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Abstract

Identification of the metastatic potential represents one of the most important tasks for molecular
imaging of cancer. While molecular imaging of metastases has witnessed substantial progress
as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype
has proven to be more elusive underscoring the need to marry emerging imaging techniques with
tumor biology. In this study, we utilize both the morphological and molecular information provided
by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-
free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic
panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic
potential, we show that 3D refractive index tomograms can capture subtle morphological
differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging
the molecular specificity of Raman spectroscopy, we demonstrate that coarse Raman microscopy
is capable of rapidly mapping a sufficient number of cells for training a random forest classifier
that can accurately predict the metastatic potential of cells at a single-cell level. We also leverage
multivariate curve resolution — alternating least squares decomposition of the spectral dataset to
demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic
phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study
provides a rationale for employing coarse Raman mapping to substantially reduce measurement
time thereby enabling the acquisition of reasonably large training datasets that hold the key for
label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive

phenotypes.
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Introduction

Timely assessment of risk is critical for the detection and treatment of metastatic disease, which
remains the main reason for cancer-related mortality [1]. The current clinical standard for
assessment of metastatic risk relies on pathologic examination of sentinel lymph nodes following
biopsy. In addition to being an invasive procedure, identification of metastatic cells in lymph node
biopsies can be challenging and lead to an increase in false negatives [2]. Early detection of
metastasis requires tools that can recognize the metastatic potential of cancer cells derived from
the primary tumor or liquid biopsies. As primary tumors grow, a small fraction of the cancer cells
termed circulating tumor cells (CTC) undergo epithelial to mesenchymal transition (EMT), locally
invade the surrounding stroma, intravasate and are shed into the bloodstream leveraging their
enhanced motility [3]. A few of these cells survive in the circulation to extravasate, locally invade
and form premetastatic niches in secondary organs (e.g. lungs in breast cancer), and colonize
through re-acquisition of epithelial characteristics via mesenchymal to epithelial transition (MET)
[3]. While our understanding of the processes involved in metastasis has improved substantially
in recent years, detecting phenotypic subtypes with metastatic competence has proven to be
elusive due in part to the substantial heterogeneity observed in these cell populations [4].
Furthermore, our understanding of what imparts metastatic potential remains rudimentary, and
biomarkers that can recognize such competence across different carcinomas are still lacking.

Early genomic analyses of tumors revealed additional organ-specific mutations in
metastatic tumors despite sharing common ancestors [5]. Similarly, transcriptional analyses of
breast cancer metastasis to various organs including lungs and brain have also identified largely
distinct signatures characteristic of organotropism [6, 7]. However, these population-based
analyses require elaborate sample preparation and fail to capture the variations in phenotypes at
a single-cell level. Recently, we and others have also investigated the physical properties
associated with the differences in metastatic phenotypes in specialized microfluidic platforms [8-
15]. The pursuit of isolating CTC from blood to determine the course of metastatic disease has
resulted in the proliferation of several cell labeling methods that leverage known epithelial markers
for identification [16-21]. However, the use of epithelial markers may not be sufficient to detect
CTC that undergo EMT to acquire mesenchymal properties, particularly in triple-negative breast
cancers [22]. Also, the sensitivity of these methods is challenged by the small number of known
markers of metastatic progression that can be targeted simultaneously.

To address these challenges, several techniques based on optical microscopy and
imaging have attempted label-free phenotyping of cancer cells [23-27]. For example, phenotypic

changes of 4T1 murine breast cancer cells in response to drug treatment were characterized in
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terms of morphological parameters extracted from fluorescence images in 3D cultures [25].
Rohde and co-workers have developed an automated platform for morphological analysis of
cellular phenotypes using transport-based morphometry [24], which we recently used to analyze
the quantitative phase images of activated and naive CD8" T cells [28]. Similar optical methods
have also been leveraged for single-cell analysis of cancer phenotypes [29, 30], which often
require large datasets for building robust prediction models.

In this study, we employed 3D optical diffraction tomography (ODT) and label-free Raman
spectroscopy to quantitatively investigate both morphological and molecular differences between
isogenic breast cancer cells of varying metastatic potential. We used a set of three isogenic cell
lines composed of the parental MDA-MB-231 triple-negative breast cancer cell line (P231),
circulating tumor cells (CTC), and lung metastatic cells (LM) where the latter two were derived
respectively from the circulation and lungs of a mouse bearing parental P231 cells [31, 32].
Compared to the widely used qualitative phase imaging methods, such as Zernike phase contrast
and differential interference contrast, quantitative phase imaging methods recover the phase
delay caused by the sample, decoupled from absorption information. ODT is a form of quantitative
phase imaging that allows morphological analysis of single-cells based on their 3D refractive
index (RI) profiles [33-35]. In addition to providing traditional measures of morphology such as
area and aspect ratio, the RI information allows a label-free and non-contact route for the
determination of cell dry mass and local thickness of specimens with nanometric sensitivity [36].
The additional morphological insights provided by optical diffraction tomography have been
increasingly exploited for label-free and stain-free in vitro analysis of cells and tissues [33, 34,
37]. Yet, most of the cellular studies have focused on either visualization of morphological
dynamics in response to external stimuli such as drug exposure in single-cells or rapid
identification of cells such as bacteria and white blood cells using deep learning by leveraging
large datasets [38, 39]. Its utility in assessment of phenotypic differences among closely related
mammalian cancer cells, particularly in data-limited settings, remains largely unexplored.

Raman spectroscopy, on the other hand, provides a label-free route for assessment of
biological specimens with exquisite molecular specificity [40, 41]. This optical technique, based
on the inelastic scattering of light, probes vibrational modes of molecules and allows direct
profiling of molecular composition of biological specimens including live cells and tissues in their
native states [40-42]. The simple integration of Raman spectroscopy with optical microscopy
facilitates seamless vibrational spectroscopic imaging at diffraction-limited spatial resolution with
subcellular resolution. Several groups including our own laboratory have exploited the high

resolution and rich molecular information afforded by Raman spectroscopic imaging to study the
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molecular progression of cancer [23, 41, 43-45]. Due to the low likelihood of spontaneous Raman
scattering, most single-cell imaging studies have focused on employing nanoparticles for
plasmonic enhancement of signals and selective tagging of subcellular regions of interest [46,
47]. Therefore, only a few studies have attempted label-free characterization of cells for studying
biological processes associated with physiological changes, disease progression, and drug
response [48-50]. Our recent label-free Raman investigation in pellets of isogenic breast cancer
cell lines that exhibit organotropism to brain, liver, lung, and spine revealed distinct metastatic
organ-specific spectral signatures that were confirmed by metabolomics analysis [23]. Due to the
long acquisition time, label-free Raman spectroscopic studies have either exploited high-
resolution single-cell maps for analysis of limited cells or bulk sampling of cell populations that
permits the use of machine learning algorithms for classification problems by generating large
datasets at the cost of spatial information. This tradeoff between obtaining higher spatial
resolution maps and acquiring sufficiently large datasets amenable for machine learning has
largely prevented the use of machine learning techniques to learn and predict cellular phenotypes
from Raman images with single-cell analytical resolution.

Therefore, in this study, we sought to test whether morphological attributes encoded by
ODT and biomolecular insights obtained using Raman spectroscopy can predict the phenotype
of the closely related isogenic cell lines P231, CTC and LM of varying metastatic potentials with
statistical confidence. Using the 3D RI profiles obtained from ODT of single-cells, we compared
the distributions of morphological parameters such as area, aspect ratio, and dry mass across
the three classes, and used their combination to train and test random forest classifiers for
automated identification. By leveraging coarse Raman sampling of single cancer cells to reduce
the acquisition time and obtain spectral maps from a larger number of cells, we explored the
intersection of the abovementioned resolution-sampling tradeoff to find a solution for identifying
metastatic phenotype of cancer cells with single-cell analytical resolution. To show that coarse
Raman maps capture sufficient information for achieving single-cell phenotyping, we used
random forests to iteratively test spectral maps of individual cells against classifiers trained on the
data from the remaining cells in the dataset. Furthermore, we used multivariate curve resolution
alternating least squares (MCR-ALS) analysis to identify the spectra from subcellular
compartments and test the utility of random forest classification in predicting the metastatic
phenotype when only spectra from either nucleus or cytoplasm are available. The ability to use
specific subcellular regions of the cell for chemical imaging is expected to further reduce the
spectral acquisition time and boost the number of cells in the training dataset to capture population

heterogeneity. Such label-free identification of cells with high metastatic competence would not
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only have a profound impact on the prediction of a patient’s risk of developing metastasis but also

inform the design of optimal, personalized therapeutic treatments.

Materials and methods

Cell culture

An isogenic panel of varying metastatic potential derived from the human breast cancer cell line
MDA-MB-231 was used in this study. In addition to the td-Tomato expressing parental MDA-MB-
231 cells (P231), the panel consisted of CTC and LM cells previously obtained after orthotopic
implantation of the parental cells in the fourth right mammary fat pad of female athymic nu/nu
female mouse (NCI) as detailed in our previous publications [31, 32]. The three cell lines were
cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin, and 100 ug/ml streptomycin and maintained at 37 °C and 5% CO; in a humidified
incubator.

Optical diffraction tomography and data analysis

The three cell lines were seeded in glass coverslip-bottom Petri dishes for tomography. The
morphological assessment of the cells was performed on an ODT system (HT-1H, Tomocube
Inc., Republic of Korea) comprised of a 60X water-immersion objective (1.2 NA), an off-axis Mach-
Zehnder interferometer with a 532 nm laser and a digital micromirror device (DMD) for
tomographic scanning of each cell [51]. The 3-D RI distribution of the cells was reconstructed
from the interferograms using the Fourier diffraction theorem as described previously [52].
TomoStuido (Tomocube Inc, Republic of Korea) was used to perform reconstruction and
visualization of 3D Rl maps and their 2D maximum intensity projections (MIP). The 2D MIP
images were segmented using CellProfiler™ (v3.1.9) software to isolate single-cells using Otsu
two-class thresholding and neglecting the partial cells at the boundaries of raw images [53, 54].
After segmentation, we obtained 57, 35, and 44 cells in P231, CTC, and LM classes respectively.
The area of each cell was calculated by counting the number of non-zero pixels in their
corresponding segmentation masks generated by the CellProfiler™ software [55]. Similarly, the
perimeter and aspect ratio were calculated respectively as the number of non-zero pixels at the
edges of the masks and the ratio of major and minor axes lengths [55]. The cell dry mass was
calculated from the 3D RI profile [56]. The morphological parameters were used to train a random
forest classifier with 100 trees using the MATLAB TreeBagger class and inspect the out-of-bag-

error.
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Raman spectroscopic imaging

The cells from three different passages (biological repeats) for each class were seeded on quartz
slides (1 in x 1 in) coated with poly-lysine and incubated overnight to facilitate cell attachment for
Raman imaging. The cells were fixed using 4% paraformaldehyde and washed prior to imaging
in phosphate buffered saline (PBS) at room temperature. Five cells from each slide (technical
repeats) were randomly selected for Raman mapping. The coarse single-cell Raman imaging
experiments were performed on a HORIBA XploRA PLUS confocal Raman microscope. A 532
nm diode laser was used for excitation and delivered to the sample via a 60X water immersion
objective (1.2 NA). The backscattered Raman light was dispersed using an 1800 lines/mm
diffraction grating and imaged on a thermoelectrically cooled CCD coupled to the microscope.
The spectra were acquired from the points on a coarse rectangular grid overlaid on each single
cell to obtain spectra from various subcellular regions and capture intracellular spatial
heterogeneity. Each spectrum in the fingerprint region (600-1950 cm™') was acquired by exposing
the sample to a laser power ca. 1 mW at each point for 2.5s (5 accumulations of 0.5s exposure).

Raman data analysis

All the Raman spectral analysis was performed in MATLAB 2017b (Mathworks) environment.
Spectroscopic imaging of each cell provided a hyperspectral dataset, where each pixel on the
rectangular mapping grid corresponds to a Raman spectrum. The hyperspectral datasets from all
the cells were unfolded (by preserving the spatial information and cell identity) and concatenated
to form a combined spectral dataset for further analysis. The spectra in the fingerprint region were
subjected to background subtraction using a fifth-order best-fit polynomial-based fluorescence
removal method and cosmic ray removal using median filtering on the groups of spectra from
each cell. Next, the points on the mapping grid exterior of the imaged cell were identified by Otsu
thresholding on the 1452 cm™ peak (CH. bending mode of proteins) intensity and labeled
separately for further analysis. The spectra were finally vector normalized to remove the variations
in laser power across the experiments.

To identify spectra from specific subcellular regions, we performed MCR-ALS analysis for
decomposing each spectrum into its constituents by iterative fitting under nonnegativity
constraints on the obtained component spectra (loadings) and their contributions (scores) [57].
The components were identified as rich in cytoplasm, nucleus, and background (quartz and water)
characteristics and confirmed by re-constructing the score maps for each cell. Each spatial
location in the cell is assigned either cytoplasm, nucleus, mixed or background based on the Otsu
thresholding of the cytoplasm-like and nucleus-like component scores, which were both

negatively correlated [54]. The scores corresponding to cytoplasm-like and nucleus-like
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constituents were compared across the three cell lines through violin plots with outlier suppression
for clarity. The significance of differences between medians was determined using Wilcoxon rank-
sum test with the conventional threshold.

Random forest classifiers (bootstrap-aggregated or bagged decision trees) were trained
using the TreeBagger class in MATLAB to enable the identification of the metastatic phenotypes.
We used a leave-one-cell-out protocol by leaving one cell out each time as a test case and training
random forest classifiers on spectra from the remaining cells. Several iterations of training were
performed for each test case by selecting randomized subsets of training data to ensure equal
membership for all the three classes and to avoid overtraining for the class with high data
availability. The spectra of the excluded cell were subjected as a test dataset and the class label
for the entire cell was determined according to the following class assignment criterion. Since the
test dataset (left-out cell) remained the same for all training iterations, the median of predicted
labels for each spectrum was used for decision making at the cell level. For each cell, the majority
class was assigned as the predicted class if its membership was at least 30% higher than the
random chance prediction and 30% higher than the membership of the second majority class. If
these conditions were not met by the majority class, the test cell was labeled unclassified. To
verify the ability of cytoplasm and nucleus spectra for the identification of metastatic phenotype,
the random forest classifiers were run on the cytoplasm- and nucleus-rich spectra identified by

the MCR-ALS analysis, in addition to running them on the entire spectral dataset.

Results and discussion

The availability of isogenic breast cancer cells of varying metastatic potential derived from the
same MDA-MB-231 human breast cancer cell line (Fig. 1A) enabled us to investigate the utility
of label-free optical imaging for the identification of metastatic phenotypes at the single-cell level.
We used parental P231 cells along with their circulating (CTC) and lung metastatic (LM) variants
to assess the efficacy of ODT (Fig. 1B) and Raman spectroscopy (Fig. 1C) for capturing the
phenotypic differences in terms of their morphological and molecular attributes. Our previous
characterization of these cell lines confirmed their distinct metastatic abilities commensurate with
the stage and organ from which they were isolated [31]. Our recent investigation of the biophysical
properties of these cells revealed that the LM cells are most motile and least stiff, which bestow

them with unique invasive capability [8].
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Figure 1. Label-free identification of metastatic phenotypes. (A) Circulating tumor cells (CTC)
and lung metastatic cells (LM) used in the study were isolated from the blood and lungs of mice
bearing parental MDA-MB-231 (P231) tumor xenografts. (B) Refractive index tomograms were
segmented to isolate single-cells for morphological assessment. (C) Coarse Raman maps of
single-cells were subjected to MCR-ALS analysis to identify subcellular regions rich in cytoplasm
and nucleus prior to the use of supervised classification using random forests.
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Figure 2. Morphological assessment of metastatic phenotypes. Representative 3D refractive
tomograms of (A) P231, (B) CTC, and (C) LM cells show the intracellular variation of the refractive
index. The maximum intensity projections of (D) P231, (E) CTC, and (F) LM were used for
determining the 2D morphological parameters. The violin plots show the variations in (G) area,
(H) aspect ratio, and (I) dry mass across the three classes. (J) The out-of-bag classification error
plot shows that random forests build on the morphological parameters fail to accurately predict
metastatic phenotypes. The scale bars represent 5 um. * represents statistically significant
differences at p < 0.05 threshold (Wilcoxon rank-sum test).
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To understand the morphological differences among the phenotypically distinct isogenic
cell lines, we acquired 3D RI tomograms of single cancer cells belonging to each group. While
the RI tomograms of cells from all three cell groups (Fig. 2A-C) show expected intracellular
heterogeneity arising from RI variations across subcellular compartments, the intercellular
differences are not apparent from gross visual inspection. Therefore, the maximum intensity
projections of the RI tomograms (Fig. 2D-F) were subjected to further assessment using
CellProfiler™ software to quantify morphological parameters such as area and aspect ratio. Also,
we calculated the cell dry mass directly from the 3D Rl tomograms to include an additional
dimension in the morphological analysis that cannot be readily measured from brightfield or phase
contrast microscopy. As seen in Fig. 2G, we observed that the area of the cells increased steadily
with the increase in metastatic potential from P231 to LM. However, a significant increase in
aspect ratio (Fig. 2H) was only observed for the CTC in comparison to the P231 and LM classes,
while the differences between the latter were not statistically significant. These observations are
consistent with the characteristics of EMT and MET processes in metastasis of P231 cells to lungs
that respectively result in the acquisition of a spindle shape by the CTC for enhanced motility to
reach the metastatic site and re-acquisition of epithelial shape for promoting the proliferation of
LM cells to form metastatic tumors [3]. We observed that the cell dry mass (Fig. 2l) increased
with the metastatic potential of the isogenic cells, but the difference was statistically significant
only for LM cells in comparison to P231 and CTC. The increase in the cell dry mass of the LM
cells is consistent with the prior observation of an increased RI and cell dry mass of cancer cells
in comparison with normal cells due to the higher accumulation of proteins associated with the
higher proliferation of the former group [58]. Our observation expands this idea to the metastatic
regime and provides a rationale to explore cell dry mass as a potential biomarker of invasiveness
in future studies.

While the phenotypically distinct cell lines showed variable differences in individual
morphological parameters, their utility for identifying phenotypes of single cancer cells is
dependent on the existence of clear class boundaries between the three classes. The violin and
box plots (Fig. 2G-l) show the appreciable overlap in the distribution of each morphological
parameter across the metastatic potential thus making univariate analyses challenging for class
separation. While prior studies have leveraged deep learning methods for cellular classification
based on latent morphological features from the complete cell images, they have largely probed
simpler systems such as bacteria, blood cells, immune cells, and anthrax spores compared to the
current cohort of isogenic breast cancer cells [38, 39]. Since our current study is focused on the

detection of the cellular phenotypes within the constraints of small training datasets, we trained
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random forest classifier to test if supervised models leveraging these three morphological
parameters can accurately predict the metastatic phenotype of test samples. The out-of-bag
classification error rate (Fig. 2J), calculated for each training sample by testing them against the
decision trees in the forest that did not use them for training, was found to asymptotically plateau
around 46% (compared to 33.3% random chance). These results indicate that while phenotype
differences among the isogenic cells show subtle but significant morphological differences, they
are not sufficient for robust classification of closely related cells at a single-cell analytical
resolution, particularly when the training data is relatively scarce.

Next, we sought to check if molecular information provided by vibrational spectroscopy
can enable the identification of metastatic phenotypes at a single-cell analytical resolution.
Therefore, to build a dataset large enough for training machine learning models, we performed
coarse Raman microscopy of all three isogenic cell lines. The entirety of each cell was mapped
coarsely (average of 67 pixels per cell) to capture intracellular heterogeneity. While these coarse
Raman images (Fig. 3A) do not offer diffraction-limited spatial resolution, they capture enough
information for the cell classification task and help significantly reduce the spectral acquisition
time for each cell. The mean (+/- 1 s.d.) of the spectra from the three cell lines (Fig. 3B) show
prominent peaks at 931 cm™, 1003 cm™, 1085 cm™, 1303 cm™, 1450 cm™, 1658 cm indicative of
the common biological constituents of cells and tissues [59]. Since there are no discernible visible
differences between the spectra of the three cell lines, we used MCR-ALS analysis to decompose
the spectra into component spectra and their scores. MCR-ALS decomposition allows
representation of each spectrum in the dataset as a weighted sum of iteratively generated pure
component-like basis spectra, without requiring any composition estimates as inputs [57]. In this
study, a simple three-component MCR-ALS decomposition provided component loadings
harboring features of cytoplasm, nucleus, and quartz background from the slide on which the cells
were cultured (Fig. 3C). We identified MC1 and MC2 as loadings resembling cytoplasm and
nucleus due to the prominence of cytoplasm features at 1003 cm™ (C—C stretching vibration of
the aromatic ring in the phenylalanine side chain) and 1639 cm™ (amide | feature in proteins) in
the former and nucleic acid features at 788 cm™ (O-P-O stretching in DNA) and 1092 cm’’
(symmetric POy stretching in DNA) in the latter. The assignment is also justified by the strong
negative correlation between the MC1 and MC2 scores for each cell, assessed by an average

correlation coefficient of -0.98 over all the cells in the study.
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Figure 3. MCR segmentation of single-cell Raman images. (A) Representative coarse Raman
maps reconstructed using the 1452 cm™ peak intensity shown for P231, CTC, and LM cells. (B)
Mean Raman spectra (with the shadow representing 1 s.d. and vertical offset for clarity) are shown
and some prominent biological peaks highlighted for the three isogenic cell lines used in the study.
(C) The three MCR component loadings derived from the combined spectral dataset are shown.
MC1, MC2, and MC3 respectively show cytoplasm-like, nucleus-like, and quartz background
spectral features. (D) The segmentation maps constructed by thresholding on MCR component
scores for the cells in panel A are shown. The violin plots with embedded box and whisker plots
show the distribution of MCR scores for cytoplasm-like (E) and nucleus-like (F) loadings. The
scale bars represent 2 um. * represents statistically significant differences at p < 0.05 threshold
(Wilcoxon rank-sum test).
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We further verified the assignment by reconstructing the abundance maps for the scores
of MC1 and MC2. We assigned each pixel as cytoplasm, nucleus, or mixed by thresholding on
the MC1 and MC2 scores. Using this MCR-ALS decomposition of spectral dataset allows better
visualization of the spatial demarcation between cytoplasm and nucleus, which was not apparent
in the coarse Raman maps at individual wavenumbers. The identification of pixels as those rich
in cytoplasm and nucleus allow us to dissect the heterogeneous single-cell Raman measurements
into relatively homogenous subsets for identifying subcellular compartments that capture the
information necessary for identification of metastatic phenotypes. The remaining loading MC3,
showing features at 801 cm™ and 1064 cm™, captures the minor contributions of quartz substrate
in the cell spectra. We compared the scores of the cytoplasm-like and nucleus-like components
to understand the relative abundance of these components in the cells of varying metastatic
potential. The violin plots of MC1 and MC2 show that while the median values for the cytoplasm
scores are significantly higher for the CTC in comparison to the P231 cells, the median for the LM
cells is significantly lower in comparison to both P231 and CTC groups. Since the nucleus scores
are negatively correlated with the cytoplasm scores, their medians show an opposite trend. The
similarity of P231 and LM scores and their deviation from CTC hint at the ability of Raman
spectroscopy to identify the differences associated with the EMT and MET processes that make
CTC dissimilar to the P231 and LM cells. These observations are consistent with our prior
characterization of these cell lines that showed significant differences in the mRNA expression
levels of osteopontin (OPN), CD44, and vimentin (VIM) — genes involved in EMT, cell migration,
extracellular matrix organization, and cell adhesion —in CTC and LM cells compared to the P231
cells [31]. Since the MCR scores represent the contribution of the pure component-like spectra to
each spectrum irrespective of its location in the cell, the observed differences in the scores across
the metastatic cascade provide relatively limited direct biological insights. However, these
statistically significant differences in the MC component scores provide a rationale for exploring
supervised classification techniques for the determination of metastatic phenotypes in the studied

cancer cell lines.


https://doi.org/10.1101/2020.09.23.309138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.309138; this version posted September 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A e o
Tius labels ENEEEEEEEEEEEEE EEEEEEEEEEEEEER IDEEEENEEEEEEEE

P231 (L[ | (o e e e N O O
ol NEnEe ey | [ [ ][] [ [ ][] [ O e Lt Ie e
(R I I 5 A

-labels AT NNEEEEEEEREN SRR OO S EE
| C:12 U:0 M:3 T:15 | [ C:15 U:0 M:0 T:15 | C:13 U:1 M:1 T:15 |
0 1 0 1 0 1

B eI NcToS. R »
True labels [HNNNEEREEEENNNEN R EEERER TN EEEENEEE
P231 [JHONEONNEEEEEEN (0000000 ECO OOOeOOC OO OOmco00
cTc OROLIEECOOOED AR EEERERERT (OO0 CooCec ]
(LY. A O o o
d. labels M HNTNARNEREEEEREN DREEEE AR MR EE -
| C:10 U2 M:3T:15 | | C13U:0 M:2 T:15 | | C:11U2MOT13 |
0 1 0 1 0 1

Cc e e
True labels I HNNNNERENEENEEEN NN (OO EEENEEE
g P31 [ NN EEEEEER B 000000 OO OO0 5
cTc UROUUODOOCOOOOD SN IEEEEREN | (0EmECO OO0
M IO EC IO W T EE ] o o e e e e
Pred. labels (T e o e O O O Y I T T T O TN O T M T I
| C:12U.0M:3T:15 | [ C:12 U0 M:2 T:14 | [ C:9 U:0 M4 T:13 |
0 1 0 1 0 1

Pred. freq.

All spectra

o
=
[0
o

Pred. freq.

)
@
Cytoplasm only

Pred. fre

Nucleus only

I Unclassified cells [ Data unavailable for the cell

Figure 4. Leave-one-cell-out random forest classification of Raman images at a single-cell
level. The leave-one-cell-out random forest predictions are shown for the multiclass classification
task by including (A) all the spectra in the dataset, (B) spectra with high cytoplasm MC scores,
and (C) spectra with high nucleus MC scores. Each column represents one unique cell, while the
top and bottom rows respectively show the true and predicted class labels. The other rows show
the normalized prediction frequencies (color bars at the bottom represent color scales) of spectra
from each cell into the three classes. The classification results are summarized for each class to
include the number of cells correctly classified (C), unclassified (U), and misclassified (M) out of
the total (T) cells in the class.
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We employed a multiclass random forest classifier to quantify our ability to classify P231,
CTC, and LM cells based on the biochemical information encoded in their Raman spectra.
Random forests are ensemble classifiers that employ a collection of decision trees constructed
by random sampling of instances and variables in each tree to yield fast and generalizable models
that are void of dependence on specific features or training instances [60]. Due to these
characteristics and the ability to parallelize the tree construction, random forest classifiers are
gaining attention in a variety of research areas including image classification and vibrational
spectroscopy [61]. First, we subjected the entire spectral data consisting of spectra from all
subcellular compartments (cytoplasm, nucleus, and mixed) to a leave-one-cell-out random forest
classification task (as described in Methods). Briefly, we trained the classifier iteratively by leaving
spectra from one cell at a time from the training dataset and subjecting it as a test dataset to the
developed model. We observed satisfactory prediction performance across the three classes with
only 4 misclassifications and 1 unclassification among 45 cells (Fig. 4A). The majority of
misclassifications occurred between P231 and LM classes, while all CTC were classified
accurately. This observation is in agreement with the similarity of both cytoplasm and nucleus
MCR scores for P231 and LM classes and their deviation from CTC. The misclassifications of
P231 cells can also be attributed to the presence of cells in the P231 group that have future
propensity to intravasate into circulation and colonize lungs (i.e. future CTC and LM cells). Unlike
most of the previous studies where the classification of spectra is done at a bulk level [23, 62, 63],
the leave-one-cell-out analysis allowed us to demonstrate not only the ability to identify metastatic
potential at a single-cell level but also the robustness of such classification by completely
excluding representation of the test data from the training dataset.

While the leave-one-cell-out analysis provided an excellent prediction of phenotype for the
cells in all the three classes, the use of the entire dataset comprised of spectra from different
subcellular regions introduces substantial intra-class heterogeneity in the training dataset and
may make prediction challenging. Such difficulty can be further exacerbated if the target
phenotype changes are specifically guided by local molecular variations in particular regions, for
example in the nucleus of cells treated with chemotherapeutic drugs. While there is no direct
attribution of metastatic phenotypes observed in the isogenic panel employed in this study to
specific compartments, we sought to train and test the random forest classifiers using subsets of
the spectral dataset from the regions identified as cytoplasm and nucleus using MCR-ALS
decomposition. The deviation of the observations from the baseline results obtained by subjecting
the entire dataset will provide preliminary insights into specific localization of changes in

subcellular regions that render the CTC and LM cells more metastatic in comparison to the


https://doi.org/10.1101/2020.09.23.309138
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.309138; this version posted September 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

parental P231 cells. First, we restricted our analysis to include only spectra that exhibit high scores
for cytoplasm-like loading (MC1) in training and test datasets. The leave-one-cell-out analysis of
the cytoplasm spectra (Fig. 4B) from the three classes yielded similar predictions with a slight
improvement in the classification of LM cells, where a previously misclassified cell was now
unclassified due to the relative increase of spectral classification into LM group. However, we
found new unclassifications and misclassifications, respectively, in the P231 and CTC classes.
Next, we performed the leave-one-cell-out analysis on the subset of dataset comprised only of
spectra that show high scores of nucleus-like loading (MC2). We observed that the exclusion of
cytoplasm spectra (Fig. 4C) resulted in the deterioration of performance in CTC and LM classes
without affecting the P231 classification. Together, these results show that while the prediction of
P231 and LM cells are primarily driven by the spectra acquired from the nucleus and cytoplasm
respectively, the classification of CTC is more challenging and requires spectra from both regions.
While these observations are preliminary and require further investigation in a larger cohort of
cells, the results hint at the sufficiency of spectra from specific subcellular regions to predict subtle
phenotypic differences associated with metastatic potential in closely related isogenic cells.

In conclusion, our label-free optical study revealed morphological and molecular
differences among isogenic breast cancer cells of progressively increasing metastatic potential.
Using 3D RI tomograms, we showed that the parental P231, circulating CTC, and lung metastatic
LM cells showed subtle yet significant variations in morphology as assessed by area, aspect ratio,
and cell dry mass. The observations were consistent with prior evidence of EMT and MET
processes that guide the metastatic progression of these MDA-MB-231 breast cancer cells. To
uniquely predict the metastatic potential of these cells with single-cell analytical resolution, we
used Raman spectroscopic imaging to capture their biomolecular composition along with the
spatial details. The use of MCR-ALS decomposition allowed better visualization and demarcation
of the nucleus and cytoplasm despite the low resolution of the coarse Raman images. Finally, our
random forest classification models incorporating a leave-one-cell-out strategy provided a route
identification of subtle metastatic phenotype of cells at a single-cell level based on the coarse
Raman maps. Further classification using the spectra individually from cytoplasm and nucleus
regions as identified by MCR-ALS decomposition showed that specific subsets were sufficient for
the identification of metastatic phenotypes. Taken together, these studies show that optical
imaging and spectroscopy are sensitive to the differences in the cellular states guided by
biological processes. We envision that coarse Raman imaging will be leveraged to build large
spectral datasets from clinical samples that are amenable to machine learning analysis for

determination of biomolecular phenotype/variant at a single-cell resolution to avoid loss of
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information associated with the population analyses. The imaging protocol and leave-one-cell-out
random forest routine can readily be extended to the investigation of a variety of phenomena such

as drug response, stem cell differentiation, and immune cell activation.
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