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Abstract		19 

The	mammalian	gut	teems	with	beneficial	microbes,	yet	how	hosts	acquire	these	symbionts	remains	20 

poorly	understood.	Research	in	primates	suggests	that	microbes	can	be	picked	up	via	social	contact,	21 

but	the	role	of	social	interactions	in	non-group-living	species	remains	unexplored.	Here,	we	use	a	22 

passive	 tracking	 system	 to	 collect	 high	 resolution	 spatiotemporal	 activity	 data	 from	 wild	 mice	23 

(Apodemus	 sylvaticus).	 Social	 network	 analysis	 revealed	 social	 association	 strength	 to	 be	 the	24 

strongest	 predictor	 of	 microbiota	 similarity	 among	 individuals,	 controlling	 for	 factors	 including	25 

spatial	proximity	and	kinship,	which	had	far	smaller	or	nonsignificant	effects.	This	social	effect	was	26 

limited	 to	 interactions	 involving	males	 (male-male	 and	male-female),	 implicating	 sex-dependent	27 

behaviours	as	driving	processes.	Social	network	position	also	predicted	microbiota	richness,	with	28 

well-connected	hub	individuals	having	the	most	diverse	microbiotas.	Overall,	these	findings	suggest	29 

social	 contact	 provides	 a	 key	 transmission	 pathway	 for	 gut	 symbionts	 even	 in	 relatively	 asocial	30 

mammals,	 that	 strongly	 shapes	 the	adult	 gut	microbiota.	 This	work	underlines	 the	potential	 for	31 

individuals	to	pick	up	beneficial	symbionts	as	well	as	pathogens	from	social	interactions.			32 

		33 

	 	34 
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Introduction	35 

Symbiotic	 microbes	 are	 increasingly	 recognised	 as	 key	 modulators	 of	 host	 phenotypes.	 This	 is	36 

particularly	true	for	the	mammalian	gut	microbiota,	whose	metabolism	is	intimately	entwined	with	37 

that	of	the	host.	Among	their	many	roles	in	host	physiology,	mammalian	gut	microbes	modulate	38 

host	energy	metabolism	(1,2),	regulate	fat	accumulation	and	thermal	homeostasis	(3),	and	provide	39 

protection	 against	 pathogenic	 infection	 (4,5).	 They	 are	 also	 in	 constant	 dialogue	 with	 the	 host	40 

immune	system,	activating	 innate	 immune	responses	and	tuning	acquired	 immune	responses	 to	41 

distinguish	enemies	from	allies	(6–8).	As	such,	alterations	to	these	microbial	communities	can	have	42 

significant	 impacts	on	host	health	and	have	been	associated	with	major	metabolic	and	 immune-43 

related	health	conditions	in	humans	(1,9,10)	44 

	45 

Despite	the	well-established	role	of	gut	microbiota	in	host	biology,	we	know	surprisingly	little	about	46 

the	forces	that	shape	microbiota	composition	within	and	between	individuals	in	nature.	Community	47 

composition	is	notoriously	variable	among	individuals,	and	is	affected	by	a	number	of	processes	that	48 

can	 be	 viewed	 within	 a	 metacommunity	 framework	 (11):	 transmission	 processes	 (microbial	49 

dispersal)	first	determine	which	microbes	colonize	an	individual	host.	Subsequently,	aspects	of	the	50 

nutritional	 and	 immunological	 environment	 inside	 the	 host	 (e.g.	 host	 diet,	 genetics),	 as	well	 as	51 

ecological	interactions	with	resident	microbes,	selectively	filter	colonising	microbes	that	can	persist	52 

and	 thrive.	 In	mammals,	 the	microbiota	 is	 initially	established	 through	maternal	 transmission	at	53 

birth	(12),	with	community	composition	then	further	shaped	by	transmission	from	family	members	54 

and	the	broader	environment	(13–15)	as	well	as	selective	processes	within	the	host	(16).		55 

	56 

A	 key	 question	 is	 to	 what	 extent	 ongoing	 transmission	 throughout	 life	 shapes	 the	 microbiota.	57 

Accumulating	evidence	suggests	the	gut	microbiota	is	affected	by	a	host’s	environment,	such	as	diet	58 
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(17,18)	 and	 contact	 with	 soil	 (15,19,20).	 The	 microbiota	 can	 also	 be	 shaped	 by	 a	 host’s	 social	59 

environment,	 since	 a	 special	 form	 of	 microbial	 transmission	 can	 occur	 through	 social	 contact.	60 

Intimate	 social	 contact,	 such	 as	 the	many	 forms	 of	 prosocial	 touch	 common	 in	mammals	 (e.g.	61 

grooming,	licking,	huddling),	may	function	as	an	important	transmission	route	for	microbes.	This	is	62 

particularly	true	for	microbes	not	easily	transmitted	via	the	environment,	including	strict	anaerobes	63 

and	non-spore-forming	bacteria	(21).	Moreover,	 if	 less	transmissible	microbes	are	more	 likely	to	64 

positively	 impact	host	 fitness	 (22),	 social	 interactions	 could	 constitute	a	key	pathway	 (alongside	65 

vertical	 transmission)	 by	 which	 symbionts	 of	 high	 functional	 significance	 are	 transmitted	 in	66 

mammals.	Laboratory	rodent	studies	have	repeatedly	shown	that	cohousing	drives	convergence	in	67 

microbiota	 composition	 (23–25),	 indicating	 that	 social	 interaction	 and	 close	 proximity	 facilitate	68 

microbial	transmission.	69 

	70 

In	highly	social	group-living	mammals,	the	host	social	environment	seems	to	have	important	effects	71 

on	 the	 gut	 microbiota.	 Social	 group	 membership	 has	 been	 shown	 to	 predict	 gut	 microbiota	72 

composition	in	several	species	of	primates	(26–31)	and	other	group-living	mammals	(32–34).	Social	73 

group	effects	 also	occur	 in	 humans,	 as	 unrelated	 individuals	 living	 in	 the	 same	household	were	74 

found	to	have	a	more	similar	microbiota	than	relatives	living	in	different	households	(35).	However,	75 

the	mechanisms	underlying	 these	observations	 remain	unclear,	and	may	 include	not	only	direct	76 

social	transmission	but	also	shared	environmental	exposures	like	diet.	In	some	cases,	social	group	77 

effects	on	the	microbiota	have	been	found	while	controlling	for	kinship	or	shared	diet,	supporting	78 

the	idea	that	social	transmission	homogenises	the	gut	microbiota.	For	example,	sifakas	(Propithecus	79 

verrauxii)	 were	 found	 to	 have	 a	 social	 group-specific	 gut	microbiota	 composition	 that	 was	 not	80 

explained	 by	 dietary	 or	 habitat	 overlap,	 nor	 genetic	 relatedness	 among	 group-members	 (28).	81 
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Further	support	comes	from	individuals	observed	to	switch	social	groups,	for	example	immigrant	82 

male	baboons	(36),	whose	microbiota	composition	converges	on	that	of	their	new	social	group.		83 

	84 

Some	evidence	also	suggests	social	interactions	affect	microbiota	similarity	at	a	dyadic	level,	within	85 

groups	 or	 populations.	 Several	 primate	 studies	 have	 shown	 the	 intensity	 of	 social	 interaction	86 

between	group	members	to	predict	similarity	in	their	microbiota	(26–28,30).	Baboons	that	groomed	87 

each	other	more	were	found	to	share	more	gut	microbes,	and	these	shared	bacteria	were	enriched	88 

in	anaerobic	and	non-spore	forming	taxa	(26).	Similar	patterns	were	found	in	humans,	with	couples	89 

who	reported	having	a	“physically	close	relationship”	sharing	more	gut	microbes	 than	 less	close	90 

couples	or	friends	(37).	However,	socially	interacting	primates	often	experience	strong	overlap	in	91 

their	 environments,	 and	 thus	 it	 remains	 difficult	 to	 distinguish	 social	 transmission	 from	 shared	92 

environmental	exposures	(21).	Species	that	are	not	group-living	(sensu	Wilson,	38)	arguably	provide	93 

more	powerful	systems	in	which	to	clearly	distinguish	effects	of	social	interaction	from	confounding	94 

shared	 environmental	 exposures,	 as	 social	 interactions	 are	 more	 limited	 in	 time	 and	 space.	95 

However,	 the	role	of	social	 transmission	 in	shaping	the	microbiota	 in	such	species	has	yet	to	be	96 

explored.		97 

	98 

Here,	we	use	wild	mice	as	a	model	system	(wood	mice,	Apodemus	sylvaticus)	to	assess	how	social	99 

interactions	shape	gut	microbiota	similarity	among	sympatric	mice,	in	comparison	to	effects	of	host	100 

kinship,	spatial	proximity,	and	other	factors.	These	mice	are	not	group-living,	but	can	be	considered	101 

a	semi-social	species,	with	the	propensity	to	co-nest	in	underground	burrows	varying	seasonally	and	102 

between	individuals	(39,40).	Individuals	have	stable,	partially	overlapping	home	ranges,	and	yet	vary	103 

in	their	level	of	social	contact,	making	them	a	particularly	suitable	species	in	which	to	study	social	104 

transmission.	Using	a	tracking	system	based	on	passive	radio-frequency	identification	(RFID)	tags,	105 
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we	intensively	followed	a	population	of	mice	for	one	year	and	used	social	network	analyses	to	test	106 

two	specific	hypotheses	about	social	transmission	of	microbiota.	First,	we	test	the	prediction	that	if	107 

social	 interactions	 drive	 microbial	 transmission,	 dyadic	 microbiota	 similarity	 will	 be	 positively	108 

predicted	by	proximity	in	the	social	network,	independent	of	other	potential	confounders.	Second,	109 

individuals	that	are	more	connected	in	the	social	network	are	predicted	to	have	higher	microbiota	110 

diversity,	as	they	are	exposed	to	more	extensive	social	transmission.	111 

	112 

Materials	and	Methods	 	113 

	114 

Field	data	collection	115 

Data	were	collected	over	a	one-year	period	(Nov	2014-Dec	2015)	from	a	wild	population	of	wood	116 

mice	(Apodemus	sylvaticus)	in	a	2.43ha	mixed	woodland	plot	(Nash’s	Copse)	at	Imperial	College’s	117 

Silwood	Park	 campus,	UK	 (Figure	 S1A).	 Live	 traps	were	 set	 for	 one	night	 every	 2-4	weeks	 in	 an	118 

alternating	checkerboard	design,	to	ensure	even	coverage.	At	first	capture,	all	mice	were	injected	119 

subcutaneously	with	a	passive	integrated	transponder	tag	(PIT-tag)	for	permanent	identification.	At	120 

each	trapping,	demographic	data	on	captured	animals	was	recorded	and	samples	for	gut	microbiota	121 

analysis	and	mouse	genotyping	collected	(see	Supplementary	Material).		122 

		 Data	on	rodent	space	use	and	social	associations	was	collected	in	parallel	to	trapping	using	123 

a	set	of	9	custom-built	PIT-tag	 loggers	 (described	 in	41	and	Supplementary	Material;	Figure	S2),	124 

distributed	across	the	trapping	grid.	Loggers	consisted	of	a	box	with	entrance	tubes,	that	recorded	125 

the	time-stamped	presence	of	any	rodent	that	entered.	Loggers	were	rotated	systematically	around	126 

the	plot	throughout	the	study	period,	using	a	sampling	design	that	ensured	even	spatial	coverage,	127 

with	each	100m2	grid	cell	 covered	on	average	5.49	 (SD	1.61)	 times	 (Figure	S1B).	Of	 the	93	mice	128 

tagged	during	study	period,	89%	(n=83)	were	detected	by	the	loggers.	129 
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		130 

Kinship	analysis	131 

To	 derive	 estimates	 of	 host	 genetic	 relatedness,	 ear	 tissue	 samples	 were	 used	 to	 genotype	 all	132 

captured	mice	at	eleven	microsatellite	loci	(Table	S1,	Table	S2;	detailed	in	39)	and	build	a	pedigree	133 

in	 COLONY	 2.0.6.5	 (42).	 Full	 details	 of	 genotyping	 methods	 and	 pedigree	 reconstruction	 are	134 

provided	in	Supplementary	Material.	After	sample	failures,	genetic	relatedness	could	be	inferred	135 

for	70	of	the	83	monitored	mice.		136 

	137 

Constructing	social	networks		138 

All	 analyses	 were	 conducted	 in	 R	 version	 3.6.1	 (R-Core-Team	 2019).	 To	 capture	 patterns	 of	139 

spatiotemporal	coincidence	among	wood	mice,	social	networks	were	constructed	from	logger	data	140 

using	the	package	asnipe	(43)	and	plotted	using	igraph	(44).	Individual	mice	were	nodes,	and	edges	141 

described	the	number	of	times	two	individuals	were	observed	at	the	same	logger	with	the	same	142 

night	(12h	period,	6pm	to	6am).	To	measure	association	strength,	we	used	an	adjusted	version	of	143 

the	Simple	Ratio	 Index	(SRI),	 that	accounted	for	variable	overlap	 in	 individual	 lifespans	(i.e.	 time	144 

between	first	and	last	logger	observation)	(45),	hereafter	“Adjusted	SRI”.	Adjusted	SRI	is	defined	as	145 

follows	for	two	individuals,	A	and	B:	146 

𝐼	 = 	
𝑋

[𝑋 +	𝑦()		 + 	𝑦( 	+	𝑦)]
	147 

where	X	is	the	number	of	instances	(night-location	combinations)	in	which	A	and	B	were	observed	148 

associated	(observed	within	a	specific	time	window	of	each	other),	yAB	is	the	number	of	instances	in	149 

which	A	and	B	were	both	observed,	but	not	associated,	yA	and	yB	are	the	number	of	instances	in	150 

which	both	were	known	to	be	alive	but	only	A	or	B	were	observed	respectively.	By	taking	lifespan	151 
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overlap	into	account	we	could	incorporate	data	from	all	83	individuals	across	the	entire	year	into	152 

one	static	social	network.		153 

	154 

To	 examine	 how	 the	 definition	 of	 social	 association	 might	 affect	 social	 network-microbiota	155 

relationships,	we	constructed	a	series	of	networks	using	increasingly	intimate	definitions	of	social	156 

association,	by	applying	a	sliding	time	window	of	variable	length	to	define	social	association,	from	157 

12	hours	(as	above)	down	to	a	2	minute	period	(12h,	4h,	1h,	30min,	10min,	2min).	We	also	calculated	158 

a	parallel	set	of	networks	with	binary	social	association	indices	(BI),	where	‘1’	indicated	the	dyad	159 

were	observed	associated	at	least	once,	and	‘0’	indicating	they	were	not.		160 

	161 

Gut	microbiota	characterisation		162 

The	 gut	 microbiota	 was	 successfully	 characterised	 from	 239	 faecal	 samples	 belonging	 to	 75	163 

individual	wood	mice	(covering	90%	of	the	monitored	mice,	mean=3.2	samples/mouse,	range=1-9).	164 

Full	 details	 of	 library	 preparation,	 sequencing	 and	 bioinformatics	 are	 given	 in	 Supplementary	165 

Material.	 Briefly,	microbiota	 profiling	 involved	 amplicon	 sequencing	 of	 the	 16S	 rRNA	 gene	 (V4-166 

region).	Sequence	data	were	processed	through	the	DADA2	pipeline	v1.6.0	(46),	to	infer	amplicon	167 

sequence	 variants	 (ASVs)	 and	 taxonomy	 assigned	 using	 the	 GreenGenes	 Database	 (Consortium	168 

13.8).	Using	package	phyloseq	(47),	ASV-counts	were	normalized	to	proportional	abundance	within	169 

each	 sample	 (48)	 and	 singleton	 ASVs	 as	 well	 as	 those	 belonging	 to	 non-gut	 microbial	 taxa	170 

(Cyanobacteria,	Mitochondria)	were	 removed.	 Lastly,	 we	 used	 	 package	 iNEXT	 (49)	 to	 estimate	171 

asymptotic	richness	and	Shannon	diversity	for	each	sample.		172 

	173 

Statistical	analyses	174 
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To	describe	compositional	microbiota	variation,	package	vegan	(50)	was	used	to	calculate	Jaccard	175 

distances	and	Bray-Curtis	dissimilarities	among	samples	(Figure	S7).	We	used	the	Jaccard	Index	(1-176 

Jaccard	distance,	the	proportion	of	shared	ASVs	between	sample	pairs)	as	our	primary	measure	of	177 

microbiota	 similarity,	 as	 we	 considered	 this	 metric	 most	 relevant	 for	 investigating	 microbial	178 

transmission	among	hosts.	However,	we	repeated	key	analyses	using	Bray-Curtis	dissimilarity,	an	179 

abundance-weighted	metric	less	sensitive	to	potential	sequencing	artefacts.		180 

	181 

General	predictors	of	gut	microbiota	composition	182 

We	 performed	 permutational	 analysis	 of	 variance	 (PERMANOVA)	 in	 vegan	 to	 1)	 test	 the	183 

repeatability	of	gut	microbiota	composition	among	individuals	sampled	multiple	times,	2)	identify	184 

non-social	effects	on	the	microbiota	that	should	be	controlled	for	 in	subsequent	analyses	and	3)	185 

estimate	how	much	individual	variation	was	independent	of	these	covariates.	We	tested	effects	of	186 

time	(factor	month),	host	age	(juvenile/adult),	sex,	plot	region,	habitat	type,	and	individual	identity	187 

on	Jaccard	distance.	Plot	region	and	habitat	type	for	each	individual	were	defined	from	logger	data,	188 

as	 the	 most	 common	 logger	 territory	 (no.1-9)	 and	 habitat	 type	 (rhododendron,	 open	189 

woodland/bluebell,	bamboo	or	mixed;	Figure	S1)	they	were	detected	in.		190 

	191 

Associations	between	social	association	strength	and	microbiota	similarity	192 

To	 test	 whether	 dyadic	 microbiota	 similarity	 was	 predicted	 by	 social	 association	 strength,	 we	193 

performed	Bayesian	regression	models	in	package	brms	(51).	These	models	are	well-suited	for	this	194 

as	they	permit	random	effect	structures	able	to	account	for	the	types	of	dependence	inherent	to	195 

dyadic	data,	and	repeat	sampling	of	individuals	(52).	We	constructed	brms	models	that	included	all	196 

dyadic	 sample	 comparisons	 except	within-individual	 comparisons.	Microbiota	 similarity	 (Jaccard	197 

Index)	was	used	as	the	response,	with	social	association	strength	(adjusted	SRI,	or	BI	index)	as	the	198 
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main	predictor.	As	the	Jaccard	Index	is	a	proportion,	a	logit	link	function	was	used.	To	control	for	199 

potential	 confounding	 variables	 as	 far	 as	 possible,	 we	 fitted	 several	 dyadic	 covariates:	 spatial	200 

distance	between	hosts,	sampling	interval	(time	in	days	between	samples	taken),	kinship,	sex	and	201 

age	 similarity	 (0/1	 for	 different/same).	 Spatial	 distance	was	 calculated	 as	 the	 distance	 between	202 

individuals’	mean	spatial	coordinates	from	logger	records	(minimum	34	logger	records	per	mouse).	203 

All	covariates	either	naturally	ranged	from	0	to	1	or	were	scaled	to	do	so,	to	make	model	estimates	204 

for	 all	 terms	 comparable.	 To	 control	 for	non-independence	 in	 the	dataset	 arising	 from	a	dyadic	205 

response	 variable	 and	 repeat	 samples	 per	 mouse,	 both	 the	 model	 intercept	 and	 slope	 (social	206 

association	 strength	 effect)	were	 allowed	 to	 vary	 as	 defined	 by	 two	 random	effects:	 i)	 a	multi-207 

membership	random	effect	capturing	the	individuals	in	each	dyad	(Individual	A	+	Individual	B)	and	208 

ii)	a	multi-membership	random	effect	capturing	the	samples	in	each	dyad	(Sample	A	+	Sample	B).		209 

To	test	for	sex-dependence	in	the	effect	of	social	association	(e.g.	arising	from	specific	sexual	210 

behaviours)	on	microbiota,	the	main	model	(12h	edge	definition)	was	also	run	including	dyad	sex	211 

category	 (male-male,	 male-female	 or	 female-female)	 and	 its	 interaction	 with	 social	 association	212 

strength.	 In	 this	 model,	 only	 a	 multi-membership	 random	 intercept	 was	 fitted	 (not	 a	 random	213 

slope)	to	help	ensure	there	was	enough	power	to	estimate	the	interaction	effect.	Finally,	to	check	214 

our	 results	 were	 robust	 to	 the	 chosen	 statistical	 approach,	 we	 confirmed	 key	 results	 with	 two	215 

alternative	statistical	modelling	frameworks:	1)	MCMCglmm,	an	alternative	R	package	for	Bayesian	216 

regression	 (53)	and	2)	a	matrix	permutation-based	method	common	 in	 social	network	analyses,	217 

Multiple	Regression	Quadratic	Assignment	procedure	(MRQAP;	54),	with	a	data	subset	 including	218 

one	randomly	selected	sample	per	individual	(Supplementary	Material).	219 

	220 

Social	network	position	and	microbiota	diversity	221 
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We	hypothesized	that	an	 individual’s	social	network	position	might	affect	gut	microbiota	(alpha)	222 

diversity.	Depending	on	the	transmission	ecology,	different	types	of	network	position	might	best	223 

predict	 diversity.	 To	 explore	 this,	 we	 calculated	 six	 different	 metrics	 of	 network	 position,	 that	224 

capture	 different	 aspects	 of	 social	 connectedness	 (Figure	 1).	 If	 the	 sheer	 amount	 of	 social	225 

interaction	or	number	of	 social	 partners	 can	diversify	 the	microbiota,	we	expect	diversity	 to	be	226 

predicted	by	measures	of	general	network	centrality	(Figure	1).	Alternatively,	if	diversity	is	driven	227 

by	the	distinctness	of	transmission	sources,	and	if	this	is	reflected	in	their	social	distance,	we	expect	228 

diversity	to	be	predicted	by	measures	of	bridge-type	centrality	(Figure	1).	To	test	the	relationship	229 

between	each	centrality	measure	and	gut	microbiota	diversity,	we	used	Bayesian	regression	models	230 

in	 MCMCglmm	 with	 either	 asymptotic	 ASV	 richness	 or	 asymptotic	 Shannon	 diversity	 as	 the	231 

response.	We	 first	 explored	 how	 several	 covariates	 predicted	 diversity:	 host	 age,	 sex,	 sampling	232 

month	(as	a	factor),	plot	region,	habitat,	read	count,	and	PCR	plate	(4-level	factor),	and	simplified	233 

models	to	include	only	covariates	with	p<0.1.	We	then	added	into	the	model	one	of	our	six	measures	234 

of	social	centrality	(Figure	1),	derived	from	either	the	12h	or	2min	network.	Individual	identity	and	235 

PCR	 plate	 were	 fitted	 as	 a	 random	 factors.	 A	 node	 permutation	 test	 was	 used	 to	 verify	 that	236 

significant	 effects	 were	 not	 driven	 by	 network	 structure.	 Here	 the	 observed	 posterior	 mean	237 

estimates	 for	 network	 position	were	 compared	with	 those	 derived	 from	 1000	models	 in	which	238 

network	positions	were	randomised	across	individuals.	239 

	240 

Identifying	which	bacterial	taxa	associate	with	social	interaction	241 

To	identify	candidate	socially	transmitted	bacterial	taxa,	we	tested	how	each	bacterial	family	242 

affected	the	strength	of	correlation	between	social	association	strength	and	microbiota	similarity.	243 

We	recalculated	the	Jaccard	Index	excluding	each	bacterial	family	in	turn,	then	compared	(both	244 
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12h	and	2min)	social	network	effect	sizes	and	credible	intervals	from	MCMCglmm	models	using	245 

these	indices	(full	model	details	in	Supplementary	Material).		246 

	247 

Results	248 

Factors	predicting	gut	microbiota	composition	249 

In	a	marginal	PERMANOVA	on	data	from	repeat-sampled	mice,	 individual	 identity	explained	33%	250 

compositional	variation	in	the	microbiota,	while	temporal	fluctuations	(month)	explained	6%,	with	251 

similar	results	for	both	Jaccard	Index	and	Bray-Curtis	dissimilarity	(Table	S3).		When	other	individual-252 

level	attributes	were	included	(age,	sex,	plot	region	and	habitat	type),	27%	variation	in	microbiota	253 

composition	 remained	 attributable	 to	 individual	 identity	 (Table	 S4),	 indicating	 the	 microbiota	254 

showed	consistent	individual	variation	that	was	not	explained	by	measured	host	factors.	No	other	255 

variables	 predicted	microbiota	 composition,	 except	 for	 a	 weak	 effect	 of	 habitat	 type	 (marginal	256 

PERMANOVA	on	data	with	one	sample	per	individual,	Table	S5).	Among	the	subset	of	hosts	(70	of	257 

75)	 with	 kinship	 information,	 kinship	 and	 microbiota	 similarity	 (Jaccard	 Index)	 were	 unrelated	258 

(Mantel	test:	r=0.001,	p=0.520).		259 

	260 

Wood	mouse	social	structure	261 

The	 wood	 mouse	 social	 network	 showed	 marked	 variation	 in	 edge	 weights	 (social	 association	262 

strength)	but	no	clear	clustering,	and	global	network	density	declined	as	increasingly	intimate	edge	263 

definitions	were	 used	 (Figure	 2A-D).	 Consequently,	 the	 correlation	 among	 social	 networks	with	264 

different	 edge	 definitions	 decayed	 as	 the	 difference	 in	 time	 windows	 increased	 (Table	 S6).	 As	265 

expected,	social	association	strength	was	to	an	extent	predicted	by	spatial	proximity	in	all	networks	266 

(MRQAP	p<0.001,	Table	S7),	though	this	spatial	effect	weakened	as	more	intimate	edge	definitions	267 
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were	used	(Figure	S9).	Even	in	the	least	intimate	(12h)	social	network,	mice	clearly	did	not	solely	268 

associate	with	 their	nearest	neighbours,	as	distances	 to	 the	closest	social	partner	 (mean	25.6m;	269 

sd=15.3m)	 were	 on	 average	 over	 three	 times	 greater	 than	 those	 to	 the	 nearest	 neighbour	270 

(mean=8.4m;	sd=5.5m).	Some	strong	social	associations	were	observed	between	individuals	whose	271 

mean	spatial	locations	were	over	60	meters	apart	(Figure	2E-H).	As	such,	the	social	structure	of	this	272 

population	was	only	partially	determined	by	spatial	 location,	and	 this	 spatial	 influence	on	social	273 

contact	was	weakest	in	the	2min	network.		274 

	275 

Social	association	strength	predicts	microbiota	similarity	276 

Among	 pairs	 of	 individuals,	 the	 strength	 of	 social	 association	 strongly	 and	 positively	 predicted	277 

similarity	 in	 gut	microbiota	 composition	 (in	 12h	network:	 Posterior	mean	0.78,	 CI=0.34	 to	 1.24;	278 

Figure	3).	Specifically,	 the	proportion	of	ASVs	shared	within	dyads	 (Jaccard	 Index)	was	positively	279 

predicted	by	their	social	association	strength	in	all	networks,	even	when	controlling	for	effects	of	280 

sex,	age,	kinship,	sampling	interval,	and	spatial	distance	(Table	S8).	Other	variables	also	predicted	281 

microbiota	similarity,	including	the	spatial	distance	between	hosts	(Posterior	Mean	-0.08,	CI=-0.12	282 

to	-0.04)	and	the	time	interval	between	which	they	were	sampled	(Posterior	Mean	-0.46,	CI=	-0.48	283 

to	 -0.43),	 but	 the	 size	 of	 these	 effects	 was	 consistently	 smaller	 than	 that	 of	 social	 association	284 

strength	(Figure	3,	Table	S8).	Similar	results	were	obtained	from	models	using	alternative	statistical	285 

frameworks,	 or	 using	 Bray-Curtis	 dissimilarity	 instead	 of	 the	 Jaccard	 Index	 (Supplementary	286 

Material).	 Even	 binary	 social	 networks	 predicted	 microbiota	 similarity	 (Table	 S11),	 albeit	 less	287 

strongly	than	association	strength.	288 

	289 

The	relationship	between	social	association	strength	and	microbiota	similarity	became	stronger	as	290 

networks	with	increasingly	intimate	edge	definitions	were	analysed	(Figure	4A),	while	spatial	and	291 
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temporal	 effects	 remained	 comparable	 across	 networks	 (Table	 S8).	As	 such,	 the	 effect	 of	 social	292 

association	 increased	 from	1.7	 times	as	 large	as	 the	next	 strongest	 (temporal)	effect	 in	 the	12h	293 

network,	 to	 over	 13	 times	 as	 strong	 in	 the	most	 intimate	 (2min)	 network.	 Since	more	 intimate	294 

networks	also	had	fewer	edges	(i.e.	 lower	density,	Figure	2),	we	also	tested	whether	variation	in	295 

network	density	alone	might	drive	this	trend.	To	do	this,	we	ran	a	set	of	null	models	(described	fully	296 

in	Supplementary	Material)	in	which	the	least	intimate	(12h)	network	was	thinned	to	have	the	same	297 

number	of	edges	as	seen	in	each	real	network.	In	contrast	to	the	real	networks,	social	network	effect	298 

sizes	remained	relatively	constant	in	null	models	using	artificially	thinned	networks	(Figure	4B).		299 

	300 

Sex-dependent	effects	of	social	association	on	microbiota	similarity	301 

We	further	found	that	the	effect	of	social	association	strength	on	microbiota	similarity	depended	302 

on	the	sex	of	interacting	individuals.	In	a	model	including	an	interaction	between	social	association	303 

strength	 and	dyadic	 sex	 combination,	 social	 association	 strength	predicted	microbiota	 similarity	304 

strongly	in	male-male	pairs	(posterior	mean	0.28,	CI=	0.14	to	0.54;	Table	S10)	and	male-female	pairs	305 

(posterior	mean	0.29,	CI=	0.04	to	0.55)	but	not	significantly	in	female-female	pairs	(posterior	mean	306 

0.1,	CI	-0.14	to	0.34;	Figure	5,	Table	S10).		307 

	308 

Social	network	position	and	microbiota	diversity	309 

Both	microbiota	diversity	metrics	(richness	and	Shannon	diversity)	were	predicted	by	plot	region,	310 

habitat	type,	and	month	(Table	S13).	Both	diversity	estimates	were	also	associated	with	PCR	plate,	311 

and	 richness	 was	 also	 predicted	 by	 read	 count.	 Four	 measures	 of	 network	 position	 positively	312 

predicted	gut	microbiota	richness:	degree	and	information	centrality	predicted	richness	in	both	12h	313 

and	2min	networks,	and	betweenness	and	bridge	propensity	additionally	predicted	richness	in	the	314 
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2min	 network	 (Table	 1).	 No	 measures	 of	 network	 position	 predicted	 Shannon	 diversity	 when	315 

controlling	for	covariates	(Table	S12).		316 

	317 

Identifying	bacterial	taxa	that	drive	social	network	effects	318 

The	social	network	effect	we	identified	did	not	depend	entirely	on	any	single	bacterial	family,	since	319 

it	remained	statistically	significant	in	all	models	where	a	single	bacterial	family	was	excluded	(Figure	320 

6).	For	some	of	the	more	diverse	bacterial	families,	effect	size	did	shift	when	they	were	excluded,	321 

but	not	in	a	way	that	directly	related	to	their	diversity.	Excluding	the	family	S24-7	made	the	social	322 

network	 effect	 weaker	 and	 almost	 non-significant	 when	 using	 the	 most	 intimate	 (2min)	 edge	323 

definition	 (taking	 the	 p.MCMC-value	 from	 p<0.001	 to	 p=0.012),	 a	 pattern	 that	 was	 similar	 but	324 

weaker	in	the	12min	network.	Conversely,	excluding	Lachnospiraceae,	the	most	diverse	family,	if	325 

anything	 slightly	 strengthened	 the	 social	 network	 effect	 in	 both	 networks	 (Figure	 6).	 Excluding	326 

Lactobacillaceae	also	weakened	the	social	network	effect	size	somewhat,	but	only	when	using	the	327 

less	intimate	(12h)	edge	definition.		328 

	329 

Discussion	330 

	331 

Recent	 studies	 have	 shown	 that	 the	 social	 environment	 can	 strongly	 affect	 gut	 microbiota	332 

composition	in	group-living	species,	such	as	primates	living	in	large	groups	(26,29)	or	smaller	family	333 

units	(27,28,30).	Here,	we	provide	the	first	evidence	for	similar	effects	in	a	non-group-living	species.	334 

The	social	network	of	wood	mice	showed	no	clear	clustering,	as	those	of	group-living	species	do.	335 

Yet,	 the	 social	 network	 strongly	 predicted	 similarity	 among	 individuals	 in	 gut	 microbiota	336 

composition,	and	this	effect	was	far	stronger	than	effects	of	spatial	or	temporal	proximity,	kinship,	337 

and	similarity	 in	other	host	attributes	 (age,	sex).	 In	short,	mice	who	were	observed	at	 the	same	338 
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location	within	 the	 same	 short	 timeframe,	 shared	more	 gut	bacterial	 taxa	 than	mice	who	were	339 

observed	together	less	often.	This	social	effect	was	sufficiently	strong	that	mice	who	were	observed	340 

together	even	once	shared	more	bacterial	taxa	than	mice	who	were	never	observed	together.		341 

	342 

Social	environment	effects	on	the	microbiota	can	result	from	social	partners	having	more	similar	343 

environmental	exposures,	and	previous	studies	have	struggled	to	separate	such	influences	from	the	344 

effect	of	social	transmission.	Here,	several	findings	suggest	the	social	effect	we	see	is	likely	driven	345 

by	social	transmission,	rather	than	shared	exposures.	First,	we	find	a	strong	social	network	effect	346 

even	when	 controlling	 for	 host	 spatial	 and	 temporal	 proximity	 as	well	 as	 kinship,	 reducing	 the	347 

likelihood	it	is	driven	by	shared	traits	or	exposure	to	microbes	from	common	environmental	sources,	348 

such	as	soil.	Second,	more	intimate	definitions	of	social	association	(mice	co-occurring	within	a	two-349 

minute	 period,	 rather	 than	 simply	 during	 the	 same	 night)	 predicted	microbiota	 similarity	more	350 

strongly,	suggesting	close	interaction	between	hosts	is	important	in	driving	the	effect.	Finally,	the	351 

strength	of	the	social	network	effect	varied	according	to	which	bacterial	families	were	included	in	352 

the	analysis,	in	ways	that	are	consistent	with	a	social	transmission	explanation.	When	members	of	353 

the	anaerobic,	non-spore-forming	bacterial	family	S24-7	(Bacteroidales,	Muribaculaceae;	55)	were	354 

excluded,	 the	social	network	effect	weakened.	Conversely,	when	members	of	 the	spore-forming	355 

family	Lachnospiraceae	were	excluded	(which	are	able	to	survive	outside	the	host	and	have	been	356 

found	in	soils;	56,57),	the	social	network	effect	became	slightly	stronger.	These	observations	suggest	357 

that	microbial	 transmission	during	 close	host	 contact	 is	 an	 important	driver	of	 the	 social	effect,	358 

allowing	hosts	to	share	microbes	that	cannot	persist	in	the	external	environment.	Previous	work	in	359 

hominids	has	also	shown	high	host	fidelity	and	even	cospeciation	with	the	host	among	members	of	360 

the	 Bacteroidales,	while	 Lachnospiraceae	members	 showed	 low	 host	 fidelity	 and	 frequent	 host	361 

switches	(58).	Taken	together,	these	findings	are	consistent	with	the	idea	that	microbes	unable	to	362 
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persist	outside	the	host	are	more	reliant	on	transmission	by	close	contact	(e.g.	social	behaviour	or	363 

birth),	and	perhaps	in	part	because	of	this,	they	may	evolve	increased	host	specificity.		364 

	365 

Our	findings	also	indicate	that	the	link	between	social	interactions	and	the	gut	microbiota	might	be	366 

more	 nuanced	 than	 previously	 thought.	We	 found	 that	 the	 strength	 of	 social	 influence	 on	 the	367 

microbiota	 varied	 according	 to	 the	 sex	 of	 interacting	 partners,	 with	 social	 association	 strength	368 

predicting	microbiota	similarity	for	male-female	and	male-male	pairs,	but	not	significantly	so	for	369 

female-female	 pairs.	 This	 suggests	 that	 behaviours	 which	 vary	 in	 type,	 frequency	 or	 strength	370 

according	to	the	sex	of	social	partners,	are	involved	in	gut	microbial	transmission.	In	wood	mice,	371 

home	range	overlap	is	much	greater	among	male-female	and	male-male	dyads	than	among	female-372 

female	dyads	(39,59)	and	limited	data	also	implies	that	co-nesting	may	be	more	common	among	373 

male-female	pairs	than	among	same-sex	pairs	(40).	Female	wood	mice	are	therefore	expected	to	374 

socially	interact	with	one	another	less	often,	and	female-female	links	in	our	social	networks	may	375 

reflect	actual	social	contact	to	a	lesser	extent	than	male-female	and	male-male	links.	In	line	with	376 

our	 findings,	 recent	work	 found	 that	 interactions	 involving	males	were	more	 important	 for	 the	377 

transmission	of	 a	herpesvirus	pathogen	 in	wood	mice	 (60),	 potentially	 suggesting	 the	 spread	of	378 

infectious	 agents	more	 broadly	may	 be	more	male-driven	 in	 this	 species.	 Our	 findings	 seem	 to	379 

constitute	a	mirror	image	of	the	common	trend	in	primates,	where	female-female	social	bonds	are	380 

often	physically	closer	than	male-male	bonds	(61),	and	where	social	 interactions	among	females	381 

have	been	shown	to	predict	microbiota	similarity	more	strongly	than	those	among	males	(62,63).	In	382 

pair-bonding	 species	 like	 humans,	 the	 strongest	 microbiota-homogenizing	 effects	 of	 social	383 

interaction	may	occur	in	close	sexual	relationships	(37).	Interestingly,	in	wood	mice	(which	do	not	384 

pair-bond),	we	find	no	evidence	that	male-female	associations	predict	microbiota	similarity	more	385 

strongly	 than	male-male	 associations.	 This	might	 be	 because	 sexual	 relationships	 are	 not	 well-386 
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captured	by	our	measure	of	social	association,	or	because	other	social	behaviours	prevalent	among	387 

males	are	more	important	in	transmission	of	gut	microbes	than	behaviours	specific	to	mixed-sex	388 

pairs.	389 

	390 

In	addition	to	social	contact	homogenising	the	gut	microbiota,	we	also	found	that	the	diversity	of	391 

an	 individual’s	microbiota	 is	predicted	by	 their	position	 in	 the	social	network.	 Individuals	with	a	392 

central	position	in	the	social	network,	particularly	with	many	contacts	or	in	positions	that	bridged	393 

different	parts	of	the	network,	carried	more	bacterial	taxa	in	their	gut.	Of	all	network	metrics,	the	394 

strongest	predictor	of	microbiota	richness	was	the	number	of	others	an	individual	was	connected	395 

to	in	the	network	(degree).	Similar	trends	were	previously	reported	in	sifakas	(28)	and	chimpanzees	396 

(29),	and	humans	self-reporting	more	social	relationships	also	had	greater	gut	microbial	diversity	397 

(63).	However,	effects	in	the	opposite	direction	have	also	been	found.	In	barn-swallows,	the	extent	398 

of	same-sex	social	interaction	was	negatively	correlated	with	microbiota	diversity	(64)	and	in	red-399 

bellied	lemurs,	the	most	sociable	individuals	had	the	lowest	gut	microbiota	diversity	(27).	Perhaps	400 

a	more	 careful	 consideration	 of	 social	 connectedness	 patterns	may	 help	 in	 understanding	 how	401 

sociability	might	shape	microbiota	diversity.	For	example,	the	sheer	amount	of	social	 interaction	402 

(definition	 of	 sociability	 in	 27)	 might	 be	 less	 important	 in	 diversifying	 the	microbiota	 than	 the	403 

number	of	 transmission	 sources	 (definition	of	 sociability	 in	 28).	We	 find	 that	 social	 interactions	404 

predict	both	alpha-	and	beta-diversity	of	 the	gut	microbiota	–	 social	network	position	predicted	405 

community	 richness,	 and	 social	 partners	 had	 more	 similar	 community	 compositions.	406 

Metacommunity	 theory	predicts	 that	 connectivity	 among	 local	 communities	 (hosts)	 is	 critical	 to	407 

explaining	overall	patterns	of	diversity.	On	average,	dispersal	(microbial	transmission	through	host	408 

social	 interaction)	 is	 expected	 to	 diversify	 local	 communities	 up	 to	 a	 point,	 by	 providing	 novel	409 

colonists	and	rescuing	rare	species	from	extinction,	but	then	cease	to	be	enriching	as	high	dispersal	410 
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begins	to	homogenize	communities	and	the	best	competitors	at	a	regional	scale	come	to	dominate	411 

and	exclude	others	(65).	In	other	words,	local	diversity	is	expected	to	be	maximal	at	intermediate	412 

average	levels	of	dispersal	(66).	If	social	connectivity	is	uneven	among	hosts	(as	is	common	in	social	413 

networks,	including	ours),	a	metacommunity	could	also	maintain	both	diversifying	flux	and	a	level	414 

of	 local	 community	 uniqueness,	 that	 allows	 competing	 microbial	 species	 to	 coexist	 within	 the	415 

metacommunity.	In	such	a	network,	hosts	that	interact	with	many	others,	especially	those	likely	to	416 

harbour	 distinct	 microbes,	 may	 experience	 the	most	 diversifying	 effects	 of	 social	 transmission,	417 

compared	to	those	interacting	with	the	same	or	similar	individuals.	Consistent	with	this	idea,	we	418 

found	that	hosts	interacting	with	others	from	different	parts	of	the	network	(with	high	bridge-type	419 

centrality)	had	more	diverse	microbiotas,	while	this	was	not	true	for	highly	connected	individuals	420 

with	more	interconnected	partners	(i.e.	with	high	eigenvector	centrality).		421 

	 Overall,	our	findings	suggest	the	social	environment	is	an	underestimated	force	shaping	the	422 

gut	microbiota	among	free-living	animals.	An	important	future	question	then	is	what	role	this	“social	423 

microbiome”	 (21)	 plays	 in	 host	 fitness.	 Besides	 the	 pathogenic	 challenges	 arising	 from	 social	424 

contact,	which	have	been	acknowledged	for	some	time	(67–69)	there	may	also	be	benefits.	Our	425 

results	suggest	social	transmission	affects	microbiota	attributes	that	have	potential	relevance	for	426 

host	 health:	 microbiota	 diversity,	 similarity	 among	 interacting	 individuals,	 and	 transmission	 of	427 

anaerobes.	While	exact	relationships	between	microbiota	diversity	and	beneficial	functions	remain	428 

poorly	 understood	 (70),	 a	 diverse	 microbiota	 might	 bring	 benefits	 in	 terms	 of	 both	 resisting	429 

pathogenic	infection	(11,71)	and	increasing	metabolic	capacity	(1,72).	Immunological	benefits	may	430 

also	 result	 from	 microbiota	 similarity	 among	 closely	 interacting	 individuals.	 Since	 symbiotic	431 

microbes	 can	 be	 pathogenic	 in	 an	 unaccustomed	 individual	 (71,72),	 sharing	 a	 set	 of	 familiar	432 

microbes	 with	 social	 partners	 might	 help	 maintaining	 diversity,	 while	 minimizing	 the	 threat	 of	433 

opportunist	pathogens	(20,73).	Lastly,	if	anaerobic,	non-spore-forming	microbes	are	less	likely	to	be	434 
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harmful	 (22)	 and	 more	 likely	 to	 be	 beneficial,	 social	 interactions	 may	 facilitate	 the	 sharing	 of	435 

functionally	 important,	 and	 perhaps	 more	 host-specialist	 symbionts,	 such	 as	 members	 of	 the	436 

Bacteroidales	(58,76).	Since	such	benefits	of	social	behaviour	could	be	present	even	without	any	437 

others	(e.g.	benefits	of	cooperative	behaviour),	social	transmission	of	gut	microbes	could	represent	438 

an	underappreciated	force	in	the	early	evolution	of	sociality.		439 
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	639 

	640 

Table	and	Figure	Legends	641 

	642 

Table	1:	Social	network	centrality	metrics	predict	individual	gut	microbiota	richness.	Posterior	means	and	643 

95%	credible	intervals	are	shown	from	MCMCglmm	models	including	the	covariates	shown	in	Table	S13	and	644 

a	single	centrality	metric.	Significant	effects	are	shown	in	bold.	Significance	was	inferred	from	two	p-values:	645 

If	the	Bayesian	model	p-value	calculated	from	posterior	distribution	(p.MCMC)	<0.05,	the	result	was	further	646 

tested	by	calculating	a	permutational	p-value	(p.perm).	p.perm	represents	the	probability	of	generating	the	647 

observed	posterior	mean	given	the	data,	based	on	1000	node-based	permutations	in	which	the	centrality	648 

values	of	nodes	are	randomly	shuffled	before	running	the	model.			649 

	650 

Figure	1:	Six	measures	of	network	centrality	and	interpretation	of	a	positive	relationship	with	microbiota	651 

diversity.	Images	depict	focal	individuals	(red	circles)	whose	social	interactions	(lines)	with	other	individuals	652 

(black	circles)	give	them	a	high	value	of	each	centrality	metric.	653 

	654 

Figure	2:	Wild	wood	mouse	social	networks	plotted	in	either	(A)	social	space	or	(B)	geographical	space.	In	655 

A)	networks	are	plotted	using	a	standard	weighted	spring	layout	that	minimises	the	sum	of	edge	lengths	and	656 

overlap	across	the	network	(igraph,	(43)),	and	in	B)	mice	are	positioned	at	their	mean	spatial	coordinates	657 

recorded	from	logger	data,	superimposed	on	a	habitat	map	of	the	study	area.	Background	colours	reflect	658 

habitat	types	(dark	green=rhododendron,	light	green=bamboo,	blue=	bluebell,	white=	open	woodland).	Red	659 

and	blue	circles	 represent	 female	and	male	mice	 respectively,	and	 line	 thickness	 is	proportional	 to	social	660 

association	strength.		661 

	662 

Figure	3:	Social	association	strength	predicts	gut	microbiota	similarity	more	strongly	than	spatial	distance,	663 

kinship	and	other	effects.	Effect	size	estimates	(points)	and	their	95%	credible	intervals	(coloured	lines)	are	664 

plotted	from	Bayesian	regression	(brms)	models	with	pairwise	microbiota	similarity	among	hosts	 (Jaccard	665 

Index)	 as	 the	 response.	Where	 confidence	 intervals	 do	 not	 overlap	 zero,	 a	 variable	 significantly	 predicts	666 

microbiota	 similarity.	 Social	 association	 strength	 in	 the	 12h	 network	 has	 a	 strong	 positive	 effect	 on	667 

microbiota	similarity,	that	is	larger	than	that	of	other	variables.		668 

	669 
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Figure	4:	Social	association	strength	predicts	microbiota	similarity	more	strongly	in	networks	that	use	a	670 

more	intimate	edge	definition.	A)	The	effect	of	social	association	strength	on	microbiota	similarity	(Jaccard	671 

Index)	 is	stronger	 in	networks	with	more	intimate	edge	definitions.	Social	network	effect	sizes	(estimated	672 

slope	of	the	relationship	between	social	association	strength	and	microbiota	similarity,	the	Jaccard	Index)	673 

and	their	95%	credible	intervals	are	plotted	from	Bayesian	regression	(brms)	models	that	included	the	same	674 

covariates	shown	in	Figure	3.	B)	Differences	in	effect	size	across	networks	are	not	due	to	variation	in	network	675 

density,	as	effect	size	did	not	change	in	null	models	where	the	12h	network	was	artificially	thinned	by	removal	676 

of	the	weakest	edges	to	have	the	same	density	as	each	real	network	of	differing	edge	definition.		677 

	678 

Figure	 5:	 	Social	 association	 strength	predicts	microbiota	 similarity	 only	 among	dyads	 involving	males.		679 

Estimated	 social	 network	 effects	 on	 the	microbiota	 (slope	of	 the	 relationship	between	 social	 association	680 

strength	and	Jaccard	Index)	and	95%	credible	intervals	are	plotted	from	a	Bayesian	regression	(brms)	model	681 

predicting	 microbiome	 with	 the	 12h	 social	 network	 that	 included	 an	 interaction	 term	 between	 social	682 

association	 strength	 and	 dyad	 sex-category	 (male-male,	 male-female	 or	 female-female).	 Females	 are	683 

depicted	 in	 red	 and	 males	 in	 blue	 respectively.	 Social	 association	 strength	 has	 a	 significant	 positive	684 

association	with	microbiota	similarity	in	dyads	involving	males,	but	not	in	female-only	dyads.		685 

	686 

Figure	6:	The	influence	of	specific	bacterial	families	on	social	network	effect	size.			687 

Social	 network	effect	 sizes	 (slope	of	 the	 relationship	between	 social	 association	 strength	 and	microbiota	688 

similarity,	Jaccard	Index)	and	95%	credible	intervals	are	plotted	from	146	Bayesian	regression	(MCMCglmm)	689 

models,	in	which	a	single	bacterial	family	was	excluded	from	the	calculation	of	microbiota	similarity.	Effects	690 

are	plotted	against	the	species	richness	of	each	dropped	family	(logged	number	of	ASVs,	y-axis).	Results	are	691 

shown	 from	 models	 using	 A)	 the	 least	 intimate,	 12-hour	 network	 and	 B)	 the	 most	 intimate,	 2-minute	692 

network.		693 

	 	694 
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12h	network	 2min	network	

Posterior	mean	
(95%	CI)	

p.MCMC	 p.perm	 Posterior	mean	
(95%	CI)	

p.MCMC	 p.perm	

Degree		 0.005		
(0.001,	0.009)	

0.042	 0.004	 0.02		
(0.001,	0.041)	

0.042	 0.004	

Weighted	degree	
0.038		
(-0.097,	0.180)	

0.556	 n/a	 -0.012		
(-0.157,	0.118)	

0.832	 n/a	

Eigenvector	centrality	
0.119		
(-0.010,	0.262)	

0.092	 n/a	 -0.0073	
(-0.147,	0.139)	

0.968	 n/a	

Betweenness	 0.008		
(-0.087,	0.109)	

0.866	 n/a	 0.018		
(0.004,	0.033)	

0.016	 0.002	

Information	Centrality	 0.017		
(0.001,	0.035)	

0.050	 0.004	 0.021		
(0.004,	0.039)	

0.024	 0.004	

Bridge	Propensity	 -0.007		
(-0.236,	0.189)	

0.500	 n/a	 0.017		
(0.002,	0.031)	

0.020	 0.004	

	718 

Table	1	719 
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