

1 **Article Type:** Major Article

2

3 **Title:** Reduced long-lasting insecticidal net efficacy and pyrethroid insecticide resistance are
4 associated with over-expression of *CYP6P4*, *CYP6P3* and *CYP6Z1* in populations of *Anopheles*
5 *coluzzii* from South-East Côte d'Ivoire

6 **Running Title:** Insecticide resistance in Côte d'Ivoire

7

8 Anne Meiwald¹⁺, Emma Clark¹⁺, Mojca Kristan¹, Constant Edi², Claire L. Jeffries¹, Bethanie
9 Pelloquin¹, Seth R. Irish³, Thomas Walker¹, Louisa A. Messenger^{1*}

10

11 ⁺these authors contributed equally to this work

12

13

14 **Affiliations**

15

16 ¹ Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of
17 Hygiene and Tropical Medicine, London, United Kingdom

18 ² Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan 01, BP 1303, Abidjan,
19 Côte d'Ivoire

20 ³ U.S. President's Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and
21 Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA,
22 United States of America

23

24 *Corresponding Author

25 Email: louisa.messenger@lshtm.ac.uk

26

27 **Abstract (Word Count 200)**

28

29 *Background*

30 Resistance to major public health insecticides in Côte d'Ivoire has intensified and now threatens
31 the long-term effectiveness of malaria vector control interventions.

32

33 *Methods*

34 This study evaluated the bioefficacy of conventional and next-generation long-lasting
35 insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and
36 metabolic mechanisms in wild *Anopheles coluzzii* from South-East Côte d'Ivoire in 2019.

37

38 *Results*

39 Phenotypic resistance was intense: more than 25% of mosquitoes survived exposure to ten
40 times the doses of pyrethroids required to kill susceptible populations. Similarly, 24-hour
41 mortality to deltamethrin-only LLINs was very low and not significantly different to an untreated
42 net. Sub-lethal pyrethroid exposure did not induce significant delayed vector mortality 72 hours
43 later. In contrast, LLINs containing the synergist piperonyl butoxide (PBO), or new insecticides,
44 clothianidin and chlорfenapyr, were highly toxic to *An. coluzzii*. Pyrethroid-susceptible *An.*
45 *coluzzii* were significantly more likely to be infected with malaria, compared to those that
46 survived insecticidal exposure. Pyrethroid resistance was associated with significant over-
47 expression of *CYP6P4*, *CPY6Z1* and *CYP6P3*.

48

49 *Conclusions*

50 Study findings raise concerns regarding the operational failure of standard LLINs and support
51 the urgent deployment of vector control interventions incorporating PBO, chlорfenapyr or
52 clothianidin in areas of high resistance intensity in Côte d'Ivoire.

53

54

55 **Keywords** *Anopheles coluzzii*, insecticide resistance, *Plasmodium falciparum*, long-lasting
56 insecticidal nets, Côte d'Ivoire, PBO, chlорfenапyr, clothianidin, *CYP6P4*, *CYP6P3*, *CYP6Z1*

57

58 **Introduction**

59

60 In Côte d'Ivoire, malaria is a serious public health problem with the entire population of ~26.2
61 million people is at risk, and disease prevalence reaching as high as 63% in the south-west
62 region [1]. Control of *Anopheles gambiae* s.l., the major malaria vector species group in Côte
63 d'Ivoire, has been through the efforts of the National Malaria Control Programme (NMCP),
64 which has distributed insecticide-treated nets (ITNs) as the primary vector control intervention.
65 Indoor residual spraying (IRS) and larvicide in high transmission areas have been
66 recommended as complementary strategies; implementation of the former has commenced in
67 late 2020 [2]. Estimates of net coverage across the country remain low, with the proportion of
68 households with at least one ITN for every two people rising from 31% in 2012 to 47% in 2016,
69 and ITN use stagnating at 40% of households reporting sleeping under a net the previous night
70 in both survey years [2]. The most recent universal net campaigns in Côte d'Ivoire in 2017–2018
71 issued conventional, pyrethroid (deltamethrin) long-lasting insecticidal nets (LLINs), aiming to
72 achieve 90% coverage and 80% use [2]. However, country-wide, multi-class insecticide
73 resistance among populations of *An. gambiae* s.l. is a growing cause for concern because of
74 potential operational failure of current vector control strategies, both locally, as well as across
75 the sub-Saharan region [2,3].

76 Resistance to pyrethroid and carbamate insecticides in *Anopheles* mosquitoes was first
77 reported from the central region of Côte d'Ivoire in the early 1990s [4-7]. Subsequently, local

78 resistance to the major insecticide classes recommended by the World Health Organization
79 (WHO) for adult mosquito control – pyrethroids, carbamates, organophosphates, and
80 organochlorines – evolved rapidly [8–10] and has been increasing in intensity, driven largely by
81 selective pressures imposed by contemporaneous scale-up of public health vector control
82 interventions (including those targeting malaria, trypanosomiasis and onchocerciasis vectors)
83 and use of agricultural pesticides [7, 11–14]. This escalation in resistance has now begun to
84 compromise the insecticidal efficacy and community-wide impact of conventional, pyrethroid
85 LLINs in Côte d'Ivoire [14,15], although some levels of personal protection may still remain [15–
86 17].

87 Amongst vector populations across Côte d'Ivoire, the L1014F *kdr* mutation is pervasive and has
88 been implicated in some longitudinal trends in decreasing DDT and pyrethroid susceptibility [7,
89 11]; L1014S *kdr* and N1575Y resistance mutations have also been detected but at much lower
90 frequencies [18]. Extreme carbamate (bendiocarb) resistance and pyrethroid cross-resistance in
91 local *An. gambiae* s.s. populations have been shown to be mediated by over-expression of
92 *CYP6P3* and *CYP6M2* and duplication of the G119S *Ace-1* mutation [19].

93 To support and safeguard future malaria control efforts in Côte d'Ivoire, this study evaluated the
94 efficacy of conventional and next-generation LLINs for prospective distribution; determined
95 current insecticide resistance profiles of *An. gambiae* s.l. (principally *An. coluzzii*); and
96 characterized underlying molecular and metabolic resistance mechanisms.

97

98

99

100

101 **Methods**

102 *Study area and mosquito collections*

103

104 The study protocol was approved by the Comité National d'Ethique des Sciences de la Vie et de
105 la Santé (#069-19/MSHP/CNESVS-kp) and the London School of Hygiene and Tropical
106 Medicine (#16782 and #16899). Study activities were conducted in the village of Aboudé, rural
107 Agboville, Agnéby-Tiassa region, south-east Côte d'Ivoire (5°55'N and 4°13'W), selected due to
108 its high mosquito densities and malaria prevalence (26% in children <5 years old, in recent
109 estimates [1]). Adult mosquitoes were collected nightly between 5th July and 26th July 2019,
110 using human landing catches (HLCs), inside and outside households from 18:00 to 06:00hr.
111 Unfed mosquitoes, morphologically identified as *An. gambiae* s.l. [20], were tested in bioassays
112 that same day, following a brief recovery period; blood-fed mosquitoes were first held for 2–3
113 days to allow for blood-meal digestion.

114

115 *WHO cone bioassay testing*

116

117 Two types of LLIN were evaluated in this study. PermaNet® 2.0 is a conventional LLIN treated
118 with deltamethrin only (1.4g/kg±25%) and PermaNet® 3.0 is a PBO synergist LLIN, consisting of
119 a roof containing PBO (25g/kg) and deltamethrin (4g/kg±25%) and side panels containing
120 deltamethrin only (2.8g/kg±25%). WHO cone bioassays were used to test the susceptibility of
121 *An. gambiae* s.l. exposed to unwashed PermaNet® 2.0, PermaNet® 3.0 roof panels and
122 PermaNet® 3.0 side panels [21]. To control for potential variation in insecticide/synergist
123 content, each of five LLINs per type was cut into 19 pieces, measuring 30 x 30cm, with each
124 piece tested a maximum of three times.

125

126 *Resistance intensity and synergist bioassay testing*

127

128 Centers for Disease Control and Prevention (CDC) resistance intensity bioassays were
129 performed for six public health insecticides (pyrethroids: alpha-cypermethrin, deltamethrin and
130 permethrin; carbamate: bendiocarb; neonicotinoid: clothianidin; and pyrrole; chlорfenапyr)
131 [22,23]. The diagnostic doses of all insecticides were evaluated (including clothianidin:
132 90 μ g/bottle [23] and chlорfenапyr: 100 μ g/bottle) and 2, 5 and 10 times the diagnostic dose of
133 pyrethroid insecticides were also used. Per test, knock-down was recorded at 15-minute
134 intervals for 30 minutes (pyrethroids and bendiocarb) or 60 minutes (clothianidin and
135 chlорfenапyr) of insecticide exposure. PBO pre-exposures were performed using WHO tube
136 assays [24], prior to CDC bottle bioassay testing.

137

138 WHO cone and CDC resistance intensity bioassay data were interpreted according to the WHO
139 criteria [21,22]. Mosquitoes which died following exposure to a LLIN or 1X insecticide dose
140 were stored at -20°C in RNAlater® (Thermo Fisher Scientific, UK) and were considered
141 'susceptible' for genotypic analysis. Surviving mosquitoes were held and scored for mortality
142 after 24, 48 and 72 hours to observe delayed mortality. Kaplan-Meier curves were used to
143 visualize survival data, and Cox regression was used to compare post-exposure survival.
144 Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or 60
145 minutes, depending on insecticide) were excluded. Surviving mosquitoes at 72 hours were
146 stored at -20°C in RNAlater® and were considered 'resistant' for genotypic analysis.

147

148

149

150

151 *Mosquito processing, identification of Anopheles gambiae s.l. species complex members and*
152 *Plasmodium falciparum detection*

153
154 A sub-sample of field-caught mosquitoes that were tested in bioassays were selected for
155 molecular analysis (n=912). Approximately equal numbers of specimens were chosen to
156 represent phenotypically 'susceptible' or 'resistant' mosquitoes for each LLIN type or insecticide
157 dose, and selected across different replicates/testing days to capture as much population-level
158 variation as possible. RNA was extracted from individual whole-body mosquitoes according to
159 standard protocols [23]. Field *An. gambiae* s.l. were identified to species-level by amplification of
160 the SINE200 insertion that differentiates *An. coluzzii* and *An. gambiae* s.s. [25] and were
161 screened for the presence of *Plasmodium falciparum* [26].

162
163 *Characterization of insecticide resistance mechanisms: target site mutations*
164 The same cohort of field mosquitoes (n=912) were tested for the presence of the L1014F *kdr*
165 [27] and N1575Y mutations [28]. A sub-sample of mosquitoes (n=49) which were exposed to
166 bendiocarb, clothianidin or chlорfenapyr were tested for the presence of the G119S *Ace-1*
167 mutation [29]. Pearson's Chi-squared tests and Fisher's exact tests (when sample sizes were
168 small) were used to investigate the statistical association between resistance status, allele
169 frequencies and deviations from Hardy-Weinberg equilibrium.

170

171

172

173

174

175

176 *Characterization of insecticide resistance mechanisms: metabolic gene expression*
177
178 Relative expression of five metabolic genes (*CYP6P3*, *CYP6P4*, *CYP6Z1* *CYP6P1* and *GSTE2*)
179 was measured in all field collected mosquitoes (n=912), using multiplex quantitative real-time
180 PCR (qRT-PCR) assays, relative to the housekeeping gene ribosomal protein S7 (*RPS7*) [30].
181 In addition, gene expression levels were measured in susceptible *An. coluzzii* N'gouso colony
182 mosquitoes (n=48). All samples were run in technical triplicate. Relative expression level and
183 Fold Change (FC) of each target gene from resistant and susceptible field samples, relative to
184 the susceptible laboratory strain, were calculated using the $2^{-\Delta\Delta CT}$ method incorporating PCR
185 efficiency, normalised relative to the endogenous control gene (*RPS7*).
186

187 **Results**

188

189 *Mosquito collections and species identification*

190

191 A total of 4,609 female *An. gambiae* s.l. mosquitoes were collected in Agboville, Côte d'Ivoire.
192 Of those, 912, which were previously tested in either LLIN bioefficacy assays (n=384) or
193 resistance intensity bioassays (n=528), were selected for molecular species identification, with
194 805 (88.3%) determined to be *An. coluzzii*, 75 (8.2%) *An. gambiae* s.s. and 22 (2.4%) *An.*
195 *gambiae*-*An. coluzzii* hybrids; 10 individuals did not amplify.

196

197 *Long-lasting insecticidal net efficacy*

198

199 A total of 2,666 field-caught *An. gambiae* s.l. were used to assess the bioefficacy of
200 conventional pyrethroid-treated LLINs (PermaNet® 2.0 and PermaNet® 3.0 side panels) and

201 next-generation synergist LLINs (PermaNet® 3.0 roof panels), compared to an untreated control
202 (Figure 1).

203

204 Overall, levels of *An. gambiae* s.l. knock-down and mortality to deltamethrin LLINs, were very
205 low and largely equivalent to the untreated control net (Figure 1). At 60 minutes, average
206 mosquito knock-down to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels
207 was 1.56% (95% CI: 1.13-1.99%), 0.54% (95% CI: 0.42-0.65%) and 1.75% (95% CI: 1.49-
208 2.0%), respectively. By contrast, average mosquito knock-down for PBO-containing PermaNet®
209 3.0 roof panels was significantly higher (79.8%, 95% CI: 79.07-80.48%; $\chi^2 = 705.51$, 968.65 and
210 937.33; $p < 0.001$, versus untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels,
211 respectively) (Figure 1).

212

213 At 24 hours, mortality to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels
214 remained low (6.11%, 95% CI: 4.71-7.51%; 5.44%, 95% CI: 4.58-6.29% and 3.66%, 95% CI:
215 3.12-4.19%, respectively), while mortality to PermaNet® 3.0 roof panels increased only
216 marginally but still remained significantly higher (83.81%, 95% CI: 83.15-84.47%; $\chi^2 = 727.96$,
217 914.61 and 963.09; $p < 0.001$ for all, versus untreated control, PermaNet® 2.0 and PermaNet®
218 3.0 side panels, respectively) (Figure 1). PermaNet® 3.0 roof panels reached minimal
219 effectiveness (knock-down $\geq 75\%$) 60 minutes after exposure and optimal effectiveness
220 (mortality $\geq 80\%$) at 24 hours. Neither of the deltamethrin-only LLINs reached either
221 effectiveness threshold at any time point.

222

223 *Insecticide resistance intensity*

224

225 One thousand, nine hundred and forty-three field-caught *An. gambiae* s.l. were tested in
226 resistance bioassays. Intense pyrethroid resistance was evident with more than 25% of

227 mosquitoes surviving exposure to ten times the dose of insecticide required to kill a susceptible
228 population; at the diagnostic dose, mosquito mortality did not exceed 25% for any pyrethroid
229 tested (Figure 2A). These results are consistent with the high survival rates observed during
230 cone bioassays using conventional LLINs (Figure 1). In general, levels of resistance to alpha-
231 cypermethrin, deltamethrin and permethrin were not significantly different at each insecticide
232 concentration tested (Figure 2A).

233

234 By comparison, carbamate tolerance was low, with mean knock-down of 94.53% (95% CI:
235 92.11-96.95%) after 30 minutes exposure to the diagnostic dose of bendiocarb. Similarly, high
236 levels of susceptibility to new insecticides clothianidin and chlormfenapyr were observed, with
237 mean mortality of 94.11% (95% CI: 93.43-94.80%; n=102) and 95.54% (95% CI: 94.71-96.36%;
238 n=112), respectively, 72 hours after exposure to the tentative diagnostic doses.

239

240 Pre-exposure to PBO increased average *An. gambiae* s.l. mortality significantly from 14.56%
241 (95% CI: 6.24-22.88%) to 72.73% (95% CI: 64.81-79.43) and from 44.66% (95% CI: 34.86-
242 54.46%) to 94.17% (95% CI: 91.12-97.22) after exposure to one or two times the diagnostic
243 dose of deltamethrin (Figure 2B).

244

245 *Mosquito survival following insecticidal exposure*

246

247 All *An. gambiae* s.l. tested in LLIN bioefficacy or resistance intensity bioassays, were held for 72
248 hours, to assess any impact of insecticide or net exposure on delayed mortality. For LLIN
249 bioassays, there was little evidence for any reduction in survival during this holding period (Cox
250 regression $P= 0.149, 0.272$ and 0.85 comparing PermaNet® 2.0, PermaNet® 3.0 side panels and
251 PermaNet® 3.0 roof panels *versus* untreated control, respectively) (Table 1 and Figure 3A).
252 Exposure to the diagnostic doses of all insecticides in CDC bottle bioassays did not induce

253 significant delayed mortality over 72 hours (Cox regression $P>0.05$ for all insecticides compared
254 to the control; with the exception of chlorfenapyr, $P=0.02$) (Table 1 and Figure 3B). This
255 phenomenon was also observed at increasing pyrethroid doses (Cox regression $P>0.05$ for
256 alpha-cypermethrin, deltamethrin and permethrin 5X and 10X *versus* either the control or
257 diagnostic dose) (Table 1; Figure 3C and 3D).

258

259 *Malaria prevalence*

260

261 Of the 912 *An. gambiae* s.l. mosquitoes assayed, 31 tested positive for *P. falciparum* (3.4%).
262 For PCR-confirmed *An. coluzzii*, *P. falciparum* prevalence was 3.50% (28/805); the remaining
263 three infections were in *An. gambiae* s.s. (4%; 3/75). By resistance phenotype, susceptible *An.*
264 *coluzzii* (i.e. those which died following pyrethroid exposure) were more likely to be infected with
265 malaria, compared to resistant mosquitoes ($\chi^2=4.6987$; $p=0.030$); infection rates were 5.94%
266 (13/219) and 2.49% (10/401), respectively.

267

268 *Target site resistance mutations*

269

270 L1014F *kdr* screening revealed 92.2% (796/863) of *An. gambiae* s.l. mosquitoes harboured the
271 mutation; 71.5% (617/863) were homozygous, 20.7% (179/863) were heterozygous, 5.1%
272 (44/863) were wild type and 2.6% (23/863) did not amplify. For PCR-confirmed *An. coluzzii*,
273 L1014F *kdr* prevalence was 87.8% (707/805); 66.6% (536/805) were homozygous for the
274 mutation, 21.2% (171/805) were heterozygous, 5.3% (43/805) were wild type and 2.2% (18/805)
275 did not amplify. For *An. coluzzii*, population-level L1014F *kdr* allele frequency was 0.83, with
276 evidence for significant deviations from Hardy-Weinberg equilibrium ($\chi^2=29.124$; $p<0.0001$).
277 There was no significant association between L1014F *kdr* frequency and ability of mosquitoes to
278 survive pyrethroid exposure, in either LLIN or resistance bioassays ($\chi^2=2.0001$; $p=0.157$ and

279 $\chi^2 = 3.7577$; $p=0.0.53$, respectively). Similarly, there was no significant association between
280 L1014F *kdr* and ability of mosquitoes to survive PBO pre-exposure and pyrethroid treatment, in
281 either LLIN or resistance bioassays ($\chi^2 = 0.0086$; $p=0.926$, Fisher's exact=0.429, respectively).
282 For PCR-confirmed *An. gambiae* s.s., L1014F *kdr* prevalence was 95.3% (61/64); 89.1%
283 (57/64) were homozygous for the mutation, 6.3% (4/64) were heterozygous, none were wild
284 type and 4.7% (3/64) did not amplify. For *An. gambiae* s.s., population-level L1014F *kdr* allele
285 frequency was 0.97, with no significant deviations from Hardy-Weinberg equilibrium ($\chi^2 = 0.070$;
286 $p=0.791$).

287

288 N1575Y screening revealed 2.3% (21/912) of *An. gambiae* s.l. mosquitoes harboured the
289 mutation; all of these were heterozygotes. N1575Y prevalence was 1.1% (9/805) and 16%
290 (12/75) for PCR-confirmed *An. coluzzii* and *An. gambiae* s.s., respectively; 0.99% (9/912) did
291 not amplify. There was no evidence for ongoing N1575Y selection in either species ($\chi^2 = 0.026$;
292 $p=0.873$ and $\chi^2 = 0.62$; $p=0.433$ for *An. coluzzii* and *An. gambiae* s.s., respectively). For *An.*
293 *coluzzii*, there was no significant association between N1575Y frequency and ability of
294 mosquitoes to survive pyrethroid exposure, in LLIN or resistance bioassay ($\chi^2 = 0.0001$; $p=0.993$
295 and $\chi^2 = 0.3244$; $p=0.569$, respectively).

296

297 G119S Ace-1 screening revealed 55.1% (27/49) of *An. gambiae* s.l. mosquitoes harboured the
298 mutation; all of these were heterozygotes. G119S Ace-1 prevalence was 64.9% (24/37) and
299 27.3% (3/11) for PCR-confirmed *An. coluzzii* and *An. gambiae* s.s., respectively; one remaining
300 *An. gambiae*-*An. coluzzii* hybrid was wild type. For *An. coluzzii*, population-level G119S Ace-1
301 allele frequency was 0.32, with evidence for significant deviations from Hardy-Weinberg
302 equilibrium ($\chi^2 = 8.525$; $p=0.00350$). For *An. gambiae* s.s., population-level G119S Ace-1 allele
303 frequency was 0.14, with no significant deviations from Hardy-Weinberg equilibrium ($\chi^2 = 0.274$;

304 $p=0.6005$). For *An. coluzzii*, there was a significant association between presence of the G119S
305 Ace-1 mutation and surviving bendiocarb exposure (Fisher's exact test = 0.005).

306

307 *Metabolic resistance mechanisms*

308

309 Comparison of metabolic gene expression levels in field populations of *An. coluzzii* and *An.*
310 *gambiae* s.s. demonstrated significant upregulation of *CYP6P4* (FC=5.88, 95% CI: 5.19-44.06;
311 and 6.08, 95% CI: 5.43-50.64), *CPY6Z1* (FC=4.04, 95% CI: 3.69-41.54; and 3.56, 95% CI: 3.24-
312 36.25) and *CYP6P3* (FC=12.56, 95% CI: 11.40-123.83; and 13.85, 95% CI: 12.53-132.03),
313 relative to a susceptible laboratory colony, respectively (Figure 4). More modest overexpression
314 of *CYP6P1* and *GSTE2* was observed (FC=1.18, 95% CI: 1.08-12.31; and 1.28, 95% CI: 1.17-
315 14.40; FC=0.56, 95% CI: 0.48-3.32; and 0.67, 95% CI: 0.58-4.29; for *An. coluzzii* and *An.*
316 *gambiae* s.s., respectively) (Figure 4). Levels of FC did not differ significantly between the two
317 species for any gene nor by malaria infection status in wild *An. coluzzii*.

318

319 Comparison of metabolic gene expression in phenotyped field populations of *An. coluzzii*
320 revealed lower FCs overall, but notably, increased overexpression of *CYP6P3* in survivors of
321 bendiocarb, deltamethrin, PBO + deltamethrin and permethrin (FC = 3.91, 95% CI: 3.33-22.16;
322 2.21, 95% CI: 1.88-12.53; 2.64, 95% CI: 2.21-13.69; and 2.21, 95% CI: 1.99-20.03,
323 respectively) (Figure 5).

324

325

326

327

328

329

330 **Discussion**

331

332 Côte d'Ivoire is a hot spot of some of the highest levels of resistance of *Anopheles* mosquitoes
333 to public health insecticides worldwide, with potentially severe implications for sustaining gains
334 in malaria control [31]. To safeguard future malaria vector control efforts and inform the design
335 of effective resistance management strategies, involving tactical deployment of differing IRS and
336 LLIN modalities, there needs to be a clear understanding of contemporary phenotypic and
337 genotypic insecticide resistance.

338

339 Our study detected intense pyrethroid resistance in south-east, Côte d'Ivoire, as evidenced by
340 high proportions of survivors, following exposure to ten times the diagnostic doses of
341 pyrethroids, as well as very low levels of knock-down and 24-hour mortality to deltamethrin-only
342 LLINs, equivalent to an untreated net. These findings are largely in agreement with historical
343 resistance profiles from this region [7,10,11] and indicate that conventional LLINs may no longer
344 be operationally viable in areas of high pyrethroid resistance intensity. Previous Phase II studies
345 of pyrethroid-only LLINs in the central region of Côte d'Ivoire have demonstrated similarly poor
346 efficacy with highly resistant *An. gambiae* s.l. populations but argued for the retention of some
347 degree of personal protection [15-17]. Other observational cohorts have reported higher
348 incidences of malaria among non-net users compared to users in areas of moderate to high
349 pyrethroid resistance [17]. The extent of protective efficacy afforded by pyrethroid LLINs will
350 likely reflect the strength of local vector resistance and levels of both net physical integrity and
351 individual compliance [32,33]. However, in Côte d'Ivoire, reported LLIN usage has been low,
352 requiring additional behavioural interventions [2,34]. Our findings of high mosquito mortality
353 following exposure to clothianidin and chlорfenapyr and improved vector susceptibility with PBO
354 treatment (on both LLINs and in resistance bioassays), are consistent with data from other

355 sentinel sites across Côte d'Ivoire [16,35,36], and strongly support the deployment of vector
356 control interventions incorporating these new active ingredients.

357

358 Study results indicate that *An. coluzzii* was the predominant local vector species during the rainy
359 season, as observed previously [7], circulating sympatrically with smaller proportions of *An.*
360 *gambiae* s.s.. These two vector species commonly co-habit but can be genetically distinct in
361 terms of resistance mechanisms [37,38] and can also differ in larval ecology, behaviour,
362 migration and aestivation [39-41]. In general, resistance mechanisms in *An. coluzzii* are less
363 well-characterized, compared to *An. gambiae* s.s., in part because these vectors are
364 morphologically indistinguishable and few studies present data disaggregated by PCR-
365 confirmed species. We observed several distinct features in our study, principally, evidence for
366 ongoing selection of L1014F *kdr* and G119S *Ace-1* in *An. coluzzii*, which was absent in *An.*
367 *gambiae* s.s. and higher proportions of N1575Y in *An. gambiae* s.s.; expression levels of
368 metabolic genes were comparable between species. The lack of association between L1014F
369 *kdr* genotype and mosquito phenotype, coupled with the identification of three CYP450
370 enzymes (CYP6P4, CYP6P3 and CYP6Z1) that were significantly over-expressed in field
371 populations, (some of which are known to metabolise pyrethroids and next generation LLIN
372 insecticides [42,43]), indicate a key role for metabolic resistance in this *An. coluzzii* population.
373 One notable difference in our dataset, compared to previous work in Agboville [7], was the
374 finding of bendiocarb susceptibility. This may be attributable to small-scale spatial and
375 longitudinal heterogeneity in resistance, which can be highly dynamic [37,44], and/or phenotypic
376 differences between vector species.

377

378 With the exception of chlорfenапyr, which is known to be a slow-acting insecticide, we did not
379 detect any delayed mortality effects for 72 hours following insecticidal exposure; the format and
380 dose used for clothianidin testing (another slow-acting insecticide [45]) was instead intended to

381 measure acute toxicity within a 60 minute exposure period. Previous mathematical models
382 using resistant mosquito colonies have suggested that sub-lethal insecticide treatment may still
383 reduce vector lifespan and inhibit blood-feeding and host-seeking behaviours, thereby
384 interrupting malaria transmission [46,47]. Our observations are more compatible with reports
385 from Burkina Faso where different exposure regimens of wild, resistant *An. gambiae* s.l.
386 populations to deltamethrin LLINs did not induce any delayed mortality [47]. Further assessment
387 of sublethal effects are warranted across additional field populations with differing resistance
388 mechanisms to better understand the impact of insecticidal exposure on vectorial capacity of
389 resistant mosquitoes.

390

391 To date there is a paucity of data regarding the interactions between insecticide resistance and
392 *Plasmodium* development [48]. In this study, *An. coluzzii* which died following pyrethroid
393 exposure were significantly more likely to be infected with malaria. This might be explained by
394 elevated metabolic enzymes and/or prior pyrethroid exposure detrimentally affecting parasite
395 development [49]; although it is important to note that we did not detect any significant
396 differences between gene overexpression in malaria infected vs. non-infected *An. coluzzii*.
397 Alternatively, our sampled population may have been physiologically older, as phenotypic
398 resistance is known to decline with age [50]. It is impossible to distinguish between these
399 hypotheses using field-collected vector populations; the experimental design used in this study
400 had other biological and technical limitations, which have been described in detail previously
401 [23,37].

402

403 **Conclusions**

404

405 As new combination and bi-treated vector control interventions become available for
406 deployment, contemporary resistance information is crucial for the rationale design of

407 management strategies and to mitigate future selection for particular resistance mechanisms.
408 The results from this study contribute to growing insecticide resistance data for Côte d'Ivoire,
409 demonstrating a loss of bioefficacy of conventional pyrethroid LLINs and supporting the use of
410 new active ingredients (clothianidin, chlorfenapyr and PBO). Study findings also highlight the
411 need for expanded insecticide resistance surveillance, including monitoring of metabolic
412 resistance mechanisms, in conjunction with studies to better characterize the impact of
413 sublethal insecticide exposure on vectorial capacity and the interaction between insecticide
414 resistance on *Plasmodium* parasite development.

415

416 **References**

417

- 418 1. Institut National de la Statistique (INS), Programme National de Lutte contre le
419 Paludisme (PNLP) et ICF. 2016. Enquête de prévalence parasitaire du paludisme et de
420 l'anémie en Côte d'Ivoire 2016. Rockville, Maryland, USA : INS, PNLP et ICF.
- 421 2. USAID. President's Malaria Initiative: Côte d'Ivoire: Malaria Operational Plan FY 2018
422 and FY 2019, USAID; 2019. Available from: <https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy19/fy-2019-cote-d'ivoire-malaria-operational-plan.pdf?sfvrsn=5>.
- 423 3. Killeen GF, Ranson H. Insecticide-resistant malaria vectors must be tackled. Lancet
424 2018; 391(10130):1551-1552.
- 425 4. Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K. Resistance of *Anopheles gambiae*
426 s.s. To pyrethroids in Côte D'Ivoire. Ann Soc Belge Med Trop 1993; 73:291-294.
- 427 5. Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K. Sensibilite d'*Anopheles gambiae* aux
428 insecticides en Côte D'Ivoire. Cahiers Sante 1994; 4:95-99.

431 6. N'Guessan R, Darriet F, Guillet P, et al. Resistance to carbosulfan in *Anopheles*
432 *gambiae* from Ivory Coast, based on reduced sensitivity of acetylcholinesterase. *Med*
433 *Vet Entomol* 2003; 17:19-25.

434 7. Edi CAV, Koudou BG, Bellai L, et al. Long-term trends in *Anopheles gambiae* insecticide
435 resistance in Côte D'Ivoire. *Parasit Vectors* 2014; 7:500.

436 8. Chandre F, Darriet F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P. Status of
437 pyrethroid resistance in *Anopheles gambiae* sensu lato. *Bull World Health Organ* 1999;
438 77:230-234.

439 9. Koffi AA, Alou LP, Adja MA, Kone M, Chandre F, N'Guessan R. Update on resistance
440 status of *Anopheles gambiae* s.s. To conventional insecticides at a previous WHOPEs
441 field site, "Yaokoffikro", 6 years after the political crisis in Côte D'Ivoire. *Parasit Vectors*
442 2012; 5:68.

443 10. Edi CVA, Koudou BG, Jones CM, Weetman D, Ranson H. Multiple-insecticide resistance
444 in *Anopheles gambiae* mosquitoes, Southern Côte D'Ivoire. *Emerg Infect Dis* 2012;
445 18:1508-1511.

446 11. Camara S, Koffi AA, Alou LPA, et al. Mapping insecticide resistance in *Anopheles*
447 *gambiae* (s.l.) from Côte D'Ivoire. *Parasit Vectors* 2018; 11:19.

448 12. Mouhamadou CS, de Souza SS, Fodjo BK, Zoh MG, Bli NK, Koudou BG. Evidence of
449 insecticide resistance selection in wild *Anopheles coluzzii* mosquitoes due to agricultural
450 pesticide use. *Infect Dis Poverty* 2019; 8:64.

451 13. Fodjo BK, Koudou BG, Tia E, et al. Insecticides Resistance Status of *An. gambiae* in
452 Areas of Varying Agrochemical Use in Côte D'Ivoire. *Biomed Res Int* 2018;
453 2018:2874160.

454 14. Chouaibou MS, Fodjo BK, Fokou G, et al. Influence of the agrochemicals used for rice
455 and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte
456 d'Ivoire. *Malar J* 2016; 15:426.

457 15. Oumbouke WA, Koffi AA, Alou LPA, Rowland M, N'Guessan R. Evaluation of standard
458 pyrethroid based LNs (MiraNet and MagNet) in experimental huts against pyrethroid
459 resistance *Anopheles gambiae* s.l. M'be, Côte D'Ivoire: potential for impact on vectorial
460 capacity. PLoS One 2019; 14(4):e0215074.

461 16. Oumbouke WA, Rowland M, Koffi AA, Alou LPA, Camara S, N'Guessan R. Evaluation of
462 an alpha-cypermethrin + PBO mixture long-lasting insecticidal net VEERALIN LN against
463 pyrethroid resistant *Anopheles gambiae* s.s.: an experimental hut trial in M'be, central
464 Côte D'Ivoire. Parasit Vectors 2019; 12:544.

465 17. Kleinschmidt I, Bradley J, Knox TB, et al. Implications of insecticide resistance for
466 malaria vector control with long-lasting insecticidal nets: a WHO-coordinated,
467 prospective, international, observational cohort study. Lancet Infect Dis 2018; 18:640-
468 649.

469 18. Edi AVC, N'Dri BP, Chouaibou M, et al. First detection of N1575Y mutation in pyrethroid
470 resistant *Anopheles gambiae* in Southern Côte D'Ivoire. Wellcome Open Res 2017;
471 2:71.

472 19. Edi CV, Djogbenou L, Jenkins AM, et al. CYP6 P450 enzymes and ACE-1 duplication
473 produce extreme and multiple insecticide resistance in the malaria mosquito *Anopheles*
474 *gambiae*. PLoS Genet 2014; 10(3):e1004236.

475 20. Gillies, M. T. & Coetzee, M. A supplement of the Anophelinae of Africa south of the
476 Sahara (Afrotropical Region). Publ. South African Inst. Med. Res. No. 55 (1987).

477 21. World Health Organisation (WHO). Guidelines for Laboratory and Field-Testing of Long-
478 lasting Insecticidal Nets. 2013.

479 22. Centers for Disease Control and Prevention. Guideline for Evaluating Insecticide
480 Resistance in Vectors Using the CDC Bottle Bioassay. CDC Methods 1–28 (2012).

481 23. Stica C, Jeffries CL, Irish SR, et al. Characterizing the molecular and metabolic
482 mechanisms of insecticide resistance in *Anopheles gambiae* in Faranah, Guinea. *Malar*
483 *J* 2019; 18(1):244.

484 24. World Health Organization. Test procedures for insecticide resistance monitoring in
485 malaria vector mosquitoes. Second edition.
486 [https://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-](https://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf?sequence=1)
487 eng.pdf?sequence=1 (2016).

488 25. Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A. Insertion
489 polymorphisms of SINE200 retrotransposons within speciation islands of *Anopheles*
490 *gambiae* molecular forms. *Malar J* 2008; 7:163.

491 26. Boissiere A, Gimonneau G, Tchioffo MT et al. Application of a qPCR assay in the
492 investigation of susceptibility to malaria infection of the M and S molecular forms of *An.*
493 *gambiae* s.s. in Cameroon. *PLoS One* 2013; 8:e54820.

494 27. MR4. Methods in *Anopheles* research (2nd ed.). 2016. Retrieved from
495 [https://www.beiresources.org/Portals/2/VectorResources/2016%20Methods%20in%20An-](https://www.beiresources.org/Portals/2/VectorResources/2016%20Methods%20in%20Anopheles%20Research%20full%20manual.pdf)
496 *opheles%20Research%20full%20manual.pdf*

497 28. Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ,
498 Wilding CS. Footprints of positive selection associated with a mutation (N1575Y) in the
499 voltage-gated sodium channel of *Anopheles gambiae*. *Proc Natl Acad Sci USA* 2012;
500 109:6614-6619.

501 29. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M.
502 The unique mutation in ace-1 giving high insecticide resistance is easily detectable in
503 mosquito vectors. *Insect Mol Biol* 2004; 13:1-7.

504 30. Mavridis K, Wipf N, Medves S, Erquiaga I, Muller P, Vontas J. Rapid multiplex gene
505 expression assays for monitoring metabolic resistance in the major malaria vector
506 *Anopheles gambiae*. *Parasit Vectors* 2019; 12:9.

507 31. Glunt KD, Coetzee M, Huijben S, et al. Empirical and theoretical investigation into the
508 potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed
509 nets. *Evol Appl.* 2018; 11:431-441.

510 32. Shah MP, Steinhardt LC, Mwandama D, et al. The effectiveness of older insecticide-
511 treated bed nets (ITNs) to prevent malaria infection in an area of moderate pyrethroid
512 resistance: results from a cohort study in Malawi. *Malar J* 2020; 19:24.

513 33. Toe KH, Jones CM, N'Fale S, Ismail HM, Dabire RK, Ranson H. Increased pyrethroid
514 resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. *Emerg*
515 *Infect Dis* 2014; 20(10):1691-1696.

516 34. Ouattara AF, Raso G, Edi CVA, Utzinger J, Tanner M, Dagnogo M, Koudou BG. Malaria
517 knowledge and long-lasting insecticidal net use in rural communities of central Côte
518 d'Ivoire. *Malar J* 2011; 10:288.

519 35. Kouassi BL, Edi C, Tia E, et al. Susceptibility of *An. gambiae* s.l. from Côte d'Ivoire to
520 insecticides used on insecticide-treated nets: evaluating the additional entomological
521 impact of piperonyl butoxide and chlорfenapyr. PrePrint, accessed from
522 <https://www.researchsquare.com/article/rs-21138/v1>.

523 36. Camara S, Ahoua Alou LP, Koffi AA, et al. Efficacy of Interceptor®G2, a new long-lasting
524 insecticidal net against wild pyrethroid-resistant *Anopheles gambiae* s.s. From Côte
525 d'Ivoire: a semi-field trial. *Parasite* 2018; 25:42.

526 37. Collins E, Vaselli NM, Sylla M, et al. The relationship between insecticide resistance,
527 mosquito age and malaria prevalence in *Anopheles gambiae* s.l. from Guinea. *Sci Rep*
528 2019; 9:8846.

529 38. The *Anopheles gambiae* 1000 Genome Consortium. Genetic diversity of the African
530 malaria vector *Anopheles gambiae*. *Nature* 2017; 552(7683):96-100.

531 39. Fossog BT, Ayala D, Acevedo P, et al. Habitat segregation and ecological character
532 displacement in cryptic African malaria mosquitoes. *Evol Appl* 2015; 8(4):326-345.

533 40. Gimonneau G, Bouyer J, Morand S, Besansky NJ, Diabate A, Simard F. A behavioral
534 mechanism underlying ecological divergence in the malaria mosquito *Anopheles*
535 *gambiae*. Behav Ecol 2010; 21(5):1087-1092.

536 41. Dao A, Yaro AS, Diallo M, et al. Signatures of aestivation and migration in Sahelian
537 malaria mosquito populations. Nature 2014; 516:387-390.

538 42. Muller P, Wart E, Stevenson BJ, et al. Field-caught permethrin-resistant *Anopheles*
539 *gambiae* overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 2008;
540 4(11):e1000286.

541 43. Yunta C, Grisales N, Nasz S, et al. Pyriproxyfen is metabolised by P450s associated
542 with pyrethroid resistance in *An. gambiae*. Insect Biochem Mol Biol 2016; 78:50-57.

543 44. Implications of Insecticide Resistance Consortium. Implications of insecticide resistance
544 for malaria vector control with long-lasting insecticidal nets: trends in pyrethroid
545 resistance during a WHO-coordinated multi-country prospective study. Parasit Vectors
546 2018; 11(1):550.

547 45. Oxborough RM, Seyoum A, Yihdego Y, et al. Susceptibility testing of *Anopheles* malaria
548 vectors with the neonicotinoid insecticide clothianidin; results from 16 African countries,
549 in preparation for indoor residual spraying with new insecticide formulations. Malar J
550 2019; 18(1):264.

551 46. Viana M, Hughes A, Matthiopoulos J, Ranson H, Ferguson HM. Delayed mortality
552 effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proc
553 Natl Acad Sci USA 2016; 113(32):8975-8980.

554 47. Hughes A, Lissenden N, Viana M, Toe KH, Ranson H. *Anopheles gambiae* populations
555 from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated
556 nets. Parasit Vectors 2020; 13:17.

557 48. Minetti C, Ingham VA, Ranson H. Effects of insecticide resistance and exposure on
558 Plasmodium development in *Anopheles* mosquitoes. Curr Opin Insect Sci 2020; 39:42-
559 49.

560 49. Kristan M, Lines J, Nuwa A, Ntege C, Meek SR, Abeku TA. Exposure to deltamethrin
561 affects development of *Plasmodium falciparum* inside wild pyrethroid resistant
562 *Anopheles gambiae* s.s. mosquitoes in Uganda. Parasit Vectors 2016; 24(9):100.

563 50. Jones CM, Sanou A, Guelbeogo WM, Sagnon NF, Johnson PCD, Ranson H. Aging
564 partially restores the efficacy of malaria vector control in insecticide-resistant populations
565 of *Anopheles gambiae* s.l. from Burkina Faso. Malar J 2012; 11:24.

566

567 **Acknowledgements**

568

569 The authors express their sincere thanks to the M. Didier Dobri, CSRS lab technician, and
570 Fidele Assamoa for their support in mosquito collection and rearing, the chief and population of
571 the village of Aboudé (Agboville) and the entomology fieldworkers of CSRS. Study funding was
572 provided by a Sir Halley Stewart Trust (awarded to LAM) and a Wellcome Trust/Royal Society
573 grant (awarded to TW; 101285/Z/13/Z) <http://www.wellcome.ac.uk>; <https://royalsociety.org>. SI is
574 supported by the President's Malaria Initiative (PMI)/CDC. The findings and conclusions in this
575 report are those of the author(s) and do not necessarily represent the official position of the
576 Centers for Disease Control and Prevention.

577

578 **Author contributions**

579

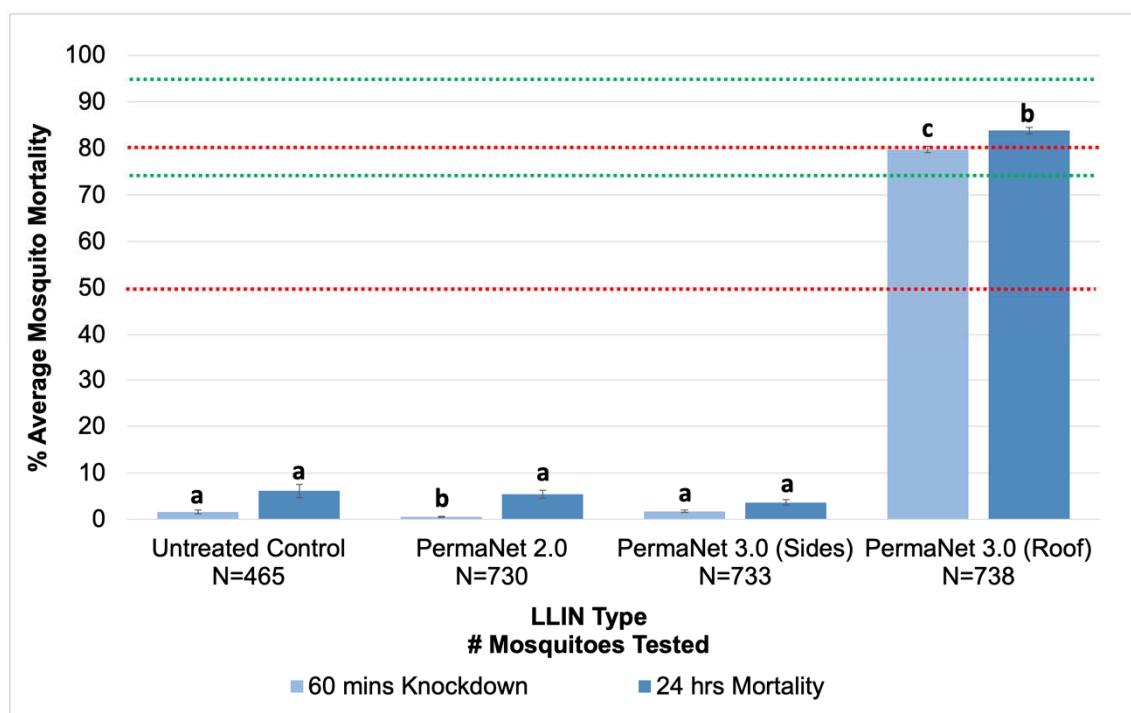
580 AM, EM, MK, TW and LAM designed the study. AM, EM, CE and BP led the entomology field
581 activities and participated in data collection. AM, EM, CLJ, TW and LAM performed the
582 molecular assays. AM, EM, MK, CE, CLJ, BP, SI, TW and LAM were responsible for data

583 analysis and interpretation. LAM drafted the manuscript, which was revised by all co-authors. All
584 authors read and approved the final manuscript.

585

586 **Conflict of interest**

587

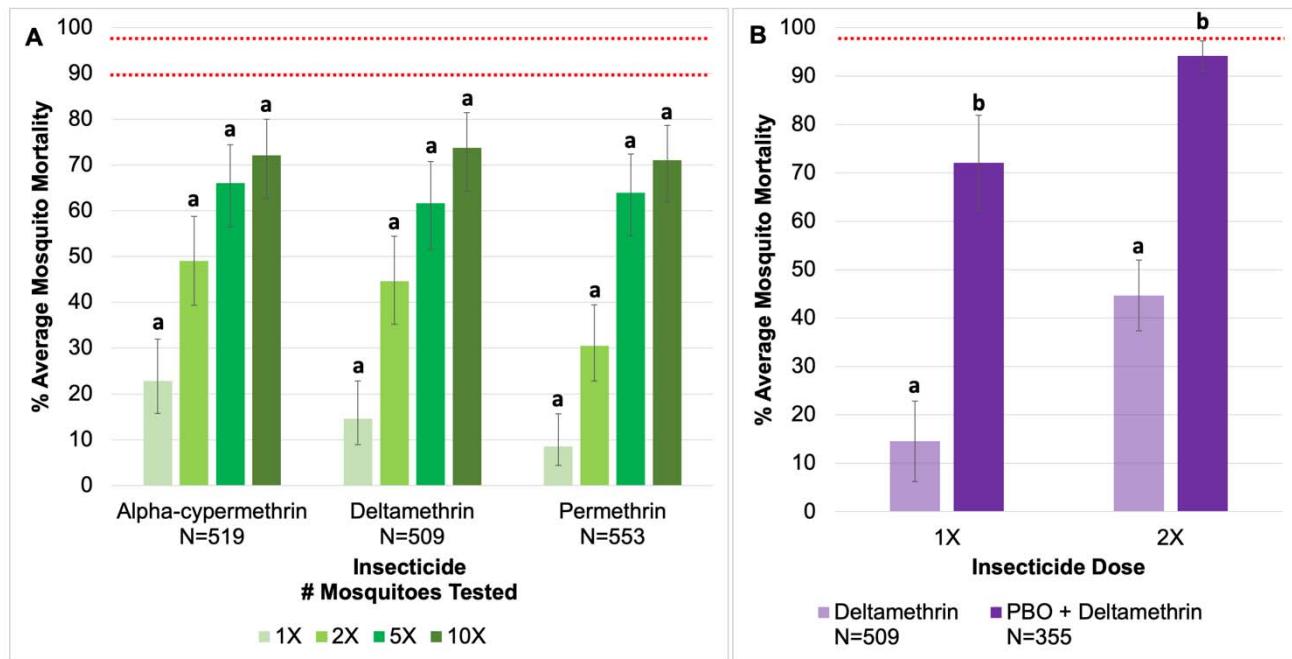

588 The authors declare no conflict of interest.

589

590 **Figures**

591

592

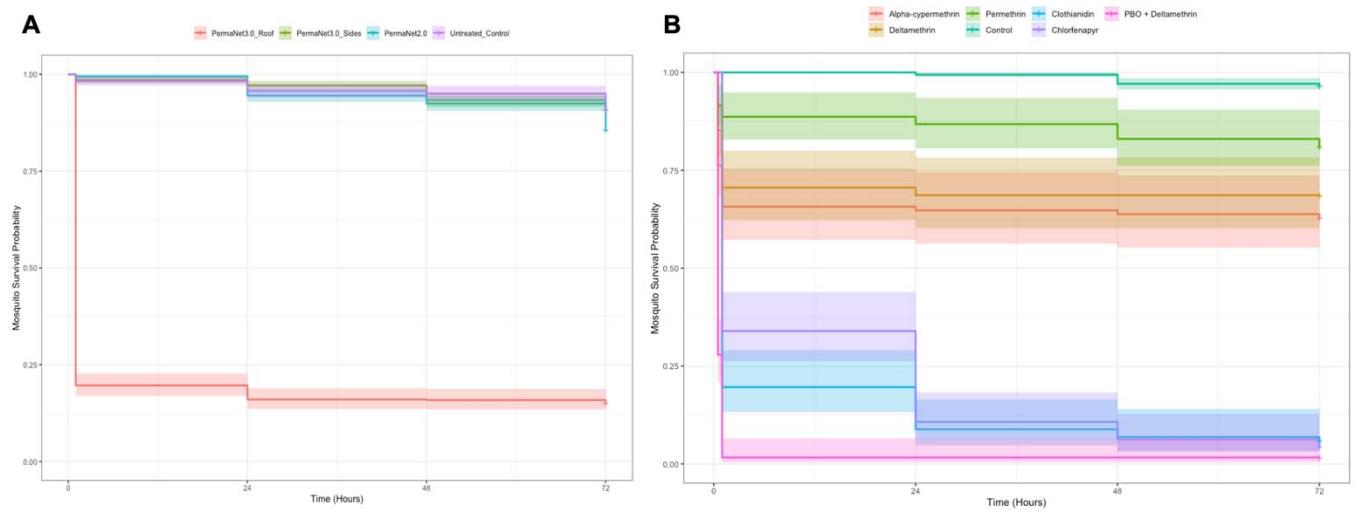


593

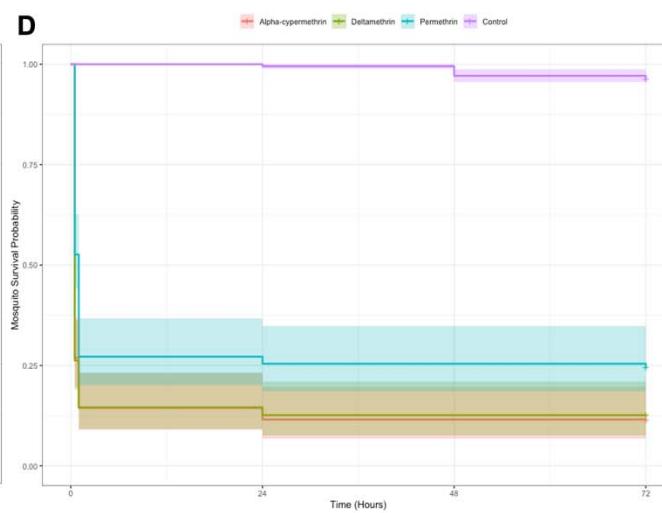
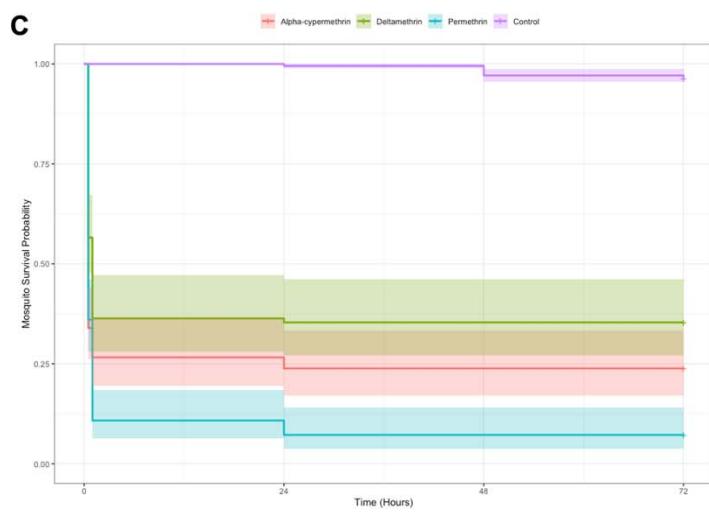
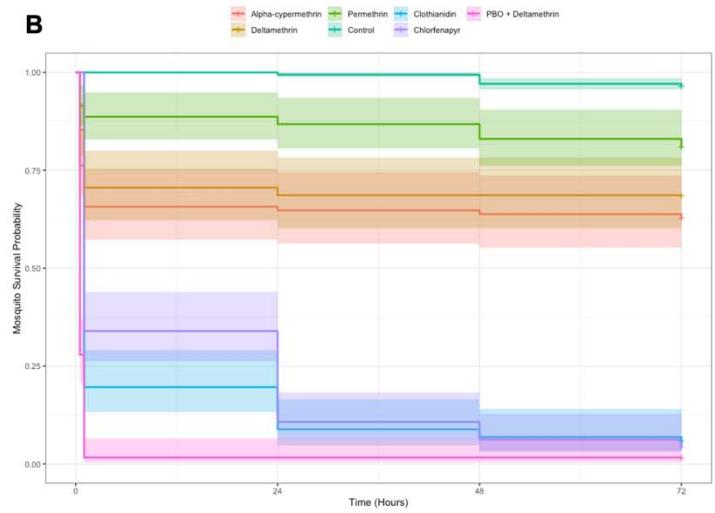
594 **Figure 1.** Bioefficacy of different unwashed LLINs against field-caught *An. gambiae* s.l. Mean
595 knock-down and mortality rates with 95% confidence intervals (CI) at 60 minutes and 24 hours,
596 respectively, after 3 minutes exposure to PermaNet® 2.0 (deltamethrin only), side panels of
597 PermaNet® 3.0 (deltamethrin only), roof panels of PermaNet® 3.0 (PBO + deltamethrin) and an

598 untreated control net. Knock-down or mortality in the same time period for each treatment
599 sharing a letter do not differ significantly ($p>0.05$). Green lines at $\geq 75\%$ knock-down = minimal
600 effectiveness at 60 minutes and at $\geq 95\%$ knock-down = optimal effectiveness at 60 minutes.
601 Red lines at $\geq 50\%$ mortality = minimal LLIN effectiveness at 24 hours and $\geq 80\%$ mortality =
602 optimal LLIN effectiveness at 24 hours, as defined by the WHO [21].

603



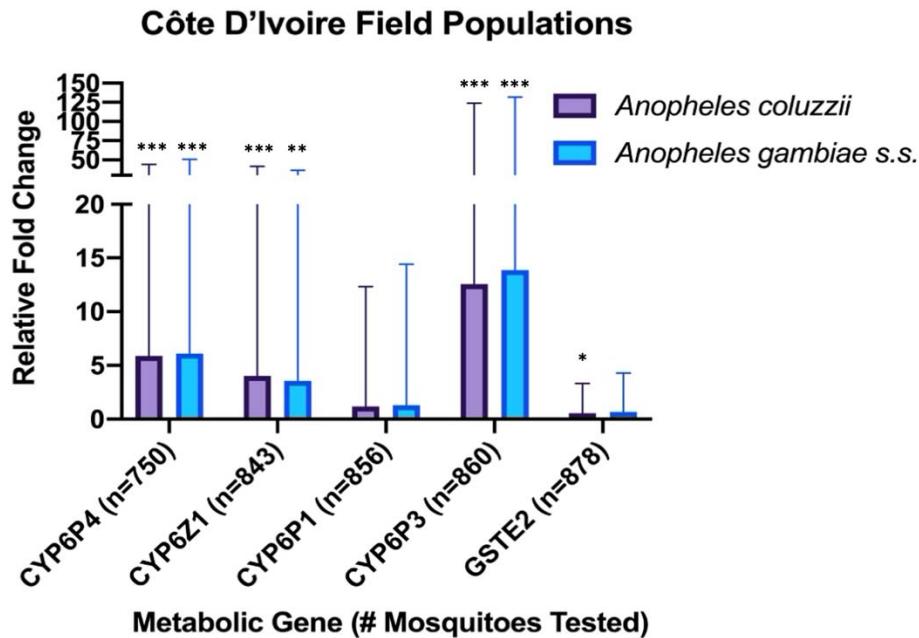
604




605 **Figure 2. A:** Resistance intensity of field-caught *An. gambiae* s.l. after exposure to one, two,
606 five and ten times the diagnostic dose of pyrethroid insecticides. Mean knock-down/acute
607 toxicity after 30 minutes exposure with 95% confidence intervals (CI). Knock-down/mortality at
608 the same dose per insecticide sharing a letter do not differ significantly ($p>0.05$). Values of less
609 than 90% mortality (lower red line) indicate confirmed resistance at the diagnostic dose (1X) and
610 values of less than 98% mortality (upper red line) indicate moderate to high intensity resistance
611 or high intensity resistance at 5X and 10X, respectively, as defined by the WHO [24]. **B:**
612 Restoration of deltamethrin susceptibility of field-caught *An. gambiae* s.l. after pre-exposure to

613 PBO. Mean knock-down/acute toxicity after 30 minutes exposure to one or two times the
614 diagnostic dose of deltamethrin with 95% confidence intervals (CI). Knock-down/mortality
615 between pyrethroid only and synergist + pyrethroid sharing a letter do not differ significantly
616 ($p>0.05$). Red line at 98% mortality indicates metabolic resistance mechanisms partially
617 involved [24].

618

619

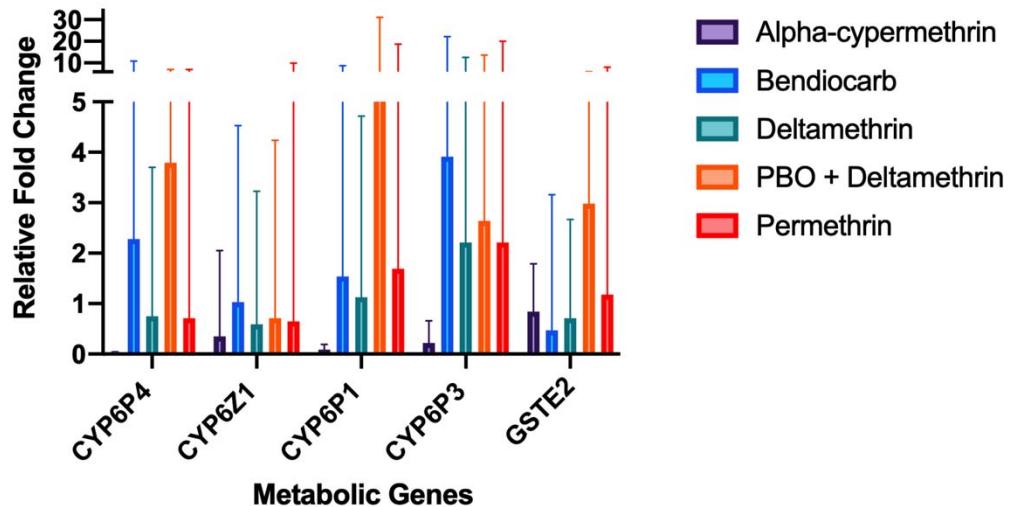

620

621

622 **Figure 3.** The longevity of field-caught *An. gambiae* s.l. after exposure to LLINs in WHO cone
623 assays (**A**) 1X (**B**), 5X (**C**) and 10X (**D**) times the diagnostic dose of pyrethroid insecticides in

624 CDC resistance intensity assays. Kaplan Meier survival curves indicate the proportion alive
625 each day post-exposure. Immediate mortality following LLIN (60 minutes and 24 hours) or
626 insecticidal exposure (30 or 60 minutes, insecticide depending) were excluded.

627



628

629 **Figure 4.** Metabolic gene expression in field *An. coluzzii* and *An. gambiae* s.s. populations
630 relative to a susceptible colony population. Error bars represent 95% CI; statistically significant
631 differences in expression levels relative to the susceptible colony are indicated as * $P<0.05$,
632 ** $P<0.01$, *** $P\leq 0.001$.

633

Resistant vs. Susceptible *Anopheles coluzzii*

634

635

636 **Figure 5.** Metabolic gene expression in resistant *versus* susceptible field *An. coluzzii*, which

637 either died or survived following insecticidal exposure. Error bars represent 95% CI.

Table 1. Cox proportional hazard model to describe the impact of LLIN/insecticidal exposure on survival of field-caught *An. gambiae* s.l. 72 hours post exposure.

Insecticide Exposure	N (N Events)	HRR	95% CI	P-value
Untreated Netting		Reference	-	-
PermaNet® 2.0 (deltamethrin only)	1135 (1047)	1.095	0.968-1.239	0.149
PermaNet® 3.0 side panels (deltamethrin only)	1157 (1088)	0.9664	0.9092-1.027	0.272
PermaNet® 3.0 roof panels (PBO + deltamethrin)	563 (533)	1.007	0.939-1.079	0.85
Acetone Control		Reference	-	-
Alpha-cypermethrin 1X	676 (641)	1.006	0.9696-1.043	0.767
Deltamethrin 1X	683 (645)	0.9942	0.9539-1.036	0.782
Permethrin 1X	693 (661)	1.015	0.9698-1.062	0.525
Clothianidin 1X	698 (581)	1.208	0.9227-1.581	0.169
Chlorfenapyr 1X	708 (580)	1.692	1.086-2.637	0.02
PBO + Deltamethrin 1X	630 (577)	0.9662	0.2411-3.873	0.961
Alpha-cypermethrin 5X	633 (601)	0.9951	0.9407-1.053	0.863
Deltamethrin 5X	652 (610)	0.9942	0.9393-1.052	0.842
Permethrin 5X	636 (583)	0.9931	0.8638-1.142	0.923

Alpha-cypermethrin 10X	624 (587)	0.9951	0.917-1.08	0.906
Deltamethrin 10X	623 (588)	0.9943	0.9072-1.09	0.902
Permethrin 10X	656 (603)	1.026	0.9509-1.107	0.509
1X Insecticide Dose		Reference	-	-
Alpha-cypermethrin 5X	117 (92)	1.016	0.9069-1.138	0.785
Alpha-cypermethrin 10X	108 (78)	1.007	0.9403-1.078	0.845
Deltamethrin 5X	143 (105)	1.0	0.9035-1.107	1.0
Deltamethrin 10X	114 (83)	1.0	0.9363-1.068	1.0
Permethrin 5X	137 (94)	1.022	0.8528-1.225	0.812
Permethrin 10X	157 (114)	0.9952	0.9491-1.044	0.842

HRR: hazard rate ratio; ratio between the hazard rate in control/reference group and hazard rate for each treatment group.

Significance level defined as $\alpha = 0.05$.

Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or 60 minutes, insecticide depending) were excluded.