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Abstract (Word Count 200)

Background
Resistance to major public health insecticides in Céte d’'lvoire has intensified and now threatens

the long-term effectiveness of malaria vector control interventions.

Methods
This study evaluated the bioefficacy of conventional and next-generation long-lasting
insecticidal nets (LLINS), determined resistance profiles, and characterized molecular and

metabolic mechanisms in wild Anopheles coluzzii from South-East Céte d'lvoire in 2019.

Results

Phenotypic resistance was intense: more than 25% of mosquitoes survived exposure to ten
times the doses of pyrethroids required to kill susceptible populations. Similarly, 24-hour
mortality to deltamethrin-only LLINs was very low and not significantly different to an untreated
net. Sub-lethal pyrethroid exposure did not induce significant delayed vector mortality 72 hours
later. In contrast, LLINS containing the synergist piperonyl butoxide (PBO), or new insecticides,
clothianidin and chlorfenapyr, were highly toxic to An. coluzzii. Pyrethroid-susceptible An.
coluzzii were significantly more likely to be infected with malaria, compared to those that
survived insecticidal exposure. Pyrethroid resistance was associated with significant over-

expression of CYP6P4, CPY6Z1 and CYP6P3.

Conclusions
Study findings raise concerns regarding the operational failure of standard LLINs and support
the urgent deployment of vector control interventions incorporating PBO, chlorfenapyr or

clothianidin in areas of high resistance intensity in Cote d'lvoire.
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Introduction

In Cote d’'lvoire, malaria is a serious public health problem with the entire population of ~26.2
million people is at risk, and disease prevalence reaching as high as 63% in the south-west
region [1]. Control of Anopheles gambiae s.l., the major malaria vector species group in Céte
d’'lvoire, has been through the efforts of the National Malaria Control Programme (NMCP),
which has distributed insecticide-treated nets (ITNs) as the primary vector control intervention.
Indoor residual spraying (IRS) and larviciding in high transmission areas have been
recommended as complementary strategies; implementation of the former has commenced in
late 2020 [2]. Estimates of net coverage across the country remain low, with the proportion of
households with at least one ITN for every two people rising from 31% in 2012 to 47% in 2016,
and ITN use stagnating at 40% of households reporting sleeping under a net the previous night
in both survey years [2]. The most recent universal net campaigns in Céte d’lvoire in 2017-2018
issued conventional, pyrethroid (deltamethrin) long-lasting insecticidal nets (LLINS), aiming to
achieve 90% coverage and 80% use [2]. However, country-wide, multi-class insecticide
resistance among populations of An. gambiae s.l. is a growing cause for concern because of
potential operational failure of current vector control strategies, both locally, as well as across

the sub-Saharan region [2,3].

Resistance to pyrethroid and carbamate insecticides in Anopheles mosquitoes was first

reported from the central region of Cote d’lvoire in the early 1990s [4-7]. Subsequently, local
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78  resistance to the major insecticide classes recommended by the World Health Organization

79  (WHO) for adult mosquito control — pyrethroids, carbamates, organophosphates, and

80 organochlorines — evolved rapidly [8-10] and has been increasing in intensity, driven largely by
81  selective pressures imposed by contemporaneous scale-up of public health vector control

82 interventions (including those targeting malaria, trypanosomiasis and onchocerciasis vectors)
83  and use of agricultural pesticides [7, 11-14]. This escalation in resistance has now begun to

84  compromise the insecticidal efficacy and community-wide impact of conventional, pyrethroid

85 LLINs in Cote d'lvoire [14,15], although some levels of personal protection may still remain [15—

86 17].

87  Amongst vector populations across Cote d’lvoire, the L1014F kdr mutation is pervasive and has
88 been implicated in some longitudinal trends in decreasing DDT and pyrethroid susceptibility [7,
89 11]; L1014S kdr and N1575Y resistance mutations have also been detected but at much lower
90 frequencies [18]. Extreme carbamate (bendiocarb) resistance and pyrethroid cross-resistance in
91 local An. gambiae s.s. populations have been shown to be mediated by over-expression of

92 CYP6P3 and CYP6M2 and duplication of the G119S Ace-1 mutation [19].

93 To support and safeguard future malaria control efforts in Cote d’lvoire, this study evaluated the
94  efficacy of conventional and next-generation LLINS for prospective distribution; determined
95 current insecticide resistance profiles of An. gambiae s.l. (principally An. coluzzii); and

96 characterized underlying molecular and metabolic resistance mechanisms.

97

98

99

100
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101 Methods

102  Study area and mosquito collections

103

104  The study protocol was approved by the Comité National d’Ethique des Sciences de la Vie et de
105 la Santé (#069-19/MSHP/CNESVS-kp) and the London School of Hygiene and Tropical

106  Medicine (#16782 and #16899). Study activities were conducted in the village of Aboudé, rural
107  Agboville, Agnéby-Tiassa region, south-east Cote d'lvoire (5'55'N and 4 13'W), selected due to
108 its high mosquito densities and malaria prevalence (26% in children <5 years old, in recent

109  estimates [1]). Adult mosquitoes were collected nightly between 5™ July and 26" July 2019,
110 using human landing catches (HLCs), inside and outside households from 18:00 to 06:00hr.
111  Unfed mosquitoes, morphologically identified as An. gambiae s.l. [20], were tested in bioassays
112  that same day, following a brief recovery period; blood-fed mosquitoes were first held for 2—3
113  days to allow for blood-meal digestion.

114

115 WHO cone bioassay testing

116

117  Two types of LLIN were evaluated in this study. PermaNet® 2.0 is a conventional LLIN treated
118  with deltamethrin only (1.4g/kg+25%) and PermaNet® 3.0 is a PBO synergist LLIN, consisting of
119 aroof containing PBO (25g/kg) and deltamethrin (4g/kg+25%) and side panels containing

120  deltamethrin only (2.89/kg+25%). WHO cone bioassays were used to test the susceptibility of
121 An. gambiae s.|. exposed to unwashed PermaNet® 2.0, PermaNet® 3.0 roof panels and

122  PermaNet® 3.0 side panels [21]. To control for potential variation in insecticide/synergist

123  content, each of five LLINS per type was cut into 19 pieces, measuring 30 x 30cm, with each
124  piece tested a maximum of three times.

125
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Resistance intensity and synergist bioassay testing

Centers for Disease Control and Prevention (CDC) resistance intensity bioassays were
performed for six public health insecticides (pyrethroids: alpha-cypermethrin, deltamethrin and
permethrin; carbamate: bendiocarb; neonicotinoid: clothianidin; and pyrrole; chlorfenapyr)
[22,23]. The diagnostic doses of all insecticides were evaluated (including clothianidin:
90pg/bottle [23] and chlorfenapyr: 100ug/bottle) and 2, 5 and 10 times the diagnostic dose of
pyrethroid insecticides were also used. Per test, knock-down was recorded at 15-minute
intervals for 30 minutes (pyrethroids and bendiocarb) or 60 minutes (clothianidin and
chlorfenapyr) of insecticide exposure. PBO pre-exposures were performed using WHO tube

assays [24], prior to CDC bottle bioassay testing.

WHO cone and CDC resistance intensity bioassay data were interpreted according to the WHO
criteria [21,22]. Mosquitoes which died following exposure to a LLIN or 1X insecticide dose
were stored at -20°C in RNAlater® (Thermo Fisher Scientific, UK) and were considered
‘susceptible’ for genotypic analysis. Surviving mosquitoes were held and scored for mortality
after 24, 48 and 72 hours to observe delayed mortality. Kaplan-Meier curves were used to
visualize survival data, and Cox regression was used to compare post-exposure survival.
Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or 60
minutes, depending on insecticide) were excluded. Surviving mosquitoes at 72 hours were

stored at -20°C in RNAlater® and were considered ‘resistant’ for genotypic analysis.
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Mosquito processing, identification of Anopheles gambiae s.l. species complex members and

Plasmodium falciparum detection

A sub-sample of field-caught mosquitoes that were tested in bioassays were selected for
molecular analysis (n=912). Approximately equal numbers of specimens were chosen to
represent phenotypically ‘susceptible’ or ‘resistant’ mosquitoes for each LLIN type or insecticide
dose, and selected across different replicates/testing days to capture as much population-level
variation as possible. RNA was extracted from individual whole-body mosquitoes according to
standard protocols [23]. Field An. gambiae s.I. were identified to species-level by amplification of
the SINE200 insertion that differentiates An. coluzzii and An. gambiae s.s. [25] and were

screened for the presence of Plasmodium falciparum [26].

Characterization of insecticide resistance mechanisms: target site mutations

The same cohort of field mosquitoes (n=912) were tested for the presence of the L1014F kdr
[27] and N1575Y mutations [28]. A sub-sample of mosquitoes (n=49) which were exposed to
bendiocarb, clothianidin or chlorfenapyr were tested for the presence of the G119S Ace-1
mutation [29]. Pearson’s Chi-squared tests and Fisher’s exact tests (when sample sizes were
small) were used to investigate the statistical association between resistance status, allele

frequencies and deviations from Hardy-Weinberg equilibrium.


https://doi.org/10.1101/2020.09.24.311639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.311639; this version posted September 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

176  Characterization of insecticide resistance mechanisms: metabolic gene expression

177

178 Relative expression of five metabolic genes (CYP6P3, CYP6P4, CYP6Z1 CYP6P1 and GSTE?2)
179  was measured in all field collected mosquitoes (n=912), using multiplex quantitative real-time
180 PCR (gRT-PCR) assays, relative to the housekeeping gene ribosomal protein S7 (RPS7) [30].
181 In addition, gene expression levels were measured in susceptible An. coluzzii N'gousso colony
182  mosquitoes (n=48). All samples were run in technical triplicate. Relative expression level and
183 Fold Change (FC) of each target gene from resistant and susceptible field samples, relative to

184  the susceptible laboratory strain, were calculated using the 224¢T

method incorporating PCR
185 efficiency, normalised relative to the endogenous control gene (RPS7).

186

187 Results

188

189  Mosquito collections and species identification

190

191  Atotal of 4,609 female An. gambiae s.l. mosquitoes were collected in Agboville, Céte d'lvoire.
192  Of those, 912, which were previously tested in either LLIN bioefficacy assays (n=384) or

193 resistance intensity bioassays (n=528), were selected for molecular species identification, with
194 805 (88.3%) determined to be An. coluzzii, 75 (8.2%) An. gambiae s.s. and 22 (2.4%) An.
195 gambiae-An. coluzzii hybrids; 10 individuals did not amplify.

196

197  Long-lasting insecticidal net efficacy

198

199  Atotal of 2,666 field-caught An. gambiae s.l. were used to assess the bioefficacy of

200  conventional pyrethroid-treated LLINs (PermaNet® 2.0 and PermaNet® 3.0 side panels) and
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next-generation synergist LLINs (PermaNet® 3.0 roof panels), compared to an untreated control

(Figure 1).

Overall, levels of An. gambiae s.l. knock-down and mortality to deltamethrin LLINs, were very
low and largely equivalent to the untreated control net (Figure 1). At 60 minutes, average
mosquito knock-down to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels
was 1.56% (95% CI: 1.13-1.99%), 0.54% (95% CI: 0.42-0.65%) and 1.75% (95% CI: 1.49-
2.0%), respectively. By contrast, average mosquito knock-down for PBO-containing PermaNet®
3.0 roof panels was significantly higher (79.8%, 95% CI: 79.07-80.48%:; x*>=705.51, 968.65 and
937.33; p<0.001, versus untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels,

respectively) (Figure 1).

At 24 hours, mortality to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels
remained low (6.11%, 95% CI: 4.71-7.51%; 5.44%, 95% CI: 4.58-6.29% and 3.66%, 95% CI:
3.12-4.19%, respectively), while mortality to PermaNet® 3.0 roof panels increased only
marginally but still remained significantly higher (83.81%, 95% CI: 83.15-84.47%; x*=727.96,
914.61 and 963.09; p<0.001 for all, versus untreated control, PermaNet® 2.0 and PermaNet®
3.0 side panels, respectively) (Figure 1). PermaNet® 3.0 roof panels reached minimal
effectiveness (knock-down 275%) 60 minutes after exposure and optimal effectiveness
(mortality 280%) at 24 hours. Neither of the deltamethrin-only LLINs reached either

effectiveness threshold at any time point.

Insecticide resistance intensity

One thousand, nine hundred and forty-three field-caught An. gambiae s.I. were tested in

resistance bioassays. Intense pyrethroid resistance was evident with more than 25% of
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227  mosquitoes surviving exposure to ten times the dose of insecticide required to kill a susceptible
228  population; at the diagnostic dose, mosquito mortality did not exceed 25% for any pyrethroid
229 tested (Figure 2A). These results are consistent with the high survival rates observed during
230 cone bioassays using conventional LLINs (Figure 1). In general, levels of resistance to alpha-
231  cypermethrin, deltamethrin and permethrin were not significantly different at each insecticide
232  concentration tested (Figure 2A).

233

234 By comparison, carbamate tolerance was low, with mean knock-down of 94.53% (95% CI.

235 92.11-96.95%) after 30 minutes exposure to the diagnostic dose of bendiocarb. Similarly, high
236 levels of susceptibility to new insecticides clothianidin and chlorfenapyr were observed, with
237  mean mortality of 94.11% (95% CI: 93.43-94.80%; n=102) and 95.54% (95% CI: 94.71-96.36%;
238 n=112), respectively, 72 hours after exposure to the tentative diagnostic doses.

239

240  Pre-exposure to PBO increased average An. gambiae s.l. mortality significantly from 14.56%
241  (95% CI: 6.24-22.88%) to 72.73% (95% CI: 64.81-79.43) and from 44.66% (95% CI: 34.86-

242  54.46%) to 94.17% (95% CI: 91.12-97.22) after exposure to one or two times the diagnostic
243  dose of deltamethrin (Figure 2B).

244

245  Mosquito survival following insecticidal exposure

246

247  All An. gambiae s.l. tested in LLIN bioefficacy or resistance intensity bioassays, were held for 72
248  hours, to assess any impact of insecticide or net exposure on delayed mortality. For LLIN

249  bioassays, there was little evidence for any reduction in survival during this holding period (Cox
250 regression P=0.149, 0.272 and 0.85 comparing PermaNet® 2.0, PermaNet® 3.0 side panels and
251  PermaNet® 3.0 roof panels versus untreated control, respectively) (Table 1 and Figure 3A).

252  Exposure to the diagnostic doses of all insecticides in CDC bottle bioassays did not induce
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significant delayed mortality over 72 hours (Cox regression P>0.05 for all insecticides compared
to the control; with the exception of chlorfenapyr, P=0.02) (Table 1 and Figure 3B). This
phenomenon was also observed at increasing pyrethroid doses (Cox regression P>0.05 for
alpha-cypermethrin, deltamethrin and permethrin 5X and 10X versus either the control or

diagnostic dose) (Table 1; Figure 3C and 3D).

Malaria prevalence

Of the 912 An. gambiae s.I. mosquitoes assayed, 31 tested positive for P. falciparum (3.4%).
For PCR-confirmed An. coluzzii, P. falciparum prevalence was 3.50% (28/805); the remaining
three infections were in An. gambiae s.s. (4%; 3/75). By resistance phenotype, susceptible An.
coluzzii (i.e. those which died following pyrethroid exposure) were more likely to be infected with
malaria, compared to resistant mosquitoes (1*=4.6987; p=0.030); infection rates were 5.94%

(13/219) and 2.49% (10/401), respectively.

Target site resistance mutations

L1014F kdr screening revealed 92.2% (796/863) of An. gambiae s.l. mosquitoes harboured the
mutation; 71.5% (617/863) were homozygous, 20.7% (179/863) were heterozygous, 5.1%
(44/863) were wild type and 2.6% (23/863) did not amplify. For PCR-confirmed An. coluzzii,
L1014F kdr prevalence was 87.8% (707/805); 66.6% (536/805) were homozygous for the
mutation, 21.2% (171/805) were heterozygous, 5.3% (43/805) were wild type and 2.2% (18/805)
did not amplify. For An. coluzzii, population-level L1014F kdr allele frequency was 0.83, with
evidence for significant deviations from Hardy-Weinberg equilibrium (2?=29.124; p<0.0001).
There was no significant association between L1014F kdr frequency and ability of mosquitoes to

survive pyrethroid exposure, in either LLIN or resistance bioassays (1 =2.0001; p=0.157 and
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[12=3.7577; p=0.0.53, respectively). Similarly, there was no significant association between
L1014F kdr and ability of mosquitoes to survive PBO pre-exposure and pyrethroid treatment, in
either LLIN or resistance bioassays (0% =0.0086; p=0.926, Fisher's exact=0.429, respectively).
For PCR-confirmed An. gambiae s.s., L1014F kdr prevalence was 95.3% (61/64); 89.1%
(57/64) were homozygous for the mutation, 6.3% (4/64) were heterozygous, none were wild
type and 4.7% (3/64) did not amplify. For An. gambiae s.s., population-level L1014F kdr allele
frequency was 0.97, with no significant deviations from Hardy-Weinberg equilibrium (2%=0.070;

p=0.791).

N1575Y screening revealed 2.3% (21/912) of An. gambiae s.l. mosquitoes harboured the
mutation; all of these were heterozygotes. N1575Y prevalence was 1.1% (9/805) and 16%
(22/75) for PCR-confirmed An. coluzzii and An. gambiae s.s., respectively; 0.99% (9/912) did
not amplify. There was no evidence for ongoing N1575Y selection in either species (1°=0.026;
p=0.873 and [1°=0.62; p=0.433 for An. coluzzii and An. gambiae s.s., respectively). For An.
coluzzii, there was no significant association between N1575Y frequency and ability of
mosquitoes to survive pyrethroid exposure, in LLIN or resistance bioassay (Z=0.0001; p=0.993

and 0%=0.3244; p=0.569, respectively).

G119S Ace-1 screening revealed 55.1% (27/49) of An. gambiae s.l. mosquitoes harboured the
mutation; all of these were heterozygotes. G119S Ace-1 prevalence was 64.9% (24/37) and
27.3% (3/11) for PCR-confirmed An. coluzzii and An. gambiae s.s., respectively; one remaining
An. gambiae-An. coluzzii hybrid was wild type. For An. coluzzii, population-level G119S Ace-1
allele frequency was 0.32, with evidence for significant deviations from Hardy-Weinberg
equilibrium (0?=8.525; p=0.00350). For An. gambiae s.s., population-level G119S Ace-1 allele

frequency was 0.14, with no significant deviations from Hardy-Weinberg equilibrium (7%=0.274;
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p=0.6005). For An. coluzzii, there was a significant association between presence of the G119S

Ace-1 mutation and surviving bendiocarb exposure (Fisher's exact test = 0.005).

Metabolic resistance mechanisms

Comparison of metabolic gene expression levels in field populations of An. coluzzii and An.
gambiae s.s. demonstrated significant upregulation of CYP6P4 (FC=5.88, 95% CI: 5.19-44.06;
and 6.08, 95% CI: 5.43-50.64), CPY6Z1 (FC=4.04, 95% CI: 3.69-41.54; and 3.56, 95% CI: 3.24-
36.25) and CYP6P3 (FC=12.56, 95% CI: 11.40-123.83; and 13.85, 95% CI: 12.53-132.03),
relative to a susceptible laboratory colony, respectively (Figure 4). More modest overexpression
of CYP6P1 and GSTE2 was observed (FC=1.18, 95% ClI: 1.08-12.31; and 1.28, 95% CI: 1.17-
14.40; FC=0.56, 95% CI: 0.48-3.32; and 0.67, 95% CI: 0.58-4.29; for An. coluzzii and An.
gambiae s.s., respectively) (Figure 4). Levels of FC did not differ significantly between the two

species for any gene nor by malaria infection status in wild An. coluzzii.

Comparison of metabolic gene expression in phenotyped field populations of An. coluzzii
revealed lower FCs overall, but notably, increased overexpression of CYP6P3 in survivors of
bendiocarb, deltamethrin, PBO + deltamethrin and permethrin (FC = 3.91, 95% CI: 3.33-22.16;
2.21, 95% CI: 1.88-12.53; 2.64, 95% CI: 2.21-13.69; and 2.21, 95% CI: 1.99-20.03,

respectively) (Figure 5).
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330 Discussion

331

332  Céte d'lvoire is a hot spot of some of the highest levels of resistance of Anopheles mosquitoes
333 to public health insecticides worldwide, with potentially severe implications for sustaining gains
334  in malaria control [31]. To safeguard future malaria vector control efforts and inform the design
335  of effective resistance management strategies, involving tactical deployment of differing IRS and
336  LLIN modalities, there needs to be a clear understanding of contemporary phenotypic and

337  genotypic insecticide resistance.

338

339  Our study detected intense pyrethroid resistance in south-east, Céte d’'lvoire, as evidenced by
340 high proportions of survivors, following exposure to ten times the diagnostic doses of

341  pyrethroids, as well as very low levels of knock-down and 24-hour mortality to deltamethrin-only
342  LLINs, equivalent to an untreated net. These findings are largely in agreement with historical
343  resistance profiles from this region [7,10,11] and indicate that conventional LLINS may no longer
344  be operationally viable in areas of high pyrethroid resistance intensity. Previous Phase Il studies
345  of pyrethroid-only LLINs in the central region of Céte d’lvoire have demonstrated similarly poor
346  efficacy with highly resistant An. gambiae s.l. populations but argued for the retention of some
347  degree of personal protection [15-17]. Other observational cohorts have reported higher

348 incidences of malaria among non-net users compared to users in areas of moderate to high

349  pyrethroid resistance [17]. The extent of protective efficacy afforded by pyrethroid LLINS will

350 likely reflect the strength of local vector resistance and levels of both net physical integrity and
351 individual compliance [32,33]. However, in Cote d’lvoire, reported LLIN usage has been low,
352  requiring additional behavioural interventions [2,34]. Our findings of high mosquito mortality

353  following exposure to clothianidin and chlorfenapyr and improved vector susceptibility with PBO

354  treatment (on both LLINs and in resistance bioassays), are consistent with data from other
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sentinel sites across Céte d’'lvoire [16,35,36], and strongly support the deployment of vector

control interventions incorporating these new active ingredients.

Study results indicate that An. coluzzii was the predominant local vector species during the rainy
season, as observed previously [7], circulating sympatrically with smaller proportions of An.
gambiae s.s.. These two vector species commonly co-habit but can be genetically distinct in
terms of resistance mechanisms [37,38] and can also differ in larval ecology, behaviour,
migration and aestivation [39-41]. In general, resistance mechanisms in An. coluzzii are less
well-characterized, compared to An. gambiae s.s., in part because these vectors are
morphologically indistinguishable and few studies present data disaggregated by PCR-
confirmed species. We observed several distinct features in our study, principally, evidence for
ongoing selection of L1014F kdr and G119S Ace-1 in An. coluzzii, which was absent in An.
gambiae s.s. and higher proportions of N1575Y in An. gambiae s.s.; expression levels of
metabolic genes were comparable between species. The lack of association between L1014F
kdr genotype and mosquito phenotype, coupled with the identification of three CYP450
enzymes (CYP6P4, CYP6P3 and CYP6Z1) that were significantly over-expressed in field
populations, (some of which are known to metabolise pyrethroids and next generation LLIN
insecticides [42,43]), indicate a key role for metabolic resistance in this An. coluzzii population.
One notable difference in our dataset, compared to previous work in Agboville [7], was the
finding of bendiocarb susceptibility. This may be attributable to small-scale spatial and
longitudinal heterogeneity in resistance, which can be highly dynamic [37,44], and/or phenotypic

differences between vector species.

With the exception of chlorfenapyr, which is known to be a slow-acting insecticide, we did not
detect any delayed mortality effects for 72 hours following insecticidal exposure; the format and

dose used for clothianidin testing (another slow-acting insecticide [45]) was instead intended to
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381 measure acute toxicity within a 60 minute exposure period. Previous mathematical models

382  using resistant mosquito colonies have suggested that sub-lethal insecticide treatment may still
383  reduce vector lifespan and inhibit blood-feeding and host-seeking behaviours, thereby

384  interrupting malaria transmission [46,47]. Our observations are more compatible with reports
385 from Burkina Faso where different exposure regimens of wild, resistant An. gambiae s.1.

386  populations to deltamethrin LLINs did not induce any delayed mortality [47]. Further assessment
387  of sublethal effects are warranted across additional field populations with differing resistance
388 mechanisms to better understand the impact of insecticidal exposure on vectorial capacity of
389 resistant mosquitoes.

390

391 To date there is a paucity of data regarding the interactions between insecticide resistance and
392  Plasmodium development [48]. In this study, An. coluzzii which died following pyrethroid

393  exposure were significantly more likely to be infected with malaria. This might be explained by
394  elevated metabolic enzymes and/or prior pyrethroid exposure detrimentally affecting parasite
395 development [49]; although it is important to note that we did not detect any significant

396 differences between gene overexpression in malaria infected vs. non-infected An. coluzzii.

397  Alternatively, our sampled population may have been physiologically older, as phenotypic

398 resistance is known to decline with age [50]. It is impossible to distinguish between these

399  hypotheses using field-collected vector populations; the experimental design used in this study
400 had other biological and technical limitations, which have been described in detail previously
401  [23,37].

402

403  Conclusions

404

405 As new combination and bi-treated vector control interventions become available for

406  deployment, contemporary resistance information is crucial for the rationale design of
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management strategies and to mitigate future selection for particular resistance mechanisms.
The results from this study contribute to growing insecticide resistance data for Cote d’lvoire,
demonstrating a loss of bioefficacy of conventional pyrethroid LLINs and supporting the use of
new active ingredients (clothianidin, chlorfenapyr and PBO). Study findings also highlight the
need for expanded insecticide resistance surveillance, including monitoring of metabolic
resistance mechanisms, in conjunction with studies to better characterize the impact of
sublethal insecticide exposure on vectorial capacity and the interaction between insecticide

resistance on Plasmodium parasite development.
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594  Figure 1. Bioefficacy of different unwashed LLINs against field-caught An. gambiae s.I. Mean
595  knock-down and mortality rates with 95% confidence intervals (Cl) at 60 minutes and 24 hours,
596  respectively, after 3 minutes exposure to PermaNet® 2.0 (deltamethrin only), side panels of

597  PermaNet® 3.0 (deltamethrin only), roof panels of PermaNet® 3.0 (PBO + deltamethrin) and an


https://doi.org/10.1101/2020.09.24.311639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.311639; this version posted September 25, 2020. The copyright holder for this preprint

598

599

600

601

602

603

604
605

606

607

608

609

610

611

612

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

untreated control net. Knock-down or mortality in the same time period for each treatment
sharing a letter do not differ significantly (p>0.05). Green lines at =275% knock-down = minimal
effectiveness at 60 minutes and at = 95% knock-down = optimal effectiveness at 60 minutes.
Red lines at 250% mortality = minimal LLIN effectiveness at 24 hours and 280% mortality =

optimal LLIN effectiveness at 24 hours, as defined by the WHO [21].
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Figure 2. A: Resistance intensity of field-caught An. gambiae s.l. after exposure to one, two,
five and ten times the diagnostic dose of pyrethroid insecticides. Mean knock-down/acute
toxicity after 30 minutes exposure with 95% confidence intervals (Cl). Knock-down/mortality at
the same dose per insecticide sharing a letter do not differ significantly (p>0.05). Values of less
than 90% mortality (lower red line) indicate confirmed resistance at the diagnostic dose (1X) and
values of less than 98% mortality (upper red line) indicate moderate to high intensity resistance
or high intensity resistance at 5X and 10X, respectively, as defined by the WHO [24]. B:

Restoration of deltamethrin susceptibility of field-caught An. gambiae s.l. after pre-exposure to
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613 PBO. Mean knock-down/acute toxicity after 30 minutes exposure to one or two times the
614  diagnostic dose of deltamethrin with 95% confidence intervals (CI). Knock-down/mortality
615 between pyrethroid only and synergist + pyrethroid sharing a letter do not differ significantly
616 (p>0.05). Red line at 98% mortality indicates metabolic resistance mechanisms partially

617 involved [24].
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622  Figure 3. The longevity of field-caught An. gambiae s.l. after exposure to LLINs in WHO cone

623 assays (A) 1X (B), 5X (C) and 10X (D) times the diagnostic dose of pyrethroid insecticides in
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624  CDC resistance intensity assays. Kaplan Meier survival curves indicate the proportion alive
625 each day post-exposure. Immediate mortality following LLIN (60 minutes and 24 hours) or

626 insecticidal exposure (30 or 60 minutes, insecticide depending) were excluded.
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629  Figure 4. Metabolic gene expression in field An. coluzzii and An. gambiae s.s. populations
630 relative to a susceptible colony population. Error bars represent 95% CI; statistically significant
631 differences in expression levels relative to the susceptible colony are indicated as *P<0.05,
632 **P<0.01, **P<0.001.
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636  Figure 5. Metabolic gene expression in resistant versus susceptible field An. coluzzii, which

637 either died or survived following insecticidal exposure. Error bars represent 95% CI.
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Table 1. Cox proportional hazard model to describe the impact of LLIN/insecticidal exposure

on survival of field-caught An. gambiae s.l. 72 hours post exposure.

Insecticide Exposure N (N Events) HRR 95% ClI P-value
Untreated Netting Reference - -
PermaNet® 2.0 (deltamethrin | 1135 (1047) 1.095 0.968-1.239 0.149
only)

PermaNet® 3.0 side panels 1157 (1088) 0.9664 0.9092-1.027 | 0.272
(deltamethrin only)

PermaNet® 3.0 roof panels 563 (533) 1.007 0.939-1.079 0.85
(PBO + deltamethrin)

Acetone Control Reference - -
Alpha-cypermethrin 1X 676 (641) 1.006 0.9696-1.043 | 0.767
Deltamethrin 1X 683 (645) 0.9942 0.9539-1.036 | 0.782
Permethrin 1X 693 (661) 1.015 0.9698-1.062 | 0.525
Clothianidin 1X 698 (581) 1.208 0.9227-1.581 |0.169
Chlorfenapyr 1X 708 (580) 1.692 1.086-2.637 | 0.02
PBO + Deltamethrin 1X 630 (577) 0.9662 0.2411-3.873 | 0.961
Alpha-cypermethrin 5X 633 (601) 0.9951 0.9407-1.053 | 0.863
Deltamethrin 5X 652 (610) 0.9942 0.9393-1.052 | 0.842
Permethrin 5X 636 (583) 0.9931 0.8638-1.142 | 0.923
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Alpha-cypermethrin 10X 624 (587) 0.9951 0.917-1.08 0.906
Deltamethrin 10X 623 (588) 0.9943 0.9072-1.09 0.902
Permethrin 10X 656 (603) 1.026 0.9509-1.107 | 0.509
1X Insecticide Dose Reference - -
Alpha-cypermethrin 5X 117 (92) 1.016 0.9069-1.138 [ 0.785
Alpha-cypermethrin 10X 108 (78) 1.007 0.9403-1.078 | 0.845
Deltamethrin 5X 143 (105) 1.0 0.9035-1.107 | 1.0
Deltamethrin 10X 114 (83) 1.0 0.9363-1.068 | 1.0
Permethrin 5X 137 (94) 1.022 0.8528-1.225 |0.812
Permethrin 10X 157 (114) 0.9952 0.9491-1.044 |0.842

HRR: hazard rate ratio; ratio between the hazard rate in control/reference group and hazard

rate for each treatment group.

Significance level defined as a = 0.05.

Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or

60 minutes, insecticide depending) were excluded.
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