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Abstract

Systematic identification of molecular networks in disease relevant immune cells of the
nervous system is critical for elucidating the underlying pathophysiology of Alzheimer’s
disease (AD). Two key immune cell types, disease-associated microglia (DAM) and
disease-associated astrocytes (DAA), are biologically involved in AD pathobiology.
Therefore, uncovering molecular determinants of DAM and DAA will enhance our
understanding of AD biology, potentially identifying novel therapeutic targets for AD
treatment. Here, we present an integrative, network-based methodology to uncover
conserved molecular networks between DAM and DAA. Specifically, we leverage
single-cell and single-nucleus RNA sequencing data from both AD transgenic mouse
models and AD patient brains, drug-target networks, metabolite-enzyme associations,
and the human protein-protein interactome, along with large-scale patient data
validation from the MarketScan Medicare Supplemental Database. We find that
common and unique molecular network regulators between DAM (i.e, PAK1, MAPK14,
and SYK) and DAA (i.e., NFKB1, FOS, and JUN) are significantly enriched by multiple
neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1) from
genome-wide association studies. Further network analysis reveal shared immune
pathways between DAM and DAA, including Fc gamma R-mediated phagocytosis, Th17
cell differentiation, and chemokine signaling. Furthermore, integrative metabolite-
enzyme network analyses imply that fatty acids (i.e., elaidic acid) and amino acids (i.e.,
glutamate, serine, and phenylalanine) may trigger molecular alterations between DAM
and DAA. Finally, we prioritize repurposed drug candidates for potential treatment of AD

by agents that specifically reverse dysregulated gene expression of DAM or DAA,
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including an antithrombotic anticoagulant triflusal, a beta2-adrenergic receptor agonist
salbutamol, and the steroid medications (fluticasone and mometasone). Individuals
taking fluticasone (an approved anti-inflammatory and inhaled corticosteroid) displayed
a significantly decreased incidence of AD (hazard ratio (HR) = 0.858, 95% confidence
interval [Cl] 0.829-0.888, P < 0.0001) in retrospective case-control validation.
Furthermore, propensity score matching cohort studies also confirmed an association of
mometasone with reduced incidence of AD in comparison to fluticasone (HR =0.921,

95% CI1 0.862-0.984, P < 0.0001).
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Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disease and it is estimated
that it will affect 16 million Americans and 90 million people worldwide by 2050%. The
incidence of AD is expected to double by 20502. The attrition rate for AD clinical trials
(2002-2012) is estimated at 99.6%° and improved methods of drug discovery and
development are needed. There are multiple risk factors implicated in disease
pathogenesis, such as genetic factors, local and systemic inflammation, psychosocial
stress responses, and many other unknown factors®. The underlying genetic basis and
molecular mechanisms of disease pathobiology/physiology remain under investigation.
Furthermore, predisposition to AD involves a complex, polygenic, and pleiotropic genetic
architecture® . The traditional reductionist paradigm (‘one gene, one drug, one disease’)
overlooks the inherent complexity of human diseases and has often led to treatments that
are inadequate or accompanied by adverse effects®. Given the heterogeneous clinical
presentation, AD is no longer considered a neuronal-centric disease; recent studies
strongly implicate a crucial role of neuro-inflammation in the pathobiology of AD’. Broad
anti-inflammatory therapies have not been clinically efficacious against AD, suggesting a
pressing need to better understand the heterogeneity of these immune cells and identify

drug targets for novel treatment development.

Advances in single-cell technologies are beginning to uncover crucial roles of the
immune systems in disease onset and the pathogenesis of AD. Recent single-
cell/nucleus RNA-sequencing (scRNA-seq or snRNA-seq) studies have suggested

essential roles for microglia and astrocytes, such as determining the “normal” and
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pathological immune cell subpopulations in AD2°. For example, disease-associated
microglia (DAM) was identified as a unique microglia subtype associated with AD
pathogenesis®. Disease associated astrocytes (DAA) have been identified in early stage
of AD and become more abundant with AD progression??. Cytokines, the primary immune
messenger, can mediate astrocytes to influence the microglial activation state (e.g., CCL2
and ORM2) and help microglia modulate astrocytic phenotypes and functions (e.g., IL-1a
and TNF-a)!1. A growing body of evidence suggests that both microglia and astrocytes
are exquisitely sensitive to their environment that can be affected by the dysregulation of
multiple biochemical pathways, such as abnormal lipid metabolism, in AD pathogenesis??.
Systematic identification of the underlying molecular mechanisms between DAM and
DAA would advance understanding of disease biology and offer potential drug targets for

novel therapeutic development in AD.

Existing data resources, including genomics, transcriptomics, and interactomics
(protein-protein interactions [PPIs]), have not yet been fully exploited to understand the
causal disease pathways in AD*3. Integrative analyses of genomics, transcriptomics, and
other omics enable us to elucidate the cascade of molecular events contributing to
complex neuro-inflammatory mechanisms, including microglia and astrocytes. This will
accelerate the translation of high-throughput omics findings to innovative therapeutic
approaches for AD by integrating knowledges from both microglia and astrocytes. In this
study, we propose an integrative multi-omics, network-based methodology to identify
novel underlying molecular determinants for DAM and DAA in AD. Specifically, we
systematically characterized the molecular networks for both microglia and astrocytes by

incorporating large-scale snRNA-seq and scRNA-seq data into the human protein-protein


https://doi.org/10.1101/2020.09.23.310466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310466; this version posted September 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

interactome. We showed that the identified DAM or DAA specific molecular networks offer
novel pathobiological pathways and potential drug targets for AD. We demonstrated that
drugs reversing the dysregulated gene expression of DAM or DAA offer potential
treatment strategies for AD and we validated these agents in a large-scale, real-world

patient database.

Results

Network-based methodology pipeline

In this study, we presented an integrative multi-omics, network-based methodology to
uncover molecular networks of DAM and DAA and to prioritize drug candidates for
potential treatment of AD by reversing dysregulated gene expression in DAM and DAA.
We integrated scRNA-seq and snRNA-seq data from both AD transgenic mouse models
and AD patients brain tissues, drug-target networks, enzyme-metabolite associations, the
human protein-protein interactomes, along with large-scale patient database validation
(Figure 1). The whole procedure is divided into 4 components: i) We first collected the 4
recent sc/snRNA-seq datasets (Supplementary Table 1) covering both microglia and
astrocytes from either AD transgenic mouse models or human AD brains; ii) We
performed standard sc/snRNA-seq data analysis (Methods) which includes quality
control, cell/nucleus clustering and differentially expressed genes (DEGSs) analysis in
sequential order for each sc/snRNA-seq profile; iii) We built the molecular network for
DAM and DAA using the state-of-the-art network-based algorithm by integrating

sc/snRNA-seq data into the human protein-protein interactome (Methods); iv) We
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prioritized repurposed drugs for potential treatment of AD by identifying those that
specifically reverse dysregulated gene expression of microglia and astrocytes: if drug-
induced up- or down-related genes are significantly enriched in the dysregulated
molecular networks of DAM or DAA, these drugs will be prioritized as potential candidates
for treatment of AD. Finally, top drug candidates were validated further using the state-
of-the-art pharmacoepidemiologic observations of a large-scale, real-world patient

database (Figure 1).

Discovery of disease-associated microglia specific molecular networks

We compared expression of cell marker genes (CST7, LPL, P2RY12, and CX3CR1) for
DAM among all cell/nucleus clusters for snRNA-seq (Figure 2A, B) and scRNA-seq
(Supplementary Figures 1) profiles, respectively. Here, we used homeostasis-
associated microglia (HAM) as control groups. We discover that, under the snRNA-seq
profile, the DAM cells have much higher abundance (88%, normalized nucleus
abundance percentage) in 5XFAD mice compared to wild-type (WT) mice (12%, Table
1A and Supplementary Figure 2A). Yet, the normalized nucleus abundance
percentages of HAM cells (33%) in 5XFAD mice is lower than WT mice (67%, Table 1A
and Supplementary Figure 2A). Similarity, when considering the scRNA-seq profile, the
normalized cell abundance percentage of the DAM in 5XFAD mice (94%) is much higher
than WT mice (6%, Table 1B and Supplementary Figure 2B) as well. And the
corresponding normalized cell abundance percentages of HAM cells in 5XFAD mice (47%)

is marginally lower than WT mice (53%, Table 1B and Supplementary Figure 2B)
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counted by the scRNA-seq profile. Altogether, both sc/snRNA-seq profiles show
significantly elevated abundance of the DMA in 5XFAD mice compared to WT mice.

We further examined genome-wide differential expression analyses of DAM
compared to HAM in 5XFAD mice as shown in Volcano plots (Supplementary Figure 3).
As expected, several key AD genes or microglia markers are significantly differentially
expressed in DAM compared to HAM in 5XFAD mice, including APOE, TREM2, CST7,
PYRY12, and CX3CR1 (Supplementary Figure 3). To identify novel molecular pathways
underlying DAM, we systematically searched molecular networks using our recently
published network-based approach, called GPSnet!®. Specifically, GPSnet re-constructs
the network module using a selected seed gene (i.e., differentially expressed genes
[DEGs]) from the PPIs, and each time expands the module by adding a qualified
candidate neighboring gene that could improve the module score measured by the fold
changes of differential expression analysis. The final molecular network is constructed by
aggregating modules with top ranked genes that frequently appear in top ranked modules
(Methods). The identified molecular networks for DAM using snRNA-seq (termed
snDAMnet) and scRNA-seq (termed scDAMnet) datasets are shown in Figure 2C and
Supplementary Figure 1C. The snDAMnet includes 227 PPIs connecting 72 unique
genes (e.g., BIN1, HCK, HSP90AAL, IL6ST, PAK1, PRKCD, and SYK, Supplementary
Table 1). Myc box-dependent-interacting protein 1 (BIN1), a well-established risk gene
for AD by the International Genomics of Alzheimer's Project, contains a microglia-specific
enhancer and promoter by a genome-wide significant AD variant rs6733839'6. We next
collected AD-associated genes from multiple sources, including expert curated

repositories, GWAS catalog!’, animal models and the scientific literatures as described
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in a previous study*®. We found that genes in snDAMnet were significantly enriched in 31
AD-associated genes (adjusted p-value [gq] = 1.75 x10%° Fisher's exact test,
Supplementary Table 1), such as ADAM10, BIN1, CD33, and MAPK14
(Supplementary Table 1). The scDAMnet contains 69 genes (e.g., AXL, CST7, LYN,
MERTK, and PYRY12, Supplementary Table 2) connecting 97 PPIs. As expected,
scDAMnet covers 27 AD-associated genes!® (e.g., APOE, CCL3, CTSD, INPP5D, and
MARCKS, q = 5.00x108, Fisher's exact test, Supplementary Table 2). We further found
that genes in DAMnets are significantly enriched in multiple immune pathways
(Supplementary Tables 1 and 2) as well. We observed that most of them were critical
immune modulators related to AD (Figure 2C, Supplementary Figure 1C, and
Supplementary Table 1). We next discussed the selected genes in snDAMnet and
scDAMnet across 4 selected immune pathways: Fc gamma R-mediated phagocytosis,
chemokine signaling pathway, Th17 cell differentiation, and hematopoietic cell lineage

(Supplementary Tables 1 and 2).

Fc gamma R-mediated phagocytosis. In total, we identified 15 genes (such as BIN1,
PRKCD, SYK, INPP5D, and HCK) in the Fc gamma R-mediated phagocytosis pathway
which were enriched in either snDAMnet or scDAMnet (Supplementary Tables 1 and 2).
BIN1 is one of the most important loci for late onset Alzheimer's disease (LOAD).
Several studies uncovered crucial functions of PRKCD in AD: a) Af stimulated protein
kinase C delta type (PRKCD) to phosphorylate myristoylated alanine-rich C-kinase
substrate (MARCKS) in microglial® and phosphorylation of MARCKS was observed in

microglia within plaques®’; and b) inhibition of PRKCD reverse Ap levels?!. Spleen
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tyrosine kinase (SYK) has been shown to play a role in AD pathological lesions, and SYK
was therefore considered as a potential drug target for AD?2. Phosphatidylinositol 3,4,5-
trisphosphate 5-phosphatase 1 (INPP5D), identified as one of the genetic risk factors for
LOAD?3, affects AD pathology by regulating microglia®. Inhibiting tyrosine-protein kinase
(HCK) has proved to disturb microglia function and exacerbate neuropathology and

neuroinflammation?>.

Chemokine signaling pathway. Chemokine signaling is enriched in both snDAMnet and
scDAMnet and are related with 13 genes, including PAK1, CCL3, CCL4, CCR5 and LYN
(Supplementary Tables 1 and 2). Serine/threonine-protein kinase (PAK1) is
dysregulated in AD and targeting the PAK signaling pathway offers a therapeutic strategy
for treating AD?6. C-C motif chemokine 3 and 4 (CCL3 and CCL4) and C-C chemokine
receptor type 5 (CCR5)?’ have been shown to be upregulated in adult human microglia
or in mouse microglia that were stimulated with AgB. A recent study observed elevated
activity of tyrosine-protein kinase (LYN) in AD patients, and inhibiting LYN expression
prevents AB-induced neuronal cell death, suggesting LYN as an potential therapeutic

target for AD%,

Th17 cell differentiation. We identified 6 genes (including MAPK14, HIF1A, TGFBR2, and
HSP90) in the Th17 cell differentiation pathway (Supplementary Table 1). Reduced AfS
pathology was observed in mitogen-activated protein kinase 14 (MAPK14) -/- APP-PS1
transgenic AD mouse neurons, suggesting that inhibiting MAPK14 could serve as a

potential alternative to mitigate pathologies in neurons for AD?°. The transcriptional factor

11
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hypoxia-inducible factor 1-alpha (HIF1A) is recognized as a key gene for a variety of
neurodegenerative diseases, including AD, Parkinson’s disease (PD), and Huntington’s
disease (HD)%. Insufficient levels of TGFBRs (TGF-beta receptors) are major risk factors
of AD, and increasing TGF-beta receptor type-2 (TGFBR2) levels is a potential
therapeutic strategy for AD3. HSP90 (heat shock protein 90), a chaperone protein,
regulated tau pathology by forming macromolecular complexes with co-chaperones and

inhibiting HSP90 mitigated tau pathology by proteasomal degradation®?.

Hematopoietic cell lineage: Four genes (i.e., CSF1R, CD33, CD9 and ITGA®6) identified
from the snDAMnet are involved in regulating the hematopoietic cell lineage pathway
(Supplementary Table 1). Inhibiting macrophage colony-stimulating factor 1 receptor
(CSF1R) in APP/PS1 mice reverses microglia from an inflammatory to an anti-
inflammatory phenotype, suggesting that inhibiting CSF1R could treat microglia activation
and AD%*. Myeloid cell surface antigen CD33, is elevated in AD brain and could
compromise the ability of microglia to remove AB plagues, suggesting it could serve as a
possible therapeutic target for AD34. We did not find strong AD-related evidence for
another two genes (CD9 and ITGAG6), revealing novel candidate genes that required
further functional validation.

In summary, we identified that DAM specific molecular networks were significantly
enriched in multiple AD-related immune pathways. Importantly, a variety of proteins in
DAM specific molecular networks are profoundly involved in AD pathogenesis and offer

potential drug targets for AD.
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Discovery of disease-associated astrocyte specific molecular networks

We compared gene expression of 11 DAA cell markers (GFAP, CD44, HSPB1, SLC1A2,
and PTN) among all nuclei clusters and located non-disease associated astrocyte (non-
DAA) and DAA clusters for the mouse snRNA-seq profiles (Figures 3A and 3B). We
found that a normalized nucleus abundance percentage of DAA cells in 5XFAD mice
(99%) is significantly higher than WT mice (1%, Table 1C and Supplementary Figure
2C) in human snRNA-seq profiles. For the non-DAA cells, a normalized nucleus
abundance percentage in 5XFAD mice (41%) is slightly lower than WT mice (59%, Table
1C and Supplementary Figure 2C). The human snRNA-seq profiles contains AD brain
samples from 2 regions — entorhinal cortex (EC) and superior frontal gyrus (SFG). T-
distributed stochastic neighbor embedding®® (TSNE) plots of DAA and non-DAA nuclei
are presented in Figure 4A and 4B for each brain region, respectively. Gene expression
of 11 DAA cell markers (GFAP, CD44, HSPB1, SLC1A2, and PTN) among all nuclei
clusters in both human brain regions are presented in Supplementary Figure 4. Volcano
plots of DEGs (i.e., GFAP, APOE and MYOC) are shown for both DAA and non-DAA
nuclei in either 5XFAD mice (Supplementary Figure 5) or human AD samples
(Supplementary Figure 6). The molecular networks for mouse snRNA-seq (mDAAnNet)
and human snRNA-seq across two specific brain regions (hDAAECnet and
hDAASFGnet), are shown in Figures 3C and Figure 4C and 4D, separately. The
mDAAnet includes 371 PPIs connecting 98 unique genes (e.g., CD44, CTSD, ICAM1,
MARCKS, NFKB1, and VCAML1, Supplementary Table 3). It contains 39 AD-associated
genes collected from DisGeNET®® (e.g., CDH2, CLU, CTSD, FOS, and TGFBR2, q =

1.70x101?, Fisher's exact test, Supplementary Table 3). The hDAAECnet contains 43
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PPIs connecting 26 genes (e.g., APC, DCLK2, ID3, PRKCA, and TNC, Supplementary
Table 4), including 11 AD-associated genes (e.g., ATXN1, FGF2, HSP90AAL, and JUN,
g = 1.96x10°3, Fisher's exact test, Supplementary Table 4). The hDAASFGnet contains
22 PPIs connecting 13 genes (e.g., DCLK2, FOS, and TNC, Supplementary Table 4),
including 8 AD-associated genes (e.g., FGFR3, FOS, HSP90AAL, and JUN, q = 9.50x10
4, Fisher's exact test, Supplementary Table 4).

We next inspected human brain region-specific molecular networks in DAA.
Molecular networks (hDAAECnet and hDAASFGnet) of two human brain regions (EC and
SFG) share 8 genes: DCLK2, HPSE2, HSP90AAL, HSPA1A, HSPA1B, HSPB1, ID2, JUN
and TNC (Figure 4C and 4D). There are 17 genes (e.g., APC, ATXN1, FGF2, and GJA1)
and 4 genes (e.g., DNAJB1 and FOS) exclusively belonging to hDAAECnet and
hDAASFGnet, respectively. Adenomatous polyposis coli protein (APC?3f), ataxin-1-like
(ATXN13") and fibroblast growth factor 2 (FGF228) alter AD pathogenesis by regulating
beta-secretase 1 (BACEL), an enzyme responsible for A deposition. Gap junction alpha-
1 protein (GJAL) was reported as an AD regulator by checking 29 transcriptomic and
proteomic datasets from post-mortem AD and normal control brains®. DnaJ homolog
subfamily B member 1 (DNAJB1) was reported to be involved in protein folding
abnormalities relevant to AD pathogenesis*.

We next turned to perform functional pathway enrichment analysis. As expected, we
found that genes identified in DAAnets were significantly enriched in multiple key immune
pathways (Supplementary Tables 3 and 4). To be specific, we found that majority of
them had experimental evidences (such as NFKB1, MAPK10, FOS, and JUN) of roles in

regulating AD pathogenesis. We next investigated selected genes in mDAAnet,
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hDAAECnet and hDAASFGnet using 3 immune pathways as examples: IL-17 signaling
pathway, leukocyte transendothelial migration, and antigen processing and presentation

(Supplementary Tables 3 and 4).

IL-17 signaling pathway. In total, we identified 8 genes (including NFKB1, NFKBIA,
MAPK10, FOS, and JUN) in the IL-17 signaling pathway enriched by either mDAAnet or
hDAASFGnet (Supplementary Tables 3 and 4). Nuclear factor NF-kappa-B p105
subunit (NFKB1) and NF-kappa-B inhibitor alpha (NFKBIA) are two regulators of the
NF k B signaling pathway regulating transcription of cytokines and chemokines in
astrocytes. These pro-inflammatory molecules can further result in cellular damage or
accelerate the production of AB in astrocytes*l. The c-Jun N-terminal kinase 3 (JNK3),
also known mitogen-activated protein kinase 10 (MAPK10), stimulates Af production and
potentiates formation of neurofibrillary tangles, comprising a target for AD treatment?.
Proto-oncogene c-Fos (FOS) and transcription factor AP-1 (JUN) are transcriptional
factors regulating expression of multiple genes. Enhanced immunoreactivities of JUN and
FOS were observed in AD brains, and their immunoreactivities were colocalized with
paired helical filament-1 (PHF-1) within neurons, suggesting functional roles of JUN and

FOS in AD pathobiology“3.

Leukocyte transendothelial migration. We identify 11 mDAAnet-genes (such as ICAM1,
VCAM1, FAS, PIK3R1 and TNFRSF1A) in the leukocyte transendothelial migration
pathway (Supplementary Table 3). Both intercellular adhesion molecule 1 (ICAM1) and

vascular cell adhesion protein 1 (VCAM1) expression was reported to be increased by
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AB44. Evidence suggests that ICAM1 and VCAM1 facilitate leukocyte transendothelial
migration, initiate endothelial signaling and affect neuroinflammation, supporting their
possible roles in AD therapeutic discovery**. Tumor necrosis factor receptor superfamily
member 6 (FAS) plays multiple roles in AD, including involvement in apoptosis*® and
inflammatory processes?®. Phosphatidylinositol 3-kinase regulatory subunit alpha
(PIK3R1) is associated with AD and dysfunction of the insulin signaling pathway*’. Tumor
necrosis factor receptor superfamily member 1A (TNFRSF1A) was supported as an AD
risk factor by a genome-wide haplotype-based association study in Caribbean Hispanic

individuals?8.

Antigen processing and presentation. We computationaly identified 7 genes (HPSEZ2,
FGF2, SDC4, PRKCA, HSP90AA1, HSPA1A, and HSPA1B) in the antigen processing
and presentation pathway enriched in either hDAAECnet or hDAASFGnhet
(Supplementary Table 4). Heat shock protein HSP 90-alpha3®? (HSP90AA1) and FGF238
have been identified as involved in AD biology. Inhibition of protein kinase C

(PKCa) prevents AB from impairing synaptic activity in hippocampus in mouse model*°.
Syndecan-4 (SDC4), together with syndecan-3 (SDC3), were found to trigger fibrillation
of AB1-42 in amyloid plaques®°. Inactive heparanase-2 (HPSE2) was found to be over-
expressed in AD human brains by a stage-dependent form®2. Inhibiting HPSE2 activates
HPSE to decrease neurotoxicity and reduce tau hyperphosphorylation in AD®. Both heat
shock 70 kDa protein 1A (HSPA1A%?) and heat shock 70 kDa protein 1B (HSPA1B%%)
regulated oxide stress in either mouse model or human AD brains, suggesting their crucial

role in AD biology and possible treatment approaches.
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Two immune pathways, antigen processing and presentation and NOD-like
receptor signaling, are enriched in both human brain region-specific molecular networks
(hDAAECnet and hDAASFGnet, Supplementary Table 4). Altogether, DAA-specific
molecular networks identified here are significantly enriched by known AD-associated
genes and immune pathways. These DAA specific networks offer molecular mechanisms

underlying AD pathogenesis and potential drug targets for treatment development.

Alzheimer’s conserved molecular networks between microglia and astrocytes

We next compared the molecular networks between DAM and DAA (Figure 5A) to
illustrate the unique and common disease relevant biology for microglia and astrocytes.
To quantify the network relationship between DAM and DAA in the human protein-protein
interactome, we use a network proximity measurement described in our recent study®*. A
higher network proximity (quantified by a lower z-score) represents a strong network
relationship. We found that the closer network proximities between DAA and DAM in the
human interactome compared to two random constructed networks with the same degree
distributions across different network-based measurements (Supplementary Table 5).
For instance, using the shortest path-based network proximity> (Methods), we found a
statistically significant network proximity between DAM and DAA: 1) scDAMnet and
mDAAnRet (z-score =-3.47, p < 1x10°¢ [permutation test]) and 2) snDAMnet and mDAAnet
(z-score = -3.31, p < 1x10°® [permutation test]). These network observations indicate a
strong molecular network relationship between microglia and astrocyte, which is

warranted to be tested experimentally in the future.
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To be specific, we found 5 overlapped genes (CTSB, CTSD, LGALS3BP,
MARCKS and RPLP2) and 9 commonly enriched immune pathways for molecular
networks between DAM and DAA: Fc gamma R-mediated phagocytosis, B cell receptor
signaling pathway, T cell receptor signaling pathway, Fc epsilon RI signaling pathway, C-
type lectin receptor signaling pathway, chemokine signaling pathway, Thl7 cell
differentiation, leukocyte transendothelial migration, and NOD-like receptor signaling
pathway. Two immune pathways (Fc gamma R-mediated phagocytosis and chemokine
signaling pathway) are enriched in both scDAMnet and mDAAnet. Except LGALS3BP
and RPLP2 (Figure 5B), another 7 genes (AXL, CD9, CKB, CSF1R, FGR, HIF1A and
INPP5D) are shared between scDAMnet and snDAMnet (Figure 5A). Three immune
pathways — natural killer cell mediated cytotoxicity, platelet activation, and hematopoietic
cell lineage are uniquely enriched in snDAMnet, while IL-17 signaling pathway, Toll-like
receptor signaling pathway, Thl and Th2 cell differentiation, and RIG-I-like receptor
signaling pathway are exclusively enriched in mDAAnet (Table 2). In summary, microglia
and astrocyte may synergistically trigger neuroinflammation in AD in a cell type-specific

manner.

Metabolites trigger molecular networks between astrocytes and microglia

Since AD is a pervasive metabolic disorder that is linked with altered immune responses®®.
We inspected the network relationship (Methods) between well-known metabolic genes
collected from Kyoto Encyclopedia of Genes and Genomes®® (KEGG, Methods) and the
identified molecular networks from both DAM and DAA. We found that metabolic genes

have a closer network relationship with DAM- or DAA-molecular networks compared to
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randomly selected genes after adjusted degree (connectivity) bias in the human
interactome (Methods and Supplementary Table 5). We therefore turned to investigate
whether environmental factors (including metabolites) trigger molecular network
perturbation between astrocytes and microglia. We performed an integrative network-
based analysis of AD-related metabolite-enzyme associations and the human protein-
protein interactome. We constructed a heterogenous networks, including 373,320 edges
consisting of 26,990 metabolite-enzyme associations and 346,330 PPIs (Methods).
Specifically, we assembled 155 AD-related metabolites (Supplementary Table 6)
supported by experimental evidence and found in human brain, blood and cerebrospinal
fluid samples from 12 well-performed clinical studies (Supplementary Table 6) as well
as a high-quality database of small molecule metabolites, the Human Metabolome
Database®’ (HMDB) (Methods). Based on our observations, we performed graphic
computations on the heterogenous network and extracted a subgraph consisting of 251
nodes and 1,404 edges as the DAM-DAA networks (Methods, Figure 6A and
Supplementary Figure 7A).

In total, we found 70 enzymes that regulated the AD-related metabolites: i) 50 (e.g.
APOE, GLB1, LDHB and PLCG2) enzyme-coding genes from DAM; ii) 23 (e.g. SIRT7,
HADHB, MAPK1 and PGAM1) genes from DAA, and iii) 3 (CTSB, CTSD and TGFBR2)
genes which are common to both DAM and DAA (Supplementary Figure 7B and
Supplementary Table 6). For instance, the CTSB, encoding cathepsin B, involved in
catabolism and immune resistance in humans®®, has elevated expression (Figures 6B
and 6C) in both DAM (Fold-Change [FC] = 2.48, g = 8.89x10%4) and DAA (FC = 1.84, q

= 8.15x1031). The pathway enrichment analysis on these 70 enzymes shows the effect
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of AD on metabolic homeostasis (e.g., glycolysis and gluconeogenesis) and highlights
some immune signaling pathways such as IL-3 and IL-5 (Supplementary Figure 7C).
These observations provide the proof-of-concept of metabolism-driven immune
responses between microglia and astrocytes in AD pathogenesis.

Using a betweenness centrality measure (Methods, Supplementary Table 6), we
found that fatty acids and amino acids (Figure 6A) were two primary types of metabolites
involved in molecular networks between the DAM and DAA. For example, SPP1%° and
CD44%, two cellular molecules that promote chronic inflammatory diseases, are
significantly over-expressed in both DAM (FC = 5.35, q = 5.51x10%, Figures 6D) and
DAA (FC = 1.30, q = 5.13x10'?) compared to HAM and non-DAA, respectively. Elaidic
acid, a major trans-fat, shows the largest centrality among all metabolites and is
connected with SPP1 and CD44 by two enzymes involved in fatty acid metabolism,
including phospholipase D (PLD3) and hydroxyacyl-CoA dehydrogenase (HADHB),
respectively®l. Co-expression analysis uncovers the coordinated change trends of SPP1
and PLD3 in DAM (Pearson r = 0.70, P = 0.0026, Figure 6E). Meanwhile, carnitine,
transporting the long-chain fatty acids into mitochondria for oxidation, is also involved in
the interactions with differentially expressed genes in both DAA (i.e., CD44) and DAM
(such as CYBA and PLAUR). These findings suggest the potential bridge roles of fatty
acid metabolism for the communication between astrocytes and microglia under AD
pathology. Moreover, amino acids, especially glutamate, serine, and phenylalanine, may
trigger the immune responses by directly targeting the shared gene CTSB which is
associated with the amyloid precursor protein processing in both DAM® and DAA1°, In

summary, characterizing the network-based relationship between the DAM-/DAA-
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specific molecular networks and the AD-related metabolites within the human interactome
network model identifies underlying immunometabolism mechanisms related to the

immune interplay of astrocytes and microglia in AD triggered by cellular metabolism.

Network-based discovery of drug candidates via reversing gene expression of
microglia and astrocytes

We next turned to identify potential drug candidates by specifically targeting molecular
networks in microglia and astrocytes. As shown in Figure 1, we collected drug-gene
signatures in human cell lines from the Connectivity Map (CMap) database®2. We posited
that if a drug significantly reverses dysregulated gene expression (measured by the most
up-regulated and down-regulated genes, Methods) of DAM or DAA involving in AD, this
drug may have potential in treating AD. We performed gene set enrichment analysis
(GSEA) and calculated enrichment score (ES) using permutation tests (Methods). We
used ES > 0 and p < 0.05 as the valid cutoffs to prioritize potential drug candidates. In
total, we investigated 1309 drugs with known target information from the DrugBank®?
database or having gene signatures from the CMap®2. We obtained 172, 234, 187, 124,
and 195 candidate drugs (ES > 0 and p < 0.05) based on GSEA analyses using
snDAMnet, scDAMnet, mDAAnet, hDAAECnet and hDAASFGnet, respectively. The
complete drug prediction results are summarized in Supplementary Table 7. A Venn
diagram showing the relations of predicted drugs among different molecular networks is
presented in Supplementary Figures 8A and 8B. We found that drugs with ES >0
predicted by at least one molecular network have potentially beneficial for AD across

several pharmacological categories: anti-inflammatory agents, immunosuppressive
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agents, adrenergic beta-2 receptor agonists, adrenergic alpha-antagonists, and
antipsychotic agents (Figure 7A). We next focused on 4 high-confidence drug candidates
(Figure 7B) using subject matter expertise based on a combination of factors: (i) strength
of the predicted associations (ES value); (ii) novelty of the predicted associations with
established mechanisms-of-action (such as anti-inflammatory); (iii) literature-based
evidence in support of prediction; (iv) availability of sufficient patient data for meaningful
evaluation (exclusion of infrequently used medications).

Immunosuppressant. The observations suggested that an immunosuppressive
drug (Rapmaycin) could potentially benefit AD treatment in both cellular experiments and
animal models®*. The reported underlying mechanism included regulating autophagy and
cellular signaling pathways®*. One of our top-predicted drugs — azathioprine (ranking 1t
from mDAAnet after removing drugs with no targets according to the DrugBank database,
p = 0.02, Supplementary Table 7) is an immunosuppressive drug that used to treat
autoimmune disorder disease - rheumatoid arthritis®® and prevents renal transplant
rejection®®. A study reported therapeutic potential of azathioprine in AD®. When
integrating drug targets of azathioprine into the predicted molecular network of mDAAnRet,
we found that azathioprine directly targets ras-related protein Racl (RAC1), a key
immune gene in astrocytes (Figure 7B). In addition, azathioprine indirectly targets several
key immune genes, including VCAM1, PIK3R1, CDC42, MAPK10, and NFKB1 in
mDAAnet (Figure 7B). In addition to VCAM1, MAPK10, NFKB1 and PIK3R1 as critical
AD pathological modulators, CDC42 small effector protein 1 (CDC42) was shown to be

biologically associated with AD since it presented a large overlap with cytokine
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abnormalities®®. These observations suggest that azathioprine is a candidate
immunosuppressant agent by specifically targeting molecular networks in DAA.

Antithrombotic anticoagulant. In one AD transgenic mouse model, it was found
that long term anticoagulation with dabigatran (an approved thrombin inhibitor), could help
to preserve cognition, cerebral perfusion, and blood brain barrier (BBB) function and
alleviate A deposition®®. Our predicted antithrombotic anticoagulant, triflusal (ranking 6%
from mDAAnet after removing drugs with no targets according to the DrugBank database,
p < 1x10°%, Supplementary Table 7), presented a reduced risk of AD’s dementia
progression in a randomized, double-blind, placebo-controlled trial with 257 subjects?.
Another study reported that triflusal repaired defects in axonal curvature and cognition in
an AD transgenic mouse model’®. In drug-target network analyses (Figure 7B), triflusal
directly targets NFKB1 and indirectly targets other 4 immune genes (ISG15, NFKB1A,
FOS, and ICAM1) in mDAAnet, suggesting a possible anti-inflammatory mechanism-of-
actions for AD.

Beta2-adrenergic  receptor agonist. Longitudinal and cross-sectional
epidemiological studies revealed that treatment with beta-blockers reduces AD incidence
in individuals suffering from hypertension’?. From cellular experiments and animal models,
it was found that B-adrenergic receptors play a role in AD pathogenesis via influencing
A B production and inflammation’?. Another study demonstrated in an APP/PS1
transgenic AD mouse model that beta2-adrenergic receptor activation could enhance
neurogenesis and repair cognitive deficits”3. Salbutamol (ranking 4" from snDAMnet after
removing drugs with no targets according to the DrugBank database, p < 1x10°,

Supplementary Table 7), a selective beta2-adrenergic receptor agonist used in the
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treatment of asthma, is a highly predicted candidate from our network-based approach.
Salbutamol inhibits tau accumulation in vitro’4. When incorporating its drug target with
molecular network (snDAMnet), salbutamol interacts directly with 3 immune genes
(PRKCD, GRB2 and MAPK14) as shown in Figure 7B. Except PRKCD and MAPK14
aforementioned, literature evidence also demonstrates that growth factor receptor-bound
protein 2 (GRBZ2), involving in the C-terminal fragments (CTF) — ShcA complexes, plays
a role in influencing AD development?.

Retinoic acid. Retinoic acid, another potential AD therapeutic option, has been
widely studied’®. One of the explanations elucidating its possible effectiveness for AD
treatment is its inhibition of oxidative stress and abnormal differentiation of neurons, two
common pathological factors for AD’®. In the AD APP/PS1 transgenic mouse model,
treatment with all-trans retinoic acid (ATRA) significantly decreased APP phosphorylation
and processing, reduced microglia and astrocyte activities, down-regulated cyclin-
dependent kinase 5 (CDK5) activity, and enhanced cognitive capabilities”’. Tretinoin
(ranking 1%t from scDAMnet after removing drugs with no targets according to the
DrugBank database, p < 1x10°, Supplementary Table 7), a US Food and Drug
Adminisatrion (FDA)-approved drug for acute promyelocytic leukemia (APL), is one of our
highest predictions’®. Experiments with AD transgenic mouse models showed that
tretinoin decreased activation of microglia and astrocytes’’. Mechanistically, tretinoin
directly targets mitogen-activated protein kinase 1 (MAPK1), LYN and FGR in the

scDAMnet (Figure 7B).

Validating possible causal associations in patient data
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Fluticasone, a synthetic glucocorticoid which is FDA-approved for several inflammatory
indications, is one of our top predicted drugs based on scDAMnet. We evaluated the
fluticasone user’s vulnerability to AD by analyzing 7.23 million U.S. commercially insured
individuals (MarketScan Medicare supplemental database, see Methods). We conducted
two cohort analyses to evaluate the predicted association based on individual level
longitudinal patient data and state-of-the-art pharmacoepidemiologic methods. These
included: (i) fluticasone vs. a matched control population (non-fluticasone user), and (ii)
fluticasone vs. mometasone (an FDA-approved corticosteroid for skin conditions, hay
fever, and asthma). For each comparison, we estimated the un-stratified Kaplan-Meier
curves and conducted propensity score stratified (n strata = 10) log-rank tests and the
Cox regression model.

We found that individuals taking fluticasone were at significantly decreased risk
for development of AD (hazard ratio (HR) = 0.858, 95% confidence interval [CI] 0.829-
0.888, P < 0.0001, Figure 8A) in a retrospective case-control validation. Importantly,
propensity score matching cohort studies confirmed mometasone’s association with
reduced risk of AD in comparison to fluticasone (HR =0.921, 95% CI 0.862-0.984, P <
0.0001, Figure 8B). Another independent database — FDA MedWatch Adverse Events
Database revealed that the combination of fluticasone and ibuprofen could be a
therapeutic option for AD°. To infer the potential mechanisms-of-action of fluticasone in
AD, we integrate drug target network, the extracted molecular network and human PPIs
(scDAMnet, Figure 8C). Network analysis shows that fluticasone could indirectly target
GSK3B and CDKS5 (Figure 8C). And literature study demonstrates that GSK3B and

CDKS5 are two most relevant targets for AD®0,
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Discussion

The emergence of single-cell/nucleus sequencing technologies and development of
computational tools enables us to capture new insights into neuroinflammation for AD
from the molecular network perspective. In this study, we systematically reconstructed
molecular networks for both DAM and DAM by uniquely integrating SCRNA/sn-RNA-seq
profiles form both AD transgenic mouse models and human AD brains. We showed that
in AD, affected genes regulate either one (such as CSF1R, CD33, CCL3/4 and CCR5) or
multiple (e.g., SYK, ICAM1, VCAM1, NFKB1, HSP90AAl, JUN and FOS) immune
pathways. The enriched immune pathways and network proximity®>* analyses indicate that
microglia and astrocytes may share a strong network relationship in the human protein-
protein interactome (Figure 5A and Supplementary Table 5). Via incorporating the
enzyme-metabolite associations, we found that fatty acids (e.g., elaidic acid) and amino
acids (e.g., glutamate, serine and phenylalanine) may trigger immune alterations between
DAM and DAA. Finally, we computationally identified that existing drugs (including
azathioprine, triflusal, salbutamol, and retinoic acid) offer potential candidates for AD by
reversing gene expression of DAM or DAA. Importantly, we demonstrated that fluticasone
and mometasone were significantly associated with the decreased risk of AD in a large-
scale patient data.

We acknowledged several potential limitations in the current study. Although two
snRNA-seq and scRNA-seq datasets of DAM present consistent gene expression
patterns (Supplementary Tables 1 and 2), snDAMnet and scDAMnet showed a small
gene overlap. There are several possible explanations. For example, single-cell and

single-nucleus may generate different cell abundances during cell processing. DAM
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accounts for around 12% of microglia based on scRNA-seq data in 5XFAD mice, while
percentage surges to more than 50% based on snRNA-seq data in 5XFAD mice (Tables
1A and 1B). For DAA, both mouse (Supplementary Table 3) and human
(Supplementary Table S4) RNA-sequencing data display partial consistent gene
expression patterns, including DAA marker genes GFAP, CD44, HSPB1, APOE and
TREM2. Several opposite human marker genes’ expression patterns are also detected
when compared with mouse data, such as TNC, SLC1A2, SLC1A3, and GLUL. Two
human molecular networks (hDAAECnet and hDAASFGnet) built from two human brain
regions are similar. The network proximity analyses under different measurements also
show that the distances between two human molecular networks are significantly closer
compared to distances between random networks with specific restrictions (Methods and
Supplementary Table 5). However, when comparing between the mouse and human
molecular networks, their overlaps are very small. Samples collecting from different brain
regions is one reasonable explanation. The human RNA-sequencing data we used were
collected from entorhinal cortex and superior frontal gyrus; while the mouse data were
collected from hippocampus.

Network proximity evaluations show that the distances between human and
mouse molecular networks are small; however, less significant when compared to
distances among mouse molecular networks (Supplementary Table 5). One study
showed that immunology in human AD brains and mouse models were different®.
Another more recent study argued that gene signatures were very distinct between
mouse model 5XFAD and human AD brains in DAM as well®. For example, upregulated

5XFAD DAM marker genes, Lpl and Cst7, could not be detected in human AD brain®?,
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These unresolved must be addressed in the future. Quality of AD outcomes or
phenotypes defined by current clinical criteria (such as Braak score) may influence our
findings as well. According to the National Institute of Neurological Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association (NINDS-ADRDA), Braak
stage 2 is probable AD with supported evidence, and Braak stage 6 is considered as
definite AD. For two brain regions, EC and SFG, there are no apparent differences of
normalized nucleus abundance percentage across different Braak stages for both DAA
and non-DAA (Tables 1 and Supplementary Figure 2D and 2E). Finally,
incompleteness and potential biases of human protein-protein interactcome and drug-
target networks may influence our network-based findings as well.

In summary, we proposed a network-based approach that incorporates snRNA-
seq and scRNA-seq data sampled from either mouse models or AD patient brains, PPlIs,
enzyme-metabolite associations, and drug target networks, along with the large-scale
patient validation database. We showed the molecular networks derived from DAM and
DAA are significantly enriched for various well-known immune pathways and AD
pathobiological pathways. We showed that the identified molecular network from DAM
and DAA offer potential targets for drug repurposing, which we validated for proof-of-
concept in a large-scale, real-world patient database. In summary, we believe that the
network-based approach presented here, if broadly applied, would significantly catalyze
innovation in AD drug discovery and development for AD and other disease by utilizing

the large-scale existing omics data at the single-cell/nucleus levels.
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Methods and Materials

Single-cell and nucleus RNA-sequencing. We collected single cell and nucleus
transcriptomics data from four recently published papers. The complete mouse single-
cell transcriptomics data were sequenced from various transgenic mouse models,
including C57BL/6, 5XFAD, Trem2 knock out C57BL/6, Trem2 knock out 5XFAD and
SOD1 and different organs, i.e., whole brain, cortex, cerebellum and spinal cord with
different ages, i.e., 7 weeks, 80 and 135 days, 1, 3, 6, 9 and 20 months. In this study, we
utilized data from 16 C57BL/6 (whole brain) and 16 5XFAD 6 month-mouse. In total, there
were 12,288 cells sequenced from 32 mouse samples. Two of three snRNA-seq data
were collected from mouse samples as well (GSE140511 and GSE143758). Dataset
GSE140511 contained four transgenic male mouse models, including C57BL/6, 5XFAD,
Trem2 knock out C57BL/6 and Trem2 knock out 5XFAD. In this study, we considered the
7-month mouse models which in total sequenced 90,647 nuclei as described in the
original literature®?. The second mouse nucleus dataset GSE143758 contains two
transgenic mouse models C57BL/6 and 5XFAD from both hippocampus and cortex
regions and with different ages. Similarly, we utilized in total 50,242 nuclei data from the
7-month mouse models with 5 5XFAD and 6 C57BL/6 samples. Finally, the human
single-nucleus transcriptomics data®? contains ten male frozen post-mortem human brain
tissues from both superior frontal gyrus and entorhinal cortex regions. There are 3, 4 and
3 human brains tissues with Braak stages 0, 2, and 6, respectively. The raw data
(including astrocytes, excitatory neurons, inhibitory neurons and microglia cells)

downloaded from on Gene Expression Omnibus (GSE147528). All the following data
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analysis are based on the processed data after quality control, and there are 5599 and

8348 nuclei for samples from entorhinal cortex and superior frontal gyrus, separately.

Bioinformatics analysis of single cell/nucleus RNA-sequencing data. The analyses
were completed with Seurat®* (v3.1.5), scran® (v1.16.0), scater®® (v1.16.1) packages in
R with steps complied with the original literatures. Data were normalized using a scaling
factor of 10,000 and all DEG analyses are conducted by function FindMarkers in Seurat®*
R package with parameter test.use = ‘MAST’. The detailed data analysis steps for each
dataset (GSE98969, GSE140511, GSE143758 and GSE147528) are illustrated in
sequences.

GSE98969. The data used are from whole brain cells of 6 months 5XFAD (16) and
C57BL/6 (16) mice that express gene CD45. For quality control, cells with mitochondrial
content >5% and UMIs < 500 were removed. Genes with mean expression smaller than
0.005 UMis/cell were discarded for analysis. Data were normalized using a scaling factor
of 10,000 and functions FindIntegrationAnchors and IntegrateData in Seurat®* R package
are used for batch effect correction for samples collected from different plates. Principle
component analysis was performed using the top 2000 most variable genes and
clustering was performed using the top 30 principal components (PCs) and resolution of
0.4. After identifying clusters for DAM and HAM, separately (gene markers, see Figure
1b®), DEGs are compared between DAM and HAM by considering cells from 5XFAD mice
only. The whole pipeline was completed with Seurat®* R package.

GSE140511. The process for clustering different cell types are provided in the

original literature®2, We used microglia nuclei and reproduce the clustering procedures to
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isolates DAM and HAM nuclei. Considering all microglia nuclei, principle component (PC)
analysis was performed using the top 3000 most variable genes and sub-clustering was
performed using the top 10 PCs and resolution of 0.1. Again, after identifying clusters
enriched in DAM and HAM nuclei (gene markers, Figure 1b in8), DEGs are compared
between DAM and HAM by considering nuclei from 5XFAD mice only. The whole pipeline
was completed with Seurat®* R package.

GSE143758. The process for clustering different cell types are provided in the
original literaturel®. In this study, we used astrocyte nuclei and reproduced the clustering
procedures to isolate DAA) and non-DAA nuclei. Considering all astrocyte nuclei,
principle component analysis was performed using the top 2000 most variable genes and
sub-clustering was performed using the top 10 PCs and resolution of 0.3. After identifying
clusters enriched in DAA nuclei by comparing the expression pattern of marker genes
(Figure le in'%) among sub-clusters. We computed DEGs between DAA and non-DAA
by considering nuclei from 5XFAD mice. All analyses were performed using Seurat®* R
package.

GSE147528. We used astrocyte cell subtype - reactive astrocyte, which is
associated with AD®3, We considered astrocyte nuclei and clustering analysis was first
performed by quickCluster function and size factors were computed by
computeSumFactors function with parameter min.mean = 0.1 in scran R package. Then
count matrix was normalized by the computed size factors and log-transformed by
function logNormCounts in scater R package. Top 1000 highly variable genes were
selected by functions modelGeneVar and getTopHVGs in scran R package. Functions

FindIintegrationAnchors and IntegrateData in Seurat® R package were used for batch
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effect correction, and clustering was performed using the top 12 PCs and resolution of
0.2. After identifying clusters enriched in reactive astrocyte nuclei (gene markers®3,
Figures 2a and 2b ), DEGs are compared between reactive astrocytes and non-reactive
astrocytes for nuclei from both superior frontal gyrus and entorhinal cortex regions,

respectively.

Building Human Protein-protein interactome

To build the comprehensive human interactome from the most contemporary data
available, we will assemble 18 commonly used PPI databases with experimental
evidence and the in-house systematic human PPI we have previously utilized?: (i) binary
PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems®’; (ii) kinase-substrate
interactions by literature-derived low-throughput and high-throughput experiments from
KinomeNetworkX®8, Human Protein Resource Database (HPRD)?®, PhosphoNetworks®,
PhosphositePlus®!, DobPTM 3.0 and Phospho.ELM??; (iii) signaling networks by literature-
derived low-throughput experiments from the SignaLink2.0%; (iv) binary PPIs from three-
dimensional protein structures from Instruct®®; (v) protein complexes data (~56,000
candidate interactions) identified by a robust affinity purification-mass spectrometry
collected from BioPlex V2.0°; and (vi) carefully literature-curated PPIs identified by
affinity purification followed by mass spectrometry from BioGRID®, PINA%’, HPRD®%,
MINT®® |IntAct'®, and InnateDB!%:. As of December 2019, the updated human

interactome constructed includes 351,444 PPIs connecting 17,706 unique proteins.

Description of GPSnet
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GPSnet algorithms takes two inputs: node score and one background PPI network. The
node score was defined as follows: for DEGs with g <= 0.05, the node scores equal to
absolute value of log2FC. In order to generate a module, GPSnet starts with a randomly
selected gene/protein (node) as the seed gene. During each iteration, one of candidate
genes (1%t order neighbors of current seed genes) that satisfying the following two
conditions at the same time will be added: (1) a p-value of the connectivity significance
P(i) (Eq. 1) is less than 0.01; (2) the updated module score is greater than the current
one (Eg. 2). We repeated steps (1) and (2) until no more genes (nhodes) can be added. In
this study, we built ~100,000 raw modules ranked by module scores. For each raw
module, the corresponding module score can be computed (Eq. 2) and all raw modules
are ranked in decreasing module score order and the protein frequency is defined based
on truncated raw modules. We generated the final network modules by assembling top

raw network modules (Supplementary Tables 1-4).

(1)

(s() — 1) + Xien(SG) — 1)
Vn

Where, N denotes all proteins/genes in the PPI, n represents numbers of nodes in the

MS, (i) = )

module, d,, is the numbers of neighbors of gene i, d; is the degree of gene i, MS, (i)
denotes the updated module score if adding node i, M denotes the current module, and

u is the average node score (|log2FC] in this work) of all genes with respect to the PPI.

Network proximity
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To quantify the relationships of two molecular networks (DAM vs. DAA) in the human

interactome, we adopted the shortest path-based network proximity measure®* as below.

1

dD (XI Y) = Il

Lyeymind(x, y) 3
where d(x,y) is the shortest path length between gene x and y from gene list X (DAM)
and Y (DAA), respectively. To evaluate whether such proximity was significant, the
computed network proximity is transferred into z score form as shown below:

doption — Ha
Zdoption = O-d (4)

Here, u; and o, are the mean and standard deviation of permutation test with 1000
random experiments. In each random experiment, two random subnetworks X, and Y,
are constructed with the same numbers of nodes and degree distribution as the given 2

subnetworks X and Y, separately, in the human protein-protein interactome.

Network analysis metabolite-enzyme associations

We collected 136 AD-related metabolites from 12 studies and the Human Metabolome
Database (HMDB)%’. All metabolistes were identified in AD-related human samples,
including brain tissue, cerebrospinal fluid, and blood. All of these results are free available

in our website AlzGPS (https://alzgps.lerner.ccf.org/). We collected experimentally

reported metabolite-enzyme associations from three commonly used data sources,
including KEGG®®, Recon3D%3, and HMDB?®’, and assembled them with the human PPI
network. The updated network contains 373,320 links connecting with 17,826 unique
proteins (including enzymes) and 1,419 metabolites. Then we mapped 224 DAM and
DAA disease module genes and the 155 AD-related metabolites to the new network and

computed the maximal subgraph: (1) we found 614 unique nodes which were the first or
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second order neighbors of 61 DAM and DAA immune genes; (2) we obtained 71
metabolites by considering the intersection of 614 unique nodes and 155 AD-related
metabolites; (3) a subnetwork connecting 224 genes and 71 metabolites was generated.
Finally, we computed the network paths that connected the DAM and DAA genes using

the large betweenness centrality.

Connectivity Map (CMap) and DrugBank database
The Connectivity Map data used in this study contains 6100 expression profiles relating
1309 compounds®?. A parameter a defined below is used to leverage the extent of

differential expression for a given set of genes.

t—c

“Eron ©)
Here tis the scaled and thresholded average difference value for the drug treatment group
and c is the thresholded average difference value for the control group. Therefore, a zero
a value indicates no expression change after drug treatment, and a positive a value
means elevated expression level after drug treatment and vice versa. Drug gene
signatures with a > 0.67 (0.67 equals the 2-folds increment) are considered as up-

regulated drug-gene pairs, and a < -0.67 are denoted as down-regulated drug-gene pairs.

Gene Set Enrichment Analysis (GSEA)

We utilized GSEA algorithm to predict drugs for each cell subtype. GSEA algorithms takes
two inputs: CMap database and the extracted molecular network. Detailed descriptions
of GSEA have been illustrated in1%. To be specific, the GSEA enrichment score (ES) is

calculated as shown below.
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ES = {Esup - ESdown Sgn(ESup) * Sgn(ESdown) (6)
0 otherwise

Both ES,,,, and ES,,, are computed for up- and down-regulated genes in input molecular
network separately with the same scheme as shown below in a 2-step manner. We first

compute intermediate parameters a and b:

a = max (l_ﬂ)) b = max (@_E) (7)

1=jss \S r 1sjss\ r s
where j=1, 2, ..., s were the gene sets from molecular network sorted in ascending order
by their rank in the gene profiles of the drug being evaluated. The rank of gene j is denoted
by V(j), where 1 <V(j) <r, with r being the number of genes (12,849) from the drug
profile. Then, the corresponding ES,,,, and ES,,,, equal

if ay, > byp

_ auP _ | adown if Adown ~ bdown
ESup = {—bup ifbyy > aup { ®)

ESaown = —bdown  ifbdown > adown

In the above equations, a,;, qown aNd byy/qaown @re computed with respect to up- and
down-regulated genes in molecular network, separately. The GSEA ES represents drug
potential capability to reverse the expression of the input molecular network. Permutation
tests repeated 100 times using randomly gene lists consisting of the same number of up-
and down-regulated genes as the input molecular network were performed to leverage
the significance of the computed ES value. Therefore, drugs with large positive ES value

and significant p (p < 0.05) were selected.

Enrichment Analysis
All pathway and disease enrichment analyses in this study are conducted via either
KEGG 2019 Mouse or KEGG 2019 Human and DisGeNET!® from Enrichri®, respectively.

The DisGeNET® is a comprehensive platform integrating disease-associated genes
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information. It collects disease-associated genes from multiple sources: expert curated
repositories, GWAS catalogues?’, animal models and the scientific literature. As January
2019, it contains 628,685 gene-disease associations between 17,549 genes and 24,166

diseases/traits.

Pharmacoepidemiologic validation

Study cohorts. We used the MarketScan Medicare Claims database from 2012 to 2017
for the pharmacoepidemiologic analysis. This dataset included individual-level procedure
codes, diagnosis codes, and pharmacy claim data for 7.23 million patients. Pharmacy
prescriptions of verapamil and amlodipine were identified by using RxNorm and National
Drug Code (NDC).

Outcome measurement. For an individual exposed to the aforementioned drugs, a drug
episode was defined as from drug initiation to drug discontinuation. Specifically, drug
initiation was defined as the first day of drug supply (i.e. 1st prescription date). Drug
discontinuation is defined as the last day of drug supply (i.e. last prescription date + days
of supply) and without drug supply for the next 60 days. The fluticasone cohort included
the first fluticasone episode for each individual, as well as the mometasone cohort.
Further, we excluded observations that started within 180-day of insurance enrollment.
For the extracted cohorts, demographic variables including age, gender and geographical
location were collected. Additionally, diagnoses of hypertension (HT) and type 2 diabetes
(T2D) (the International Classification of Disease [ICD] codes before drug initiation were
collected, to address potential confounding biases. Last, a control cohort was selected

from patients who were not exposed to fluticasone. Specifically, non-exposures were
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matched to the exposures (ratio 4:1) by initiation time of fluticasone, enrollment history,
age and gender. The outcome defined by using ICD codes was time from drug initiation
to diagnose of AD. For the fluticasone and mometasone cohorts, observations without
diagnosis of AD were censored at the end of drug episodes. For the control cohort, the
corresponding fluticasone episode starting date was used as the starting time.
Observations without diagnosis of AD were censored at the corresponding fluticasone
episode’s end date.
Propensity score estimation. We define NE = north east, NC = north central, S = south,
W = west, T2D = type 2 diabetes, HT = hypertension and CAD = coronary artery disease.
The propensity score of taking fluticasone vs. a comparator drug was estimated by the
following logistic regression model:
logit[Pr(Drug = fluticasone)| = B, + B1Age + B,Gender + B;1(Location =
NE) + B,1(Location = NC) + Bs1(Location = S) + ScT2D + B,HT + BgCAD. ©)
Further, among the subgroups defined by gender, the propensity score of taking
verapamil vs. a comparator drug was estimated by the following logistic regression model:
logit[Pr(Drug = fluticasone)] = S, + B,Age + B,1(Location = NE) +

(10)
Bs1(Location = NC) + B,1(Location = S) + BsT2D + BHT + $,CAD.

Statistical analysis. The survival curves for time to AD were estimated using a Kaplan-
Meier estimator approach. We used the large number of covariates generated throughout
the process to address clinical scenarios evaluated in each study. Additionally, propensity
score stratified survival analyses were conducted to investigate the risk of AD between

fluticasone users and non-fluticasone users, as well as fluticasone users and
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mometasone users. Specifically, for each comparison, the propensity score of taking
fluticasone was estimated by using a logistic regression model, in which the covariates
included age, gender, geographical location, T2D diagnosis and HT diagnosis. Further,
propensity score stratified Cox-proportional hazards models were used to conduct

statistical inference for the hazard ratios (HR) of developing AD between cohorts.
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Figure 1. A diagram illustrating the network-based framework. A standard single
cell / nucleus RNA-sequencing data analysis pipeline includes quality control, clustering
analysis and differentially expressed genes (DEGs) analysis. We built the molecular
network using the state-of-the-art network-based algorithm by integrating sc/snRNA-seq
data into the human protein-protein interactome (Methods). Next, we prioritized
repurposed drugs for potential treatment of AD by identifying those that specifically
reverse dysregulated gene expression for microglia and astrocyte: if drug-induced up-
or down-related genes are significantly enriched in the dysregulated molecular
networks, these drugs will be prioritized as potential candidates for treatment of AD.
Finally, top drug candidates were validated further using a large-scale, real-world
patient database.
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Figure 2. Discovery of disease-associated microglia (DAM) specific molecular
networks for the AD transgenic mouse model. (A) Uniform manifold approximation
and projection (UMAP) plot of clustering 4,389 microglia cells: blue cluster denotes the
homeostasis associated microglia (HAM) and green cluster denotes the DAM. (B)
Expression levels (heatmap) of representative marker genes (up-regulation in DAM: Cst7
and Lpl and down-regulation in DAM: P2ry12 and Cx3crl) in different microglia sub-
clusters. (C) A predicted DAM specific molecular network contains 227 protein-protein
interactions (PPIs) connecting 72 genes/proteins. Node sizes are proportional to their
corresponding |log2FC| during differential expression analysis. Nodes are color coded by
known KEGG immune pathways. Edges are color coded by different experimental

evidences of PPIs (Method).
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Figure 3. Discovery of disease-associated astrocyte (DAA) specific molecular
networks in AD transgenic mouse model. (A) T-distributed stochastic neighbor
embedding (TSNE) plot of clustering 7546 astrocyte nuclei. Red cluster denotes the
disease associated astrocyte (DAA); (B) Stacked violin plot displaying the expression
patterns of 9 representative genes across different astrocyte sub-clusters; (C) A
predicted DAA specific molecular network contains 371 protein-protein interactions
(PPIs) connecting 98 genes/proteins. Node sizes are proportional to their corresponding
[log2FC| during differential expression analysis. Nodes are color coded by KEGG
immune pathways, and edges are color coded by different experimental evidences of

PPIs (see Methods).
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Figure 4. Discovery of disease-associated astrocyte (DAA) specific molecular
networks for human AD brains. (A) Uniform manifold approximation and projection
(UMAP) plot for 5599 astrocyte nuclei clustering analysis between AD patients’ brain
entorhinal cortex (EC) region. (B) UMAP plot of clustering 8348 astrocyte nuclei for AD
patients’ brain superior frontal gyrus (SFG) regions. (C) An identified DAA specific
molecular network containing 43 protein-protein interactions (PPIs) connecting 26
genes/proteins for EC. (D) An identified DAA specific molecular network containing 22
PPIs connecting 13 genes/proteins for SFG. Node sizes are proportional to their
corresponding |log2FC|. Nodes are color coded by KEGG immune pathways involved
and edges are color coded by different experimental evidences of PPIs (Method).
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Figure 5. Comparison of molecular networks between disease-associated
astrocytes (DAA) and microglia (DAM). (A) Visualization of interplays between DAM
and DAA molecular networks in the human protein-protein interactome network model.
(B) Expression levels of LGALS3BP and RPLP2 for homeostatic associated microglia
(HAM) versus DAM and DAA versus non-DAA. The FDR (g value) is computed using the
Seurat R package (Methods). All details for gene differential expression analyses are
provided in Supplementary Tables 1-3.
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Figure 6. A metabolite-triggered molecular network between disease-associated
astrocytes (DAA) and microglia (DAM). (A) A highlighted subnetwork of the metabolite-
enzyme network between DAM and DAA in the human protein-protein interactome
network model; (B and C) Expression of CTSB is significantly elevated in (C) DAM and
(D) DAA, compared to homeostatic associated microglia (HAM) and non-DAA,
respectively. (D) Expression of SPP1 is significantly elevated in DAM compared with HAM.
Each dot represents one cell; (E) Pearson correlation analysis shows that SPP1 and
PLD3 have the coordinated change trends in DAM. Gene expression is counted by the
average Unigue Molecular Identifier (UMI) count.
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Figure 7. Network-based discovery of repurposable drug candidates for AD by
specifically reversing gene expressions of disease-associated microglia (DAM)
and disease-associated astrocytes (DAA). (A) Selected drugs that specifically target
five different DAM or DAA molecular networks. Drug are grouped by five different
classes: immunological, respiratory, neurological, cardiovascular, cancer, and type Il
diabetes. Four high-confidence drugs were highlighted by red text. (B) Proposed
mechanism-of-actions for 4 selected drugs by drug-target network analysis.
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Figure 8. Longitudinal analysis reveals that fluticasone and mometasone reduce
risk of AD incidence in patient data. Two comparison analyses were conducted
including: (A) fluticasone vs. a matched control population and (B) fluticasone vs.
mometasone. We estimated the un-stratified Kaplan-Meier curves, conducted propensity
score stratified (n strata = 10) rank test and Cox models after adjusted all possible
confounding factors, including age, gender, race, disease comorbidities (see Methods).
(C and D) Proposed mechanism-of-action for treatment of AD by fluticasone and
mometasone using drug-target network analysis.
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Supplementary Figure 1. Discovery of disease-associated microglia (DAM) specific
molecular networks using a scRNA-seq dataset (GSE98969). (A) UMAP plot of clustering
10,836 CD45+ cells into 13 sub-groups: gold cluster denoting the homeostasis associated
microglia (HAM) and red cluster denoting the DAM. (B) Expression levels (stacked violin
plots) of representative marker genes (up-regulation in DAM: Cst7 and Lpl and down-
regulation in DAM: P2ry12 and Cx3crl) in different microglia sub-clusters; (C) Extracted
cell subtype DAM specific molecular network includes 69 nodes (proteins) and 97 edges
(protein-protein interactions [PPIs]). Node sizes are proportional to their corresponding
[log2FC|. Nodes are color coded by well-known KEGG immune pathways and edges are
color coded by different experimental evidences of PPIs (Methods).
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Supplementary Figure 2. Nucleus / cell distribution in different immune cell subtypes.
Normalized nucleus / cell abundance for homeostasis associated microglia (HAM) and
disease associated microglia (DAM) clusters in both wild-type (WT) and 5XFAD mouse
models (A) from sn-RNA seq dataset — GSE140511 and (B) from sc-RNA seq dataset —
GSE98969. (C) Bar plot of normalized nucleus abundance in both disease associated
astrocytes (DAAs) and non-DAA clusters considering both WT and 5XFAD mice. (D and
E) Bar plot of normalized nucleus abundance in both DAA and non-DAA clusters
considering human AD brains with Braak stages 0, 2, and 6 for brain region - (D)
entorhinal cortex (EC) and (E) superior frontal gyrus. Detailed results are presented in

Supplementary Table 1.
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Supplementary Figure 3. Differentially expressed genes and pathway enrichment
analysis for disease associated microglia (DAM). Differential expressed gene analysis
(volcano plot) between DAM and homeostasis associated microglia (HAM) with restricting
to 5XFAD mice only using two different datasets: (A) GSE140511 (Supplementary Table
1) and (B): GSE98969 (Supplementary Table 2). (C) Pathway enrichment analysis

(Sup
(Sup

plementary Table 1) for
plementary Table 2) for GSE989609.

GSE140511.

(D) Pathway enrichment analysis

61


https://doi.org/10.1101/2020.09.23.310466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310466; this version posted September 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(A) Heatmap of DAA Marker Genes (Human EC) (B) Heatmap of DAA Marker Genes (Human SFG)
GFAP CD44 GFAP CD44
& 5.0 4 & 5.0 3 o3 43 3
125 - 125 - | [ ] | -
go.o 2%0.0 f%o 2%0 ;
-2.5 WA -2.5 -3 -3
= =1 5 =)
5.0 0~ 50 o = 0~ 0
4 0 4 4 0 4 5 0 5 5 0
UMAP_1 UMAP_1 UMAP_1 UMAP_1
HSPB1 TNC HSPB1 TNC
& 5.0 i & 5.0 3 o3 A %ig 5
.25 - 125 - | | | I Lol
% 00 2 %00 2 %0 220 2
Z.25 » =.25] % 123 =3 1
5.0 0= 50 0 < 0= % 0
4 0 4 4 0 4 5 0 5 5 0 5
UMAP_1 UMAP_1 UMAP_1 UMAP_1
SLC1A2 SLC1A3 SLC1A2 SLC1A3
5.0 5.0
&l 2.5 | | D_l 2.5 - Q[ 5 - n.' . -
< 0.0 3 < 00 2 < 3 < 3
S-25 225 =3 =3
1 (1 12 1
-5.0 -5.0 -6 -6
4 0 4 4 0 4 5 0 5 5 0 5
UMAP_1 UMAP_1 UMAP_1 UMAP_1
GLUL NRXN1 GLUL NRXN1
5.0 5.0
o~ 4 N 4 N3 4 N3 5
1°2:5 - 125 - I - I -
% 0.0 2 % 0.0 2 % 0 '<§lc 0 3
225 o 525 5 53 =3 1
-5.0 -5.0 -6 -6
-4 0 4 -4 0 4 -5 0 5 -5 0 <
UMAP_1 UMAP_1 UMAP_1 UMAP_1
CADM2 PTN CADM2 PTN
5.0
o pt ias : p3 3 pt 3 ps
o [ 2 &g a o 2
< 2 < 0.0 < 2 <
e 220 1 32 2 :
0°>7%0 0 24 0°>4 0
-4 0 4 -5 0 5 -5 0 5
UMAP_1 UMAP_1 UMAP_1
GPC5
Z - Zl 3 pe
< “ <0 3
: 2
0 5 1
- 0 5
UMAP_1

Supplementary Figure 4. Expression levels (heatmap) of representative marker genes
(up-regulation in DAA: GFAP, CD44, HSPB1 and TNC, and down-regulation in DAA:
SLC1A2, SLC1A3, GLUL, NRXN1, CADM2, PTN and GPC5) in all astrocyte sub-clusters,
patients’ brain region: (A) entorhinal cortex (EC) and (B) superior frontal gyrus (SFG).
Data source: GSE147528.
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Supplementary Figure 5. Differentially expressed genes and pathway enrichment
analysis for disease associated astrocytes (DAAS) built from the AD transgenic mouse
model (GSE143758). (A) Stacked violin plot displaying the expression patterns of 9
representative genes across different astrocyte sub-clusters. (B) Differential expressed
gene analysis (volcano plot) between DAAs and non-disease associated astrocytes (non-
DAAs) using 5XFAD mice. (C) Pathway enrichment analysis presented by 13 enriched
KEGG immune system pathways (Supplementary Table 3).
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(A) Differentially Expressed Genes Analyses between (B) Differentially Expressed Genes Analyses between
DAA and non-DAA (EC), sn-RNA seq: GSE147528 DAA and non-DAA (SFG), sn-RNA seq: GSE147528
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Supplementary Figure 6. Differentially expressed genes and pathway enrichment
analysis for disease associated astrocytes (DAAS) built from human AD patient ShRNA-
seq data (GSE147528). Differential expressed gene analysis (volcano plot) between
DAAs and non-disease associated astrocytes (non-DAAS), patients’ brain regions: (A)
entorhinal cortex (B) superior frontal gyrus; (C) Pathway enrichment analysis (see
Supplementary Table 4) for molecular networks built from (C) entorhinal cortex (EC) and
(D) superior frontal gyrus (SFG).
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Supplementary Figure 7. Network visualization and pathway enrichment analysis for
disease associated astrocyte (DAA) and disease associated microglia (DAM). (A) A
module illustrating the network-based relationship between DAA and DAA immune genes
associated with AD-related metabolites. (B) Venn diagram of enzymes from DAA and
DAM. (C) Pathway enrichment of 70 enzymes in DAA and DAM.
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Supplementary Figure 8. Network-based discovery of drug candidates. Venn diagrams
show the relations of potential drug candidates predicted among (A) all datasets and (B)
3 mouse model datasets. To be specific, shDAMnet is a molecular network based on
snRNA-seq mouse model dataset — GSE140511, scDAMnet is a molecular network built
from scRNA-seq mouse model dataset — GSE98969, mDAAnet is a molecular network
built from snRNA-seq mouse model dataset — GSE143758 and hECDAAnet and
hSFGDAAnNet are molecular networks based on snRNA-seq human AD brain dataset —
GSE147528.
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