

1 Multi-scale Modeling Toolbox for 2 Single Neuron and Subcellular 3 Activity under (repetitive) 4 Transcranial Magnetic Stimulation

5 **Sina Shirinpour¹, Nicholas Hananeia², James Rosado³, Christos Galanis⁴, Andreas
6 Vlachos^{4,5,6,7*}, Peter Jedlicka^{2*}, Gillian Queisser^{3*}, Alexander Opitz^{1*}**

7 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA

8 2 Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-
9 Liebig-University, Giessen, Germany

10 3 Department of Mathematics, Temple University, Philadelphia, USA

11 4 Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine,
12 University of Freiburg, Freiburg, Germany

13 5 Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany

14 6 Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany

15 7 Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg,
16 Germany

17 * joint senior authors

18 **Correspondence:** aopitz[at]umn.edu

19 **Running title:** Multi-scale model of TMS

20 **Keywords:** transcranial magnetic stimulation, electric field simulation, neuron compartmental
21 modeling, calcium simulation, three-dimensional reconstructions, synaptic plasticity, dendrites

22 Abstract

23 Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique widely
24 used in research and clinical applications. However, its mechanism of action and the neural
25 response to TMS are still poorly understood. Multi-scale modeling can complement experimental
26 research and provide a framework between the physical input parameters and the subcellular
27 neural effects of TMS. At the macroscopic level, sophisticated numerical models exist to estimate
28 the induced electric fields in whole-brain volume conductor models. However, multi-scale
29 computational modeling approaches to predict TMS cellular and subcellular responses, crucial to
30 understanding TMS plasticity inducing protocols, are not available so far. Here, we develop a
31 multi-scale *Neuron Modeling for TMS* toolbox (*NeMo-TMS*) that enables researchers to easily
32 generate accurate neuron models from morphological reconstructions, couple them to the
33 external electric fields induced by TMS, and to simulate the cellular and subcellular responses of
34 the neurons. Both single-pulse and rTMS protocols can be simulated and results visualized in 3D.
35 We openly share our toolbox and provide example scripts and datasets for the user to explore.
36 *NeMo-TMS* toolbox (<https://github.com/OpitzLab/NeMo-TMS>) allows researchers a previously not
37 available level of detail and precision in realistically modeling the physical and physiological
38 effects of TMS.

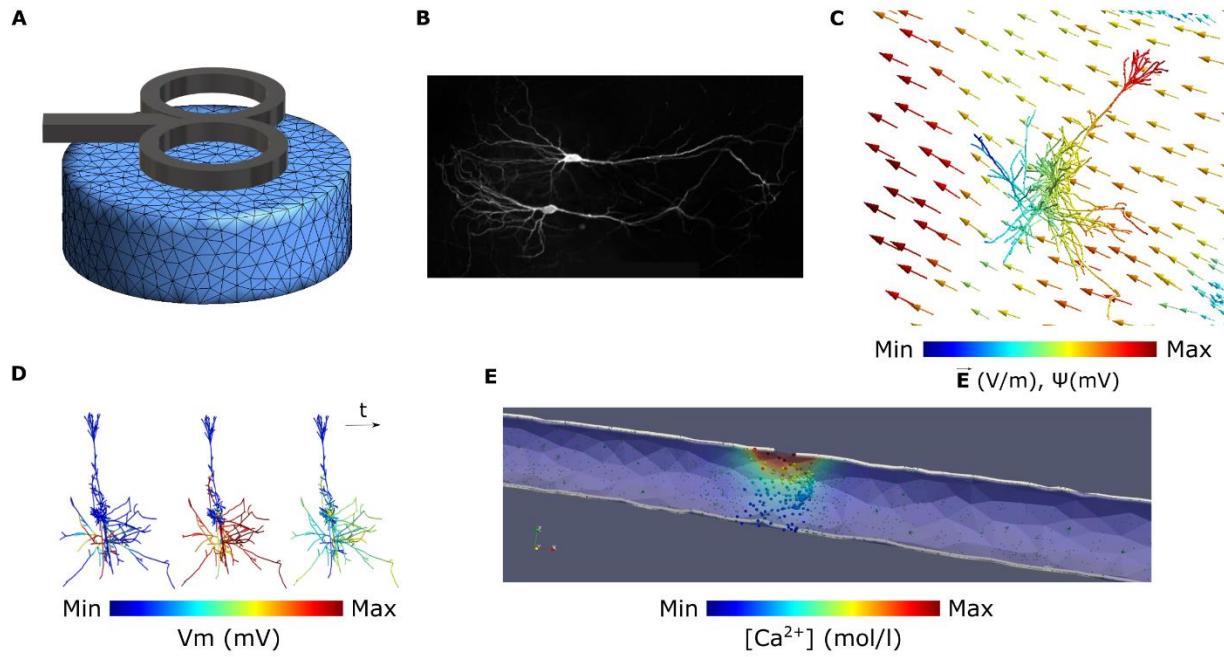
39 Introduction

40 Transcranial Magnetic Stimulation (TMS) is a popular non-invasive brain stimulation method to
41 safely modulate brain activity in the human brain. TMS generates a strong magnetic field by
42 passing a transient current through a magnetic coil (Barker et al., 1985). This time-varying
43 magnetic field crosses the skull and induces an electric field which can depolarize neurons in the
44 underlying brain areas (Hallett, 2007). TMS is used both in research and clinical applications for
45 neuropsychiatric and neurological disorders (Lefaucheur et al., 2014). Despite the growing use of
46 TMS, there is still a lack of understanding of its mechanism of action.

47 Direct *in vivo* recordings of neural activity in rodents and non-human primates have led to key
48 insights into TMS mechanisms (Allen et al., 2007; Li et al., 2017; Mueller et al., 2014; Romero et
49 al., 2019). However, due to differences in brain structure and functional neuroanatomy compared
50 to humans, great care has to be taken when translating findings across species (Alekseichuk et
51 al., 2019). Besides *in vivo* animal studies, *in vitro* experiments in hippocampal slice cultures have
52 been instrumental for our understanding of cellular and molecular mechanisms of TMS (Lenz et
53 al., 2015; Tang et al., 2015; Tokay et al., 2009; Vlachos et al., 2012). *In vitro* preparations allow
54 studying the effects of TMS on a single neuron basis in detail, however, as for animal studies,
55 care has to be taken for translating findings to humans.

56 Computational modeling is a key tool to complement experimental studies to investigate TMS
57 mechanisms. Computational models can provide a framework to understand experimental results
58 as well as allow efficient screening of a large range of stimulation parameters. Most TMS modeling
59 studies have focused on the spatial distribution of TMS-induced electric fields in the brain (Laakso
60 et al., 2013; Opitz et al., 2013, 2011). These studies have been successful in predicting TMS
61 stimulation regions and to guide TMS targeting for human experiments. However, they are limited
62 in expanding our understanding of the TMS physiological response which depends on a variety
63 of factors such as neuron type, electric field orientation, and ongoing activity (Di Lazzaro et al.,

64 2018; Hannah and Rothwell, 2017). Consequently, there has been a growing interest in
65 developing multi-scale neuron models to predict the physiological outcome of TMS.


66 In early modeling work, the effects of magnetic stimulation on elongated cables representing
67 axonal tracts were studied (Basser and Roth, 1991; Nagarajan and Durand, 1996; Salvador et
68 al., 2011). More recent work (Goodwin and Butson, 2015; Kamitani et al., 2001; Pashut et al.,
69 2011; Seo and Jun, 2019) used sophisticated neuronal geometries. Aberra and colleagues
70 (Aberra et al., 2020) highlighted the need to include realistic axonal reconstructions and
71 myelination to more accurately predict neuronal responses. These studies have commonly
72 focused on single-pulse TMS. However, for clinical applications, TMS is applied repeatedly in
73 specific temporal patterns (repetitive TMS [rTMS]). Also, these rTMS protocols are designed to
74 induce neural plasticity that is guided by several subcellular processes including somatic and
75 dendritic calcium accumulation (Eilers et al., 1995; Limbäck-Stokin et al., 2004; Shoop et al.,
76 2001). Despite the importance of rTMS-induced plasticity on intracellular calcium signaling
77 pathways (Lenz et al., 2016, 2015; Vlachos et al., 2012), subcellular calcium-dependent
78 processes have so far not been incorporated in computational models of TMS.

79 To address the limitations of available TMS models, we developed a multi-scale modeling toolbox
80 coupling TMS electric fields with anatomically and biophysically realistic neuron models, and their
81 intracellular calcium signaling. TMS multi-scale modeling requires the detailed knowledge of a
82 broad range of computational tools, and so far, no easy-to-use toolboxes exist. Here, we describe
83 a newly developed *Neuron Modeling for TMS* (NeMo-TMS) pipeline that allows simulating and
84 visualizing realistic multi-scale models from neuronal reconstructions with minimal technical
85 expertise. Our modeling toolbox allows researchers to explore TMS mechanisms computationally
86 and embed experimental findings in a theoretical framework that can facilitate our understanding
87 of TMS mechanisms across scales.

88 Results

89 Overview of Multi-scale Modeling Paradigm

90 We give an overview of the concept of multi-scale modeling to study the effects of TMS on
91 neurons at the cellular and subcellular levels as shown in Figure 1. First, we use the Finite
92 Element Method (FEM) to numerically calculate the electric fields induced in the geometry of
93 interest (e.g. *in vitro* model or head model, Fig. 1A). However, the resulting electric fields at the
94 macroscopic and mesoscopic scale cannot directly predict the physiological outcome. Therefore,
95 we model the neuron membrane response to these external electric fields. To this end, we
96 reconstruct CA1 pyramidal neurons based on microscopic images of enthorhino-hippocampal
97 tissue cultures prepared from rodent brains (Fig. 1B). Based on the neuron morphology, we then
98 generate a discretized numerical model of the neuron. Then, to couple the electric fields from the
99 FEM model to the neuron model, we calculate quasipotentials (Fig. 1C) across all the neuron
100 compartments (Wang et al., 2018). Afterward, the neuron model is numerically solved to estimate
101 the membrane potential across the whole neuron over time (Fig. 1D). Based on the calculated
102 voltage traces, we solve the equations governing the calcium dynamics to calculate the calcium
103 concentrations in the neuron over time at the subcellular level (Fig. 1E).

104 **Figure 1.** Overview of the multi-scale modeling paradigm. **(A)** Electric field calculation in the FEM model of
105 interest. **(B)** Neuron reconstruction of CA1 pyramidal cells from microscopic images. **(C)** Coupling the
106 electric fields (\vec{E}) to the morphologically accurate neuron model by calculating quasipotentials (ψ). **(D)**
107 Simulating the membrane voltage (V_m) using the quasipotentials and computing the voltage traces of the
108 neuron compartments over time. **(E)** Simulating the release of calcium ions from the voltage-dependent
109 calcium channels (VDCC) over time by solving the calcium diffusion equations.

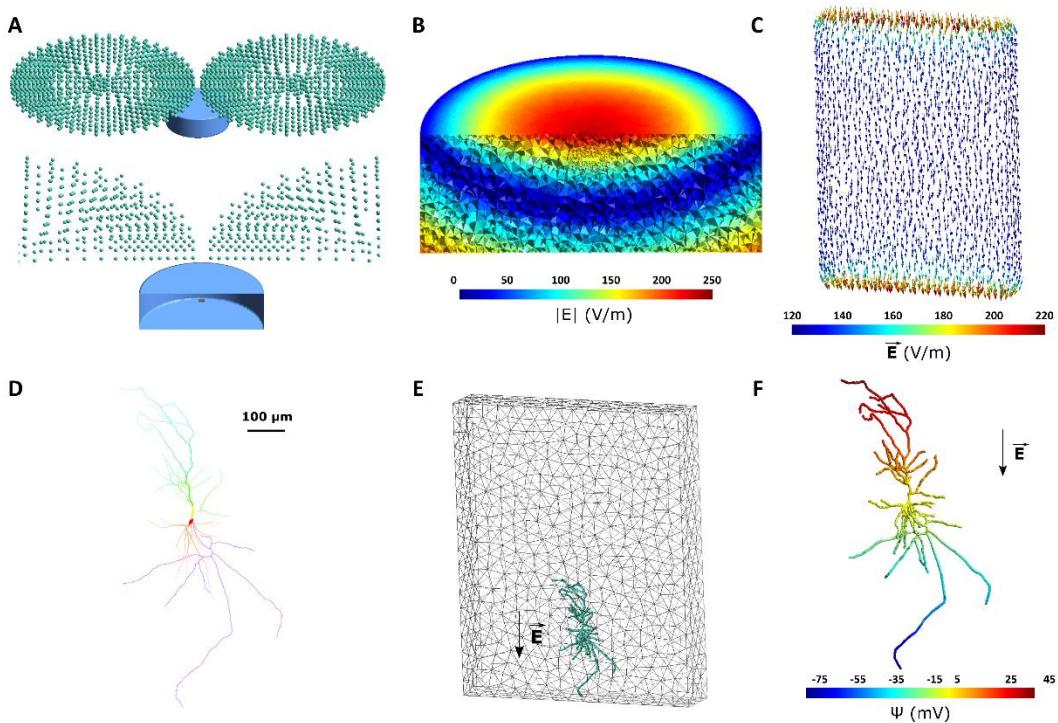
110 *Neuron Modeling for TMS (NeMo-TMS) Toolbox*

111 To facilitate the process of multi-scale modeling, we have developed a new toolbox (*NeMo-TMS*)
112 and share it as an open-source resource with instructions (<https://github.com/OpitzLab/NeMo-TMS>)
113 accessible to the research community. We tested the toolbox on Microsoft Window and
114 Ubuntu. Here, we outline the toolbox functionality and the steps to perform multi-scale
115 simulations. Furthermore, we provide examples to show how it can be used to investigate TMS-
116 related research questions.

117 As shown in Figure S1, the pipeline is comprised of multiple steps that allow the user to run multi-
118 scale models. We have shared all the necessary codes and instructions to run multi-scale models

119 with minimal prerequisites from the user. Below we summarize typical steps in the modeling
120 process:

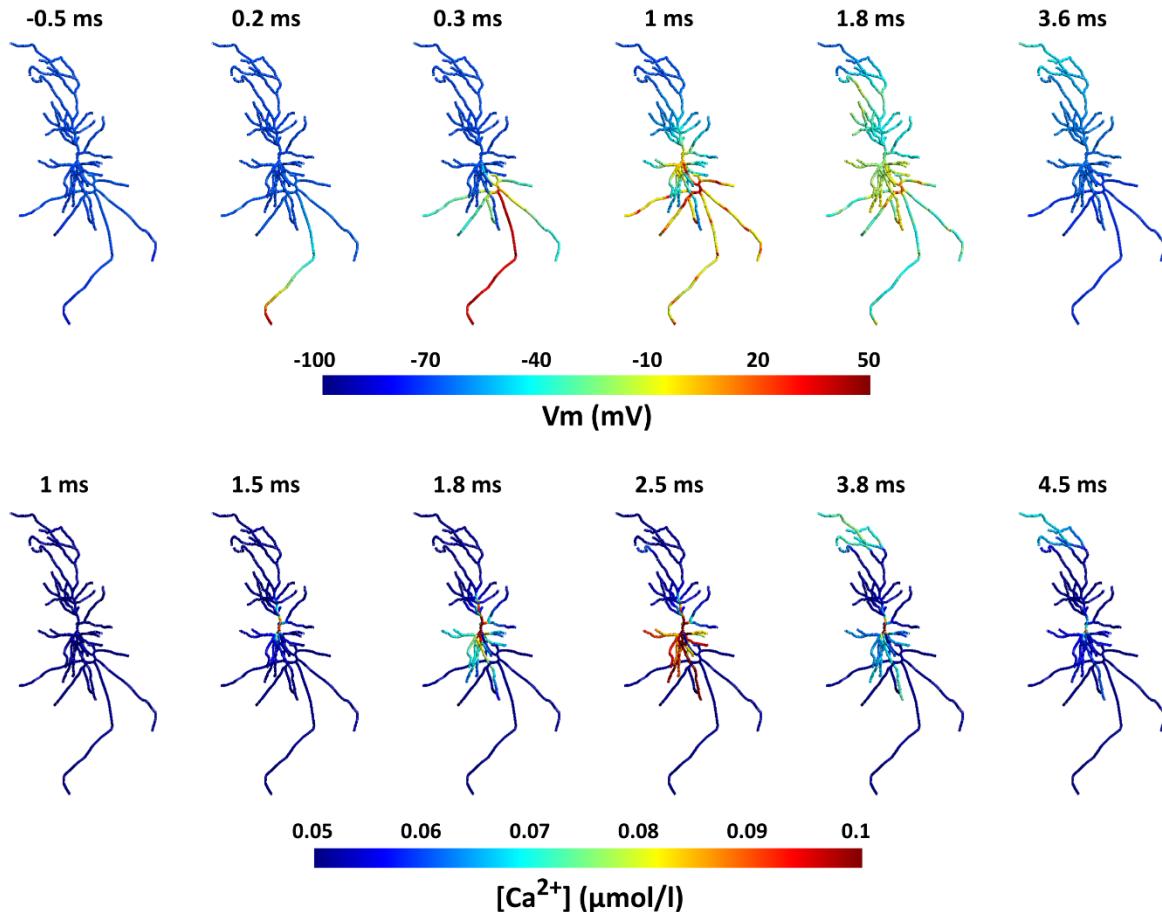
- 121 1) Neuron models are generated from realistic neuron reconstructions and the biophysics
122 of CA1 pyramidal cells are automatically added to these models.
- 123 2) Coordinates of the neuron model compartments are exported to be used in later steps.
- 124 3) The macroscopic electric fields are numerically calculated in the geometry of interest
125 (e.g. *in vitro* model, head model). This accounts for the spatial distribution of the electric
126 fields.
- 127 4) The electric fields computed in step 3 are coupled to the neuron model by calculating the
128 quasipotentials at the coordinates exported in step 2.
- 129 5) Desired rTMS waveforms are generated in this step. This accounts for the temporal
130 pattern of the electric fields.
- 131 6) The membrane voltage of the neuron is simulated based on the spatial and temporal
132 distribution of the TMS electric fields calculated in the previous steps. Alternatively, the
133 user can also run this step under the assumption of a spatially uniform electric field (in
134 this case, steps 2 to 4 can be skipped).
- 135 7) The membrane voltage data are exported in formats compatible with calcium modeling.
- 136 8) The calcium concentration is simulated based on solving the calcium diffusion-reaction
137 equations with voltage-dependent calcium channels.
- 138 9) The results from the simulations are visualized.


139 This toolbox is developed by utilizing multiple software packages, methods, and algorithms.
140 Because of this and to make the toolbox accessible to a broad range of researchers with varying
141 computational skills, we have simplified and automated the process to a great degree. For all the
142 steps described above, the user can run the simulations using either graphical interfaces or
143 through scripting. This feature is useful as it makes the computational workflow reproducible and

144 gives advanced users the ability to run multiple simulations programmatically. With the *NeMo-*
145 *TMS* toolbox, we provide a set of ten morphologically accurate neuron reconstructions with
146 detailed dendritic and axonal branches to run example simulations. The morphology of these
147 neurons is shown in Figure S2. For further technical details on the pipeline procedure, refer to the
148 'methods' section.

149 **Example 1: Effects of TMS on the membrane potential and calcium concentration**
150 **for an *in vitro* neuron model**

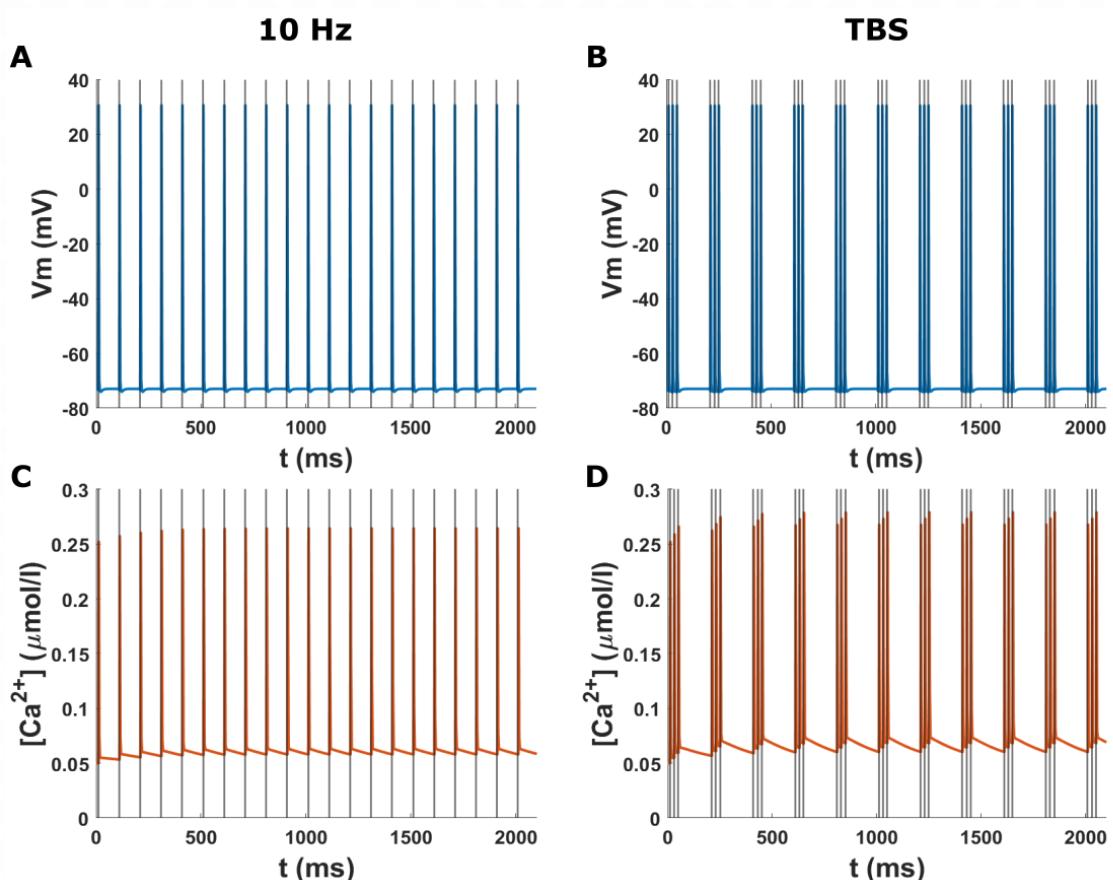
151 In this example, we run a full multi-scale simulation on an *in vitro* model and show the membrane
152 potential and calcium activity of the neuron when a TMS pulse is delivered. As shown in Figure
153 2A, the *in vitro* model consists of a tissue culture placed inside a Petri dish surrounded by artificial
154 cerebrospinal fluid (aCSF). The Petri dish is modeled as a cylinder with 30 mm in diameter and
155 10 mm in height. The tissue culture is 2 x 1.5 x 0.3 mm in size and is placed at the center of the
156 Petri dish 8 mm above the bottom surface. The mesh file for this model is available for download
157 (Alekseichuk et al., 2020). The electrical conductivity of the aCSF and the tissue culture are set
158 to those of CSF (1.654 S/m) and grey matter (0.275 S/m) respectively (Wagner et al., 2004). A
159 dipole-equivalent model of a Magstim 70 mm figure-8 coil (Magstim Co., UK) was placed 4 mm
160 above the center of the Petri dish. We ran the FEM electric field simulation with a stimulator output
161 of $dl/dt = 220 \text{ A}/\mu\text{s}$. The resulting electric fields are strongest at the top center of the model since
162 these regions are closest to the center of the TMS coil (Fig. 2B). Electric fields are aligned
163 unidirectionally in the probe (Fig. 2C). Due to a conductivity difference between grey matter and
164 CSF, an increase in the electric field occurs at these border walls (Opitz et al., 2015). The
165 morphology of the reconstructed neuron is shown in Figure 2D. We placed the neuron model
166 inside the tissue culture at the edge of the wall and oriented it in a way that the electric fields are
167 in the direction of the neuron somatodendritic axis (Fig. 2E). Then, we coupled the electric fields


168 to the neuron by calculating the quasipotentials across the neuron (Fig. 2F). A gradient of
169 quasipotentials occurs in the direction of the electric field.

170 **Figure 2.** *In vitro* model of tissue culture in a Petri dish. **(A)** Geometry of the *in vitro* model. Top: TMS coil
171 is represented through green magnetic dipoles. The Petri dish, shown in blue, is 30 mm in diameter with a
172 height of 10 mm and is filled with aCSF. The figure-8 coil is placed 4 mm above the center of the Petri dish.
173 Bottom: A cut-through image of the TMS coil and Petri dish is shown. The tissue culture with a size of 2 x
174 1.5 x 0.3 mm is placed at the center of the Petri dish 8 mm above the bottom surface. The tissue culture is
175 modeled with grey matter conductivity. **(B)** Electric field magnitude induced in the *in vitro* model for a TMS
176 stimulator output of $dI/dt = 220 \text{ A}/\mu\text{s}$. **(C)** Electric field vector induced in the tissue culture. Electric fields are
177 aligned unidirectionally along the handle of the figure-8 coil. Due to the conductivity mismatch between the
178 culture and aCSF in the Petri dish, the electric field is enhanced at the borders along the electric field
179 direction. **(D)** Reconstructed neuron morphology. Red, orange, yellow, green, blue, and purple respectively
180 denote soma, basal dendrites, proximal apical, distal apical, apical tufts, and axon. **(E)** Neuron (green)
181 placement inside the tissue culture (grey mesh). **(F)** The quasipotential distribution across the neuron
182 compartments. In this model, the electric field is applied along the somatodendritic axis, thus a gradient can
183 be seen from the apical dendrites to the axon.

184 Subsequently, we simulated the membrane dynamics of the neuron compartmental model using
185 the CA1 pyramidal cell biophysics (Jarsky et al., 2005) in response to the applied electric field
186 with the quasipotential mechanism. The resulting membrane voltage traces are then used as input

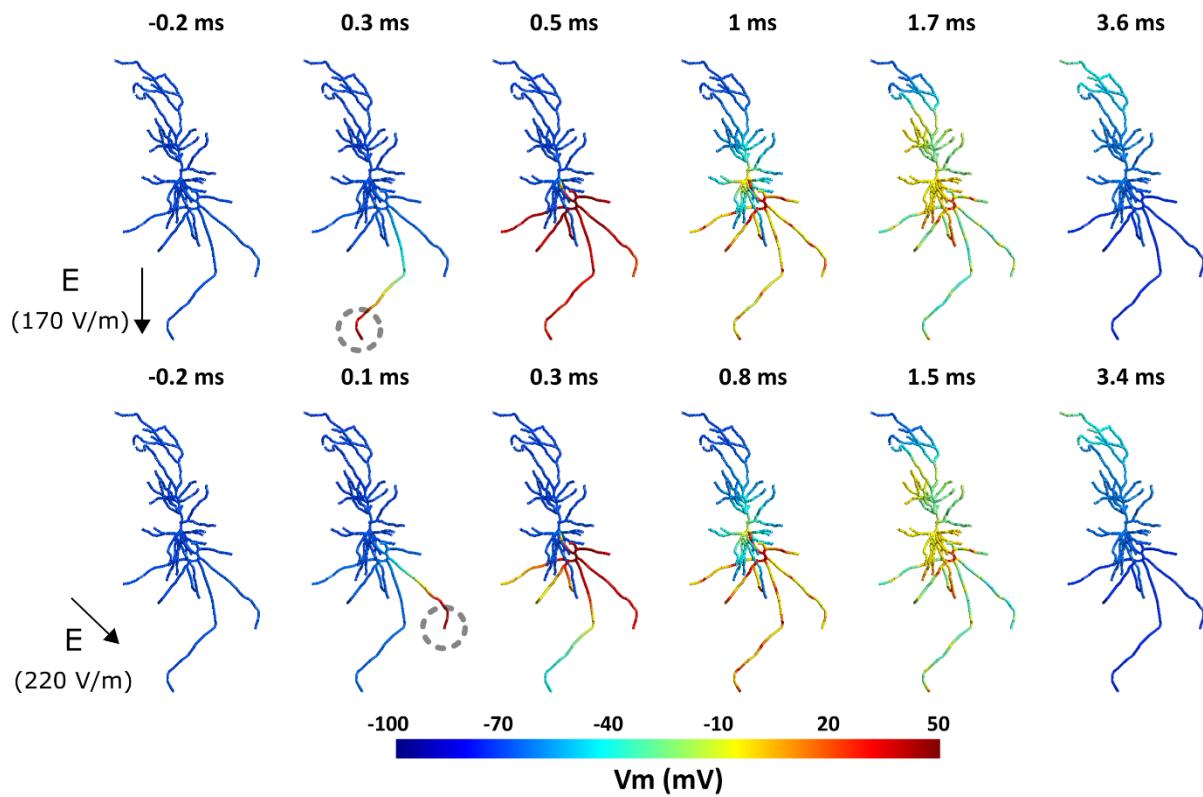
187 to the simulation of the calcium dynamics for this neuron. While action potential initiation occurs
188 on a millisecond timescale, calcium accumulation in the soma occurs with a delay which can be
189 in the range of seconds in the case of rTMS. Figure 3 and the corresponding video S1 show the
190 membrane potential of the neuron and its corresponding calcium concentrations over time during
191 a single biphasic TMS pulse. Before the TMS pulse delivery, the neuron is at resting membrane
192 voltage all across the cell (-70 mV). At time 0, the TMS pulse is delivered. Immediately after the
193 TMS pulse, the axon terminal at the bottom of the cell is depolarized enough to induce an action
194 potential. Since the axon is myelinated, the action potential quickly travels across all axonal
195 branches and reaches the soma around 1 ms later. Afterward, the dendrites slowly depolarize as
196 a result of ionic diffusion. Since basal dendrites are shorter, they depolarize faster than the apical
197 dendrites. Over time (approximately 4 ms), the neuron gradually recovers back to the resting
198 potential. Apical and tuft dendrites are the last neurites to depolarize and therefore the last ones
199 to return to rest. The bottom panel shows the calcium densities across the neuron for the same
200 neuron spike. Once the action potential reaches the soma at around 1 ms after the TMS pulse,
201 with a short delay of about 0.5 ms, calcium accumulation is initiated in the soma. Then, the calcium
202 levels start to rise slowly at the basal and apical dendrites. For these simulations, calcium
203 exchange and release mechanisms are not considered in the axon region of the neuron;
204 therefore, the calcium concentration remains constant in the axon of the cell. Afterward, the
205 calcium densities in the rest of the neuron decrease and approach the resting values again (~5
206 ms). However, it takes longer for the calcium in the soma to fully restore to the baseline.



207 **Figure 3.** Action potential and calcium propagation over time in the neuron for the *in vitro* model. Note that
208 time scales of membrane potentials and calcium dynamics differ between the upper and lower panel. Top:
209 Spatial distribution of membrane potentials over time. The action potential starts at the axon terminal
210 immediately after the TMS pulse ($t = 0$) and quickly propagates to the rest of the neuron. In the following
211 ~ 4 ms, the neuron recovers back to its resting potential. Bottom: Distribution of the calcium concentrations
212 displayed for the same TMS action potential. After the action potential reaches the soma ~ 1 ms after the
213 TMS pulse, shortly after (~ 0.5 ms), the calcium concentration increases in the soma and then propagates
214 to the dendrites. After several ms calcium levels resort to baseline. The range of the color bar for the calcium
215 concentrations was adjusted for improved visualization and does not represent the maximum values.

216 **Example 2: Effect of rTMS pulse parameters on calcium dynamics**

217 In this example, we examine the effect of rTMS pulse parameters on calcium accumulation. For
218 this, we keep all single-pulse parameters as in example 1 and only change the rTMS protocol.
219 We compare a 10 Hz rTMS protocol with a Theta Burst Stimulation (TBS) protocol (Huang et al.,
220 2005). In the TBS protocol, a burst of three TMS pulses is delivered at 50 Hz repeated at 5 Hz


221 (200 ms delay between bursts). In Figure 4, the membrane potential and the calcium
222 concentration in the soma are shown over several TMS pulses for both protocols. After each TMS
223 pulse, the neuron spikes, and therefore calcium accumulation in the soma follows. For the 10 Hz
224 rTMS protocol, after each neuron spike, there is a rapid increase and then a decrease in the
225 calcium level in the soma. However, after this initial activity, the decay rate slows dramatically.
226 Since the calcium concentration does not completely recover to baseline before the subsequent
227 pulse, there is a gradual increase in the overall calcium level. On the other hand, for the TBS
228 protocol, since TMS pulses are very close together in each burst, calcium reaches higher
229 concentrations after each burst but also decays quicker than the 10 Hz protocol. Although,
230 because the bursts are fairly close together, the calcium level stays higher than the baseline (Fig.
231 4D). Overall, a buildup of calcium occurs in the soma over time in both rTMS protocols, but the
232 temporal patterns are different.

233 **Figure 4.** Time course of the membrane potential and calcium concentration at the soma in the *in vitro*
234 model for two rTMS protocols. The grey lines indicate the TMS pulses. **(A)** Membrane potential at the soma
235 for the 10 Hz biphasic rTMS protocol. The neuron spikes immediately after each TMS pulse. **(B)** Membrane
236 potential at the soma for the TBS protocol with a biphasic TMS pulse. **(C)** Calcium concentration at the
237 soma for the 10 Hz rTMS protocol corresponding to (A). Calcium levels rise after each spike and then slowly
238 recover. Over time, there is a buildup of calcium. **(D)** Calcium concentration at the soma for the TBS protocol
239 corresponding to (B). The calcium levels rise after each burst of pulses and then subside. The calcium
240 levels stay higher than the baseline.

241 **Example 3: Effect of the electric field orientation on neural activation**

242 In this example, we show how the orientation of the TMS electric field can change how it affects
243 the neural activation site and subsequently calcium dynamics. Since the spatial distribution of the
244 electric field plays a key role in TMS effects (Opitz et al., 2013), we compared two different electric
245 field directions and their effects on the neuron TMS response. For this, we used one of the
246 features of the pipeline to apply a spatially uniform electric field rather than from FEM modeling.
247 We applied a monophasic TMS pulse in two different orientations: *i*) along the somatodendritic
248 axis from the apical dendrite to the longest axon branch, *ii*) At 45° relative to the somatodendritic
249 axis, along the second-longest axon branch. The neuron activation pattern is shown for these
250 scenarios respectively in Figure 5 and video S2. In the first case, since the electric field is aligned
251 with the long axon branch, the action potential is initiated in the terminal of the long axon branch.
252 However, in the second scenario, the action potential is initiated in the terminal of the second-
253 longest axon since it is more suitably aligned to the electric field. Additionally, the threshold of the
254 electric field strength for generating the action potential differs in both cases. In the first scenario
255 the neuron fires at an electric field strength of 170 V/m, while in the second case, a 30% higher
256 field strength is needed for the neuron to fire. Also, there is a time shift (~0.2 ms) between the
257 action potential initiation and propagation between these electric field orientations. This time shift
258 causes a delay in calcium accumulation between these conditions as shown in video S3. This
259 example shows that the electric field orientation plays a role not only in the activation thresholds
260 but also in the neuron firing pattern, and calcium dynamics timing.

261 **Figure 5.** Effect of the TMS electric field orientation on membrane dynamics and spiking threshold. Top:
262 Spiking activity in the neuron for a 170 V/m intensity uniform electric field with a monophasic TMS pulse
263 oriented along the somatodendritic axis. The action potential initiates at the bottom-most axon terminal
264 indicated with a grey dashed circle. Bottom: Spiking activity for a 220 V/m intensity uniform electric field
265 with a monophasic TMS pulse oriented at 45° relative to the somatodendritic axis. The action potential
266 starts at the axon terminal on the right.

267 Discussion

268 We developed an open-source multi-scale modeling toolbox to enable researchers to model the
269 effects of (r)TMS on single neurons and study their cellular and subcellular behavior. *NeMo-TMS*
270 toolbox allows users to simulate the TMS-induced electric fields in geometries of interest (such
271 as an *in vitro* model or a head model), to couple the TMS electric fields to morphologically accurate
272 neuron models, and to simulate the membrane voltage and calcium concentration in the neurons.
273 Our pipeline provides a graphical user interface, as well as an interface to run the process through
274 scripts that will allow researchers with different computational skill sets to efficiently use our
275 software.

276 To our knowledge, *NeMo-TMS* is the first modeling toolbox that enables studying single neuron
277 behavior under TMS at macro-/mesoscopic, microscopic, and subcellular levels at the same time.
278 Additionally, our toolbox can incorporate sophisticated neuron geometries and morphologies.
279 Complementing modeling results with experimental studies can help to improve our
280 understanding of the basic mechanisms of TMS.

281 Besides the technical implementation of the pipeline, we discuss several examples to showcase
282 some of its capabilities. In the first example, we simulated the effect of single-pulse TMS on a
283 morphologically reconstructed neuron embedded inside a tissue culture as an *in vitro* model. We
284 show how the action potential is initiated at the axon terminal from which it propagates to the rest
285 of the neuron. The voltage-dependent calcium concentrations increase after the action potential
286 reaches the soma from which they spread into the dendrites. Both processes occur at different
287 timescales with the calcium propagation following the action potential. In the second example, we
288 compare the neuron response to two classical plasticity-inducing rTMS protocols: a 10 Hz rTMS
289 protocol and a TBS protocol. We show that calcium induction varies between the protocols and
290 that TBS results in a build-up of calcium levels. In the final example, we examine how the neuron
291 response to TMS depends on the orientation of the electric field. For this, we applied a spatially
292 uniform electric field at two orientations and show that the initiation site of the action potential
293 changes as a result as well as the activation threshold. The site of the action potential initiation
294 and the overall field intensity to initiate action potentials are in line with a recent study using
295 morphologically accurate neuron models (Aberra et al., 2020). The differences in action potential
296 initiation also resulted in slight delays in calcium accumulation in the soma. The exact timing
297 between pre- and postsynaptic activity has a major impact on synaptic plasticity (Brzosko et al.,
298 2019; Feldman, 2012; Lenz et al., 2015). It is thus conceivable that in the context of rTMS these
299 effects may add up over the course of several hundred pulses. However, further work is required
300 to test this prediction. Although these examples demonstrate some of the capabilities of this

301 toolbox, its use is not limited to the examples discussed and researchers have the freedom to
302 apply it to questions of their own interest.

303 While our toolbox significantly advances the field of TMS multi-scale modeling, several further
304 developments can be envisioned. Currently, our pipeline simulates the neuron at rest without
305 spontaneous network-driven or intrinsic activity. Additionally, neurons vary drastically in terms of
306 their biophysics depending on their type. Here, we focused on implementing the biophysics for
307 CA1 pyramidal neurons. Currently, the calcium simulations do not take into account internal
308 calcium stores from the endoplasmic reticulum (ER) and only simulate the calcium release from
309 voltage-dependent calcium channels (VDCCs), sodium-calcium exchangers (NCX), and plasma
310 membrane Ca^{2+} ATPase (PMCA). Future versions of our pipeline can incorporate intrinsic
311 synaptic activity, provide biophysics for more diverse neurons such as cortical neurons, and allow
312 users to define their own biophysics. Further developments can also be implemented to
313 incorporate modeling of the calcium in the ER. Additionally, our toolbox can be expanded to
314 include other non-invasive or invasive brain stimulation techniques such as transcranial
315 Alternating Current Stimulation (tACS), transcranial Direct Current Stimulation (tDCS), or Deep
316 Brain Stimulation (DBS) in the future. Another promising avenue for future developments is
317 modeling the effects of brain stimulation on a network of neurons. One way to achieve this is by
318 combining *NeMo-TMS* with other neuron network modeling frameworks such as the human
319 neocortical neurosolver (Neymotin et al., 2020).

320 In conclusion, *NeMo-TMS* is a unique tool that provides an easy-to-use platform for multi-scale
321 TMS modeling and enables researchers to incorporate sophisticated modeling approaches into
322 their research.

323 Materials and Methods

324 Neuron Reconstructions

325 Ethics Statement

326 Animals were maintained in a 12 h light/dark cycle with food and water available ad libitum. Every
327 effort was made to minimize distress and pain in animals. All experimental procedures were
328 performed according to German animal welfare legislation and approved by the local animal
329 welfare officer of Freiburg University.

330 Preparation of Organotypic Tissue Cultures

331 Enthorhino-hippocampal tissue cultures were prepared at postnatal days 4–5 from Wistar rats of
332 either sex as described previously (Lenz et al., 2016).

333 Neuronal Filling and Imaging

334 Single CA1 pyramidal neurons were identified under a microscope (LN Scope; Luigs and
335 Neumann) equipped with a 40X objective (NA 0.8; Olympus) and a Dodt-Gradient-Contrast
336 system. The bath solution contained 126 mM NaCl, 2.5 mM KCl, 26 mM NaHCO₃, 1.25 mM
337 NaH₂PO₄, 2 mM CaCl₂, 2 mM MgCl₂ and 10 mM glucose and was saturated with 95 % O₂ / 5
338 % CO₂. The cells were patched using 3-6 MΩ patch pipettes pulled from borosilicate glass and
339 were filled with an intracellular solution containing 126 mM K-gluconate, 4 mM KCl, 4 mM ATP-
340 Mg, 0.3 mM GTP-Na₂, 10 mM PO-Creatine, 10 mM HEPES, and 0.1% Biocytin (pH = 7.25 with
341 KOH, 290 mOsm with sucrose). The cells were held at -60 mV and the whole-cell configuration
342 was maintained for at least 10 min to ensure complete filling of the cells, even at the distal
343 dendrites. Patch pipettes were retracted carefully to allow for the cell membrane to close again
344 and the tissue cultures were fixed in a solution of 4 % PFA (w/v) and 4 % (w/v) sucrose in 0.01 M
345 PBS for 1 h. The cultures then were incubated for 1 h with 10 % (v/v) NGS and 0.5 % (v/v) Triton
346 X-100 in 0.01 M PBS and subsequently for 4 h with Alexa-488 conjugated Streptavidin (1:1000;

347 in 0.01 M PBS with 10 % NGS and 0.1 % Triton X-100) and DAPI was used to visualize
348 cytoarchitecture (1:5000; in 0.01 M PBS for 15 min). Tissue cultures were washed with 0.01 M
349 PBS and mounted onto glass slides for visualization with an anti-fading mounting medium.
350 Confocal images were acquired using a Nikon Eclipse C1si laser scanning microscope with a 40x
351 (NA 1.30; Nikon) objective. Images were acquired as multiple Z-stacks with a step size of 0.5 μm
352 (voxel size x and y = 0.3784 μm) in a tile-scan configuration and stitched together using the FIJI
353 software (Schindelin et al., 2012).

354 **Neuronal Reconstructions**

355 CA1 pyramidal cells were reconstructed using Neurolucida 360 (ver. 2019.1.3; MBF Bioscience).
356 Confocal images were imported in the Neurolucida 360 mainframe as an image stack. Somata
357 were reconstructed using manual contour tracing, with the contour tracing set to 'Cell Body'.
358 Dendrites were subsequently reconstructed in the Neurolucida 3D environment under the 'User-
359 guided' tracing option using the 'Directional Kernels' method. These reconstructed cells have both
360 detailed axonal and dendritic branching. The raw reconstructed morphological data was then
361 imported into the TREES toolbox for additional processing. (Cuntz et al., 2010) To correct for
362 diameter overestimation due to fluorescence halo, a quadratic diameter taper algorithm (Cuntz et
363 al., 2007) was applied across the dendritic arbor, with separate consideration for the basal
364 dendrites, apical tuft, apical oblique projections, and primary apical dendrite. Parameters for the
365 diameter tapering algorithm were adapted from (Lenz et al., 2015), who estimated them based on
366 data from (Golding et al., 2005). Internodal segments of the axon were assigned a fixed diameter
367 of 1 μm for and 0.8 μm for nodes of Ranvier. As abrupt changes in the direction of a neurite cause
368 anomalous local electric fields, a smoothing algorithm was also applied to the neurites. Using
369 ProMesh4 (Goethe-Universität, Germany), we applied a Laplacian smoothing to all neurites
370 (alpha = 0.25, 20 iterations) as well as manually removing any remaining anomalous sharp
371 direction changes. These ten neuron reconstructions are shared with the toolbox as samples.

372 **Neuron Model Generation**

373 We integrated a series of software tools into an automated pipeline for generating NEURON
374 compartmental models (Hines and Carnevale, 1997) for modeling the effect of TMS on single
375 brain cells. This pipeline is capable of generating models from commonly used file formats, i.e.,
376 SWC and Neurolucida ASCII files. Note that it is up to the user to ensure the input morphologies
377 are correct, high-quality and without artifacts, otherwise the model generation may fail in the
378 process or the simulation results would not be reliable. We tested the pipeline on the ten
379 reconstructions of rat CA1 pyramidal cells provided here, as well as other morphology files.

380 Since the axonal reconstructions do not include myelination, this pipeline allows the user to
381 myelinate the axon automatically, or to leave the neuron unmyelinated. For this, we implemented
382 a modified variant of the myelination algorithm used in (Aberra et al., 2018). Nodes of Ranvier
383 were placed at all bifurcation points in the axon arbor, as well as regularly at 100 μ m intervals. All
384 internodal segments except terminal segments shorter than 20 μ m were myelinated. As most
385 publicly available reconstructions of CA1 pyramidal neurons do not have an axon, the pipeline
386 also features a provision for potential automatic addition of a straight artificial axon; in this case,
387 the axon is a straight line emanating from the basal region of the soma with the first 10um a hillock
388 segment, the next 15 μ m the axon initial segment, followed by six 100 μ m long myelinated
389 internodal segments with regularly spaced 1 μ m long nodes of Ranvier.

390 **Biophysics**

391 The NEURON compartmental models were generated using the T2N extension of the TREES
392 Toolbox (Beining et al., 2017), which translates the TREES Toolbox morphological data into
393 NEURON's HOC format and endows the model with biophysics in the MATLAB environment
394 (Mathworks, Inc., Natick, MA, USA). Our models implement a generalized version of the Jarsky
395 model of the CA1 pyramidal cell (Jarsky et al., 2005). This includes the passive properties: $C_m =$
396 0.75 μ F/cm 2 , $R_a = 200 \Omega\text{-cm}$, $Rm = 40000 \Omega/\text{cm}^2$. Additionally, axon myelinated segments had a

397 significantly reduced C_m of 0.01 $\mu\text{F}/\text{cm}^2$, while axon nodes had R_m of 50 Ω/cm^2 . The models
398 included three voltage-gated conductances: a Na^+ conductance, a delayed rectifier K^+
399 conductance, and two A-type K^+ conductances. The values of these conductances are assigned
400 according to distance from the soma as described in (Jarsky et al., 2005). While the Na^+ and K_{DR}^+
401 conductances are fixed at 0.04 S/cm^2 , the value of the K_A^+ conductances steadily increases from
402 0.05 S/cm^2 at the soma to 0.3 S/cm^2 at 500 μm from the soma. There is a crossover point between
403 the two different K_A^+ conductances at 100 μm from the soma. Furthermore, the extracellular
404 mechanism (Hines and Carnevale, 1997), which allows for injection of extracellular electric
405 potentials was inserted into the models by T2N simultaneously with the other biophysics.
406 Following the generation of the model files by T2N, other necessary files for the next steps are
407 also generated and automatically placed in the correct location.

408 FEM Modeling of the TMS induced Electric field

409 To study the behavior of neurons under non-invasive brain stimulation, the first step is to calculate
410 the electric field generated at the macro- and mesoscopic scale. This includes computing the
411 spatial distribution and time course of the TMS electric field. Since the stimulation frequency is
412 relatively low, we can use the quasi-static approximation to separate the spatial and temporal
413 components of the electric field (Plonsey, 1969, p. 203; Plonsey and Heppner, 1967; Windhoff et
414 al., 2013). For the spatial component, Maxwell's equations need to be solved for the model of
415 interest. Exact analytical solutions can be determined for simple geometries such as concentric
416 spheres with homogenous electromagnetic properties (Eaton, 1992). However, for more complex
417 geometries such as the human brain, numerical simulations are used to calculate the electric field
418 distribution. Several methods exist to perform these simulations such as the boundary element
419 method (Nummenmaa et al., 2013; Salinas et al., 2009) and the finite element method (Miranda
420 et al., 2003; Wagner et al., 2004; Weiping Wang and Eisenberg, 1994). Here we calculate TMS-
421 induced electric fields using FEM models implemented in the open-source software SimNIBS v3.1

422 (Saturnino et al., 2019). SimNIBS is a versatile simulation platform that can simulate TMS electric
423 fields for various geometries and a variety of TMS coils.

424 Under the quasi-static assumption, the time course of the TMS electric field is the same as that
425 of the TMS stimulation output (rate of change (dl/dt) of the coil current). Therefore, after
426 determining the spatial distribution of the electric field, we can find the electric field at any time
427 point by scaling the spatial distribution to the TMS waveform. For further details about the TMS
428 waveform, refer to the 'Stimulation Waveform Generation' section below.

429 **Electric field Coupling to Neuron Models**

430 After calculating the macroscopic TMS electric fields induced in the FEM model of interest, these
431 external fields need to be coupled with the neuron models. In this pipeline, this is performed
432 following: 1) Coordinates of the neuron compartments from the neuron model in the NEURON
433 environment are exported to a text file. 2) The FEM model including the electric fields and the
434 neuron coordinate files are imported to MATLAB. 3) The user enters the desired location and
435 depth (relative to the grey matter surface) of the neuron. 4) Based on the values provided in step
436 3, the neuron is translated to the desired location. Additionally, the neuron is automatically
437 orientated normal to the grey matter surface as this orientation represents the columnar
438 cytostructure of major neurons (Amunts and Zilles, 2015; DeFelipe et al., 1990; Mountcastle,
439 1997). However, different preferred orientations can be set if desired. The new neuron
440 compartmental coordinates are calculated based on this coordinate transformation. 5) The
441 electric field at the location of neuronal compartments is interpolated from the macroscopic TMS
442 electric fields calculated in the FEM model. 6) In this step, the user can scale the electric field
443 strength if needed. Since the electric field strength scales linearly with the stimulation intensity,
444 one can easily scale the electric fields instead of rerunning the FEM simulations at different
445 intensities. This allows expediting the simulations e.g. for simulating multiple TMS intensities.
446 Note that this is only true for the stimulus intensity and not applicable if the coil location/orientation,

447 or the FEM model is changed. 7) The quasipotentials are computed over all compartments as
448 described in (Wang et al., 2018). This allows us to convert all necessary information needed to
449 incorporate the external TMS-induced electric fields into a single scalar input at each coordinate
450 of the neuron model. 8) The quasipotentials are written in a file that will be used later in the pipeline
451 for the NEURON simulations. Additionally, the neuron (transformed to the desired location) and
452 the FEM model are exported as mesh files for visualization.

453 To simplify the multi-scale modeling process, we have also enabled an alternative method to skip
454 the FEM electric field modeling and the corresponding coupling step. In this case, the electric field
455 is assumed to be spatially uniform over the extent of the neuron. This allows the user to specify
456 the TMS-induced electric field everywhere using a single scalar for the amplitude and a vector for
457 orientation. Typically, since neurons are considerably smaller than the TMS coil and the head
458 model, the electric field distribution confined to a single neuron region is mostly uniform.
459 Therefore, the uniform electric field approximation provides sufficiently accurate results in the
460 majority of cases. However, note that the uniform electric field approximation does not always
461 hold. This occurs mainly in the following cases: 1) The neuron crosses a tissue boundary e.g.
462 between Grey matter and white matter (Opitz et al., 2011). Due to the difference in electrical
463 conductivities between tissues, a difference in the electric fields can arise between tissues. 2) The
464 neuron is spatially extended (e.g. neurons with long axonal projections) so that the homogeneity
465 of the electric field over small scales does not apply anymore. 3) The tissue surrounding the
466 neuron is highly inhomogeneous. Although this is a rare scenario since for the purpose of
467 estimating electric fields under non-invasive brain stimulation usually the tissues are assumed to
468 be homogenous in FEM models.

469 In the case of a uniform electric field, the quasipotentials equation can be simplified to the
470 following expression:

471
$$\psi = -\int \vec{E} \cdot d\vec{s} = -\vec{E} \cdot \vec{s} = -(E_x x + E_y y + E_z z) \quad (1)$$

472 Where \vec{E} is the electric field, \vec{s} is the displacement vector, E_x , E_y , and E_z stand for the Cartesian
473 components of the electric field, and x , y , and z denote the Cartesian coordinates of each
474 compartment. Due to the simplicity of this equation, this step is computed in the NEURON
475 environment.

476 Regardless of whether the electric field is uniform or based on the FEM model, the quasipotentials
477 are calculated at each neuron segments (as exported from the NEURON model) and applied to
478 the neuron simulations by using the extracellular mechanism available in the NEURON
479 environment (Aberra et al., 2018; Hines and Carnevale, 1997). This process accounts for the
480 exogenous fields induced by TMS.

481 **Stimulation Waveform Generation**

482 As mentioned above, the time course of the TMS electric field follows the first temporal derivative
483 of the stimulation waveform. It is thus very important to accurately represent the TMS waveform
484 to investigate the temporal interaction of the external electric fields with neurons. For repetitive
485 TMS (rTMS) a TMS pulse train is generated based on the parameters of the rTMS protocol. The
486 user has the option to choose the TMS pulse type, inter-pulse interval, and the number of pulses.
487 We included TMS pulse types commonly used in commercial TMS machines i.e. monophasic,
488 and biphasic pulses (Kammer et al., 2001). For the monophasic pulse, we created the waveform
489 based on the equations outlined in (Roth and Basser, 1990). The biphasic pulse was created by
490 using the electrophysiological recording of the TMS pulse induced by MagPro X100 TMS machine
491 (MagVenture, Lucernemarken, Denmark). Based on the specified parameters, the pulses are
492 concatenated to generate a pulse train and then written in a file that is used later in the neuron
493 simulation. Note that advanced users can create custom- waveforms e.g. TBS and cTMS
494 (Peterchev et al., 2010) as long as they follow the same format for existing waveforms.

495 **Neuron Model Simulations**

496 In this step, the simulation is run based on the generated NEURON model and the files
497 corresponding to the TMS waveform. During this stage, the user is prompted to choose to use
498 the quasipotentials file calculated previously or to proceed with a uniform electric field. In the
499 latter case, the user should enter the intensity of the electric field and its orientation, either in
500 spherical or Cartesian coordinates. Then, after running the simulation, the output files are
501 automatically created. This includes voltage traces of all neuron segments over time and the
502 coordinates of the segments and their connections. If the user intends to continue the pipeline
503 with modeling calcium dynamics, a MATLAB script converts the NEURON results into file
504 formats that are compatible with the next step.

505 **Calcium Simulations**


506 All necessary components were implemented in the simulation toolbox NeuroBox (Breit et al.,
507 2016). NeuroBox is a simulation toolbox that combines models of electrical and biochemical
508 signaling on one- to three-dimensional computational domains. NeuroBox allows the definition of
509 model equations, typically formulated as ordinary and partial differential equations, of the cellular
510 computational domain and specification of the mathematical discretization methods and solvers
511 (Reiter et al., 2013; Vogel et al., 2013). Built with VRL-Studio (Stepniewski et al., 2019), NeuroBox
512 offers user interface workflow canvases to control the simulation workflow and all biological and
513 numerical parameters. The user can specify simulation parameters for the end time, refinement
514 level, and load the geometry and specify an output location.

515 **Calcium Model Equations**

516 Calcium mobility in the cytosol is described by the diffusion equation

517
$$\frac{\partial u}{\partial t} = \nabla \cdot (D \nabla u), \quad (2)$$

518 where $u(x, t)$ is the vector quantity of calcium concentration in the cytosol $[Ca^{2+}]$ and *calbindin-*
519 *D28k*. The diffusion constants D are defined using data from (4). The interaction between cytosolic
520 calcium and calbindin-D28k are described by

522 The rate constants k_b^+ and k_b^- are defined in (Breit et al., 2018). The calcium dynamics are
523 modeled by a system of diffusion-reaction equations on a one-dimensional tree geometry with
524 three spatial coordinates, the equations are as follows:

525 $\frac{\partial [Ca^{2+}]}{\partial t} = \nabla \cdot (D \nabla [Ca^{2+}]) + k_b^- (b^{tot} - b) - k_b^+ b [Ca^{2+}]$ (4)

526 $\frac{\partial [CalB]}{\partial t} = \nabla \cdot (D \nabla [CalB]) + k_b^- (b^{tot} - b) - k_b^+ b [CalB]$ (5)

527 where the concentration of the CalB-Ca²⁺ compound is expressed by the difference of the total
528 concentration of CalB present in the cytosol (b^{tot}) and free CalB, the former of which is assumed
529 to be constant in space and time (this amounts to the assumption that free calcium and CalB have
530 the same diffusive properties). The parameters used in this study are taken from (Breit et al.,
531 2018).

532 In order to study the influence of the intracellular organization on Ca²⁺ signals, we include Ca²⁺
533 exchange mechanisms on the plasma membrane (PM). For the plasma membrane, we consider
534 plasma membrane Ca²⁺ -ATPase pumps (PMCA), Na⁺/Ca²⁺ exchangers (NCX), calcium release
535 due to voltage-dependent calcium channels (vdcc), and a leakage term. This amounts to the flux
536 equations (number of ions per membrane area and time)

537 $j_{pm} = -j_{PMCA} - j_{NCX} + j_l + j_{vdcc}$ (6)

538 With the Hill equations

539 $j_{PMCA} = \rho_{PMCA} \cdot \frac{I_{PMCA} c_{cyt}^2}{K_{PMCA}^2 + c_{cyt}^2}$ (7)

540 $j_{NCX} = \rho_{NCX} \cdot \frac{I_{NCX} c_{cyt}}{K_{NCX} + c_{cyt}}$ (8)

541 The flux equations for the voltage-dependent calcium channels are given by

542
$$j_{vdcc} = G(V, t)F(V, \Delta[Ca^{2+}]) \quad (9)$$

543 where G is the gating function and F is the flux function (Borg-Graham, 1999). Both depend on
544 the voltage at the channel at a particular time t . For F , $\Delta[Ca^{2+}]$ is the difference in the internal and
545 external ion concentration

546
$$\Delta[Ca^{2+}] = [Ca^{2+}]_i - [Ca^{2+}]_o \quad (10)$$

547 And

548
$$f(V, \Delta[Ca^{2+}]) = \bar{p}_{[Ca^{2+}]} \frac{V_z^2 F^2}{RT} \cdot \frac{[Ca^{2+}]_i - [Ca^{2+}]_o \exp(-zFV/RT)}{1 - \exp(-zFV/RT)} \quad (11)$$

549 Where R is the gas constant, F is Faraday's constant, T is in Kelvin, $\bar{p}_{[Ca^{2+}]}$ is the permeability of
550 the calcium channel, and z is the valence of the ion (Borg-Graham, 1999).

551 The gating function g is described by a finite product

552
$$g(V, t) = \sum x_i^n(V, t) \quad (12)$$

553 Where x_i is the open probability of the gating particle, in this case, it is only calcium, and n is the
554 number of particles. The open probability is described by the ODE

555
$$\frac{dx}{dt} = \frac{x_\infty(V) - x}{\tau_x(V)} \quad (13)$$

556 Where x_∞ is the steady-state value of x , and τ_x is the time constant for the particular particle x ,
557 formulas are given in (Borg-Graham, 1999).

558 Numerical Methods for Calcium Simulations

559 For numerical simulations, the equations are discretized in space using a finite volumes method.
560 Current densities, across the plasma membranes, can be incorporated into the reaction-diffusion
561 process very naturally and easily this way. Time discretization is realized using a backward Euler
562 scheme, i.e., for each point in time t , the term $\frac{\partial u}{\partial t}$ is approximated by

563
$$\frac{\partial u}{\partial t} \approx \frac{u(t) - u(t-\tau)}{\tau} \quad (14)$$

564 Where τ is the time step size. For the results we present here, the emerging linearized problems
565 were solved using a Bi-CGSTAB (Breit et al., 2018) linear solver preconditioned by an incomplete
566 LU decomposition.

567 [Visualization](#)

568 Additionally, we have provided a sample script that can generate a video visualizing the 3D
569 distribution of the membrane potentials and the calcium concentrations based on the simulated
570 data from the previous steps. In this procedure, the snapshot of voltage/calcium spatial
571 distribution at each time step is displayed in Gmsh (Geuzaine and Remacle, 2009) and then
572 captured as a video frame. In the end, by concatenating these frames together, a video is created.
573 This script is capable of visualizing the voltage traces and calcium concentrations separately or
574 next to each other in a single video file for easier comparison. Alternatively, users can visualize
575 the data with Paraview (Ahrens et al., 2005).

576 [Acknowledgments](#)

577 We thank Swathi Anil, Dr. Zsolt Turi, and Dr. Harry Tran for the helpful discussions and testing of
578 the toolbox. This work was supported by the National Institutes of Health (R01MH118930 to GQ
579 and AO and R01NS109498 to AV and AO and RF1MH117428 to AO), Federal Ministry of
580 Education and Research Germany (BMBF, 01GQ1804A to AV; BMBF, 031L0229 to PJ), and the
581 von Behring Röntgen Foundation (to PJ).

582 [Competing interests](#)

583 No competing interests declared.

584 [References](#)

585 Aberra AS, Peterchev AV, Grill WM. 2018. Biophysically realistic neuron models for simulation of cortical
586 stimulation. *J Neural Eng* **15**:066023. doi:10.1088/1741-2552/aadbb1

587 Aberra AS, Wang B, Grill WM, Peterchev AV. 2020. Simulation of transcranial magnetic stimulation in
588 head model with morphologically-realistic cortical neurons. *Brain Stimulation* **13**:175–189.
589 doi:10.1016/j.brs.2019.10.002

590 Ahrens J, Geveci B, Law C. 2005. 36 - ParaView: An End-User Tool for Large-Data Visualization In: Hansen
591 CD, Johnson CR, editors. *Visualization Handbook*. Burlington: Butterworth-Heinemann. pp. 717–
592 731. doi:10.1016/B978-012387582-2/50038-1

593 Alekseichuk I, Mantell K, Shirinpour S, Opitz A. 2019. Comparative modeling of transcranial magnetic and
594 electric stimulation in mouse, monkey, and human. *NeuroImage* **194**:136–148.
595 doi:10.1016/j.neuroimage.2019.03.044

596 Alekseichuk I, Shirinpour S, Opitz A. 2020. Finite element method (FEM) models for translational
597 research in non-invasive brain stimulation. doi:10.5281/zenodo.3857041

598 Allen EA, Pasley BN, Duong T, Freeman RD. 2007. Transcranial Magnetic Stimulation Elicits Coupled
599 Neural and Hemodynamic Consequences. *Science* **317**:1918–1921. doi:10.1126/science.1146426

600 Amunts K, Zilles K. 2015. Architectonic Mapping of the Human Brain beyond Brodmann. *Neuron*
601 **88**:1086–1107. doi:10.1016/j.neuron.2015.12.001

602 Barker AT, Jalinous R, Freeston IL. 1985. NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR
603 CORTEX. *The Lancet*, Originally published as Volume 1, Issue 8437 **325**:1106–1107.
604 doi:10.1016/S0140-6736(85)92413-4

605 Basser PJ, Roth BJ. 1991. Stimulation of a myelinated nerve axon by electromagnetic induction. *Med Biol
606 Eng Comput* **29**:261–268. doi:10.1007/BF02446708

607 Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. 2017. T2N as a new tool for robust
608 electrophysiological modeling demonstrated for mature and adult-born dentate granule cells.
609 *eLife* **6**:e26517. doi:10.7554/eLife.26517

610 Borg-Graham LJ. 1999. Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models
611 In: Ulinski PS, Jones EG, Peters A, editors. *Models of Cortical Circuits, Cerebral Cortex*. Boston,
612 MA: Springer US. pp. 19–138. doi:10.1007/978-1-4615-4903-1_2

613 Breit M, Kessler M, Stepniewski M, Vlachos A, Queisser G. 2018. Spine-to-Dendrite Calcium Modeling
614 Discloses Relevance for Precise Positioning of Ryanodine Receptor-Containing Spine
615 Endoplasmic Reticulum. *Scientific Reports* **8**:15624. doi:10.1038/s41598-018-33343-9

616 Breit M, Stepniewski M, Grein S, Gottmann P, Reinhardt L, Queisser G. 2016. Anatomically Detailed and
617 Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox. *Front Neuroanat*
618 **10**. doi:10.3389/fnana.2016.00008

619 Brzosko Z, Mierau SB, Paulsen O. 2019. Neuromodulation of Spike-Timing-Dependent Plasticity: Past,
620 Present, and Future. *Neuron* **103**:563–581. doi:10.1016/j.neuron.2019.05.041

621 Cuntz H, Borst A, Segev I. 2007. Optimization principles of dendritic structure. *Theoretical Biology and
622 Medical Modelling* **4**:21. doi:10.1186/1742-4682-4-21

623 Cuntz H, Forstner F, Borst A, Häusser M. 2010. One Rule to Grow Them All: A General Theory of
624 Neuronal Branching and Its Practical Application. *PLOS Computational Biology* **6**:e1000877.
625 doi:10.1371/journal.pcbi.1000877

626 DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG. 1990. A microcolumnar structure of monkey
627 cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons.
628 *Neuroscience* **37**:655–673. doi:10.1016/0306-4522(90)90097-N

629 Di Lazzaro V, Rothwell J, Capogna M. 2018. Noninvasive Stimulation of the Human Brain: Activation of
630 Multiple Cortical Circuits. *Neuroscientist* **24**:246–260. doi:10.1177/1073858417717660

631 Eaton H. 1992. Electric field induced in a spherical volume conductor from arbitrary coils: application to
632 magnetic stimulation and MEG. *Med Biol Eng Comput* **30**:433–440. doi:10.1007/BF02446182

633 Eilers J, Callewaert G, Armstrong C, Konnerth A. 1995. Calcium signaling in a narrow somatic
634 submembrane shell during synaptic activity in cerebellar Purkinje neurons. *PNAS* **92**:10272–
635 10276. doi:10.1073/pnas.92.22.10272

636 Feldman DE. 2012. The Spike-Timing Dependence of Plasticity. *Neuron* **75**:556–571.
637 doi:10.1016/j.neuron.2012.08.001

638 Geuzaine C, Remacle J-F. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
639 processing facilities. *International Journal for Numerical Methods in Engineering* **79**:1309–1331.
640 doi:10.1002/nme.2579

641 Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. 2005. Factors mediating powerful voltage
642 attenuation along CA1 pyramidal neuron dendrites. *The Journal of Physiology* **568**:69–82.
643 doi:10.1113/jphysiol.2005.086793

644 Goodwin BD, Butson CR. 2015. Subject-Specific Multiscale Modeling to Investigate Effects of
645 Transcranial Magnetic Stimulation. *Neuromodulation: Technology at the Neural Interface*
646 **18**:694–704. doi:10.1111/her.12296

647 Hallett M. 2007. Transcranial Magnetic Stimulation: A Primer. *Neuron* **55**:187–199.
648 doi:10.1016/j.neuron.2007.06.026

649 Hannah R, Rothwell JC. 2017. Pulse Duration as Well as Current Direction Determines the Specificity of
650 Transcranial Magnetic Stimulation of Motor Cortex during Contraction. *Brain Stimulation*
651 **10**:106–115. doi:10.1016/j.brs.2016.09.008

652 Hines ML, Carnevale NT. 1997. The NEURON Simulation Environment. *Neural Computation* **9**:1179–
653 1209. doi:10.1162/neco.1997.9.6.1179

654 Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. 2005. Theta Burst Stimulation of the Human
655 Motor Cortex. *Neuron* **45**:201–206. doi:10.1016/j.neuron.2004.12.033

656 Jarsky T, Roxin A, Kath WL, Spruston N. 2005. Conditional dendritic spike propagation following distal
657 synaptic activation of hippocampal CA1 pyramidal neurons. *Nature Neuroscience* **8**:1667–1676.
658 doi:10.1038/nn1599

659 Kamitani Y, Bhalodia VM, Kubota Y, Shimojo S. 2001. A model of magnetic stimulation of neocortical
660 neurons. *Neurocomputing, Computational Neuroscience: Trends in Research* **2001** **38–40**:697–
661 703. doi:10.1016/S0925-2312(01)00447-7

662 Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H. 2001. Motor thresholds in humans: a
663 transcranial magnetic stimulation study comparing different pulse waveforms, current
664 directions and stimulator types. *Clinical Neurophysiology* **112**:250–258. doi:10.1016/S1388-
665 2457(00)00513-7

666 Laakso I, Hirata A, Ugawa Y. 2013. Effects of coil orientation on the electric field induced by TMS over
667 the hand motor area. *Phys Med Biol* **59**:203–218. doi:10.1088/0031-9155/59/1/203

668 Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M,
669 de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK,
670 Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini
671 PM, Rothwell JC, Schönenfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann
672 U, Paulus W, Garcia-Larrea L. 2014. Evidence-based guidelines on the therapeutic use of
673 repetitive transcranial magnetic stimulation (rTMS). *Clinical Neurophysiology* **125**:2150–2206.
674 doi:10.1016/j.clinph.2014.05.021

675 Lenz M, Galanis C, Müller-Dahlhaus F, Opitz A, Wierenga CJ, Szabó G, Ziemann U, Deller T, Funke K,
676 Vlachos A. 2016. Repetitive magnetic stimulation induces plasticity of inhibitory synapses.
677 *Nature Communications* **7**:10020. doi:10.1038/ncomms10020

678 Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F,
679 Jedlicka P, Vlachos A. 2015. Repetitive magnetic stimulation induces plasticity of excitatory

680 postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. *Brain Struct Funct* **220**:3323–3337. doi:10.1007/s00429-014-0859-9

681 Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A. 2017. Lifting the veil on the
682 dynamics of neuronal activities evoked by transcranial magnetic stimulation. *eLife* **6**:e30552.
683 doi:10.7554/eLife.30552

684 Limbäck-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M. 2004. Nuclear Calcium/Calmodulin
685 Regulates Memory Consolidation. *J Neurosci* **24**:10858–10867. doi:10.1523/JNEUROSCI.1022-
686 04.2004

687 Miranda PC, Hallett M, Basser PJ. 2003. The electric field induced in the brain by magnetic stimulation: a
688 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. *IEEE
689 Transactions on Biomedical Engineering* **50**:1074–1085. doi:10.1109/TBME.2003.816079

690 Mountcastle VB. 1997. The columnar organization of the neocortex. *Brain* **120**:701–722.
691 doi:10.1093/brain/120.4.701

692 Mueller JK, Grigsby EM, Prevosto V, Petraglia FW, Rao H, Deng Z-D, Peterchev AV, Sommer MA, Egner T,
693 Platt ML, Grill WM. 2014. Simultaneous transcranial magnetic stimulation and single-neuron
694 recording in alert non-human primates. *Nature Neuroscience* **17**:1130–1136.
695 doi:10.1038/nn.3751

696 Nagarajan SS, Durand DM. 1996. A generalized cable equation for magnetic stimulation of axons. *IEEE
697 Transactions on Biomedical Engineering* **43**:304–312. doi:10.1109/10.486288

698 Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML,
699 Hämäläinen M, Jones SR. 2020. Human Neocortical Neurosolver (HNN), a new software tool for
700 interpreting the cellular and network origin of human MEG/EEG data. *eLife* **9**:e51214.
701 doi:10.7554/eLife.51214

702 Nummenmaa A, Stenroos M, Ilmoniemi RJ, Okada YC, Hämäläinen MS, Raij T. 2013. Comparison of
703 spherical and realistically shaped boundary element head models for transcranial magnetic
704 stimulation navigation. *Clinical Neurophysiology* **124**:1995–2007.
705 doi:10.1016/j.clinph.2013.04.019

706 Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. 2013. Physiological observations validate
707 finite element models for estimating subject-specific electric field distributions induced by
708 transcranial magnetic stimulation of the human motor cortex. *NeuroImage* **81**:253–264.
709 doi:10.1016/j.neuroimage.2013.04.067

710 Opitz A, Paulus W, Will S, Antunes A, Thielscher A. 2015. Determinants of the electric field during
711 transcranial direct current stimulation. *NeuroImage* **109**:140–150.
712 doi:10.1016/j.neuroimage.2015.01.033

713 Opitz A, Windhoff M, Heidemann RM, Turner R, Thielscher A. 2011. How the brain tissue shapes the
714 electric field induced by transcranial magnetic stimulation. *NeuroImage* **58**:849–859.
715 doi:10.1016/j.neuroimage.2011.06.069

716 Pashut T, Wolfus S, Friedman A, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A. 2011. Mechanisms of
717 Magnetic Stimulation of Central Nervous System Neurons. *PLOS Computational Biology*
718 **7**:e1002022. doi:10.1371/journal.pcbi.1002022

719 Peterchev AV, Murphy DL, Lisanby SH. 2010. Repetitive transcranial magnetic stimulator with
720 controllable pulse parameters (cTMS)2010 Annual International Conference of the IEEE
721 Engineering in Medicine and Biology. Presented at the 2010 Annual International Conference of
722 the IEEE Engineering in Medicine and Biology. pp. 2922–2926. doi:10.1109/IEMBS.2010.5626287

723 Plonsey R. 1969. Bioelectric Phenomena. New York, NY: McGraw-Hill.

724 Plonsey R, Heppner DB. 1967. Considerations of quasi-stationarity in electrophysiological systems.
725 *Bulletin of Mathematical Biophysics* **29**:657–664. doi:10.1007/BF02476917

726

727 Reiter S, Vogel A, Heppner I, Rupp M, Wittum G. 2013. A massively parallel geometric multigrid solver on
728 hierarchically distributed grids. *Comput Visual Sci* **16**:151–164. doi:10.1007/s00791-014-0231-x

729 Romero MC, Davare M, Armendariz M, Janssen P. 2019. Neural effects of transcranial magnetic
730 stimulation at the single-cell level. *Nature Communications* **10**:2642. doi:10.1038/s41467-019-
731 10638-7

732 Roth BJ, Basser PJ. 1990. A model of the stimulation of a nerve fiber by electromagnetic induction. *IEEE*
733 *Transactions on Biomedical Engineering* **37**:588–597. doi:10.1109/10.55662

734 Salinas FS, Lancaster JL, Fox PT. 2009. 3D modeling of the total electric field induced by transcranial
735 magnetic stimulation using the boundary element method. *Phys Med Biol* **54**:3631–3647.
736 doi:10.1088/0031-9155/54/12/002

737 Salvador R, Silva S, Basser PJ, Miranda PC. 2011. Determining which mechanisms lead to activation in the
738 motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus
739 waveforms and sulcal geometry. *Clinical Neurophysiology* **122**:748–758.
740 doi:10.1016/j.clinph.2010.09.022

741 Saturnino GB, Madsen KH, Thielscher A. 2019. Electric field simulations for transcranial brain stimulation
742 using FEM: an efficient implementation and error analysis. *J Neural Eng* **16**:066032.
743 doi:10.1088/1741-2552/ab41ba

744 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld
745 S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji:
746 an open-source platform for biological-image analysis. *Nature Methods* **9**:676–682.
747 doi:10.1038/nmeth.2019

748 Seo H, Jun SC. 2019. Relation between the electric field and activation of cortical neurons in transcranial
749 electrical stimulation. *Brain Stimulation* **12**:275–289. doi:10.1016/j.brs.2018.11.004

750 Shoop RD, Chang KT, Ellisman MH, Berg DK. 2001. Synaptically Driven Calcium Transients via Nicotinic
751 Receptors on Somatic Spines. *J Neurosci* **21**:771–781. doi:10.1523/JNEUROSCI.21-03-00771.2001

752 Stepniewski M, Breit M, Hoffer M, Queisser G. 2019. NeuroBox: computational mathematics in
753 multiscale neuroscience. *Comput Visual Sci* **20**:111–124. doi:10.1007/s00791-019-00314-0

754 Tang A, Thickbroom G, Rodger J. 2015. Repetitive Transcranial Magnetic Stimulation of the Brain:
755 Mechanisms from Animal and Experimental Models. *The Neuroscientist*.
756 doi:10.1177/1073858415618897

757 Tokay T, Holl N, Kirschstein T, Zschorlich V, Köhling R. 2009. High-frequency magnetic stimulation
758 induces long-term potentiation in rat hippocampal slices. *Neuroscience Letters* **461**:150–154.
759 doi:10.1016/j.neulet.2009.06.032

760 Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. 2012. Repetitive Magnetic
761 Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse
762 Organotypic Hippocampal Slice Cultures. *J Neurosci* **32**:17514–17523.
763 doi:10.1523/JNEUROSCI.0409-12.2012

764 Vogel A, Reiter S, Rupp M, Nägel A, Wittum G. 2013. UG 4: A novel flexible software system for
765 simulating PDE based models on high performance computers. *Comput Visual Sci* **16**:165–179.
766 doi:10.1007/s00791-014-0232-9

767 Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A. 2004. Three-dimensional head model Simulation of
768 transcranial magnetic stimulation. *IEEE Transactions on Biomedical Engineering* **51**:1586–1598.
769 doi:10.1109/TBME.2004.827925

770 Wang B, Grill WM, Peterchev AV. 2018. Coupling Magnetically Induced Electric Fields to Neurons:
771 Longitudinal and Transverse Activation. *Biophysical Journal* **115**:95–107.
772 doi:10.1016/j.bpj.2018.06.004

773 Weiping Wang, Eisenberg SR. 1994. A three-dimensional finite element method for computing
774 magnetically induced currents in tissues. *IEEE Transactions on Magnetics* **30**:5015–5023.
775 doi:10.1109/20.334289
776 Windhoff M, Opitz A, Thielscher A. 2013. Electric field calculations in brain stimulation based on finite
777 elements: An optimized processing pipeline for the generation and usage of accurate individual
778 head models. *Human Brain Mapping* **34**:923–935. doi:10.1002/hbm.21479
779