

1 **Cross kingdom analysis of putative quadruplex-forming sequences in fungal genomes:**
2 **novel antifungal targets to ameliorate fungal pathogenicity?**

3 Emily F. Warner,¹ Natália Bohálová,^{2,3} Václav Brázda,² Zoë A. E. Waller,⁴ and **Stefan Bidula**^{5*}

4

5 ¹ School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom

6 ² Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic

7 ³ Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech
8 Republic

9 ⁴ UCL School of Pharmacy, 29-39 Brunswick Square, London, United Kingdom

10 ⁵ School of Biological Sciences, University of East Anglia, Norwich, United Kingdom

11

12 ***Correspondence to:** Stefan Bidula (s.bidula@uea.ac.uk)

13 **Keywords:** Fungi, G-quadruplexes, i-motifs, *in-silico*, virulence, drug resistance

14 **Running title:** Quadruplexes in fungi

15 Manuscript length: 5727 words

16 Number of Figures:10

17 Number of Tables:3

18

19

20

21

22 **Abstract**

23 Fungi contribute to upwards of 1.5 million human deaths annually, are involved in the spoilage
24 of up to a third of food crops, and have a devastating effect on plant and animal biodiversity.
25 Moreover, this already significant issue is exacerbated by a rise in antifungal resistance and
26 a critical requirement for novel drug targets. Quadruplexes are four-stranded secondary
27 structures in nucleic acids which can regulate processes such as transcription, translation,
28 replication, and recombination. They are also found in genes linked to virulence in microbes,
29 and quadruplex-binding ligands have been demonstrated to eliminate drug resistant
30 pathogens. Using a computational approach, we identified putative quadruplex-forming
31 sequences (PQS) in 1362 genomes across the fungal kingdom and explored their potential
32 involvement in virulence, drug resistance, and pathogenicity. Here we present the largest
33 analysis of PQS in fungi and identified significant heterogeneity of these sequences
34 throughout phyla, genera, and species. Moreover, PQS were genetically conserved. Notably,
35 loss of PQS in cryptococci and aspergilli was associated with pathogenicity. PQS in the
36 clinically important pathogens *Aspergillus fumigatus*, *Cryptococcus neoformans*, and *Candida*
37 *albicans* were located within genes (particularly coding regions), mRNA, repeat regions,
38 mobile elements, tRNA, ncRNA, rRNA, and the centromere. Genes containing PQS in these
39 organisms were found to be primarily associated with metabolism, nucleic acid binding,
40 transporter activity, and protein modification. Finally, PQS were found in over 100 genes
41 associated with virulence, drug resistance, or key biological processes in these pathogenic
42 fungi and were found in genes which were highly upregulated during germination, hypoxia,
43 oxidative stress, iron limitation, and in biofilms. Taken together, quadruplexes in fungi could
44 present interesting novel targets to ameliorate fungal virulence and overcome drug resistance.

45

46

47

48 **Introduction**

49 Compared to viruses and bacteria, fungi are underappreciated [1]. They are key contributors
50 to the food and drink, biotechnology, and textile industries, whilst also being an important
51 source of novel antimicrobial compounds [2-5]. However, >1.5 million deaths per year are
52 attributed to fungi in humans globally, more than malaria and on par with tuberculosis [6, 7].
53 Fungi can also cause blindness, serious skin conditions, promote allergic responses, and have
54 been shown to cause secondary infections in cystic fibrosis, tuberculosis, Human
55 Immunodeficiency Virus (HIV), and recently, SARS-CoV-2 patients [8, 9]. Fungal plant
56 pathogens also destroy around a third of crops annually; enough to feed 600 million people
57 [1]. Whilst fungal infections of amphibians, bats, bees, animals, and trees have a huge impact
58 on biodiversity [7]. Thus, fungi are an important asset, but they also pose a devastating global
59 burden, and a deeper understanding of their biology is therefore essential.

60 The negative effects of fungi are exacerbated by a lack of antifungals and the emergence of
61 multidrug resistant pathogens with intrinsic resistance such as *Candida auris* and
62 *Lomentospora prolificans* [7, 10]. Current classes of antifungals include azoles (e.g.
63 fluconazole), echinocandins (e.g. caspofungin), and polyenes (e.g. amphotericin B), but
64 resistance to these antifungals is ever more prevalent and there are no vaccines [11]. Indeed,
65 a recent meeting of the World Health Organization (WHO) Expert Group on Identifying Priority
66 Fungal Pathogens highlighted azole resistant *A. fumigatus* as one such priority pathogen [12].
67 Therefore, we have an urgent requirement to identify potential novel antifungal targets.

68 G-quadruplexes (G4s) and i-motifs (iMs) are intriguing four-stranded (quadruplex) secondary
69 structures in nucleic acids that are enriched in regulatory regions, particularly the promoters
70 and telomeric regions of prokaryotic and eukaryotic genomes [13, 14]. However, they can be
71 found throughout the genome [15]. G4s can be found within guanine-rich regions of DNA and
72 RNA. Here, four guanine bases associate through Hoogsteen hydrogen bonding to form the
73 basic unit of the G4, the G-tetrad [16]. These can then stack on top of each other to form the
74 G4 structure itself (Figure 1A-C). These stacks of G-tetrads are connected by loops of mixed-

75 sequence nucleotides and can form intramolecular or intermolecular associations [17, 18].
76 This structure is further stabilised by the presence of monovalent cations, especially potassium
77 [19]. Moreover, the 5'- to 3'- directionality of the strands, glycosidic bonding in the G-tetrads,
78 the cation present, and number of stacked G-tetrads contribute to the wide variation of
79 observed G4 structures and topologies [13]. Conversely, iMs form within cytosine-rich regions
80 of DNA and can typically be found on the complementary strand opposite a G4 [20]. Like G4s,
81 they are four stranded structures but are composed of two intercalated hairpins which are
82 stabilised by hemi protonated cytosine-cytosine⁺ (C-C⁺) base pairs (Figure 1D-F) [21]. Studies
83 into iMs have been limited compared to G4s as it was thought they weren't physiologically
84 relevant based on them being most stable in slightly acidic conditions. However, they have
85 since been shown to form under physiological conditions, including neutral pH and molecular
86 crowding, and have recently been identified within the nuclei of human cells [21-24]

87 Once deemed structural curiosities, G4s and iMs have been highlighted to participate within
88 host-pathogen interactions where they have important roles within gene regulation and have
89 been shown to trigger phase separation of RNA in cells [25-27]. However, the regulation of
90 biological functions by quadruplexes is complex and is influenced by their position within
91 DNA/RNA, the surrounding topology, and environmental factors within the cell. In recent years,
92 there has been increased interest in the therapeutic potential of targeting quadruplexes
93 following the implication of these secondary structures in disease, especially cancer, due to
94 their prevalence in oncogene promoters [26]. However, there is also now a growing number
95 of pathogens in which G4s have been shown to contribute to virulence phenotypes, including;
96 viruses (Human Papilloma Virus; Epstein-Barr Virus, HIV, SARS-CoV-2), prokaryotic bacterial
97 pathogens (*Staphylococcus aureus*, *Streptococcus pneumoniae*, *Enterococcus* spp., *Borrelia*
98 spp., *Neisseria meningitidis* and *N. gonorrhoeae*), and eukaryotic pathogens (*Trypanosoma*
99 *brucei*, *Plasmodium falciparum*) [25, 28]. Notably, G4 DNA binding agents have been shown
100 to be active against methicillin-resistant *S. aureus* and vancomycin-resistant *Enterococcus*
101 spp.; potentially providing a novel target to overcome drug resistance [29, 30]. On the contrary,

102 iMs have so far only been identified in the long terminal repeat promoter of the HIV-1 pro-viral
103 genome where they modulate the transcription of viral genes [31]. Although, one could assume
104 that this is only the tip of the iceberg, considering the ubiquitous nature of quadruplexes within
105 the genomes of almost every organism.

106 Practically all organisms possess quadruplexes within their genomes but a thorough analysis
107 of putative quadruplex-forming sequences (PQS) in fungi has not been conducted to date.
108 Identifying PQS in key genes associated with virulence/drug resistance in fungal pathogens
109 could highlight targets for G4/iM-binding ligands and a potential novel means to ameliorate
110 fungal pathogenicity. In this study, we performed a computational investigation into the
111 presence of PQS in 1362 genomes across the fungal kingdom and discussed their potential
112 as novel antifungal targets within key pathogenic species.

113

114

115

116

117

118

119

120

121

122

123

124

125 **Methods**

126 **Selection of genome sequences**

127 The genomic sequences analysed in this study were obtained from publicly available
128 repositories. The database (<https://doi.org/10.5281/zenodo.3783970>) was used for the
129 Ascomycota [32]. Regarding the Ascomycota, publicly available genomes from a
130 comprehensive study on Saccharomycotina were obtained, the NCBI's Genome Browser was
131 used to obtain basic information on the strains, and draft genomes from the subphyla
132 Pezizomycotina and Taphrinomycotina were compiled from GenBank via FTP access number
133 (<ftp://ftp.ncbi.nlm.nih.gov/genomes/>). Published genomes from the Basidiomycota,
134 Mucoromycota, Zoopagomycota, Chytridiomycota, Microsporidia, and Cryptomycota were
135 obtained from the Joint Genome Institute MycoCosm portal
136 (<https://mycoccosm.jgi.doe.gov/mycoccosm/home>; last accessed 16/7/2020) [33]. Only the
137 genomes from isolates with the highest assembly level and latest release date were included.

138 **The principle of the G4Hunter algorithm and process of analysis**

139 The G4Hunter web application was used to identify PQS within fungal genomes [34]. The
140 algorithm used in G4Hunter considers the G-richness and G-skewness of a genome. Each
141 position within a sequence is given a score between -4 and 4, with G's giving a positive score
142 and C's giving a negative score. A's and T's are neutral and have a score of 0. An increasing
143 G4Hunter score (either positive or negative) correlates with increased propensity to form
144 quadruplexes. A near-zero average score is indicative of a sequence that is most likely to form
145 stable duplexes. The G4Hunter score is the arithmetic mean value of the sequence.

146 When analysing the genomes, the scored nucleic acid sequence was computed for a sliding
147 window of 30 nucleotides and a threshold above 1.5 for stringent analyses, or a window of 25
148 nucleotides and thresholds between 1-2 for complete analyses. Regions in which the value of
149 the mean score was above a threshold (either positive or negative) were extracted. Potential
150 G4- or iM-forming sequences were all noted as PQS and were not treated differently.

151 To identify the location of PQS within annotated genomic features, the file containing the
152 annotations for known genomic features within the genome of the selected fungi were
153 downloaded from the NCBI database. The presence of PQS within a pre-defined genomic
154 feature (e.g. gene, mRNA, mobile element) or within ± 100 bp of these genomic features were
155 analysed.

156 Analysis of the genomes for PQS was conducted using the G4Hunter DNA analyser web
157 application (<http://bioinformatics.ibp.cz:8888/#/>) [34]. The location of PQS in known genomic
158 features were identified using a publicly available script found at <https://pypi.org/project/dna-analyser-ibp/>. The gene ontologies and protein classes of genes containing PQS were
159 determined via PANTHER™ GO slim v.15.0 and PANTHER™ Protein Class v.15.0,
160 respectively [35, 36]. The sequences identified in G4Hunter were verified via QGRS Mapper
161 (<http://bioinformatics.ramapo.edu/QGRS/analyze.php>) [37]. Sequences were analysed using
162 the default settings of max length (30), min G-group (2) and loop size (0-36). The highest
163 scoring sequences with the shortest loop length were selected in each case.

165 ChemDraw Ultra v12.0 was used to draw structures and The Protein Imager
166 (<https://3dproteinimaging.com/protein-imager/>) [38] was used to generate 3D images from
167 PDBs. These data were processed, and graphs were generated using GraphPad Prism
168 software v6.01.

169 **Transcriptome analysis**

170 Upregulated genes in germinating conidia and hyphae [39], during hypoxia [40], and during
171 iron limitation or oxidative stress [41] were identified using publicly available transcriptome
172 datasets. These were analysed in FungiDB (<https://fungidb.org/>) [42]. Upregulated genes were
173 identified by comparing a reference sample (control) with a comparison sample (test). In each
174 case, the difference between the minimum expression value of each gene in the reference
175 sample and maximum expression value in the comparison sample was quantified. All genes
176 upregulated >2-fold were acquired. Upregulated transcripts in *A. fumigatus* biofilms [43] were

177 identified via the manuscript's Supplementary Data. PQS in the top 20 most upregulated
178 genes were identified using G4Hunter and QGRS Mapper using the default search settings.

179 **Statistics**

180 Statistical analyses were conducted via parametric One-way ANOVA with Tukey's multiple
181 comparisons, Student's t-test, or Pearson's correlation coefficient; or non-parametric Kruskal-
182 Wallis tests with post-hoc Dunn's test and Bonferroni corrections using GraphPad Prism
183 software v6.01. $p < 0.05$ were considered statistically significant.

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206 **Results**

207 **There is large heterogeneity in the frequency and number of PQS across the fungal**
208 **kingdom**

209 A thorough analysis of putative quadruplex-forming sequences in fungi has not been
210 conducted to date. Using G4Hunter, the number of PQS were quantified in 1362 fungal
211 genomes of varying assembly, across 7 divisions, and 15 sub-divisions of fungi. Due to the
212 high variability in genome size and chromosome number between fungal species, to normalise
213 the data, the total number of PQS in addition to the frequency of PQS/kbp and number of PQS
214 relative to the GC content (PQS/GC%) were noted.

215 Across the divisions, the Chytridiomycota had the largest average number of PQS (24,734
216 PQS) and highest PQS frequencies (0.555 PQS/kbp and 473 PQS/GC%; Figure 2). The
217 Mucoromycota and Basidiomycota also had large numbers of PQS (19575 and 17108 PQS,
218 respectively; Figure 2A and E). The Basidiomycota and Zoopagomycota had high PQS
219 frequencies relative to genome size (0.445 and 0.373 PQS/kbp, respectively; Figure 2B and
220 F). The Mucoromycota and Basidiomycota displayed high PQS frequencies relative to GC
221 content (459 and 340 PQS/GC%, respectively; Figure 2C and G). Fungi within the
222 Basidiomycota had the highest average GC content (53.3%; Figure 2D and H). The
223 Microsporidia and Cryptomycota scored lowest for total number of PQS (300 and 372,
224 respectively), PQS/kbp (0.091 and 0.029, respectively) and PQS/GC% (8 and 11,
225 respectively; Figure 2). Moreover, they also had low GC content (39.6% and 35.0%,
226 respectively).

227 Considering G4s and iMs form in guanine or cytosine rich regions, respectively, one would
228 expect fungi with a higher genome GC content to have a higher PQS frequency by chance.
229 To investigate this further, the frequency of PQS/kbp relative to the GC content in all fungi and
230 their divisions were plotted. As expected, there was a positive correlation between GC content
231 and PQS frequency amongst all the fungal species analysed ($r=0.5290$; $p<0.0001$; Figure 3A).
232 Moreover, this positive correlation was observed amongst the Ascomycota, Basidiomycota,

233 and Mucoromycota ($r=0.5619$, $r=0.3891$, and $r=0.5239$ and $r=0.2883$, respectively; all $p<0.05$;
234 Figure 3B-D). However, there was not a significant correlation observed within the
235 Zoopagomycota, Chytridiomycota, Microsporidia, or Cryptomycota, possibly due to the limited
236 sample size (Figure 3E-H).

237 **There is large heterogeneity in the number and frequency of PQS within sub-divisions
238 and in fungal genera containing important fungal pathogens**

239 Within the Ascomycota, the average number of PQS in the sub-divisions Taphrinomycotina
240 ($n=14$ species), Saccharomycotina ($n=332$ species), and Pezizomycotina ($n=761$ species)
241 were 2799.7, 1079.0, and 17021.0, respectively (Figure 4A). The average PQS/kbp for each
242 subphylum was 0.147, 0.075, and 0.436, respectively (Figure 4B). The average PQS/GC% for
243 each subphylum was 42.4, 25.2, and 344.3, respectively (Figure 4C). Finally, the average
244 GC% for each subphylum was 42.5%, 40.6%, and 49.6%, respectively (Figure 4D).

245 Within the Basidiomycota, the average number of PQS in the sub-divisions Agaricomycotina
246 ($n=134$ species), Pucciniomycotina ($n=24$ species), and Ustilagomycotina ($n=31$ species)
247 were 16538.7, 29434.8, and 5351.0, respectively (Figure 4A). The average PQS/kbp for each
248 subphylum was 0.433, 0.610, and 0.293, respectively (Figure 4B). The average PQS/GC% for
249 each subphylum was 319.2, 605.6, and 94.1, respectively (Figure 4C). Finally, the average
250 GC% for each subphylum was 51.1%, 51.1%, and 57.6%, respectively (Figure 4D).

251 Within the Mucoromycota, the average number of PQS in the sub-divisions Glomeromycotina
252 ($n=9$ species), Mortierellomycotina ($n=2$ species), and Mucoromycotina ($n=20$ species) were
253 2900.1, 16444.0, and 39382.7, respectively (Figure 4A). The average PQS/kbp for each
254 subphylum was 0.023, 0.338, and 0.246, respectively (Figure 4B). The average PQS/GC% for
255 each subphylum was 106.5, 349.8, and 919.7, respectively (Figure 4C). Finally, the average
256 GC% for each subphylum was 27.2%, 44.9%, and 39.7%, respectively (Figure 4D).

257 Within the Zoopagomycota, the average number of PQS in the sub-divisions
258 Zoopagomycotina ($n=3$ species), Entomophthoromycotina ($n=2$ species), and

259 Kickxellomycotina (n=7 species) were 8399.7, 6726.5, and 11315.1, respectively (Figure 4A).
260 The average PQS/kbp for each subphylum was 0.746, 0.081, and 0.292, respectively (Figure
261 4B). The average PQS/GC% for each subphylum was 162.3, 162.7, and 305.4, respectively
262 (Figure 4C). Finally, the average GC% for each subphylum was 54.4%, 35.3%, and 38.2%,
263 respectively (Figure 4D).

264 Within the Chytridiomycota, the average number of PQS in the sub-divisions Chytridiomycetes
265 (n=6 species), Monoblepharidomycetes (n=1 species), and Neocallimatigomycetes (n=5
266 species) were 23815.2, 50091, and 298, respectively (Figure 4A). The average PQS/kbp for
267 each subphylum was 0.637, 1.027, and 0.003, respectively (Figure 4B). The average
268 PQS/GC% for each subphylum was 446.7, 955.9, and 15.6, respectively (Figure 4C). Finally,
269 the average GC% for each subphylum was 54.3%, 52.4%, and 18.9%, respectively (Figure
270 4D).

271 Within the Microsporidia (n=9 species) and Cryptomycota (n=2 species), the average number
272 of PQS were 300.3 and 372, respectively (Figure 4A). The average PQS/kbp were 0.091 and
273 0.029, respectively (Figure 4B). The average PQS/GC% were 7.6 and 10.6, respectively
274 (Figure 4C). Finally, the average GC% were 39.6% and 35.0%, respectively (Figure 4D).

275 Finally, we also highlighted the frequency of PQS in fungal genera which contained important
276 human and plant pathogens. We found that there was also large heterogeneity in the
277 frequency of PQS between species within genera containing human pathogens (e.g.
278 *Aspergillus* spp., *Candida* spp., *Cryptococcus* spp., *Blastomyces* spp.) and plant pathogens
279 (e.g. *Verticillium* spp., and *Fusarium* spp.; Figure 5). This variation was particularly wide within
280 *Aspergillus* spp., and *Cryptococcus* spp.

281 **PQS are evolutionarily conserved and are linked with genetic relatedness**

282 Evolutionary conservation of genetic motifs within the genome are a hallmark of their
283 fundamental importance to how that organism functions. Therefore, we endeavoured to
284 explore whether there was evolutionary conservation of PQS within fungal genomes. We

285 chose to explore this relationship in *Aspergillus* spp., due to the robustness and accuracy of
286 the phylogenetic tree available [44].

287 Notably, we found that the frequency of PQS/kbp appeared to be intrinsically linked to how
288 closely related species were, with species within the same section displaying similar PQS
289 frequencies (Figure 6). Aspergilli in this tree were divided into 13 sections (range of PQS/kbp
290 in brackets), the *Aspergillus* (0.364-0.461), the *Fumigati* (0.204-0.224), the *Candidi* (0.747-
291 0.816), the *Circumdati* (0.395-0.467), the *Flavi* (0.225-0.289), the *Ochraceoros* (0.421-0.422),
292 the *Usti* (0.385-0.396), the *Versicolores* (0.282-0.308), and the *Nigri* (0.495-0.782). The *Nigri*
293 displayed the largest variation in PQS, however the lesser related species *A. carbonarius* and
294 *A. aculeatus* skewed this range and if only the closest related species were noted, this range
295 would be from 0.495-0.611 (Figure 6). As the *Nidulantes*, *Terrei*, and *Clavati* only contained
296 one member each, correlations in these sections could not be made. Considering that we
297 found a likely quadruplex-forming sequence within *cyp51A* in *A. fumigatus* and due to its
298 importance in encoding a gene heavily involved in azole resistance, we chose to see if this
299 sequence was conserved within the section *Fumigati*. Interestingly, *A. fischeri*, *A.*
300 *novofumigatus*, and *A. lentulus* all retained the PQS observed in *A. fumigatus*, however this
301 sequence could not be found in *A. udagawae* or *A. turcosus* (Figure 6).

302

303 **Loss of PQS is associated with pathogenicity in *Aspergillus* and *Cryptococcus* species,
304 but not *Candida***

305 The Ascomycota and Basidiomycota contain many of the most prevalent fungal pathogens of
306 both plants and humans, including the genera *Aspergillus* spp., *Candida* spp., and
307 *Cryptococcus* spp., which contain fungal species that account for most fungal-related deaths
308 in humans. Although, not all species within these genera are potential pathogens and we found
309 high variation in their PQS frequency. Therefore, we compared the PQS frequency between

310 pathogenic and non-pathogenic species to explore whether there was a link with
311 pathogenicity.

312 Indeed, comparing 72 species of *Aspergillus* (22 pathogenic, 50 non-pathogenic) pathogenic
313 species had a significantly lower frequency of PQS/kbp (0.364 vs. 0.523) and PQS/GC%
314 (249.9 vs. 380.5) on average, compared to their non-pathogenic counterparts (Figure 7A and
315 D). Further analysis highlighted that *A. unguis* had the lowest frequency of PQS/kbp (0.203
316 PQS/kbp), whilst *A. ellipticus* had the highest (0.997 PQS/kbp). Furthermore, the most
317 pathogenic species, *A. fumigatus*, had a lower than average frequency of PQS (0.221
318 PQS/kbp; Supplementary Material). Notably, loss of PQS in the subphylum Pezizomycotina
319 appeared to be associated with pathogenicity in humans overall (Supplementary Material).

320 Similarly, comparing 16 species of *Cryptococcus* (9 pathogenic, 7 non-pathogenic) we also
321 found that pathogenic species had a significantly lower frequency of PQS/kbp (0.480 vs.
322 1.176) and PQS/GC% (187.1 vs. 465.9) on average, compared to their non-pathogenic
323 counterparts (Figure 7B and E). However, the lowest frequency of PQS/kbp was found in the
324 non-pathogenic species *C. depauperatus* (0.084 PQS/kbp). Regarding pathogenic species,
325 the *C. neoformans* AD hybrid was found to have the lowest PQS frequency (0.381 PQS/kbp).
326 The highest PQS frequency was observed in *C. floricola* (1.64 PQS/kbp; Supplementary
327 Material).

328 Conversely, this phenomenon was not observed in *Candida* spp., or closely related *Clavispora*
329 and *Debaryomyces* species. Comparing 47 species (14 pathogenic, 33 non-pathogenic) we
330 found that there was no association between PQS frequency and pathogenicity (Figure 7C
331 and F). Pathogenic and non-pathogenic species had equivalent PQS/kbp (0.074 vs. 0.079)
332 and PQS/GC% (26.3 vs. 22.3; Figure 7C and F). Moreover, this trend was also observed for
333 pathogenic and non-pathogenic species across the entire subphylum Saccharomycotina
334 (Supplementary Material). Further analysis showed that *C. orba* had the lowest frequency of
335 PQS (0.006 PQS/kbp), whereas *C. fructus* had the highest (0.261 PQS/kbp; Supplementary
336 Material). The most prevalent pathogenic species, *C. albicans*, had a higher than average

337 frequency of PQS (0.101 PQS/kbp; Supplementary Material). Conversely, the multi-drug
338 resistant species *C. auris* had both a lower frequency of PQS/kbp (0.061) and PQS/GC%
339 (17.3), compared to the average.

340 **PQS are found in numerous genomic features in *A. fumigatus*, *C. neoformans*, and *C.*
341 *albicans***

342 To evaluate the position of PQS within *A. fumigatus*, *C. neoformans*, and *C. albicans* (the most
343 prevalent pathogens of their genera) the annotation information was obtained from the NCBI
344 database and the presence of PQS within defined genomic features, or within 100 bp before
345 or after these features were analysed. Both the total number of PQS per feature and the
346 frequency of PQS/kbp relative to the combined genomic length of the described features were
347 noted.

348 When only total PQS were considered, the largest number of PQS in all three fungal species
349 could be found within the coding regions (CDS), genes, and mRNA, with few PQS found in
350 other genomic features (Figure 8A, B, and C). However, this was not the same when
351 considering the frequency of PQS/kbp of the genomic features. In *A. fumigatus*, the greatest
352 frequency of PQS could be found in the repeat regions (Figure 8D). The lowest frequency
353 could be found within the tRNA. In *C. neoformans*, the highest PQS frequencies were still in
354 the CDS, genes, and mRNA, with a very low frequency found within the tRNA (Figure 8E). In
355 *C. albicans*, the highest frequency of PQS could be found in the rRNA, followed by repeat
356 regions and ncRNA (Figure 8F). There were no PQS found in the tRNA and low frequencies
357 were again found in the mobile elements. The total number and frequency of PQS 100 bp
358 before and after the annotated genomic features appeared to be evenly distributed (Figure 8).

359 **PQS are found in genes encoding proteins involved in metabolism, nucleic acid
360 binding, cell transport, and protein modification**

361 As we knew the genomic location of the PQS, we could then identify the number and identity
362 of the genes which contained these sequences. This further enabled us to identify the classes

363 of proteins associated with PQS-containing genes. In *A. fumigatus*, 35.1% of genes contained
364 at least one PQS. In *C. neoformans*, this number was almost double, with 59.9% of genes
365 containing PQS. Conversely, PQS were only found in 5.6% of genes in *C. albicans*.

366 Despite the discrepancies in the number of genes where PQS can be found between the
367 organisms, in all cases, PQS were primarily located in genes which encoded proteins involved
368 in metabolism, nucleic acid binding, cell transport, and protein modification (Figure 9). They
369 were least likely to be found in genes encoding for calcium-binding proteins, extracellular
370 matrix proteins, cell adhesion molecules, and defense/immunity proteins (Figure 9).

371 In all organisms, PQS could be found in the highest frequency in genes associated with
372 metabolite interconversion enzymes. In *A. fumigatus*, the number of genes associated with
373 metabolite interconversion enzymes was 3.7-fold higher than the next represented protein
374 class (434 genes vs. 117 genes for nucleic acid binding proteins and transporters; Figure 9A).

375 In *C. neoformans* the number of genes associated with these enzymes was 2.1-fold higher
376 compared to nucleic acid binding proteins (491 genes vs. 231 genes, respectively; Figure 9B).

377 In *C. albicans*, the difference in the number of PQS-containing genes associated with
378 metabolite interconversion enzymes and nucleic acid binding proteins was much lower (26
379 genes vs. 21 genes, respectively; 1.2-fold; Figure 9C). Surprisingly, when categorising genes
380 based on gene ontology terms, there was an almost identical distribution of genes involved in
381 biological functions, molecular functions, and cellular components between species
382 (Supplementary Material).

383 **PQS are found in genes linked to virulence, drug resistance, or key biological
384 processes in *A. fumigatus*, *C. neoformans*, and *C. albicans***

385 G4s have been discovered in virulence genes from several pathogens and have arisen as a
386 promising target for antimicrobial therapy and overcoming drug resistance [25]. Moreover, an
387 iM in the promoter of the HIV-1 pro-viral genome has also been recently been described [31].
388 Thus, whether PQS could be found in genes associated with virulence/drug resistance in *A.*

389 *fumigatus*, *C. neoformans*, and *C. albicans* was explored. Although the list is not exhaustive
390 (there are many proteins still yet to be characterised), there were many interesting candidates
391 that arose from the analysis. In total, PQS were found in over 100 genes associated with the
392 virulence, drug resistance, or key biological processes of *A. fumigatus* (39 genes), *C.*
393 *neoformans* (41 genes), and *C. albicans* (27; Tables 1-3).

394 In *A. fumigatus*, PQS could be found in notable genes, including the 14- α sterol demethylases
395 (*cyp51A* and *cyp51B*), the 1,3- β -glucan synthase catalytic subunit *fks1*, and ABC drug
396 exporter *atrF*, which are involved in drug resistance. In addition to genes involved in virulence,
397 including transcription factors *stuA*, *hapX*, and *pacC*, genes involved in pigment biosynthesis
398 (*pksP*, *arp2*, *abr1*, *abr2*, and *ayg1*), a master regulator of secondary metabolism *iaeA*, and
399 *gliN* and *gliP* which are involved in the synthesis of gliotoxin (Table 1).

400 As PQS could be found in almost two-thirds of *C. neoformans* genes, it was not surprising that
401 PQS could be found in those associated with virulence. These included the ABC transporter
402 *afr1* (which is associated with fluconazole resistance), the protein kinases *fsk* and *hog1*, the
403 calcineurin-associated genes *crz1* and *cna1*, *pacC/rim101* like in *A. fumigatus*, and numerous
404 capsule-associated genes (the main virulence factor of *Cryptococcus*) including *cap2*, *cap5*,
405 *cap10*, *cap59*, *cap60*, *cap64*, *cas31*, *cas33*, and *cxt1* (Table 2).

406 There were very few genes in *C. albicans* that contained sequences likely to form
407 quadruplexes, and thus, quadruplexes might be less important in this organism. Notable genes
408 included the iron permeases *ftr1* and *ftr2*, and a gene associated with flucytosine resistance
409 (*rrp9*; Table 3).

410 The highest scoring potential quadruplex-forming sequences for each of these genes were
411 then re-analysed in an alternative PQS predictive algorithm called QGRS Mapper. In this
412 instance, the scores of known quadruplex-forming sequences were compared to scores of the
413 PQS in fungi. This was conducted to provide further insight into whether these sequences
414 were likely to form quadruplex structures.

415 Known quadruplex-forming sequences (n=94) were shown to predominantly have QGRS
416 scores of 21, 42, or 63 (depending on the number of G-tetrads – 2, 3, or 4, respectively;
417 Supplementary Figures). The genes containing PQS from both *A. fumigatus* and *C.*
418 *neoformans* had more sequences scoring between 21 and 42 compared to *C. albicans* and
419 are thus more likely to form quadruplex structures (Supplementary Figures).

420 **Genes in *A. fumigatus* that are upregulated during fungal germination, in response to
421 stress, and in biofilms are enriched in PQS compared to the whole genome**

422 Although PQS could be found in important fungal genes, we aimed to link the presence of
423 PQS within these organisms with potential biological and pathophysiological functions. To
424 investigate this, transcriptome datasets of *A. fumigatus* during germination [39], hypoxia [40],
425 iron limitation and oxidative stress [41], or in biofilms [43] were analysed. In each instance, the
426 top 20 upregulated genes (compared to dormant/unstressed *A. fumigatus* controls) were
427 investigated for the presence and frequency of PQS. This was achieved via examining the
428 sequences in both QGRS Mapper and G4Hunter using the default search settings. Gene
429 sequences which were identified as containing PQS by both algorithms were used for analysis.

430 Notably, PQS could be found in 77.5% of the genes investigated (Figure 10A). This included
431 genes which were upregulated in germinating conidia (16/20; 80.0%), hyphae (14/20; 70.0%),
432 after 12 hours of hypoxia (17/20; 85.0%), following iron limitation (17/20; 85.0%), undergoing
433 oxidative stress (14/20; 70.0%), and in biofilms (15/20; 75.0%). These genes were
434 investigated further to assess whether they were enriched with PQS and contained a higher
435 frequency of PQS comparative to the average frequency found in the *A. fumigatus* genome.

436 Using the default G4Hunter settings (window size 25 nt and threshold of 1.2) the PQS
437 frequency of the *A. fumigatus* genome was 1.55 PQS/kbp (red dashed line; Figure 10B). In all
438 cases, the average PQS frequencies in the upregulated genes were higher than the average
439 PQS observed throughout the entire genome (Figure. 10B). The average PQS frequencies in
440 upregulated PQS-containing genes were 2.97 PQS/kbp (germinating conidia), 3.72 PQS/kbp
441 (hyphae), 2.80 PQS/kbp (12 h hypoxia), 2.66 PQS/kbp (iron starvation), 2.32 PQS/kbp

442 (oxidative stress), and 2.26 PQS/kbp (biofilms; Figure 10B). Although, there were a range of
443 PQS frequencies observed between the genes from 0.34 to 11.90 PQS/kbp. The genes
444 containing the highest PQS frequencies for each condition were AFUA_8G01710 in
445 germinating conidia and hyphae (11.90 PQS/kbp), AFUA_4G09580 in hypoxic fungi (5.59
446 PQS/kbp), AFUA_3G03650 during iron limitation (8.50 PQS/kbp), AFUA_5G10220 during
447 oxidative stress (5.28 PQS/kbp), and AFUA_8G01980 in biofilms (5.90 PQS/kbp).
448 Interestingly, each of these genes were upregulated in at least 3 out the 6 conditions
449 investigated.

450 **Discussion**

451 In this study, the number of potential quadruplex-forming sequences within the genomes of
452 fungi were computationally predicted and their potential involvement in pathogenicity was
453 discussed. Several important observations were made. This was the first study to identify the
454 heterogeneity of PQS amongst genetically distinct fungal species. Moreover, we highlighted
455 that pathogenic *Aspergillus* and *Cryptococcus* species contained fewer PQS compared to their
456 non-pathogenic counterparts and these could be found throughout known genomic features,
457 including genes, mRNA, repeat regions, tRNA, ncRNA, and rRNA. Genes containing PQS
458 were associated with metabolism, nucleic acid-binding proteins, protein modifying enzymes,
459 and transporters. Notably, PQS likely to form quadruplexes were identified in genes linked
460 with fungal virulence or drug resistance, such as *cyp51A*, and could be found in genes
461 upregulated during fungal growth and in response to stress.

462 The frequency of PQS throughout genomes is highly variable; for example, human genomes
463 were shown to contain around 0.228 PQS/kbp, whereas the genomes of *Escherichia coli*
464 contain around 0.028 PQS/kbp [15]. In this study we also found significant differences in the
465 number and frequency of PQS throughout fungal genomes. For example, fungi from the
466 Saccharomycotina (primarily composed of yeasts) contained a low frequency of PQS.
467 Conversely, filamentous fungi from the Pezizomycotina (containing many important pathogens
468 of both plants and humans) had much higher PQS frequencies and >15-fold more PQS than

469 fungi from the Saccharomycotina on average. It has previously been shown that G4s
470 contribute to genetic instability in yeasts (*Saccharomyces* spp.,) and as suggested for bacteria,
471 it's possible that G4s may also have been deselected through evolution in ascomycete yeasts
472 [45, 46]. However, things are more complicated concerning basidiomycetous yeasts such as
473 *Cryptococcus* spp. and *Malassezia* spp. Cryptococcal species such as *C. wingfieldii*, *C.*
474 *amylorentus*, and *C. floricola* had some of the highest PQS frequencies in the study.
475 Alternatively, all the *Malassezia* species investigated had much lower PQS frequencies than
476 expected, which was surprising given their genomes were GC rich compared to many other
477 fungi (>55% GC content).

478 Notably, the genomes of pathogenic aspergilli and cryptococci contained significantly lower
479 PQS frequencies relative to their non-pathogenic counterparts. This trend was observed
480 throughout the Pezizomycotina overall. Conversely, there was no correlation between PQS
481 and pathogenicity between *Candida* species or within the Saccharomycotina. The exact
482 reasons underlying the loss of PQS are not currently known. Fungi may have evolved to retain
483 the most essential quadruplex-forming sequences or those that provided them with a
484 pathogenic advantage. In the case of *Aspergillus* and *Cryptococcus* species, this loss of PQS
485 might be linked with evasion of the immune response or enhanced pathogenicity. Furthermore,
486 the observed loss of PQS within *Candida* and *Malassezia* species might be associated with
487 their ability to form commensal relationships and avoid stimulating a host response.
488 Interestingly, loss of PQS has recently also been observed in pathogenic *Coronaviridae* [47].
489 It has also been reported that host nucleolin (an RNA-binding protein) can bind and stabilise
490 quadruplexes in the LTR promoter of HIV-1, which can silence viral transcription [48].
491 Therefore, in this situation, loss of quadruplexes would be beneficial for immune evasion.
492 Contrarily, it has been suggested that iMs within HIV-1 are triggered after they promote the
493 acidification of intracellular compartments, modulating viral processes [31]. In this instance,
494 the formation of quadruplexes could be beneficial and promote pathogenicity. The importance
495 of quadruplex stabilisation may therefore be situational and could be detrimental or beneficial

496 depending on the environment. It is known that fungal pathogens such as *A. fumigatus* and *C.*
497 *neoformans* can survive the acidic conditions within intracellular organelles to propagate
498 infection [49, 50]. Therefore, it could be interesting to investigate the dynamics/flux of
499 quadruplex formation under conditions that fungi would experience within the host and
500 whether they contribute to fungal survival and propagation.

501 Here, we identified many PQS within the CDS, genes, and mRNA of *A. fumigatus*, *C.*
502 *neoformans*, and *C. albicans*; but a higher frequency of PQS within the repeat regions of *A.*
503 *fumigatus*, and the repeat regions and rRNA of *C. albicans*. It has been observed that *S.*
504 *cerevisiae* promoters and open reading frames are enriched with sequences capable of
505 potentially forming intramolecular G4s [51]. A recent study by Čutová *et al.*, also demonstrated
506 that inverted repeats were enriched in the centromeres and rDNA/rRNA regions, and G4s
507 were enriched in the telomeres and tRNAs of *S. cerevisiae* [52].

508 There were large differences between the numbers of genes containing PQS in these
509 organisms, but PQS were found distributed amongst genes encoding proteins from similar
510 classes. The highest represented groups being metabolite interconversion enzymes, nucleic
511 acid binding proteins, transporters, and protein modifying enzymes in all. Furthermore, genes
512 containing PQS within *S. cerevisiae* promoter regions were primarily involved in metabolism.
513 Which supports our observations and is equally concordant with observations made in both
514 humans and bacteria [53, 54]. It is widely acknowledged that metabolism in fungi is central to
515 its virulence, pathogenicity, and survival [55]. The ability of a fungus to rapidly adapt to the
516 host microenvironment can be achieved through such processes as metabolic remodelling,
517 stress resistance, and the utilisation of amino acids [56]. This in turn has a significant effect
518 on the triggering of important virulence traits, like the production of hyphae, biofilm growth,
519 capsule formation in *C. neoformans*, and melanisation [56]. Moreover, metabolic pathways
520 influence fungal vulnerability to innate immune defences and can regulate susceptibility to
521 antifungal drugs [57]. Not only primary metabolism, secondary metabolism results in the
522 release of various secondary metabolites and toxins, such as gliotoxin, aflatoxin, and

523 candidalysin [58, 59]. Interestingly, PQS could also be found in many of the most upregulated
524 genes during germination, in response to environmental stress, or in biofilms. Additionally,
525 these upregulated genes were enriched in PQS. Thus, the enrichment of PQS within these
526 genes is suggestive of the potential importance of quadruplexes in the regulation of biological
527 functions and pathogenicity in fungi, and it would be interesting to explore the effects
528 quadruplex-targeting ligands could have on these pathways.

529 PQS could also be found within key genes linked to virulence and drug resistance in these
530 fungi. In *A. fumigatus*, PQS could be found in *cyp51A*, *cyp51B*, *atrF*, and *fsk1* (involved in
531 resistance to azoles and echinocandins) [60-62], *iaeA*, *gliN* and *gliP*, (involved in toxin and
532 metabolite biosynthesis) [63, 64], *pksP*, *arp2*, *abr1*, *arb2*, and *ayg1* (involved in the production
533 of the virulence factor DHN-melanin) [65], in addition to numerous important transcription
534 factors (*meaB*, *hapX*, *pacC*) [66]. Similarly, in *C. neoformans*, PQS could be found in genes
535 linked to azole resistance (*afr1*) [67], melanin production (*lac2*) [68], and transcription factors
536 (*pacC/rim101*). The most notable virulence factor of *C. neoformans* is its polysaccharide
537 capsule and PQS could be found in numerous capsule-associated genes (*cas31*, *cap60*,
538 *cap59*, *cap64*, *cap2*, *cap5*, *cas33*, *cap10*, and *cxt1*) [69]. In *C. albicans* PQS could be found
539 in genes such as the iron permeases *ftr1* and *ftr2* [70]. Notably, many of these genes contained
540 PQS which have previously been shown to be capable of forming *bona fide* quadruplexes,
541 such as the sequence GGAGGAGGAGG [71]. It is also interesting to highlight that these
542 organisms contained many more G₂+L₁₋₁₂ compared to G₃+L₁₋₁₂ PQS sequences, which is a
543 characteristic shared with *S. cerevisiae* [15].

544 There are now an ever-increasing number of G4s identified within genes linked to microbial
545 pathogenicity. G4-forming motifs located in the *hsdS*, *recD*, and *pmrA* genes of *S.*
546 *pneumoniae*, and *var* genes of *P. falciparum* have been identified to modulate host-pathogen
547 interactions [72, 73]. Moreover, targeting G4s in *espK*, *espB*, and *cyp51* from *Mycobacterium*
548 *tuberculosis* with the G4/iM-binding ligand TMPyP4 could inhibit transcription of these
549 essential virulence genes [74]. Binding of several G4-targeting ligands to G4s in viruses have

550 been shown to limit the virulence of the Herpes simplex virus-1, HIV-1, Ebola, and Hepatitis C
551 [75]. Interestingly, dinuclear ruthenium (II) complexes (well-characterised G4 and iM DNA
552 binding agents) have been shown to be active against methicillin-resistant *S. aureus* and
553 vancomycin-resistant *Enterococcus* spp [29, 30]. Notably, another G4/iM-ligand, berberine,
554 has also demonstrated activity towards fluconazole-resistant *C. albicans* and *C. neoformans*
555 [76]. Thus, quadruplexes may provide a novel target to overcome the issues surrounding drug
556 resistance.

557 **Conclusion**

558 Identifying PQS within key virulence/drug resistance genes of fungal pathogens has
559 highlighted structures that may be targeted by G4/iM-binding drugs to ameliorate fungal
560 pathogenicity. However, we first need to identify whether these structures are formed and if
561 they can modulate biological functions. Understanding whether quadruplexes could form
562 under pathophysiological conditions, whether fungi themselves could release quadruplex-
563 binding ligands to modulate host responses, or identifying whether there are fungal specific
564 quadruplex-forming sequences could also be important factors to consider. Thus, targeting
565 quadruplexes in fungi could present a novel target for the amelioration of fungal infection and
566 drug resistance, although a more thorough investigation is necessary.

567 **Acknowledgements**

568 V. B was supported by the Czech Science Foundation (18-15548S). I would like to
569 acknowledge Phil Spence for contributing the G4 and iM structures and for critical reviewing
570 of the manuscript. S.B conceived the study. E. F. W., N. B., V. B., and S.B., performed the
571 data analysis. E. F. W. and S. B wrote the manuscript in consultation with Z. A. E. W. All
572 authors contributed to interpretation of the results, provided critical feedback, and helped to
573 shape the research and manuscript.

574

575

576 **References**

- 577 1. *Correction: Stop neglecting fungi*. *Nat Microbiol*, 2017. **2**: p. 17123.
- 578 2. Skellam, E., *Strategies for Engineering Natural Product Biosynthesis in Fungi*. *Trends Biotechnol*, 2019. **37**(4): p. 416-427.
- 579 3. Hernández, V.A., et al., *Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications*. *World J Microbiol Biotechnol*, 2019. **35**(10): p. 160.
- 580 4. Hooker, C.A., K.Z. Lee, and K.V. Solomon, *Leveraging anaerobic fungi for biotechnology*. *Curr Opin Biotechnol*, 2019. **59**: p. 103-110.
- 581 5. Gallone, B., et al., *Domestication and Divergence of *Saccharomyces cerevisiae* Beer Yeasts*. *Cell*, 2016. **166**(6): p. 1397-1410.e16.
- 582 6. Brown, G.D., et al., *Hidden killers: human fungal infections*. *Sci Transl Med*, 2012. **4**(165): p. 165rv13.
- 583 7. Fisher, M.C., et al., *Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture*. *mBio*, 2020. **11**(3).
- 584 8. Köhler, J.R., A. Casadevall, and J. Perfect, *The spectrum of fungi that infects humans*. *Cold Spring Harb Perspect Med*, 2014. **5**(1): p. a019273.
- 585 9. van Arkel, A.L.E., et al., *COVID-19-associated Pulmonary Aspergillosis*. *Am J Respir Crit Care Med*, 2020. **202**(1): p. 132-135.
- 586 10. Ramirez-Garcia, A., et al., *Scedosporium and Lomentospora: an updated overview of underrated opportunists*. *Med Mycol*, 2018. **56**(suppl_1): p. 102-125.
- 587 11. Berman, J. and D.J. Krysan, *Drug resistance and tolerance in fungi*. *Nat Rev Microbiol*, 2020. **18**(6): p. 319-331.
- 588 12. World Health, O., *First meeting of the WHO antifungal expert group on identifying priority fungal pathogens: meeting report*. 2020, Geneva: World Health Organization.
- 589 13. Varshney, D., et al., *The regulation and functions of DNA and RNA G-quadruplexes*. *Nat Rev Mol Cell Biol*, 2020. **21**(8): p. 459-474.
- 590 14. Abou Assi, H., et al., *i-Motif DNA: structural features and significance to cell biology*. *Nucleic Acids Res*, 2018. **46**(16): p. 8038-8056.
- 591 15. Marsico, G., et al., *Whole genome experimental maps of DNA G-quadruplexes in multiple species*. *Nucleic Acids Res*, 2019. **47**(8): p. 3862-3874.
- 592 16. Burge, S., et al., *Quadruplex DNA: sequence, topology and structure*. *Nucleic Acids Res*, 2006. **34**(19): p. 5402-15.
- 593 17. Dai, J., et al., *An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution*. *J Am Chem Soc*, 2006. **128**(4): p. 1096-8.

612 18. Vígłaský, V., L. Bauer, and K. Tlucková, *Structural features of intra- and intermolecular*
613 *G-quadruplexes derived from telomeric repeats*. Biochemistry, 2010. **49**(10): p. 2110-
614 20.

615 19. Lane, A.N., et al., *Stability and kinetics of G-quadruplex structures*. Nucleic Acids Res,
616 2008. **36**(17): p. 5482-515.

617 20. Brazier, J.A., A. Shah, and G.D. Brown, *I-motif formation in gene promoters: unusually*
618 *stable formation in sequences complementary to known G-quadruplexes*. Chem
619 Commun (Camb), 2012. **48**(87): p. 10739-41.

620 21. Gehring, K., J.L. Leroy, and M. Guéron, *A tetrameric DNA structure with protonated*
621 *cytosine.cytosine base pairs*. Nature, 1993. **363**(6429): p. 561-5.

622 22. Wright, E.P., J.L. Huppert, and Z.A.E. Waller, *Identification of multiple genomic DNA*
623 *sequences which form i-motif structures at neutral pH*. Nucleic Acids Res, 2017. **45**(6):
624 p. 2951-2959.

625 23. Rajendran, A., S. Nakano, and N. Sugimoto, *Molecular crowding of the cosolutes*
626 *induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral*
627 *pH*. Chem Commun (Camb), 2010. **46**(8): p. 1299-301.

628 24. Zeraati, M., et al., *I-motif DNA structures are formed in the nuclei of human cells*. Nat
629 Chem, 2018. **10**(6): p. 631-637.

630 25. Saranathan, N. and P. Vivekanandan, *G-Quadruplexes: More Than Just a Kink in*
631 *Microbial Genomes*. Trends Microbiol, 2019. **27**(2): p. 148-163.

632 26. Balasubramanian, S., L.H. Hurley, and S. Neidle, *Targeting G-quadruplexes in gene*
633 *promoters: a novel anticancer strategy?* Nat Rev Drug Discov, 2011. **10**(4): p. 261-75.

634 27. Zhang, Y., et al., *G-quadruplex structures trigger RNA phase separation*. Nucleic Acids
635 Res, 2019. **47**(22): p. 11746-11754.

636 28. Bartas, M., et al., *The Presence and Localization of G-Quadruplex Forming Sequences*
637 *in the Domain of Bacteria*. Molecules, 2019. **24**(9).

638 29. Li, F., et al., *The antimicrobial activity of inert oligonuclear polypyridylruthenium(II)*
639 *complexes against pathogenic bacteria, including MRSA*. Dalton Trans, 2011. **40**(18):
640 p. 5032-8.

641 30. Li, F., J.G. Collins, and F.R. Keene, *Ruthenium complexes as antimicrobial agents*.
642 Chem Soc Rev, 2015. **44**(8): p. 2529-42.

643 31. Ruggiero, E., et al., *A dynamic i-motif with a duplex stem-loop in the long terminal*
644 *repeat promoter of the HIV-1 proviral genome modulates viral transcription*. Nucleic
645 Acids Res, 2019. **47**(21): p. 11057-11068.

646 32. Shen, X.-X., et al., *Genome-scale phylogeny and contrasting modes of genome*
647 *evolution in the fungal phylum Ascomycota*. bioRxiv, 2020: p. 2020.05.11.088658.

648 33. Grigoriev, I.V., et al., *MycoCosm portal: gearing up for 1000 fungal genomes*. Nucleic
649 Acids Res, 2014. **42**(Database issue): p. D699-704.

650 34. Brázda, V., et al., *G4Hunter web application: a web server for G-quadruplex prediction*.
651 Bioinformatics, 2019. **35**(18): p. 3493-3495.

652 35. Mi, H., et al., *PANTHER version 14: more genomes, a new PANTHER GO-slim and*
653 *improvements in enrichment analysis tools*. Nucleic Acids Res, 2019. **47**(D1): p. D419-
654 d426.

655 36. Thomas, P.D., et al., *Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools*. Nucleic Acids Res,
656 2006. **34**(Web Server issue): p. W645-50.

658 37. Kikin, O., L. D'Antonio, and P.S. Bagga, *QGRS Mapper: a web-based server for*
659 *predicting G-quadruplexes in nucleotide sequences*. Nucleic Acids Res, 2006. **34**(Web
660 Server issue): p. W676-82.

661 38. Tomasello, G., I. Armenia, and G. Molla, *The Protein Imager: a full-featured online*
662 *molecular viewer interface with server-side HQ-rendering capabilities*. Bioinformatics,
663 2020. **36**(9): p. 2909-2911.

664 39. Hagiwara, D., et al., *Comparative transcriptome analysis revealing dormant conidia*
665 *and germination associated genes in Aspergillus species: an essential role for AtfA in*
666 *conidial dormancy*. BMC Genomics, 2016. **17**: p. 358.

667 40. Hillmann, F., et al., *The novel globin protein fungoglobin is involved in low oxygen*
668 *adaptation of Aspergillus fumigatus*. Mol Microbiol, 2014. **93**(3): p. 539-53.

669 41. Kurucz, V., et al., *Additional oxidative stress reroutes the global response of*
670 *Aspergillus fumigatus to iron depletion*. BMC Genomics, 2018. **19**(1): p. 357.

671 42. Stajich, J.E., et al., *FungiDB: an integrated functional genomics database for fungi*.
672 Nucleic Acids Res, 2012. **40**(Database issue): p. D675-81.

673 43. Gibbons, J.G., et al., *Global transcriptome changes underlying colony growth in the*
674 *opportunistic human pathogen Aspergillus fumigatus*. Eukaryot Cell, 2012. **11**(1): p.
675 68-78.

676 44. Steenwyk, J.L., et al., *A Robust Phylogenomic Time Tree for Biotechnologically and*
677 *Medically Important Fungi in the Genera Aspergillus and Penicillium*. mBio, 2019.
678 **10**(4).

679 45. Lopes, J., et al., *G-quadruplex-induced instability during leading-strand replication*.
680 Embo j, 2011. **30**(19): p. 4033-46.

681 46. Guo, J.U. and D.P. Bartel, *RNA G-quadruplexes are globally unfolded in eukaryotic*
682 *cells and depleted in bacteria*. Science, 2016. **353**(6306).

683 47. Bartas, M., et al., *In-Depth Bioinformatic Analyses of Nidovirales Including Human*
684 *SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-*

685 canonical Nucleic Acid Structures in Their Lifecycles. *Front Microbiol*, 2020. **11**: p.
686 1583.

687 48. Tosoni, E., et al., *Nucleolin stabilizes G-quadruplex structures folded by the LTR*
688 *promoter and silences HIV-1 viral transcription*. *Nucleic Acids Res*, 2015. **43**(18): p.
689 8884-97.

690 49. Wasylka, J.A. and M.M. Moore, *Aspergillus fumigatus conidia survive and germinate*
691 *in acidic organelles of A549 epithelial cells*. *J Cell Sci*, 2003. **116**(Pt 8): p. 1579-87.

692 50. Coelho, C., A.L. Bocca, and A. Casadevall, *The intracellular life of Cryptococcus*
693 *neoformans*. *Annu Rev Pathol*, 2014. **9**: p. 219-38.

694 51. Hershman, S.G., et al., *Genomic distribution and functional analyses of potential G-*
695 *quadruplex-forming sequences in Saccharomyces cerevisiae*. *Nucleic Acids Res*,
696 2008. **36**(1): p. 144-56.

697 52. Čutová, M., et al., *Divergent distributions of inverted repeats and G-quadruplex forming*
698 *sequences in Saccharomyces cerevisiae*. *Genomics*, 2020. **112**(2): p. 1897-1901.

699 53. Eddy, J. and N. Maizels, *Gene function correlates with potential for G4 DNA formation*
700 *in the human genome*. *Nucleic Acids Res*, 2006. **34**(14): p. 3887-96.

701 54. Rawal, P., et al., *Genome-wide prediction of G4 DNA as regulatory motifs: role in*
702 *Escherichia coli global regulation*. *Genome Res*, 2006. **16**(5): p. 644-55.

703 55. Brown, A.J., et al., *Metabolism impacts upon Candida immunogenicity and*
704 *pathogenicity at multiple levels*. *Trends Microbiol*, 2014. **22**(11): p. 614-22.

705 56. Ene, I.V., et al., *Metabolism in fungal pathogenesis*. *Cold Spring Harb Perspect Med*,
706 2014. **4**(12): p. a019695.

707 57. Parente-Rocha, J.A., et al., *Antifungal Resistance, Metabolic Routes as Drug Targets,*
708 *and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi*. *Mediators*
709 *Inflamm*, 2017. **2017**: p. 9870679.

710 58. Bignell, E., et al., *Secondary metabolite arsenal of an opportunistic pathogenic fungus*.
711 *Philos Trans R Soc Lond B Biol Sci*, 2016. **371**(1709).

712 59. Moyes, D.L., et al., *Candidalysin is a fungal peptide toxin critical for mucosal infection*.
713 *Nature*, 2016. **532**(7597): p. 64-8.

714 60. Zhang, J., et al., *The Fungal CYP51s: Their Functions, Structures, Related Drug*
715 *Resistance, and Inhibitors*. *Front Microbiol*, 2019. **10**: p. 691.

716 61. Meneau, I., A.T. Coste, and D. Sanglard, *Identification of Aspergillus fumigatus*
717 *multidrug transporter genes and their potential involvement in antifungal resistance*.
718 *Med Mycol*, 2016. **54**(6): p. 616-27.

719 62. Jiménez-Ortigosa, C., et al., *Emergence of Echinocandin Resistance Due to a Point*
720 *Mutation in the fks1 Gene of Aspergillus fumigatus in a Patient with Chronic Pulmonary*
721 *Aspergillosis*. *Antimicrob Agents Chemother*, 2017. **61**(12).

722 63. Bok, J.W., et al., *LaeA, a regulator of morphogenetic fungal virulence factors*. *Eukaryot*
723 *Cell*, 2005. **4**(9): p. 1574-82.

724 64. Bok, J.W. and N.P. Keller, *LaeA, a regulator of secondary metabolism in Aspergillus*
725 *spp*. *Eukaryot Cell*, 2004. **3**(2): p. 527-35.

726 65. Stappers, M.H.T., et al., *Recognition of DHN-melanin by a C-type lectin receptor is*
727 *required for immunity to Aspergillus*. *Nature*, 2018. **555**(7696): p. 382-386.

728 66. Bultman, K.M., C.H. Kowalski, and R.A. Cramer, *Aspergillus fumigatus virulence*
729 *through the lens of transcription factors*. *Med Mycol*, 2017. **55**(1): p. 24-38.

730 67. Sanguinetti, M., et al., *Role of AFR1, an ABC transporter-encoding gene, in the in vivo*
731 *response to fluconazole and virulence of Cryptococcus neoformans*. *Infect Immun*,
732 2006. **74**(2): p. 1352-9.

733 68. Missall, T.A., et al., *Distinct stress responses of two functional laccases in*
734 *Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant*
735 *Tsa1*. *Eukaryot Cell*, 2005. **4**(1): p. 202-8.

736 69. Zaragoza, O., et al., *The capsule of the fungal pathogen Cryptococcus neoformans*.
737 *Adv Appl Microbiol*, 2009. **68**: p. 133-216.

738 70. Ziegler, L., et al., *Functional characterization of the ferroxidase, permease high-affinity*
739 *iron transport complex from Candida albicans*. *Mol Microbiol*, 2011. **81**(2): p. 473-85.

740 71. Zahin, M., et al., *Identification of G-quadruplex forming sequences in three manatee*
741 *papillomaviruses*. *PLoS One*, 2018. **13**(4): p. e0195625.

742 72. Mishra, S.K., et al., *Characterization of highly conserved G-quadruplex motifs as*
743 *potential drug targets in Streptococcus pneumoniae*. *Sci Rep*, 2019. **9**(1): p. 1791.

744 73. Harris, L.M., et al., *G-Quadruplex DNA Motifs in the Malaria Parasite Plasmodium*
745 *falciparum and Their Potential as Novel Antimalarial Drug Targets*. *Antimicrob Agents*
746 *Chemother*, 2018. **62**(3).

747 74. Mishra, S.K., et al., *Characterization of G-Quadruplex Motifs in espB, espK, and cyp51*
748 *Genes of Mycobacterium tuberculosis as Potential Drug Targets*. *Mol Ther Nucleic*
749 *Acids*, 2019. **16**: p. 698-706.

750 75. Ruggiero, E. and S.N. Richter, *Viral G-quadruplexes: New frontiers in virus*
751 *pathogenesis and antiviral therapy*. *Annu Rep Med Chem*, 2020. **54**: p. 101-131.

752 76. da Silva, A.R., et al., *Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic*
753 *Yeast: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition*
754 *in Candida spp*. *Antimicrob Agents Chemother*, 2016. **60**(6): p. 3551-7.

755

756

757 **Table 1. PQS containing genes in *A. fumigatus* linked to virulence, drug resistance, or
758 key biological processes.**

Identifier	Gene	Description	Highest scoring sequence
AFUA_6G12400	<i>fks1</i>	1,3-beta-glucan synthase catalytic subunit	<u>GGAAAGGGGCTCGGGCATGGG*</u>
AFUA_6G11390	<i>gel2</i>	1,3-beta-glucanosyltransferase	<u>GGGCTTGGCGGAGGTCTGGGTTGTGTTGG*</u>
AFUA_2G12850	<i>gel3</i>	Putative GPI anchored beta(1-3)glucanosyltransferase, belongs to the 7-member GEL family	<u>GGAGGAGGAGG</u>
AFUA_4G06890	<i>cyp51A</i>	14-alpha sterol demethylase	<u>GGGTCCCAGGAACGGGCAAGGGG*</u>
AFUA_7G03740	<i>cyp51B</i>	14-alpha sterol demethylase	<u>GGGGTAAGGGGGGCCAGGG*</u>
AFUA_1G15780	<i>leu2A</i>	3-isopropylmalate dehydrogenase with a predicted role in leucine biosynthesis	<u>GGGGCCGGAGG*</u>
AFUA_4G06670	<i>aspf7</i>	Allergen Asp f 7	<u>GGCCTGCAGGAGTAGGGTAGATGG*</u>
AFUA_5G11990	<i>alg3</i>	Ortholog(s) have dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase activity	<u>GGTCTACGGGGCCCTTGG</u>
AFUA_6G04360	<i>atrF</i>	Putative ABC transporter	<u>GGGTATTTGTTGGGGGATGGGG</u>
AFUA_3G03430	<i>sitT</i>	ABC multidrug transporter SitT, putative	<u>GGCGAGGTCGGCCAGG*</u>
AFUA_2G07900	<i>stuA</i>	Putative APSES domain transcription factor	<u>GGGATCTGGCAAGCAGGGACGGG</u>
AFUA_8G01670	<i>cat2</i>	Putative bifunctional catalase-peroxidase	<u>GGTCGGGGTCTTGGTCCAGG*</u>
AFUA_6G12150	<i>atfD</i>	Putative bZip-type transcription factor with similarity to <i>atfA</i>	<u>GGGAGGTAGGCGTAGG*</u>
AFUA_3G10930	<i>meaB</i>	Ortholog(s) have double-stranded DNA binding, sequence-specific DNA binding activity	<u>GGGCACGCAGGAGACTCTGGGACCCGGG*</u>
AFUA_5G03920	<i>hapX</i>	bZIP transcription factor HapX	<u>GGAGCAGGGAGGCAGG*</u>
AFUA_2G11780	<i>creA</i>	Carbon catabolite repressor A	<u>GGCGGCGGGCGG*</u>
AFUA_4G09080	<i>sebA</i>	Putative transcription factor	<u>GGGTGATGGAGAAAAGGGATGGCAGGG*</u>
AFUA_3G11250	<i>ace2</i>	C2H2 transcription factor with a role in conidiophore development, pigment production, germination and virulence	<u>GGTGGGGTGG*</u>
AFUA_3G11970	<i>pacC</i>	C2H2 finger domain transcription factor	<u>GGTGGTGGCTACGGCCCTGG</u>
AFUA_2G17560	<i>arp2</i>	1,3,6,8-tetrahydroxynaphthalene reductase	<u>GGGGAGGGGACCCCTGCATGGAGGGGGGG*</u>
AFUA_2G17540	<i>abr1</i>	Multicopper oxidase <i>abr1</i>	<u>GGCCGGTGGCTGG*</u>
AFUA_2G17530	<i>arb2</i>	Laccase <i>abr2</i>	<u>GGCGAGCGGTACTCGGTTCATGG</u>
AFUA_2G17550	<i>ayg1</i>	Heptaketide hydrolyase <i>ayg1</i>	<u>GGACGGGGTTGGACTGG*</u>
AFUA_2G17600	<i>pksP/alb1</i>	Conidial pigment polyketide synthase <i>alb1</i>	<u>GGAAATGCCGGGAGGACGGAAACACGG</u>
AFUA_8G07080	<i>mep</i>	Putative secreted metalloprotease	<u>GGCAAGGCCGGCCTGG</u>
AFUA_1G16190	<i>aspf9</i>	Cell wall glucanase	<u>GGCTCTGGCTCCGGCTCCGG</u>
AFUA_5G08030	<i>celA</i>	Ortholog(s) have spore wall localization	<u>GGTTGTTGGGACGTGGGAGACGG*</u>
AFUA_6G08640	<i>mip1</i>	Ortholog(s) have metalloendopeptidase activity, role in cellular iron ion homeostasis	<u>GGGAGGTGGGTCGATGGGGATTGGG</u>
AFUA_6G09720	<i>gliN</i>	N-methyltransferase <i>gliN</i>	<u>GGGGGGCGCTTGGCTGGAAAGGCAGGTTGGG*</u>
AFUA_4G08580	<i>prx1</i>	Mitochondrial peroxiredoxin	<u>GGTGTACGGCCAGTGGAGGCAGGG*</u>
AFUA_6G09660	<i>gliP</i>	Nonribosomal peptide synthetase <i>gliP</i>	<u>GGACCAAGCCGGGGCCCGGG*</u>
AFUA_3G03420	<i>sidD</i>	Nonribosomal peptide synthetase 4	<u>GGAAAGGCATGGGAGG</u>
AFUA_1G17200	<i>sidC</i>	Fusarinine C non-ribosomal peptide synthetase (NRPS), putative	<u>GGGTATGGGATGCTGGATCCAAGG*</u>
AFUA_6G04820	<i>pabA</i>	Para-aminobenzoic acid synthetase, an enzyme catalyzing a late step in the biosynthesis of folate	<u>GGTGGCGGGGG</u>
AFUA_2G11970	<i>plaA</i>	Ortholog(s) have calcium-dependent phospholipase A2 activity	<u>GGGCAGGTGGGTTGGCAGTAGGG*</u>
AFUA_2G16520	<i>pld2</i>	Putative phospholipase D	<u>GGGCATTGTATTGTTGGGGGGAGGG*</u>
AFUA_1G14660	<i>laeA</i>	Protein with similarity to protein methyltransferases, involved in regulation of secondary metabolism	<u>GGGATGTGGACAGGGATTGGG</u>
AFUA_2G09030	<i>dppV</i>	Secreted dipeptidyl peptidase	<u>GGGAGGGAGAGGGAGGG*</u>
AFUA_1G14550	<i>sod3</i>	Putative manganese superoxide dismutase	<u>GGGTAGGGAGGGGTGGG*</u>

759

760 * Denotes that the sequence can be found on the complementary strand

761 **Table 2. PQS containing genes in *C. neoformans* linked to virulence, drug resistance,**

762 or key biological processes.

Identifier	Gene	Description	Highest scoring sequence
CNA00180	<i>vcx1</i>	Vacuolar calcium exchanger	<u>GGCGCGGGAGG*</u>
CNA00880	<i>itr1</i>	Myo-inositol transporter	<u>GGCGATGGATTGTGGACTTGG</u>
CNA06800	<i>cas31</i>	Protein involved in gxm O-acetylation	<u>GGAACGGCGATCCTCGGGTGGAAAGG</u>
CNA05840	<i>cap60/cel1</i>	Putative glycosyl hydrolase	<u>GGACCCAGGAAACCTGGCCGTGG*</u>
CNA07000	<i>cap59</i>	Capsular associated protein	<u>GGATAGGAGCTGGTACGG</u>
CNA07090	<i>afr1</i>	ATP-binding cassette transporter	<u>GGTAGGAAGGTGG*</u>
CNA07240	<i>cap64/hrk1</i>	Serine/threonine-protein kinase	<u>GGGGGAGGCGG</u>
CNA07920	<i>sit1</i>	Siderophore iron transporter	<u>GGAGGCGGTGG</u>
CNB00720	<i>gsk3</i>	Similar to glycogen synthase kinase	<u>GGCGCAGGCTGGGGCTGGGG*</u>
CNB03210	<i>ktr3</i>	Alpha-1,2-mannosyltransferase	<u>GGATGGAAGGGGG</u>
CNB03880	<i>cap2</i>	F-actin capping protein beta subunit	<u>GGTGGGGAGG</u>
CNC02470	<i>crz1</i>	Phosphatase, putative	<u>GGGAGGCTGGGAGGTGTTGGGAGAGGG*</u>
CNC04980	<i>cap64</i>	Capsular associated protein	<u>GGGATGGCCGGCGGGG*</u>
CNC06590	<i>hog1</i>	Mitogen-activated protein kinase, putative	<u>GGATGGTGGATGGCGGATGGCGG</u>
CND00550	<i>kre6</i>	Putative beta-glucan synthase	<u>GGAGGTGGCGG</u>
CND01080	<i>ctr4</i>	Copper uptake transporter	<u>GGAAAGGATGGTGG</u>
CND02320	<i>vph1</i>	Vacuolar (H ⁺)-ATPase subunit	<u>GGGTTGCAGGCACAGGATAATGGGGG</u>
CND02810	<i>cap2</i>	Capsular related protein	<u>GGATGTTATGGTGCCAGATGGAGAGGGAG</u>
CND03510	<i>pmc1</i>	Calcium-transporting ATPase	<u>GGGGCGAGCAGGGCGGAGGGAGTCTGG*</u>
CND04030	<i>cap5</i>	Beta-1,2-xylosyltransferase	<u>GGTTGGAGCAGGGCGG</u>
CNE00350	<i>cpk1</i>	Mitogen-activated protein kinase	<u>GGGCAGGGAGGGGG*</u>
CNF02940	<i>fsk</i>	Serine/threonine protein kinase	<u>GGTAGGATGGTGG*</u>
CNG01250	<i>lac2</i>	Laccase 2	<u>GGGGAGGAGAAGGGGAGGGGAGGGG*</u>
CNG01860	<i>zip2</i>	Zrt1 protein, putative	<u>GGTCTTGGTCTAGGCGCTAGG</u>
CNG02560	<i>uxs1</i>	UDP-glucuronic acid decarboxylase	<u>GGGCTGGCAGGGAGCAGG*</u>
CNG04090	<i>cmt1</i>	Alpha-1,3-mannosyltransferase	<u>GGATCGGGGTGGAGAGG*</u>
CNG04130	<i>sec14-1</i>	Sec14 cytosolic factor	<u>GGGGTTGGGAGGGTTGGAGGG</u>
CNH00970	<i>rim101</i>	pH-response transcription factor	<u>GGAGAGGAGAGGGTTGAGG</u>
CNH02270	<i>chs3</i>	Putative chitin synthase	<u>GGGACAGGGCGGGATGGAGGG*</u>
CNH00870	<i>usv101</i>	RNA polymerase II transcription factor	<u>GGATGAGGGTGAGGATGAGG*</u>
CNI02290	<i>cps1</i>	Polysaccharide synthase	<u>GGGAAGAGAGGGCGGGGCAGG*</u>
CNJ00330	<i>fzc27</i>	PRO1 protein	<u>GGAGGAAGGGG*</u>
CNJ01930	<i>pmt2</i>	Dolichyl-phosphate-mannose-protein mannosyltransferase	<u>GGGCAAGTGGAAAAAGGGTACGGCGCGGG</u>
CNJ02230	<i>cna1</i>	Calcineurin A catalytic subunit	<u>GGAGGCAGGTGG</u>
CNJ02920	<i>cir1</i>	Iron-responsive gata-type transcription factor	<u>GGGAGAAACGTGAGAGGGAAAGGGAAAGGG</u>
CNK00730	<i>cas33</i>	Capsular associated protein	<u>GGGATGGAGAGGGCGGGGGGG*</u>
CNK01140	<i>cap10</i>	Capsular associated protein	<u>GGCGGGTAGGGAGTGG</u>
CNL04070	<i>nrg1</i>	Transcriptional regulator	<u>GGGGGGAGAGACGCAGGGTGGTGAAGGG</u>
CNL04750	<i>cxt1</i>	Cryptococcal xylosyltransferase 1	<u>GGGAGCTTGAAGGGGGAGGAGAAAGGG</u>
CNL04830	<i>ugt1</i>	Putative UDP-galactose transporter	<u>GGATCTGGAGCTGGATTGG</u>
CNN01400	<i>ccc2</i>	Copper-exporting ATPase	<u>GGCGGTACGGTAAACGGATTGGGG</u>

763

764 * Denotes that the sequence can be found on the complementary strand

765

766

767

768 **Table 3.** PQS containing genes in *C. albicans* linked to virulence, drug resistance, or key
769 biological processes.

Identifier	Gene	Description	Highest scoring sequence
3643320	<i>set3</i>	NAD-dependent histone deacetylase complex component	<u>GGTGGTGG</u> CAGT <u>GGTGGGGG</u>
3639325	<i>crd1</i>	Cardiolipin synthase	<u>GGGTTGGG</u> TT <u>GGTTGTGG</u>
3639369	<i>tup1</i>	Transcriptional repressor of filamentous growth	<u>GGTGGGGC</u> GGCAGG*
3634775	<i>arg81</i>	Zn(II)2Cys6 transcription factor	<u>GGAATTGGAATTGG</u> AACT <u>GG</u>
3643303	<i>ftr2</i>	High-affinity iron permease	<u>GGCTA</u> <u>GGGGCGGGG</u> CTAGG
3639306	<i>mvd1</i>	Mevalonate diphosphate decarboxylase	<u>GTTTGTGG</u> CCT <u>GGGAAATGGG</u>
3643318	<i>ftr1</i>	High-affinity iron permease	<u>GGCTA</u> <u>GGGGCGGGG</u> CTAGG
3640755	<i>ole1</i>	Fatty acid desaturase	<u>GGGCT</u> <u>GGGGTGACTACTGGGGAGGG</u>
3643806	<i>inp51</i>	Putative phosphatidylinositol-4,5-bisphosphate phosphatase	<u>GGGGATTGGGG</u> CAGTGT <u>GGTGATGG</u>
3637340	<i>rad32</i>	Protein similar to <i>S. cerevisiae</i> protein with role in nucleotide excision repair	<u>GGTGGTGGTGG</u> *
3646918	<i>ilv1</i>	Serine and threonine dehydratase	<u>GGAGGAGGTGG</u>
3643456	<i>lem3</i>	Putative membrane protein	<u>GGTGGGTGGAGG</u>
3638520	<i>rpd31</i>	SIN3 histone deacetylase complex component	<u>GGTGGAGGTGG</u>
3635225	<i>sfp1</i>	C2H2 transcription factor involved in regulation of biofilm formation	<u>GGTTCGT</u> <u>GGCTAAAGGATGA</u> GG
3637934	<i>mgm1</i>	Putative mitochondrial GTPase	<u>GGGGGAGGGGG</u>
3637862	<i>arg83</i>	GAL4-like Zn(II)2Cys6 transcription factor	<u>GGTGGTGGTAGT</u> <u>GGTGGCGG</u>
3643765	<i>pikA</i>	Phosphatidyl inositol kinase-like orf at the a mating type-like locus	<u>GGGGATTG</u> GGGG
3636515	<i>psd2</i>	Phosphatidylserine decarboxylase	<u>GGATTGGAGTGT</u> <u>GGTTGG</u>
3646284	<i>atm1</i>	Member of MDR subfamily of ABC family	<u>GGGGTGG</u> AGCATT <u>GGGG</u> *
3639268	<i>sap5</i>	Biofilm-specific aspartyl protease	<u>GGAAAAGGAAATTC</u> <u>GGAAACAGG</u> *
3647864	<i>yaf9</i>	Subunit of the NuA4 histone acetyltransferase complex	<u>GGTGGTGAGGGTGG</u>
3643166	<i>nrg1</i>	Represses yeast-hypha morphogenesis and hypha-specific gene expression	<u>GGTACTT</u> <u>GGGAAAGGAT</u> <u>GGGGATAAAGG</u> *
3645897	<i>gcn2</i>	Kinase; has nonessential role in amino acid starvation response	<u>GGTGGTGGTGG</u>
3642576	<i>rrp9</i>	Ribosomal protein; mutation confers resistance to 5-fluorocytosine (5-FC), 5-fluorouracil (5-FU), and tubercidin (7-deazaadenosine)	<u>GGAGGAGGAGG</u>
3641877	<i>pex13</i>	Protein required for peroxisomal protein import mediated by PTS1 and PTS2 targeting sequences	<u>GGTTAT</u> <u>GGGAGTGGATAT</u> <u>GG</u>
3647296	<i>mss11</i>	Transcriptional regulator of filamentous growth MAPK cascade and cAMP-PKA pathways	<u>GGAGGAGGAGG</u>
3639727	<i>lrg1</i>	Similar to rho/rac GTPase-activating family of proteins	<u>GGTGCT</u> <u>GGTGCT</u> <u>GGTGTA</u> GG

770

771 * Denotes that the sequence can be found on the complementary strand

772

773

774

775

776 **Figure Legends**

777 **Figure 1. G-quadruplex (G4) and i-motif (iM) structures.** Representative examples of G4s
778 and iMs. **(A)** Side **(B)** and top-down view of the human telomere DNA quadruplex in K⁺ solution
779 hybrid-1 form (PDB:2HY9). **(C)** The basic structure of the G-tetrad. **(D)** Side **(E)** and top-down
780 view of an intramolecular i-motif DNA structure with C-C⁺ base pairing (PDB 1A83). **(F)** C-C⁺
781 base pairing found in i-motif structures. Images were generated using the Protein Imager
782 software.

783 **Figure 2. Heterogeneity of PQS across fungal divisions.** The total number and frequency
784 of PQS within 1362 fungal genomes were analysed using G4Hunter with a threshold of 1.5
785 and a window size of 30. The average number of PQS **(A and E)**, PQS/kbp **(B and F)**,
786 PQS/GC% **(C and G)** and GC content **(D and H)** in fungi from the Ascomycota (n=1107),
787 Basidiomycota (n=189), Mucoromycota (n=31), Zoopagomycota (n=12), Chytridiomycota
788 (n=12), Microsporidia (n=9), and Cryptomycota. (n=2). E to H contain boxplots with Tukey
789 whiskers. The outliers are indicated by dots and the line within the boxplot is representative of
790 the median value.

791 **Figure 3. Higher genome GC-content is positively correlated with the frequency of PQS.**
792 The frequency of PQS relative to the GC content of fungi was plotted for **(A)** all fungal genomes
793 in the study, **(B)** the Ascomycota, **(C)** the Basidiomycota, **(D)** the Mucoromycota, **(E)** the
794 Zoopagomycota, **(F)** the Chytridiomycota, **(G)** the Microsporidia, and **(H)** the Cryptomycota.
795 The Pearson correlation coefficient was used to determine the association between PQS and
796 GC content. P<0.05 was considered statistically significant.

797 **Figure 4. Heterogeneity of PQS across fungal sub-divisions.** The total number and
798 frequency of PQS within fungal sub-divisions were quantified using G4Hunter with a threshold
799 of 1.5 and window size of 30. The average number of PQS **(A)**, PQS/kbp **(B)**, PQS/GC% **(C)**
800 and GC content **(D)** in fungi from the Taphrinomycotina (n=14), Saccharomycotina (n=332),
801 Pezizomycotina (n=761), Pucciniomycotina (n=24), Ustilagomycotina (n=31),

802 Agaricomycotina (n=134), Glomeromycotina (n=9), Mortierellomycotina (n=2),
803 Mucoromycotina (n=20), Zoopagomycotina (n=3), Entomophthoromycotina (n=2),
804 Kickxellomycotina (n=7), Chytridiomycetes (n=6), Monoblepharidomycetes (n=1),
805 Neocallimastigomycetes (n=5), Microsporidia (n=9), and Cryptomycota (n=2). A to D contain
806 boxplots with Tukey whiskers. The outliers are indicated by dots and the line within the boxplot
807 is representative of the median value.

808 **Figure 5. PQS distribution in fungal genera containing key species which cause disease**
809 **in humans and plants.** The frequency of PQS within genera containing key fungal pathogens
810 were quantified using G4Hunter with a threshold of 1.5 and window size of 30. Fungal genera
811 containing key plant pathogens are shown in blue, whilst genera containing key human
812 pathogens are shown in pink. The boxplots display Tukey whiskers. The outliers are indicated
813 by dots and the line within the boxplot is representative of the median value.

814 **Figure 6. PQS in *Aspergillus* spp. are associated with genetic relatedness.** *Aspergillus*
815 spp., were categorised into sections based upon a phylogenetic tree generated by Steenwyk
816 *et al.*, [44]. The frequency of PQS was shown to be closely associated with the genetic
817 relatedness of these fungi. Moreover, the PQS found in the *cyp51A* gene was conserved
818 amongst species, but not found in *A. udagawae* or *A. turcosus*

819 **Figure 7. Pathogenic *Aspergillus* and *Cryptococcus* species have lower PQS**
820 **frequencies compared to their non-pathogenic counterparts.** The frequency of PQS/kbp
821 and PQS/GC% were quantified and compared between pathogenic and non-pathogenic
822 species within *Aspergillus* spp., *Cryptococcus* spp., and *Candida* spp. The PQS/kbp in
823 pathogenic and non-pathogenic species of **(A)** *A. fumigatus*, **(B)** *C. neoformans*, and **(C)** *C.*
824 *albicans*. The PQS/GC% in pathogenic and non-pathogenic species of **(D)** *A. fumigatus*, **(E)**
825 *C. neoformans*, and **(F)** *C. albicans*. Dots represent individual species within a genus. The
826 error bars represent the SD. Asterisks indicate p<0.05.

827 **Figure 8. PQS in *A. fumigatus* Af293, *C. neoformans* JEC21, and *C. albicans* SC5314**
828 **can be found located throughout annotated genomic features.** The location of PQS found
829 100 bp before, within, and 100 bp after annotated genomic features with a G4Hunter score
830 >1.2. The total number of PQS in known genomic features in **(A)** *A. fumigatus*, **(B)** *C.*
831 *neoformans*, and **(C)** *C. albicans*. The frequency of PQS comparative to the genomic length
832 of the annotated features in **(D)** *A. fumigatus*, **(E)** *C. neoformans*, and **(F)** *C. albicans*.

833 **Figure 9. PQS can be found in genes encoding proteins involved in metabolite**
834 **interconversion, protein modification, nucleic acid binding, and transporter activity.**
835 The number of genes containing PQS were quantified and protein classes associated with the
836 genes were identified using PANTHER. The most highly represented groups are reported for
837 **(A)** *A. fumigatus* Af293, **(B)** *C. neoformans* JEC21, **(C)** and *C. albicans* SC5314.

838 **Figure 10. PQS can be found in genes which are highly upregulated during fungal**
839 **germination, in response to environmental stresses, and in biofilms in *A.***
840 ***fumigatus*.** Transcriptomes of *A. fumigatus* during germination, hypoxia, iron limiting
841 conditions, oxidative stress, and in biofilms, were analysed and the 20 most upregulated genes
842 were further investigated using QGRS Mapper and G4Hunter. (A) Genes that were highly
843 upregulated (compared to dormant or untreated *A. fumigatus* conidia) contained PQS. Data
844 points represent genes that contain PQS. (B) The PQS frequency in genes upregulated in
845 these conditions is higher when compared to the average PQS/kbp for the entire genome (red-
846 dashed line), analysed with the default G4Hunter settings (window size 25; threshold 1.2).
847 Data points represent PQS frequency of an individual gene. Boxplot represents the median,
848 maximum, and minimum values.

849

850

851

852

853 **Supplementary Figure Legends**

854 **Supplementary Figure 1. (A-G)** A breakdown of PQS frequencies per kilobase pair (kbp) for
855 fungal genera from the Ascomycota. Each individual dot represents a species within the
856 genera.

857 **Supplementary Figure 2. (A-G)** A breakdown of PQS frequencies per kilobase pair (kbp) for
858 fungal genera from the Basidiomycota. Each individual dot represents a species within the
859 genera.

860 **Supplementary Figure 3.** A breakdown of PQS frequencies per kilobase pair (kbp) for fungal
861 genera from the **(A)** Mucoromycota, **(B)** Zoopagomycota, **(C)** Chytridiomycota, **(D)**
862 Microsporidia, and **(E)** Cryptomycota. Each individual dot represents a species within the
863 genera.

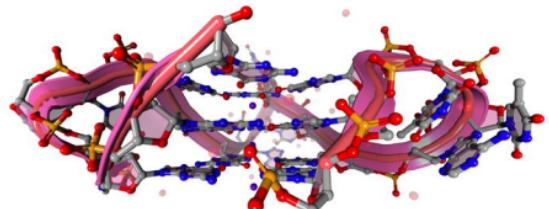
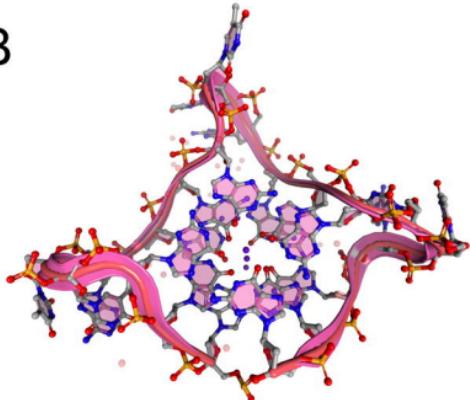
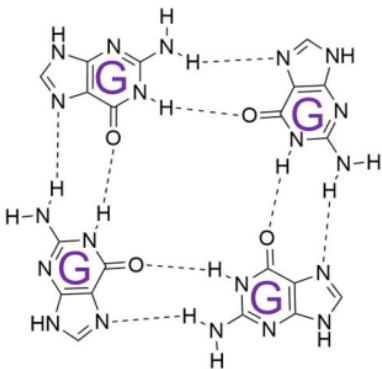
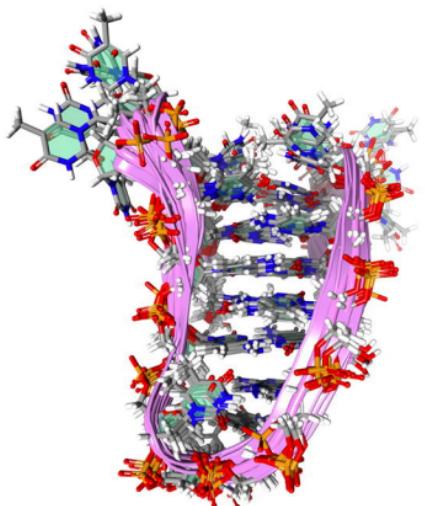
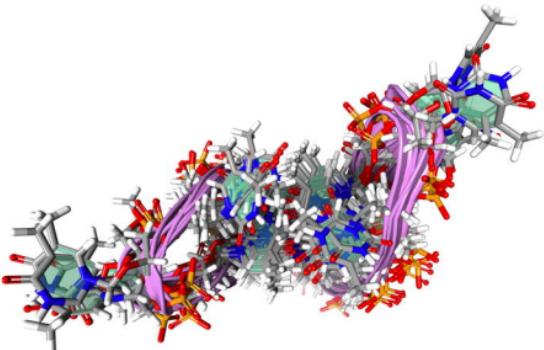
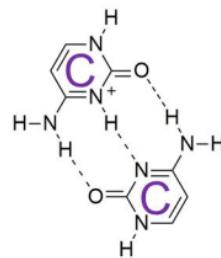
864 **Supplementary Figure 4.** The frequency of PQS per kilobase pair (kbp) **(A)** and relative to
865 GC content **(B)** in *Aspergillus* species. Blue bars represent non-pathogenic species, whilst
866 pink bars represent pathogenic species.

867 **Supplementary Figure 5.** The frequency of PQS per kilobase pair (kbp) **(A)** and relative to
868 GC content **(B)** in fungi from the Pezizomycotina that are pathogenic in animals or plants, or
869 non-pathogenic. Points represent individual species. Error bars represent the SD. * indicates
870 a significant difference ($p<0.05$).

871 **Supplementary Figure 6.** The frequency of PQS per kilobase pair (kbp) **(A)** and relative to
872 GC content **(B)** in *Cryptococcus* species. Blue bars represent non-pathogenic species, whilst
873 pink bars represent pathogenic species.

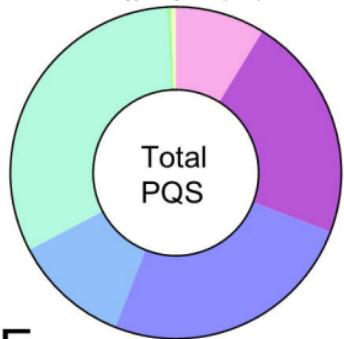
874 **Supplementary Figure 7.** The frequency of PQS per kilobase pair (kbp) **(A)** and relative to
875 GC content **(B)** in *Candida* species. Blue bars represent non-pathogenic species, whilst pink
876 bars represent pathogenic species.

877 **Supplementary Figure 8.** The frequency of PQS per kilobase pair (kbp) **(A)** and relative to
878 GC content **(B)** in fungi from the Saccharomycotina that are pathogenic in animals or plants,
879 or non-pathogenic. Points represent individual species. Error bars represent the SD. ns
880 indicates no significant difference ($p>0.05$).

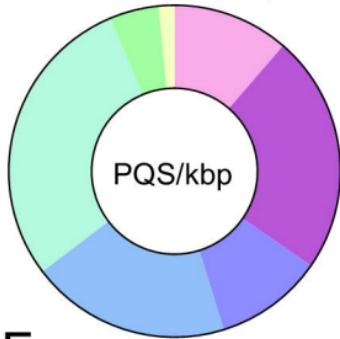






881 **Supplementary Figure 9.** The distribution and number of genes involved in biological
882 processes in **(A and D)** *A. fumigatus*, **(B and E)** *C. neoformans*, and **(C and F)** *C. albicans*.

883 **Supplementary Figure 10.** The distribution and number of genes involved in molecular
884 functions in **(A and D)** *A. fumigatus*, **(B and E)** *C. neoformans*, and **(C and F)** *C. albicans*.

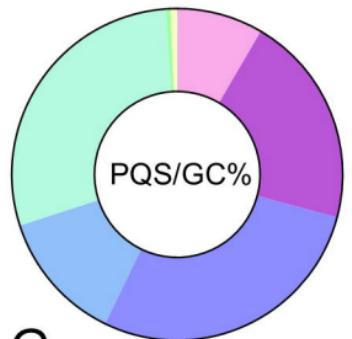
885 **Supplementary Figure 11.** The distribution and number of genes involved in cellular
886 components in **(A and D)** *A. fumigatus*, **(B and E)** *C. neoformans*, and **(C and F)** *C. albicans*.


887 **Supplementary Figure 12. The scores of PQS found in fungi compared to known
888 quadruplex forming sequences.** PQS in the identified genes were scored in QGRS Mapper
889 and compared against the scores of known quadruplexes ($n=94$) to predict the propensity of
890 PQS sequences to form quadruplex structures. Sequences with scores of 21, 42, and 63 in
891 QGRS Mapper could form G4s containing 2, 3, and 4-tetrads, respectively. Sequences
892 containing $G_{2+}L_{1-12}$ generally produced scores of 20 or 21, while those containing $G_{3+}L_{1-12}$
893 produced scores between 38-42. F and R refer to the coding and complementary strands,
894 respectively.

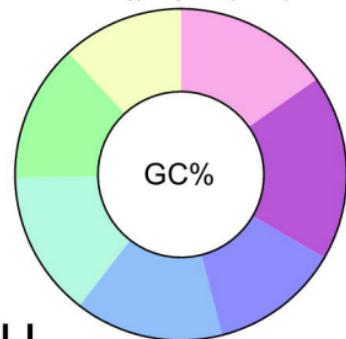
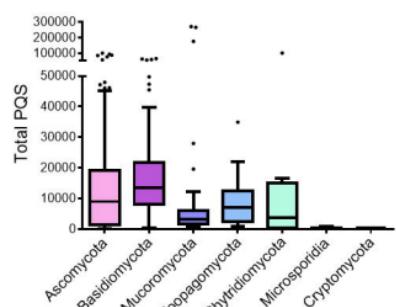
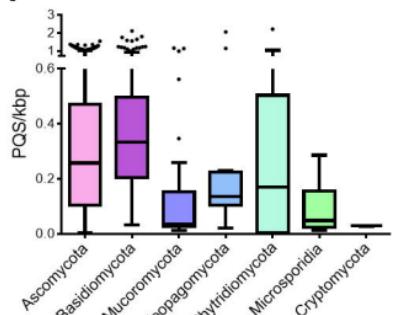
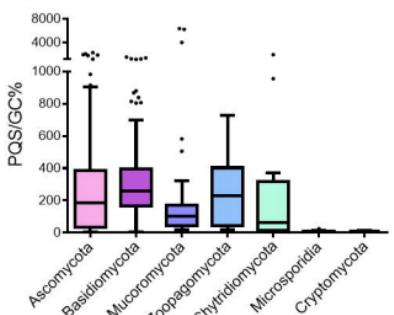
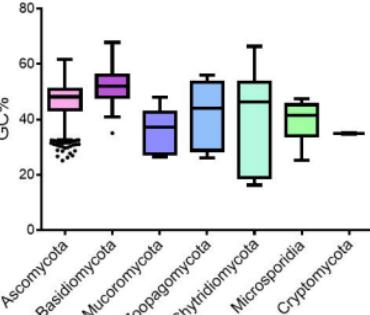
895

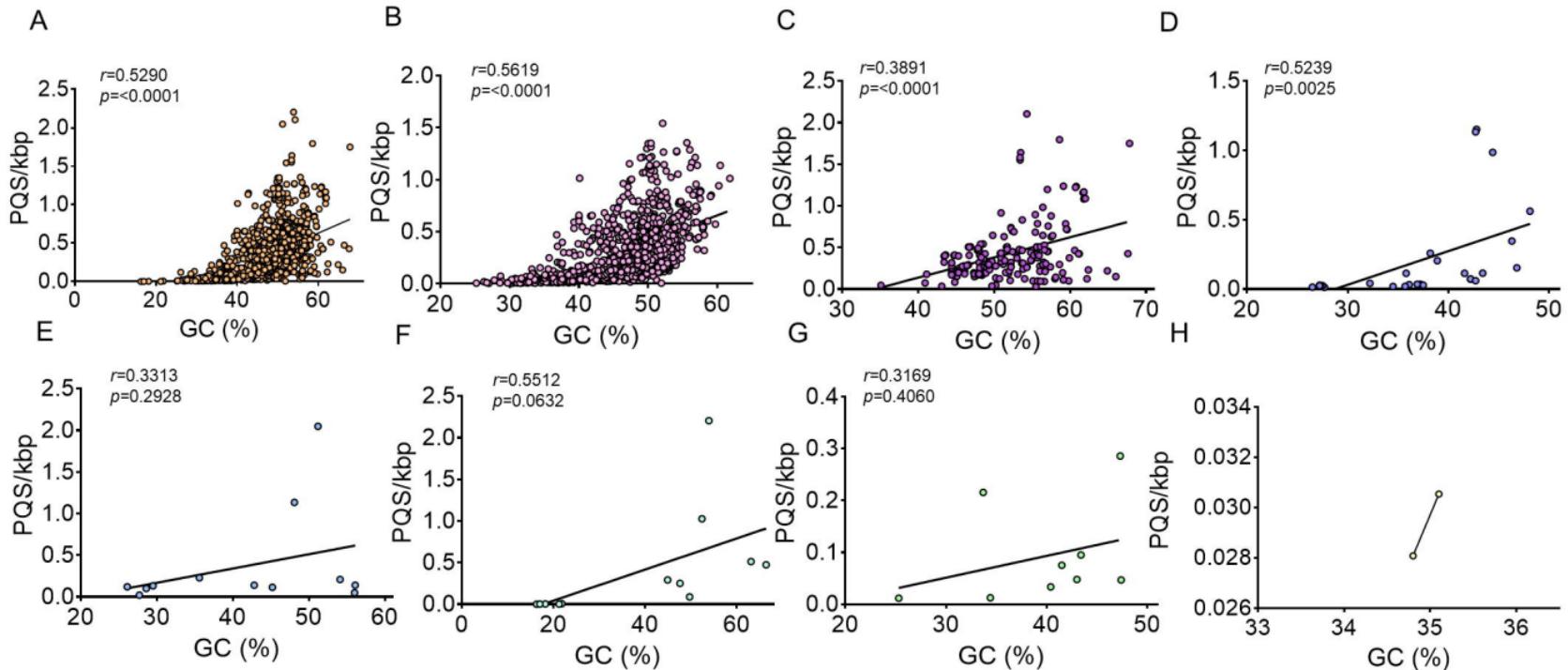

A**B****C****D****E****F**

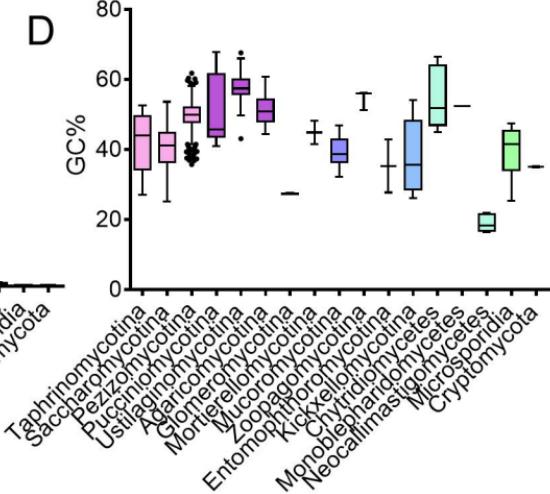
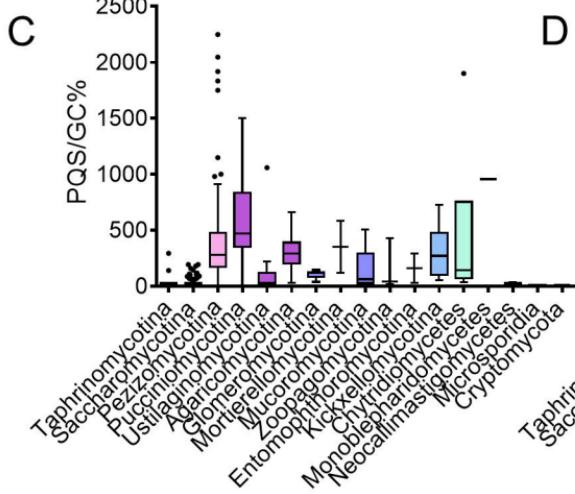
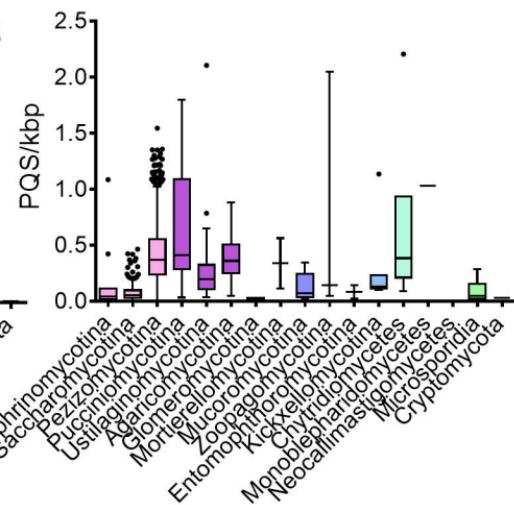
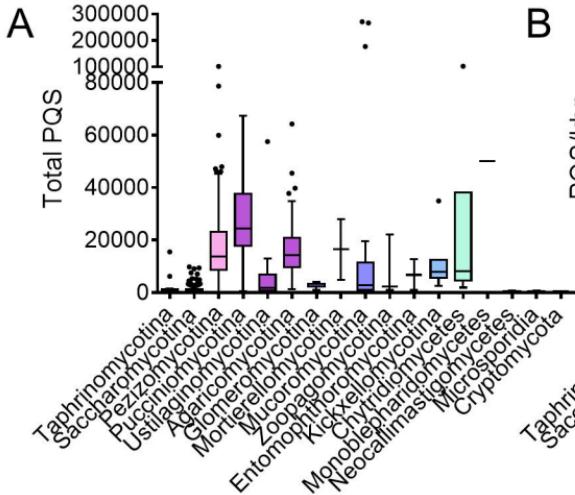
A


- Ascomycota (6816)
- Basidiomycota (17108)
- Mucoromycota (19575)
- Zoopagomycota (8813)
- Chytridiomycota (24734)
- Microsporidia (300)
- Cryptomycota (372)

B

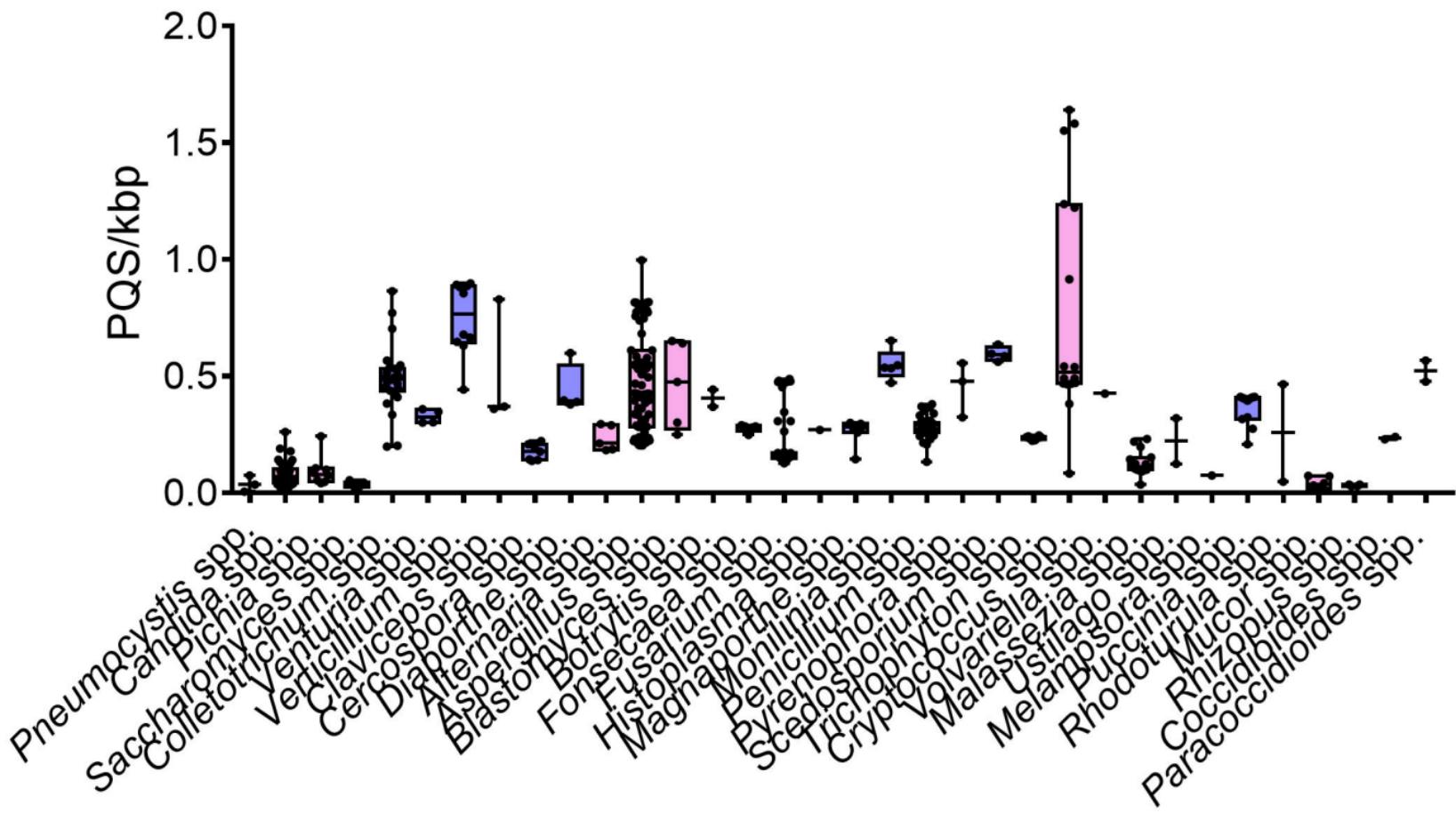





- Ascomycota (0.217)
- Basidiomycota (0.445)
- Mucoromycota (0.202)
- Zoopagomycota (0.373)
- Chytridiomycota (0.555)
- Microsporidia (0.091)
- Cryptomycota (0.029)

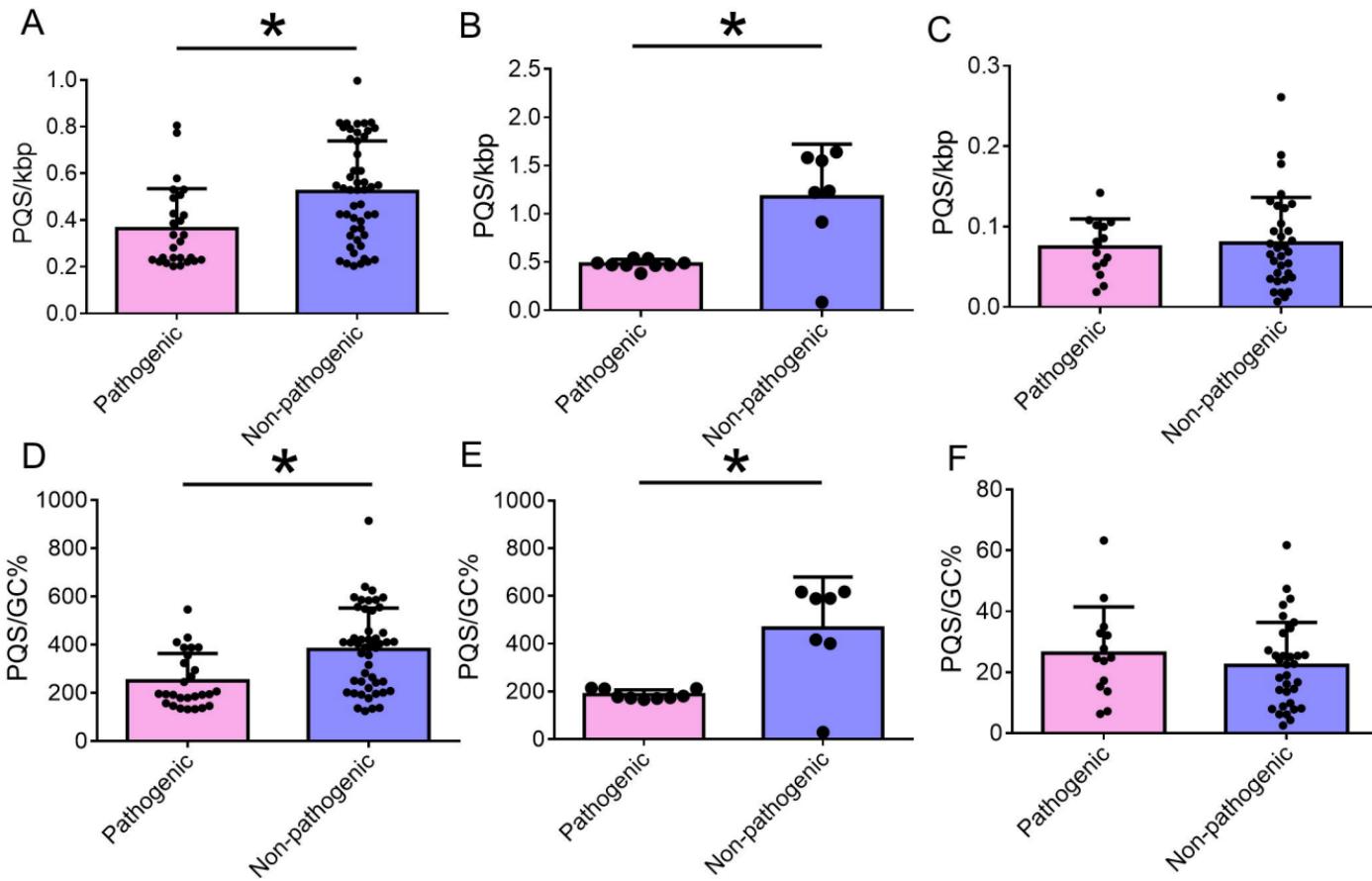

C

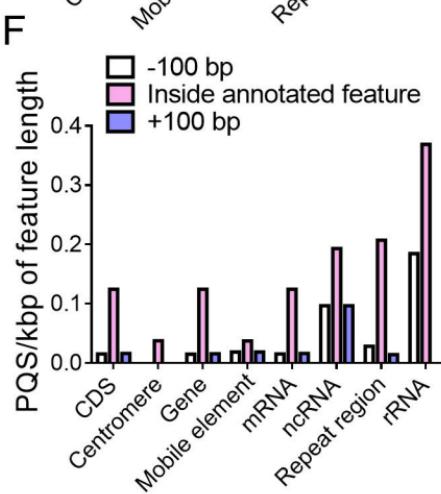
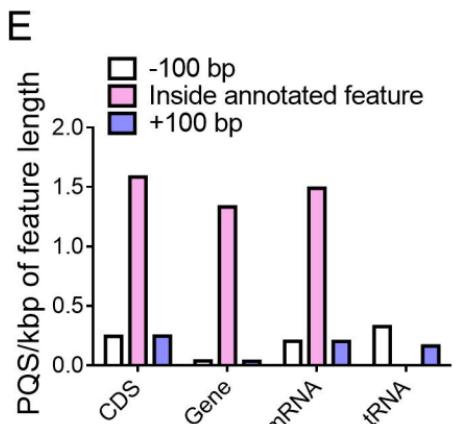
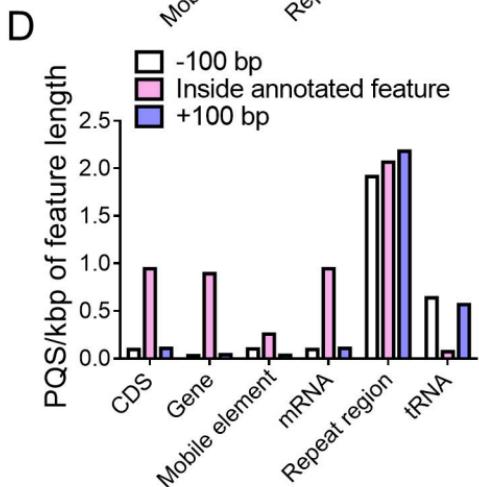
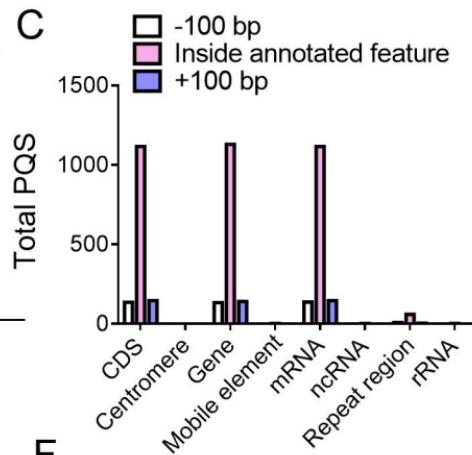
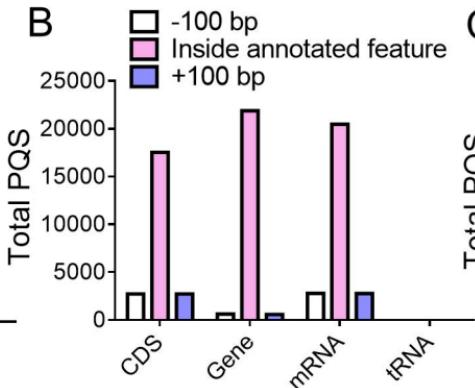
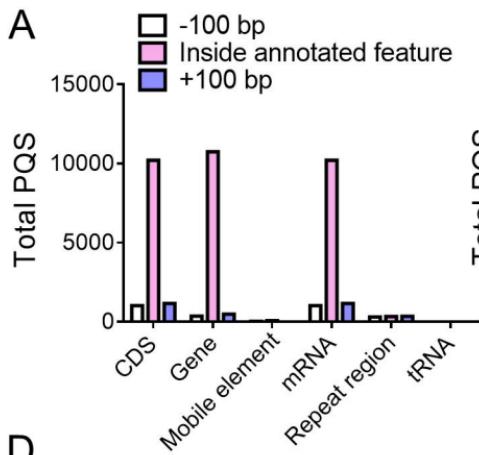




- Ascomycota (138)
- Basidiomycota (340)
- Mucoromycota (459)
- Zoopagomycota (210)
- Chytridiomycota (473)
- Microsporidia (8)
- Cryptomycota (11)

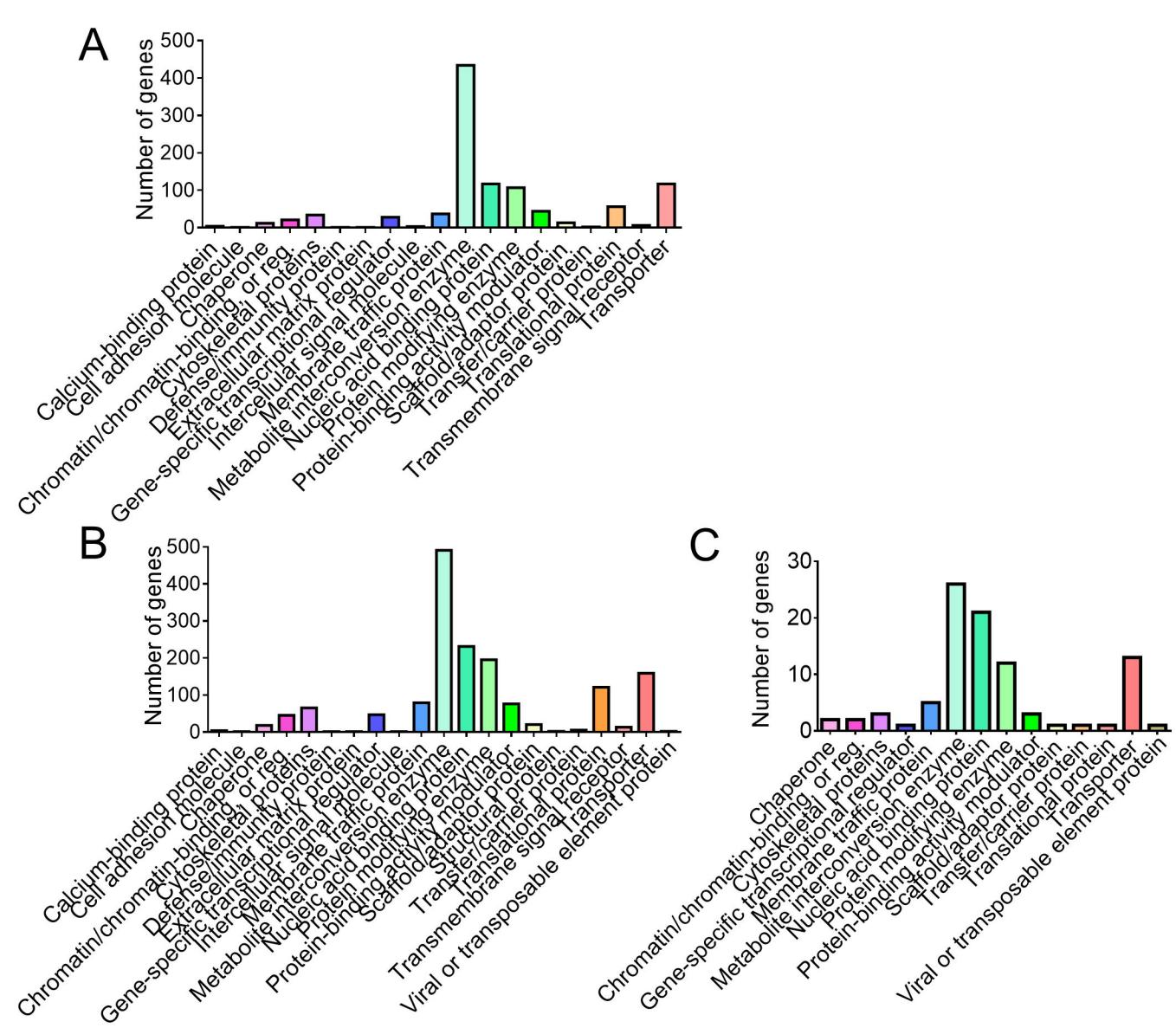
D

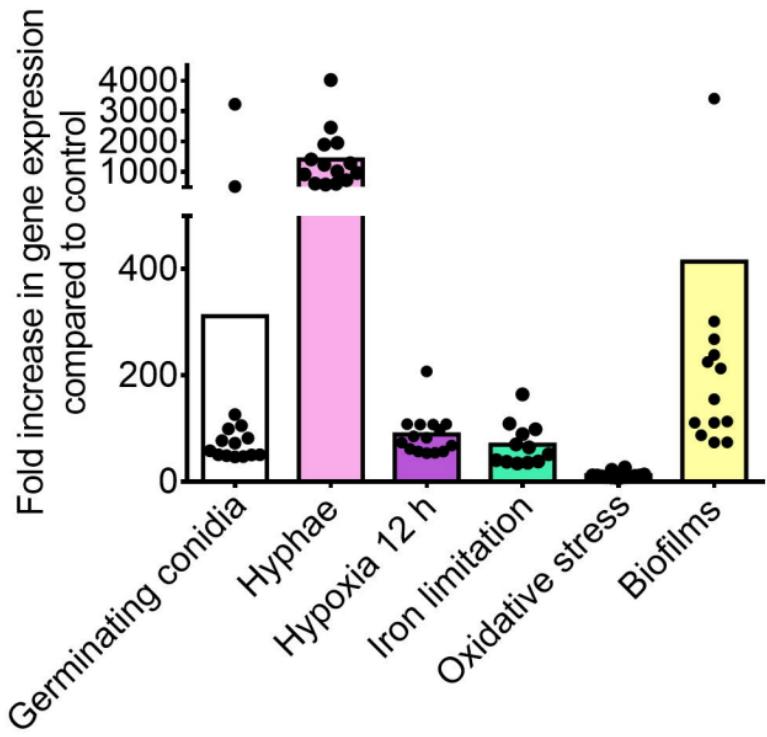
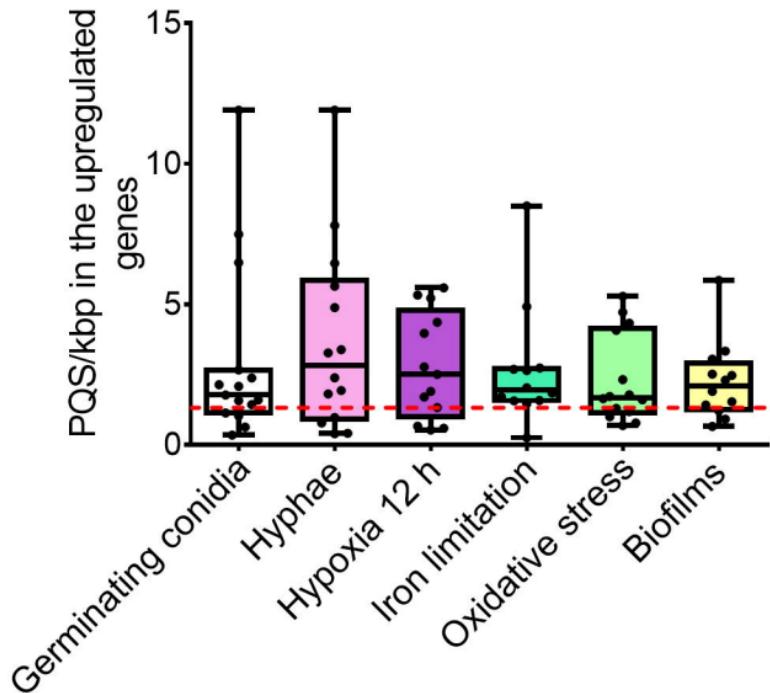
- Ascomycota (45.0%)
- Basidiomycota (53.3%)
- Mucoromycota (37.3%)
- Zoopagomycota (42.6%)
- Chytridiomycota (41.9%)
- Microsporidia (39.6%)
- Cryptomycota (35.0%)


E**F****G****H**









Legend:


- Ascomycota
- Basidiomycota
- Mucoromycota
- Zoopagomycota
- Chytridiomycota
- Microsporidia
- Cryptomycota

Section	Species	PQS/kbp
<i>Nigri</i>	<i>A. awamori</i>	0.548
	<i>A. kawachii</i>	0.536
	<i>A. luchuensis</i>	0.530
	<i>A. tubingensis</i>	0.578
	<i>A. neoniger</i>	0.611
	<i>A. niger</i>	0.530
	<i>A. brasiliensis</i>	0.495
<i>Nidulantes</i>	<i>A. carbonarius</i>	0.782
	<i>A. aculeatus</i>	0.773
<i>Versicolores</i>	<i>A. nidulans</i>	0.222
<i>Usti</i>	<i>A. versicolor</i>	0.308
	<i>A. sydowii</i>	0.282
<i>Ochraceoros</i>	<i>A. calidoustus</i>	0.396
	<i>A. ustus</i>	0.385
<i>Flavi</i>	<i>A. rambelli</i>	0.422
	<i>A. ochraceoroseus</i>	0.421
	<i>A. sojae</i>	0.234
	<i>A. parasiticus</i>	0.230
	<i>A. arachidicola</i>	0.225
	<i>A. flavus</i>	0.238
	<i>A. oryzae</i>	0.230
<i>Circumdati</i>	<i>A. nomius</i>	0.239
	<i>A. bombycis</i>	0.258
	<i>A. hancockii</i>	0.289
	<i>A. persii</i>	0.395
	<i>A. sclerotiorum</i>	0.425
<i>Candidi</i>	<i>A. westerdijkiae</i>	0.409
	<i>A. steynii</i>	0.467
	<i>A. candidus</i>	0.805
<i>Terrei</i>	<i>A. campestris</i>	0.816
	<i>A. taichungensis</i>	0.747
<i>Fumigati</i>	<i>A. terreus</i>	0.337
	<i>A. novofumigatus</i>	0.204
	<i>A. lentinus</i>	0.216
	<i>A. fischeri</i>	0.212
	<i>A. fumigatus</i>	0.221
<i>Clavati</i>	<i>A. udagawae</i>	0.205
	<i>A. turcosus</i>	0.224
	<i>A. clavatus</i>	0.427
<i>Aspergillus</i>	<i>A. cristatus</i>	0.425
	<i>A. chevalieri</i>	0.361
	<i>A. glaucus</i>	0.461
	<i>A. ruber</i>	0.364
	<i>A. wentii</i>	0.314
<i>Cremei</i>	<i>A. fumigatus</i> – <u>GGG</u> TCCC <u>GGG</u> A <u>GGG</u> CA <u>GGG</u> Position 408	
	<i>A. novofumigatus</i> – <u>GGG</u> CTTC <u>GGG</u> A <u>ACGGG</u> CA <u>GGG</u> Position 407	
	<i>A. lentinus</i> – <u>GGG</u> TTCC <u>GGG</u> A <u>ACGGG</u> CA <u>GGG</u> – Position 408	
	<i>A. fischeri</i> – <u>GGG</u> TTCC <u>GGG</u> A <u>GGG</u> CA <u>GGG</u> – Position 408	
A. udagawae and A. turcosus - this PQS cannot be found		

A**B**