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Abstract 

Systematic identification of molecular networks in disease relevant immune cells of the 

nervous system is critical for elucidating the underlying pathophysiology of Alzheimer’s 

disease (AD). Two key immune cell types, disease-associated microglia (DAM) and 

disease-associated astrocytes (DAA), are biologically involved in AD pathobiology. 

Therefore, uncovering molecular determinants of DAM and DAA will enhance our 

understanding of AD biology, potentially identifying novel therapeutic targets for AD 

treatment. Here, we present an integrative, network-based methodology to uncover 

conserved molecular networks between DAM and DAA. Specifically, we leverage 

single-cell and single-nucleus RNA sequencing data from both AD transgenic mouse 

models and AD patient brains, drug-target networks, metabolite-enzyme associations, 

and the human protein-protein interactome, along with large-scale patient data 

validation from the MarketScan Medicare Supplemental Database. We find that 

common and unique molecular network regulators between DAM (i.e, PAK1, MAPK14, 

and SYK) and DAA (i.e., NFKB1, FOS, and JUN) are significantly enriched by multiple 

neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1) from 

genome-wide association studies. Further network analysis reveal shared immune 

pathways between DAM and DAA, including Fc gamma R-mediated phagocytosis, Th17 

cell differentiation, and chemokine signaling. Furthermore, integrative metabolite-

enzyme network analyses imply that fatty acids (i.e., elaidic acid) and amino acids (i.e., 

glutamate, serine, and phenylalanine) may trigger molecular alterations between DAM 

and DAA. Finally, we prioritize repurposed drug candidates for potential treatment of AD 

by agents that specifically reverse dysregulated gene expression of DAM or DAA, 
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including an antithrombotic anticoagulant triflusal, a beta2-adrenergic receptor agonist 

salbutamol, and the steroid medications (fluticasone and mometasone). Individuals 

taking fluticasone (an approved anti-inflammatory and inhaled corticosteroid) displayed 

a significantly decreased incidence of AD (hazard ratio (HR) = 0.858, 95% confidence 

interval [CI] 0.829-0.888, P < 0.0001) in retrospective case-control validation. 

Furthermore, propensity score matching cohort studies also confirmed an association of 

mometasone with reduced incidence of AD in comparison to fluticasone (HR =0.921, 

95% CI 0.862-0.984, P < 0.0001). 
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Introduction   

Alzheimer’s disease (AD) is a devastating neurodegenerative disease and it is estimated 

that it will affect 16 million Americans and 90 million people worldwide by 20501. The 

incidence of AD is expected to double by 20502. The attrition rate for AD clinical trials 

(2002-2012) is estimated at 99.6%3 and improved methods of drug discovery and 

development are needed. There are multiple risk factors implicated in disease 

pathogenesis, such as genetic factors, local and systemic inflammation, psychosocial 

stress responses, and many other unknown factors4. The underlying genetic basis and 

molecular mechanisms of disease pathobiology/physiology remain under investigation. 

Furthermore, predisposition to AD involves a complex, polygenic, and pleiotropic genetic 

architecture5 . The traditional reductionist paradigm (‘one gene, one drug, one disease’) 

overlooks the inherent complexity of human diseases and has often led to treatments that 

are inadequate or accompanied by adverse effects6. Given the heterogeneous clinical 

presentation, AD is no longer considered a neuronal-centric disease; recent studies 

strongly implicate a crucial role of neuro-inflammation in the pathobiology of AD7. Broad 

anti-inflammatory therapies have not been clinically efficacious against AD, suggesting a 

pressing need to better understand the heterogeneity of these immune cells and identify 

drug targets for novel treatment development. 

         Advances in single-cell technologies are beginning to uncover crucial roles of the 

immune systems in disease onset and the pathogenesis of AD. Recent single-

cell/nucleus RNA-sequencing (scRNA-seq or snRNA-seq) studies have suggested 

essential roles for microglia and astrocytes, such as determining the “normal” and 
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pathological immune cell subpopulations in AD8,9. For example, disease-associated 

microglia (DAM) was identified as a unique microglia subtype associated with AD 

pathogenesis8. Disease associated astrocytes (DAA) have been identified in early stage 

of AD and become more abundant with AD progression10. Cytokines, the primary immune 

messenger, can mediate astrocytes to influence the microglial activation state (e.g., CCL2 

and ORM2) and help microglia modulate astrocytic phenotypes and functions (e.g., IL-1𝛼 

and TNF-𝛼)11. A growing body of evidence suggests that both microglia and astrocytes 

are exquisitely sensitive to their environment that can be affected by the dysregulation of 

multiple biochemical pathways, such as abnormal lipid metabolism, in AD pathogenesis12. 

Systematic identification of the underlying molecular mechanisms between DAM and 

DAA would advance understanding of disease biology and offer potential drug targets for 

novel therapeutic development in AD. 

            Existing data resources, including genomics, transcriptomics, and interactomics 

(protein-protein interactions [PPIs]), have not yet been fully exploited to understand the 

causal disease pathways in AD13. Integrative analyses of genomics, transcriptomics, and 

other omics enable us to elucidate the cascade of molecular events contributing to 

complex neuro-inflammatory mechanisms, including microglia and astrocytes. This will 

accelerate the translation of high-throughput omics findings to innovative therapeutic 

approaches for AD by integrating knowledges from both microglia and astrocytes. In this 

study, we propose an integrative multi-omics, network-based methodology to identify 

novel underlying molecular determinants for DAM and DAA in AD. Specifically, we 

systematically characterized the molecular networks for both microglia and astrocytes by 

incorporating large-scale snRNA-seq and scRNA-seq data into the human protein-protein 
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interactome. We showed that the identified DAM or DAA specific molecular networks offer 

novel pathobiological pathways and potential drug targets for AD. We demonstrated that 

drugs reversing the dysregulated gene expression of DAM or DAA offer potential 

treatment strategies for AD and we validated these agents in a large-scale, real-world 

patient database. 

  

Results 

Network-based methodology pipeline 

In this study, we presented an integrative multi-omics, network-based methodology to 

uncover molecular networks of DAM and DAA and to prioritize drug candidates for 

potential treatment of AD by reversing dysregulated gene expression in DAM and DAA. 

We integrated scRNA-seq and snRNA-seq data from both AD transgenic mouse models 

and AD patients brain tissues, drug-target networks, enzyme-metabolite associations, the 

human protein-protein interactomes, along with large-scale patient database validation 

(Figure 1). The whole procedure is divided into 4 components: i) We first collected the 4 

recent sc/snRNA-seq datasets (Supplementary Table 1) covering both microglia and 

astrocytes from either AD transgenic mouse models or human AD brains; ii) We 

performed standard sc/snRNA-seq data analysis (Methods) which includes quality 

control, cell/nucleus clustering and differentially expressed genes (DEGs) analysis in 

sequential order for each sc/snRNA-seq profile; iii) We built the molecular network for 

DAM and DAA using the state-of-the-art network-based algorithm by integrating 

sc/snRNA-seq data into the human protein-protein interactome (Methods); iv) We 
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prioritized repurposed drugs for potential treatment of AD by identifying those that 

specifically reverse dysregulated gene expression of microglia and astrocytes: if drug-

induced up- or down-related genes are significantly enriched in the dysregulated 

molecular networks of DAM or DAA, these drugs will be prioritized as potential candidates 

for treatment of AD. Finally, top drug candidates were validated further using the state-

of-the-art pharmacoepidemiologic observations of a large-scale, real-world patient 

database (Figure 1). 

 

Discovery of disease-associated microglia specific molecular networks  

We compared expression of cell marker genes (CST7, LPL, P2RY12, and CX3CR1) for 

DAM among all cell/nucleus clusters for snRNA-seq (Figure 2A, B) and scRNA-seq 

(Supplementary Figures 1) profiles, respectively. Here, we used homeostasis-

associated microglia (HAM14) as control groups. We discover that, under the snRNA-seq 

profile, the DAM cells have much higher abundance (88%, normalized nucleus 

abundance percentage) in 5XFAD mice compared to wild-type (WT) mice (12%, Table 

1A and Supplementary Figure 2A). Yet, the normalized nucleus abundance 

percentages of HAM cells (33%) in 5XFAD mice is lower than WT mice (67%, Table 1A 

and Supplementary Figure 2A). Similarity, when considering the scRNA-seq profile, the 

normalized cell abundance percentage of the DAM in 5XFAD mice (94%) is much higher 

than WT mice (6%, Table 1B and Supplementary Figure 2B) as well. And the 

corresponding normalized cell abundance percentages of HAM cells in 5XFAD mice (47%) 

is marginally lower than WT mice (53%, Table 1B and Supplementary Figure 2B) 
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counted by the scRNA-seq profile. Altogether, both sc/snRNA-seq profiles show 

significantly elevated abundance of the DMA in 5XFAD mice compared to WT mice. 

         We further examined genome-wide differential expression analyses of DAM 

compared to HAM in 5XFAD mice as shown in Volcano plots (Supplementary Figure 3). 

As expected, several key AD genes or microglia markers are significantly differentially 

expressed in DAM compared to HAM in 5XFAD mice, including APOE, TREM2, CST7, 

PYRY12, and CX3CR1 (Supplementary Figure 3). To identify novel molecular pathways 

underlying DAM, we systematically searched molecular networks using our recently 

published network-based approach, called GPSnet15. Specifically, GPSnet re-constructs 

the network module using a selected seed gene (i.e., differentially expressed genes 

[DEGs]) from the PPIs, and each time expands the module by adding a qualified 

candidate neighboring gene that could improve the module score measured by the fold 

changes of differential expression analysis. The final molecular network is constructed by 

aggregating modules with top ranked genes that frequently appear in top ranked modules 

(Methods). The identified molecular networks for DAM using snRNA-seq (termed 

snDAMnet) and scRNA-seq (termed scDAMnet) datasets are shown in Figure 2C and 

Supplementary Figure 1C. The snDAMnet includes 227 PPIs connecting 72 unique 

genes (e.g., BIN1, HCK, HSP90AA1, IL6ST, PAK1, PRKCD, and SYK, Supplementary 

Table 1). Myc box-dependent-interacting protein 1 (BIN1), a well-established risk gene 

for AD by the International Genomics of Alzheimer's Project, contains a microglia-specific 

enhancer and promoter by a genome-wide significant AD variant rs673383916. We next 

collected AD-associated genes from multiple sources, including expert curated 

repositories, GWAS catalog17, animal models and the scientific literatures as described 
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in a previous study18. We found that genes in snDAMnet were significantly enriched in 31 

AD-associated genes (adjusted p-value [q] = 1.75 x10-10, Fisher's exact test, 

Supplementary Table 1), such as ADAM10, BIN1, CD33, and MAPK14 

(Supplementary Table 1). The scDAMnet contains 69 genes (e.g., AXL, CST7, LYN, 

MERTK, and PYRY12, Supplementary Table 2) connecting 97 PPIs. As expected, 

scDAMnet covers 27 AD-associated genes18 (e.g., APOE, CCL3, CTSD, INPP5D, and 

MARCKS, q = 5.00x10-8, Fisher's exact test, Supplementary Table 2). We further found 

that genes in DAMnets are significantly enriched in multiple immune pathways 

(Supplementary Tables 1 and 2) as well. We observed that most of them were critical 

immune modulators related to AD (Figure 2C, Supplementary Figure 1C, and 

Supplementary Table 1). We next discussed the selected genes in snDAMnet and 

scDAMnet across 4 selected immune pathways: Fc gamma R-mediated phagocytosis, 

chemokine signaling pathway, Th17 cell differentiation, and hematopoietic cell lineage 

(Supplementary Tables 1 and 2). 

 

Fc gamma R-mediated phagocytosis. In total, we identified 15 genes (such as BIN1, 

PRKCD, SYK, INPP5D, and HCK) in the Fc gamma R-mediated phagocytosis pathway 

which were enriched in either snDAMnet or scDAMnet (Supplementary Tables 1 and 2). 

BIN1 is one of the most important loci for late onset Alzheimer’s disease (LOAD)16. 

Several studies uncovered crucial functions of PRKCD in AD: a) A𝛽 stimulated protein 

kinase C delta type (PRKCD) to phosphorylate myristoylated alanine-rich C-kinase 

substrate (MARCKS) in microglia19 and phosphorylation of MARCKS was observed in 

microglia within plaques20; and b) inhibition of PRKCD reverse A 𝛽  levels21. Spleen 
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tyrosine kinase (SYK) has been shown to play a role in AD pathological lesions, and SYK 

was therefore considered as a potential drug target for AD22. Phosphatidylinositol 3,4,5-

trisphosphate 5-phosphatase 1 (INPP5D), identified as one of the genetic risk factors for 

LOAD23, affects AD pathology by regulating microglia24. Inhibiting tyrosine-protein kinase 

(HCK) has proved to disturb microglia function and exacerbate neuropathology and 

neuroinflammation25. 

 

Chemokine signaling pathway. Chemokine signaling is enriched in both snDAMnet and 

scDAMnet and are related with 13 genes, including PAK1, CCL3, CCL4, CCR5 and LYN 

(Supplementary Tables 1 and 2). Serine/threonine-protein kinase (PAK1) is 

dysregulated in AD and targeting the PAK signaling pathway offers a therapeutic strategy 

for treating AD26. C-C motif chemokine 3 and 4 (CCL3 and CCL4) and C-C chemokine 

receptor type 5 (CCR5)27 have been shown to be upregulated in adult human microglia 

or in mouse microglia that were stimulated with A𝛽. A recent study observed elevated 

activity of tyrosine-protein kinase (LYN) in AD patients, and inhibiting LYN expression 

prevents A𝛽-induced neuronal cell death, suggesting LYN as an potential therapeutic 

target for AD28. 

 

Th17 cell differentiation. We identified 6 genes (including MAPK14, HIF1A, TGFBR2, and 

HSP90) in the Th17 cell differentiation pathway (Supplementary Table 1). Reduced A𝛽 

pathology was observed in mitogen-activated protein kinase 14 (MAPK14) -/- APP-PS1 

transgenic AD mouse neurons, suggesting that inhibiting MAPK14 could serve as a 

potential alternative to mitigate pathologies in neurons for AD29. The transcriptional factor 
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hypoxia-inducible factor 1-alpha (HIF1A) is recognized as a key gene for a variety of 

neurodegenerative diseases, including AD, Parkinson’s disease (PD), and Huntington’s 

disease (HD)30. Insufficient levels of TGFBRs (TGF-beta receptors) are major risk factors 

of AD, and increasing TGF-beta receptor type-2 (TGFBR2) levels is a potential 

therapeutic strategy for AD31. HSP90 (heat shock protein 90), a chaperone protein, 

regulated tau pathology by forming macromolecular complexes with co-chaperones and 

inhibiting HSP90 mitigated tau pathology by proteasomal degradation32. 

 

Hematopoietic cell lineage: Four genes (i.e., CSF1R, CD33, CD9 and ITGA6) identified 

from the snDAMnet are involved in regulating the hematopoietic cell lineage pathway 

(Supplementary Table 1). Inhibiting macrophage colony-stimulating factor 1 receptor 

(CSF1R) in APP/PS1 mice reverses microglia from an inflammatory to an anti-

inflammatory phenotype, suggesting that inhibiting CSF1R could treat microglia activation 

and AD33. Myeloid cell surface antigen CD33, is elevated in AD brain and could 

compromise the ability of microglia to remove A𝛽 plaques, suggesting it could serve as a 

possible therapeutic target for AD34. We did not find strong AD-related evidence for 

another two genes (CD9 and ITGA6), revealing novel candidate genes that required 

further functional validation. 

 In summary, we identified that DAM specific molecular networks were significantly 

enriched in multiple AD-related immune pathways. Importantly, a variety of proteins in 

DAM specific molecular networks are profoundly involved in AD pathogenesis and offer 

potential drug targets for AD. 
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Discovery of disease-associated astrocyte specific molecular networks  

We compared gene expression of 11 DAA cell markers (GFAP, CD44, HSPB1, SLC1A2, 

and PTN) among all nuclei clusters and located non-disease associated astrocyte (non-

DAA) and DAA clusters for the mouse snRNA-seq profiles (Figures 3A and 3B). We 

found that a normalized nucleus abundance percentage of DAA cells in 5XFAD mice 

(99%) is significantly higher than WT mice (1%, Table 1C and Supplementary Figure 

2C) in human snRNA-seq profiles. For the non-DAA cells, a normalized nucleus 

abundance percentage in 5XFAD mice (41%) is slightly lower than WT mice (59%, Table 

1C and Supplementary Figure 2C). The human snRNA-seq profiles contains AD brain 

samples from 2 regions – entorhinal cortex (EC) and superior frontal gyrus (SFG). T-

distributed stochastic neighbor embedding35 (TSNE) plots of DAA and non-DAA nuclei 

are presented in Figure 4A and 4B for each brain region, respectively. Gene expression 

of 11 DAA cell markers (GFAP, CD44, HSPB1, SLC1A2, and PTN) among all nuclei 

clusters in both human brain regions are presented in Supplementary Figure 4. Volcano 

plots of DEGs (i.e., GFAP, APOE and MYOC) are shown for both DAA and non-DAA 

nuclei in either 5XFAD mice (Supplementary Figure 5) or human AD samples 

(Supplementary Figure 6). The molecular networks for mouse snRNA-seq (mDAAnet) 

and human snRNA-seq across two specific brain regions (hDAAECnet and 

hDAASFGnet), are shown in Figures 3C and Figure 4C and 4D, separately. The 

mDAAnet includes 371 PPIs connecting 98 unique genes (e.g., CD44, CTSD, ICAM1, 

MARCKS, NFKB1, and VCAM1, Supplementary Table 3). It contains 39 AD-associated 

genes collected from DisGeNET18 (e.g., CDH2, CLU, CTSD, FOS, and TGFBR2, q = 

1.70x10-12, Fisher's exact test, Supplementary Table 3). The hDAAECnet contains 43 
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PPIs connecting 26 genes (e.g., APC, DCLK2, ID3, PRKCA, and TNC, Supplementary 

Table 4), including 11 AD-associated genes (e.g., ATXN1, FGF2, HSP90AA1, and JUN, 

q = 1.96x10-3, Fisher's exact test, Supplementary Table 4). The hDAASFGnet contains 

22 PPIs connecting 13 genes (e.g., DCLK2, FOS, and TNC, Supplementary Table 4), 

including 8 AD-associated genes (e.g., FGFR3, FOS, HSP90AA1, and JUN, q = 9.50x10-

4, Fisher's exact test, Supplementary Table 4). 

We next inspected human brain region-specific molecular networks in DAA. 

Molecular networks (hDAAECnet and hDAASFGnet) of two human brain regions (EC and 

SFG) share 8 genes: DCLK2, HPSE2, HSP90AA1, HSPA1A, HSPA1B, HSPB1, ID2, JUN 

and TNC (Figure 4C and 4D). There are 17 genes (e.g., APC, ATXN1, FGF2, and GJA1) 

and 4 genes (e.g., DNAJB1 and FOS) exclusively belonging to hDAAECnet and 

hDAASFGnet, respectively. Adenomatous polyposis coli protein (APC36), ataxin-1-like 

(ATXN137) and fibroblast growth factor 2 (FGF238) alter AD pathogenesis by regulating 

beta-secretase 1 (BACE1), an enzyme responsible for A𝛽 deposition. Gap junction alpha-

1 protein (GJA1) was reported as an AD regulator by checking 29 transcriptomic and 

proteomic datasets from post-mortem AD and normal control brains39. DnaJ homolog 

subfamily B member 1 (DNAJB1) was reported to be involved in protein folding 

abnormalities relevant to AD pathogenesis40. 

       We next turned to perform functional pathway enrichment analysis. As expected, we 

found that genes identified in DAAnets were significantly enriched in multiple key immune 

pathways (Supplementary Tables 3 and 4). To be specific, we found that majority of 

them had experimental evidences (such as NFKB1, MAPK10, FOS, and JUN) of roles in 

regulating AD pathogenesis. We next investigated selected genes in mDAAnet, 
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hDAAECnet and hDAASFGnet using 3 immune pathways as examples: IL-17 signaling 

pathway, leukocyte transendothelial migration, and antigen processing and presentation 

(Supplementary Tables 3 and 4).        

                                                                                                                                                                                                                                                                                                                                                                                                                                                              

IL-17 signaling pathway. In total, we identified 8 genes (including NFKB1, NFKBIA, 

MAPK10, FOS, and JUN) in the IL-17 signaling pathway enriched by either mDAAnet or 

hDAASFGnet (Supplementary Tables 3 and 4). Nuclear factor NF-kappa-B p105 

subunit (NFKB1) and NF-kappa-B inhibitor alpha (NFKBIA) are two regulators of the 

NF 𝜅 B signaling pathway regulating transcription of cytokines and chemokines in 

astrocytes. These pro-inflammatory molecules can further result in cellular damage or 

accelerate the production of Aβ in astrocytes41. The c-Jun N-terminal kinase 3 (JNK3), 

also known mitogen-activated protein kinase 10 (MAPK10), stimulates A𝛽 production and 

potentiates formation of neurofibrillary tangles, comprising a target for AD treatment42. 

Proto-oncogene c-Fos (FOS) and transcription factor AP-1 (JUN) are transcriptional 

factors regulating expression of multiple genes. Enhanced immunoreactivities of JUN and 

FOS were observed in AD brains, and their immunoreactivities were colocalized with 

paired helical filament-1 (PHF-1) within neurons, suggesting functional roles of JUN and 

FOS in AD pathobiology43. 

 

Leukocyte transendothelial migration. We identify 11 mDAAnet-genes (such as ICAM1, 

VCAM1, FAS, PIK3R1 and TNFRSF1A) in the leukocyte transendothelial migration 

pathway (Supplementary Table 3). Both intercellular adhesion molecule 1 (ICAM1) and 

vascular cell adhesion protein 1 (VCAM1) expression was reported to be increased by 
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A44. Evidence suggests that ICAM1 and VCAM1 facilitate leukocyte transendothelial 

migration, initiate endothelial signaling and affect neuroinflammation, supporting their 

possible roles in AD therapeutic discovery44. Tumor necrosis factor receptor superfamily 

member 6 (FAS) plays multiple roles in AD, including involvement in apoptosis45 and 

inflammatory processes46. Phosphatidylinositol 3-kinase regulatory subunit alpha 

(PIK3R1) is associated with AD and dysfunction of the insulin signaling pathway47. Tumor 

necrosis factor receptor superfamily member 1A (TNFRSF1A) was supported as an AD 

risk factor by a genome-wide haplotype-based association study in Caribbean Hispanic 

individuals48. 

 

Antigen processing and presentation. We computationaly identified 7 genes (HPSE2, 

FGF2, SDC4, PRKCA, HSP90AA1, HSPA1A, and HSPA1B) in the antigen processing 

and presentation pathway enriched in either hDAAECnet or hDAASFGnet 

(Supplementary Table 4). Heat shock protein HSP 90-alpha32 (HSP90AA1) and FGF238 

have been identified as involved in AD biology. Inhibition of protein kinase C  

(PKC𝛼) prevents A𝛽 from impairing synaptic activity in hippocampus in mouse model49. 

Syndecan-4 (SDC4), together with syndecan-3 (SDC3), were found to trigger fibrillation 

of 𝐴𝛽1-42 in amyloid plaques50. Inactive heparanase-2 (HPSE2) was found to be over-

expressed in AD human brains by a stage-dependent form51. Inhibiting HPSE2 activates 

HPSE to decrease neurotoxicity and reduce tau hyperphosphorylation in AD51. Both heat 

shock 70 kDa protein 1A (HSPA1A52) and heat shock 70 kDa protein 1B (HSPA1B53) 

regulated oxide stress in either mouse model or human AD brains, suggesting their crucial 

role in AD biology and possible treatment approaches. 
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          Two immune pathways, antigen processing and presentation and NOD-like 

receptor signaling, are enriched in both human brain region-specific molecular networks 

(hDAAECnet and hDAASFGnet, Supplementary Table 4). Altogether, DAA-specific 

molecular networks identified here are significantly enriched by known AD-associated 

genes and immune pathways. These DAA specific networks offer molecular mechanisms 

underlying AD pathogenesis and potential drug targets for treatment development. 

 

Alzheimer’s conserved molecular networks between microglia and astrocytes  

We next compared the molecular networks between DAM and DAA (Figure 5A) to 

illustrate the unique and common disease relevant biology for microglia and astrocytes. 

To quantify the network relationship between DAM and DAA in the human protein-protein 

interactome, we use a network proximity measurement described in our recent study54. A 

higher network proximity (quantified by a lower z-score) represents a strong network 

relationship. We found that the closer network proximities between DAA and DAM in the 

human interactome compared to two random constructed networks with the same degree 

distributions across different network-based measurements (Supplementary Table 5). 

For instance, using the shortest path-based network proximity54 (Methods), we found a 

statistically significant network proximity between DAM and DAA: 1) scDAMnet and 

mDAAnet (z-score = -3.47, p < 1x10-6 [permutation test]) and 2) snDAMnet and mDAAnet 

(z-score = -3.31, p < 1x10-6 [permutation test]). These network observations indicate a 

strong molecular network relationship between microglia and astrocyte, which is 

warranted to be tested experimentally in the future. 
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            To be specific, we found 5 overlapped genes (CTSB, CTSD, LGALS3BP, 

MARCKS and RPLP2) and 9 commonly enriched immune pathways for molecular 

networks between DAM and DAA: Fc gamma R-mediated phagocytosis, B cell receptor 

signaling pathway, T cell receptor signaling pathway, Fc epsilon RI signaling pathway, C-

type lectin receptor signaling pathway, chemokine signaling pathway, Th17 cell 

differentiation, leukocyte transendothelial migration, and NOD-like receptor signaling 

pathway. Two immune pathways (Fc gamma R-mediated phagocytosis and chemokine 

signaling pathway) are enriched in both scDAMnet and mDAAnet. Except LGALS3BP 

and RPLP2 (Figure 5B), another 7 genes (AXL, CD9, CKB, CSF1R, FGR, HIF1A and 

INPP5D) are shared between scDAMnet and snDAMnet (Figure 5A). Three immune 

pathways – natural killer cell mediated cytotoxicity, platelet activation, and hematopoietic 

cell lineage are uniquely enriched in snDAMnet, while IL-17 signaling pathway, Toll-like 

receptor signaling pathway, Th1 and Th2 cell differentiation, and RIG-I-like receptor 

signaling pathway are exclusively enriched in mDAAnet (Table 2). In summary, microglia 

and astrocyte may synergistically trigger neuroinflammation in AD in a cell type-specific 

manner. 

 

Metabolites trigger molecular networks between astrocytes and microglia 

Since AD is a pervasive metabolic disorder that is linked with altered immune responses55. 

We inspected the network relationship (Methods) between well-known metabolic genes 

collected from Kyoto Encyclopedia of Genes and Genomes56 (KEGG, Methods) and the 

identified molecular networks from both DAM and DAA. We found that metabolic genes 

have a closer network relationship with DAM- or DAA-molecular networks compared to 
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randomly selected genes after adjusted degree (connectivity) bias in the human 

interactome (Methods and Supplementary Table 5). We therefore turned to investigate 

whether environmental factors (including metabolites) trigger molecular network 

perturbation between astrocytes and microglia. We performed an integrative network-

based analysis of AD-related metabolite-enzyme associations and the human protein-

protein interactome. We constructed a heterogenous networks, including 373,320 edges 

consisting of 26,990 metabolite-enzyme associations and 346,330 PPIs (Methods). 

Specifically, we assembled 155 AD-related metabolites (Supplementary Table 6) 

supported by experimental evidence and found in human brain, blood and cerebrospinal 

fluid samples from 12 well-performed clinical studies (Supplementary Table 6) as well 

as a high-quality database of small molecule metabolites, the Human Metabolome 

Database57 (HMDB) (Methods). Based on our observations, we performed graphic 

computations on the heterogenous network and extracted a subgraph consisting of 251 

nodes and 1,404 edges as the DAM-DAA networks (Methods, Figure 6A and 

Supplementary Figure 7A).  

 In total, we found 70 enzymes that regulated the AD-related metabolites: i) 50 (e.g. 

APOE, GLB1, LDHB and PLCG2) enzyme-coding genes from DAM; ii) 23 (e.g. SIRT7, 

HADHB, MAPK1 and PGAM1) genes from DAA, and iii) 3 (CTSB, CTSD and TGFBR2) 

genes which are common to both DAM and DAA (Supplementary Figure 7B and 

Supplementary Table 6). For instance, the CTSB, encoding cathepsin B, involved in 

catabolism and immune resistance in humans58, has elevated expression (Figures 6B 

and 6C) in both DAM (Fold-Change [FC] = 2.48, q = 8.89×10-84) and DAA (FC = 1.84, q 

= 8.15×10-31). The pathway enrichment analysis on these 70 enzymes shows the effect 
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of AD on metabolic homeostasis (e.g., glycolysis and gluconeogenesis) and highlights 

some immune signaling pathways such as IL-3 and IL-5 (Supplementary Figure 7C). 

These observations provide the proof-of-concept of metabolism-driven immune 

responses between microglia and astrocytes in AD pathogenesis.  

 Using a betweenness centrality measure (Methods, Supplementary Table 6), we 

found that fatty acids and amino acids (Figure 6A) were two primary types of metabolites 

involved in molecular networks between the DAM and DAA. For example, SPP159 and 

CD4460, two cellular molecules that promote chronic inflammatory diseases, are 

significantly over-expressed in both DAM (FC = 5.35, q = 5.51×10-56, Figures 6D) and 

DAA (FC = 1.30, q = 5.13×10-12) compared to HAM and non-DAA, respectively. Elaidic 

acid, a major trans-fat, shows the largest centrality among all metabolites and is 

connected with SPP1 and CD44 by two enzymes involved in fatty acid metabolism, 

including phospholipase D (PLD3) and hydroxyacyl-CoA dehydrogenase (HADHB), 

respectively61. Co-expression analysis uncovers the coordinated change trends of SPP1 

and PLD3 in DAM (Pearson r = 0.70, P = 0.0026, Figure 6E). Meanwhile, carnitine, 

transporting the long-chain fatty acids into mitochondria for oxidation, is also involved in 

the interactions with differentially expressed genes in both DAA (i.e., CD44) and DAM 

(such as CYBA and PLAUR). These findings suggest the potential bridge roles of fatty 

acid metabolism for the communication between astrocytes and microglia under AD 

pathology. Moreover, amino acids, especially glutamate, serine, and phenylalanine, may 

trigger the immune responses by directly targeting the shared gene CTSB which is 

associated with the amyloid precursor protein processing in both DAM8 and DAA10. In 

summary, characterizing the network-based relationship between the DAM-/DAA- 
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specific molecular networks and the AD-related metabolites within the human interactome 

network model identifies underlying immunometabolism mechanisms related to the 

immune interplay of astrocytes and microglia in AD triggered by cellular metabolism. 

 

Network-based discovery of drug candidates via reversing gene expression of 

microglia and astrocytes 

We next turned to identify potential drug candidates by specifically targeting molecular 

networks in microglia and astrocytes. As shown in Figure 1, we collected drug-gene 

signatures in human cell lines from the Connectivity Map (CMap) database62. We posited 

that if a drug significantly reverses dysregulated gene expression (measured by the most 

up-regulated and down-regulated genes, Methods) of DAM or DAA involving in AD, this 

drug may have potential in treating AD. We performed gene set enrichment analysis 

(GSEA) and calculated enrichment score (ES) using permutation tests (Methods). We 

used ES > 0 and p ≤ 0.05 as the valid cutoffs to prioritize potential drug candidates. In 

total, we investigated 1309 drugs with known target information from the DrugBank63 

database or having gene signatures from the CMap62. We obtained 172, 234, 187, 124, 

and 195 candidate drugs (ES > 0 and p ≤  0.05) based on GSEA analyses using 

snDAMnet, scDAMnet, mDAAnet, hDAAECnet and hDAASFGnet, respectively. The 

complete drug prediction results are summarized in Supplementary Table 7. A Venn 

diagram showing the relations of predicted drugs among different molecular networks is 

presented in Supplementary Figures 8A and 8B. We found that drugs with ES >0 

predicted by at least one molecular network have potentially beneficial for AD across 

several pharmacological categories: anti-inflammatory agents, immunosuppressive 
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agents, adrenergic beta-2 receptor agonists, adrenergic alpha-antagonists, and 

antipsychotic agents (Figure 7A). We next focused on 4 high-confidence drug candidates 

(Figure 7B) using subject matter expertise based on a combination of factors: (i) strength 

of the predicted associations (ES value); (ii) novelty of the predicted associations with 

established mechanisms-of-action (such as anti-inflammatory); (iii) literature-based 

evidence in support of prediction; (iv) availability of sufficient patient data for meaningful 

evaluation (exclusion of infrequently used medications). 

           Immunosuppressant. The observations suggested that an immunosuppressive 

drug (Rapmaycin) could potentially benefit AD treatment in both cellular experiments and 

animal models64. The reported underlying mechanism included regulating autophagy and 

cellular signaling pathways64. One of our top-predicted drugs – azathioprine (ranking 1st 

from mDAAnet after removing drugs with no targets according to the DrugBank database, 

p = 0.02, Supplementary Table 7) is an immunosuppressive drug that used to treat 

autoimmune disorder disease - rheumatoid arthritis65 and prevents renal transplant 

rejection66. A study reported therapeutic potential of azathioprine in AD67. When 

integrating drug targets of azathioprine into the predicted molecular network of mDAAnet, 

we found that azathioprine directly targets ras-related protein Rac1 (RAC1), a key 

immune gene in astrocytes (Figure 7B). In addition, azathioprine indirectly targets several 

key immune genes, including VCAM1, PIK3R1, CDC42, MAPK10, and NFKB1 in 

mDAAnet (Figure 7B). In addition to VCAM1, MAPK10, NFKB1 and PIK3R1 as critical 

AD pathological modulators, CDC42 small effector protein 1 (CDC42) was shown to be 

biologically associated with AD since it presented a large overlap with cytokine 
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abnormalities68. These observations suggest that azathioprine is a candidate 

immunosuppressant agent by specifically targeting molecular networks in DAA. 

            Antithrombotic anticoagulant. In one AD transgenic mouse model, it was found 

that long term anticoagulation with dabigatran (an approved thrombin inhibitor), could help 

to preserve cognition, cerebral perfusion, and blood brain barrier (BBB) function and 

alleviate A𝛽 deposition69. Our predicted antithrombotic anticoagulant, triflusal (ranking 6th 

from mDAAnet after removing drugs with no targets according to the DrugBank database, 

p < 1x10-6, Supplementary Table 7), presented a reduced risk of AD’s dementia 

progression in a randomized, double-blind, placebo-controlled trial with 257 subjects70. 

Another study reported that triflusal repaired defects in axonal curvature and cognition in 

an AD transgenic mouse model71. In drug-target network analyses (Figure 7B), triflusal 

directly targets NFKB1 and indirectly targets other 4 immune genes (ISG15, NFKB1A, 

FOS, and ICAM1) in mDAAnet, suggesting a possible anti-inflammatory mechanism-of-

actions for AD. 

          Beta2-adrenergic receptor agonist. Longitudinal and cross-sectional 

epidemiological studies revealed that treatment with beta-blockers reduces AD incidence 

in individuals suffering from hypertension72. From cellular experiments and animal models, 

it was found that β-adrenergic receptors play a role in AD pathogenesis via influencing 

A 𝛽  production and inflammation72. Another study demonstrated in an APP/PS1 

transgenic AD mouse model that beta2-adrenergic receptor activation could enhance 

neurogenesis and repair cognitive deficits73. Salbutamol (ranking 4th from snDAMnet after 

removing drugs with no targets according to the DrugBank database, p < 1x10-6, 

Supplementary Table 7), a selective beta2-adrenergic receptor agonist used in the 
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treatment of asthma, is a highly predicted candidate from our network-based approach. 

Salbutamol inhibits tau accumulation in vitro74. When incorporating its drug target with 

molecular network (snDAMnet), salbutamol interacts directly with 3 immune genes 

(PRKCD, GRB2 and MAPK14) as shown in Figure 7B. Except PRKCD and MAPK14 

aforementioned, literature evidence also demonstrates that growth factor receptor-bound 

protein 2 (GRB2), involving in the C-terminal fragments (CTF) – ShcA complexes, plays 

a role in influencing AD development75.  

          Retinoic acid. Retinoic acid, another potential AD therapeutic option, has been 

widely studied76. One of the explanations elucidating its possible effectiveness for AD 

treatment is its inhibition of oxidative stress and abnormal differentiation of neurons, two 

common pathological factors for AD76. In the AD APP/PS1 transgenic mouse model, 

treatment with all-trans retinoic acid (ATRA) significantly decreased APP phosphorylation 

and processing, reduced microglia and astrocyte activities, down-regulated cyclin-

dependent kinase 5 (CDK5) activity, and enhanced cognitive capabilities77. Tretinoin 

(ranking 1st from scDAMnet after removing drugs with no targets according to the 

DrugBank database, p < 1x10-6, Supplementary Table 7), a US Food and Drug 

Adminisatrion (FDA)-approved drug for acute promyelocytic leukemia (APL), is one of our 

highest predictions78. Experiments with AD transgenic mouse models showed that 

tretinoin decreased activation of microglia and astrocytes77. Mechanistically, tretinoin 

directly targets mitogen-activated protein kinase 1 (MAPK1), LYN and FGR in the 

scDAMnet (Figure 7B).  

 

Validating possible causal associations in patient data 
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Fluticasone, a synthetic glucocorticoid which is FDA-approved for several inflammatory 

indications, is one of our top predicted drugs based on scDAMnet. We evaluated the 

fluticasone user’s vulnerability to AD by analyzing 7.23 million U.S. commercially insured 

individuals (MarketScan Medicare supplemental database, see Methods). We conducted 

two cohort analyses to evaluate the predicted association based on individual level 

longitudinal patient data and state-of-the-art pharmacoepidemiologic methods. These 

included: (i) fluticasone vs. a matched control population (non-fluticasone user), and (ii) 

fluticasone vs. mometasone (an FDA-approved corticosteroid for skin conditions, hay 

fever, and asthma). For each comparison, we estimated the un-stratified Kaplan-Meier 

curves and conducted propensity score stratified (n strata = 10) log-rank tests and the 

Cox regression model. 

We found that individuals taking fluticasone were at significantly decreased risk 

for development of AD (hazard ratio (HR) = 0.858, 95% confidence interval [CI] 0.829-

0.888, P < 0.0001, Figure 8A) in a retrospective case-control validation. Importantly, 

propensity score matching cohort studies confirmed mometasone’s association with 

reduced risk of AD in comparison to fluticasone (HR =0.921, 95% CI 0.862-0.984, P < 

0.0001, Figure 8B). Another independent database – FDA MedWatch Adverse Events 

Database revealed that the combination of fluticasone and ibuprofen could be a 

therapeutic option for AD79. To infer the potential mechanisms-of-action of fluticasone in 

AD, we integrate drug target network, the extracted molecular network and human PPIs 

(scDAMnet, Figure 8C). Network analysis shows that fluticasone could indirectly target 

GSK3B and CDK5 (Figure 8C). And literature study demonstrates that GSK3B and 

CDK5 are two most relevant targets for AD80. 
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Discussion 

The emergence of single-cell/nucleus sequencing technologies and development of 

computational tools enables us to capture new insights into neuroinflammation for AD 

from the molecular network perspective. In this study, we systematically reconstructed 

molecular networks for both DAM and DAM by uniquely integrating scRNA/sn-RNA-seq 

profiles form both AD transgenic mouse models and human AD brains. We showed that 

in AD, affected genes regulate either one (such as CSF1R, CD33, CCL3/4 and CCR5) or 

multiple (e.g., SYK, ICAM1, VCAM1, NFKB1, HSP90AA1, JUN and FOS) immune 

pathways. The enriched immune pathways and network proximity54 analyses indicate that 

microglia and astrocytes may share a strong network relationship in the human protein-

protein interactome (Figure 5A and Supplementary Table 5). Via incorporating the 

enzyme-metabolite associations, we found that fatty acids (e.g., elaidic acid) and amino 

acids (e.g., glutamate, serine and phenylalanine) may trigger immune alterations between 

DAM and DAA. Finally, we computationally identified that existing drugs (including 

azathioprine, triflusal, salbutamol, and retinoic acid) offer potential candidates for AD by 

reversing gene expression of DAM or DAA. Importantly, we demonstrated that fluticasone 

and mometasone were significantly associated with the decreased risk of AD in a large-

scale patient data. 

We acknowledged several potential limitations in the current study. Although two 

snRNA-seq and scRNA-seq datasets of DAM present consistent gene expression 

patterns (Supplementary Tables 1 and 2), snDAMnet and scDAMnet showed a small 

gene overlap. There are several possible explanations. For example, single-cell and 

single-nucleus may generate different cell abundances during cell processing. DAM 
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accounts for around 12% of microglia based on scRNA-seq data in 5XFAD mice, while 

percentage surges to more than 50% based on snRNA-seq data in 5XFAD mice (Tables 

1A and 1B). For DAA, both mouse (Supplementary Table 3) and human 

(Supplementary Table S4) RNA-sequencing data display partial consistent gene 

expression patterns, including DAA marker genes GFAP, CD44, HSPB1, APOE and 

TREM2. Several opposite human marker genes’ expression patterns are also detected 

when compared with mouse data, such as TNC, SLC1A2, SLC1A3, and GLUL. Two 

human molecular networks (hDAAECnet and hDAASFGnet) built from two human brain 

regions are similar. The network proximity analyses under different measurements also 

show that the distances between two human molecular networks are significantly closer 

compared to distances between random networks with specific restrictions (Methods and 

Supplementary Table 5). However, when comparing between the mouse and human 

molecular networks, their overlaps are very small. Samples collecting from different brain 

regions is one reasonable explanation. The human RNA-sequencing data we used were 

collected from entorhinal cortex and superior frontal gyrus; while the mouse data were 

collected from hippocampus.  

         Network proximity evaluations show that the distances between human and 

mouse molecular networks are small; however, less significant when compared to 

distances among mouse molecular networks (Supplementary Table 5). One study 

showed that immunology in human AD brains and mouse models were different81. 

Another more recent study argued that gene signatures were very distinct between 

mouse model 5XFAD and human AD brains in DAM as well8. For example, upregulated 

5XFAD DAM marker genes, Lpl and Cst7, could not be detected in human AD brain82. 
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These unresolved must be addressed in the future. Quality of AD outcomes or 

phenotypes defined by current clinical criteria (such as Braak score) may influence our 

findings as well. According to the National Institute of Neurological Disorders and 

Stroke-Alzheimer’s Disease and Related Disorders Association (NINDS-ADRDA), Braak 

stage 2 is probable AD with supported evidence, and Braak stage 6 is considered as 

definite AD. For two brain regions, EC and SFG, there are no apparent differences of 

normalized nucleus abundance percentage across different Braak stages for both DAA 

and non-DAA (Tables 1 and Supplementary Figure 2D and 2E). Finally, 

incompleteness and potential biases of human protein-protein interactcome and drug-

target networks may influence our network-based findings as well. 

In summary, we proposed a network-based approach that incorporates snRNA-

seq and scRNA-seq data sampled from either mouse models or AD patient brains, PPIs, 

enzyme-metabolite associations, and drug target networks, along with the large-scale 

patient validation database. We showed the molecular networks derived from DAM and 

DAA are significantly enriched for various well-known immune pathways and AD 

pathobiological pathways. We showed that the identified molecular network from DAM 

and DAA offer potential targets for drug repurposing, which we validated for proof-of-

concept in a large-scale, real-world patient database. In summary, we believe that the 

network-based approach presented here, if broadly applied, would significantly catalyze 

innovation in AD drug discovery and development for AD and other disease by utilizing 

the large-scale existing omics data at the single-cell/nucleus levels. 
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Methods and Materials 

Single-cell and nucleus RNA-sequencing. We collected single cell and nucleus 

transcriptomics data from four recently published papers. The complete mouse single-

cell transcriptomics data were sequenced from various transgenic mouse models, 

including C57BL/6, 5XFAD, Trem2 knock out C57BL/6, Trem2 knock out 5XFAD and 

SOD1 and different organs, i.e., whole brain, cortex, cerebellum and spinal cord with 

different ages, i.e., 7 weeks, 80 and 135 days, 1, 3, 6, 9 and 20 months. In this study, we 

utilized data from 16 C57BL/6 (whole brain) and 16 5XFAD 6 month-mouse. In total, there 

were 12,288 cells sequenced from 32 mouse samples. Two of three snRNA-seq data 

were collected from mouse samples as well (GSE140511 and GSE143758). Dataset 

GSE140511 contained four transgenic male mouse models, including C57BL/6, 5XFAD, 

Trem2 knock out C57BL/6 and Trem2 knock out 5XFAD. In this study, we considered the 

7-month mouse models which in total sequenced 90,647 nuclei as described in the 

original literature82. The second mouse nucleus dataset GSE143758 contains two 

transgenic mouse models C57BL/6 and 5XFAD from both hippocampus and cortex 

regions and with different ages. Similarly, we utilized in total 50,242 nuclei data from the 

7-month mouse models with 5 5XFAD and 6 C57BL/6 samples10. Finally, the human 

single-nucleus transcriptomics data83 contains ten male frozen post-mortem human brain 

tissues from both superior frontal gyrus and entorhinal cortex regions. There are 3, 4 and 

3 human brains tissues with Braak stages 0, 2, and 6, respectively. The raw data 

(including astrocytes, excitatory neurons, inhibitory neurons and microglia cells) 

downloaded from on Gene Expression Omnibus (GSE147528). All the following data 
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analysis are based on the processed data after quality control, and there are 5599 and 

8348 nuclei for samples from entorhinal cortex and superior frontal gyrus, separately. 

 

Bioinformatics analysis of single cell/nucleus RNA-sequencing data. The analyses 

were completed with Seurat84 (v3.1.5), scran85 (v1.16.0), scater86 (v1.16.1) packages in 

R with steps complied with the original literatures. Data were normalized using a scaling 

factor of 10,000 and all DEG analyses are conducted by function FindMarkers in Seurat84 

R package with parameter test.use = ‘MAST’. The detailed data analysis steps for each 

dataset (GSE98969, GSE140511, GSE143758 and GSE147528) are illustrated in 

sequences. 

        GSE98969. The data used are from whole brain cells of 6 months 5XFAD (16) and 

C57BL/6 (16) mice that express gene CD45. For quality control, cells with mitochondrial 

content >5% and UMIs < 500 were removed. Genes with mean expression smaller than 

0.005 UMIs/cell were discarded for analysis. Data were normalized using a scaling factor 

of 10,000 and functions FindIntegrationAnchors and IntegrateData in Seurat84 R package 

are used for batch effect correction for samples collected from different plates. Principle 

component analysis was performed using the top 2000 most variable genes and 

clustering was performed using the top 30 principal components (PCs) and resolution of 

0.4. After identifying clusters for DAM and HAM, separately (gene markers, see Figure 

1b8), DEGs are compared between DAM and HAM by considering cells from 5XFAD mice  

only. The whole pipeline was completed with Seurat84 R package. 

          GSE140511. The process for clustering different cell types are provided in the 

original literature82. We used microglia nuclei and reproduce the clustering procedures to 
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isolates DAM and HAM nuclei. Considering all microglia nuclei, principle component (PC) 

analysis was performed using the top 3000 most variable genes and sub-clustering was 

performed using the top 10 PCs and resolution of 0.1. Again, after identifying clusters 

enriched in DAM and HAM nuclei (gene markers, Figure 1b in8), DEGs are compared 

between DAM and HAM by considering nuclei from 5XFAD mice only. The whole pipeline 

was completed with Seurat84 R package. 

          GSE143758. The process for clustering different cell types are provided in the 

original literature10. In this study, we used astrocyte nuclei and reproduced the clustering 

procedures to isolate DAA) and non-DAA nuclei. Considering all astrocyte nuclei, 

principle component analysis was performed using the top 2000 most variable genes and 

sub-clustering was performed using the top 10 PCs and resolution of 0.3. After identifying 

clusters enriched in DAA nuclei by comparing the expression pattern of marker genes 

(Figure 1e in10) among sub-clusters. We computed DEGs between DAA and non-DAA 

by considering nuclei from 5XFAD mice. All analyses were performed using Seurat84 R 

package. 

            GSE147528. We used astrocyte cell subtype - reactive astrocyte, which is 

associated with AD83.  We considered astrocyte nuclei and clustering analysis was first 

performed by quickCluster function and size factors were computed by 

computeSumFactors function with parameter min.mean = 0.1 in scran R package. Then 

count matrix was normalized by the computed size factors and log-transformed by 

function logNormCounts in scater R package. Top 1000 highly variable genes were 

selected by functions modelGeneVar and getTopHVGs in scran R package. Functions 

FindIntegrationAnchors and IntegrateData in Seurat84 R package were used for batch 
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effect correction, and clustering was performed using the top 12 PCs and resolution of 

0.2. After identifying clusters enriched in reactive astrocyte nuclei (gene markers83, 

Figures 2a and 2b ), DEGs  are compared between reactive astrocytes and non-reactive 

astrocytes for nuclei from both superior frontal gyrus and entorhinal cortex regions, 

respectively. 

 

Building Human Protein-protein interactome  

To build the comprehensive human interactome from the most contemporary data 

available, we will assemble 18 commonly used PPI databases with experimental 

evidence and the in-house systematic human PPI we have previously utilized3: (i) binary 

PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems87; (ii) kinase-substrate 

interactions by literature-derived low-throughput and high-throughput experiments from 

KinomeNetworkX88, Human Protein Resource Database (HPRD)89, PhosphoNetworks90, 

PhosphositePlus91, DbPTM 3.0  and Phospho.ELM92; (iii) signaling networks by literature-

derived low-throughput experiments from the SignaLink2.093; (iv) binary PPIs from three-

dimensional protein structures from Instruct94; (v) protein complexes data (~56,000 

candidate interactions) identified by a robust affinity purification-mass spectrometry 

collected from BioPlex V2.095; and (vi) carefully literature-curated PPIs identified by 

affinity purification followed by mass spectrometry from BioGRID96, PINA97, HPRD98, 

MINT99 ,IntAct100, and InnateDB101. As of December 2019, the updated human 

interactome constructed includes 351,444 PPIs connecting 17,706 unique proteins. 

 

Description of GPSnet 
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GPSnet algorithms takes two inputs: node score and one background PPI network. The 

node score was defined as follows: for DEGs with q <= 0.05, the node scores equal to 

absolute value of log2FC. In order to generate a module, GPSnet starts with a randomly 

selected gene/protein (node) as the seed gene. During each iteration, one of candidate 

genes (1st order neighbors of current seed genes) that satisfying the following two 

conditions at the same time will be added: (1) a p-value of the connectivity significance 

P(i) (Eq. 1) is less than 0.01; (2) the updated module score is greater than the current 

one (Eq. 2). We repeated steps (1) and (2) until no more genes (nodes) can be added. In 

this study, we built ~100,000 raw modules ranked by module scores. For each raw 

module, the corresponding module score can be computed (Eq. 2) and all raw modules 

are ranked in decreasing module score order and the protein frequency is defined based 

on truncated raw modules. We generated the final network modules by assembling top 

raw network modules (Supplementary Tables 1-4).  

𝑃(𝑖) =  ∑
(

𝑛
𝑑

) (
𝑁 − 𝑛
𝑑𝑖 − 𝑑

)

(
𝑁
𝑑𝑖

)

𝑑𝑖

𝑑= 𝑑𝑛

 (1) 

𝑀𝑆𝑛(𝑖) =  
(𝑠(𝑖) − 𝜇) + ∑ (𝑆(𝑗) − 𝜇)𝑣

𝑗∈𝑀

√𝑛
 (2) 

Where, N denotes all proteins/genes in the PPI, n represents numbers of nodes in the 

module, 𝑑𝑛 is the numbers of neighbors of gene i,  𝑑𝑖 is the degree of gene i, 𝑀𝑆𝑛(𝑖) 

denotes the updated module score if adding node i, M denotes the current module, and 

𝜇 is the average node score (|log2FC| in this work) of all genes with respect to the PPI. 

 

Network proximity 
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To quantify the relationships of two molecular networks (DAM vs. DAA) in the human 

interactome, we adopted the shortest path-based network proximity measure54 as below. 

 𝑑𝐷(𝑋, 𝑌) =
1

‖𝑌‖
∑ min

𝑥∈𝑋
𝑑(𝑥, 𝑦)𝑦∈𝑌                                 (3) 

where 𝑑(𝑥, 𝑦) is the shortest path length between gene 𝑥 and 𝑦 from gene list 𝑋 (DAM) 

and 𝑌  (DAA), respectively. To evaluate whether such proximity was significant, the 

computed network proximity is transferred into z score form as shown below: 

𝑍𝑑𝑜𝑝𝑡𝑖𝑜𝑛
=

𝑑𝑜𝑝𝑡𝑖𝑜𝑛 − 𝜇𝑑

𝜎𝑑
 (4) 

Here, 𝜇𝑑  and 𝜎𝑑  are the mean and standard deviation of permutation test with 1000 

random experiments. In each random experiment, two random subnetworks 𝑋𝑟 and 𝑌𝑟 

are constructed with the same numbers of nodes and degree distribution as the given 2 

subnetworks X and Y, separately, in the human protein-protein interactome. 

 

Network analysis metabolite-enzyme associations 

We collected 136 AD-related metabolites from 12 studies and the Human Metabolome 

Database (HMDB)57. All metabolistes were identified in AD-related human samples, 

including brain tissue, cerebrospinal fluid, and blood. All of these results are free available 

in our website AlzGPS (https://alzgps.lerner.ccf.org/). We collected experimentally 

reported metabolite-enzyme associations from three commonly used data sources, 

including KEGG56, Recon3D103, and HMDB57, and assembled them with the human PPI 

network. The updated network contains 373,320 links connecting with 17,826 unique 

proteins (including enzymes) and 1,419 metabolites. Then we mapped 224 DAM and 

DAA disease module genes and the 155 AD-related metabolites to the new network and 

computed the maximal subgraph: (1) we found 614 unique nodes which were the first or 
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second order neighbors of 61 DAM and DAA immune genes; (2) we obtained 71 

metabolites by considering the intersection of 614 unique nodes and 155 AD-related 

metabolites; (3) a subnetwork connecting 224 genes and 71 metabolites was generated. 

Finally, we computed the network paths that connected the DAM and DAA genes using 

the large betweenness centrality. 

 

Connectivity Map (CMap) and DrugBank database  

The Connectivity Map data used in this study contains 6100 expression profiles relating 

1309 compounds62. A parameter 𝛼  defined below is used to leverage the extent of 

differential expression for a given set of genes. 

𝛼 =
𝑡 − 𝑐

(𝑡 + 𝑐) 2⁄
 (5) 

Here t is the scaled and thresholded average difference value for the drug treatment group 

and c is the thresholded average difference value for the control group. Therefore, a zero 

𝛼  value indicates no expression change after drug treatment, and a positive 𝛼  value 

means elevated expression level after drug treatment and vice versa. Drug gene 

signatures with α > 0.67 (0.67 equals the 2-folds increment) are considered as up-

regulated drug-gene pairs, and α < -0.67 are denoted as down-regulated drug-gene pairs.  

 

Gene Set Enrichment Analysis (GSEA) 

We utilized GSEA algorithm to predict drugs for each cell subtype. GSEA algorithms takes 

two inputs: CMap database and the extracted molecular network. Detailed descriptions 

of GSEA have been illustrated in104. To be specific, the GSEA enrichment score (ES) is 

calculated as shown below. 
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ES = {
ESup − ESdown sgn(ESup) ≠ sgn(ESdown)

0 otherwise
 (6) 

Both 𝐸𝑆𝑢𝑝 and 𝐸𝑆𝑑𝑜𝑤𝑛 are computed for up- and down-regulated genes in input molecular 

network separately with the same scheme as shown below in a 2-step manner. We first 

compute intermediate parameters a and b: 

𝑎 = max
1≤j≤s

(
j

s
−

V(j)

r
)      𝑏 = max

1≤j≤s
(

V(j)

r
−

j−1

s
) (7) 

where j = 1, 2, …, s were the gene sets from molecular network sorted in ascending order 

by their rank in the gene profiles of the drug being evaluated. The rank of gene j is denoted 

by V(j), where  1 ≤ 𝑉(𝑗) ≤ 𝑟, with r being the number of genes (12,849) from the drug 

profile. Then, the corresponding 𝐸𝑆𝑢𝑝 and 𝐸𝑆𝑑𝑜𝑤𝑛 equal: 

ESup = {
aup if aup > bup

−bup ifbup > aup
        ESdown = {

adown if adown > bdown

−bdown ifbdown > adown
 (8) 

In the above equations, 𝑎𝑢𝑝/𝑑𝑜𝑤𝑛  and 𝑏𝑢𝑝/𝑑𝑜𝑤𝑛  are computed with respect to up- and 

down-regulated genes in molecular network, separately. The GSEA ES represents drug 

potential capability to reverse the expression of the input molecular network. Permutation 

tests repeated 100 times using randomly gene lists consisting of the same number of up- 

and down-regulated genes as the input molecular network were performed to leverage 

the significance of the computed ES value. Therefore, drugs with large positive ES value 

and significant p (p ≤ 0.05) were selected.  

 

Enrichment Analysis  

All pathway and disease enrichment analyses in this study are conducted via either 

KEGG 2019 Mouse or KEGG 2019 Human and DisGeNET18 from Enrichr105, respectively. 

The DisGeNET18 is a comprehensive platform integrating disease-associated genes 
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information. It collects disease-associated genes from multiple sources: expert curated 

repositories, GWAS catalogues17, animal models and the scientific literature. As January 

2019, it contains 628,685 gene-disease associations between 17,549 genes and 24,166 

diseases/traits. 

 

Pharmacoepidemiologic validation  

Study cohorts. We used the MarketScan Medicare Claims database from 2012 to 2017 

for the pharmacoepidemiologic analysis. This dataset included individual-level procedure 

codes, diagnosis codes, and pharmacy claim data for 7.23 million patients. Pharmacy 

prescriptions of verapamil and amlodipine were identified by using RxNorm and National 

Drug Code (NDC). 

Outcome measurement. For an individual exposed to the aforementioned drugs, a drug 

episode was defined as from drug initiation to drug discontinuation. Specifically, drug 

initiation was defined as the first day of drug supply (i.e. 1st prescription date). Drug 

discontinuation is defined as the last day of drug supply (i.e. last prescription date + days 

of supply) and without drug supply for the next 60 days. The fluticasone cohort included 

the first fluticasone episode for each individual, as well as the mometasone cohort. 

Further, we excluded observations that started within 180-day of insurance enrollment. 

For the extracted cohorts, demographic variables including age, gender and geographical 

location were collected. Additionally, diagnoses of hypertension (HT) and type 2 diabetes 

(T2D) (the International Classification of Disease [ICD] codes before drug initiation were 

collected, to address potential confounding biases. Last, a control cohort was selected 

from patients who were not exposed to fluticasone. Specifically, non-exposures were 
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matched to the exposures (ratio 4:1) by initiation time of fluticasone, enrollment history, 

age and gender. The outcome defined by using ICD codes was time from drug initiation 

to diagnose of AD. For the fluticasone and mometasone cohorts, observations without 

diagnosis of AD were censored at the end of drug episodes. For the control cohort, the 

corresponding fluticasone episode starting date was used as the starting time. 

Observations without diagnosis of AD were censored at the corresponding fluticasone 

episode’s end date. 

Propensity score estimation. We define NE = north east, NC = north central, S = south, 

W = west, T2D = type 2 diabetes, HT = hypertension and CAD = coronary artery disease. 

The propensity score of taking fluticasone vs. a comparator drug was estimated by the 

following logistic regression model: 

logit[Pr(Drug = fluticasone)] = 𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽31(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =

𝑁𝐸) + 𝛽41(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑁𝐶) + 𝛽51(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑆) + 𝛽6𝑇2𝐷 + 𝛽7𝐻𝑇 + 𝛽8𝐶𝐴𝐷. 

(9) 

Further, among the subgroups defined by gender, the propensity score of taking 

verapamil vs. a comparator drug was estimated by the following logistic regression model: 

logit[Pr(Drug = fluticasone)] = 𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽21(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑁𝐸) +

𝛽31(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑁𝐶) + 𝛽41(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑆) + 𝛽5𝑇2𝐷 + 𝛽6𝐻𝑇 + 𝛽7𝐶𝐴𝐷. 

(10) 

 

Statistical analysis. The survival curves for time to AD were estimated using a Kaplan-

Meier estimator approach. We used the large number of covariates generated throughout 

the process to address clinical scenarios evaluated in each study. Additionally, propensity 

score stratified survival analyses were conducted to investigate the risk of AD between 

fluticasone users and non-fluticasone users, as well as fluticasone users and 
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mometasone users. Specifically, for each comparison, the propensity score of taking 

fluticasone was estimated by using a logistic regression model, in which the covariates 

included age, gender, geographical location, T2D diagnosis and HT diagnosis. Further, 

propensity score stratified Cox-proportional hazards models were used to conduct 

statistical inference for the hazard ratios (HR) of developing AD between cohorts. 
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Figure 1.  A diagram illustrating the network-based framework. A standard single 

cell / nucleus RNA-sequencing data analysis pipeline includes quality control, clustering 

analysis and differentially expressed genes (DEGs) analysis. We built the molecular 

network using the state-of-the-art network-based algorithm by integrating sc/snRNA-seq 

data into the human protein-protein interactome (Methods). Next, we prioritized 

repurposed drugs for potential treatment of AD by identifying those that specifically 

reverse dysregulated gene expression for microglia and astrocyte: if drug-induced up- 

or down-related genes are significantly enriched in the dysregulated molecular 

networks, these drugs will be prioritized as potential candidates for treatment of AD. 

Finally, top drug candidates were validated further using a large-scale, real-world 

patient database. 
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Figure 2. Discovery of disease-associated microglia (DAM) specific molecular 
networks for the AD transgenic mouse model. (A) Uniform manifold approximation 
and projection (UMAP) plot of clustering 4,389 microglia cells: blue cluster denotes the 
homeostasis associated microglia (HAM) and green cluster denotes the DAM. (B) 
Expression levels (heatmap) of representative marker genes (up-regulation in DAM: Cst7 
and Lpl and down-regulation in DAM: P2ry12 and Cx3cr1) in different microglia sub-
clusters. (C) A predicted DAM specific molecular network contains 227 protein-protein 
interactions (PPIs) connecting 72 genes/proteins. Node sizes are proportional to their 
corresponding |log2FC| during differential expression analysis. Nodes are color coded by 
known KEGG immune pathways. Edges are color coded by different experimental 
evidences of PPIs (Method). 
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Figure 3. Discovery of disease-associated astrocyte (DAA) specific molecular 
networks in AD transgenic mouse model. (A) T-distributed stochastic neighbor 
embedding (TSNE) plot of clustering 7546 astrocyte nuclei. Red cluster denotes the 
disease associated astrocyte (DAA); (B) Stacked violin plot displaying the expression 
patterns of 9 representative genes across different astrocyte sub-clusters; (C) A 
predicted DAA specific molecular network contains 371 protein-protein interactions 
(PPIs) connecting 98 genes/proteins. Node sizes are proportional to their corresponding 
|log2FC| during differential expression analysis. Nodes are color coded by KEGG 
immune pathways, and edges are color coded by different experimental evidences of 
PPIs (see Methods). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.310466doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310466
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 

 

 

 
Figure 4. Discovery of disease-associated astrocyte (DAA) specific molecular 
networks for human AD brains. (A) Uniform manifold approximation and projection 
(UMAP) plot for 5599 astrocyte nuclei clustering analysis between AD patients’ brain 
entorhinal cortex (EC) region. (B) UMAP plot of clustering 8348 astrocyte nuclei for AD 
patients’ brain superior frontal gyrus (SFG) regions. (C) An identified DAA specific 
molecular network containing 43 protein-protein interactions (PPIs) connecting 26 
genes/proteins for EC. (D) An identified DAA specific molecular network containing 22 
PPIs connecting 13 genes/proteins for SFG. Node sizes are proportional to their 
corresponding |log2FC|. Nodes are color coded by KEGG immune pathways involved 
and edges are color coded by different experimental evidences of PPIs (Method). 
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Figure 5. Comparison of molecular networks between disease-associated 
astrocytes (DAA) and microglia (DAM). (A) Visualization of interplays between DAM 
and DAA molecular networks in the human protein-protein interactome network model. 
(B) Expression levels of LGALS3BP and RPLP2 for homeostatic associated microglia 
(HAM) versus DAM and DAA versus non-DAA. The FDR (q value) is computed using the 
Seurat R package (Methods).  All details for gene differential expression analyses are 
provided in Supplementary Tables 1-3. 
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Figure 6. A metabolite-triggered molecular network between disease-associated 

astrocytes (DAA) and microglia (DAM). (A) A highlighted subnetwork of the metabolite-

enzyme network between DAM and DAA in the human protein-protein interactome 

network model; (B and C) Expression of CTSB is significantly elevated in (C) DAM and 

(D) DAA, compared to homeostatic associated microglia (HAM) and non-DAA, 

respectively. (D) Expression of SPP1 is significantly elevated in DAM compared with HAM. 

Each dot represents one cell; (E) Pearson correlation analysis shows that SPP1 and 

PLD3 have the coordinated change trends in DAM. Gene expression is counted by the 

average Unique Molecular Identifier (UMI) count. 
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Figure 7. Network-based discovery of repurposable drug candidates for AD by 
specifically reversing gene expressions of disease-associated microglia (DAM) 
and disease-associated astrocytes (DAA). (A) Selected drugs that specifically target 
five different DAM or DAA molecular networks. Drug are grouped by five different 
classes: immunological, respiratory, neurological, cardiovascular, cancer, and type II 
diabetes. Four high-confidence drugs were highlighted by red text. (B) Proposed 
mechanism-of-actions for 4 selected drugs by drug-target network analysis. 
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Figure 8. Longitudinal analysis reveals that fluticasone and mometasone reduce 

risk of AD incidence in patient data. Two comparison analyses were conducted 

including: (A) fluticasone vs. a matched control population and (B) fluticasone vs. 

mometasone. We estimated the un-stratified Kaplan-Meier curves, conducted propensity 

score stratified (n strata = 10) rank test and Cox models after adjusted all possible 

confounding factors, including age, gender, race, disease comorbidities (see Methods). 

(C and D) Proposed mechanism-of-action for treatment of AD by fluticasone and 

mometasone using drug-target network analysis. 
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Supplementary Figure 1. Discovery of disease-associated microglia (DAM) specific 
molecular networks using a scRNA-seq dataset (GSE98969). (A) UMAP plot of clustering 
10,836 CD45+ cells into 13 sub-groups: gold cluster denoting the homeostasis associated 
microglia (HAM) and red cluster denoting the DAM. (B) Expression levels (stacked violin 
plots) of representative marker genes (up-regulation in DAM: Cst7 and Lpl and down-
regulation in DAM: P2ry12 and Cx3cr1) in different microglia sub-clusters; (C) Extracted 
cell subtype DAM specific molecular network includes 69 nodes (proteins) and 97 edges 
(protein-protein interactions [PPIs]). Node sizes are proportional to their corresponding 
|log2FC|. Nodes are color coded by well-known KEGG immune pathways and edges are 
color coded by different experimental evidences of PPIs (Methods). 
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Supplementary Figure 2. Nucleus / cell distribution in different immune cell subtypes. 
Normalized nucleus / cell abundance for homeostasis associated microglia (HAM) and 
disease associated microglia (DAM) clusters in both wild-type (WT) and 5XFAD mouse 
models (A) from sn-RNA seq dataset – GSE140511 and (B) from sc-RNA seq dataset – 
GSE98969. (C) Bar plot of normalized nucleus abundance in both disease associated 
astrocytes (DAAs) and non-DAA clusters considering both WT and 5XFAD mice. (D and 
E) Bar plot of normalized nucleus abundance in both DAA and non-DAA clusters 
considering human AD brains with Braak stages 0, 2, and 6 for brain region - (D) 
entorhinal cortex (EC) and (E) superior frontal gyrus. Detailed results are presented in 
Supplementary Table 1. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.310466doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310466
http://creativecommons.org/licenses/by-nc-nd/4.0/


61 

 

 

 

 
 
Supplementary Figure 3. Differentially expressed genes and pathway enrichment 

analysis for disease associated microglia (DAM). Differential expressed gene analysis 

(volcano plot) between DAM and homeostasis associated microglia (HAM) with restricting 

to 5XFAD mice only using two different datasets: (A) GSE140511 (Supplementary Table 

1) and (B): GSE98969 (Supplementary Table 2). (C) Pathway enrichment analysis 

(Supplementary Table 1) for GSE140511. (D) Pathway enrichment analysis 

(Supplementary Table 2) for GSE98969. 
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Supplementary Figure 4. Expression levels (heatmap) of representative marker genes 

(up-regulation in DAA: GFAP, CD44, HSPB1 and TNC, and down-regulation in DAA: 

SLC1A2, SLC1A3, GLUL, NRXN1, CADM2, PTN and GPC5) in all astrocyte sub-clusters, 

patients’ brain region: (A) entorhinal cortex (EC) and (B) superior frontal gyrus (SFG). 

Data source: GSE147528. 
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Supplementary Figure 5. Differentially expressed genes and pathway enrichment 
analysis for disease associated astrocytes (DAAs) built from the AD transgenic mouse 
model (GSE143758). (A) Stacked violin plot displaying the expression patterns of 9 
representative genes across different astrocyte sub-clusters. (B) Differential expressed 
gene analysis (volcano plot) between DAAs and non-disease associated astrocytes (non-
DAAs) using 5XFAD mice. (C) Pathway enrichment analysis presented by 13 enriched 
KEGG immune system pathways (Supplementary Table 3). 
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Supplementary Figure 6. Differentially expressed genes and pathway enrichment 

analysis for disease associated astrocytes (DAAs) built from human AD patient snRNA-

seq data (GSE147528). Differential expressed gene analysis (volcano plot) between 

DAAs and non-disease associated astrocytes (non-DAAs), patients’ brain regions: (A) 

entorhinal cortex (B) superior frontal gyrus; (C) Pathway enrichment analysis (see 

Supplementary Table 4) for molecular networks built from (C) entorhinal cortex (EC) and 

(D) superior frontal gyrus (SFG). 
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Supplementary Figure 7. Network visualization and pathway enrichment analysis for 
disease associated astrocyte (DAA) and disease associated microglia (DAM). (A) A 
module illustrating the network-based relationship between DAA and DAA immune genes 
associated with AD-related metabolites. (B) Venn diagram of enzymes from DAA and 
DAM. (C) Pathway enrichment of 70 enzymes in DAA and DAM. 
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Supplementary Figure 8. Network-based discovery of drug candidates. Venn diagrams 

show the relations of potential drug candidates predicted among (A) all datasets and (B) 

3 mouse model datasets. To be specific, snDAMnet is a molecular network based on 

snRNA-seq mouse model dataset – GSE140511, scDAMnet is a molecular network built 

from scRNA-seq mouse model dataset – GSE98969, mDAAnet is a molecular network 

built from snRNA-seq mouse model dataset – GSE143758 and hECDAAnet and 

hSFGDAAnet are molecular networks based on snRNA-seq human AD brain dataset – 

GSE147528.  
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