

1 **A tale of two transcriptomic responses in agricultural pests via host defenses and viral
2 replication**

3 Pramod Pantha, Subbaiah Chalivendra, Dong-Ha Oh, Bret Elderd*, Maheshi Dassanayake*

4 ¹Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton
5 Rouge, LA 70803, USA

6

7 Corresponding Authors

8 Maheshi Dassanayake (maheshid@lsu.edu)

9 Bret Elderd (elderd@lsu.edu)

10

11 **Abstract**

12 **Background:** *Autographa californica* Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus
13 with a high potential for its use as a biopesticide against arthropod pests. The budded form of
14 the virus causes a systemic infection when it escapes the midgut to enter the hemolymph of
15 susceptible hosts. Yet, the specific molecular processes underlying the biocidal activity of
16 AcMNPV on its insect hosts are largely unknown.

17 **Results:** In this study, we describe the transcriptional responses in two major pests, *Spodoptera*
18 *frugiperda* and *Trichoplusia ni*, to determine the host-pathogen responses during AcMNPV
19 infection, concurrently with the viral response to the host. We assembled species-specific *de*
20 *novo* reference transcriptomes of the hemolymph to identify key transcripts that respond
21 during pathogenesis in these arthropod models where genomic resources are sparse. We found

22 that the suppression of transcriptional processes related to chitin, a metabolite critical for
23 basement membrane stability and tracheal development are central in establishing a systemic
24 infection. Synergistic transcriptional support was observed to suggest suppression of immune
25 responses and induction of oxidative stress indicating disease progression in the host. The
26 entire AcMNPV core genome was expressed in the host hemolymph and viral genes
27 predominantly associated with the budded virus replication, structure, and movement were
28 more abundant than those associated with the occlusion-derived virus. Genes known to directly
29 arrest host cell cycle and development were among the most abundant AcMNPV transcripts in
30 infected hosts. Interestingly, several of the host genes (e.g. *Chitin synthase*) that were targeted
31 by the pathogen as revealed by our study are also targets of several chemical insecticides
32 currently used commercially to control arthropod pests.

33 **Conclusions:** Our results reveal an extensive overlap between biological processes represented
34 by genes differently expressed in both hosts, as well as convergence on highly abundant viral
35 genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic
36 landscape during systemic infection. Given the diversity of AcMNPV strains that infect a wide
37 range of insect hosts, our study provides a framework where pathogen strains could be
38 selected to target specific host genes that facilitates modulation of the infection strength and
39 specificity of the susceptible hosts.

40

41 **Keywords:** Baculovirus, hemolymph, chitin metabolism, extracellular matrix organization,
42 cuticle development, biopesticides

43

44 **Background**

45 Baculoviruses are ubiquitous in nature and affect a wide-range of insects [1]. These
46 highly virulent viruses are arthropod-specific and mainly infect lepidopteran larvae [2].
47 Baculoviruses belong to the family Baculoviridae and have large rod-shaped nucleocapsids with
48 circular DNA genomes [3–5]. An outer lipoprotein envelope surrounds one or more
49 nucleocapsids to form a virion which are themselves bundled together within a protein matrix
50 to form an occlusion-derived virus [3]. Occlusion-derived viruses are large enough to be seen
51 and quantified using a hemocytometer under a light microscope [6]. In lepidopteran
52 populations, baculovirus epizootics begin when a larva consumes virus-contaminated foliage
53 [7]. If enough virus is consumed, a fatal infection occurs. The virus replicates within the larva
54 until the virus triggers the liquefaction of the insect host, which releases occlusion-derived
55 viruses onto nearby foliage [7]. After the virus is released, uninfected larvae eat the newly
56 contaminated foliage and the cycle continues. Overtime, occlusion-derived viruses degrade due
57 to exposure to ultra-violet light [8].

58 Baculoviruses usually have specific host ranges and most of them only infect congeneric
59 insect species [1]. The most notable exception is the *Autographa californica* Multicapsid
60 Nucleopolyhedrovirus (AcMNPV), which infects over 35 species belonging to 11 lepidopteran
61 families [9]. The unusually broad host range for a baculovirus has made AcMNPV one of the
62 most promising candidates for bioinsecticide development. AcMNPV is also widely used as a
63 molecular tool in gene delivery systems and for engineered protein production in insect cell

64 cultures [10–13]. Several strains of AcMNPV have been sequenced [14–16]. Their genomes are
65 ~134 kbp in size and contain ~150 tightly spaced genes [14–16]. Due to the host-specific
66 virulence of individual strains, AcMNPV is a potent biopesticide in integrated pest management
67 systems that could spare beneficial insects specially in ecologically sensitive areas[17, 18].

68 Baculovirus results in two distinct virion phenotypes upon infection in insect hosts [5,
69 19]. First, the occlusion-derived virus is transmitted among insects primarily via horizontal
70 transmission when uninfected hosts inadvertently consume the virus. This will often result in a
71 lethal infection [6]. Second, following infection of the midgut epithelial cells, the budded virus
72 causes secondary infection in the open circulatory system and, subsequently, invades cells in
73 other tissue types [20]. Besides horizontal transmission, vertical transmission between mother
74 and offspring may also occur. However, vertical transmission often results in a "covert"
75 infection that does not kill the host [7].

76 The fall armyworm (*Spodoptera frugiperda*) and the cabbage looper (*Trichoplusia ni*)
77 are among major agricultural pests vulnerable to AcMNPV infection. These two pests together
78 pose a significant threat to global food security, affecting over 150 crops including corn,
79 sorghum, rice, sugarcane, soybean, and cotton [21, 22]. The total yield loss by *S. frugiperda*
80 alone in 12 maize producing African countries in 2017 was estimated to be between US\$2.48
81 and \$6.19 billion [22]. If appropriate control measures are not applied, these pests together can
82 exacerbate the problem of food security and livelihood of many small farmers worldwide due
83 to their wide host range. They are difficult to control due to their rapid spread and the
84 development of their resistance to many insecticides [23–25]. Therefore, AcMNPV strains that
85 can naturally infect these serious agricultural pests offer a promising mode of pest control.

86 However, it is imperative to understand the mode of infection, disease progression, and
87 epidemiology of a naturally occurring virus before its commercialization, to minimize
88 unintentional secondary effects [25].

89 Both host species are widespread multivoltine (i.e., multiple generations per year) pests
90 that attack a number of crops throughout North and South America [26–28]. Females lay eggs
91 in large clusters consisting of hundreds of individuals [27, 29]. After hatching, *S. frugiperda* has
92 six larval instars or development stages before the larvae pupate and later emerge as adults;
93 whereas, *T. ni* has five larval instars [30, 31]. These two pests are readily infected in nature by
94 baculoviruses, particularly when they reach large population densities [2, 32]. A typical disease
95 outbreak or epizootic occurs when recently hatched first instars or neonates consume
96 contaminated leaf tissue or egg casings [6]. Once an individual larva is infected, the larva does
97 not continue to grow or molt to larger instars; whereas, uninfected individuals do.

98 *In vivo* studies investigating the genetic basis for AcMNPV infection and the integrated
99 host responses are quite limited. Most studies exploring transcriptional regulation of these
100 host-pathogen interactions use cell cultures infected with the virus. The transcriptome
101 responses of *S. frugiperda* [33, 34] and *T. ni* [4, 35] cell cultures infected with AcMNPV have
102 shown quite divergent transcriptional profiles, which makes it difficult to deduce the impact of
103 these responses in intact organisms. Recently, Shrestha et al., (2019) described the *in vivo*
104 transcriptional response of *T. ni* during AcMNPV infection. They reported the oral to midgut
105 tissue-specific transcriptomic responses at the primary stage of infection in 5th instar larvae. *In*
106 *vivo* studies that explore the transcriptional dynamics in response to AcMNPV infections appear
107 to be even fewer in *S. frugiperda*. To our knowledge, studies exploring the gene expression

108 profile of the AcMNPV during its infection of intact hosts along with the dynamics in host
109 transcriptomes are also absent either in *S. frugiperda* or *T. ni*.

110 In this study, we report the host-pathogen transcriptional responses of the early
111 systemic infection phase. The transcriptional profiles in the host hemolymph capture host
112 responses to the virus as well as the viral responses to the hosts. Our results indicate major
113 transcriptional changes to support initiation of critical cellular and developmental adjustments
114 in the host during pathogenesis.

115

116 **Results**

117 **Lethal effects of AcMNPV on *S. frugiperda* and *T. ni***

118 Clearly, both *S. frugiperda* and *T. ni* were adversely affected by increased doses of
119 AcMNPV (Fig. 1a and b) resulting in the death of a large proportion of larvae at higher doses. *S.*
120 *frugiperda* required a much larger dose of the virus to become infected as compared to *T. ni*
121 (Fig. 1a and b). This was further demonstrated by the fact that the median LD95 for *S.*
122 *frugiperda* was over a magnitude higher than the LD95 for *T. ni* (Fig. 1c). Given the relatively
123 good fit of the logistic model to the data and the relatively narrow credible intervals, the
124 median LD95 for both species was reasonably well estimated.

125

126 ***De novo* assembly and annotation of *S. frugiperda* and *T. ni* 4th instar reference 127 transcriptomes**

128 We report the most curated reference transcriptomes that represent the hemolymph
129 tissue of *S. frugiperda* and *T. ni* currently available. On average, 62 million raw reads were

130 obtained for each RNA-seq sample generated for *S. frugiperda* and *T. ni* (Supplementary Table
131 1). The fully assembled transcriptomes are available at NCBI BioProject PRJNA664633.

132 We selected 17,908 *S. frugiperda* transcripts (mean length 1,458 nt) and 19,472 *T. ni*
133 transcripts (mean length 1,773 nt) to represent the protein-coding reference transcriptomes
134 (Table 1). The number and length distribution of total protein-coding transcript models in the
135 current reference transcriptomes (Supplementary Fig. 1a and b) were comparable to the
136 protein-coding transcripts available for *Bombyx mori* [37], *Helicoverpa armigera* [38],
137 *Spodoptera litura* [39] and the genome of *T. ni* [40] (Supplementary Fig. 1c and d). Our
138 predicted protein coding transcripts mainly contained complete ORFs with start and end
139 codons included in the transcript model (Supplementary Fig. 2a). We were able to map >75% of
140 the initial RNA-seq reads to the reference transcriptomes for both species (Supplementary
141 Table 2).

142 As *D. melanogaster* genes provided the most amount of functional attributes available
143 for an arthropod model, we first annotated 5,878 *S. frugiperda* and 6,219 *T. ni* transcript
144 models based on the *D. melanogaster* reference models where possible (see methods). The
145 NCBI insect-Refseq database was used to annotate another 9,273 transcripts from *S. frugiperda*
146 and 9,751 transcripts from *T. ni* (Supplementary Fig. 3a). The remaining transcripts were
147 subjected to BLATX against the NCBI-nr databases to annotate 1,278 *S. frugiperda* and 888 *T. ni*
148 transcripts. A final pool of remaining transcripts that did not show convincing similarity to other
149 known eukaryotic transcripts (1,479 *S. frugiperda* and 2,614 *T. ni* transcripts) were annotated as
150 “unknown putative proteins”.

151 We assessed the completeness of the reference transcriptomes based on the expected
152 presence of core genes in metazoans as identified by the BUSCO database [41]. *S. frugiperda*
153 and *T. ni* reference transcriptomes were found to have 87.3% and 87.2% expected BUSCOS
154 respectively, suggesting that these transcriptomes contain a core gene component comparable
155 to the high quality lepidopteran genome model of silkworm [42] (Supplementary Fig. 2b).
156 Furthermore, our *S. frugiperda* reference transcriptome showed a better BUSCO representation
157 than the previously published *S. frugiperda* genome and transcriptome assemblies [43, 44]
158 (Supplementary Fig. 2b). Only 36% of RNA-seq reads generated for *T. ni* in our study mapped to
159 a genome assembly recently made available for this insect [40], compared to the 84% of
160 mapped reads to our reference transcriptome. These comparisons confirm the appropriateness
161 of the use of our reference transcriptomes for our downstream analyses.

162

163 **Host transcriptomic responses to the AcMNPV infection**

164 We identified 175 *S. frugiperda* differently expressed transcripts (DETs) and 138 *T. ni*
165 DETs in response to the AcMNPV infection (Fig. 2a and b). The DETs represent ~1% *S. frugiperda*
166 and ~0.7% *T. ni* of respective reference transcriptomes. The relatively small sets of differently
167 co-expressed genes suggest that the observed transcriptomic response pertains to an active
168 host responding to the infection, rather than largely missregulated transcriptomes represented
169 in a dead or a dying host overrun by the pathogen. In addition, the transcriptional responses
170 between control and infected larvae within a host species differed minimally relative to the
171 differences between basal transcriptomes of the two hosts (Supplementary Fig. 4). The wide

172 divergence observed in the basal transcriptomes of the two host species is not surprising, since
173 they belong to two different genera.

174 Our results show that, in both host species, transcripts suppressed due to infection
175 differed by orders of magnitude compared to those transcripts that were induced by viral
176 infection (Fig. 2). This is consistent with the trend observed in previous transcriptomic studies in
177 cell cultures of AcMNPV-infected *S. frugiperda* and *T. ni* [33, 34, 36, 45, 46]. Interestingly, we
178 see extensive similarities across multiple biological processes as deduced from the functional
179 attributes of DETs in each species, suggesting a shared host response to the AcMNPV pathogen.

180 Overall, 83.4% *S. frugiperda* and 89.1% *T. ni* DETs could be assigned to functionally informative
181 annotations. This was based on either functional validation of a putative homolog in *D.*

182 *melanogaster* or a homolog reported with a putative function in another lepidopteran host. The
183 number of Gene Ontology (GO) annotations were used when available but was more limited as
184 GO annotations largely depended on the sequence similarity of *S. frugiperda* and *T. ni* transcript
185 models to a *D. melanogaster* gene that also had an assigned GO term. In the following sections,
186 we highlight the shared host transcriptomic responses via enriched functional processes based
187 on clustering of functional annotations of DETs. All DETs with functional annotations that had a
188 fold change of 4 or more in response to the AcMNPV infection were considered. The full list of
189 DETs and their assigned GO terms (when available) are presented in Supplementary Table 5.

190

191 **Chitin metabolism and epithelial membrane associated processes were suppressed in**
192 **AcMNPV-infected hosts**

193 The two largest enriched functional clusters out of six in *S. frugiperda* and the largest
194 cluster of the two in *T. ni*, represented in the “suppressed” set reveal a coordinated
195 downregulation of chitin-related genes (Fig. 3). Chitin metabolism and its associated pathways
196 are central to the formation and stability of the extracellular matrix, basement membrane,
197 cuticle, and the tracheal system that are in close contact with the hemolymph tissue. The genes
198 associated with this cluster are not limited to those with assigned GO terms (Fig. 4b and
199 Supplementary Table 4). Among these, genes associated with chitin synthesis (*chitin synthase*
200 *1/kkv*); genes encoding chitin-binding proteins specially in the peritrophic matrix (*Gasp*) [47,
201 48]; other genes known for their chitin associated functional roles in cuticle development such
202 as the *Osiris* gene family members and *Dusky-like* (*Dyl*) that regulate the deposition of chitin on
203 bristles were significantly down-regulated in *S. frugiperda* (Supplementary Table 4) [49–52].
204 Interrupted chitin metabolism at the cellular level is tightly coupled to the organ integrity,
205 particularly of the midgut and the tracheal system. *Drosophila chs1* mutants with suppressed
206 expression also show defective tubular structure, irregular tracheal epithelial tube expansion,
207 and irregular subapical cytoskeletal organization [53]. The host genes *serpentine* (*serp*) and
208 *vermiform* (*verm*) that bind to chitin and modify its surface play significant roles in the tracheal
209 tube development [54–56] together with *uninflatable* (*uif*) that regulates tracheal growth and
210 molting [57]. These and many other cuticle and tracheal growth related genes were highly co-
211 suppressed in infected host tissue (Fig. 4b and Supplementary Table 4).

212 The budded virus exiting the midgut epithelial cells needs to penetrate the basement
213 membrane of the gut epithelium before entering the hemocoel and then the basement
214 membrane of tracheal cells for systemic infections [56]. Collagen is a fundamental component

215 of basement membranes of both gut and tracheal epithelia [58, 59]. Therefore, genes
216 associated with collagen metabolism and other integral components of the basement assembly
217 are expected candidates for virus regulated transcriptional processes in the host. Transcripts
218 coding for structural components of the extracellular matrix including collagen were among the
219 most significantly suppressed in response to the AcMNPV infection in both species (Fig. 4b and
220 Supplementary Table 4).

221 We observed multiple transcripts associated with glycoproteins, likely formed in
222 hemocytes that function in basement membrane stability, highly suppressed coordinately in
223 both species during AcMNPV infection. Among them, *laminins*, *osteonectins* (*SPARC*), and
224 *papilins* are notable. Laminin is the most prevalent glycoprotein in the basement membrane
225 and is also found in extracellular matrices of tracheal cells. It is formed of three chains coded by
226 *LanA*, *LanB1*, and *LanB2* [60–62]. Notably, we found transcripts that represent all three *Laminin*
227 chains to be coordinately down-regulated in the infected tissue in both species (Supplementary
228 Table 4). *SPARC*, known as a Ca^{2+} binding extracellular glycoprotein that modulates cellular
229 interactions with the extracellular matrix [63] was also down-regulated in both hosts during the
230 budded virus infection stage (Supplementary Table 4). *SPARC* is particularly expressed during
231 cellular injury or wounding that require tissue remodeling [64] and functions in basal lamina
232 assembly and stability [65, 66]. Similarly, transcripts potentially coding for papilins were co-
233 suppressed in infected samples of both hosts (Supplementary Table 4). Papilins expressed in
234 hemocytes are a prominent group of sulfated glycoproteins that contribute to basement
235 membrane structure [67–69]. The coordinated suppression of chitin and basement membrane

236 associated glycoproteins in our results indicate a strong transcriptomic signal for weakened
237 membrane stability in infected host tissue during the budded virus invasion into the hemocoel.

238

239 **Transcripts associated with hemocyte-induced defenses and immune responses were**
240 **suppressed during systemic infection**

241 Membrane damage in contact with the hemocoel is sensed by hemocytes and these can
242 initiate immune responses during pathogen invasions. Melanization is a major hemocyte-driven
243 defense response that leads to blood clotting. Surprisingly, this pathway appeared to be
244 suppressed as evident from the down-regulation of multiple host genes in both species in
245 response to the AcMNPV infection. *Hemocytin* is a key gene that mediates hemocyte
246 aggregation and hemolymph melanization in lepidopteran innate immunity against pathogens
247 [70–72]. *Hemolectin* is specifically expressed in larval hemocytes, and acts as a clotting factor
248 involved in hemostasis [73–75]. It is also known to initiate immunity responses during pathogen
249 infections [74, 76] and is thought to play a vital role in encapsulating foreign substances during
250 metamorphosis in *B. mori* [75]. Hemocytins and hemolectins were among the most highly
251 suppressed genes in both *S. frugiperda* and *T. ni* infected samples (Fig. 4b and Supplementary
252 Table 4).

253 Hemolymph proteases are known for their pivotal roles in defense responses against
254 many pathogens as well as in development processes such as molting [77, 78]. The specific
255 regulatory pathways of many of these proteins are not definitive yet, but their collective role as
256 a functional group in insect immunity and development are established. We found multiple

257 proteases in both infected hosts highly suppressed as a prominent group among all suppressed
258 transcripts (Fig. 4b and Supplementary Table 4).

259

260 **Lipid metabolism and oxidative stress emerge as the most prominent functional processes**
261 **induced by both hosts in response to infection**

262 The lipid biosynthesis pathways not only affect lipid membranes, but also many other
263 primary biological processes related to energy metabolism and signaling pathways.

264 Interestingly, *Desaturase1* (*Desat1*) is induced in *S. frugiperda* upon AcMNPV infection (Fig. 4a).
265 *Desat1* is reported to be tightly regulated at the transcriptional level [79] and is required for the
266 biosynthesis of unsaturated fatty acids [80, 81]. Additionally, several fatty acid modification
267 enzymes, e.g. elongases like *jamesbond/bond*, and *CYP4G*, a cytochrome P450 that performs
268 oxidative decarbonylation of long chain fatty aldehydes [82–84] were co-induced in *T. ni*. It is
269 notable that *bond* and *CG16904* together were assigned to 60 GO-terms, exemplifying their
270 influence in multiple biological functions linked to their primary molecular functions in lipid
271 metabolism [82–84] (Supplementary Fig. 4 and Supplementary Table 5).

272 Reactive oxygen species (ROS) generation and induction of oxidative stress are
273 inevitable when host membranes are disrupted and lipid metabolism is altered during host-
274 pathogen interactions. Supportive of this expectation, all three genes induced in the infected *S.*
275 *frugiperda* hemolymph in addition to *Desat1* (i.e. above a 4-fold expression change) relate to
276 oxidative stress (Fig. 4a). These include transcripts coding for a cytosolic *GST* and two *FAD-*
277 *glucose dehydrogenases* (*GLD*). *GSTs* form a broad family of critical defense proteins against
278 oxidative stress [85, 86] and *FAD*-glucose dehydrogenase can induce ROS generation as a

279 defense response [87]. A recent study has also reported that FAD-glucose dehydrogenase is
280 induced as a defense response during AcMNPV infections in *Helicoverpa zea* [88].

281

282 **AcMNPV genome response to the insect hosts**

283 To check whether viral sequences were present in our hemolymph samples, we mapped
284 RNA-seq reads from both species to the published AcMNPV genome [16] (Supplementary Table
285 2b). As expected, viral sequences were detected almost exclusively in the infected samples. We
286 mapped 1.13% and 7.41% of total reads from infected *S. frugiperda* and *T. ni* samples,
287 respectively, to the AcMNPV genome. It was interesting that a small number of reads from *T. ni*
288 control samples (<0.01%) were mapped to the AcMNPV genome (Supplementary Table 2b).
289 While it is not conclusive that these could represent domesticated viral genes expressed at low
290 levels in the *T. ni* genome, previous studies have indicated that AcMNPV genes are found in
291 arthropod genomes as a result of horizontal gene transfer [89, 90].

292 The AcMNPV strain E2 genome has 149 protein-coding genes [16]. We detected 148
293 genes in our viral transcriptome expressed in the hemolymph (Fig 5a and Supplementary Table
294 6). These transcripts were categorized into nucleocapsid-associated and envelope-associated
295 genes. Each of these two categories was further divided into their contribution to the formation
296 of the occlusion-derived virus, budded virus, or their involvement in the formation of both
297 virion types, following Blissard and Theilmann (2018). Viral genes related to the formation of
298 the budded virus showed higher expression than those involved in the production of occlusion-
299 derived virus in both nucleocapsid- and envelope-associated categories in samples from both
300 hosts (Supplementary Fig. 6a & b and Supplementary Table 6). Budded virus compared to the

301 occlusion-derived virus is the dominant form expected in the hemocoel during the systemic
302 infection phase [5]. All viral genes showed higher levels of expression in infected hemolymph of
303 *T. ni* compared to that of *S. frugiperda* (Fig. 5a and Supplementary Table 6).

304 Baculovirus genes show three sequential stages of expression, marked as early, late, and
305 very late. The early viral genes are transcribed by RNA polymerase II of the host. A unique
306 feature of baculoviruses compared to other nuclear-replicating DNA viruses is that these viral
307 genomes encode a DNA-directed RNA polymerase. This RNA polymerase transcribes the late
308 and very late viral genes [91]. In the infected hemolymph tissue, we found viral genes that mark
309 both early and late stages in their expression sequence. For example, a chromatin-like structure
310 called the virogenic stroma is formed in the center of the nucleus of infected cells. *Ac36/pp31* is
311 an early viral gene reported to be among the two primary viral genes that initiates this
312 morphological change in the host cells [92, 93]. In contrast *Ac74/Bm60*, required for the
313 budded virus production and also found in nucleocapsids of both budded and occlusion-derived
314 virions, is thought to be expressed at a late stage [94]. Both *Ac36* and *Ac74* are among the top
315 10 highly expressed viral genes in infected samples of both hosts (Supplementary Fig. 6c).

316 Rohrmann (2013) had identified 37 core baculovirus genes that were also highly
317 conserved in the AcMNPV genome. Half of the top 30 highly expressed AcMNPV genes in
318 treated samples of both insect species were core genes (Fig. 5a and Supplementary Table 6).

319 The majority of the viral transcripts in our study were associated with the production of
320 nucleocapsid and envelope proteins. Many such integral proteins of the nucleocapsid or
321 envelope are known to function in viral entry and exit pathways. For example, the highly
322 expressed viral genes, *Ac75*, *Ac76*, and *Ac143* (Fig. 5a and Supplementary Fig. 6c) perform

323 multiple roles associated with the formation of intranuclear microvesicles and production of
324 the budded virus, while contributing to the structure of the occlusion derived virus envelope
325 [95–101]. Other highly abundant viral genes that form integral components in the nucleocapsid
326 or the envelope present in both hosts include *Ac131/Pp34* [15, 102], *Ac142/p49* [103, 104];
327 *Ac94/odv-e25* [97, 98]; and *Ac100/p6.9*, [92, 99, 101] (Fig. 5 and Supplementary Fig. 5b). The
328 cellular entry of the budded virus is dependent on GP64 coded by *Ac128* while the entry of the
329 occlusion-derived virus is mediated by the family of *PIF* genes [5]. *Ac128* and the eight *PIF* genes
330 (*Pif-0/Ac138*, *Pif-1/Ac119*, *Pif-2/Ac22*, *Pif-3/Ac115*, *Pif-4/Ac96*, *Pif-5/Ac148*, *Pif-6/Ac68*, *Pif-*
331 *7/Ac110*) out of the nine members were among highly expressed viral transcripts detected in
332 the infected host tissue in our study (Fig. 5a and b).

333 The viral genes affect cellular, metabolic, and developmental alterations in the host in
334 addition to initiating viral replication and virion movement in the host cells. Three of these virus
335 induced host metabolic processes include host membrane degradation, cell cycle arrest, and
336 developmental arrest that stops molting. The co-expressed viral genes *chitinase* (*Ac126*) and
337 *cathepsin* (*Ac127*) are required for the liquefaction of hosts in the late stage of infection [105,
338 106]. Viral chitinases act on degrading the host chitins and cathepsins are broad-spectrum
339 proteases that degrade host tissue [107]. Both *Ac126* (found at RPKM of 540 in *S. frugiperda*
340 and 1227 in *T. ni*) and *Ac127* (found at RPKM of 236 in *S. frugiperda* and 494 in *T. ni*) were
341 highly exprssed in the infected samples in our study (Figure 5b and Supplementary Table 6).
342 This indicates a strong transcriptional signal about the extensive tissue damage initiated in the
343 host by the budded virus along with the reciprocal transcriptomic signals in the hosts that
344 suggest interrupted membrane stability early on during the budded virus infection.

345 We detected compelling transcriptomic signals that suggest virus induced host cell cycle
346 interruption, parallel to signals of host tissue deterioration. *Ac144/Ac-odv-ec27* is the most highly
347 expressed AcMNPV gene (expressed at RPKM of 5081.6 in *S. frugiperda* and 9456.6 in *T. ni*)
348 found in infected hosts in our study (Fig. 5a). *Ac144* is an essential gene known for its role in
349 arresting the host cell cycle at the G2/M phase [19, 104].

350

351 **Viral-host co-transcriptional interactions**

352 Several AcMNPV transcripts and their associated proteins are known to directly interact
353 with host proteins to regulate pathogenicity. We wanted to assess whether such host-parasite
354 transcript interactions could be elucidated from comparing viral transcripts co-expressed with
355 host transcripts in the infected hemolymph.

356 We found the budded virus-associated gene *Ac73* (RPKM of 1530.9 in *S. frugiperda* and
357 2694.3 in *T. ni*) (Supplementary Fig. 6c, Supplementary Table 6), that is thought to regulate host
358 *Hsp70* [108, 109] among the top 5% viral genes expressed in our study. *S. frugiperda* *Hsp70* has
359 been reported to be a required gene to express AcMNPV genes and complete the infection
360 cycle [110]. Even though the infected hemolymph transcriptomes in our study contain the
361 transcripts potentially coding for *Hsp70* (TR12464|c0_g1_i1, DN38479_c0_g1_i1,
362 Supplementary Table 3), it was not significantly induced during the time of sampling
363 (Supplementary Table 4). However, multiple transcripts coding for other molecular chaperones,
364 protein transport, and modification associated with ER were highly suppressed in infected *T. ni*
365 hosts (Fig. 4b).

366 Host lipids play multifarious roles in a virus life cycle, right from the entry of the virus
367 into host cells by endocytosis, during replication in protected membrane vesicles, and till the
368 virions exit the cell by exocytosis. For example, host fatty acid desaturases are required for virus
369 replication to alter the fluidity and plasticity of membranes for viral replication complexes
370 [111]. As described earlier, host *Desat1* along with several transcripts associated with fatty acid
371 synthesis are upregulated in the infected hosts.

372 Viral entry and egress pathways highly depend on cell shape, entry and exit to the
373 nucleus, and microvesicles regulated by host actins [90, 112]. A late viral gene, *Ac34* induces
374 nuclear actin polymerization that promotes virus replication, and nuclear export of the virus
375 [109, 113, 114]. In our study, *Ac34* is another highly abundant viral transcript present in the
376 hemolymph. Reciprocally, we observed a marginal induction in *S. frugiperda* *Act57B*
377 (Supplementary Table 4). *Act57B* is a major myofibrillar actin gene expressed during larval
378 stages in *Drosophila* [115] and encodes a major structural protein found in the hemolymph
379 [116]. It is unclear whether viral *Ac34* directly regulates the host *Act57B*. Previous studies have
380 reported that *Ac34* directly regulates the host actin-associated Arp2/3 protein complex in the
381 nucleus [109, 117]. We detected a 100-fold suppression in the levels of transcripts expected to
382 code for the Arp2/3 complex in infected *T. ni* hosts. Expression of a couple of transcripts coding
383 for zipper and cytoplasmic myosin light chain proteins, also known for their roles in regulating
384 cell shape, was reduced by over 1800-fold in the infected *T. ni* hemolymph (Supplementary
385 Table 4). Viral infections are known to suppress host cell apoptosis as a counter defense
386 mechanism to promote viral replication [109]. The viral gene *Ac135* is one such gene known to
387 suppress apoptosis. *Ac135* was abundant (in the 38% highly expressed viral transcripts) in both

388 infected hosts in our study (Supplementary Table 6). We found reciprocal coordinated
389 suppression of several host transcripts associated with apoptosis in infected hosts. For
390 example, *calreticulin (Calr)* [118], *GDP dissociation inhibitor (Gdi)* [119], and *death-related*
391 *protein (Drp)* [120] were coordinately suppressed in infected *T. ni* hemolymph (Supplementary
392 Table 4). Notably, the characteristic host apoptosis marker genes known for their defense were
393 absent in the transcripts identified as significantly induced in the infected hosts. Therefore, we
394 see a bias in the host transcriptomic signals towards an overall suppression of host apoptosis as
395 a counterdefense mechanism, favoring the budded virus propagation (Supplementary Table 4).

396 AcMNPV induced developmental arrest in the host is a known outcome in infected
397 instars. In support of this expectation, we observed multiple host transcripts associated with
398 larval developmental arrest. For example, the insect juvenile hormone synthesis genes,
399 *adenosylhomocysteinase* and *farnesyl pyrophosphate synthase* [121], and transcripts encoding
400 the heme peroxidase, *Cysu*, required during wing maturation [122], were co-suppressed in the
401 infected *S. frugiperda* and *T. ni* hemolymph (Supplementary Table 4). Similarly, *Ac15*, a highly
402 abundant viral gene in infected hosts (RPKM of 295.8 in *S. frugiperda* and 433.1 in *T. ni*, Fig. 5b
403 and Supplementary Table 6) codes for the EGT enzyme that inactivates the insect molting
404 hormone, ecdysone that would lead to host developmental arrest [123].

405

406 **Discussion**

407 **Host transcriptomic signatures suggest impaired membrane integrity enabling viral
408 proliferation**

409 In Figure 6 we provide an overview of genes and pathways affected by host-viral
410 interactions in the hemocoel at the systemic infection stage based on the collective deduction
411 of our transcriptome-based analyses. Our results provide a compelling set of transcriptomic
412 signals to support suppression of chitin-associated processes in the infected hosts, which can be
413 linked to weakened membrane stability, as well as disrupted tracheal development during the
414 systemic infection phase (Fig. 3, 4, and 6). Chitin-centric processes are fundamental to the
415 transcriptional regulation that play a key role in integrating various metabolic processes
416 operating at the cell, organ, and organism levels during pathogenesis. AcMNPV infection via
417 occlusion derived virus is regulated by the chitin based peritrophic matrix permeability to
418 virions in the midgut epithelium. The midgut epithelium tissue and the adjacent hemolymph in
419 contact with the tracheal system form the focal point for systemic infections by the budded
420 virus [5, 124, 125]. Therefore, analyzing the transcriptional profile associated with chitin in the
421 host during host-pathogen interactions as suggested by He et al., (2020) would be an important
422 step in studying the possibility of both using the pathogen and enhancing the virulence of the
423 pathogen for use as a bioinsecticide.

424 Chitinases degrade insoluble polysaccharides into soluble oligosaccharides during the
425 molting process of insects and play indispensable roles in organ morphogenesis, cell division,
426 and development [124, 126]. Pathogens influence host transcription of chitinases and
427 associated proteins [127, 128] and can interfere with molting of the insect hosts [129].
428 However, in our current study, we did not see a significant suppression of host chitinases.
429 Instead we found a transcript coding for a putative chitinase in *T. ni* to be significantly induced
430 in the infected hemolymph (Fig. 4a). The AcMNPV genome also codes for a chitinase that

431 disrupt the cuticle and peritrophic matrix of the insect host [130]. Chitinases coded by
432 baculovirus genomes have a greater sequence similarity to bacterial chitinases involved in
433 fungal chitin degradation and are distinct from insect chitinases both in sequence as well as
434 localization in host tissues [107, 131]. A functional viral chitinase is critical to complete the
435 infection cycle of the AcMNPV. In our study, the AcMNPV chitinase gene, *Ac126*, is highly
436 expressed in both infected hosts (Fig. 5a, b, and Supplementary Fig. 6c). It is possible that the
437 viral chitinase transcripts, together with the *cathepsin* transcripts required for liquefaction of
438 the host, are transcribed early on during budded virus production, but are kept inactive until a
439 later stage when occlusion bodies are produced toward the completion of the infection cycle.

440 The stability of basement membranes in the host is critical in mounting an innate
441 structural barrier against the movement of the virus and containing the infection. Transcripts
442 associated with the major glycoproteins (collagen, laminin, osteonectin, and papilin) [64–66],
443 known to function in basement membrane stability, were all coordinately suppressed in both
444 infected hosts in our study (Fig. 3, 4b, 6, and Supplementary Table 4). Laminin and type IV
445 collagen are the dominant glycoproteins in the basement membrane and form a stable scaffold
446 for other glycoproteins to create a network that provides both structural and signaling support
447 to adjacent tissues [67–69, 132, 133]. Glycoproteins such as osteonectin bind with Ca^{2+} in the
448 extracellular matrix and mediate cellular interactions with the matrix. These glycoproteins are
449 required for membrane assembly, and facilitate tissue remodeling after damage to the
450 membrane [63, 64]. They are found in fat bodies, basal lamina in the basement membrane, and
451 in the extracellular layer secreted by epithelial cells and tracheal cells [60, 66]. Viral proteases
452 especially target the laminins in the basal lamina of tracheal cells, making them more

453 susceptible to virus movement, and thereby facilitate systemic infections [134]. Damage to
454 basement membranes are unavoidable during the systemic infection of the budded virus.
455 Therefore, the coordinated down-regulation of multiple transcripts coding for both stable and
456 dynamic components of the basement membranes (>15% of DETs) suggests weakened barriers
457 in the gut epithelium, hemocytes, and tracheal cells in the host. The coordinated and targeted
458 suppression of host basement membrane proteins could be under the regulation of the viral
459 genome in order to facilitate membrane disruption during pathogenesis in susceptible hosts.

460 Massive reorganization of lipid membranes is expected as the virus escapes from
461 midgut to the hemolymph or from the hemolymph to tracheoblasts [135, 136]. A recent study
462 by Li et al., (2018) demonstrated that fatty acid biosynthesis was induced at early disease stages
463 and led to the reduction of virions in *S. frugiperda* Sf9 cell cultures, possibly as a host defense
464 response. This supports the proposal that fatty acid synthesis is a key process that modulates
465 viral infection levels in host cells [138]. In our study, we observed transcripts involved in fatty
466 acid modifications strongly induced in both hosts in response to the AcMNPV infection (Fig. 4a
467 and 6). While induced host transcripts were much fewer compared to the suppressed
468 transcripts (Fig. 2a and b), it is notable that *Desat1*, stearoyl CoA desaturase, *elongases (bond,*
469 *CG31523, CG16904)*, and transcripts potentially coding for cytochrome P450 (*CYP4G1*) that
470 collectively function in lipid biosynthesis, were among the few and most induced transcripts in
471 the infected hosts (Fig. 4a). Taken both hosts together, lipid metabolism accounts for 50% of all
472 induced DETs that were annotated with a known function (Supplementary Table 4).

473 *Desat1*, a key gene in unsaturated fatty acid biosynthesis, was also among the most
474 induced genes in the tobacco budworm (*Heliothis virescens*) hemocytes infected with

475 *Helicoverpa zea* single nucleopolyhedrovirus [139]. Although it is associated with starvation
476 induced autophagy in *Drosophila* [140, 141], many other integral components of the autophagy
477 pathway known to be under transcriptional regulation [142] were not noticeably impacted in
478 our study.

479 Whether host lipid synthesis genes are primarily involved in disease susceptibility or
480 resistance is not clear. Distinguishing the specific involvement of these genes is challenging
481 partly because of inadequate functional characterizations available for many of these genes in
482 insect hosts. For example, in line with our results, previous studies have shown that *CG16904* is
483 induced during parasitic infections [143], but its function is unknown. Similarly, *CYP4G1*, a
484 cytochrome P450 gene involved in cuticular lipid synthesis and highly conserved in insects, has
485 been identified as the most highly expressed among 85 of *CYP450* genes of *Drosophila* [83]. Yet,
486 the role of *CYP4G1* during viral infections has not been elucidated, despite its direct functional
487 association with the cuticle development. It is unclear how the host defenses lead to the up-
488 regulation of these transcripts associated with lipid synthesis specifically during viral infections
489 concurrently to the suppression of chitin-based processes and other structural components of
490 the basement membrane. Based on the current study from intact infected hosts and supported
491 by previous cell culture studies, it is imperative that the specific role of lipid synthesis in the
492 complex host-pathogen interactions during AcMNPV infection are comprehensively
493 investigated.

494

495 **Hemocyte-mediated innate immunity is suppressed during the budded virus infection**

496 Hemolymph is the primary target tissue we used to deduce biological processes affected
497 by the budded virus that is known to largely invade the hemocoel. Hemocytes are known to
498 elicit innate immune responses upon pathogen infections. During an infection, pathogens can
499 be phagocytosed by hemocytes, agglutinated by hemolectins and other associated proteins in
500 hemostasis, subjected to the melanization defense response triggered by hemocytes, or
501 destroyed by oxidants or other antimicrobial compounds produced by hemocytes [144]. In our
502 study with the AcMNPV budded virus infection progressing into a systemic infection during the
503 4th instar larvae, we see prominent transcript signals that suggest a suppression of the
504 hemocyte mediated immune responses rather than transcriptional induction of those primary
505 genes involved. This inference is supported by the coordinated suppression of *hemolectin* and
506 *hemocytin* transcripts in infected *S. frugiperda* and *T. ni* hosts together with other transcripts
507 such as the von Willebrand clotting factor (Fig. 3, 4b, 6, and Supplementary Table 4). The larval
508 stage specific clotting factor, *Hml* and its homolog *hemocytin* are critical genes associated with
509 hemostasis in insects [73–75].

Serine proteases and serine protease inhibitors play vital roles in hemocyte driven phagocytosis, melanization, and antiviral immune responses in addition to their other pleotropic functions in insect development [145, 146]. The melanization reaction is tightly coupled to hemostasis reactions induced by hosts under pathogen infections as an integral part of the host immune response [70–72]. Lepidopteran hosts are known to use serine proteases produced in hemocytes to trigger melanization reactions in the hemolymph [77, 147]. Yet, the detailed functional mechanisms of specific serine proteases in mounting defense responses against baculoviruses are poorly understood. In our study, a number of serine proteases and

518 serine protease inhibitors were co-suppressed in both infected hosts (Fig. 4b and
519 Supplementary Table 4), implying a defense response compromised by the virus in infected
520 hosts. It should be noted that both *S. frugiperda* and *T. ni* are known to be highly permissive
521 hosts to AcMNPV infections [148, 149].

522 The lepidopteran innate immunity elicited by hemocyte aggregation and hemolymph
523 melanization against bacterial pathogens is well established [70–72]. However, their role is
524 largely unexplored under baculovirus infections, partly because, most studies have used cell
525 lines and not intact tissues. Based on our results, the presence of the budded virus appears to
526 strongly suppress the host immune responses initiated via hemocytes.

527

528 **During disease progression, cellular energy usage is altered with substantial consequences in**
529 **redox homeostasis, primary metabolism, and development of the entire organism**

530 Synergistic to maintaining membrane integrity via coordination of chitin and lipid
531 metabolism, host cell survival depends on being able to maintain energy metabolism and redox
532 homeostasis to minimize oxidative stress during infection and prevent further damage to
533 membranes and DNA [150]. The complex regulation of energy metabolism is tightly coupled to
534 the cellular redox state and plays a central role in viral infections. Therefore, a failure to
535 maintain homeostasis of these critical pathways suggests early signs of systemic progression of
536 infection.

537 We found multiple transcripts potentially coding for integral enzymes in primary energy
538 metabolism and redox homeostasis suppressed in both host species by AcMNPV infection
539 (Supplementary Table 4). Lavington et al., (2014) have demonstrated that a handful of enzymes

540 in the central energy metabolism can shift the flux balance and energy homeostasis. These are
541 often found to be regulated at the transcriptional levels. Due to their high connectivity to many
542 primary metabolic pathways, the transcripts of these flux-controlling enzymes can be used to
543 sense the energy state of the cell. One such key enzyme in maintaining the redox pools and
544 energy balance is the malic enzyme (coded by *Men* and *Men-b* genes) that catalyzes malate to
545 pyruvate while reducing NADP to NADPH [151, 152]. It has been estimated that 30% of the total
546 cytosolic NADPH is produced by *Men* in *Drosophila* [153, 154] and it is a critical enzyme in
547 coupling energy metabolism to ROS levels under oxidative stress. Transcripts coding for the
548 malic enzyme were suppressed with several other glycolytic transcripts in *T. ni*, suggesting a
549 transcriptional signal of altered redox balance in this host. Redox imbalances can cause severe
550 oxidative stress leading to cell fatality. Specially for viral pathogens, host defense responses
551 primarily include oxidative stress mitigation and ROS scavenging [155, 156]. Notably, three out
552 of the four significantly induced transcripts in *S. frugiperda* (Fig. 4a, 6, and Supplementary Table
553 4) are transcripts that code for enzymes that are induced as a defense response to minimize
554 oxidative stress [85–87]. To further connect such components into biological pathways and
555 identity specific molecular targets during baculovirus infections, a critical mass of genetic
556 studies needs to accumulate on specific gene functions and transcriptomic responses in
557 multiple lepidopterans.

558 The overall transcriptomic profiles in both infected hosts also suggest a compromised or
559 reduced allocation of energy into other critical larval development processes. We identified a
560 number of transcripts critical for the development of wings, muscles, renal functions, and
561 neurons in both infected hosts significantly suppressed (Supplementary Table 4). Concurrently,

562 we see a substantial fraction of ribosomal protein transcripts down-regulated in infected *T. ni*
563 implying altered rates for protein translation and overall metabolism (Supplementary Table 4).
564 This reduction is also observed in *S. frugiperda* but to a lesser magnitude. A number of
565 ribosomal proteins were down-regulated in *S. frugiperda* in response to the AcMNPV infection
566 at a significant level (q-value ≥ 0.95), but the fold change was marginal (less than 4-fold)
567 (Supplementary Table 4). Taken together, these results suggest that critical cellular and
568 metabolic processes seem to have been significantly affected, even if only 1% of the
569 transcriptome in the infected hosts showed significant reduction in response to the AcMNPV
570 infection. The impaired cellular and metabolic processes consequently may have affected insect
571 development as suggested by the suppression of several transcripts associated with the insect
572 juvenile hormone synthesis and molting hormone regulation. In summary, AcMNPV infection
573 affects multiple processes from cellular to whole organism level.

574

575 **Signaling processes associated with AcMNPV infection**

576 The infected hemocoel of both hosts is expected to carry disease signaling as a systemic
577 signal to activate immune responses as well as signaling through pheromonal pathways.
578 Pheromonal signaling in insects is widely studied as a form of chemical signaling that can lead
579 to aggregation of individuals specially during reproduction [157]. Several studies have
580 discovered long-chain fatty acids that attract other larvae using novel pheromonal signaling
581 pathways as a mechanism during immature larval stages to aggregate individuals [158–162].
582 While pheromonal signaling involves complex genetic and metabolic networks, Desaturase1
583 (Desat1) is a key enzyme that is associated with pleiotropic effects on both pheromone

584 production and perception [163–165]. Similarly, the lipid elongase gene, *bond* is also required
585 for pheromonal signaling and known for its role in conspecific signaling [68]. *Desat1* and *bond*
586 are co-induced in infected hosts (Fig. 4a and 6), while, fatty acid biosynthesis and pheromone
587 metabolism were among the enriched functions in response to the AcMNPV infection in our
588 study (Fig. 6 and Supplementary Fig. 4). The underlying genetic mechanisms of how
589 pheromonal signaling pathways may have been exapted into a disease signaling pathway is
590 unknown, but previous studies have confirmed the induction of these pathways in insects
591 during viral infections [162, 166, 167]. The induction of a pheromonal pathway leading to
592 conspecific aggregation during baculovirus infections could facilitate disease progression
593 between individuals as non-infected larvae in close proximity to larvae that are undergoing
594 liquefaction have a high risk in getting infected in the next disease cycle. Therefore, a
595 pleiotropic gene such as *Desat1* is a likely candidate to be co-opted for behavioral traits evolved
596 under an arms race between baculoviruses and their lepidopteran hosts.

597 Alternatively, lipid synthesis genes could play a role in disease signaling systemically
598 within the infected larvae by triggering ROS signaling [141, 168, 169]. The co-induction we
599 observed for *GST* and other oxidative stress indicators (Fig. 4a and 6) in *S. frugiperda* may
600 further support this idea of the involvement of ROS pathways in disease signaling.

601

602 **The role of AcMNPV genes found in the host hemolymph**

603 The AcMNPV protein-coding genes regulate host cellular and physiological processes as
604 well as the production of the two distinct types of enveloped virions: the occlusion-derived
605 virions and the budded virions [15]. Our viral transcript quantification suggests that the budded

606 virions are more abundant than occlusion-derived virions in the infected hemolymph samples
607 (Fig. 5a and Supplementary Fig. 6a and b), an observation also supported by previous studies
608 [5]. The occlusion-derived virion is primarily involved in the individual-to-individual
609 transmission, while the budded virion is used for cell-to-cell transmission within an individual.

610 The transcriptomic signature of the eukaryotic host genome is overrepresented
611 compared to the viral genome expressed in our RNA samples that capture the host-parasite
612 interactions. Yet, the specific quantification of transcripts made feasible with RNA-seq data
613 allows the detection of clear biological signals from the viral parasite in host tissue. The infected
614 4th instar individuals of *T. ni* had a higher proportion of viral transcripts per million reads
615 sequenced as well as a lower viral dose needed to achieve LD95 compared to *S. fruigiperda* (Fig.
616 1, 5a, and Supplementary Table 2b).

617

618 **Viral entry to cells, assembly, and egress**

619 The two baculovirus virion types have both distinct and shared nucleocapsid and
620 envelope proteins that serve as structural components, and perform roles in entry and exit
621 from cells [5]. The budded virions following their initial budding from the midgut epithelial cells
622 get circulated in the hemolymph where they can bind and enter most cell types in contact with
623 the hemolymph [5, 149]. Many of the essential genes that function in the egress pathways also
624 tend to have functions in forming the nucleocapsid or the envelope. For example, *Ac75* is a core
625 gene that is required for exiting the nucleus in the egress pathway used by the budded virus,
626 and it is involved in the formation of intranuclear microvesicles as well as envelope and

627 nucleocapsids of the occlusion-derived virus [170, 171]. It is found to be the second most highly
628 expressed viral gene in both hosts in our study (Fig. 5b and Supplementary Table 6).

629 The entry of occlusion-derived virus into the midgut epithelial cells primarily depends on
630 a protein complex formed of nine core PIF proteins that are integral to the occlusion derived
631 envelope [5]. It is interesting to note that eight of these nine viral transcripts, *PIF-0/Ac138*, *PIF-*
632 *1/Ac119*, *PIF-2/Ac22*, *PIF-3/Ac115*, *PIF-4/Ac96*, *PIF-5/Ac148*, *PIF-6/Ac68*, *PIF-7/Ac110* were not
633 only detected in the infected hemolymph samples in our study, but also found at a very high
634 expression level ranging from 101 to 728 RPKM in infected samples (Fig. 5a and b). It is unclear
635 why we observed such a striking signal for *PIFs* in the hemolymph that could be associated with
636 the occlusion derived virus. Those samples with any extraneous tissue such as midgut residue
637 were not used for further processing to avoid contamination of our hemolymph samples used
638 for RNA extraction. It is possible that these PIF genes are transcribed but not translated until
639 much later or PIF proteins may have yet-to-be discovered roles in the budded virus stage.

640 The cell recognition and entry of budded virus into the host cells is primarily controlled
641 by a single glycoprotein, GP64 coded by the core gene, *Ac128* [5]. This is also one of the most
642 abundant envelope proteins in the budded virus that functions in binding with the host plasma
643 membrane [172–174]. As expected, we detected very high transcript abundance for *Ac128* in
644 both infected hosts (Fig. 5b, RPKM of 461 in *S. frugiperda* and 937 in *T. ni*). Given that *Ac128* is
645 easily detectable in both infected hosts; its essential role in viral entry into cells that can initiate
646 systemic and irreversible infections leading to the death of the host; and its high sequence
647 conservation [175, 176], make it an attractive candidate gene in the search for molecular
648 targets best suited to create host specific biopesticide developemnt.

649

650 **Viral genes that influence host cell cycle and molting**

651 The host cell cycle regulation affected by the viral genes is among the most invariable
652 processes expected during host-viral interactions. AcMNPV is known to cause cell cycle arrest in
653 their lepidopteran hosts [177]. Therefore, in our study it was not surprising to detect a major
654 cell cycle inhibitor, Ac144/odv-ec27 coding for a cyclin as the highest expressed virus gene in
655 both host species (Fig. 5a) [19, 104]. A large number of cyclins serve as key checkpoint
656 regulators in the complex gene regulatory network of the eukaryotic cell cycle [178]. Therefore,
657 future studies investigating specific gene-to-gene targets of host cyclins and their viral cyclin
658 inhibitors could identify viral strains targeting a specific host or even a specific developmental
659 stage of the host to facilitate safer biocontrol using baculoviruses.

660 Baculoviruses arrest the molting of infected lepidopteran larvae [15, 91]. This process is
661 primarily governed by the ecdysteroid UDP-glucosyltransferase (EGT), a viral enzyme that
662 inactivates the insect molting hormone, ecdysone [123]. *Ac15* in the AcMNPV genome codes for
663 EGT. In our study, *Ac15* is among the most highly expressed viral transcripts found in the
664 infected hemolymph of *S. frugiperda* and *T. ni* (Fig. 5b, 6, and Supplementary Table 6). Previous
665 studies also have reported higher EGT activities in the hemolymph compared to other tissue
666 [179]. There is great interest in the viral induced behavioral effects of lepidopteran hosts since
667 Hoover et al., demonstrated the role of EGT on the climbing behavior of gypsy moth larvae
668 [180]. Subsequent studies have confirmed the role of EGT in influencing behavioral traits of
669 other hosts including *T. ni* and *Spodoptera exigua* [181, 182]. However, much of the genetic

670 basis is unknown for these behavioral traits and at least in *Spodoptera* hosts, EGT alone is
671 reported to be insufficient to elicit behavioral traits [181].

672

673 **Host transcriptional responses to the budded virus during the systemic infection stage differs**
674 **from the midgut responses to the occlusion-derived virus during the primary infection stage**

675 Shrestha et al., (2019) described the host transcriptomic landscape of the midgut during
676 the primary infection phase of AcMNPV in *T. ni* 5th instar larvae primarily caused by the
677 occlusion-derived virus. The current study that focusses on the systemic infection stage
678 predominantly caused by the budded virus in 4th instar larvae of two lepidopteran hosts
679 including *T. ni* depicts a very different host transcriptomic landscape. The most consistently up-
680 regulated transcripts (at least 16 fold) observed in the midgut in the study by Shrestha et al.,
681 (2019) included, *REPAT* (*RE*sponse to *PA*thogens), *Atlastin* (involved in ER and vesicle
682 trafficking), cyclic GMP-AMP synthase (*cGAS*) genes that can bind to cytosolic viral DNA, 3
683 *ubiquitin ligase SIAH*, a zinc finger *CCHC*, a *peroxidase*, and a *chymotrypsin-like serine protease*.
684 None of these transcripts were found to be significantly expressed in response to the infection
685 in the infected hemolymph in our study. An earlier study had shown increased *REPAT* in the
686 midgut of baculovirus infections of *Spodoptera exigua* larvae [183] similar to the observations
687 made by Shrestha et al., (2019) for *T. ni*. These previous observations and the absence of
688 significant changes to these transcripts in the hemolymph during systemic infections imply that
689 these host transcripts may be specific to the infection phase or tissue. There is a clear
690 transcriptomic signal given by multiple key apoptosis-related genes induced in the infected
691 midgut of *T. ni* as reported by Shrestha et al., (2019). While we do not observe the induction of

692 the same transcripts in our study, several other apoptosis-related genes were suppressed in the
693 infected hemolymph during systemic infections (Fig. 6).

694 For certain time points post-infection in the midgut, Shrestha et al., (2019) reported up-
695 regulation for several cuticle-related transcripts. The transcriptomic signal associated with
696 cuticle-proteins are likely stemming from tracheoblasts in the hemolymph in our study
697 contrasting to the transcripts reported by Shrestha et al., (2019) likely coding for cuticle-
698 proteins affected in the peritrophic matrix lining the midgut during the occlusion-derived virus
699 propagation. The invasion of the budded virus into the tracheal epidermis is essential to the
700 progression of the systemic infection as the host cannot shed these cells unlike the gut
701 epithelium infected by the occlusion-derived virus that can be shed as seen in semi permissive
702 hosts [149]. This may explain why we observe exceedingly more transcripts potentially coding
703 for cuticle, chitin, and associated membrane processes clearly suppressed as a result of
704 successful disease progression than in infected midgut cells reported by Shrestha et al., (2019).

705 The most notable consistently down-regulated genes (by at least 16-fold), during the
706 occlusion-derived virus invasion of the midgut, mainly included orthologs of *flippase*, and genes
707 coding for a number of Cytochrome P450 enzymes, serine proteases, calcium binding protein P,
708 and dehydroecdysone 3 alpha- reductase as noted by Shrestha et al., (2019). None of these
709 were significantly changed during the budded virus infection in either host in the current study.
710 While there were hardly any direct overlap of down-regulated transcripts between the primary-
711 midgut infection and the secondary-systemic infection, we see melanization as a suppressed
712 pathway in both studies. Shrestha et al., (2019) described the down-regulation of *serine*
713 *proteases* involved in the melanization cascade similar to our observation for the suppression

714 of multiple serine proteases thought to be involved in melanization and other defense
715 responses (Fig. 5b). Contrasting to the overall observations made by Shrestha et al., (2019)
716 during the midgut infection, the hemolymph of both hosts in our study during systemic
717 infection appear to clearly induce transcripts associated with oxidative stress while suppressing
718 those related to hemostasis, chitin metabolism, and tracheal development.

719

720 **Key host genes affected by the AcPNMV infection are targets of commercially available**
721 **pesticides used against lepidopteran pests**

722 The baculovirus genes directly regulate primary metabolic pathways of the host during
723 viral replication that overwhelms the energy balance of host cells, eventually leading to cell
724 death. The commonly targeted host genes by the viral pathogen include *CHS1*, and transcripts
725 associated with actin driven cellular functions as well as genes involved in insect hormone
726 regulation. It is interesting to note that many of the chemical insecticides also use the same
727 genes as primary targets to control lepidopteran pests. However, unlike chemical insecticides,
728 baculoviruses continue to spread in the field post-host liquification.

729 Many insecticides developed against insect pests target chitin biosynthesis as a more
730 specific and safer alternative to generic insecticides such as pyrethroids and organophosphates.
731 These chitin synthesis inhibitors largely include the benzoylphenylurea (BPU) group of
732 insecticides, oxazolines, tetrazines, thiadiazines, thiazolidines, and triazines [184, 185]. All chitin
733 biosynthesis inhibitors act on chitin synthesis at various stages of the complex biochemical
734 pathways leading to the interruption of chitin production and cuticle development. The BPUs
735 are shown to target *CHS1* to inhibit chitin metabolism early in the biosynthesis pathway [186].

736 Notably, *CHS1/kkv* is the main chitin synthase required for epicuticular stability, intact
737 procuticle, maintenance of epidermal morphology, and sclerotization and pigmentation of the
738 cuticle [187]. A number of genes associated with chitin synthesis and cuticle modifications
739 (discussed earlier) are among the most highly suppressed transcript cluster in both hosts during
740 the systemic infection.

741 Pyridalyl is a commonly used potent insecticide against lepidopteran pests [186]. It has
742 been used to control fall armyworm outbreaks in South Africa [188, 189]. The molecular
743 mechanism of Pyridalyl generates excessive amounts of ROS that eventually leads to severe
744 oxidative stress and cell death in lepidopterans [190]. Among the handful of strongly induced
745 genes during the systemic infections of the budded virus, *GST* and other genes associated with
746 oxidative stress are notable (Fig. 4a and Fig. 6). Further induction of these oxidative stress
747 pathways disproportionately divert energy to oxidative stress responses that could expedite cell
748 death and, in turn, host death. The current observation made in our study further supports the
749 insecticidal potential of AcMNPV strains selected to induce host oxidative stress responses
750 similar to what observed with the Pyridalyl activity.

751 Double stranded RNAs (dsRNAs) that mimic insect transcripts have emerged as a
752 powerful tool for targeted pest control. For example, dsRNAs of actin transcripts used as foliar
753 sprays have shown to be a promising insecticide for Colorado potato beetles that damage
754 multiple Solanaceae crops [191]. In line with our findings made in the current study,
755 baculoviruses are known to target actin-mediated cellular processes. Actin is present in all cells
756 and customization to target-specific lepidopteran actins or a regulatory gene of actin-mediated
757 processes is equally achievable with baculoviruses. Further, baculoviruses are more effective as

758 delivery agents in controlling host genes than the passive delivery methods available for dsRNA-
759 based insecticides [192]. The use of recombinant baculovirus strains to control pests has been
760 proposed for over decades and has recently gained more attention as sustainable biopesticides
761 [193–196]. Transcript level inhibition of the juvenile hormone biosynthesis or alterations to its
762 regulation is a common target attempted in recombinant baculoviruses developed as potential
763 biopesticides [197, 198]. Host genes associated with juvenile hormone regulation were
764 noticeable among suppressed transcripts specially in the infected *T. ni* even when wild type
765 AcMNPV strains were used [199] similar to observations made in our current study.

766

767 **Conclusions**

768 We identified extensive overlap between biological processes that were represented by
769 differently expressed genes in the two hosts in response to the virus as well as convergence of
770 functional clusters of genes expressed in the virus in response to the two hosts. The overall host
771 transcriptomic signals suggested chitin-associated processes and basement membrane integrity
772 were compromised together with hemocyte-initiated immune responses in both infected hosts.
773 Oxidative stress indicators, moderately induced by the viral infection, may play a role in
774 systemic disease signaling with the induction of selected classes of fatty acids (Fig. 6). The
775 entire core viral genome was expressed during the systemic infection phase in both hosts, with
776 a bias towards processes associated with budded virus production and transport. The host-virus
777 interactions deduced from co-expressed host and viral transcripts indicate an overall
778 transcriptomic landscape overwhelmed by viral counter defenses that facilitate disease
779 progression. The specific transcripts and the convergent biological processes, highlighted in our

780 study as highly affected during infections, identify key genes and pathways as potential
781 molecular targets in designing recombinant AcMNPV strains as molecular tools in sustainable
782 pest management.

783

784 **Methods**

785 **Insect and virus source material**

786 Given the natural progression of an epizootic in the field and the need to collect a
787 considerable amount of hemolymph for the transcriptome analysis, we used 4th larvae in the
788 experiments outlined below. *S. frugiperda* and *T. ni* were obtained as eggs from Benzon
789 Research Inc. (Carlisle, PA, USA). Once the eggs hatched, we reared them in individual one-
790 ounce cups on artificial diet (Southland Products Inc., Lake Village, AR, USA) at 28.9 °C and a 16
791 hour-light and 8 hour-dark cycle until they reached the 4th instar. Wild-type AcMNPV strain E2,
792 which was used in this study, was field collected. To amplify the virus for the experiment, the
793 virus was passed through *Chrysodeixis includens*, the soybean looper.

794

795 **Determination of LD95 of AcMNPV for *S. frugiperda* and *T. ni***

796 We used a standard dose-response protocol and Bayesian analysis to quantify the lethal
797 dose at which 95% of the larvae would be expected to succumb to viral infection or the LD95.
798 For the experiment, thirty recently molted 4th larvae, which were starved for 24 hours, were fed
799 a known amount of virus on a small diet cube. The virus was suspended in a 3 µl droplet of
800 deionized water. One set of larvae was used as a control and consumed a diet cube that had
801 been only inoculated with 3 µls of deionized water. None of the controls became infected. Only

802 larvae that consumed the entire diet cube were used in the experiment to ensure that the
803 larvae received a full dose of the virus. Viral doses varied depending upon the species (Fig. 1).
804 After consuming the diet cube, larvae were placed on one-ounce cups and reared until
805 pupation or death. Death resulting from AcMNPV infection was confirmed either by host
806 liquefaction in the diet cup or by examining hemolymph under a light microscope [7]. For *T. ni*,
807 the experiment was conducted twice, since the first set of experiments used doses that were
808 too high resulting in almost 100% mortality and, thus, making it difficult to estimate the LD95.
809 The second set of experiments used much lower doses. We combined the data from the two
810 experiments for the *T. ni* dose-response analysis.

811 To analyze the data, we used a Bayesian framework with vague priors to fit a logistic
812 regression model [200] for each species. The associated slope and intercept of the fitted model
813 was used to calculate the LD95. All analyses were conducted in R (R core Team, 2018) using the
814 JAGS [202] and the R2JAGS packages [203]. For each analysis, three chains were run from
815 different starting points. The first 10,000 draws from the Bayesian Markov chain Monte Carlo
816 (MCMC) were removed to account for transient dynamics at the start of the chain. The
817 remaining 90,000 draws were retained to estimate the parameters of the logistic regression. All
818 non-discarded draws were retained to ensure precise parameter estimates [204]. After a visual
819 inspection of the chains for convergence, multiple tests were used to ensure that the chains
820 had converged including the Gelman-Rubin and the Hiedelberg-Welch tests [205]. The chains
821 for each analysis were combined to form a posterior distribution. Additionally, we conducted a
822 posterior predictive check to test whether the predicted model fit the data collected [206]. As
823 part of the posterior predictive check, Bayesian p-values were calculated. Values near 0.50

824 indicate that the model fits the data reasonably well [207]. The Bayesian logistic regression for
825 both species passed each of the individual tests outlined above.

826

827 **Insect treatment with AcMNPV virus**

828 Using the LD95 calculated from the dose-response experiments, 4th instar larvae from
829 both species were fed the appropriated dose of virus (*S. frugiperda*, 10^{4.5} OBs; *T. ni*, 10³ OBs) on
830 a diet cube using the same method as the dose-response experiment. Control larvae were fed a
831 diet cube inoculated with deionized water. After 30 hours, 30 individuals per sample were used
832 to extract the hemolymph.

833

834 **Extraction of hemolymph total RNA and preparation of RNA-seq libraries**

835 Prior to hemolymph extraction, each individual was chilled to ease the extraction
836 process. A pre-chilled microcentrifuge tube was filled with a 25 μ l solution containing 10 units
837 of RNaseOut in a 0.1 % PTU dissolved in a PBS solution. The rear proleg of the 4th instar larva
838 was then cut with micro scissors. We collected hemolymph from the wound and pipetted the
839 hemolymph into a pre-chilled Eppendorf tube. The solution was then vortexed, immediately
840 placed in a dewar filled with liquid nitrogen, and stored at -80 °C until needed.

841 Total RNA was isolated from hemolymph samples using RNeasy Mini Kit (Qiagen, Hilden,
842 Germany). On-column DNase digestion was carried out with the RNase-free DNase Kit (Qiagen),
843 followed by a further purification step using RNeasy Mini Spin Columns (Qiagen). The quantity,
844 quality, and integrity of the total RNA was sequentially assessed using the A260/A280 values

845 reported with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE), agarose gel
846 electrophoresis, and a BioAnalyzer (Agilent Technologies, Inc.).

847 RNA-seq library preparation and sequencing were done at the University of Illinois at
848 Urbana-Champaign Roy J. Carver Biotechnology Center. Ribosomal RNA (rRNA) depletion was
849 performed on the RNA samples using the RiboZero kit (Illumina, San Diego, CA) following the
850 manufacturer's instructions. Capturing polyA-enriched RNA from total RNA is a more customary
851 approach for eukaryotic RNA-seq experiments. However, we decided to use rRNA depleted
852 samples because we planned to identify both insect and viral transcripts which may not always
853 contain 3`polyA sequences. The rRNA-depleted samples were used for TruSeq Stranded RNA
854 Sample Prep kit to produce 5' to 3' strand-specific cDNA libraries (Illumina). A TruSeq SBS
855 sequencing kit version 3 (Illumina) was used following the manufacturer's instructions to
856 generate the sequencing libraries. All libraries were pooled, barcoded, and multiplexed on two
857 lanes of an Illumina HiSeq2000 platform to run for 101 cycles. Randomly selected reads of 100
858 nucleotide lengths from each library were processed and demultiplexed with Casava 1.8.2 that
859 generated over 370 million reads with quality scores over 30.

860

861 **Sequencing, assembly, and annotation of the reference transcriptome**

862 To allow accurate identification of host transcripts from two species, we needed to
863 create two reference transcriptomes for the hemolymph of 4th instar caterpillars. RNA-seq
864 reads were processed to generate a reference transcriptome assembly and annotation
865 following a custom pipeline published previously [208]. Briefly, raw Illumina reads were
866 subjected to quality checks using FastQC and *de novo* assembled using Trinity v2.2.0 [209] using

867 default parameters. Contigs with low read support, contaminants, and artifacts were removed
868 as described in Oh et al., 2015 . We further clustered contigs showing >95% sequence identity
869 over >70% of total contig length of the shorter contig in each pairwise alignment, using CD-HIT-
870 EST v4.6 [211] to minimize redundancy. For each cluster, the transcript with the longest open
871 reading frame (ORF), predicted by Transdecoder v2.0.1 (<https://transdecoder.github.io/>), was
872 selected as a representative transcript model in the final protein-coding reference
873 transcriptome. The completeness of each reference transcriptome assembly was evaluated
874 using Benchmarking Universal Single-Copy Orthologs (BUSCO) database v2.1 [212] with the
875 metazoan dataset (metazoa_odb9) and default settings. A series of sequential BLAST searches
876 found the best possible annotation for both coding and non-coding transcript sequences, using
877 the NCBI Drosophila mRNA database, NCBI-insects-reference RNA (refseq_rna), and NCBI-non
878 redundant (nr) databases for all eukaryotic proteins and RNA, with a maximum e-value cutoff of
879 10^{-5} .

880 An ideal transcriptome is expected to consist of all expressed genes in a given condition.
881 This would include both coding and non-coding transcripts. However, the non-coding transcript
882 pool is highly incomplete even for the premier model species. Therefore, it would be
883 impractical to assign reasonable functional annotations for contigs that may represent true
884 non-coding transcripts in our study. Additionally, without any canonical structural features to
885 use in assessing the completeness of non-coding transcripts, those transcripts could also
886 contain a highly fragmented fraction of the assembly. Therefore, we divided our assembled
887 transcriptome into coding and non-coding reference transcriptomes and only used the protein-
888 coding transcriptome for our current analyses. Despite the lack of resources to fully annotate

889 putative non-coding transcripts, this pool of non-coding transcripts likely represents a genetic
890 component that has potential to be useful as a collective resource from diverse species as more
891 high throughput data driven projects are conducted. Therefore, we include Table 1 and
892 Supplementary Fig. 1, where we report a total of 101,169 and 147,772 processed non-coding
893 transcripts, with a mean length of 495 and 549nt, for *S. frugiperda* and *T. ni*, respectively, as an
894 additional molecular resource included in our data deposit to NCBI BioProject PRJNA664633.

895 The protein-coding reference transcriptome was used for the downstream RNA-seq
896 analysis. Each sequence used as a proxy to represent gene/transcript models in our study when
897 assessing biological processes will be designated by its gene name, followed by the shortened
898 form of the gene name (if available), the sequence ID given by our annotation process, and the
899 FlyBase or NCBI accession number used for its annotation in parenthesis, as in the example,
900 *Chitinase6* (*Cht6*, TR50740|c0_g1_i1/ FBgn0263132).

901

902 **RNA-seq analysis**

903 The goal of our experiment was to search for shared disease responses inferred from
904 the two host species affected by AcMNPV infection using three sets of biologically independent
905 RNA-seq datasets. Two datasets were from *S. frugiperda* and one set was from *T. ni*. The RNA-
906 seq reads were aligned to the relevant reference transcriptome using bowtie [213] with a seed
907 alignment length per read set to 50nt. Reads unambiguously mapped to each gene model were
908 counted using a custom python script to generate read-count values as a proxy for gene
909 expression. We used NOISeq [214] with a q-value cutoff of ≥ 0.95 to identify transcripts
910 differently expressed between control and AcMNPV-infected samples in both insect species.

911 Gene ontology (GO) terms enriched among differently expressed transcripts (DETs) were
912 detected using BiNGO at FDR adjusted p-value ≤ 0.05 [215]. We used the entire reference
913 protein-coding transcriptomes as custom backgrounds to test for functionally enriched clusters
914 when inferring the shared biological processes identified from each host species. GO
915 annotation of reference protein-coding transcriptomes for the two insect species was based on
916 sequence similarity compared to *Drosophila melanogaster* gene models that have assigned GO
917 terms. We used GOMCL [216] to identify the non-redundant functional clusters from the
918 primary set of enriched functions generated using BINGO [215] for each species.

919 To assess the transcripts originating from the viral genome, particularly in the infected
920 samples, RNA-seq reads were mapped to the AcMNPV reference genome [16] using bowtie
921 [213]. The read counts mapped to the viral genome were normalized by converting to RPKM
922 values (Reads Per Kilobase Million) for each viral gene expressed in the insect transcriptomes.
923 Total read counts were calculated by adding the reads mapped to the viral genome and insect
924 gene models for control and AcMNPV infected samples as used in a previous study [217].

925

926 **List of abbreviations**

927 AcMNPV- *Autographa californica* Multiple Nucleopolyhedrovirus
928 BUSCO- benchmarking universal single-copy orthologs
929 DETs- differently expressed transcripts
930 DNA- deoxyribonucleic acid
931 FDR- false discovery rate
932 GO- gene ontology

933 ORF- open reading frame
934 RNA-seq- RNA sequencing
935 ROS- reactive oxygen species
936 RPKM- read per kilobase of transcript per million mapped reads
937 TCA cycle- tricarboxylic acid cycle
938

939 **Declarations**

940 **Ethics approval and consent to participate**

941 Not Applicable

942 **Consent for publication**

943 Not Applicable.

944 **Availability of data and materials**

945 The RNA-seq data sets from this article have been deposited to the NCBI Sequence Read
946 Archive (SRA) Database, under the accession number for NCBI BioProject ID: PRJNA664633.

947 **Competing interests**

948 The authors declare that they have no competing interests.

949 **Funding**

950 This project was funded by USDA Agriculture & Food Research Initiative Competitive [grant no.
951 2019-67014-29919/project accession no. 1019862] as part of the joint USDA-NSF-NIH-BBSRC-
952 BSF-NNSFC Ecology and Evolution of Infectious Diseases program for BE and MD, National
953 Science Foundation award MCB 1616827 and the Next-Generation BioGreen21 Program of
954 Republic of Korea (PJ01317301) to MD and DH. The funding bodies played no role in the design
955 of the study and collection, analysis, and interpretation of data and in writing the manuscript.

956 **Authors' contributions**

957 MD and BE designed the experiment; BE conducted the dose response test of the host species,
958 raised larvae in control and infected groups, and extracted hemolymph samples; SC extracted
959 RNA and optimized methods to obtain high quality RNA to be used for RNA-seq libraries; PP,
960 DHO, and MD developed the bioinformatic analyses; PP conducted the bioinformatics analysis;
961 PP and MD wrote the manuscript with input from all authors.

962 **Acknowledgements**

963 The authors thank the High Performance Computing at Louisiana State University (HPC@LSU)
964 for providing computational resource for data analysis, Louisiana State University Library
965 services for aiding with retrieving articles via interlibrary loans, Forrest Dillemuth for rearing
966 larvae, and Chathura Wijesinghe and Prava Adhikari for their art work in the illustration.

967 **Authors' information**

968 All authors: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
969 70803, USA.

970 **ORCID IDs**

971 Pramod Pantha- orcid.org/0000-0001-5654-4355
972 Dong-Ha Oh- orcid.org/0000-0003-1526-9814
973 Bret D. Elderd- orcid.org/0000-0001-5853-1136
974 Maheshi Dassanayake- orcid.org/0000-0003-3123-3731

975

976 **References**

- 977 1. Miller L. *The Baculoviruses*. Kluwer Academic; 1997.
- 978 2. Fuxa JR. Prevalence of Viral Infections in Populations of Fall Armyworm, *Spodoptera*
979 *frugiperda*, in Southeastern Louisiana. *Environ Entomol*. 1982;11:239–242.
- 980 3. Federici BA. Baculovirus pathogenesis. In: Miller LK, editor. L.K. Miller (Ed.), *The Baculovirus*,
981 Plenum, New York. Springer, Boston, MA: Kluwer Academic Publishers; 1997. p. 33–59.
- 982 4. Chen Y-R, Zhong S, Fei Z, Hashimoto Y, Xiang JZ, Zhang S, et al. The transcriptome of the
983 baculovirus *Autographa californica* multiple nucleopolyhedrovirus in *Trichoplusia ni* cells. *J*
984 *Virol*. 2013;87:6391–405.
- 985 5. Blissard GW, Theilmann DA. Baculovirus Entry and Egress from Insect Cells. *Annu Rev Virol*.
986 2018;5:113–39.
- 987 6. Elderd BD. Developing models of disease transmission: Insights from the ecology of
988 baculovirus-driven systems. *PLoS Pathog*. 2013;9:e1003372–e1003372.
- 989 7. Cory JS, Myers JH. The ecology and evolution of insect baculoviruses. *Annu Rev Ecol Evol Syst*.
990 2003;34:239–72.
- 991 8. Podgwaite JD, Shields KS, Zerillo RT, Bruen RB. Environmental Persistence of the
992 Nucleopolyhedrosis Virus of the Gypsy Moth, *Lymantria dispar*. *Environ Entomol*. 1979;8:528–
993 36.
- 994 9. Groner A. Specificity and safety of baculoviruses. In: Granados RR, Federici BA, editors.
995 *Biology of baculoviruses*, Vol. I. *Biological Properties and Molecular Biology*. CRC Press, Inc. ;
996 1986.
- 997 10. Kenoutis C, Efrose RC, Swevers L, Lavdas AA, Gaitanou M, Matsas R, et al. Baculovirus-
998 Mediated Gene Delivery into Mammalian Cells Does Not Alter Their Transcriptional and
999 Differentiating Potential but Is Accompanied by Early Viral Gene Expression. *J Virol*.
1000 2006;80:4135–46.
- 1001 11. Condreay J, Kost T. Baculovirus Expression Vectors for Insect and Mammalian Cells. *Curr*
1002 *Drug Targets*. 2007;8:1126–31.

1003 12. Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells.
1004 *Acta Pharmacol Sin.* 2005;26:405–16.

1005 13. Hu YC. Baculovirus Vectors for Gene Therapy. *Adv Virus Res.* 2006;68:287–320.

1006 14. Martin D A, SC H, J K, M L-F, RD. P. The complete DNA sequence of *Autographa californica*
1007 nuclear polyhedrosis virus. *Virology.* 1994;202:586–605.

1008 15. Rohrmann GF. Chapter 12, The AcMNPV genome: Gene content, conservation, and
1009 function. *Natl Cent Biotechnol Inf.* 2013;3rd editio:1–84.

1010 16. Maghodia AB, Jarvis DL, C G. Complete Genome Sequence of the *Autographa californica*
1011 Multiple Nucleopolyhedrovirus Strain E2. *Genome Announc.* 2014;2:6–7.

1012 17. Cory JS, Bishop DHL. Use of Baculoviruses as Biological Insecticides. *Mol Biotechnol.*
1013 1997;7:303–13.

1014 18. Haase S, Sciocco-Cap A, Romanowski V. Baculovirus Insecticides in Latin America: Historical
1015 Overview, Current Status and Future Perspectives. *Viruses.* 2015;7:2230–67.

1016 19. Belyavskyi M, Braunagel SC, Summers MD. The structural protein ODV-EC27 of *Autographa*
1017 *californica* nucleopolyhedrovirus is a multifunctional viral cyclin. *Proc Natl Acad Sci.*
1018 1998;95:11205–10.

1019 20. Haas-stapleton EJ, Washburn JO, Volkman LE. Pathogenesis of *Autographa californica* M
1020 nucleopolyhedrovirus in fifth instar *Spodoptera frugiperda*. *J Gen Virol.* 2003;:2033–40.

1021 21. Sutherland DWS, Greene GL. Cultivated and wild host plants. In: P. D. Lingren, & G. U.
1022 Greene (Eds.). *Suppression and Management of Cabbage Looper Populations.* USDA Tech Bull
1023 1684. 1984;:1–13.

1024 22. FAO and CABI. *Community-Based Fall Armyworm (*Spodoptera frugiperda*) Monitoring, Early*
1025 *Warning and Management, Training of Trainers Manual, First Edition.* 2019.

1026 23. Hardke JT, Leonard BR, Huang F, Jackson RE. Damage and survivorship of fall armyworm
1027 (*Lepidoptera: Noctuidae*) on transgenic field corn expressing *Bacillus thuringiensis* Cry proteins.
1028 *Crop Prot.* 2011;30:168–72.

1029 24. Mota-Sanchez D and JCW. *The Arthropod Pesticide Resistance Database.* Michigan State
1030 Univ. 2020;On-line at:www.pesticideresistance.org.

1031 25. Wang P, Zhao JZ, Rodrigo-Simón A, Kain W, Janmaat AF, Shelton AM, et al. Mechanism of
1032 resistance to *Bacillus thuringiensis* toxin Cry1Ac in a greenhouse population of the cabbage
1033 looper, *Trichoplusia ni*. *Appl Environ Microbiol.* 2007;73:1199–207.

1034 26. Lindgren PD, Greene GL. *Suppression and Management of Cabbage Looper Populations.*
1035 1984.

1036 27. Sparks AN. Review of the biology of the fall armyworm (*Lepidoptera, Noctuidae*). *Florida*
1037 *Entomol.* 1979;62:82–87.

1038 28. Richter AR, Fuxa JR, Abdel-Fattah M. Effect of Host Plant on the Susceptibility of *Spodoptera*
1039 *frugiperda* (Lepidoptera: Noctuidae) to a Nuclear Polyhedrosis Virus. *Environ Entomol.*
1040 1987;16:1004–6.

1041 29. Shorey HH. The Biology of *Trichoplusia ni* (Lepidoptera: Noctuidae). II. Factors Affecting
1042 Adult Fecundity and Longevity. *Ann Entomol Soc Am.* 1963;56:476–480.

1043 30. Pitre HN, Hogg DB. Development of the fall armyworm (Lepidoptera, Noctuidae) on cotton,
1044 soybean and corn. *J Georg Entomol Soc.* 1983;18:182–187.

1045 31. Shorey HH, Andres LA, Hale RL. The Biology of *Trichoplusia ni* (Lepidoptera: Noctuidae). I.
1046 Life History and Behavior. *Ann Entomol Soc Am.* 1962;55:591–597.

1047 32. Anderson R. M., May R. M. The Population Dynamics of Microparasites and Their
1048 Invertebrate Hosts. *Philos Trans R Soc Lond B Biol Sci.* 1981;291:451–524.

1049 33. Salem TZ, Zhang F, Xie Y, Thiem SM. Comprehensive analysis of host gene expression in
1050 *Autographa californica* nucleopolyhedrovirus-infected *Spodoptera frugiperda* cells. *Virology.*
1051 2011;412:167–78.

1052 34. Wei L, Cao L, Miao Y, Wu S, Xu S, Wang R, et al. Transcriptome analysis of *Spodoptera*
1053 *frugiperda* 9 (Sf9) cells infected with baculovirus, AcMNPV or AcMNPV-*BmK* IT. *Biotechnol Lett.*
1054 2017;39:1129–39.

1055 35. Chen Y-R, Zhong S, Fei Z, Gao S, Zhang S, Li Z, et al. Transcriptome Responses of the Host
1056 *Trichoplusia ni* to Infection by the Baculovirus *Autographa californica* Multiple
1057 Nucleopolyhedrovirus. *J Virol.* 2014;88:13781–97.

1058 36. Shrestha A, Bao K, Chen W, Wang P, Fei Z, Blissard GW. Transcriptional responses of the
1059 *Trichoplusia ni* midgut to oral infection by the baculovirus *Autographa californica* Multiple
1060 Nucleopolyhedrovirus. *J Virol.* 2019;93:e00353-19.

1061 37. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, et al. A draft sequence for the genome of the
1062 domesticated silkworm (*Bombyx mori*). *Science.* 2004;306:1937–40.

1063 38. Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ, Jermiin LS, et al. Genomic innovations,
1064 transcriptional plasticity and gene loss underlying the evolution and divergence of two highly
1065 polyphagous and invasive *Helicoverpa* pest species. *BMC Biol.* 2017;15:1–30.

1066 39. Cheng T, Wu J, Wu Y, Chilukuri R V., Huang L, Yamamoto K, et al. Genomic adaptation to
1067 polyphagy and insecticides in a major East Asian noctuid pest. *Nat Ecol Evol.* 2017;1:1747–56.

1068 40. Chen W, Yang X, Tetreau G, Song X, Coutu C, Hegedus D, et al. A high-quality chromosome-
1069 level genome assembly of a generalist herbivore, *Trichoplusia ni*. *Mol Ecol Resour.*
1070 2019;19:485–96.

1071 41. Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO
1072 applications from quality assessments to gene prediction and phylogenomics. *Mol Biol Evol.*
1073 2018;35:543–8.

1074 42. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, et al. The genome
1075 sequence of silkworm, *Bombyx mori*. *DNA Res.* 2004;11:27–35.

1076 43. Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK. A draft genome assembly of the
1077 army worm, *Spodoptera frugiperda*. *Genomics*. 2014;104:134–43.

1078 44. Legeai F, Gimenez S, Duvic B, Escoubas J-M, Gosselin Grenet A-S, Blanc F, et al.
1079 Establishment and analysis of a reference transcriptome for *Spodoptera frugiperda*. *BMC*
1080 *Genomics*. 2014;15:1–14.

1081 45. Chen Y-R, Zhong S, Fei Z, Hashimoto Y, Xiang JZ, Zhang S, et al. The Transcriptome of the
1082 Baculovirus *Autographa californica* Multiple Nucleopolyhedrovirus in *Trichoplusia ni* Cells. *J*
1083 *Virol.* 2013;87:6391–405.

1084 46. Chen Y-R, Zhong S, Fei Z, Gao S, Zhang S, Li Z, et al. Transcriptome Responses of the Host
1085 *Trichoplusia ni* to Infection by the Baculovirus *Autographa californica* Multiple
1086 Nucleopolyhedrovirus. *J Virol.* 2014;88:13781–97.

1087 47. Barry MK, Triplett AA, Christensen AC. A peritrophin-like protein expressed in the
1088 embryonic tracheae of *Drosophila melanogaster*. *Insect Biochem Mol Biol.* 1999;29:319–27.

1089 48. Nisole A, Stewart D, Bowman S, Zhang D, Krell PJ, Doucet D, et al. Cloning and
1090 characterization of a *Gasp* homolog from the spruce budworm, *Choristoneura fumiferana*, and
1091 its putative role in cuticle formation. *J Insect Physiol.* 2010;56:1427–35.

1092 49. Smith CR, Morandin C, Noureddine M, Pant S. Conserved roles of Osiris genes in insect
1093 development, polymorphism and protection. *J Evol Biol.* 2018;31:516–29.

1094 50. Nagaraj R, Adler PN. Dusky-like functions as a Rab11 effector for the deposition of cuticle
1095 during *Drosophila* bristle development. *2012;139:906–16*.

1096 51. Adler PN, Sobala LF, Thom D, Nagaraj R. *dusky-like* is required to maintain the integrity and
1097 planar cell polarity of hairs during the development of the *Drosophila* wing. *Dev Biol.*
1098 2013;379:76–91.

1099 52. Roch F, Alonso CR, Akam M. *Drosophila miniature* and *dusky* encode ZP proteins required
1100 for cytoskeletal reorganisation during wing morphogenesis. *J Cell Sci.* 2003;116:1199–207.

1101 53. Tonning A, Hemphälä J, Tång E, Nannmark U, Samakovlis C, Uv A. A transient luminal
1102 chitinous matrix is required to model epithelial tube diameter in the *Drosophila* trachea. *Dev*
1103 *Cell.* 2005;9:423–30.

1104 54. Wang S, Jayaram SA, Hemphala J, Senti K-A, Tsarouhas V, Jin H, et al. Septate-Junction-
1105 Dependent Luminal Deposition of Chitin Deacetylases Restricts Tube Elongation in the
1106 *Drosophila* Trachea. *Curr Biol.* 2006;16:180–5.

1107 55. Luschnig S, Ba T, Armbruster K, Krasnow MA. *serpentine* and *vermiform* Encode Matrix
1108 Proteins with Chitin Binding and Deacetylation Domains that Limit Tracheal Tube Length in
1109 *Drosophila*. *Curr Biol.* 2006;16:186–94.

1110 56. Petkau G, Wingen C, Jussen LCA, Radtke T, Behr M. Obstructor-A Is Required for Epithelial
1111 Extracellular Matrix Dynamics, Exoskeleton Function, and Tubulogenesis. *J Biol Chem.*
1112 2012;287:21396–405.

1113 57. Zhang L, Lv REW. *uninflatable* encodes a novel ectodermal apical surface protein required
1114 for tracheal inflation in *Drosophila*. *Dev Biol.* 2009;336:201–12.

1115 58. Bunt S, Denholm B, Skaer H. Characterisation of the *Drosophila* procollagen lysyl
1116 hydroxylase, *dPlod*. *Gene Expr Patterns.* 2011;11:72–8.

1117 59. Heikkinen J, Risteli M, Wang C, Latvala J, Rossi M, Valtavaara M, et al. Lysyl Hydroxylase 3 Is
1118 a Multifunctional Protein Possessing Collagen Glucosyltransferase Activity *. *J Biol Chem.*
1119 2000;275:36158–63.

1120 60. Martin GR, Timpl R. Laminin and other basement membrane components. *Ann Rev Cell Bioi.*
1121 1987;3:57–85.

1122 61. Matsubayashi Y, Louani A, Dragu A, Sánchez-Sánchez BJ, Serna-Morales E, Yolland L, et al. A
1123 Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation.
1124 *Curr Biol.* 2017;27:3526–34.

1125 62. Chi H-C, Hui C-F. Primary Structure of the *Drosophila* Laminin B2 Chain and Comparison with
1126 Human, Mouse, and *Drosophila* Laminin B1 and B2 Chains. *J Biol Chem.* 1989;264:1543–50.

1127 63. Brekken RA, Sage EH, Brekken RA, U EHS. SPARC, a matricellular protein: at the crossroads
1128 of cell-matrix communication. *Matrix Biol.* 2001;19:815–27.

1129 64. Clark CJ, Sage EH. A Prototypic Matricellular Protein in the Tumor Microenvironment—
1130 Where There's SPARC, There's Fire. *J Cell Biochem.* 2008;732:721–32.

1131 65. Martinek N, Shahab J, Saathoff M, Ringuette M. Haemocyte-derived SPARC is required for
1132 collagen-IV-dependent stability of basal laminae in *Drosophila* embryos. *J Cell Sci.*
1133 2011;124:1671–80.

1134 66. Shahab J, Baratta C, Scuric B, Godt D, Venken KJT, Ringuette MJ. Loss of SPARC Dysregulates
1135 Basal Lamina Assembly to Disrupt Larval Fat Body Homeostasis in *Drosophila melanogaster*. *Dev
1136 Dyn.* 2015;244:540–52.

1137 67. Campbell AG, Fessler LI, Salo T, Fesslerq JH. Papilin: A *Drosophila* Proteoglycan-like Sulfated
1138 Glycoprotein from Basement Membranes *. *J Biol Chem.* 1987;262:17605–12.

1139 68. Hortsch M, Marikar Y, Fishman S, Soneral SN, Dong R, Jacobs JR. The expression of MDP-1, a
1140 component of *Drosophila* embryonic basement membranes, is modulated by apoptotic cell
1141 death. *Int J Dev Biol.* 1998;42:33–42.

1142 69. Kramerova IA, Kawaguchi N, Fessler LI, Nelson RE, Chen Y, Kramerov AA, et al. Papilin in
1143 development; a pericellular protein with a homology to the ADAMTS metalloproteinases.
1144 *Development.* 2000;127:5475–85.

1145 70. Yamakawa M, Tanaka H. Immune proteins and their gene expression in the silkworm,

1146 1146 *Bombyx mori*. Dev Comp Immunol. 1999;23:281–9.

1147 71. Arai I, Ohta M, Suzuki A, Tanaka S, Yoshizawa Y, Sato R. Immunohistochemical Analysis of
1148 the Role of Hemocytin in Nodule Formation in the Larvae of the Silkworm, *Bombyx mori*. J
1149 Insect Sci. 2013;13:1–13.

1150 72. Ni W, Bao J, Mo B, Liu L, Li T, Pan G, et al. Hemocytin facilitates host immune responses
1151 against *Nosema bombycis*. Dev Comp Immunol. 2019;103:103495.

1152 73. Goto A, Kadowaki T, Kitagawa Y. *Drosophila* hemolectin gene is expressed in embryonic and
1153 larval hemocytes and its knock down causes bleeding defects. Dev Biol. 2003;264:582–91.

1154 74. Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U. A role for Hemolectin in
1155 coagulation and immunity in *Drosophila melanogaster*. Dev Comp Immunol. 2007;31:1255–63.

1156 75. Kotani E, Yamakawa M, Iwamoto S, Tashiro M, Mori H, Sumida M, et al. Cloning and
1157 expression of the gene of hemocytin, an insect humoral lectin which is homologous with the
1158 mammalian von Willebrand factor. Biochim Biophys Acta. 1995;1260:245–58.

1159 76. Ponnuvel KM, Yamakawa M. Immune responses against bacterial infection in *Bombyx mori*
1160 and regulation of host gene expression. Curr Sci. 2002;83:447–54.

1161 77. Kanost MR, Jiang H. Clip-domain serine proteases as immune factors in insect hemolymph.
1162 Curr Opin Insect Sci. 2016;11:47–55.

1163 78. Jagdale S, Bansode S, Joshi R. Insect Proteases: Structural-Functional Outlook in Proteases in
1164 physiology and pathology. Springer Nature Singapore; 2017.

1165 79. Houot B, Bousquet F, Ferveur JF. The consequences of regulation of desat1 expression for
1166 pheromone emission and detection in *Drosophila melanogaster*. Genetics. 2010;185:1297–309.

1167 80. Moto K, Suzuki MG, Hull JJ, Kurata R, Takahashi S, Yamamoto M, et al. Involvement of a
1168 bifunctional fatty-acyl desaturase in the biosynthesis of the silkworm, *Bombyx mori*, sex
1169 pheromone. Proc Natl Acad Sci. 2004;101:8631–6.

1170 81. Dembeck LM, Boroczky K, Huang W, Schal C, Anholt RRH, Mackay TFC. Genetic architecture
1171 of natural variation in cuticular hydrocarbon composition in *Drosophila melanogaster*. Elife.
1172 2015;4:1–27.

1173 82. Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct
1174 CYP4G genes of *Anopheles gambiae* contribute to cuticular hydrocarbon biosynthesis. Insect
1175 Biochem Mol Biol. 2019;110:52–9.

1176 83. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, et al. An insect-specific
1177 P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci.
1178 2012;109:14858–63.

1179 84. Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450
1180 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenetic Evol. 2020;143 October
1181 2019:106695.

1182 85. Hayes JD, Flanagan JU, Jowsey IR. Glutathione Transferases. *Annu Rev Pharmacol Toxicol*.
1183 2005;45:51–88.

1184 86. Da Fonseca RR, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Molecular evolution and
1185 the role of oxidative stress in the expansion and functional diversification of cytosolic
1186 glutathione transferases. *BMC Evol Biol*. 2010;10:1–11.

1187 87. Lee M, Yoon CS, Yi J, Cho JR, Kim HS. Cellular immune responses and FAD-glucose
1188 dehydrogenase activity of *Mamestra brassicae* (Lepidoptera: Noctuidae) challenged with three
1189 species of entomopathogenic fungi. *Physiol Entomol*. 2005;30:287–92.

1190 88. Pan Q, Shikano I, Felton GW, Liu T-X, Hoover K. Host permissiveness to baculovirus
1191 influences time-dependent immune responses and fitness costs. *Insect Sci*. 2020;00:1–12.

1192 89. Katsuma S, Kawaoka S, Mita K, Shimada T. Genome-wide survey for baculoviral host
1193 homologs using the *Bombyx* genome sequence. *Insect Biochem Mol Biol*. 2008;38:1080–6.

1194 90. Gilbert C, Chateigner A, Ernenwein L, Barbe V, Annie B, Herniou2 EA, et al. Population
1195 genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. *Nat
1196 Commun*. 2014;5:1–9.

1197 91. Clem RJ, Passarelli AL. Baculoviruses: Sophisticated Pathogens of Insects. *PLoS Pathog*.
1198 2013;9:11–4.

1199 92. Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, Lee JH, et al. Analysis of genes expression of
1200 *Spodoptera exigua* Larvae upon AcMNPV infection. *PLoS One*. 2012;7:1–10.

1201 93. Guarino LA, Dong WEN, Xu BIN, Broussard DR, Davis RW, Jarvis DL. Baculovirus
1202 Phosphoprotein pp31 Is Associated with Virogenic Stroma. *J Virol*. 1992;66:7113–20.

1203 94. Guo ZJ, Qiu LH, An SH, Yao Q, Park EY, Chen KP, et al. Open reading frame 60 of the *Bombyx
1204 mori* nucleopolyhedrovirus plays a role in budded virus production. *Virus Res*. 2010;151:185–
1205 91.

1206 95. Wei D, Wang Y, Zhang X, Hu Z, Yuan M, Yang K. *Autographa californica
1207 Nucleopolyhedrovirus* Ac76: a Dimeric Type II Integral Membrane Protein That Contains an
1208 Inner Nuclear Membrane-Sorting Motif. *J Virol*. 2014;88:1090–103.

1209 96. Hu Z, Yuan M, Wu W, Liu C, Yang K, Pang Y. *Autographa californica* Multiple
1210 Nucleopolyhedrovirus *ac76* Is Involved in Intranuclear Microvesicle Formation. *J Virol*.
1211 2010;84:7437–47.

1212 97. Chen L, Yang R, Hu X, Xiang X, Yu S, Wu X. The formation of occlusion-derived virus is
1213 affected by the expression level of ODV-E25. *Virus Res*. 2013;173:404–14.

1214 98. Chen L, Hu X, Xiang X, Yu S, Yang R, Wu X. *Autographa californica* multiple
1215 nucleopolyhedrovirus *odv-e25* (Ac94) is required for budded virus infectivity and occlusion-
1216 derived virus formation. *Arch Virol*. 2012;157:617–25.

1217 99. Wang M, Tuladhar E, Shen S, Wang H, van Oers MM, Vlak JM, et al. Specificity of Baculovirus

1218 P6.9 Basic DNA-Binding Proteins and Critical Role of the C Terminus in Virion Formation. *J Virol.*
1219 2010;84:8821–8.

1220 100. McCarthy CB, Theilmann DA. AcMNPV *ac143 (odv-e18)* is essential for mediating budded
1221 virus production and is the 30th baculovirus core gene. *Virology.* 2008;375:277–91.

1222 101. Braunagel SC, He H, Ramamurthy P, Summers MD. Transcription, Translation, and Cellular
1223 Localization of Three *Autographa californica* Nuclear Polyhedrosis Virus Structural Proteins:
1224 ODV-E18, ODV-E35, and ODV-EC27. *Virology.* 1996;114:100–14.

1225 102. Gross CH, Russell RLQ, Rohrmann GF. *Orgyia pseudotsugata* baculovirus p10 and
1226 polyhedron envelope protein genes: Analysis of their relative expression levels and role in
1227 polyhedron structure. *J Gen Virol.* 1994;75:1115–23.

1228 103. McCarthy CB, Dai X, Donly C, Theilmann DA. *Autographa californica* multiple
1229 nucleopolyhedrovirus *ac142*, a core gene that is essential for BV production and ODV
1230 envelopment. *Virology.* 2008;372:325–39.

1231 104. Vanarsdall AL, Pearson MN, Rohrmann GF. Characterization of baculovirus constructs
1232 lacking either the Ac 101, Ac 142, or the Ac 144 open reading frame. *Virology.* 2007;367:187–
1233 95.

1234 105. Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, et al. Liquefaction of
1235 *Autographa californica* nucleopolyhedrovirus-infected insects is dependent on the integrity of
1236 virus-encoded chitinase and cathepsin genes. *Virology.* 1997;238:243–53.

1237 106. Slack JM, Kuzio J, Faulkner P. Characterization of *v-cath*, a cathepsin L-like proteinase
1238 expressed by the baculovirus *Autographa californica* multiple nuclear polyhedrosis virus. *J Gen*
1239 *Virol.* 1995;76:1091–8.

1240 107. Ishimwe E, Hodgson JJ, Clem RJ, Passarelli AL. Reaching the melting point: Degradative
1241 enzymes and protease inhibitors involved in baculovirus infection and dissemination. *Virology.*
1242 2015;479–480:637–49.

1243 108. Lyupina Y V, Dmitrieva SB, Timokhova A V, Beljelarskaya SN, Zatsepina OG, Evgen MB, et al.
1244 An important role of the heat shock response in infected cells for replication of baculoviruses.
1245 *Virology.* 2010;406:336–41.

1246 109. Mu J, Zhang Y, Hu Y, Hu X, Zhou Y, Zhao H, et al. *Autographa californica* Multiple
1247 Nucleopolyhedrovirus Ac34 Protein Retains Cellular Actin-Related Protein 2/3 Complex in the
1248 Nucleus by Subversion of CRM1- Dependent Nuclear Export. *PLoS Pathog.* 2016;12:1–22.

1249 110. Lyupina Y V, Orlova O V, Abaturova SB, Beljelarskaya SN, Lavrov AN, Mikhailov VS. Egress
1250 of budded virions of *Autographa californica* nucleopolyhedrovirus does not require activity of
1251 *Spodoptera frugiperda* HSP/HSC70 chaperones. *Virus Res.* 2014;192:1–5.

1252 111. Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. *Trends Microbiol.*
1253 2011;19:368–75.

1254 112. Ohkawa T, Volkman LE, Welch MD. Actin-based motility drives baculovirus transit to the

1255 nucleus and cell surface. *J Cell Biol.* 2010;190:187–95.

1256 113. Qiu J, Tang Z, Yuan M, Wu W, Yang K. The 91-205 amino acid region of AcMNPV ORF34
1257 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and
1258 optimal virus multiplication. *Virus Res.* 2017;228:79–89.

1259 114. Cai Y, Long Z, Qiu J, Yuan M, Li G, Yang K. An *ac34* Deletion Mutant of *Autographa*
1260 *californica* Nucleopolyhedrovirus Exhibits Delayed Late Gene Expression and a Lack of Virulence
1261 *In Vivo*. *J Virol.* 2012;86:10432–43.

1262 115. Kelly KK, Meadows SM, Cripps RM. Drosophila MEF2 is a direct regulator of Actin57B
1263 transcription in cardiac, skeletal, and visceral muscle lineages. *Mech Dev.* 2002;110:39–50.

1264 116. Vierstraete E, Cerstiaens A, Baggerman G, Bergh G Van Den, Loof A De, Schoofs L.
1265 Proteomics in *Drosophila melanogaster*: first 2D database of larval hemolymph proteins.
1266 *Biochem Biophys Res Commun.* 2003;304:831–8.

1267 117. Cossart P. Actin-based motility of pathogens: The Arp2/3 complex is a central player. *Cell*
1268 *Microbiol.* 2000;2:195–205.

1269 118. Devitt A, Marshall LJ. The innate immune system and the clearance of apoptotic cells. *J*
1270 *Leukoc Biol.* 2011;90:447–57.

1271 119. Krieser RJ, Eastman A. Cleavage and nuclear translocation of the caspase 3 substrate Rho
1272 GDP-dissociation inhibitor, D4-GDI, during apoptosis. *Cell Death Differ.* 1999;6:412–9.

1273 120. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane
1274 blebbing and the formation of autophagic vesicles during programmed cell death. *J Cell Biol.*
1275 2002;157:455–68.

1276 121. Noriega FG, Ribeiro JMC, Koenerc JF, Valenzuelab JG, Hernandez-Martinez S, Pham VM,
1277 et al. Comparative genomics of insect juvenile hormone biosynthesis. *Insect Biochem Mol Biol.*
1278 2006;36:366–74.

1279 122. Bailey D, Basar MA, Nag S, Bondhu N, Teng S, Duttaroy A. The essential requirement of an
1280 animal heme peroxidase protein during the wing maturation process in *Drosophila*. *BMC Dev*
1281 *Biol.* 2017;:1–11.

1282 123. Reilly DRO, Miller LK. A Baculovirus Blocks Insect Molting by Producing. 1989;245:1110–2.

1283 124. Rao R, Fiandra L, Giordana B, De Eguileor M, Congiu T, Burlini N, et al. AcMNPV ChiA
1284 protein disrupts the peritrophic membrane and alters midgut physiology of *Bombyx mori*
1285 larvae. *Insect Biochem Mol Biol.* 2004;34:1205–13.

1286 125. Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen
1287 interactions. *J Insect Physiol.* 2019;117 June:103894.

1288 126. He L, Li N, Chen Y, Liu S. Regulation of Chitinase in *Spodoptera exigua* (Hübner)
1289 (Lepidoptera:Noctuidae) During Infection by *Heliothis virescens*. *Front Physiol.* 2020;11:1–11.

1290 127. Su C, Tu G, Huang S, Yang Q. Genome-wide analysis of chitinase genes and their varied

1291 functions in larval moult , pupation and eclosion in the rice striped stem borer, *Chilo*
1292 *suppressalis*. Insect Mol Biol. 2016;25:401–12.

1293 128. Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptome of
1294 the mosquito *Aedes fluviatilis* (Diptera: Culicidae), and transcriptional changes associated with
1295 its native *Wolbachia* infection. BMC Genomics. 2017;18:1–19.

1296 129. Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain
1297 organization and phylogenetic analysis of the chitinase-like family of proteins in three species of
1298 insects. Insect Biochem Mol Biol. 2008;38:452–66.

1299 130. Hawtin RE, Arnold K, Ayres MD, Zanotto PMD, Howard SC, Gooday GW, et al. Identification
1300 and Preliminary Characterization of a Chitinase Gene in the *Autographa californica* Nuclear
1301 Polyhedrosis-Virus Genome. Virology. 1995;212:673–85.

1302 131. Daimon T, Katsuma S, Kang WK, Shimada T. Comparative studies of *Bombyx mori*
1303 nucleopolyhedrovirus *chitinase* and its host ortholog, *BmChi-h*. Biochem Biophys Res Commun.
1304 2006;345:825–33.

1305 132. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain
1306 glycoprotein. FASEB J. 1990;4:148–60.

1307 133. Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, et al. Comprehensive
1308 Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within
1309 the Matrix Scaffolding. Dev Cell. 2020;54:60-74.e7.

1310 134. Means JC, Passarelli AL. Viral fibroblast growth factor, matrix metalloproteases, and
1311 caspases are associated with enhancing systemic infection by baculoviruses. Proc Natl Acad Sci.
1312 2010;107:9825–30.

1313 135. Monsma SA, Oomens AGP, Blissard GW. The GP64 Envelope Fusion Protein Is an Essential
1314 Baculovirus Protein Required for Cell-to-Cell Transmission of Infection. J Virol. 1996;70:4607–
1315 16.

1316 136. Passarelli AL. Barriers to success: How baculoviruses establish efficient systemic infections.
1317 Virology. 2012;411:383–92.

1318 137. Li J, Sun Y, Li Y, Liu X, Yue Q, Li Z. Inhibition of cellular fatty acid synthase impairs
1319 replication of budded virions of *Autographa californica* multiple nucleopolyhedrovirus in
1320 *Spodoptera frugiperda* cells. Virus Res. 2018;252 March:41–7.

1321 138. Munger J, Bennett BD, Parikh A, Feng X, Rabitz HA, Shenk T, et al. Systems-level metabolic
1322 flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol.
1323 2010;26:1179–86.

1324 139. Breitenbach JE, Shelby KS, Popham HJR. Baculovirus induced transcripts in hemocytes from
1325 the larvae of *Heliothis virescens*. Viruses. 2011;3:2047–64.

1326 140. Bousquet F, Ferveur JF. desat1 A Swiss army knife for pheromonal communication and
1327 reproduction? Fly (Austin). 2012;6:102–7.

1328 141. Köhler K, Brunner E, Xue LG, Boucke K, Greber UF, Mohanty S, et al. A combined proteomic
1329 and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced
1330 autophagy in *Drosophila*. *Autophagy*. 2009;5:980–90.

1331 142. He C, Klionsky DJ. Regulation Mechanisms and Signaling Pathways of Autophagy. *Annu Rev
1332 Genet.* 2009;43:67–93.

1333 143. Roxstrom-Lindquist K, Terenius O, Faye I. Parasite-specific immune response in adult
1334 *Drosophila melanogaster*: a genomic study. *EMBO Rep.* 2004;5:207–12.

1335 144. Cerenius L, Kawabata S ichiro, Lee BL, Nonaka M, Söderhäll K. Proteolytic cascades and
1336 their involvement in invertebrate immunity. *Trends Biochem Sci.* 2010;35:575–83.

1337 145. Lavine MD, Strand MR. Insect Hemocytes and Their Role in Immunity. *Insect Immunol.*
1338 2008;32:25–47.

1339 146. Zhao P, Wang GH, Dong ZM, Duan J, Xu PZ, Cheng TC, et al. Genome-wide identification
1340 and expression analysis of serine proteases and homologs in the silkworm *Bombyx mori*. *BMC
1341 Genomics.* 2010;11:1–11.

1342 147. Tang H, Kambris Z, Lemaitre B, Hashimoto C. Two Proteases Defining a Melanization
1343 Cascade in the Immune System of *Drosophila**. *J Biol Chem.* 2006;281:28097–104.

1344 148. Washburn JO, Haas-Stapleton EJ, Tan FF, Beckage NE, Volkman LE. Co-infection of
1345 *Manduca sexta* larvae with polydnavirus from *Cotesia congregata* increases susceptibility to
1346 fatal infection by *Autographa californica* M Nucleopolyhedrovirus. *J Insect Physiol.*
1347 2000;46:179–90.

1348 149. Engelhard EK, Kam-Morgan LN, Washburn JO, Volkman LE. The insect tracheal system: a
1349 conduit for the systemic spread of *Autographa californica* M nuclear polyhedrosis virus. *Proc
1350 Natl Acad Sci.* 1994;91:3224–7.

1351 150. Monteiro F, Carinhas N, Carrondo MJT, Bernal V. Toward system-level understanding of
1352 baculovirus–host cell interactions: from molecular fundamental studies to large-scale
1353 proteomics approaches. *Front Microbiol.* 2012;3:1–16.

1354 151. Lavington E, Cogni R, Kuczynski C, Koury S, Behrman EL, O'brien KR, et al. A small system-
1355 high-resolution study of metabolic adaptation in the central metabolic pathway to temperate
1356 climates in *Drosophila melanogaster*. *Mol Biol Evol.* 2014;31:2032–41.

1357 152. Wise EM, Ball EG. Malic Enzyme and Lipogenesis. *Proc Natl Acad Sci.* 1964;52:1255–63.

1358 153. Merritt TJS, Duvernall D, Eanes WF. Natural and synthetic alleles provide complementary
1359 insights into the nature of selection acting on the *Men* polymorphism of *Drosophila*
1360 *melanogaster*. *Genetics.* 2005;171:1707–18.

1361 154. Geer BW, Krochko D, Williamson JH. Ontogeny, cell distribution, and the physiological role
1362 of NADP-malic enzyme in *Drosophila melanogaster*. *Biochem Genet.* 1979;17:867–79.

1363 155. Schwarz KB. Oxidative stress during viral infection: a review. *Free Radic Biol Med.*

1364 1996;21:641–9.

1365 156. Camini FC, Lopes C, Magalha DB. Implications of oxidative stress on viral pathogenesis.

1366 Arch Virol. 2017;162:907–17.

1367 157. Wertheim B, van Baalen E-JA, Dicke M, Vet LEM. Pheromone-mediated aggregation in

1368 nonsocial arthropods: An Evolutionary Ecological Perspective. Annu Rev Entomol. 2005;50:321–

1369 46.

1370 158. Trienens M, Rohlfs M. A Potential Collective Defense of *Drosophila* Larvae Against the

1371 Invasion of a Harmful Fungus. Front Ecol Evol. 2020;8:1–10.

1372 159. Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, et al. A CD36 ectodomain

1373 mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun.

1374 2016;7:1–17.

1375 160. Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in

1376 pheromone detection in *Drosophila*. Nature. 2007;450:289–93.

1377 161. Mast JD, De Moraes CM, Alborn HT, Lavis LD, Stern DL. Evolved differences in larval social

1378 behavior mediated by novel pheromones. Elife. 2014;3:e04205.

1379 162. Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, et al. Pherokine-2 and -3:

1380 Two *Drosophila* molecules related to pheromone/odor-binding proteins induced by viral and

1381 bacterial infections. Eur J Biochem. 2003;270:3398–407.

1382 163. Labey C, Dallerac R, Wicker-Thomas C. Involvement of *desat1* gene in the control of

1383 *Drosophila melanogaster* pheromone biosynthesis. Genetica. 2002;114:269–74.

1384 164. Ueyama M, Chertemps T, Labey C, Wicker-Thomas C. Mutations in the *desat1* gene

1385 reduces the production of courtship stimulatory pheromones through a marked effect on fatty

1386 acids in *Drosophila melanogaster*. Insect Biochem Mol Biol. 2005;35:911–20.

1387 165. Bousquet F, Nojima T, Houot B, Chauvel I, Chaudy S, Dupas S, et al. Expression of a

1388 desaturase gene, *desat1*, in neural and nonneural tissues separately affects perception and

1389 emission of sex pheromones in *Drosophila*. Proc Natl Acad Sci. 2012;109:249–54.

1390 166. Sim S, Ramirez L, Dimopoulos G. Dengue Virus Infection of the *Aedes aegypti* Salivary

1391 Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding

1392 Behavior. PLoS Pathog. 2012;8:e1002631.

1393 167. Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, et al. Description of

1394 the transcriptomes of immune response-activated hemocytes from the mosquito vectors *Aedes*

1395 *aegypti* and *Armigera subalbatus*. Infect Immun. 2004;72:4114–26.

1396 168. Wang Y, Oberley LW, Murhammer DW. Evidence of oxidative stress following the viral

1397 infection of two lepidopteran insect cell lines. Free Radic Biol Med. 2001;31:1448–55.

1398 169. Schieber M, Chandel NS. ROS function in redox signaling. Curr Biol. 2014;24:453–62.

1399 170. Shi A, Hu Z, Zuo Y, Wang Y, Wu W, Yuan M, et al. *Autographa californica* Multiple

1400 Nucleopolyhedrovirus *ac75* Is Required for the Nuclear Egress of Nucleocapsids and
1401 Intranuclear Microvesicle Formation. *J Virol.* 2018;92:e01509-17.

1402 171. Guo Y, Fu S, Li L. *Autographa californica* multiple nucleopolyhedrovirus *ac75* is required for
1403 egress of nucleocapsids from the nucleus and formation of de novo intranuclear membrane
1404 microvesicles. *PLoS One.* 2017;12:e0185630.

1405 172. Kadlec J, Loureiro S, Abrescia NGA, Stuart DI, Jones IM. The postfusion structure of
1406 baculovirus gp64 supports a unified view of viral fusion machines. *Nat Struct Mol Biol.*
1407 2008;15:1024–30.

1408 173. Dong S, Blissard GW. Functional Analysis of the *Autographa californica* Multiple
1409 Nucleopolyhedrovirus GP64 Terminal Fusion Loops and Interactions with Membranes. *J Virol.*
1410 2012;86:9617–28.

1411 174. Sun X, Belouzard S, Whittaker GR. Molecular Architecture of the Bipartite Fusion Loops of
1412 Vesicular Stomatitis Virus Glycoprotein G, a Class III Viral Fusion Protein. *J Biol Chem.*
1413 2008;283:6418–27.

1414 175. Wang M, Wang J, Yin F, Tan Y, Deng F, Chen X, et al. Unraveling the Entry Mechanism of
1415 Baculoviruses and Its Evolutionary Implications. *J Virol.* 2014;88:2301–11.

1416 176. Pearson MN, Rohrmann GF. Transfer, Incorporation, and Substitution of Envelope Fusion
1417 Proteins among Members of the *Baculoviridae*, *Orthomyxoviridae*, and *Metaviridae* (Insect
1418 Retrovirus) Families. *J Virol.* 2002;76:5301–4.

1419 177. Braunagel SC, Parr R, Belyavskyi M, Summers MD. *Autographa californica*
1420 nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. *Virology.*
1421 1998;244:195–211.

1422 178. Ishidate T, Elewa A, Kim S, Mello CC, Shirayama M. Divide and differentiate CDK / Cyclins
1423 and the art of development. *Cell Cycle.* 2014;13:1384–91.

1424 179. O'Reilly DR, Miller LK. Regulation of expression of a baculovirus ecdysteroid
1425 UDPglucosyltransferase gene. *J Virol.* 1990;64:1321–8.

1426 180. Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J. A Gene for an Extended
1427 Phenotype. *Science.* 2011;333:1401.

1428 181. Ros VID, Van Houte S, Hemerik L, Van Oers MM. Baculovirus-induced tree-top disease:
1429 How extended is the role of *egt* as a gene for the extended phenotype? *Mol Ecol.* 2015;24:249–
1430 58.

1431 182. Van Houte S, Ros VID, Van Oers MM. Hyperactivity and tree-top disease induced by the
1432 baculovirus AcMNPV in *Spodoptera exigua* larvae are governed by independent mechanisms.
1433 *Naturwissenschaften.* 2014;101:347–50.

1434 183. Herrero S, Ansems M, Van Oers MM, Vlak JM, Bakker PL, de Maagd RA. REPAT, a new
1435 family of proteins induced by bacterial toxins and baculovirus infection in *Spodoptera exigua*.
1436 *Insect Biochem Mol Biol.* 2007;37:1109–18.

1437 184. Merzendorfer H. Chitin synthesis inhibitors: Old molecules and new developments. *Insect*
1438 *Sci.* 2013;20:121–38.

1439 185. Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and
1440 Functions of Chitin in Insects. *Annu Rev Entomol.* 2016;61:177–96.

1441 186. Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, et al. Resistance
1442 mutation conserved between insects and mites unravels the benzoylurea insecticide mode of
1443 action on chitin biosynthesis. *Proc Natl Acad Sci.* 2016;113:14692–7.

1444 187. Moussian B, Schwarz H, Bartoszewski S, Nu C. Involvement of Chitin in Exoskeleton
1445 Morphogenesis in *Drosophila melanogaster*. *J Morphol.* 2005;264:117–30.

1446 188. Cook DR, Leonard BR, Gore J. Field and Laboratory Performance of Novel Insecticides
1447 Against Armyworms (Lepidoptera: Noctuidae). *Florida Entomol.* 2006;87:433–9.

1448 189. IRAC South Africa. Integrated Pest Management (IPM) & Insect Resistance Management
1449 (IRM) for Fall Armyworm in South African Maize. 2018;:1–21.

1450 190. Powell GF, Ward DA, Prescott MC, Spiller DG, White MRH, Turner PC, et al. The molecular
1451 action of the novel insecticide, Pyridalyl. *Insect Biochem Mol Biol.* 2011;41:459–69.

1452 191. San Miguel K, Scott JG. The next generation of insecticides: DsRNA is stable as a foliar-
1453 applied insecticide. *Pest Manag Sci.* 2016;72:801–9.

1454 192. Wilson K, Grzywacz D, Curcic I, Scoates F, Harper K, Rice A, et al. A novel formulation
1455 technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. *Sci*
1456 *Rep.* 2020;10:13301.

1457 193. Shim HJ, Choi JY, Wang Y, Tao XY, Liu Q, Roh JY, et al. Neurobactrus, a novel, highly
1458 effective, and environmentally friendly recombinant baculovirus insecticide. *Appl Environ*
1459 *Microbiol.* 2013;79:141–9.

1460 194. Cory JS, Hirst ML, Williams T, Hails RS, Goulson D, Green BM, et al. Field trial of a
1461 genetically improved baculovirus insecticide. *Nature.* 1994;370:138–40.

1462 195. Bentivenha JP, Rodrigues JG, Lima MF, Marçon P, Popham HJR, Omoto C. Baseline
1463 Susceptibility of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) to SfMNPV and Evaluation of
1464 Cross-Resistance to Major Insecticides and Bt Proteins. *J Econ Entomol.* 2019;112:91–8.

1465 196. Das S, Goswami A, Debnath N. Application of baculoviruses as biopesticides and the
1466 possibilities of nanoparticle mediated delivery in Nano-Biopesticides Today and Future
1467 Perspectives. Elsevier Inc.; 2019.

1468 197. Liu Z, Wang X, Dai Y, Wei X, Ni M, Zhang L, et al. Expressing double-stranded RNAs of insect
1469 hormone-related genes enhances baculovirus insecticidal activity. *Int J Mol Sci.* 2019;20:1–13.

1470 198. Bonning BC, Hirst M, Possee RD, Hammock BD. Further development of a recombinant
1471 baculovirus insecticide expressing the enzyme juvenile hormone esterase from *Heliothis*
1472 *virescens*. *Insect Biochem Mol Biol.* 1992;22:453–8.

1473 199. Chen E, Kolosov D, O'Donnell MJ, Erlandson MA, McNeil JN, Donly C. The effect of diet on
1474 midgut and resulting changes in infectiousness of AcMNPV baculovirus in the cabbage looper,
1475 *Trichoplusia ni*. *Front Physiol*. 2018;9 OCT:1–11.

1476 200. Collett D. *Modelling binary data*. Boca Raton, FL: Chapman & Hall/CRC; 2003.

1477 201. Team R core. *R: A Language and Environment for Statistical Computing*. 2018.

1478 202. Plummer M. *JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs*
1479 *Sampling*. *Proc DSC*. 2003;:1–10.

1480 203. Su Y, Yajima M. *Package 'R2jags.'* 2015.

1481 204. Link WA, Eaton MJ. On thinning of chains in MCMC. *Methods Ecol Evol*. 2012;3:112–115.

1482 205. Gelman A, Carlin JB, Stern HS, Rubin DB. *Bayesian data analysis*. Taylor & Francis; 2014.

1483 206. Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized
1484 discrepancies. *Stat Sin*. 1996;6:733–760.

1485 207. Kéry M. *Introduction to WinBUGS for ecologists*. 2010.

1486 208. Fan L, Wang G, Hu W, Pantha P, Tran K-N, Zhang H, et al. Transcriptomic view of survival
1487 during early seedling growth of the extremophyte *Haloxylon ammodendron*. *Plant Physiol*
1488 *Biochem*. 2018;132:475–89.

1489 209. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
1490 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*.
1491 2011;29:644–52.

1492 210. Oh D, Barkla BJ, Vera-estrella R, Pantoja O, Lee S, Bohnert HJ, et al. Cell type-specific
1493 responses to salinity—the epidermal bladder cell transcriptome of *Mesembryanthemum*
1494 *crystallinum*. *New Phytol*. 2015;207:627–44.

1495 211. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or
1496 nucleotide sequences. *Bioinformatics*. 2006;22:1658–9.

1497 212. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. BUSCO: Assessing
1498 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*.
1499 2015;31:3210–2.

1500 213. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of
1501 short DNA sequences to the human genome. *Genome Biol*. 2009;10:R25.

1502 214. Tarazona S, Furió-Tarí P, Turrà D, Pietro A Di, Nueda MJ, Ferrer A, et al. Data quality aware
1503 analysis of differential expression in RNA-seq with NOISeq R/Bioc package. *Nucleic Acids Res*.
1504 2015;43:e140.

1505 215. Maere S, Heymans K, Kuiper M. BiNGO: A Cytoscape plugin to assess overrepresentation of
1506 Gene Ontology categories in Biological Networks. *Bioinformatics*. 2005;21:3448–9.

1507 216. Wang G, Oh D, Dassanayake M. GOMCL: a toolkit to cluster, evaluate, and extract non-
1508 redundant associations of Gene Ontology-based functions. *BMC Bioinformatics*. 2020;21:1–9.

1509 217. Shrestha A, Bao K, Chen Y-R, Chen W, Wang P, Fei Z, et al. Global Analysis of Baculovirus
1510 *Autographa californica* Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the
1511 Lepidopteran Host *Trichoplusia ni*. *J Virol*. 2018;92:e01277-18.

1512

1513

1514 **Figures, tables, and additional files**

1515 **Figure 1.** Lethal AcMNPV dose determination for *Spodoptera frugiperda* and *Trichoplusia ni*. The
1516 effects of increasing doses of baculoviruses on probability of larval death for [a] *S. frugiperda*
1517 and [b] *T. ni* along with the corresponding [c] box plot of the lethal dose at which 95% of the
1518 individuals would be expected to die identified as LD95. For [a] and [b], the solid line is the
1519 median dose-response curve and the dashed lines are the 95% credible intervals for the curve.
1520 The large filled points represent the mean response for each dose and the small open points
1521 are the individual data. These data are jittered for ease of presentation. For [c] the dark line of
1522 the box plot is the median with the box encompassing the interquartile range between the first
1523 and third quartiles and the whiskers represent 1.5 times the interquartile range.

1524 **Figure 2.** Host transcriptomic response to AcMNPV infection. Summary MD plots of the
1525 normalized expression values for control and AcMNPV treated samples for [a] *S. frugiperda*
1526 coding transcripts (18 up- and 157 down-regulated transcripts) and [b] *T. ni* coding transcripts
1527 (20 up- and 118 down-regulated transcripts). Differently expressed transcripts (DETs) at a q-
1528 value cutoff of 0.95 are indicated in red dots. All the DETs with their respective fold changes are
1529 listed in the Supplementary Table 4. Heatmaps show \log_2 normalized expression of control,
1530 AcMNPV-infected, and \log_2 fold changes of 17,873 transcripts for *S. frugiperda* [c] and 18,203
1531 transcripts of *T. ni* [d]. The genes are clustered based on their expression strength similarity.

1532 **Figure 3.** Overview of enriched functional processes represented by suppressed genes in the
1533 infected host transcriptomes. Functional clusters of *S. frugiperda* [a] and *T. ni* [b] transcripts
1534 suppressed upon AcMNPV infection. Six and two distinct functional clusters were identified for
1535 *S. frugiperda* and *T. ni* respectively. The network connect GO terms, marked as nodes

1536 connected by edges that represent a minimum overlap of 80% genes (in the smaller GO term of
1537 the pair) based on Markov clustering (MCL). Distinct colors indicate shared functional groups
1538 within the network. The radius of the node represents the number of genes and the shade
1539 represents FDR adjusted p-value of ≤ 0.05 enrichment assigned using GOMCL [216]. Each cluster
1540 is named based on the largest enriched GO term in a given cluster.

1541 **Figure 4.** *S. frugiperda* and *T. ni* differently expressed transcripts (DETs) in response to the
1542 AcMNPV infection. Induced DETs are shown in [a] and summarized groups that represent a
1543 total of 101 in *S. frugiperda* and 118 suppressed DETs in *T. ni* are given in [b].

1544 **Figure 5.** The AcMNPV genome expressed in the host hemolymph. [a] The circular plot show
1545 the normalized gene expression of AcMNPV genes in infected *S. frugiperda* and *T. ni*. Core
1546 baculovirus genes are marked with asterisks. [b] Expression of AcMNPV genes associated with
1547 entry and egress from insect hosts, interruption to host metabolic, cellular, and developmental
1548 processes, and viral protein production.

1549 **Figure 6:** Overview of host and viral transcriptome responses in the hemocoel from a 4th instar
1550 larva infected with AcMNPV at the systemic infection stage. Prominent host genes that respond
1551 to the viral infection are listed in the cells/tissues most likely to express those genes. Induced
1552 genes are in red and repressed genes are in blue. Highly abundant viral genes are given in
1553 green.

1554 **Table 1.** Summary of *de novo* assembled reference transcriptomes of *S. frugiperda* and *T. ni*.

1555 **Supplementary Figure 1.** Assembled contig length frequency distribution for *S. frugiperda* and
1556 *T. ni* reference transcriptomes. [a] Coding contigs and [b] non-coding contigs. Comparison of

1557 average CDS length [c] and number of protein coding transcripts [d] between *S. frugiperda* and
1558 *T. ni* compared to *B. mori*, *H. armigera*, *S. litura*, and the *T. ni* genome.

1559 **Supplementary Figure 2.** Quality assessments of *S. frugiperda* and *T. ni* reference
1560 transcriptomes. [a] proportions of different ORF types and [b] assembly completeness of the
1561 references created in this study compared to the previously published *S. frugiperda* draft
1562 genome and transcriptomes (Kakumani et al., 2014 and Legeai et al., 2014) assessed using
1563 BUSCO.

1564 **Supplementary Figure 3.** Annotation summary of the *S. frugiperda* and *T. ni* transcriptome
1565 assembly for coding transcripts. Functional annotation of reference transcriptome was
1566 performed using sequential BLAST with an e-value cutoff 10^{-5} searched within the drosophila
1567 mRNA database, insect reference RNA (refseq_rna) database, and non-redundant (nr)
1568 database. The annotations of reference transcriptome for both species are provided in the
1569 Supplementary Table 3.

1570 **Supplementary Figure 4.** Principle component analysis (PCA) of ortholog gene pairs between *S.*
1571 *frugiperda* and *T. ni*.

1572 **Supplementary Figure 5.** Clustered enriched functional processes among induced *T. ni*
1573 transcripts upon AcMNPV infection. The full list of enriched GO terms and GOMCL cluster
1574 output are included in the Supplementary Table 5.

1575 **Supplementary Figure 6.** Expression of AcMNPV viral genes in infected *S. frugiperda* and *T. ni*.
1576 Genes were classified as nucleocapsid-associated [a] or envelope-associated [b] following
1577 Blissard and Theilmann (2018). Both categories were further divided into genes involved in

1578 occlusion derived virus (ODV), budded virus (BV), and common to both the virion types. [c] Top

1579 30 highly abundant viral genes found in *S. frugiperda* and *T. ni* infected larvae.

1580 **Supplementary Table 1.** RNAseq data generated for each sample.

1581 **Supplementary Table 2.** [a] Summary of short reads mapped to *S. frugiperda* and *T. ni*

1582 reference transcriptomes and [b] percentage of short reads mapped to the AcMNPV viral

1583 genome (Maghodia et al., 2014) for control and AcMNPV treated samples.

1584 **Supplementary Table 3.** Annotation of transcript models with predicted ORFs for *S. frugiperda*

1585 and *T. ni* transcriptome assembly.

1586 **Supplementary Table 4.** List of DETs for *S. frugiperda* and *T. ni* in response to AcMNPV

1587 infection.

1588 **Supplementary Table 5.** Gene ontology enrichment analysis for DETs for *S. frugiperda* and *T. ni*.

1589 **Supplementary Table 6.** Normalized expression value of AcMNPV genes in *S. frugiperda* and *T.*

1590 *ni* infected hosts.

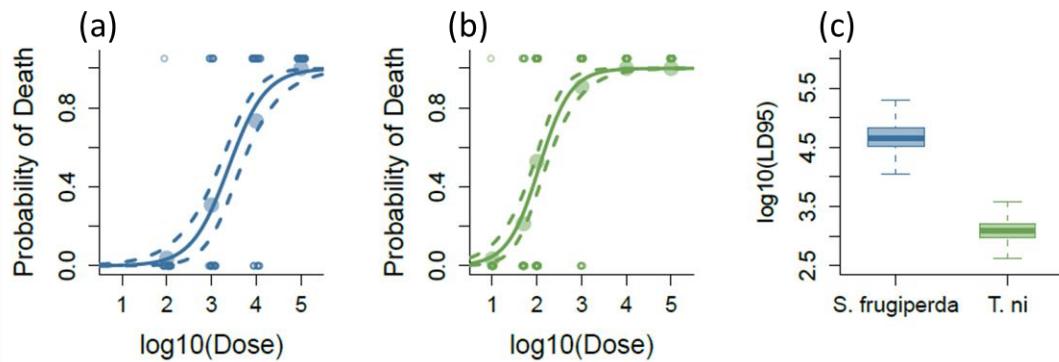
1591

1592

1593

1594

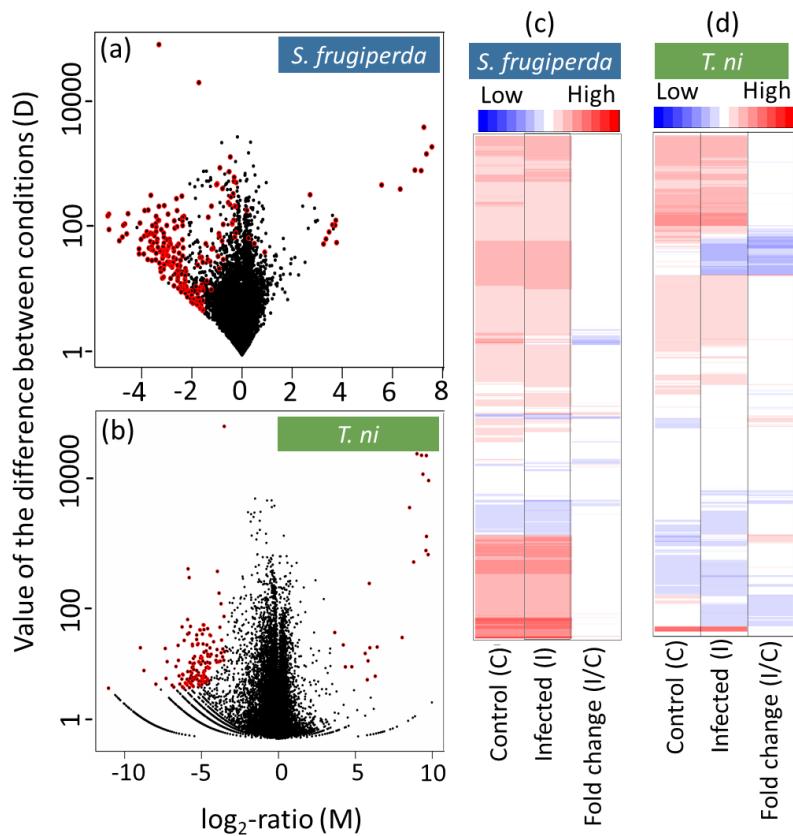
1595


1596

1597

1598

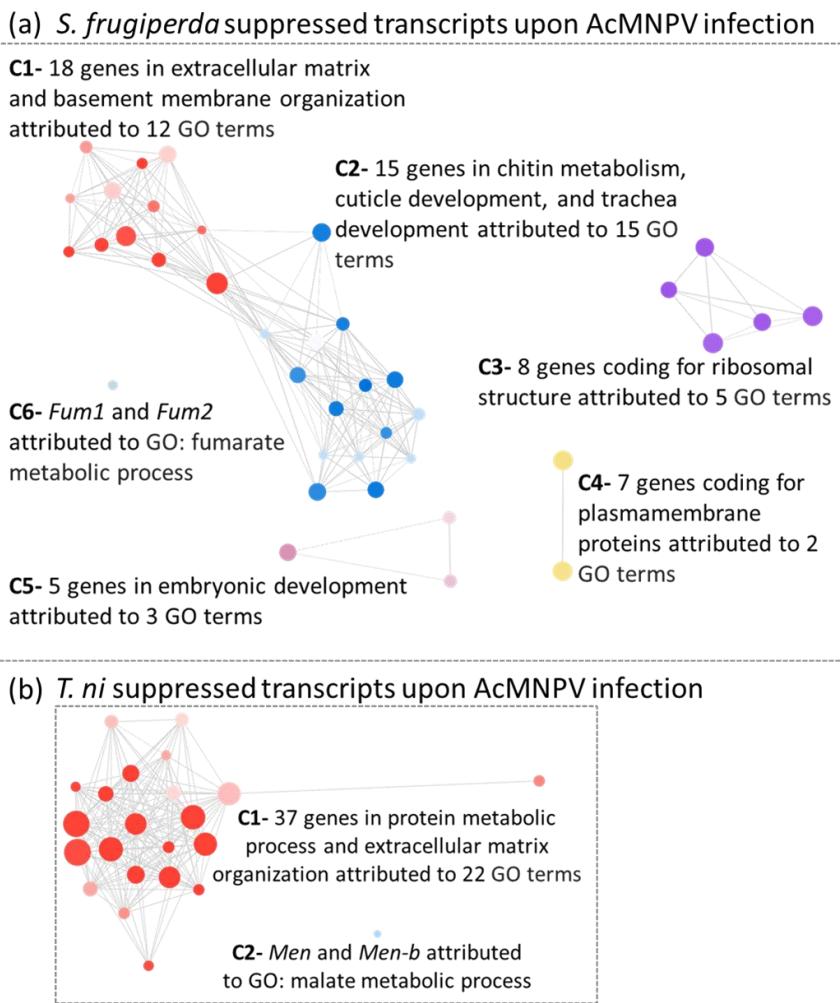
1599


1600 **Figure 1.**

1601

1602

1603 **Figure 2.**



1604

1605

1606

1607 **Figure 3.**

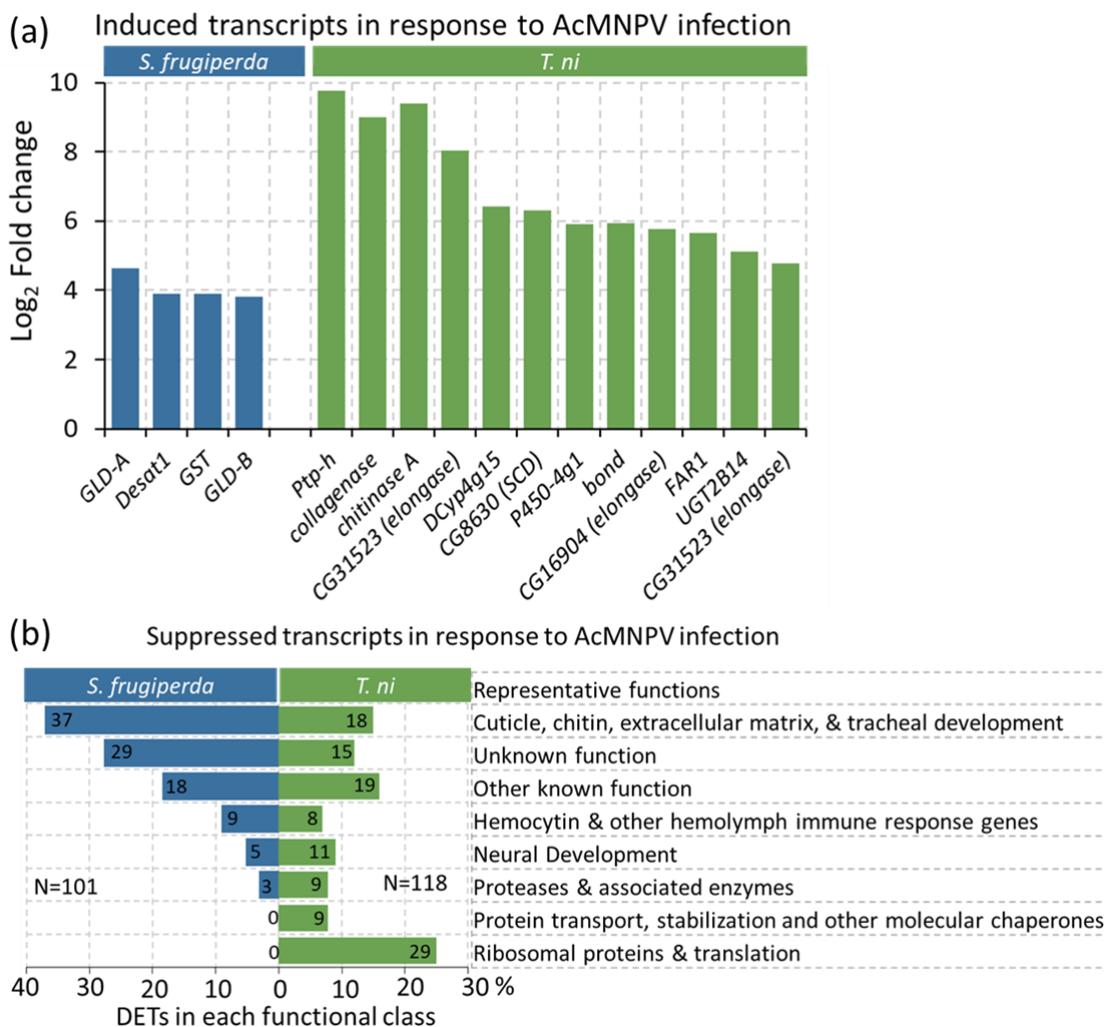
1608

1609

1610

1611

1612


1613

1614

1615

1616

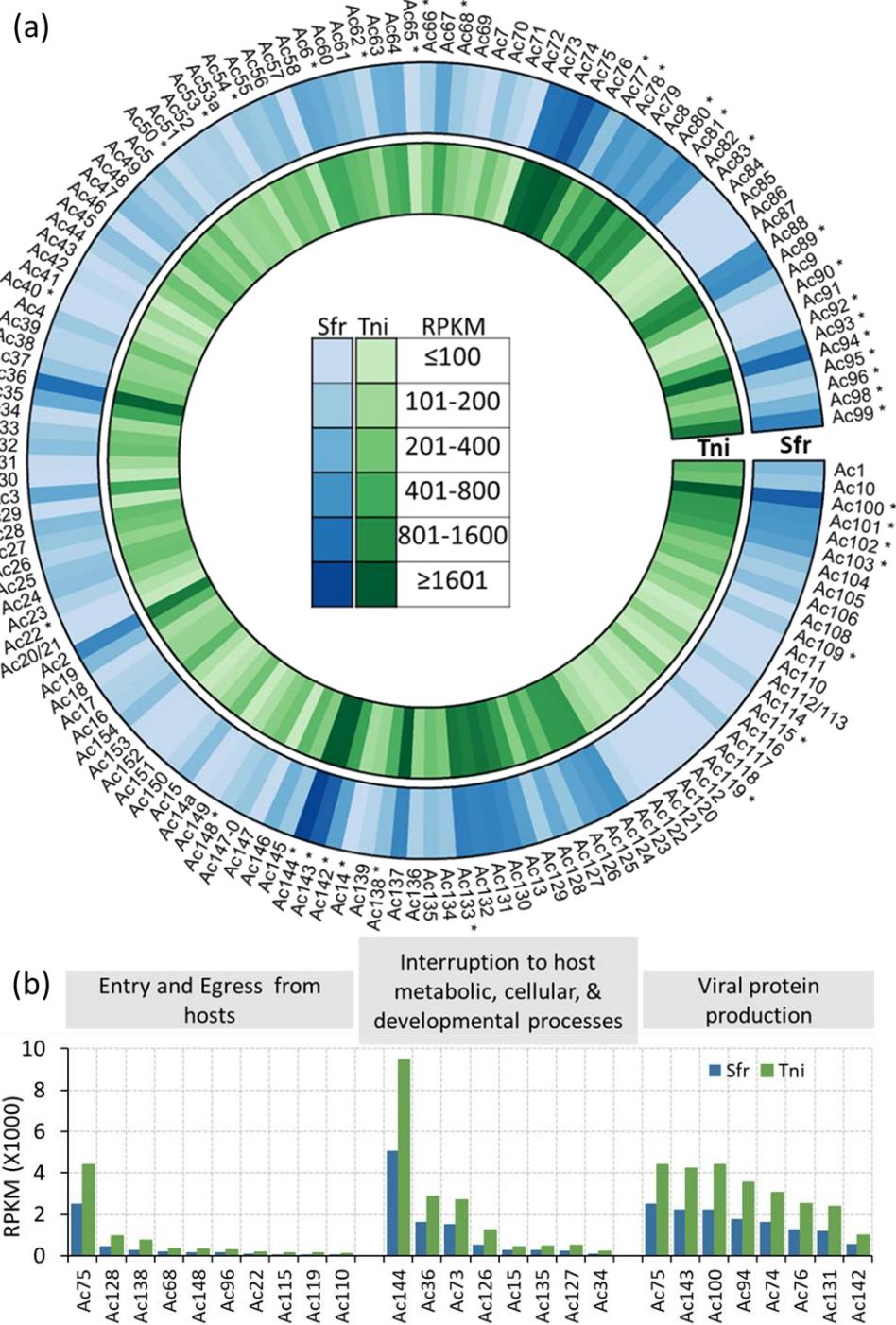
1617 **Figure 4.**

1618

1619

1620

1621

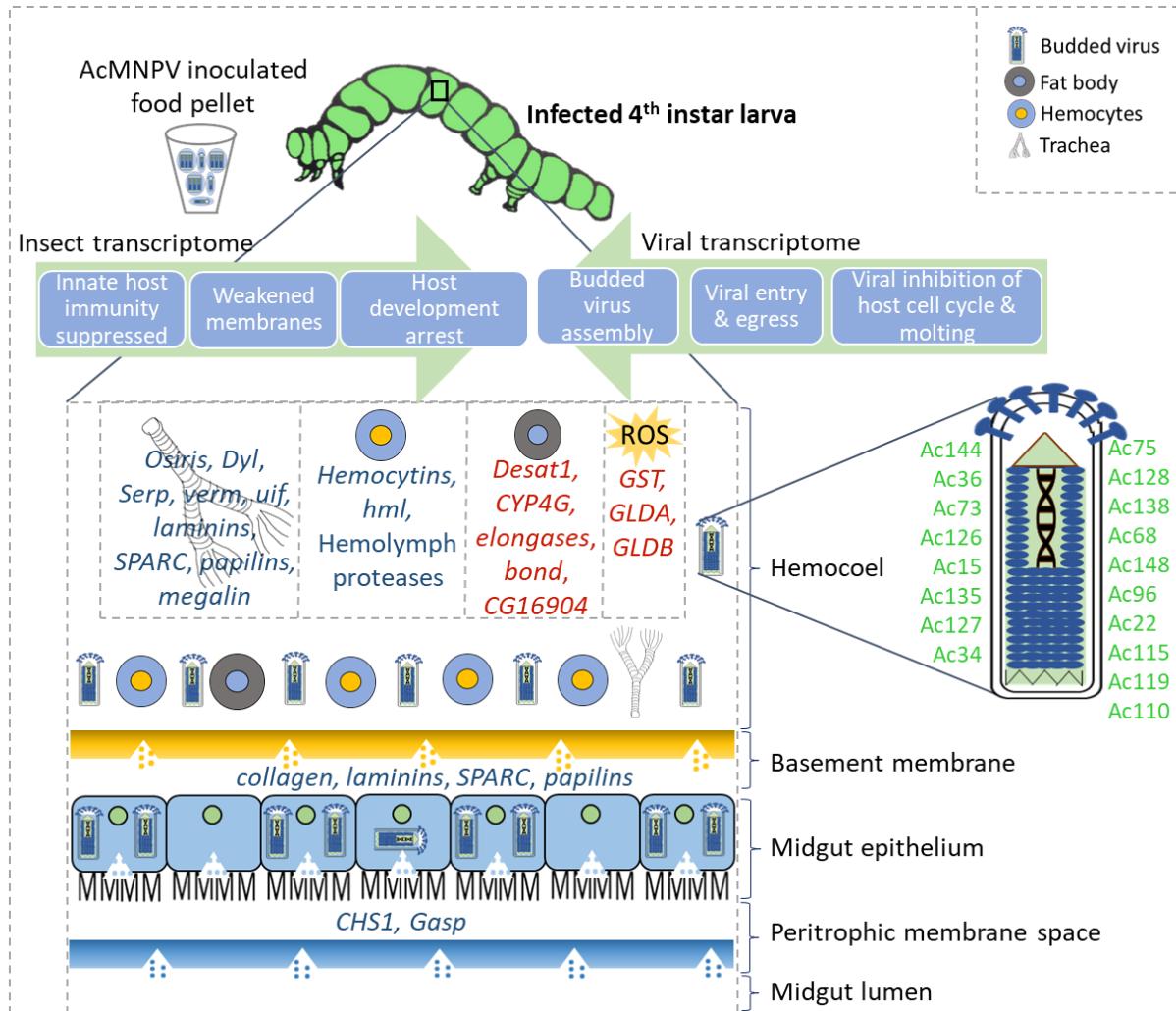

1622

1623

1624

1625

1626 **Figure 5.**



1627

1628

1629

1630 **Figure 6.**

1631

1632

1633

1634

1635

1636

Table 1. Summary of *de novo* assembled reference transcriptomes of *S. frugiperda* and *T. ni*.

Transcriptome assembly features	<i>S. frugiperda</i> Coding ^a (non-coding ^b)	<i>T. ni</i> Coding ^a (non-coding ^b)
Total assembled transcripts	17,908 (101,169)	19,472 (147,934)
Percent GC	42.68 (35.28)	41.16 (35.24)
Contig N50 (nt)	2,279 (532)	2,955 (656)
Average contig length (nt)	1,458 (495)	1,773 (549)
Smallest contig length (nt)	297 (224)	297 (201)
Longest contig length (nt)	29,765 (14,343)	30,823 (23,482)
Number of ORFs	28,433 (-)	31,292 (-)
Average ORF length (nt)	920.28 (-)	841.86 (-)
Smallest ORF length (nt)	297 (-)	297 (-)
Longest ORF length (nt)	27,558 (-)	27,408 (-)
Mapped sequenced read % to the reference assembly	76	84
Detected complete BUSCOs (%) ^c (Arthropoda reference)	80.6	82.1

^a represents transcript models with a predicted open reading frame (ORF)

^b represents transcript models without a predicted ORF

^c BUSCO (Benchmarking Universal Single-Copy Orthologs) v1.22 (Simão et al., 2015)

1637

1638

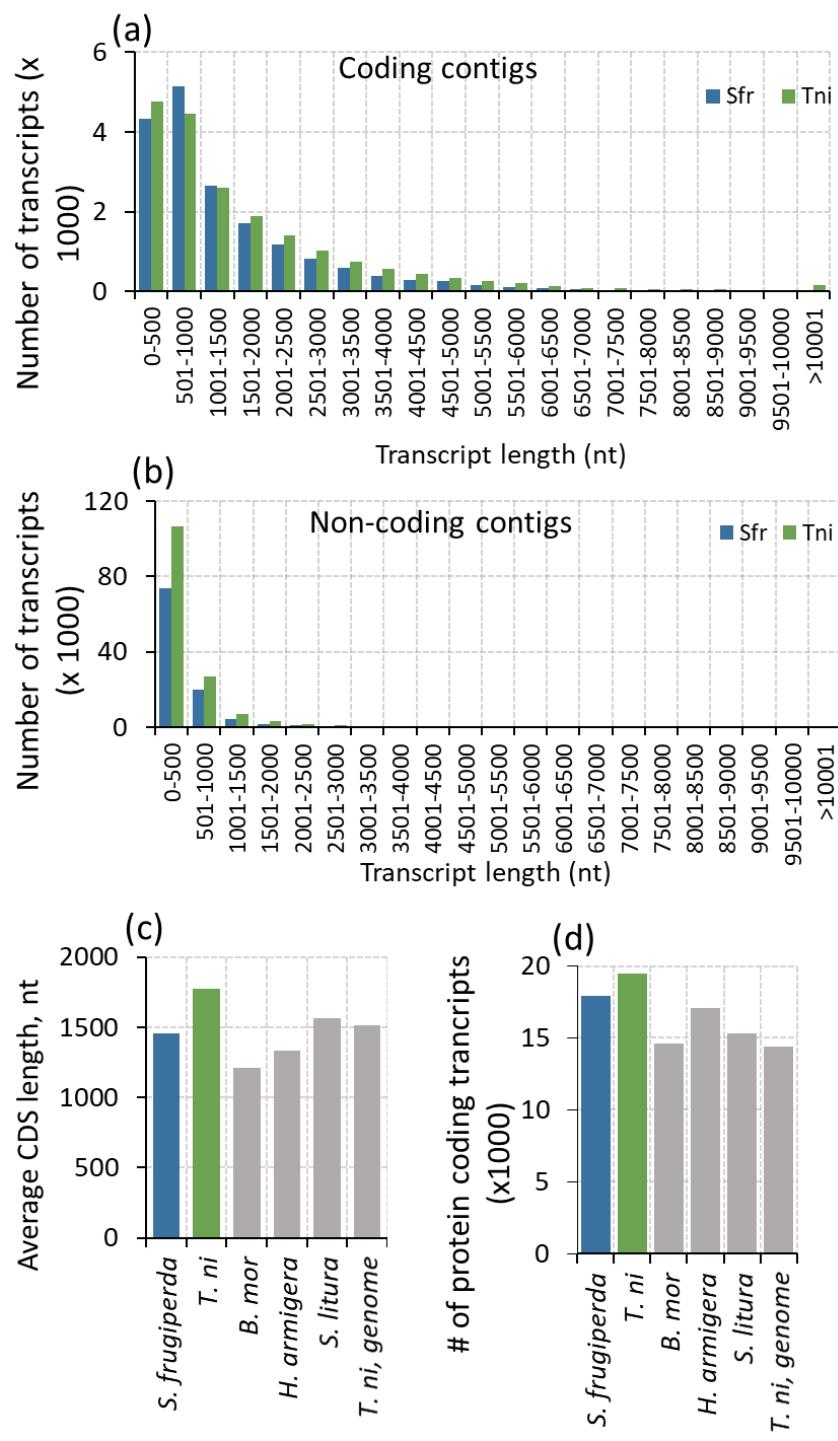
1639

1640

1641

1642

1643

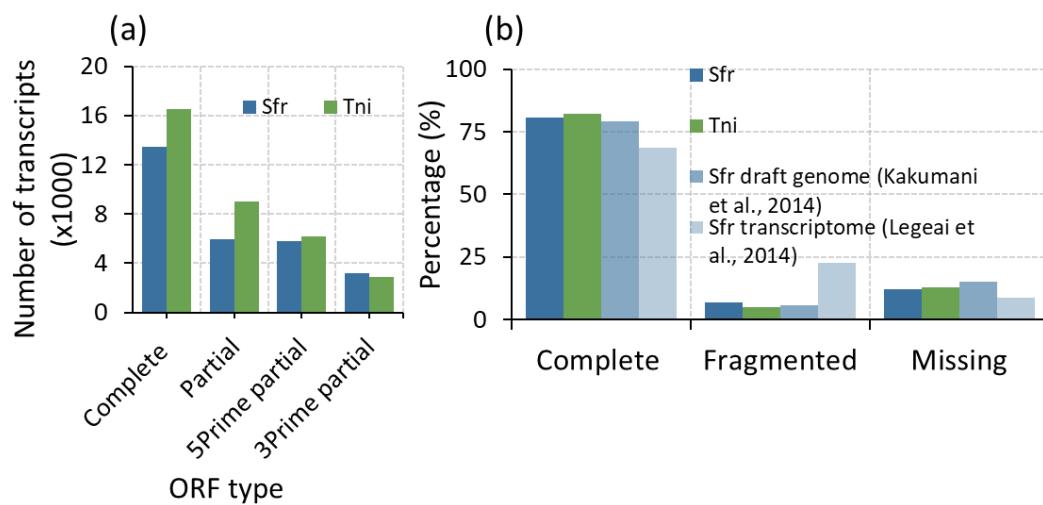

1644

1645

1646

1647

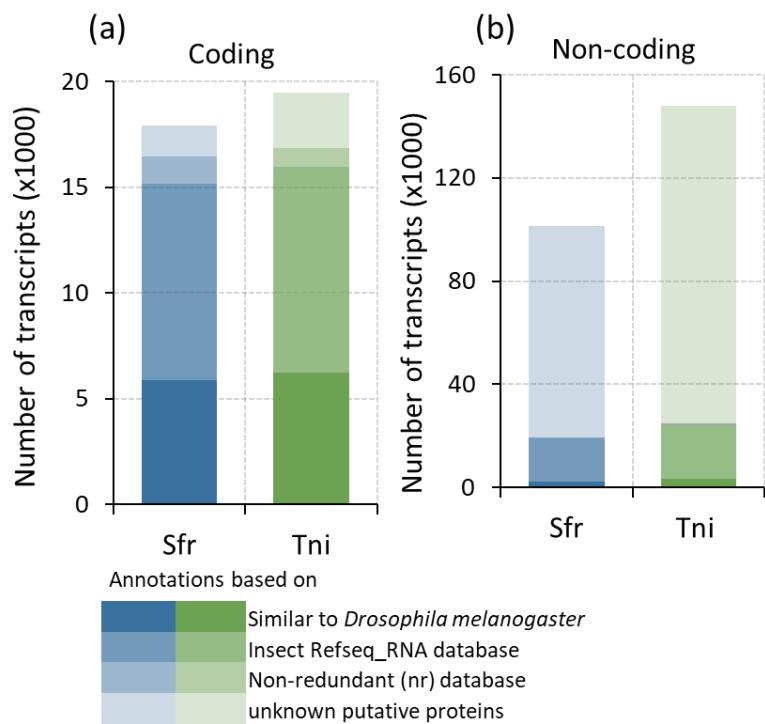
Supplementary Figure 1.



1648

1649

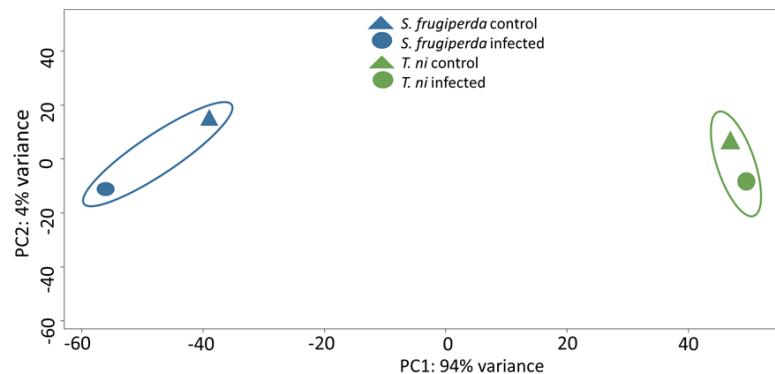
1650


1651 **Supplementary Figure 2.**

1652 ORF type

1653

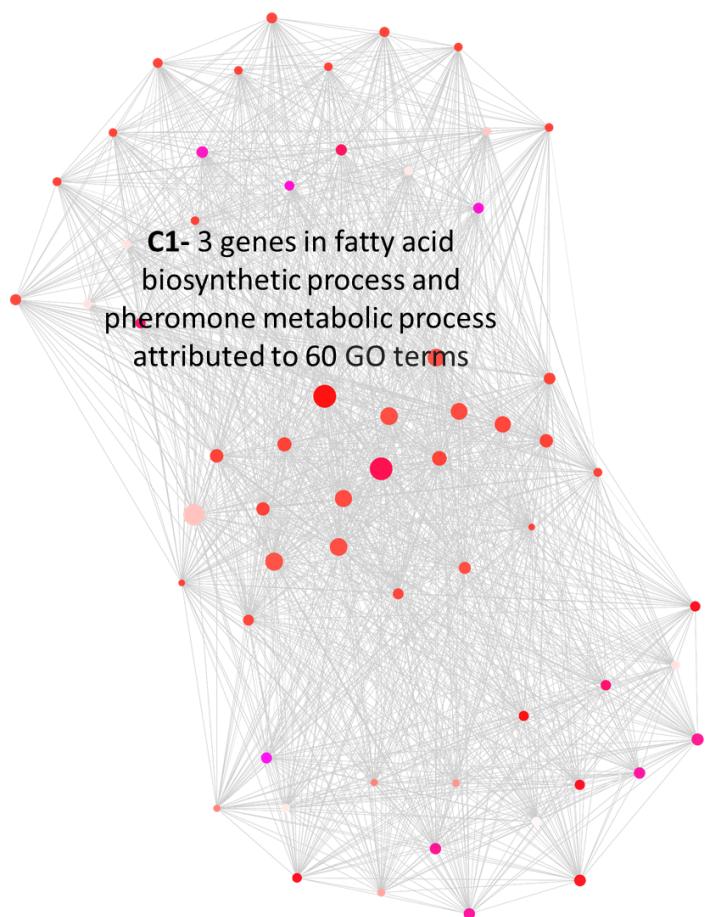
1654 **Supplementary Figure 3.**



1655

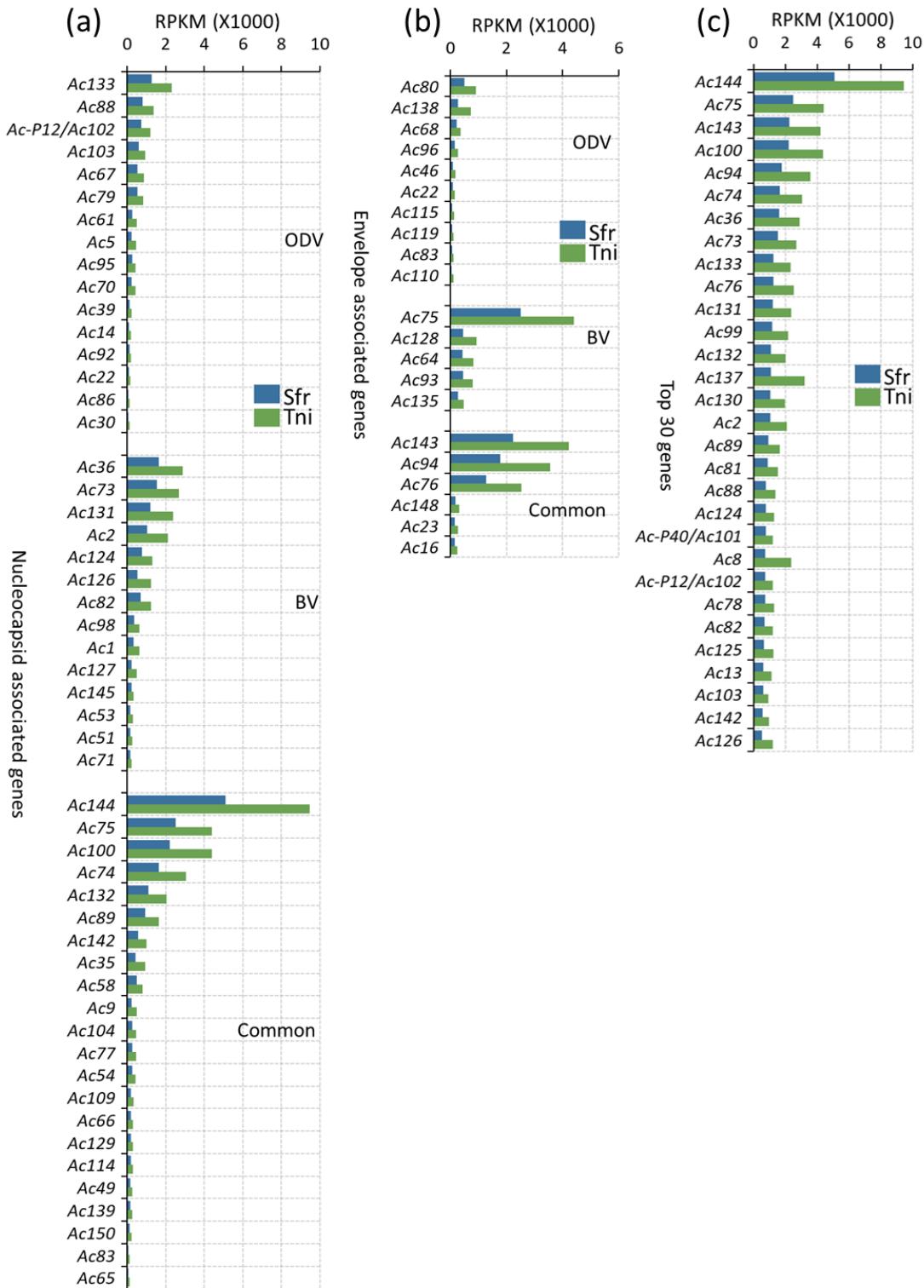
1656

1657


1658 **Supplementary Figure 4.**

1659

1660


1661 **Supplementary Figure 5.**

1662

1663

1664 **Supplementary Figure 6.**

1665

1666

1667 **Supplementary Table 1.**

Sample	Number of Reads
<i>S. frugiperda</i> control 1	64,384,622
<i>S. frugiperda</i> control 2	59,395,176
<i>S. frugiperda</i> infected 1	58,836,393
<i>S. frugiperda</i> infected 2	65,512,356
<i>T. ni</i> control	62,702,263
<i>T. ni</i> infected	65,141,444

1668

1669

1670 **Supplementary Table 2.**

(a)	<i>S. frugiperda</i>		<i>T. ni</i>	
	Uniquely Mapped (%)	69.18	70.70	
Reads mapped to multiple contigs (%)		6.73	13.28	
Total reads mapped (%)		75.91	83.98	
Total reads processed	248,128,547		127,832,614	
(b)	<i>S. frugiperda</i>		<i>T. ni</i>	
	control	infected	control	infected
Mapped, %	0.00	1.13	<0.01	7.41
Failed to align, %	100.00	98.87	>99.99	92.59

1671