

1 Mechanisms and heterogeneity of mineral use by natural colonies of
2 the cyanobacterium *Trichodesmium*

3
4 Noelle A. Held^{1,2,3}, Kevin M. Sutherland^{1,4}, Eric A. Webb⁵, Matthew R. McIlvin⁶, Natalie R.
5 Cohen⁶, Alexander J. Devaux⁷, David A. Hutchins⁵, John B. Waterbury⁸, Colleen M. Hansel⁶, Mak
6 A. Saito^{5*}

7
8 ¹MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods
9 Hole, MA 02543, USA.

10 ²Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland.

11 ³Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.

12 ⁴Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138.

13 ⁵Marine and Environmental Biology, Department of Biological Sciences, University of Southern
14 California, Los Angeles, CA 90089, USA.

15 ⁶Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
16 Woods Hole, MA 02543, USA.

17 ⁷Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.

18 ⁸Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

19
20 * Correspondence to: Mak Saito

21 Email: msaito@whoi.edu

22
23 **Author Contributions**

24 N.A.H., M.M.M., J.W. and M.A.S. conceptualized the study. N.A.H. and M.M.M. performed
25 proteomic analyses. K.M.S. and C.M.H. performed synchrotron-based analyses. N.C. performed
26 trace metal and assisted with phosphate analyses. A.J.D. performed image analyses. E.A.W. and
27 D.A.H. lead the Tricolid field expedition. N.A.H. and M.A.S. wrote the paper with input from all
28 authors.

29

30 **Abstract**

31 The keystone marine nitrogen fixer *Trichodesmium* thrives in high dust environments, and while
32 experimental observations suggest that *Trichodesmium* colonies can access the essential
33 nutrient iron from dust particles, it is not known the extent to which this occurs in the field. Here
34 we demonstrate that *Trichodesmium* colonies actively process mineral particles in nature with
35 direct molecular impacts. Microscopy and synchrotron-based imaging demonstrated
36 heterogeneous associations with particles consistent with iron oxide and iron silicate minerals.
37 Metaproteomic analysis of individual colonies revealed enrichment of biogeochemically-relevant
38 proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper and
39 zinc when particles were present. The iron-storage protein ferritin was particularly enriched
40 implying accumulation of particle-derived iron, and multiple iron acquisition pathways including
41 Fe(II), Fe(III), and Fe-siderophore transporters were engaged, including evidence of superoxide-
42 driven particle dissolution. While the particles clearly provided iron, there was also evidence that
43 the concentrated metals had toxic effects. The molecular mechanisms allowing *Trichodesmium* to
44 interact with particulate minerals are fundamental to its success and global impact on nitrogen
45 biogeochemistry, and may contribute to the leaching of particulate trace metals with implications
46 for global iron and carbon cycling.

47 **Main Text**

48

49 **Introduction**

50

51 Marine nitrogen fixation is a key process that stimulates primary production in the N-
52 depleted surface ocean, thereby influencing global carbon and nitrogen cycling^{1,2}. First observed
53 by mariners who referred to it as “sea sawdust,” the colonial cyanobacterium *Trichodesmium* is
54 now recognized to be a major contributor to oceanic nitrogen fixation and therefore a crucial
55 player in global nitrogen and carbon cycling^{3,4}. Due to the high iron requirement of the
56 nitrogenase enzyme, iron (Fe) is considered to be a dominant control on the distribution of
57 nitrogen fixers, particularly *Trichodesmium*. However, mechanisms of iron uptake and utilization
58 remain poorly understood⁵⁻⁸.

59 In nature, *Trichodesmium* forms large colonies that can reach several millimeters in size,
60 with distinct morphologies including “puffs” and “tufts” (e.g. Fig. 1G, H). These colonies harbor
61 complex microbiomes with diverse heterotrophic and phototrophic bacterial communities^{9,10}. The
62 benefits of colony formation have been debated, but there is renewed interest in their utility for
63 particulate iron acquisition¹¹⁻¹³. This is important because *Trichodesmium* thrives in regions
64 where Fe-rich continental dust is deposited such as the North Atlantic, Red Sea, and near land
65 forms including Australia and Caribbean islands^{14,15}. Furthermore, dust addition experiments
66 have demonstrated that *Trichodesmium* puff colonies can acquire metals from iron
67 (oxy/hydro)oxide particles, although the mechanistic underpinnings and biogeochemical
68 importance of this process are not clear^{8,11-13,16}.

69 We investigated morphological and molecular differences in individual *Trichodesmium*
70 colonies collected from a single plankton net conducted at 17:00 local time on March 11, 2018 in
71 the tropical Atlantic Ocean in the vicinity of the Orinoco and Amazon river plumes (-57.5°W
72 16.5°N, Fig. 1A). Both puff and tuft colonies were present, though puffs dominated. The
73 phosphate concentration was low (0.13 μM at 100m) as is typical in an oligotrophic environment,
74 while the surface dissolved iron concentration was relatively high (2.02 nM at 100m), consistent
75 with coastal or atmospheric inputs (Fig. 1A). The most abundant species at this location was an
76 uncharacterized *Trichodesmium theibautii* species, as determined by *Trichodesmium*-specific
77 metagenome-assembled-genome recruiting (see Table S2). Thirty individual colonies of mixed
78 morphology were separated by hand-picking, immediately examined by fluorescent microscopy
79 (385 excitation, > 420nm emission), then frozen individually for X-ray spectroscopy or
80 metaproteomic analyses (Fig. S1). We observed that some colonies were associated with auto-
81 fluorescent particles, which we hypothesized to be of mineral origin (Figure 1C-H). The particles
82 fluoresced in the visual light range, appearing as yellow, red, or blue dots. Strikingly, colonies
83 either had many such particles or none at all. In general the particles were concentrated in the
84 center of puff type colonies, though they were also present in tufts but in smaller numbers.

85

86 **Results and Discussion**

87

88 Synchrotron based micro X-ray fluorescence (μ-XRF) element mapping of three
89 representative particle-associated colonies demonstrated that the particles were enriched in iron
90 (Fe), copper (Cu), zinc (Zn), titanium/barium (Ti/Ba, which cannot be distinguished by this
91 method), and manganese (Mn), though the concentration approached the limit of detection for the
92 latter element (Fig. 2). Iron concentrations were particularly high in the particles. Micro X-ray
93 absorption near-edge structure (μ-XANES) spectra for Fe were collected on six particles - three
94 each from two puffs (Fig. 2 and Fig. S2). The particles contained mineral bound iron with average
95 oxidation states of 2.6, 2.7, two of oxidation state 2.9, and two of oxidation state 3.0 (Table S1).
96 While the mineralogy of these particles could not be definitively resolved using μ-XANES, the
97 structure of the absorption edge and post-edge region provided insight into broad mineral groups.
98 Both Fe(III) (oxy/hydro)oxides and mixed-valence Fe-bearing minerals consistent with Fe silicates
99 were present, suggesting heterogeneous mineral character. While we could not positively identify
100 the silicate mineral phases based on XANES, the spectroscopic similarity of some samples to Fe-
101 smectite and the geologic context suggest Fe-bearing clays were present (Fig. S4). In this
102 geographic region, iron oxides could be sourced from atmospheric dust, and clays from the

103 Orinoco and/or Amazon rivers. These colony-associated particles likely serve as a simultaneous
104 source of nutritional (Fe, Ni, Co, Mn) and toxic (Cu) metals to the colonies. Release of metals
105 from the particles likely vary over time, with Cu, Ni, Zn and Co continually leaching and Fe
106 leaching initially, then re-adsorbing back onto particles unless organic chelates assist in
107 solubilization¹⁷.

108 To understand the impact of the particles on colony diversity and function, we
109 investigated metaproteomes of individual *Trichodesmium* colonies and their microbiota. Since all
110 of the colonies were sampled from the same body of water, the presence of colonies with and
111 without particles may be due to stochastics of the particle-colony encounter and/or sub-species
112 differences among the colonies. Seven puffs without particles, fourteen puffs with particles, and
113 four tufts with particles were analyzed by a new single colony metaproteomic method. Compared
114 to population-level metaproteomes from this location, which each integrated 50-100 colonies,
115 proteome depth for the low biomass single colonies was lower but sufficient for characterizing
116 overall colony function (Fig. S6)¹⁸. In total, 1583 *Trichodesmium* and 487 epibiont proteins were
117 identified across the 25 single colony metaproteomes versus 2944 *Trichodesmium* and 1534
118 epibiont proteins across triplicate population-level metaproteomes (Table S3 & S4). To ensure
119 phylogenetic exclusivity, peptides used to identify epibiont proteins were ensured to be not
120 present in the *Trichodesmium* genome (Table S5).

121 Together the single colony proteomes demonstrate a diverse and functionally active
122 microbiome associated with the *Trichodesmium* colony (Fig. 1B and Fig. S7). Many commonly
123 identified epibiont groups were present including Alphaproteobacteria, Microscilla, and non-
124 *Trichodesmium* cyanobacteria. In general the epibiont community was similar among the colony
125 types, however two clear differences emerged. First, firmicute proteins were more abundant in
126 tufts and puffs with particles, suggesting enhanced, possibly anaerobic, metabolism. Second,
127 Eukaryotic proteins were more abundant in puffs compared to tufts. These proteins likely
128 represent copepods due to sequence similarity to the model organism *Calanus finmarchicus*, and
129 this result is consistent with observed associations between copepods and puffs at this location
130 (Fig. S7B). Notably, proteins from the PVC superphylum, which included Eukaryote pathogens
131 such as an uncharacterized Chlamydia species, were also more abundant in puffs.

132 Particle presence was associated with clear differences in *Trichodesmium*'s proteome. In
133 total, 131 proteins were differently abundant in puffs with versus without particles ($p < 0.05$, FDR-
134 controlled Welch's unequal variances t-test). Proteome differences were distributed across a
135 variety of biogeochemically relevant proteins, including those related to four metals (Fe, Ni, Cu
136 and Zn) and carbon fixation including the proteins rubisco ($p = 0.04$), citrate synthase ($p = 0.01$),
137 and the accessory pigment allophycocyanin ($p = 0.1$). Particle presence did not affect nitrogenase
138 abundance, consistent with laboratory dust addition experiments¹⁶. There were indications that
139 the particles altered nitrogen metabolism more generally, for instance through enrichment of
140 nitrogen assimilation proteins glutamine synthetase ($p = 0.008$), spermidine synthase ($p = 0.005$),
141 and a urea transporter ($p = 0.02$) (see Fig. S7)¹⁸. Because nitrogen fixation is a critical process,
142 *Trichodesmium* may distribute iron to nitrogenase at a steady rate, while altering the activity of
143 other systems in response to the particles.

144 The broadest and strongest response occurred in iron-related proteins, in agreement with
145 the strong biogeochemical connection between iron and diazotrophy. Consistent with the high
146 concentration of iron in the particles, several iron-containing proteins were significantly more
147 abundant when particles were present, suggesting that the minerals were a micronutrient source.
148 These included an iron-containing peroxidase ($p = 0.03$), the electron transport protein ferredoxin
149 fdxH ($p = 0.0006$), and the iron storage/DNA binding protein Dps ferritin ($p = 0.002$) (Fig. 3).
150 Increased abundance of ferredoxin is consistent with increased iron availability, since the non-
151 iron containing flavodoxin typically substitutes during iron stress^{5,19}. Similarly, increased
152 abundance of ferritin would serve to buffer and store iron acquired from the concentrated
153 particulate metal source²⁰. Given the high iron demand of the nitrogenase metalloenzyme, the
154 ability to store iron from rich but episodically available mineral particles could provide an
155 important ecological niche in oceanic environments where iron can be scarce and its solubility is
156 low.

157 Multiple uptake mechanisms were involved in obtaining iron from the mineral particles.
158 Iron acquisition in *Trichodesmium* is not well understood but at least three systems are known:

159 the FeoB system (Fe(II)), the IdiA system (Fe(III)), and uptake via Fe-siderophores^{8,21}. The single
160 colony metaproteomes provided evidence for the latter two mechanisms; FeoB is rarely identified
161 in metaproteomes of diazotrophs, possibly due to its low copy number/high efficiency (Fig.
162 4)^{19,22,23}. Despite evidence that the particles provided iron to the colonies, the transport protein
163 IdiA was more abundant during particle associations (Fig. 3D). IdiA is often used as a biomarker
164 of iron stress because it is responsive to/more abundant in low Fe conditions^{18,19,23}. Due to its
165 specificity for Fe(III), IdiA is likely involved in direct acquisition of iron from the particles.
166 Additionally, iron pulses from the particles may have been recent, and IdiA may not yet have
167 been turned over or diluted. There was also evidence that iron-binding siderophore systems
168 derived from the colony microbiome were involved: a Firmicute acyl carrier protein putatively
169 involved in siderophore production was enriched in puffs with particles (Fig. 3F, p = 0.04), and a
170 TonB dependent transporter (TBDT) for ferrienterochelin/colicins was identified only in puffs with
171 particles²⁴. This corroborates earlier evidence that though *Trichodesmium* does not produce its
172 own siderophores, it acquires siderophore-bound iron produced via mutualistic interactions with
173 epibionts, especially when provided with concentrated dust^{8,25}.

174 Nickel superoxide dismutase (Ni SOD) was significantly more abundant in particle-
175 associated colonies, reflecting the need to regulate the reactive oxygen species (ROS)
176 superoxide during particle dissolution/enhanced productivity (Fig. 3G p = 0.004). There are
177 multiple reasons for elevated superoxide production in particle-associated colonies. First, and
178 most directly, *Trichodesmium* produces extracellular superoxide to enhance particle
179 dissolution/reduction of Fe(III)⁸. Second, enhanced productivity, as was suggested based on
180 enrichment of photosynthesis proteins, is associated with growth-related extracellular superoxide
181 production⁸. In addition to extracellular ROS, *Trichodesmium* has high intracellular ROS during
182 photosynthesis due to the fact that it has among the highest Mehler reaction activity of any
183 photosynthetic organism²⁶. Puffs in particular are known to closely regulate superoxide production
184 with a possible link to cell signaling and growth²⁷. Further supporting a redox-centered
185 explanation, other regulators including peroxiredoxin and thioredoxin were more abundant in
186 puffs with particles (see Fig. 3E, p = 0.03 and 0.04, respectively). Additionally, the increase in Ni
187 SOD may reflect that the particles were providing nickel, an essential nutrient that can be limiting
188 to *Trichodesmium*²⁸.

189 Together, the molecular evidence points to a model in which *Trichodesmium* colonies
190 differentiate between dissolved versus particulate iron. First, consistent with the mineralogical
191 profile of the particles, the colonies engaged specific iron uptake mechanisms that prioritized the
192 Fe(III) state as well as balancing cellular redox status during bio-enhanced Fe(III) reduction
193 (Figure 4). Then, once inside the cell, mineral-derived iron was preferentially stored via ferritin.
194 This finding adds complexity to the canonical regulatory model that IdiA and ferritin exist on a
195 continuum with IdiA abundant during iron limitation and ferritin present only when iron is replete. It
196 suggests that *Trichodesmium* alters uptake and utilization mechanisms in response to the iron's
197 coordination environment. Whether or not this distinction is made directly, i.e via a specific
198 mineral sensing mechanism, or indirectly due to increased intracellular metal concentration, is not
199 yet known. Either way, it is clear that multiple metabolic and homeostasis systems were involved
200 in this coordinated response to the presence of particulate iron.

201 Other intriguing aspects of particle associated *Trichodesmium* colonies included the
202 deployment of Cu and motility related proteins. *Trichodesmium* is extraordinarily sensitive to Cu
203 toxicity, and close proximity to mineral particles was associated with enrichment of the copper
204 chaperone/homeostasis protein CopZ (Fig. S9D)^{29,30}. Evidence also pointed to involvement of
205 putative movement proteins including RTX proteins and the chemotaxis regulator CheY, both
206 enriched in puffs with particles (Fig. S9E-H). This supports recent observations of *Trichodesmium*
207 cilia transporting particles towards the puff center, indicating that this behavior may be induced by
208 motility two-component regulatory systems, many of which have unknown environmental cues.

209 This study provides direct evidence that *Trichodesmium* colonies actively capture and
210 process oxides and silicates under natural conditions, and that key aspects of the colony's
211 proteome respond as a result. *Trichodesmium* typically thrives in high dust environments and this
212 study provides a biochemical basis for this specialized niche. The results have geochemical
213 implications beyond *Trichodesmium* biology. Specifically, active capture and degradation of
214 mineral particles may increase iron availability in the oligotrophic surface ocean. In this way,

215 abundant *Trichodesmium* colonies may have an important role in the leaching of particulate trace
216 metals with implications for global iron and carbon cycling³¹. The molecular scale single colony
217 analyses presented here present a more sophisticated perspective of *Trichodesmium*'s response
218 to mineral particles that could be leveraged in future biogeochemical models. Particulate iron
219 utilization by *Trichodesmium* appears to be a critical niche, and is likely a significant factor
220 determining this organism's ecological success and fixed nitrogen contributions to the global
221 ocean.

222

223 Materials and Methods

224

225

226 Sampling and microscopy

227 All of the colonies used in this study were sampled from a single plankton net conducted
228 at -57.5°W 16.5°N at 17:00 local time on March 11, 2018 on the AT39-05/Tricolum expedition
229 (R.V. Atlantis, Chief Scientist D. Hutchins, <https://www.bco-dmo.org/deployment/765978>). A 130
230 µm net was released to approximately 20 m depth, then pulled back to surface and the process
231 repeated five times. Colonies were hand picked by gentle pipetting, rinsed twice in 0.2 µm-filtered
232 trace metal seawater, and decanted into 0.2 µm sterile filtered trace metal seawater until imaging.
233 All at-sea colony picking and handling was conducted in a Class 100 trace metal clean
234 environment. Colonies were imaged with a Zeiss epifluorescent microscope using transmitted
235 light and/or a long-pass fluorescent filter set. At the time of imaging they were labeled as "particle
236 containing" or not and classified as puffs or tufts. They were then decanted individually onto trace
237 metal clean 0.2µm Supor filters and flash frozen in liquid nitrogen, then stored at -80°C until
238 analysis at the home laboratory. Images were captured with a Samsung Galaxy Note 4 using a
239 SnapZoom universal digiscoping adapter. MODIS-Aqua data for Fig. 1A was obtained from the
240 NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing
241 Group; (2014): Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA
242 OB.DAAC Accessed on 2020-04-08.

243

244 Nutrient and trace metal analyses

245 Seawater was sampled using a trace metal clean rosette consisting of Niskin-X bottles.
246 Niskins were pressurized with nitrogen gas in a shipboard Class 100 clean room and seawater
247 was filtered through 0.2 µm Supor membranes to remove particles. Aliquots for macronutrient
248 (phosphate) analysis were frozen immediately at sea and were thawed just prior to analysis.
249 Phosphate was quantified using a Technicon Autoanalyzer II by Joe Jennings at Oregon State
250 University. Aliquots for dissolved metal analysis were acidified with concentrated trace metal
251 clean HCl (Seastar) to pH 1.8 and allowed to equilibrate for ~1 month prior to analysis. Dissolved
252 iron was concentrated using a seaFAST automated pre-concentration system and quantified on
253 an ICP Q inductively coupled plasma mass spectrometer (ICP-MS).

254

255 Sample handling and preparation for single colony proteomics

256 Upon return to the lab, the colonies were carefully cut out of the filter to reduce the
257 volume of liquid needed for protein extraction. The filter sections were submerged in PBS buffer
258 with 10% sodium dodecyl sulfate (SDS), 1 mM magnesium chloride, 2 M urea and benzonase
259 nuclease, heated at 95 °C for 10 min, then shaken at room temperature for one hour. Proteins in
260 the resulting supernatant were quantified by the BCA assay. The proteins were digested with a
261 modified tube gel protocol following Saito et al., 2014, but instead of the typical 200 µL final
262 volume only 50 µL final volume was used.^{32,33} Additionally, the protein precipitation/purification
263 step was eliminated because this is another source of total protein loss. Instead, the samples
264 were treated with benzonase nuclease during the initial extraction phase to solubilize any
265 DNA/RNA components, allowing the purification step to be skipped. Briefly, the proteins were
266 embedded in an acrylamide gel, washed with a 50:50 acetonitrile: 25 mM ammonium bicarbonate
267 buffer, dehydrated by acetonitrile treatment, then treated for one hour at 56 °C with 10 mM
268 dithiothreitol in 25 mM ammonium bicarbonate followed by one hour at room temperature with 55
269 mM iodacetamide. Gels were dehydrated again and rehydrated in trypsin (Promega Gold) at a
270 ratio of 1 µg trypsin: 20 µg total protein in 25 mM ammonium bicarbonate. Proteins were digested
overnight at 37 °C with shaking. The peptides were then extracted from the gels in 20 µL peptide

271 extraction buffer (50% acetonitrile, 5% formic acid in water). The resulting peptide mixtures were
272 concentrated to 0.2 μ g total protein/ μ L final concentration. While the tube gel method was used
273 for samples presented here, magnetic bead and soluble protein digestion methods were also
274 tested. Total protein recovery was lower with these methodologies, perhaps because these
275 methods do not use SDS, which in our hands is a good lysing agent for *Trichodesmium*.
276

277 **LC-MS/MS analysis**

278 Metaproteome analyses were conducted by tandem mass spectrometry on a Thermo
279 Orbitrap Fusion using 0.5 μ g total protein injections and a one-dimensional 120 min non-linear
280 gradient on a 15 cm C18 column (100 μ m x 150 mm, 3 μ m particle size, 120 \AA pore size, C18
281 ReproSil-Gold, Dr. Maisch GmbH packed in a New Objective PicoFrit column). LC lines were
282 shortened when possible to reduce the possibility of sample loss to the tubes. Blanks were run
283 between each sample to avoid carryover effects. For each run 0.5 μ g of protein was injected
284 directly the column using a Thermo Dionex Ultimate3000 RSLC nano system (Waltham, MA); if
285 less than 0.5 μ g of protein was available, the entire sample was injected. The samples were
286 analyzed on a Thermo Orbitrap Fusion mass spectrometer with a Thermo Flex ion source
287 (Waltham, MA). MS1 scans were monitored between 380-1580 m/z, with a 1.6 m/z MS2 isolation
288 window (CID mode), 50 millisecond maximum injection time and 5 second dynamic exclusion
289 time. The resulting spectra have been deposited to the ProteomeXchange Consortium via the
290 PRIDE partner repository with the dataset identifier PXD016330 and 10.6019/PXD016330.³⁴
291

292 **Bioinformatics analyses**

293 The spectra were searched using the SEQUEST algorithm with a trimmed
294 *Trichodesmium* sequence database. To generate the sequence database, triplicate Tricho-
295 enriched metaproteomes from the same location (aka “population biomass” samples), each
296 integrating ~50-100 colonies hand-picked from the same plankton net, were analyzed using a
297 publicly available *Trichodesmium* consortia metagenome collected at Station BATS (IMG ID
298 2821474806). Based on these population metaproteomes, the sequence database was trimmed
299 to include only the proteins identified at a 1% protein and peptide FDR level, with protein scoring
300 calculated in Scaffold (Proteome Software, Inc). Hand-refined metagenome-assembled genomes
301 (MAGs) from *Trichodesmium* populations throughout the AT39-05 transect were also included in
302 the search: these included four *Trichodesmium theibautii* species (one H94 species and three
303 uncharacterized *T. theibautii*s) and 17 MAGs from the epibiont community. The single colony
304 metaproteomes were searched using the SEQUEST search engine with parent mass tolerance
305 +/- 10ppm and fragment mass tolerance 0.8 Dalton, allowing cysteine modification of +57.022
306 Daltons and methionine modification of +16 Daltons. The results were statistically validated at the
307 1% FDR level using the Scaffold program. This resulted in 1495 protein identifications across the
308 individual colonies. When the whole *Trichodesmium* consortia metagenome was used, only 800
309 proteins were identified at the 1% protein and peptide FDR level, so reducing the search space
310 significantly improved data quality.^{35,36} When the *Trichodesmium* MAGs were also included the
311 single colony metaproteomes resulted in 2075 proteins identified. Peptides used to identify
312 *Trichodesmium* proteins were determined to be phylogenetically exclusive to the genus using the
313 open source Metatryp software package last accessed on May 23, 2020.³⁷ Statistical tests
314 (Welch’s t tests) were performed using the Scipy stats python library and the results are reported
315 in Table S2. P-values were FDR controlled by the Benjamini-Hochberg procedure; at alpha =
316 0.05 and alpha = 0.1, the calculated FDR was 0%; the FDR rose to 0.56% by alpha = 0.25.
317

318 **Micro-X-ray fluorescence and Micro-X-ray absorption spectroscopy**

319 Micro-X-ray fluorescence (μ -XRF) and micro-X-ray absorption spectroscopy (μ -XAS)
320 were conducted at the Stanford Synchrotron Radiation Lightsource (SSRL) on beamline 2-3 with
321 a 3 μ m raster and a 50 ms dwell time on each pixel. μ -XRF data were analyzed using
322 MicroAnalysis Toolkit.³⁸ Elemental concentrations were determined using standard foils
323 containing each element of interest. The relative proportions of Fe(II) and Fe(III) were
324 determined by fitting the edge position of the background subtracted, normalized XANES spectra.
325 Fe XANES spectra were fit using the SIXPACK Software package³⁹, and redox state was
326 estimated by conducting a linear combination fitting of the absorption edge (7115-7140 eV) using

327 the model compounds siderite (FeCO_3) and 2-line ferrihydrite as end-member representatives of
328 Fe(II) and Fe(III), respectively. Further, these values were confirmed through deconvolution of the
329 edge shape using Gaussian peaks at two fixed energies corresponding to primary Fe(II) (7122
330 eV) and Fe(III) (7126 eV) contributions (PeakFit software, SeaSolve Inc.).⁴⁰ Linear combinations
331 of the empirical model spectra were optimized where the only adjustable parameters were the
332 fractions of each model compound contributing to the fit. The goodness of fit was established by
333 minimization of the R-factor.^{41,42}

334 Although mineral identity cannot be conclusively determined with XANES, visual
335 comparison of the edge features are indicative of broad Fe-bearing mineral groups including
336 many common oxide and silicate minerals. Thus, to get a general sense of mineral groups, we
337 have included several of the top spectral library query hits (Figure S4) for the six particles we
338 looked at in this study. These include 2-line ferrihydrite and goethite (as Fe oxyhydroxide
339 phases), ferrosmectite (as Fe-bearing secondary clays), and biotite (as a primary silicate). We
340 also included siderite (as an Fe(II)-bearing carbonate) in Figure S4 for comparison to a pure
341 Fe(II) phase.

342

343 **Image contour analysis for element concentration maps**

344 Image contours were generated for the sulfur element concentration maps in Figure 2 using
345 the Scikit-image python library⁴³. First, using the contrast histograms for the sulfur images,
346 algorithmically-defined thresholds were applied. For the tuft image in Fig. 2, two thresholds were
347 used to capture the high and low biomass regions. The resulting binary images were then
348 morphologically dilated to remove noise and connect gaps between objects. A list of contours for
349 the binary image was generated using the marching squares/cubes algorithm⁴⁴. The longest
350 contours were overlaid on the element maps from which they were generated.

351

352 **Data availability**

353 All data are provided in the main text or as supplementary materials. Additionally, the
354 mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
355 via the PRIDE partner repository with the dataset identifier PXD016330 and 10.6019/PXD016330.
356 The processed proteomics data can also be accessed at BCO-DMO (DOI: 10.26008/1912/bco-
357 dmo.786694.1).

358

359 **Code availability**

360 Data analyses and plotting were conducted in Python 3.0 (<https://www.python.org/>) using
361 the pandas (<https://pandas.pydata.org/>), matplotlib (<https://matplotlib.org/>), seaborn
362 (<https://seaborn.pydata.org/>), scipy stats (<https://scipy.org/>), and scikit image (<https://scikit-image.org/>) libraries. Fully reproducible example code, including statistical analyses, can be
363 found at https://github.com/naheld/Tricho_Singlecolony_MetaP.

364

365 **Acknowledgments**

366 We thank the science team and crew of the Tricolum cruise, especially Jaclyn Saunders,
367 Michael Mazzotta, and Asa Conover. Joe Jennings (OSU) performed the macronutrient analysis.
368 This work was supported by NSF Graduate Research Fellowship grant # 1122274 [N.Held], the
369 Gordon and Betty Moore Foundation (grant number 3782 [M.Saito]) the National Science
370 Foundation (grant numbers OCE 1657766 [M.Saito] and OCE 1657757 [D.Hutchins, E.Webb]),
371 the Woods Hole Oceanographic Institution Ocean Ventures Fund [N. Held] and the Simons
372 Foundation (grant 544236 to N. Cohen). Use of the Stanford Synchrotron Radiation Lightsource,
373 SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of
374 Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

375

377 **References**

378

1. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological
379 sequestration of CO₂ in the ocean. *Nature* 387, 272–275 (1997).
2. Zehr, J. P. Capone, D. G. Changing perspectives in marine nitrogen fixation. *Science*
380 9514, 729 (2020).
3. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. *Trichodesmium*,

383 a globally significant marine cyanobacterium. *Science* (80-). 276, 1221–1229 (1997).

384 4. Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. *Trichodesmium*—a
385 widespread marine cyanobacterium with unusual nitrogen fixation properties. *FEMS*
386 *Microbiol. Rev.* 37, 286–302 (2013).

387 5. Chappell, P. D., Moffett, J. W., Hynes, A. M. & Webb, E. A. Molecular evidence of iron
388 limitation and availability in the global diazotroph *Trichodesmium*. *ISME J.* 6, 1728–1739
389 (2012).

390 6. Paerl, H. W., Prufert-bebout, I. L. E., Guo, C. & Carolina, N. Iron-Stimulated N₂ Fixation
391 and Growth in Natural and Cultured Populations of the Planktonic Marine Cyanobacteria
392 *Trichodesmium* spp. 1044–1047 (1994).

393 7. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation.
394 *Nat. Rev. Microbiol.* 9, 499–508 (2011).

395 8. Roe, K. L. & Barbeau, K. A. Uptake mechanisms for inorganic iron and ferric citrate in
396 *Trichodesmium erythraeum* IMS101. *Metalomics* 6, 2042–2051 (2014).

397 9. Hmelo, L. R., Van Mooy, B. A. S. & Mincer, T. J. Characterization of bacterial epibionts
398 on the cyanobacterium *Trichodesmium*. *Aquat. Microb. Ecol.* 67, 1–14 (2012).

399 10. Rouco, M., Haley, S. T. & Dyhrman, S. T. Microbial diversity within the *Trichodesmium*
400 holobiont. *Environ. Microbiol.* 18, 5151–5160 (2016).

401 11. Rueter, J.G., Hutchins, D.A., Smith, R.W., Unsworth, N. L. Iron nutrition of
402 *Trichodesmium*. in *Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs*
403 (ed. Carpenter, E.J., Capone, D.G., Rueter, J. G.) 289–306 (Kluwer Academic
404 Publishers, 1992).

405 12. Rubin, M., Berman-Frank, I. & Shaked, Y. Dust-and mineral-iron utilization by the marine
406 dinitrogen-fixer *Trichodesmium*. *Nat. Geosci.* 4, 529–534 (2011).

407 13. Basu, S. & Shaked, Y. Mineral iron utilization by natural and cultured *Trichodesmium* and
408 associated bacteria. *Limnol. Oceanogr.* 63, 2307–2320 (2018).

409 14. Moore, C. M. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron
410 availability. *Nat. Geosci.* 2, 867–871 (2009).

411 15. Monteiro, F. M., Dutkiewicz, S. & Follows, M. J. Biogeographical controls on the marine
412 nitrogen fixers. *Global Biogeochem. Cycles* 25, 1–8 (2011).

413 16. Polyviou, D. et al. Desert dust as a source of iron to the globally important diazotroph
414 *Trichodesmium*. *Front. Microbiol.* 8, 1–12 (2018).

415 17. Mackey, K. R. M., Chien, C. Te, Post, A. F., Saito, M. A. & Paytan, A. Rapid and gradual
416 modes of aerosol trace metal dissolution in seawater. *Front. Microbiol.* 6, 1–11 (2015).

417 18. Held, N. A. et al. Co-occurrence of Fe and P stress in natural populations of the marine
418 diazotroph *Trichodesmium*. *Biogeosciences* 17, 2537–2551 (2020).

419 19. Chappell, P. D. & Webb, E. A. A molecular assessment of the iron stress response in the
420 two phylogenetic clades of *Trichodesmium*. *Environ. Microbiol.* 12, 13–27 (2010).

421 20. Castruita, M. et al. Overexpression and characterization of an iron storage and DNA-
422 binding Dps protein from *Trichodesmium erythraeum*. *Appl. Environ. Microbiol.* 72, 2918–
423 2924 (2006).

424 21. Polyviou, D. et al. Structural and functional characterization of IdiA/FutA (Tery_3377), an
425 iron-binding protein from the ocean diazotroph *Trichodesmium erythraeum*. *J. Biol.*
426 *Chem.* 293, 18099–18109 (2018).

427 22. Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the
428 marine diazotroph *Crocospaera watsonii*. *Proc. Natl. Acad. Sci. U. S. A.* 108, 2184–9
429 (2011).

430 23. Snow, J. T. et al. Quantifying integrated proteomic responses to iron stress in the globally
431 important marine diazotroph *Trichodesmium*. *PLoS One* 10, 1–24 (2015).

432 24. Bosello, M. et al. Structural characterization of the heterobactin siderophores from
433 *rhodococcus erythropolis* PR4 and elucidation of their biosynthetic machinery. *J. Nat. Prod.* 76, 2282–2290 (2013).

435 25. Basu, S., Gledhill, M., de Beer, D., Prabhu Matondkar, S. G. & Shaked, Y. Colonies of
436 marine cyanobacteria *Trichodesmium* interact with associated bacteria to acquire iron
437 from dust. *Commun. Biol.* 2, 1–8 (2019).

438 26. Eichner, M. et al. N₂ fixation in free-floating filaments of *Trichodesmium* is higher than in

439 transiently suboxic colony microenvironments. *New Phytol.* 222, 852–863 (2019).

440 27. Hansel, C. M. et al. Dynamics of extracellular superoxide production by *Trichodesmium*

441 colonies from the Sargasso Sea. *Limnol. Oceanogr.* 61, 1188–1200 (2016).

442 28. Ho, T.-Y. Nickel limitation of nitrogen fixation in *Trichodesmium*. *Limnol. Oceanogr.* 58,

443 112–120 (2013).

444 29. Mann, E. L., Ahlgren, N., Moffett, J. W. & Chisholm, S. W. Copper toxicity and

445 cyanobacteria ecology in the Sargasso Sea. *Limnol. Oceanogr.* 47, 976–988 (2002).

446 30. Giachino, A. & Waldron, K. J. Copper tolerance in bacteria requires the activation of

447 multiple accessory pathways. *Mol. Microbiol.* 1–14 (2020) doi:10.1111/mmi.14522.

448 31. Moore, K., Doney, S. C., Lindsay, K., Mahowald, N. & Michaels Anthony F., A. F.

449 Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale

450 variations in mineral dust deposition. *Tellus, Ser. B Chem. Phys. Meteorol.* 58, 560–572

451 (2006).

452 32. Saito, M. A., McIlvin, M.R., Moran, D.M., Goepfert, T.J., DiTullio, G.R., Post, A.F., &

453 Lamborg, C.H. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected

454 by protein biomarkers. *Science* 345, 1173–7 (2014).

455 33. Lu, X. & Zhu, H. Tube-Gel Digestion: A Novel Proteomic Approach for High Throughput

456 Analysis of Membrane Proteins. *Mol Cell Proteomics* 4, 1948–1958 (2005).

457 34. Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu,

458 D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer,

459 J., Sachsenberg, T., Yilmaz, S., Tiwary, S., Cox, J., Audain, E., Walzer, M., Jarnuczak,

460 A.F., Ternet T., Brazma, A., & Vizcaíno, J.A. The PRIDE database and related tools and

461 resources in 2019: Improving support for quantification data. *Nucleic Acids Res.* 47,

462 D442–D450 (2019).

463 35. Timmins-Schiffman, E., May, D.H., Mikan, M., Riffle, M., Frazar, C. Harvey, H.R., Noble,

464 W.S., & Nunn, B.I. Critical decisions in metaproteomics: Achieving high confidence

465 protein annotations in a sea of unknowns. *ISME J.* 11, 309–314 (2017).

466 36. Saito, M. A., Bertrand, E.M., Duffy, M.E., Gaylord, D.A., Held, N.A. Hervey, W.J., Hettich,

467 R.L., Jagtap, P.D., Janech, M.G., Kinkade, D.B., Leary, D.H., McIlvin, M.R., Moore, E.K.,

468 Morris, R.M., Neely, B.A., Nunn, B.L., Saunders, J.K., Shepherd, A.I., Symmonds, N.I., &

469 Walsh, D.A. Progress and Challenges in Ocean Metaproteomics and Proposed Best

470 Practices for Data Sharing. *J. Proteome Res.* 18, 1461–1476 (2019).

471 37. Saito, M. A., Dorsk, A., Post, A.F., McIlvin, M.R., Rappé, M.S., DiTullio, G.R., & Moran,

472 D.M. Needles in the blue sea: Sub-species specificity in targeted protein biomarker

473 analyses within the vast oceanic microbial metaproteome. *Proteomics* 00, 1–11 (2015).

474 38. Webb, S. M. The microAnalysis toolkit: X-ray fluorescence image processing software.

475 *AIP Conf. Proc.* 1365, 196–199 (2010).

476 39. Webb, S. M. SIXPack a Graphical User Interface for XAS Analysis Using IFEFFIT. *Phys.*

477 *Scr.* 1011 (2005) doi:10.1238/physica.topical.115a01011.

478 40. Grabb, K. C., Buchwald, C., Hansel, C. M. & Wankel, S. D. A dual nitrite isotopic

479 investigation of chemodenitrification by mineral-associated Fe(II) and its production of

480 nitrous oxide. *Geochim. Cosmochim. Acta* 196, 388–402 (2017).

481 41. Newville, M. EXAFS analysis using FEFF and FEFFIT. *J. Synchr. Rad.* 8, 96–100 (2001).

482 42. Hansel, C.M., S.G. Benner, J. Neiss, A. Dohnalkova, R.K. Kukkadapu, & Fendorf, S.

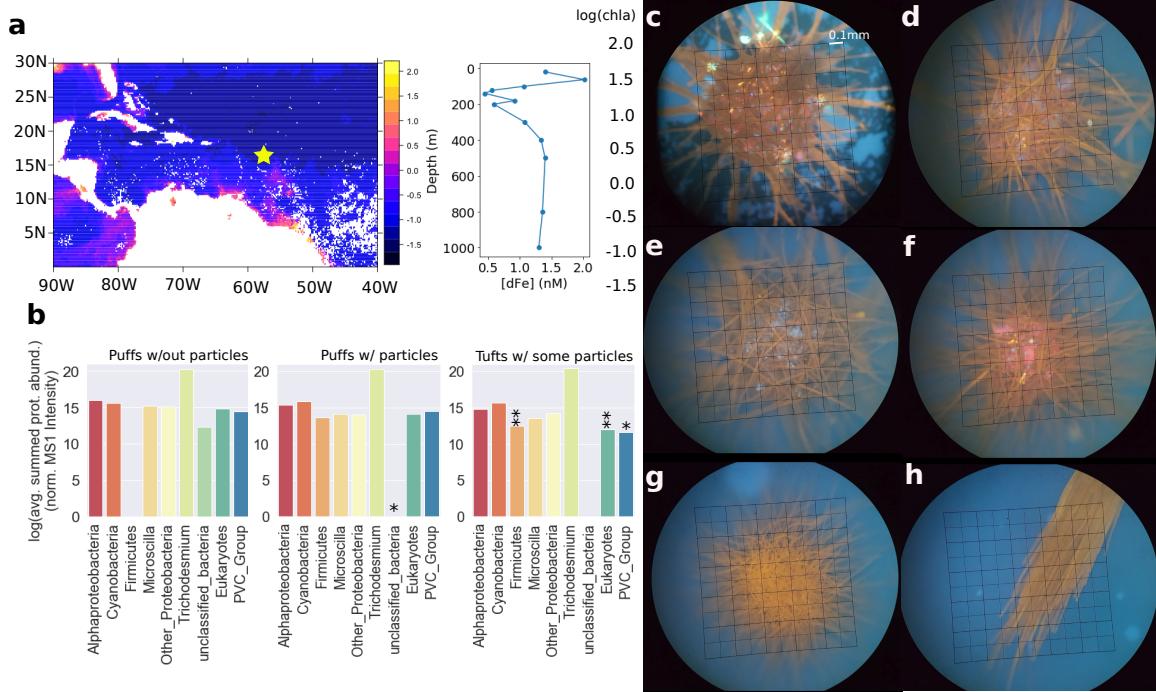
483 Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite

484 under advective flow. *Geochim. Cosmochim. Acta* 67, 2977–2992 (2003).

485 43. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N,

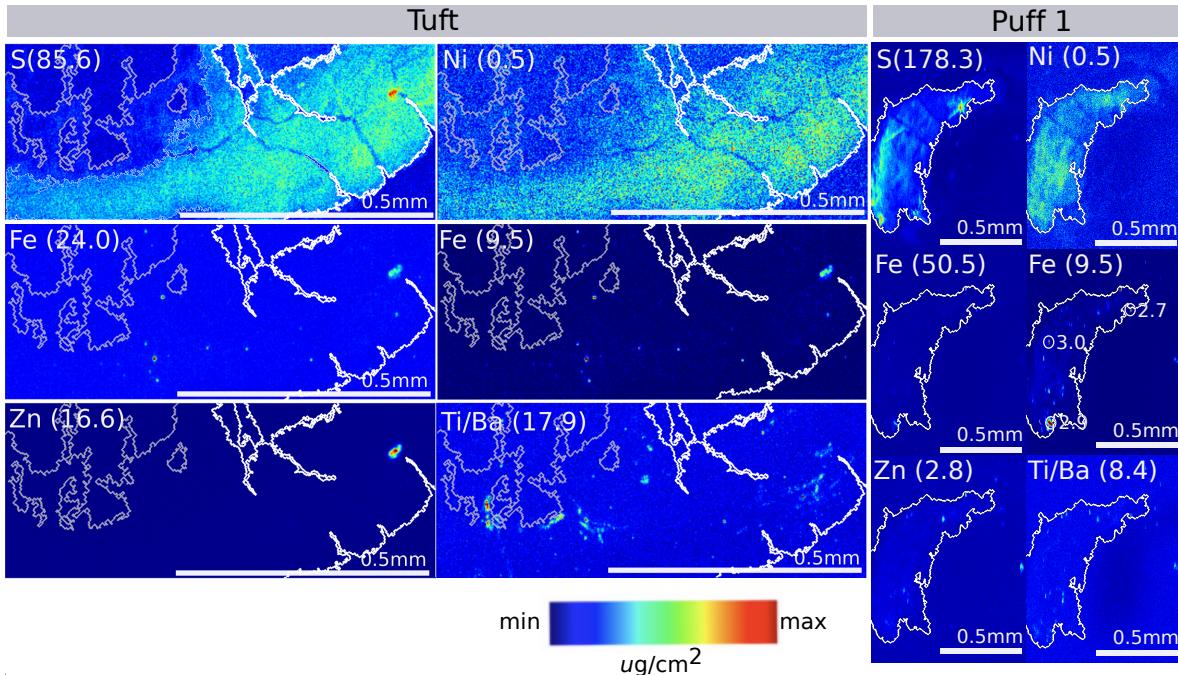
486 Gouillart E, Yu T, & the scikit-image contributors. scikit-image: image processing in

487 Python. *PeerJ* 2, (2014).


488 44. Lorensen, W. and H. E. C. Marching Cubes: A High Resolution 3D Surface Construction

489 Algorithm. *Comput. Graph. (SIGGRAPH 87 Proceedings)* 21, 163–170 (1987).

490
491
492


493
494

Figures and Tables

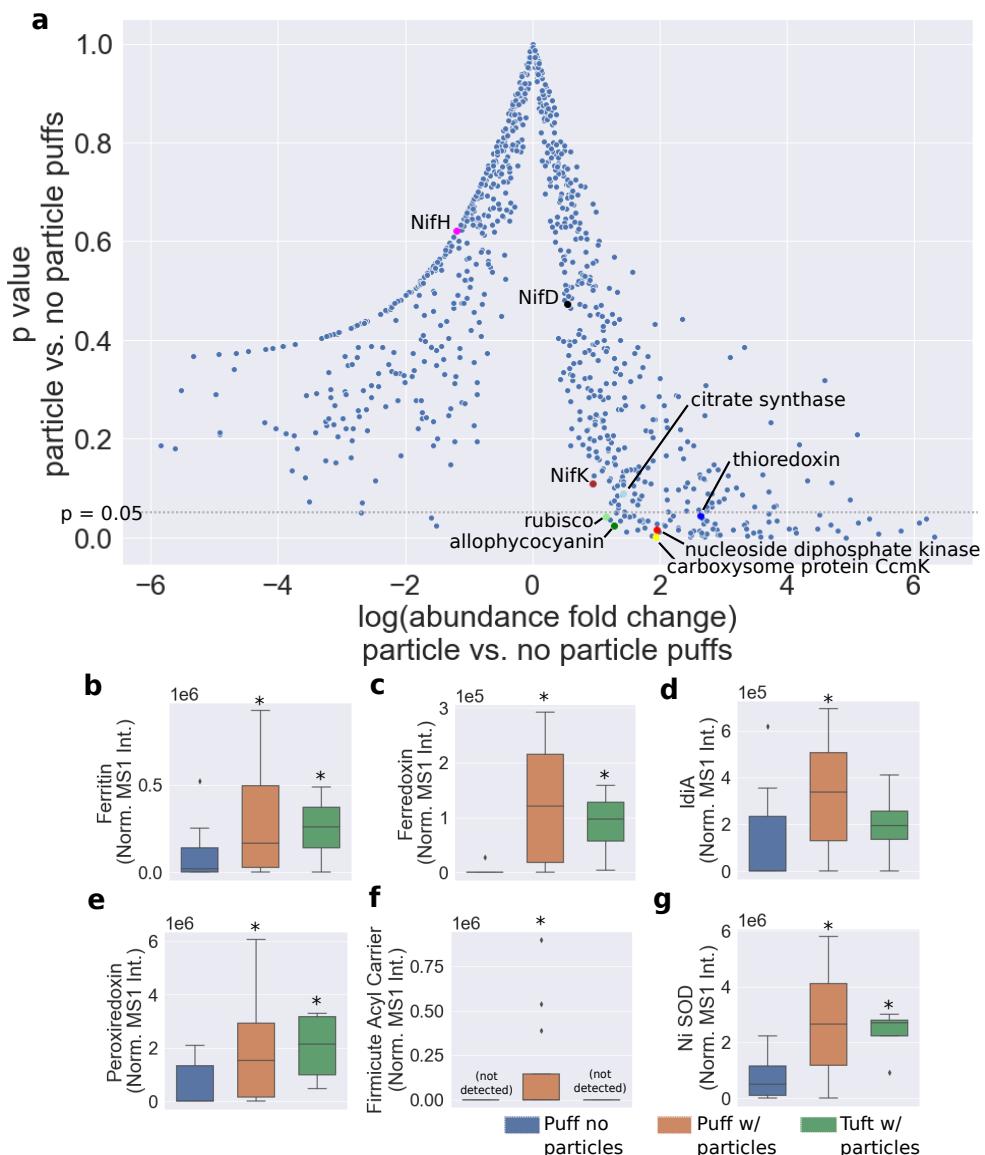
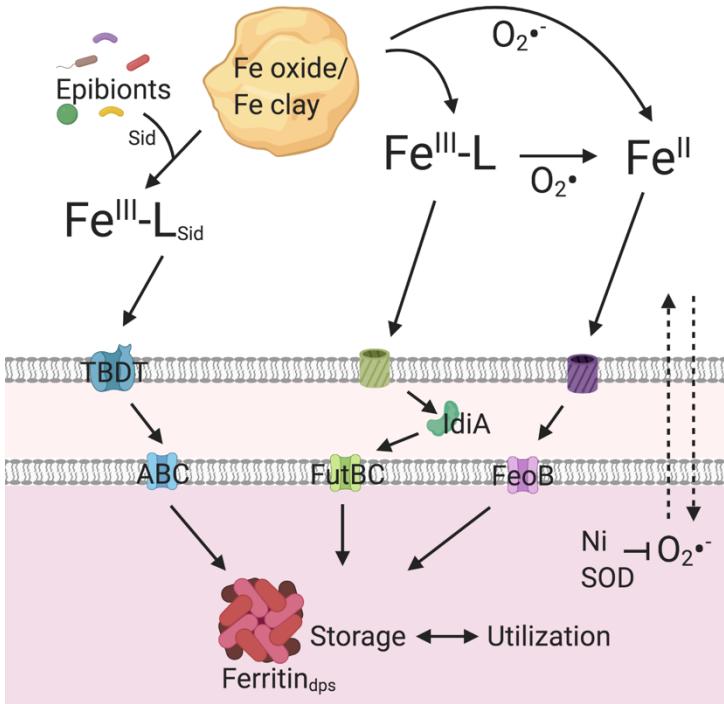

495
496

Figure 1. (A) Sampling location (yellow star) overlaid on MODIS-Aqua chlorophyll-A data averaged between March 1 and March 31, 2017, with dissolved iron profile at the sampling location. B) Biological diversity of the proteins identified in the single colony metaproteomes, with abundances of all detected proteins summed by major taxonomic groupings and separated by colony morphology. *indicates significant difference from puffs without particles at $p < 0.1$, ** the same at $p < 0.05$, Welch's unequal variance t-test (C-F) Representative images of puff colonies with particles, (G) puff without particles and (H) a tuft with some particles. Images were collected in epifluorescent mode using a DAPI long pass filter set, without dyes. The scale bar in panel (C) applies to all images.


507
508 **Figure. 2.** μ -XRF based element maps of a *Trichodesmium* tuft (left) and puff (right) colony
509 (beamsize 3 x 3 mm). White/grey contours, based on the sulfur panel, which is indicative of
510 biomass, have been provided (white = high [S] threshold, grey = lower [S] threshold). The color
511 scale is the same for each image, with the maximum concentration for each element indicated in
512 parentheses; iron is displayed using two scales. Iron oxidation states were determined via μ -
513 XANES for three particles in the puff colony, and these are annotated. The corresponding XANES
514 spectra are shown in Figure S4 and tabulated data in Table S1.
515

516

517
518
519
520
521
522
523
524
525

Figure 3. A) p value (Welch's t-test) versus protein abundance reported as fold change for puffs with vs. without particles. Below the grey dotted line ($p = 0.05$), the differences are statistically significant. Positive fold change indicates the protein was more abundant when particles were present. Proteins of interest are highlighted. (B-E) Relative abundance of selected proteins for the different colony types, presented as box plots (center line = median, box limits = first and third quartiles, whiskers = data min and max, diamonds = outliers). *Indicates statistically significant difference compared to the puffs without particles, $p < 0.05$.

526

527

528 **Figure 4.** Model of iron uptake mechanisms involved in utilization of particle-derived iron. Fe(III)-L
529 and Fe(II) are thought to enter the periplasm through passive porins/receptors.⁸ Proteins with
530 annotated names are identified, otherwise the following general functional names are used: TBDT
531 = unspecified TonB dependent transporter, ABC = unspecified ABC transporter, Ni SOD = nickel
532 superoxide dismutase, which responds to increased superoxide production during high
533 productivity/particle dissolution.

534