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Abstract

The stochasticity of gene expression is manifested in the
fluctuations of mRNA and protein copy numbers within a cell
lineage over time. While data of this type can be obtained for
many generations, most mathematical models are unsuitable to
interpret such data since they assume non-growing cells. Here
we develop a theoretical approach that quantitatively links the
frequency content of lineage data to subcellular dynamics. We
elucidate how the position, height, and width of the peaks
in the power spectrum provide a distinctive fingerprint that
encodes a wealth of information about mechanisms controlling
transcription, translation, replication, degradation, bursting,
promoter switching, cell cycle duration, cell division, and gene
dosage compensation. Predictions are confirmed by analysis
of single-cell Escherichia coli data obtained using fluorescence
microscopy. Furthermore, by matching the experimental and
theoretical power spectra, we infer the temperature-dependent
gene expression parameters, without the need of measurements
relating fluorescence intensities to molecule numbers.

Introduction

In recent years, measurements of the size, division events,
and the content of single cells over extended time (many
generations) has been made possible due to advances in
microfluidic devices and live-cell imaging [1–3]. While the
existing data are typically for proteins, such measurements are
also in principle possible for mRNAs particularly with the advent
of new methods to visualize RNA dynamics in live cells using
bright and stable fluorescent RNAs [4]. The data in these
experiments are sampled at a rate that is much higher than the
frequency of cell division thus providing us with a means to
understand the temporal variation of gene expression as a cell
progresses through its cell cycle.

A common feature of these time traces is a noisy oscillatory
variation of the fluorescence (from fluorescently labelled
proteins) with time with a period that is roughly coincident with
the interval between two successive cell division events. A
sawtooth type of temporal pattern is expected due to a sharp
dip in the protein numbers at cell division stemming from the
partitioning of the contents of the mother cell amongst two
daughter cells. While these oscillations are regular in some cases,
very often they display a significant degree of noisiness. This

reflects the inherent stochasticity of transcription, translation, and
replication [5–7], noise introduced or modified by homeostatic
mechanisms such as those that compensate for the doubling of
gene copies at replication [8, 9], and non-genetic sources of
noise such as variability in the duration of the cell cycle from
one generation to the next [1, 10, 11] and variability in the
number of molecules allocated to a new born cell at cell division
[12, 13]. Hence it follows that a measure of the regularity
of an oscillation, such as the power spectrum of fluorescence
fluctuations calculated over a lineage, encapsulates within it a
large amount of information about the inherent chemical and
physical processes, both deterministic and stochastic, that shape
cellular dynamics.

An essential first step to link the properties of the power
spectrum to the underlying dynamic intracellular processes is
the derivation of a mathematical formula for the spectrum as a
function of gene expression rate parameters. For this purpose,
the standard stochastic models in the literature that are based
on the two-stage or three stage-models of gene expression [14]
are not useful because they do not provide a mathematical
description of processes along a cell lineage. These model
transcription and translation, and implicitly model dilution due to
cell division via an effective decay reaction; however simulated
time traces of the protein numbers based on these models using
the stochastic simulation algorithm will not display any noisy
oscillatory behaviour since the partitioning of molecules at cell
division is not taken into account. This also implies a lack
of description of important cell cycle features such as the high
variability in the interdivision time that is a characteristic of
experimental time traces. Recently models that surmount the
aforementioned limitations of the standard models have been
studied leading to mathematical formulae for the mean and
variance of mRNA/protein numbers [15–17] and also for the
steady-state distributions of these numbers [18, 19] calculated
across a cell lineage. These statistical measures provide different
information than the power spectrum; notably the former, unlike
the latter, neither provide an understanding of the correlations
between molecule numbers at two time points nor of the
frequency composition of fluctuations in molecule numbers [20].

In this article, for the first time, we calculate in closed-form
the power spectrum of fluctuations across a lineage in a stochastic
gene expression model with a high level of biological realism,
including a description of transcription, translation, degradation,
bursting, promoter switching, DNA replication, gene dosage
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compensation, and symmetric/asymmetric partitioning at cell
division. The analytical expressions give insight into how the
regularity and noisiness of the oscillations in the mRNA/protein
abundance across generations are related to the rate parameters
associated with the various subcellular processes at play; the
theory also makes various predictions that are then verified by
analysis of a publicly available single-cell data set of Escherichia
coli followed over 70 generations for three different growth
conditions; finally we show how matching the experimental and
theoretical power spectra enables an accurate inference of all the
rate parameters.

Results

Model specification

We consider a detailed model of stochastic gene expression
in an individual cell which includes promoter switching,
transcriptional or translational bursting, cell cycle duration
variability, gene replication, gene dosage compensation, and
symmetric or asymmetric cell division (see Fig. 1(a) for an
illustration). The specific meaning of all model parameters is
listed in Table 1 and the biological values of some key parameters
in different cell types are listed in table S1. The model is based
on a number of assumptions that are closely tied to experimental
data. The assumptions are as follows.

Meaning of model parameters

u gene switching rate from OFF to ON before replication

gu gene switching rate from OFF to ON after replication

v gene switching rate from ON to OFF

ρ0 burst production rate when the gene is OFF

ρ1 burst production rate when the gene is ON

B mean burst size of the gene product

d degradation rate of the gene product

N number of cell cycle stages

N0 number of cell cycle stages before replication

w proportion of the cell cycle before replication

a transition rate from one cell cycle stage to the next

f cell cycle frequency

η ratio of the degradation rate and the cell cycle frequency

p allocation probability in asymmetric binomial partitioning

ρeff effective burst production rate before replication

κρeff effective burst production rate after replication

deff effective decay rate of the gene product

Table 1. Model parameters and their meaning.

1) The promoter of the gene of interest can switch between an
inactive state G0 and an active state G1 with switching rates
u and v before gene replication [14]. Dosage compensation
is modeled as a change in the switching rate of the promoter
from the inactive to the active state upon replication with its
value being u before replication and gu after replication. This
assumption is supported by experiments [8].

2) In each gene state Gi (i = 0, 1), the synthesis of the gene
product of interest, mRNA or protein, occurs at a rate ρi in
bursts of a random size sampled from an arbitrary probability
distribution µ = (µn). This means that in each burst, there is
a probability µn of producing n copies of the gene product. In
previous papers, the synthesis of mRNA in each gene state is
assumed to be non-bursty [21], i.e. the mRNA molecules are
produced one at a time. In this case, µn = δ1,n is the Kronecker
delta which takes the value of 1 when n = 1 and the value of 0
otherwise. On the other hand, in models where mRNA is not
explicitly described, the effective synthesis of protein in each
gene state is usually assumed to be bursty with the burst size
sampled from a geometric distribution µn = pnB(1− pB), where
pB = B/(1 + B) with B being the mean burst size; this is due
to rapid synthesis of protein molecules from a single short-lived
mRNA molecule [22, 23]. Therefore, the arbitrariness of the
burst size distribution allows us to analyze the dynamics of both
mRNA and protein in a unified model.

3) The gene product is degraded via first-order kinetics with
rate constant d, which is a common assumption supported by
experiments [24].

4) Each cell can exist in N effective cell cycle stages, denoted by
1, 2, · · · , N , with a being the transition rate from one stage to the
next, which is assumed to be the same for all stages. Since the
transition time between stages is exponentially distributed, the
duration of the cell cycle is Erlang distributed with mean N/a
and thus the cell cycle frequency is f = a/N . In our model,
the noise in the doubling time, characterized by the coefficient
of variation squared, is equal to 1/N . As N → ∞, the noise
vanishes and thus the doubling time becomes fixed. Hence,
our model allows the investigation of the influence of cell cycle
duration variability on stochastic gene expression.

We emphasize that the effective cell cycle stages introduced
here do not directly correspond to the four biological cell cycle
phases of eukaryotic cells (G1, S, G2, and M) since the durations
of the latter are typically not exponentially distributed. In our
model, a cell cycle phase corresponds to multiple effective cell
cycle stages (Fig. 1(a)). By introducing a number of effective cell
cycle stages, our model has the property that the total duration of
the cell cycle and the durations of individual cell cycle phases are
all Erlang distributed. This is in agreement with experiments in
various cell types [17, 25–28].

5) Cell division occurs when the cell transitions from effective
stage N to the next stage 1. At division, most previous papers
assume that the mother cell divides into two via symmetric
binomial partitioning: each molecule has an equal chance to
be allocated to one of the two daughters [19, 29]. However,
asymmetric cell division is common in biology [13, 30]. For
instance, Saccharomyces cerevisiae divides asymmetrically into
two daughters with different sizes. Escherichia coli may also
undergo asymmetric division with old daughters receiving fewer
gene products than new daughters [31]. Here we extend previous
models by considering asymmetric binomial partitioning at cell
division: the probability for a molecule being allocated to one
daughter is p ≤ 1/2 and the probability of being allocated to the
other is q = 1 − p (Fig. 1(b)). After cell division, we randomly
track one of the two daughters with probability 1/2; hence our
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Fig. 1. The model. (a) Schematic illustrating the model describing N effective cell cycle stages, gene replication at stage N0, promoter switching
between active (red) and inactive (green) states, bursty production of the gene product in the two gene states, degradation, and gene dosage
compensation induced by a decrease in the activation rate of the gene after replication (see inset graph). (b) At stage N , a mother cell divides into
two daughters that are typically different in size (asymmetric division) with the larger daughter inheriting more molecules. Symmetric division is
the special case where the daughters are equisized. (c) At replication, the gene states of the two daughter copies can be the same as that of the
mother copy (inheritance mechanism) or else they are both reset to the inactive state (reset mechanism). (d),(e) Transition diagram of cellular states
under the two mechanisms. Before replication, a cellular state can be represented by an ordered pair (r, i), where r is the cell cycle stage and i is
the gene state of the mother copy; after replication, a cellular state can be represented by an ordered triple (r, i, j), where i and j are the gene states
of the two daughter copies. See main text for explanation of the colored arrows.

model corresponds to cell lineage measurements performed using
a mother machine such as in [32].

6) The replication of the locus containing the gene of interest
occurs over a period that is much shorter than the rest of the
cell cycle. Note that the replication of the whole genome within
a cell cannot be assumed to be instantaneous. However, since
the replication time of a particular gene is much shorter than the
total duration of the S phase, it is reasonable to consider it to
be instantaneous. Specifically, we assume that gene replication
occurs instantaneously when the cell transitions from a fixed
effective stage N0 ∈ [1, N − 1] to the next stage N0 + 1. We

shall refer to the gene copy that is replicated as the mother copy
and to the duplicated gene copies as the daughter copies. Under
this assumption, for haploid cells, there is only one mother copy
during the firstN0 stages and two daughter copies during the last
N−N0 stages; for diploid cells, the number of gene copies varies
from two to four upon replication. For diploid cells, we assume
that the two alleles act independently of each other [33, 34].

7) After replication, the two daughter copies can either inherit
the gene state from the mother copy or be both reset to the
inactive state [18]. To distinguish between them, we refer to the
former as the inheritance mechanism and the latter as the reset
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mechanism (Fig. 1(c)). The consideration behind the former is
the copying of the landscape of histone modifications (implicated
in gene activation) during DNA replication [35]. One plausible
explanation for the latter is that to avoid the potential risk of
conflict between replication and transcription [36], it is likely that
in the region where replication is ongoing or just completed, there
is no transcription, indicating an inactive state.

We next describe our stochastic model for haploid cells. The
results for diploid cells can be easily deduced from the haploid
case using allelic expression independence (see Methods). Based
on the stage of cell cycle progression and the states of the gene
copies, there are many possible cellular states for a cell. Before
replication, the cell can exist in 2N0 cellular states that can be
represented by an ordered pair α = (r, i), where r ∈ [1, N0] is
the cell cycle stage and i = 0, 1 is the gene state of the mother
copy; after replication, the cell can exist in 4(N − N0) cellular
states that can be represented by an ordered triple α = (r, i, j),
where r ∈ [N0 + 1, N ] is the cell cycle stage and i, j = 0, 1 are
the gene states of the two daughter copies. In sum, there are a
total of K = 4N − 2N0 possible cellular states.

The evolution of cellular state transitions is governed by
a Markovian model whose master equation is given in section
S1. The transition diagrams of the Markovian model under the
inheritance and reset mechanisms are illustrated in Fig. 1(d),(e),
respectively. The purple arrows show that upon replication, the
cellular state will transition from (N0, i) to (N0 + 1, i, i) for the
inheritance mechanism and from (N0, i) to (N0 + 1, 0, 0) for
the reset mechanism. After division, we randomly track one of
the two daughters and thus the cell will transition from (N, i, j)
to (1, i) or (1, j). The orange arrows illustrate those transitions
from (N, i, i) to (1, i) with rate a, the red arrows illustrate those
from (N, i, j), i 6= j to (1, i) with rate a/2, and the green arrows
illustrate those from (N, i, j), i 6= j to (1, j) with rate a/2.

It then follows that the microstate of the gene of interest
can be represented by (α, n), where α is the cellular state and
n is the copy number of the gene product. The evolution of the
complete stochastic gene expression dynamics is governed by a
master equation which is given in Methods.

General expressions for the power spectrum of single-cell
measurements across generations

Experiments suggest that the periodicity of the cell cycle
can induce oscillatory behavior in gene expression [1]. In fact,
if we use a deterministic model to describe the synthesis and
degradation of the gene product and assume that the molecule
numbers halve after a deterministic doubling time, then the
solution of the deterministic rate equation (the time series of gene
product abundances) will be periodic under all choices of rate
parameters. However, numerous time lapse experiments [6, 37]
have shown that the time course data of expression levels in single
cells do not always appear oscillatory, due to various sources of
noise such as cell cycle duration variability, gene copy number
variability, cell division asymmetry, gene expression bursting,
and promoter switching. Here we examine how these sources
of noise influence the robustness of sustained oscillations.

Let n(t) denote the copy number of the gene product in a
cell at time t. Stochastic gene expression oscillations are often

characterized by two functions: the autocorrelation function and
the power spectrum. The former R(t) = Covss(n(0), n(t)) is
defined as the steady-state covariance of n(0) and n(t), while
the latter G(ξ) =

∫∞
−∞R(|t|)e−2πiξtdt is defined as the Fourier

transform of the former, where ξ ≥ 0 denotes the frequency. In
general, sustained oscillations cannot be observed if the power
spectrum G(ξ) is a monotonically decreasing function of ξ. In
contrast, a non-monotonic power spectrum with one or more
off-zero peaks implies the presence of sustained oscillations; the
dominant frequencies of these oscillations are the values of ξ at
which the modes of the power spectrum occur.

While our model is complex due to the large variety of
biological processes that it captures, its autocorrelation function
can still be computed exactly as

R(t) = (m1 +m2)e
Wt

1− (m11)
2

+B

∫ t

0

m1e
QsSeW (t−s)

1ds,
(1)

where m1 = (m1α) and m2 = (m2α) are two row vectors
whose components are the first and second factorial moments of
the gene product abundance in all cellular states, 1 is the column
vector whose components are all 1, S = diag(ρα) is the diagonal
matrix whose diagonal elements are the burst production rates in
all cellular states, Q = (qαβ) is generator matrix of cellular state
transitions (see Fig. 1(d),(e) for the transition diagram which has
some orange, red, and green arrows), and W = (wαβ) is another
matrix obtained from Q by replacing the rates of orange arrows
by a/2, replacing the rates of red arrows by pa/2, replacing
the rates of green arrows by qa/2, and subtracting d from the
diagonal entries (see Methods for the proof and the detailed
expressions of each term).

Note that the autocorrelation function R(t) in Eq. (1) is
expressed in matrix form. A more explicit expression can be
obtained by expanding the matrix exponentials eWt and eQs in
terms of their eigenvalues and eigenvectors. We find that the
autocorrelation function (power spectrum) can be rewritten as the
linear combination of 2K−1 exponential (Lorentzian) functions:

R(t) =
2K−1∑
k=1

uke
λkt, G(ξ) =

2K−1∑
k=1

−2ukλk
4π2ξ2 + λ2k

, (2)

where K is the number of cellular states, λk (0 ≤ k ≤ 2K − 1)
are all the eigenvalues of the two matrices Q and W , and uk
are suitable constants (see Methods for the proof and the specific
expressions of uk). Since Q and W are both K × K matrices,
they have a total of 2K eigenvalues.

An important special case occurs when promoter switching
is much faster than cell cycle progression and gene product
degradation, i.e. f, d � u, v [34]. In this case, gene switching
dynamics will reach rapid equilibrium. As a result, the effective
burst production rate is given by ρeff = (ρ1u + ρ0v)/(u + v)
before replication and given by κρeff = 2(ρ1gu+ ρ0v)/(gu+ v)
after replication, where κ ≥ 1 is a factor characterizing the
change in the burst production rate due to gene replication and
dosage compensation. In the absence of dosage compensation,
we have gu = u and thus κ = 2. In the fast switching regime,
the two gene states can be combined into a single one and hence
the cellular state is only determined by the N effective cell cycle
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Fig. 2. Properties of the power spectrum. (a) For significant cell cycle duration variability, the spectra can be of four types. Note that the spectra
are normalized such that G(0) = 1. Theory (blue) matches stochastic simulations using Gillespie’s algorithm (red circles). Vertical dashed lines
show the cell cycle frequency. Insets show the decomposition of the spectrum into two parts controlling the zero and off-zero peaks (red and
green dashed curves, respectively). (b) Typical trajectories for each type of spectra. (c) The off-zero peak becomes higher as cell cycle duration
variability decreases (N increases). (d),(e) Heat maps showing the dependence of the height of the off-zero peak (relative to the zero peak) on the
parameters controlling the asymmetry of partitioning (p), the replication point (w), the burstiness of gene expression (B), and the mean number
of gene product molecules (〈n〉). Type I spectra are observed in the region marked “no oscillation”. (f) For low cell cycle duration variability,
higher-order harmonics of the cell cycle frequency appear; for midway replication, an unstable gene product, e.g. most mRNAs, has a spectrum
with no peaks at even harmonics, while a stable gene product, e.g. most proteins, has peaks at all harmonics. Note that the blue curves are computed
using the analytical expression given in Eq. (2) and the red circles are computed using the approximate expressions given in Eq. (5) for stable
products and Eq. (15) for unstable products. See section S10 for the technical details of this figure.

stages. In this case, we do not need to distinguish between the
inheritance and the reset mechanisms because they lead to the
same oscillatory behavior.

We next examine the properties of stochastic oscillations
under fast promoter switching. In this regime, Q and W reduce
to N ×N matrices and the power spectrum in Eq. (2) simplifies
because all the eigenvalues can be computed explicitly. The
eigenvalues of Q are given by λk = −a+ aωk (0 ≤ k ≤ N − 1)
and the eigenvalues of W are given by λN+k = −d − a +
2−1/Naωk (0 ≤ k ≤ N − 1), where ωk = e2πki/N are all
the N th roots of unity. In addition, the steady-state mean of
gene product abundances can be also calculated explicitly as (see
section S3 for the proof)

〈n〉 = ρeffB

ηf

[
w + κ(1− w) +

(κ− 1)awη,N + 1− κaη,N
η(2aη,N − 1)

]
, (3)

where w = N0/N is the proportion of the cell cycle before gene
replication, η = d/f is the ratio of the degradation rate and the
cell cycle frequency which serves as a measure for the stability of
the gene product, and aη,N = (1 + η/N)N ≈ eη when N � 1.

To validate the analytical expression of the power spectrum,
we compare it with the numerical spectrum calculated by means
of the Wiener-Khinchin theorem, which states that G(ξ) =

limT→∞〈|n̂T (ξ)|2〉/T , where n̂T (ξ) =
∫ T
0 n(t)e−2πiξtdt is the

truncated Fourier transform of a single stochastic trajectory over
the interval [0, T ] and the angled brackets denote the ensemble
average over trajectories (Fig. 2(a)). To guarantee the accuracy of
the numerical spectrum, we calculate the time-ensemble average
over 5000 stochastic trajectories simulated using Gillespie’s
algorithm with the maximum simulation time being chosen as
30N/a (about 30 cell cycles). Here we normalize the power
spectrum such that G(0) = 1. Clearly, the analytical (blue
curve) and numerical (red circles) spectra coincide perfectly with
each other. In general, the numerical simulations of the power
spectrum turn out to be very slow. The analytical solution is
hence crucial because it allows a fast exploration of large swathes
of parameter space.

Single-cell time traces can be classified into four different
types according to their power spectra shape

Our gene expression model displays four different types of
power spectra (Fig. 2(a)): (i) the spectrum is unimodal and
monotonically decreasing with a peak at zero, (ii) the spectrum is
bimodal with the height of the off-zero peak less than 1, (iii) the
spectrum is bimodal with the height of the off-zero peak greater
than 1, and (iv) the spectrum is unimodal and bell-shaped with the
height of the off-zero peak greater than 1. For convenience, we

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.309724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309724
http://creativecommons.org/licenses/by-nc-nd/4.0/


refer to (i)-(iv) as type I, II, III, and IV spectra, respectively. The
robustness of oscillations increases as the spectrum changes from
type I to type IV (Fig. 2(b)); this is since the increasing height
of the off-zero peak relative to the zero peak implies increasing
power in a narrow range of frequencies centered about the cell
cycle frequency. To better understand the analytical solution of
the power spectrum, we decompose it into two parts:

G(ξ) =
N−1∑
k=1

−2ukλk
4π2ξ2 + λ2k

+
2N−1∑
k=N

−2ukλk
4π2ξ2 + λ2k

, (4)

where the first part is the contribution of the eigenvalues ofQ and
the second part is the contribution of the eigenvalues ofW (insets
of Fig. 2(a)). Clearly, the first part (green curves) mainly controls
the off-zero peak and the second part (red curves) mainly controls
the zero peak as well as the decay of the spectrum. When cell
cycle duration variability is small (N � 1), the first eigenvalue
of W is given by λN = −d − a(1 − 2−1/N ) = −d − a(1 −
e−(ln 2)/N ) ≈ −d−(ln 2)a/N = −deff, where deff = d+(ln 2)f
is the effective decay rate of the gene product, which is the sum
of the decay rate due to active degradation and the decay rate due
to dilution at cell division [38]. This explains why the second part
characterizes the decay of the spectrum.

General scaling properties of the height and width of the
off-zero spectral peak

To see the effect of cell cycle duration variability on
sustained oscillations, we illustrate how the power spectrum
given by Eq. (2) varies with N (Fig. 2(c)). When N is very
small, the spectrum only has a peak at zero, implying that no
regular oscillations can be observed. However, as N increases,
the spectrum becomes non-monotonic with the off-zero peak
becoming higher and closer to (but still less than) the cell cycle
frequency f (shown as a vertical dashed line). This indicates that
there is a threshold cell cycle duration variability below which
the periodicity of the cell cycle leads to sustained oscillations in
gene expression.

Moreover, as f increases while keeping N and 〈n〉 fixed,
the power spectrum becomes much wider but the height of the
off-zero peak remains exactly the same (fig. S1(a)). In fact, if the
cell cycle frequency is increased from f to αf with some α > 1,
then the coefficients uk in Eq. (2) will remain the same, but
the eigenvalues λk will be replaced by αλk (see section S2 for
the proof). Hence, the power spectrum (autocorrelation function)
will be stretched (compressed) along the horizontal axis by a
factor of α. This explains why the height of the off-zero spectral
peak is independent of the cell cycle frequency.

Symmetric division, midway replication, and non-bursty
expression enhance the regularity of oscillations

Oscillations are also affected by the gene replication time,
asymmetric cell division, gene expression bursting, and gene
expression mean. Fig. 2(d),(e) illustrate the height of the
off-zero spectral peak as a function of w, p, B, and 〈n〉. It
is clear that the off-zero peak becomes lower as B increases
and as p and 〈n〉 decrease. The decline of the peak height
with increasing B, decreasing p, and decreasing 〈n〉 is expected

since all of them correspond to an increase in the fluctuations
of gene product abundances which counteracts the regularity of
oscillations; indeed noise above a certain threshold can even
completely destroy sustained oscillations (Fig. 2(e)). This is in
sharp contrast to a negative feedback genetic loop, where random
bursting can promote the regularity of oscillations [39, 40]. In
addition, we also find that sustained oscillations are the most
regular when w is neither too small nor too large (Fig. 2(d)).

Contrasting the properties of the off-zero peak for stable
and unstable gene products

To further understand these observations, we consider two
important special cases. In bacteria and yeast, most proteins have
very long half-lives, i.e. η � 1 (table S1). For such stable gene
products, when cell cycle duration variability is not too large, the
power spectrum can be simplified as

G(ξ) ≈ 2A〈n〉f
3(4π2ξ2 + λ2N )

+
ρ2effB

2N

2f

[N/2]∑
k=1

HkGk(ξ), (5)

where A and Hk, k ≥ 1 are suitable constants and

Gk(ξ) =
2k2π2f2 −

(
π2ξ2 − a2 cos θk sin2 θk/2

)
4k6π6f4 +N2

(
π2ξ2 − a2 cos θk sin2 θk/2

)2 , (6)

with θk = 2kπ/N (see Methods for the expressions ofA andHk

and section S4 for the proof). In Eq. (5), the decay of the power
spectrum is mainly controlled by the first term, while the off-zero
peak is controlled by the function G1(ξ) in the second term. The
influence of the remaining functions Gk(ξ), k ≥ 2 in the second
term will be discussed later.

From Eq. (6) with k = 1, the position of the off-zero peak is
given by ξ = (a/π) cos θ1 sin(θ1/2) < aθ1/2π = a/N , which
is smaller than the cell cycle frequency f = a/N . WhenN � 1,
the peak position is approximately equal to f since sin θ ≈ θ and
cos θ ≈ 1 when θ is small (Fig. 2(c)). Moreover, the width of the
off-zero peak, characterized by the difference of the frequencies
at which the spectrum attains half of its peak value (see Fig. 2(c)
for an illustration), is given by D = 2πf/N . In other words,
the width is proportional to both the cell cycle frequency and cell
cycle duration variability (in agreement with fig. S1(a)). In the
case of bursty gene expression, the height of the off-zero peak is
given by (see section S4 for the proof)

H =
J1〈n〉N/6π4

〈n〉
[
2J(γ + 2

3N
) + C

π2N

]
+ 3

ln 2
+ 2B

(
γ − 2 + 3

ln 2

) , (7)

where γ = 2(1− 4pq)/(1 + 2pq) is a function of p, and

Jk =

[
w + κ(1− w) + (κ−1) sin (2kwπ)

2kπ

]2
+ (κ−1)2 sin4(kwπ)

k2π2[
κ− 1

3 (κ− 1)w(4− w)
]2 ,

J =
[w + κ(1− w)]2[

κ− 1
3 (κ− 1)w(4− w)

]2 , (8)

and C =
∑∞
k=1 Jk/k

2 are all functions of κ and w. In the
non-bursty case, the term involving B in Eq. (7) vanishes. Note
that since p ≤ 1/2 is the probability that a molecule is allocated
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to one daughter and q = 1−p is the probability of being allocated
to the other daughter, it follows that 0 ≤ γ ≤ 2; hence the
parameter γ is a dimensionless measure of the asymmetry of cell
division. From Eq. (7), it is easy to see that H decreases with
increasing B and decreasing p and 〈n〉. This is in full agreement
with the numerical results shown in Fig. 2(d),(e) which are
computed using Eq. (2).

On the other hand, in bacteria and yeast, most mRNAs have
very short half-lives, i.e. η � 1 (table S1). For such unstable
gene products, we also derive a simplified expression of the
power spectrum which is given in Methods. The width of the
off-zero peak is still given by D = 2πf/N but the height is
given by

H =
sin2(wπ)N2

2C(w)π2
, (9)

where C(w) =
∑∞
k=1 sin

2(kwπ)/k2 is a function of w (see
section S5 for the proof). We emphasize that this formula is
derived in the limit of η → ∞. In naturally occurring systems,
the value of η for an unstable gene product usually does not
exceed 100 (table S1) and hence applying this formula may
lead to some errors, especially when κ is very close to 1. It
is interesting to note that for unstable gene products, the height
of the off-zero peak depends less on asymmetric division, gene
expression mean, random bursting, and dosage compensation,
whereas from Eq. (7), it is clear that the opposite is true for stable
gene products. For both stable and unstable cases, as cell cycle
duration variability becomes smaller (N increases), the off-zero
peak becomes narrower and higher.

Recall that for quasi-symmetric cell division, sustained
oscillations are the most regular when w is neither too small nor
too large (Fig. 2(d)). For stable gene products with η � 1,
it follows from Eq. (7) that the maximal regularity is obtained
when w ≈ 0.29 in the case of symmetric division, large gene
expression mean, and no dosage compensation. For unstable
gene products with η � 1, it follows from Eq. (9) that the
maximal regularity is obtained when w = 0.5.

Note that our conclusions for the differences between the
power spectra of (unstable) mRNA and (stable) protein are
also confirmed by numerical simulations of a more complex
model with both mRNA and protein descriptions (rather than an
effective protein description with bursting dynamics as described
in point 2 in the Model Specification section).

Increasing the asymmetry of cell division induces a sharp
change in the power spectrum for stable gene products

Our theory further reveals an important difference between
symmetric (p = 1/2) and asymmetric (p < 1/2) cell division for
stable gene products. When the gene expression mean is large, it
follows from Eq. (7) that the height of the off-zero peak reduces
to H ≈ J1N/6π

4[2J(γ + 2/3N) + C/π2N ]. For symmetric
division, we have γ = 0 and thus the height depends on N
quadratically as H ≈ J1N

2/2π2(4π2J + 3C) (fig. S2(a)). For
asymmetric division, however, we have 0 < γ ≤ 2 and thus when
cycle cycle duration variability is very small (N � 1), the height
depends on N linearly as H ≈ J1N/12π

4Jγ (fig. S2(b)). As
cell division asymmetry becomes stronger, the height transitions
sharply from the N2 law to the N law (fig. S2(c)). This

implies that for a certain cell cycle duration variability (fixed N ),
symmetric division leads to a much higher degree of regularity
in oscillations for stable products than asymmetric division. In
contrast, we find that for unstable gene products, there is no
analogous transition because the height of the off-zero peak is
always proportional toN2 and is independent of pwhich controls
the asymmetry of cell division (see Eq. (9)).

Single-cell time traces can display higher-order harmonics
of the cell cycle frequency

Interestingly, when cell cycle duration variability is very
small, besides the peak at the cell cycle frequency f , the power
spectrum also has peaks at integer multiples of f (Fig. 2(f) and
fig. S2(a),(b)). This shows that besides the fundamental period
of the mean doubling time T = 1/f , the system also has the
hidden periods of T/2 and even T/3. Note that in Fig. 2(a),(c),
we have not observed higher-order harmonics because the cell
cycle duration variability is not sufficiently small (N is not
sufficiently large). Similar peaks at higher-order harmonics have
been previously reported for biochemical systems with feedback
loops, due to the combination of intrinsic noise and nonlinearity
in the law of mass action [41]. In the present model, the
propensities of the reactions are all linear in molecule numbers
and hence the hidden periods cannot be attributed to the same
mechanism as in [41].

These hidden frequencies can be better understood using our
analytical results. Recall that the spectral peak at f is controlled
by the function G1(ξ) in the second term of Eq. (5). In fact, the
remaining functions Gk(ξ), k ≥ 2 in the second term control
the peaks at higher-order harmonics kf . From Eq. (6), for
stable gene products, the height and width of the spectral peak
at the kth harmonic frequency are given by JkH/J1k4 and k2D,
respectively, where Jk is given in Eq. (8). In particular, when w
is very small or very large, we have Jk ≈ 1 for all k and hence
the height of the spectral peak at f is 24 = 16 times greater than
that at 2f and 34 = 81 times greater than that at 3f . Moreover,
the width of the spectral peak at f is 22 = 4 times lesser than
that at 2f and 32 = 9 times lesser than that at 3f . This is in
full agreement with our simulation results which show that the
peaks at higher-order harmonic frequencies are much lower and
wider than the peak at the fundamental frequency (Fig. 2(f) and
fig. S2(a),(b)).

For unstable gene products, similar phenomena are also
observed but the characteristics of the higher-order spectral
peaks are slightly different. Actually, the height and width of
the spectral peak at the kth harmonic frequency are given by
sin2(kwπ)H/ sin2(wπ)k4 and k2D, respectively (see Methods
for the proof). When w is very small or very large, we have
sin2(kwπ)/ sin2(wπ) ≈ k2 and hence the height of the spectral
peak at f is 22 = 4 times greater than that at 2f and 32 = 9
times greater than that at 3f . Another interesting prediction is
that for midway replication (w = 0.5), there are no peaks at even
harmonics since the height at 2kf is zero (inset of Fig. 2(f)). As
a result, we find that for midway replication, stable gene products
yield higher peaks at higher-order harmonics, while for early
or late replication, unstable gene products yield higher peaks at
higher-order harmonics.
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Fig. 3. Further properties of the power spectrum. (a)-(c) Heat maps showing the dependence of the height of the off-zero peak (relative to the
zero peak) on the parameters controlling gene product stability (η) and dosage compensation (κ). For stable gene products with η � 1, it is only
possible to observe type I-III spectra; type IV can be produced by unstable gene products with η � 1. Strong dosage compensation (κ = 1)
in (b),(c) leads to maximal oscillation regularity at an intermediate gene product stability. (d) Typical trajectories for stable and unstable gene
products. With the same gene expression mean, unstable products lead to more robust sustained oscillations than stable ones. (e) Heat map showing
the dependence of the height of the off-zero peak (relative to the zero peak) on promoter switching rates u and v in the absence of promoter
leakage. (f) Same as (e) but in the presence of promoter leakage. Fast promoter switching, leakage, and active gene state dominance enhance
oscillation regularity. (g) Height of the off-zero peak (relative to the zero peak) versus the asymmetric allocation probability p for three types of
tracking protocols at cell division: tracking one of the two daughters randomly (blue), tracking the smaller daughter (red), and tracking the larger
daughter (green). (h) Typical trajectories for the three protocols generated using Gillespie’s algorithm. Note that (a)-(c) and (e)-(g) are obtained
from numeric evaluation of Eq. (2). See section S11 for the technical details of this figure.

Bifurcations between the four types of power spectra are
observed as the gene product stability is varied

The dependence of oscillations on gene product stability η
is much more complicated. Fig. 3(a)-(c) illustrate the height of
the off-zero spectral peak as a function of η, κ, and N when
the gene expression mean is large. Since type I spectra are
monotonically decreasing, the height of the off-zero peak is set
to be zero for convenience. For stable gene products with η � 1,
it is only possible to observe type I, II, and III spectra. It can be
analytically shown that for the case of symmetric division, large
gene expression mean, midway replication (w = 0.5), and no
dosage compensation, stable gene products yield type I spectra
when N ≤ 6, type II spectra when 7 ≤ N ≤ 28, and type III
spectra when N ≥ 29 (see section S4 for the proof).

When N is small and η is not restricted to small values, all
the four types of power spectra can be observed; as η increases,
the system undergoes three stochastic bifurcations from type I
to type II, then to type III, and finally to type IV (Fig. 3(a));
when N is moderate, type I spectra cannot occur; as η increases,
the system undergoes two stochastic bifurcations from type II to
type III, and then to type IV (Fig. 3(b) and fig. S1(b)); when N
is large, both type I and II spectra fail to occur; as η increases, the
system undergoes only one stochastic bifurcation from type III to
type IV (Fig. 3(c)). These results show that sustained oscillations
tend to occur when (i) N is small but η is large (unstable gene
products with large cell cycle duration variability) or (ii) N is
moderate or large. In the latter case of moderate or low cell cycle
duration variability, oscillations can be observed for all values

of η and hence are expected for both stable and unstable gene
products.

The reason why unstable gene products yield more robust
sustained oscillations can be understood as follows. For stable
gene products, since active degradation is weak, molecule
numbers increase approximately linearly with time and hence the
time traces of gene product abundances appear like a sawtooth
wave (upper panel of Fig. 3(d)). Due to cell cycle duration
variability and noise due to partitioning at division, the expression
levels at the end (or beginning) of each generation have large
fluctuations. Such noise gives rise to the zero peak of the
power spectrum, which explains why for small η, the spectra
are of types I-III. In contrast, for unstable gene products, since
the degradation rate is large, molecule numbers quickly reach a
steady state and hence the time traces of gene product abundances
appear like a square wave (lower panel of Fig. 3(d)). The two
levels of the square wave correspond to the steady-state levels
before and after replication. Once the expression level deviates
from the steady-state value, the large degradation rate will help it
relax to the steady state rapidly and hence the expression levels
at the end (or beginning) of each generation have relatively small
fluctuations. This explains why for unstable gene products with
large η, the spectra are of type IV, i.e. do not have a peak at
zero frequency, but rather the power is concentrated in a narrow
bandwidth of frequencies close to the cell cycle frequency.
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Strong dosage compensation causes resonance-like
behavior at intermediate gene product stability

The pattern of sustained oscillations is also influenced by
dosage compensation. When dosage compensation is weak (κ is
close to 2), the height of the off-zero spectral peak (relative to the
zero peak) is an increasing function of η (Fig. 3(a)-(c)). In this
case, the more unstable are gene products, the more capable they
are of exhibiting regular stochastic oscillations. However, when
dosage compensation is strong (κ is close to 1) and cell cycle
duration variability is not too large, there is an optimal η such that
the height is maximized (Fig. 3(b),(c)); oscillations are the most
regular when η is around 15, which falls within the biological
range of a typical mRNA in bacteria (table S1). The reason of this
phenomenon can be understood as follows. Oscillations cannot
be very regular for small η due to noise in cell cycle duration
and partitioning at division, as discussed earlier. For large η,
oscillations also cannot be very regular because when κ is close
to 1, there is little change in the effective burst production rate
across the cell cycle and hence the steady-state expression levels
before and after replication (shown as the two levels of the square
wave in Fig. 3(d)) will merge into one. As a result, when dosage
compensation is strong, oscillations are the most regular at an
intermediate η value.

Fast promoter switching, leakage, and active gene state
dominance enhance oscillation regularity

Finally, we investigate the effect of promoter switching on
gene expression oscillations. Fig. 3(e),(f) illustrate the height of
the off-zero spectral peak as a function of the promoter switching
rates, u and v, in the absence and presence of promoter leakage,
where promoter leakage means that there is a nonzero burst
production rate when the gene is in the inactive state. For the
case of no leakage, oscillations are manifest when the gene is
mostly active, i.e. u � v, and fail to occur when the gene
is mostly inactive, i.e. u � v, likely due to an exceptionally
small gene expression mean. In the presence of leakage, however,
we observe a strong oscillation when u � v and a weaker
oscillation when u� v. Due to promoter leakage, even when the
gene is mostly inactive, there is still a smaller but non-vanishing
gene expression mean, which leads to the weaker oscillation
observed. In addition, we find that the height of the off-zero peak
is exceptionally small when promoter switching is very slow [42],
i.e. u, v � 1, regardless of whether there is promoter leakage or
not. We stress here that while Fig. 3(e),(f) display the results for
the inheritance mechanism, similar results also hold for the reset
mechanism.

The power spectrum in asymmetrically dividing cells is
strongly influenced by the single-cell tracking protocol

In some previous papers [1, 43], to track a cell lineage, one
of the two daughters was randomly selected at cell division with
probability 1/2. However, for asymmetric cell division, the two
daughters are of different sizes and another possible protocol is to
track the smaller/larger daughter (such as the bud/mother cell in
budding yeast) at cell division [3, 44]. Assuming well-mixing,
the probability of a newborn cell receiving a gene product

molecule is equal to the ratio of the volume of the newborn to
the volume of the mother cell and hence on average the smaller
daughter receives fewer gene products than the larger one. We
remind the reader that in our model the probability for a molecule
to be allocated to one daughter is p ≤ 1/2 and the probability of
being allocated to the other is q = 1 − p. Hence it follows that
the daughter with allocation probability p < 1/2 at division is
the smaller daughter (Fig. 1(b)). Thus far we assumed that one of
the two daughter cells is randomly tracked with probability 1/2
after cell division. Now we study two other tracking protocols,
namely where we always follow the smaller or the larger daughter
after cell division. For a cellular state (N, i, j) in effective cell
cycle stage N , suppose that i and j record the gene states of the
daughter copies that will be allocated to the smaller and larger
daughter, respectively. If the smaller daughter is tracked after
division, the cell will transition from a cellular state (N, i, j) in
stage N to the cellular state (1, i) in stage 1 with rate a. If the
larger daughter is tracked after division, the cell will transition
from (N, i, j) to (1, j) with rate a. These considerations show
that the transition diagram of cellular states should be modified
as follows: if the smaller (larger) daughter is tracked at division,
then the green (red) arrows in Fig. 1(d),(e) should be deleted and
the transition rates of the red (green) arrows should be changed
from a/2 to a (fig. S3).

In this case, the autocorrelation function has the same form
as in Eq. (1), whereQ = (qαβ) is the generator matrix of cellular
state transitions (see fig. S3 for the transition diagram which
has some colored arrows) and W = (wαβ) is another matrix
obtained from Q by replacing the rates of orange and red (green)
arrows by pa (qa) and subtracting d from the diagonal entries
if the smaller (larger) daughter is tracked after cell division (see
section S6 for the detailed expressions of each term).

To compare the three types of tracking protocols at cell
division (tracking a random daughter, the smaller daughter, or
the larger daughter), we illustrate the height of the off-zero
spectral peak as a function of p for moderately unstable gene
products with η = 2 (Fig. 3(g)). Clearly, the three tracking
protocols give rise to the same oscillatory behavior for symmetric
division. However, for asymmetric division, the smaller daughter
tracking protocol yields a much higher off-zero peak than the
other two protocols, implying the most regular oscillations. The
reason for this observation is as follows. For unstable gene
products, the molecule number relaxes to the steady-state value
rapidly and hence the expression levels just before division are
roughly the same for the three protocols. However just after
division, the smaller daughter receives less molecules than the
larger one. Hence it follows that smaller daughter tracking yields
larger amplitudes of oscillations in the time traces than larger
daughter tracking (Fig. 3(h)). Compared to random tracking,
smaller/larger daughter tracking leads to less noisy oscillations,
presumably since the latter introduces a deterministic element in
the tracking process. This explains why random tracking leads
generally to less robust oscillations than the other two tracking
protocols (Fig. 3(g)). Note that while increasing cell division
asymmetry (decreasing p) reduces the robustness of oscillations
for random and larger daughter tracking, it leads to the opposite
effect for small daughter tracking.

In fig. S4, we also investigate the differences between the
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power spectra obtained from the three tracking protocols as a
function of the parameter η which is a measure of gene product
stability. We find that the differences increase with gene product
stability. This can be explained as follows. The abrupt change in
the number of molecules =at division as we switch from a mother
cell to a daughter cell is sensitive to the choice of protocol; these
low frequency fluctuations contribute to the height of the zero
peak which is sizeable for very stable products and fairly small
for very unstable products (Fig. 3(a)-(c)). Hence the choice of
protocol has most effect on the spectra of stable products.

Experimental validation of the theory and its application to
parameter inference

To test our theory, we apply it to study oscillations in
single-cell gene expression data collected for E. coli in [2]. In
this data set, the time course data of fluorescence intensity of a
constitutively expressed yellow fluorescent protein was recorded
every minute for 279 cell lineages over 70 generations using a
mother machine under three different growth conditions (25oC,
27oC, and 37oC). At the three temperatures, there are a total of
65, 54, and 160 cell lineages measured, respectively. Based on
such data, it is possible to estimate all the parameters involved in
our model for each cell lineage. The medians of the estimated
parameters for all cell lineages are listed in Table 2 and the
distributions of the estimated parameters are given in figs. S5
and S6. In the following, we briefly describe the estimation
procedures.

25oC 27oC 37oC

f (min−1) 0.0148 0.0187 0.0307

T = 1/f (min) 67.5676 53.4759 32.5733

N 14 31 31

w 0.2000 0.1450 0.1224

κ 2.0621 2.0000 2.9412

β 42.0719 15.4767 13.0344

〈n〉 99.2042 199.5930 287.8168

ρeff (min−1) 0.1299 0.2303 0.6259

κρeff (min−1) 0.2232 0.5319 1.3809

B 4.7718 5.2099 4.8606

Table 2. The medians of the estimated parameters for all cell
lineages at three different temperatures. The distributions of the
estimated parameters can be found in figs. S5 and S6. The medians
rather than the means are reported here since the estimation of the
former is more robust than that of the latter, with respect to outliers.

Since the protein is constitutively expressed [2], there is no
promoter switching, i.e. u = v = 0. Moreover, since the protein
is very stable, it is reasonable to assume that it has negligible
degradation, i.e. d = η = 0 [2, 43]. Based on the time course
data, we estimated the average power spectrum over all cell
lineages at each temperature by means of the Wiener-Khinchin
theorem (Fig. 4(a)), where we have normalized the spectrum so
that G(0) = 1. Clearly, the average power spectra are of type II
for all the three growth conditions. As the temperature increases,
the position and height of the off-zero spectral peak both increase,

implying more robust oscillations. The position of the off-zero
peak is very close to the cell cycle frequency f , which can be
easily estimated from the data of doubling times (Table 2).

We find that the doubling time data for all cell lineages are
well fitted by an Erlang distribution; the parameterN can then be
estimated as the inverse of the coefficient of variation squared of
this distribution. The medians of the estimated N for the three
growth conditions are 14, 31, and 31, respectively. It can be
seen that cells cultured at 27oC and 37oC have much smaller
cell cycle duration variability than those cultured at 25oC. Our
theory demonstrates that smaller cell cycle duration variability
gives rise to a higher off-zero spectral peak (Fig. 2(c)). This
explains why the off-zero peak is significantly higher at higher
temperatures (Fig. 4(a)). Our theoretical result also predicts that
when N is large, the power spectrum has peaks at higher-order
harmonics of the cell cycle frequency (Fig. 2(f)). This is in
excellent agreement with our data analysis, which shows that the
average power spectra at 27oC and 37oC have an apparent peak
at the second harmonic frequency. Interestingly, the ratio of the
heights of the spectral peaks at f and 2f is estimated to be 17.8
and 15.0 for the two temperatures, both of which are very close
to the theoretical value of 24 = 16 predicted by our theory for
stable gene products when w is small.

To perform a more detailed analysis, we also estimated the
power spectrum for each cell lineage by fitting the time course
data with an autoregressive (AR) model, which is a standard
model in time series analysis [45], with the order of the AR
model being determined by minimizing the Akaike information
criterion (see section S7 for details). Our theoretical results show
that for stable gene products, only type I, II, and III spectra can be
observed (Fig. 3(a)-(c)). This is in full agreement with our data
analysis with the percentages of the three types of power spectra
being illustrated by the pie charts in Fig. 4(a). Clearly, type II
spectra are dominant for all the three growth conditions. For
cells at 25oC, only types I and II are observed; for cells at higher
temperatures, only types II and III are observed. The percentage
of type III spectra is higher for cells at 37oC than cells at 27oC.

Since the burst production rate increases from ρeff to κρeff

upon replication, we can fit the data (recorded per minute)
between two cell division times by the following mean-field
approximation:

n̂(t+1)− n̂(t) =
{
ρeff, if t− Tk ≤ w(Tk+1 − Tk),
κρeff, if t− Tk > w(Tk+1 − Tk),

(10)

where Tk is the kth cell division time and t is an arbitrary time
point (in minute) between two consecutive division times Tk and
Tk+1. Here we use a piecewise linear function to approximate the
time series of expression levels between two division events. The
first (second) part of the piecewise linear function approximates
the time series before (after) replication and thus should have
an average slope of ρeff (κρeff). By fitting the time course data
n(t) with the approximation n̂(t) given in Eq. (10), we obtained
the least squares estimates of w and κ for each cell lineage by
minimizing the distance

∑M−1
t=0 [n(t) − n̂(t)]2 between the two,

where M is the number of time points for each cell lineage (see
section S8 for details). The medians of the estimated w for the
three growth conditions are 0.20, 0.15, and 0.12, respectively,
which decrease with temperature. This is possibly because at
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Fig. 4. Analysis of single-cell time course data of fluorescence
intensities in E. coli published in [2]. (a) Average power spectra over
all cell lineages at three different temperatures (blue curves) and their
smoothed approximations (red curves) using the Gaussian filter. The
average spectra are estimated by means of the Wiener-Khinchin theorem,
where 65, 54, and 160 cell lineages are averaged over, respectively, for
the three growth conditions. The power spectrum for each cell lineage
is also estimated by fitting the time course data with an AR model. The
pie charts display the percentages of various types of power spectra
for all cell lineages. (b) Comparison between the Fano factor γb of the
fluorescence intensities just before division and the Fano factor γa of
the fluorescence intensities just after division for all cell lineages at
37oC. (c) Comparison between the widths of the experimental power
spectra obtained using the AR model technique and the theoretical
power spectra determined using the estimated parameters for all cell
lineages at 37oC. (d),(e) Comparison between the experimental (blue
curve) and theoretical (red circles) power spectra for two typical cell
lineages at 37oC.

higher temperatures, the growth rate of E. coli cells is faster and
thus replication would occur more continuously, leading to a shift
in w towards zero [46]. In addition, the medians of the estimated
κ are close to 2 for all the three growth conditions (Table 2),
implying weak dosage compensation.

The remaining parameters to be estimated are ρeff and B,
where B is the mean translational burst size, i.e. the average
number of protein molecules produced per mRNA lifetime. To
estimate them, recall that ρeffB represents the mean number of
protein molecules produced per unit time. However, what was
measured in the data set is the fluorescence intensity of protein
molecules, instead of the real copy number. Hence, it is crucial
to determine the proportionality constant between fluorescence
intensities and copy numbers. To do this, we note that under
the assumption of symmetric binomial partitioning at division,

the expression levels just before and just after a particular cell
division time are coupled by (see section S9 for the proof)

γa =
γb
2

+
β

2
, (11)

where γb (γa) is the Fano factor (the variance divided by the
mean) of the fluorescence intensities just before (after) division
and β is the fluorescence intensity per protein molecule. Note
that both γb and γa can be estimated for each cell lineage. To
test this relationship, we show γa as a function of γb for all
cell lineages at the three temperatures (see Fig. 4(b) for cells
at 37oC and fig. S7(a) for cells at lower temperatures), from
which we observed a strong linear relationship with a high R2

and a slope close to 0.5. Then the proportionality constant β
for a given temperature can be estimated as β = 2〈γa〉 − 〈γb〉,
where the angled brackets denote the sample means over all cell
lineages at that temperature. The estimated β for the three growth
conditions are 42.1, 15.5, and 13.0, respectively. In particular,
our analysis shows that the fluorescence intensity per protein
molecule decreases with temperature, which is likely because
lower temperatures are more conducive to the correct folding of
the fluorescent protein [47].

From the fluorescence intensity data and the inferred β, it
is easy to estimate the gene expression mean 〈n〉 for each cell
lineage (Table 2). Note that cells at 27oC and 37oC have similar
cell cycle duration variability with N = 31 but the latter yield a
higher off-zero spectral peak. This is because cells at 37oC have
a larger gene expression mean, which augments the height of the
off-zero spectral peak. Moreover, since ρeff, B, w, κ, and 〈n〉 are
related by Eq. (3) and we have estimated w and κ, we can obtain
the estimate of ρeffB. Finally, we estimated ρeff and B separately
by equating the heights of the off-zero peak of the experimental
power spectrum obtained using the AR model technique and the
theoretical power spectrum determined by Eq. (2) using all the
estimated parameters. From Table 2, we can see that the mean
burst frequency (average number of bursts produced per unit
time) ρeff increases with temperature approximately linearly but
the mean burst size B is not temperature dependent.

Thus far we have shown how, by means of the theoretical
expressions of the power spectrum and the gene expression mean,
we can estimate all the model parameters for each cell lineage
from the time course data. The accuracy of these estimates is
verified in two different ways. First, in Fig. 4(d),(e), we show
a good agreement between the experimental power spectrum
and the theoretical power spectrum evaluated using the inferred
model parameters for two typical cell lineages. As a second test
of the accuracy of parameter inference, we compare the widths
of the experimental and theoretical power spectra for all cell
lineages (see Fig. 4(c) for cells at 37oC and fig. S7(b) for cells at
lower temperatures). It can be seen from Fig. 4(c) that the widths
for the two spectra show a strong linear relationship with a slope
close to 1, a negligible intercept, and an R2 of 0.75. We stress
that while the model parameters were not estimated from the full
spectrum curve but only from the height of the off-zero peak,
the full theoretical spectrum matches the experimental spectrum
reasonably well.
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Discussion

In this work, we have investigated the frequency
decomposition of the copy number fluctuations of a gene
product (mRNA or protein) within a cell lineage, by deriving
expressions for the power spectrum of fluctuations in a detailed
stochastic model of gene expression. This model takes into
account the salient experimental observations of intracellular
dynamics including promoter switching, transcriptional and
translational bursting, variability in the duration of the cell
cycle, variability in the gene copy number due to replication,
the copying or resetting of the gene state during replication,
gene dosage compensation, and partitioning of molecules due to
symmetric or asymmetric cell division.

Our study differs from previous ones in four main respects:
(i) our model is more grounded in biological reality than other
models in the literature due to the large number of subcellular
and cellular processes that it accounts for, as mentioned above;
(ii) a number of studies have derived the distribution of molecule
numbers or more commonly the moments for models that have
some similarity to ours [15–19, 48]; however in contrast, here
we derive expressions for the power spectrum which provide
information about the frequency content of lineage data. This
type of analysis has previously been only reported for models of
non-growing cells [20, 49]; (iii) rather than a parameter inference
based on the matching of the moments or the distribution
of molecule numbers calculated from the data to those of a
stochastic model [50], we showcase a power spectrum based
parameter inference method; (iv) our model takes into account
the details of the experimental protocol used for tracking cells
across a lineage.

Our novel theory provides expressions for the height and
width of the off-zero spectral peak (with its position close to the
cell cycle frequency) as a function of all rate parameters in the
model. The ratio of the height of this peak to the power at zero
frequency provides a means to classify the power spectra into
two main types: (i) the spectra with the ratio less than 1 (types I
and II) and (ii) the spectra with the ratio greater than 1 (types III
and IV). The periodicity in molecule number variation induced
by cell division dominates over subcellular noise for (ii) while
the reverse is the case for (i). Type I is further differentiated
from type II by specifying that in the former, there is only one
peak at zero frequency whereas in the latter there is a dominant
peak at zero frequency and a lesser one at approximately the
cell cycle frequency. Similarly type III is further differentiated
from type IV by specifying that in the former, there is a dominant
peak at approximately the cell cycle frequency and a lesser one
at zero frequency while in the latter there is only one peak at
approximately the cell cycle frequency. The theory also predicts
that while the spectra for fast decaying (unstable) gene products
can be of all four types, the spectra for slow decaying (stable)
gene products can only be of types I-III.

Our analysis of experimental data for E. coli shows that
the type of spectra of single-cell trajectories depends on the
temperature: lower temperatures favour type I and II spectra
while higher temperatures favour type II and III spectra. Overall
the most common spectrum was Type II implying that for many
cells, the “forces” inducing periodicity of molecule numbers

are typically slightly less strong than the “forces” inducing
subcellular noise; the strength of the latter increases with
decreasing temperature. None of the 279 cell lineages had a
type IV spectrum for protein fluctuations, in accordance with the
theoretical result that stable gene products cannot display such a
spectrum.

Our theory made a number of other testable predictions: (i)
the height of the off-zero spectral peak (relative to that of the zero
peak) increases with decreasing cell cycle duration variability and
increasing mean expression levels, while the width of the off-zero
peak is proportional to the cell cycle frequency and to the cell
cycle duration variability; (ii) if the cell cycle duration variability
is small enough then the spectra display peaks at higher-order
harmonics of the cell cycle frequency. For stable proteins, the
height of the spectral peak at the second harmonic (twice the cell
cycle frequency) is 16 times larger than that at the cell cycle
frequency for early or late replication. Both predictions were
confirmed by analysis of lineage data for E. coli.

Furthermore our theory made numerous other predictions
which require the design of new experiments and which cannot be
tested using current data. A brief summary of these predictions
is as follows: (i) the dependence of the height of the off-zero
spectral peak on parameters is very different for gene products
that are stable, e.g. most proteins, compared to gene products
that are unstable, e.g. most mRNAs. For stable gene products,
the height of the off-zero peak decreases with increasing mean
burst size, decreasing mean molecule number, and increasing
asymmetry of cell division. Furthermore the height is maximal
for replication occurring (almost) a third of the way through
the cycle. In contrast for unstable gene products, the height of
the off-zero peak is maximal for replication occurring midway
through the cycle but is (almost) independent of asymmetric
division, gene expression mean, random bursting, and dosage
compensation. Independent of stability, fast promoter switching
enhances the height of the off-zero peak (relative to that of the
zero peak) whereas slow switching has the opposite effect; (ii)
the strength of gene dosage compensation is reflected in how the
spectrum varies with gene product stability. For weak dosage
compensation, molecules which have a larger decay rate also
exhibit a spectrum with a higher off-zero peak. For strong
dosage compensation, molecules which have a decay rate that
is neither too large nor too small are the ones which exhibit
the most pronounced off-zero peaks; (iii) the power spectrum
in asymmetrically dividing cells is strongly influenced by the
choice of single-cell tracking protocol. In particular the spectra
obtained from following the smaller daughter after division have
a significantly higher off-zero peak than those obtained from
following the larger daughter or from random tracking. This
last prediction is likely the easiest of the three to check by
redoing the cell tracking analysis in budding yeast which displays
asymmetric cell division. Predictions (i) and (ii) ideally require
the ability to obtain live-cell fluorescence data for mRNA over
tens of generations and for different types of mRNA with widely
varying decay rates, which are presently not easy to obtain. The
development of such methods, particularly those with minimal
perturbation of transcription and translation, is still in an active
area of research [4].

We have also showcased the use of the power spectrum to
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determine the values of all the rate parameters in our model
from cell lineage data. Two strengths of our inference procedure
are (i) we do not need an experimental determination of the
relationship between total fluorescence intensity and molecule
number; this is determined automatically from the relationship
between fluctuations in the fluorescence intensity just before and
just after division; (ii) our analysis takes into account noise due
to partitioning and variability in the cell cycle duration which has
recently been shown to be crucial to obtain an accurate estimation
of the burst frequency and the burst size [19]. Our analysis
confirms there is no or very weak dosage compensation in E.
coli in agreement with previous studies [46], i.e. at replication,
the expression increases roughly two-fold, in agreement with an
expected doubling of the number of gene copies. Furthermore we
find that for constitutive expression, while the translational burst
frequency increases approximately linearly with temperature, the
translational burst size is temperature invariant. Previous studies
were conducted at one temperature [5] and hence could not
quantify the thermal dependence of gene expression parameters.

Concluding we have performed an exact frequency analysis
of mRNA and protein fluctuations in a detailed model of gene
circuit elements central to gene expression control. As we
have shown, there is a wealth of information about subcellular
processes hidden in the frequency content of mRNA and protein
fluctuations within a cell lineage, and we hope our results will
further stimulate work in this area.

Methods

Oscillations for diploid cells

Suppose that we have computed the analytical solutions of
the autocorrelation function R(t) and the power spectrum G(ξ)
for haploid cells. For diploid cells, we assume that the two
alleles act independently of each other. Under the assumption
of allelic expression independence, let n(t) and n′(t) denote
the expression levels of the two alleles at time t, which are
independent and identically distributed. Then for diploid cells,
the autocorrelation function is given by

Rdipoid(t) = Covss(n(0) + n′(0), n(t) + n′(t))

= 2Covss(n(0), n(t)) = 2R(t),

and thus the power spectrum is given by

Gdipoid(ξ) = 2G(ξ).

Since the two functions only different by a constant for haploid
and diploid cells, they lead to the same oscillatory behavior. Thus
we only need to focus on haploid cells in what follows.

Master equation describing cell-cycle dependent stochastic
gene expression

Recall that before gene replication, each cellular state can be
represented as α = (r, i), where r is the cell cycle stage and i
is the gene state of the mother copy; after gene replication, each
cellular state can be represented as α = (r, i, j), where i and j
are the gene states of the two daughter copies. Let πα denote

the probability of observing cellular state α. The evolution of the
cellular state dynamics is then governed by the following master
equation (see section S1 for the master equation written using the
original model parameters):

π̇α =
∑
β 6=α

(πβqβα − παqαβ),

where qαβ is the transition rate from cellular state α to cellular
state β. The transition diagrams for all cellular states under the
inheritance and reset mechanisms are illustrated in Fig. 1(d),(e),
respectively. The microstate of the gene of interest can be
represented by the ordered pair (α, n), where α is the cellular
state and n is the copy number of the gene product. At division,
the cell will transition from some microstate (N, i, j, n) in cell
cycle stage N to another microstate (1, i,m) or (1, j,m) in cell
cycle stage 1 withm ≤ n. To model asymmetric cell division, we
need to distinguish the following two types of transitions between
cellular states:

D1 = {(α, β) : α = (N, i, j), β = (1, i)},
D2 = {(α, β) : α = (N, i, j), β = (1, j)},

where α is a cellular state in cell cycle stageN and β is a cellular
state in cell cycle stage 1. For any pair of cellular states (α, β) in
D1 or D2, the transition rate from α to β is given as follows:

qαβ =
a

2
, (α, β) ∈ D1 \D2,

qαβ =
a

2
, (α, β) ∈ D2 \D1,

qαβ = a, (α, β) ∈ D1 ∩D2.

The cellular state transitions in D1 \D2, D2 \D1, and D1 ∩D2

are marked by the red, green, and orange arrows in Fig. 1(d),(e),
respectively. Due to asymmetric binomial partitioning at cell
division, the transition rate from microstate (α, n) to (β,m) is
given as follows:

(α, n)
a
2Cn,mp

mqn−m

−−−−−−−−−−→ (β,m), (α, β) ∈ D1 \D2,

(α, n)
a
2Cn,mq

mpn−m

−−−−−−−−−−→ (β,m), (α, β) ∈ D2 \D1,

(α, n)
a
2Cn,m(pmqn−m+qmpn−m)
−−−−−−−−−−−−−−−−−−→ (β,m), (α, β) ∈ D1 ∩D2,

whereCn,m = n!/m!(n−m)! is the combinatorial number and p
is the probability of asymmetric binomial partitioning. Let pα,n
denote the probability of being in microstate (α, n). Then the
evolution of stochastic gene expression dynamics is governed by
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the following master equation:

ṗα,n =
n−1∑
m=0

ραµn−mpα,m + (n+ 1)dpα,n+1

+
∑
β 6=α

(β,α)/∈D1∪D2

qβαpβ,n

+
a

2

∑
β 6=α

(β,α)∈D1

∞∑
m=n

Cm,np
nqm−npβ,m

+
a

2

∑
β 6=α

(β,α)∈D2

∞∑
m=n

Cm,nq
npm−npβ,m

−
(
ρα

∞∑
m=1

µm + nd+
∑
β 6=α

qαβ

)
pα,n,

where ρα is the total burst production rate (for the mother copy
or for the two daughter copies) in cellular state α, µn is the burst
size distribution of the gene product, d is the degradation rate of
the gene product, and qαβ is the transition rate from cellular state
α to cellular state β. Since there are only two gene states, there
are only five possible values for ρα, which are given by

ρα =



ρ0, α = (r, 0),

ρ1, α = (r, 1),

2ρ0, α = (r, 0, 0),

2ρ1, α = (r, 1, 1),

ρ0 + ρ1, α = (r, 0, 1), (r, 1, 0),

where ρ0 and ρ1 are the burst product rate (for a single gene copy)
in the inactive and active gene states, respectively.

Analytical solutions for the autocorrelation function and
the power spectrum

Here we only consider the bursty case. The results in the
non-bursty case can be derived in the same way (see section S2
for details). Let α(t) denote the state of the gene and let n(t)
denote the copy number of the gene product in an individual cell
at time t, respectively. To proceed, let

πα(t) =
∞∑
n=0

pα,n = P(α(t) = α),

m1α(t) =
∞∑
n=0

npα,n = En(t)I{α(t)=α},

m2α(t) =
∞∑
n=0

n(n− 1)pα,n = En(t)(n(t)− 1)I{α(t)=α},

be the first three unnormalized factorial moments of gene product
abundances in cellular state α, where IA is the indicator function
of the set A. Then the row vectors π = (πα), m1 = (m1α), and
m2 = (m2α) satisfy the following differential equations (see
section S2 for the proof):

π̇(t) = π(t)Q,

ṁ1(t) = m1(t)W11 +Bπ(t)S, (12)

ṁ2(t) = m2(t)W22 + 2Bm1(t)S + 2B2π(t)S,

where S = diag(ρα) is the diagonal matrix whose diagonal
entries are the burst production rates in all cellular states andW11

and W22 are two matrices defined as

W11 = Q(1) + pQ(2) + qQ(3) − dI,
W22 = Q(1) + p2Q(2) + q2Q(3) − 2dI,

where Q(i) = (q
(i)
αβ) are three matrices defined as

q
(1)
αβ = qαβI(α,β)/∈D1∪D2

,

q
(2)
αβ =

a

2
I(α,β)∈D1

, q
(3)
αβ =

a

2
I(α,β)∈D2

.

From Eq. (12), at the steady state, the first and second factorial
moments are given by

m1 = −BπSW−111 ,

m2 = −2(Bm1 +B2m0)SW
−1
22 .

(13)

Therefore, the steady-state gene expression mean is given by

〈n〉 = m11 = −BπSW−111 1,

where1 denotes the column vector whose components are all 1.
Since Eq. (12) is a set of linear differential equations, its

time-dependent solution is given by

m1(t) = m1(0)e
W11t +B

∫ t

0

π(0)eQsSeW11(t−s)ds.

From now on, we assume that the system has reached the steady
state. Given the initial cellular state α(0) = α and initial copy
number n(0) = n of the gene product, it follows that

En(t) = m1(t)1 = neαe
W11t

1+B

∫ t

0

eαe
QsSeW11(t−s)

1ds,

where eα denotes the row vector whose αth component is 1 and
all other components are 0. This clearly shows that

E[n(t)|α(0), n(0)]

= n(0)eα(0)e
W11t1+B

∫ t

0

eα(0)e
QsSeW11(t−s)1ds.

Therefore, at the steady state, we have (see section S2 for the
proof)

En(0)n(t) =
∑
α

En(0)I{α(0)=α}E[n(t)|α(0), n(0)]

= (m1 +m2)e
W11t

1+B

∫ t

0

m1e
QsSeW11(t−s)

1ds,

where m1 and m2 are the steady-state first and second factorial
moments given in Eq. (13). Since the autocorrelation function is
defined as R(t) = En(0)n(t) − En(0)En(t), we finally obtain
the explicit expression of the autocorrelation function, which is
given in Eq. (1).

We next express R(t) more explicitly in terms of simple
functions. To this end, we assume that all eigenvalues of Q,
as well as all eigenvalues of W11, are mutually distinct (in fact,
any matrix can be approximated by such matrices to any degree
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of accuracy). Let λ0, λ1, · · · , λK−1 be all eigenvalues of Q
and let λK , λK+1, · · · , γ2K−1 be all eigenvalues of W11. By
the Perron-Frobenius theorem, one eigenvalue of the generator
matrix Q must be zero and other eigenvalues must have negative
real parts. Similarly, all eigenvalues of W11 must have negative
real parts, which implies that

λ0 = 0, Re(λ1), · · · ,Re(λ2K−1) < 0,

where Re(x) denotes the real part of x. From Eq. (1), it can be
deduced that the correlation function is a linear combination of
exponential functions:

R(t) =
2K−1∑
k=1

uke
λkt, (14)

where uk are suitable constants. Taking the derivatives on both
sides of Eqs. (1) and (14) and evaluating at t = 0 yield

2K−1∑
k=1

ukλ
n
k = vn,

where

vn = (m1 +m2)W
n
111+B

n∑
k=1

m1Q
n−kSW k−1

11 1.

This equation can be rewritten in matrix form as
λ1 λ2 · · · λ2K−1

λ2
1 λ2

2 · · · λ2
2K−1

...
...

. . .
...

λ2K−1
1 λ2K−1

2 · · · λ2K−1
2K−1




u1

u2

...
u2K−1

 =


v1
v2
...

v2K−1

 ,

where the matrix V on the left-hand side is a Vandermonde
matrix. This shows that

u1

u2

...
u2K−1

 =


λ1 λ2 · · · λ2K−1

λ2
1 λ2

2 · · · λ2
2K−1

...
...

. . .
...

λ2K−1
1 λ2K−1

2 · · · λ2K−1
2K−1


−1

v1
v2
...

v2K−1

 .

To proceed, recall that the inverse of the Vandermonde matrix is
given by V −1 = (bkl), where

bkl = (−1)l−1


∏

1≤m1<···m2K−1−l≤2K−1

m1,··· ,m2K−1 6=k

λm1
· · ·λm2K−1−l

λk
∏

1≤m≤2K−1
m6=k

(λm − λk)

 .
Therefore, the coefficients uk are given by

uk =
2K−1∑
l=1

bklvl.

Finally, the autocorrelation function can be written as

R(t) =
2K−1∑
k=1

uke
λkt =

2K−1∑
k,l=1

bklvle
λkt.

Taking the Fourier transform of the autocorrelation function gives
the power spectrum, which is given in Eq. (2). The simplification
of the gene expression mean and the power spectrum in the
regime of fast promoter switching can be found in sections S2-S5.

Power spectrum for stable gene products

For stable gene products with η � 1, the power spectrum
can be simplified as in Eq. (5), where

A = 2(ln 2)2J〈n〉
(
γ +

2

3N

)
+

1

(ln 2)2
+

2B

3 ln 2

(
γ − 2 +

3

ln 2

)
,

if gene expression is bursty,

A = 2(ln 2)2J〈n〉
(
γ +

2

3N

)
+

1

(ln 2)2
,

if gene expression is non-bursty, and

Hk =

[
w + κ(1− w) + (κ− 1) sin (2kwπ)

2kπ

]2
+

(κ− 1)2 sin4(kwπ)

k2π2
,

is a function of κ and w, where J is given in Eq. (8).

Power spectrum for unstable gene products

For unstable gene products with η � 1, when cell cycle
duration variability is not too large, the power spectrum can be
written more explicitly as (see section S5 for the proof)

G(ξ) ≈ 2(κ− 1)2ρ2effB
2N sin2(kwπ)

η2f

[N/2]∑
k=1

Gk(ξ), (15)

where

Gk(ξ) =
2k2π2f2 +

(
π2ξ2 − a2 cos θk sin2 θk/2

)
4k6π6f4 +N2

(
π2ξ2 − a2 cos θk sin2 θk/2

)2 ,
with θk = 2kπ/N . Here the function G1(ξ) controls the first
off-zero spectral peak and the functions Gk(ξ), k ≥ 2 control
the peaks at higher-order harmonic frequencies. In analogy to the
case of stable gene products, the position of the off-zero peak is
given by ξ = (a/π) cos θ1 sin(θ1/2) < aθ1/2π = a/N , which
is smaller than the cell cycle frequency f . When N � 1, the
peak position is approximately equal to f since sin θ ≈ θ and
cos θ ≈ 1 when θ is small. Moreover, the width of the off-zero
peak is given by D = 2πf/N and the height of the off-zero
peak is given in Eq. (9). From Eq. (15), the height and width
of the spectral peak at the kth harmonic frequency are given by
sin2(kwπ)/ sin2(wπ)k4H and k2D, respectively. In particular,
when cell cycle duration variability is small, the height of the
spectral peak at f is 24 sin2(wπ)/ sin2(2wπ) times greater than
that at 2f and 34 sin2(wπ)/ sin2(3wπ) times greater than that at
3f . Moreover, the width of the spectral peak at f is 22 = 4 times
lesser than that at 2f and 32 = 9 times lesser than that at 3f .
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