checks using FastQC and de novo assembled using Trinity v2.2.0 [209] using 866 
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default parameters. Contigs with low read support, contaminants, and artifacts were removed 867 

as described in Oh et al., 2015 . We further clustered contigs showing >95% sequence identity 868 

over >70% of total contig length of the shorter contig in each pairwise alignment, using CD-HIT-869 

EST v4.6 [211] to minimize redundancy. For each cluster, the transcript with the longest open 870 

reading frame (ORF), predicted by Transdecoder v2.0.1 (https://transdecoder.github.io/), was 871 

selected as a representative transcript model in the final protein-coding reference 872 

transcriptome. The completeness of each reference transcriptome assembly was evaluated 873 

using Benchmarking Universal Single-Copy Orthologs (BUSCO) database v2.1 [212] with the 874 

metazoan dataset (metazoa_odb9) and default settings. A series of sequential BLAST searches 875 

found the best possible annotation for both coding and non-coding transcript sequences, using 876 

the NCBI Drosophila mRNA database, NCBI-insects-reference RNA (refseq_rna), and NCBI-non 877 

redundant (nr) databases for all eukaryotic proteins and RNA, with a maximum e-value cutoff of 878 

10-5. 879 

An ideal transcriptome is expected to consist of all expressed genes in a given condition. 880 

This would include both coding and non-coding transcripts. However, the non-coding transcript 881 

pool is highly incomplete even for the premier model species. Therefore, it would be 882 

impractical to assign reasonable functional annotations for contigs that may represent true 883 

non-coding transcripts in our study. Additionally, without any canonical structural features to 884 

use in assessing the completeness of non-coding transcripts, those transcripts could also 885 

contain a highly fragmented fraction of the assembly. Therefore, we divided our assembled 886 

transcriptome into coding and non-coding reference transcriptomes and only used the protein-887 

coding transcriptome for our current analyses. Despite the lack of resources to fully annotate 888 
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putative non-coding transcripts, this pool of non-coding transcripts likely represents a genetic 889 

component that has potential to be useful as a collective resource from diverse species as more 890 

high throughput data driven projects are conducted. Therefore, we include Table 1 and 891 

Supplementary Fig. 1, where we report a total of 101,169 and 147,772 processed non-coding 892 

transcripts, with a mean length of 495 and 549nt, for S. frugiperda and T. ni, respectively, as an 893 

additional molecular resource included in our data deposit to NCBI BioProject PRJNA664633. 894 

The protein-coding reference transcriptome was used for the downstream RNA-seq 895 

analysis. Each sequence used as a proxy to represent gene/transcript models in our study when 896 

assessing biological processes will be designated by its gene name, followed by the shortened 897 

form of the gene name (if available), the sequence ID given by our annotation process, and the 898 

FlyBase or NCBI accession number used for its annotation in parenthesis, as in the example, 899 

Chitinase6 (Cht6, TR50740|c0_g1_i1/ FBgn0263132). 900 

 901 

RNA-seq analysis 902 

The goal of our experiment was to search for shared disease responses inferred from 903 

the two host species affected by AcMNPV infection using three sets of biologically independent 904 

RNA-seq datasets. Two datasets were from S. frugiperda and one set was from T. ni. The RNA-905 

seq reads were aligned to the relevant reference transcriptome using bowtie [213] with a seed 906 

alignment length per read set to 50nt. Reads unambiguously mapped to each gene model were 907 

counted using a custom python script to generate read-count values as a proxy for gene 908 

expression. We used NOISeq [214] with a q-value cutoff of ≥0.95 to identify transcripts 909 

differently expressed between control and AcMNPV-infected samples in both insect species. 910 
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Gene ontology (GO) terms enriched among differently expressed transcripts (DETs) were 911 

detected using BiNGO at FDR adjusted p-value ≤ 0.05 [215]. We used the entire reference 912 

protein-coding transcriptomes as custom backgrounds to test for functionally enriched clusters 913 

when inferring the shared biological processes identified from each host species. GO 914 

annotation of reference protein-coding transcriptomes for the two insect species was based on 915 

sequence similarity compared to Drosophila melanogaster gene models that have assigned GO 916 

terms. We used GOMCL [216] to identify the non-redundant functional clusters from the 917 

primary set of enriched functions generated using BINGO [215] for each species. 918 

To assess the transcripts originating from the viral genome, particularly in the infected 919 

samples, RNA-seq reads were mapped to the AcMNPV reference genome [16] using bowtie 920 

[213]. The read counts mapped to the viral genome were normalized by converting to RPKM 921 

values (Reads Per Kilobase Million) for each viral gene expressed in the insect transcriptomes. 922 

Total read counts were calculated by adding the reads mapped to the viral genome and insect 923 

gene models for control and AcMNPV infected samples as used in a previous study [217]. 924 

 925 

List of abbreviations 926 

AcMNPV- Autographa californica Multiple Nucleopolyhedrovirus 927 

BUSCO- benchmarking universal single-copy orthologs 928 

DETs- differently expressed transcripts 929 

DNA- deoxyribonucleic acid 930 

FDR- false discovery rate 931 

GO- gene ontology 932 
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ORF- open reading frame 933 

RNA-seq- RNA sequencing 934 

ROS- reactive oxygen species 935 

RPKM- read per kilobase of transcript per million mapped reads 936 

TCA cycle- tricarboxylic acid cycle 937 
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Figures, tables, and additional files 1514 

Figure 1. Lethal AcMNPV dose determination for Spodoptera frugiperda and Trichoplusia ni. The 1515 

effects of increasing doses of baculoviruses on probability of larval death for [a] S. frugiperda 1516 

and [b] T. ni along with the corresponding [c] box plot of the lethal dose at which 95% of the 1517 

individuals would be expected to die identified as LD95. For [a] and [b], the solid line is the 1518 

median dose-response curve and the dashed lines are the 95% credible intervals for the curve. 1519 

The large filled points represent the mean response for each dose and the small open points 1520 

are the individual data. These data are jittered for ease of presentation. For [c] the dark line of 1521 

the box plot is the median with the box encompassing the interquartile range between the first 1522 

and third quartiles and the whiskers represent 1.5 times the interquartile range. 1523 

Figure 2. Host transcriptomic response to AcMNPV infection. Summary MD plots of the 1524 

normalized expression values for control and AcMNPV treated samples for [a] S. frugiperda 1525 

coding transcripts (18 up- and 157 down-regulated transcripts) and [b] T. ni coding transcripts 1526 

(20 up- and 118 down-regulated transcripts). Differently expressed transcripts (DETs) at a q-1527 

value cutoff of 0.95 are indicated in red dots. All the DETs with their respective fold changes are 1528 

listed in the Supplementary Table 4. Heatmaps show log2 normalized expression of control, 1529 

AcMNPV-infected, and log2 fold changes of 17,873 transcripts for S. frugiperda [c] and 18,203 1530 

transcripts of T. ni [d]. The genes are clustered based on their expression strength similarity. 1531 

Figure 3. Overview of enriched functional processes represented by suppressed genes in the 1532 

infected host transcriptomes. Functional clusters of S. frugiperda [a] and T. ni [b] transcripts 1533 

suppressed upon AcMNPV infection. Six and two distinct functional clusters were identified for 1534 

S. frugiperda and T. ni respectively. The network connect GO terms, marked as nodes 1535 
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connected by edges that represent a minimum overlap of 80% genes (in the smaller GO term of 1536 

the pair) based on Markov clustering (MCL). Distinct colors indicate shared functional groups 1537 

within the network. The radius of the node represents the number of genes and the shade 1538 

represents FDR adjusted p-value of ≤0.05 enrichment assigned using GOMCL [216]. Each cluster 1539 

is named based on the largest enriched GO term in a given cluster. 1540 

Figure 4. S. frugiperda and T. ni differently expressed transcripts (DETs) in response to the 1541 

AcMNPV infection. Induced DETs are shown in [a] and summarized groups that represent a 1542 

total of 101 in S. frugiperda and 118 suppressed DETs in T. ni are given in [b]. 1543 

Figure 5. The AcMNPV genome expressed in the host hemolymph. [a] The circular plot show 1544 

the normalized gene expression of AcMNPV genes in infected S. frugiperda and T. ni. Core 1545 

baculovirus genes are marked with asterisks. [b] Expression of AcMNPV genes associated with 1546 

entry and egress from insect hosts, interruption to host metabolic, cellular, and developmental 1547 

processes, and viral protein production. 1548 

Figure 6: Overview of host and viral transcriptome responses in the hemocoel from a 4th instar 1549 

larva infected with AcMNPV at the systemic infection stage. Prominent host genes that respond 1550 

to the viral infection are listed in the cells/tissues most likely to express those genes. Induced 1551 

genes are in red and repressed genes are in blue. Highly abundant viral genes are given in 1552 

green. 1553 

Table 1. Summary of de novo assembled reference transcriptomes of S. frugiperda and T. ni. 1554 

Supplementary Figure 1. Assembled contig length frequency distribution for S. frugiperda and 1555 

T. ni reference transcriptomes. [a] Coding contigs and [b] non-coding contigs. Comparison of 1556 
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average CDS length [c] and number of protein coding transcripts [d] between S. frugiperda and 1557 

T. ni compared to B. mori, H. armigera, S. litura, and the T. ni genome. 1558 

Supplementary Figure 2. Quality assessments of S. frugiperda and T. ni reference 1559 

transcriptomes. [a] proportions of different ORF types and [b] assembly completeness of the 1560 

references created in this study compared to the previously published S. frugiperda draft 1561 

genome and transcriptomes (Kakumani et al., 2014 and Legeai et al., 2014) assessed using 1562 

BUSCO. 1563 

Supplementary Figure 3. Annotation summary of the S. frugiperda and T. ni transcriptome 1564 

assembly for coding transcripts. Functional annotation of reference transcriptome was 1565 

performed using sequential BLAST with an e-value cutoff 10-5 searched within the drosophila 1566 

mRNA database, insect reference RNA (refseq_rna) database, and non-redundant (nr) 1567 

database. The annotations of reference transcriptome for both species are provided in the 1568 

Supplementary Table 3. 1569 

Supplementary Figure 4. Principle component analysis (PCA) of ortholog gene pairs between S. 1570 

frugiperda and T. ni. 1571 

Supplementary Figure 5. Clustered enriched functional processes among induced T. ni 1572 

transcripts upon AcMNPV infection. The full list of enriched GO terms and GOMCL cluster 1573 

output are included in the Supplementary Table 5. 1574 

Supplementary Figure 6. Expression of AcMNPV viral genes in infected S. frugiperda and T. ni. 1575 

Genes were classified as nucleocapsid-associated [a] or envelope-associated [b] following 1576 

Blissard and Theilmenn (2018). Both categories were further divided into genes involved in 1577 
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occlusion derived virus (ODV), budded virus (BV), and common to both the virion types. [c] Top 1578 

30 highly abundant viral genes found in S. frugiperda and T. ni infected larvae. 1579 

Supplementary Table 1. RNAseq data generated for each sample. 1580 

Supplementary Table 2. [a] Summary of short reads mapped to S. frugiperda and T. ni 1581 

reference transcriptomes and [b] percentage of short reads mapped to the AcMNPV viral 1582 

genome (Maghodia et al., 2014) for control and AcMNPV treated samples. 1583 

Supplementary Table 3. Annotation of transcript models with predicted ORFs for S. frugiperda 1584 

and T. ni transcriptome assembly. 1585 

Supplementary Table 4. List of DETs for S. frugiperda and T. ni in response to AcMNPV 1586 

infection. 1587 

Supplementary Table 5. Gene ontology enrichment analysis for DETs for S. frugiperda and T. ni. 1588 

Supplementary Table 6. Normalized expression value of AcMNPV genes in S. frugiperda and T. 1589 

ni infected hosts. 1590 
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Figure 4. 1617 
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