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Abstract 

Identification of the metastatic potential represents one of the most important tasks for molecular 

imaging of cancer. While molecular imaging of metastases has witnessed substantial progress 

as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype 

has proven to be more elusive underscoring the need to marry emerging imaging techniques with 

tumor biology. In this study, we utilize both the morphological and molecular information provided 

by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-

free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic 

panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic 

potential, we show that 3D refractive index tomograms can capture subtle morphological 

differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging 

the molecular specificity of Raman spectroscopy, we demonstrate that coarse Raman microscopy 

is capable of rapidly mapping a sufficient number of cells for training a random forest classifier 

that can accurately predict the metastatic potential of cells at a single-cell level. We also leverage 

multivariate curve resolution – alternating least squares decomposition of the spectral dataset to 

demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic 

phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study 

provides a rationale for employing coarse Raman mapping to substantially reduce measurement 

time thereby enabling the acquisition of reasonably large training datasets that hold the key for 

label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive 

phenotypes. 

 

Keywords: Raman spectroscopy; optical diffraction tomography; breast cancer; metastasis; 

random forests; single-cell phenotyping 
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Introduction 

Timely assessment of risk is critical for the detection and treatment of metastatic disease, which 

remains the main reason for cancer-related mortality [1]. The current clinical standard for 

assessment of metastatic risk relies on pathologic examination of sentinel lymph nodes following 

biopsy. In addition to being an invasive procedure, identification of metastatic cells in lymph node 

biopsies can be challenging and lead to an increase in false negatives [2]. Early detection of 

metastasis requires tools that can recognize the metastatic potential of cancer cells derived from 

the primary tumor or liquid biopsies. As primary tumors grow, a small fraction of the cancer cells 

termed circulating tumor cells (CTC) undergo epithelial to mesenchymal transition (EMT), locally 

invade the surrounding stroma, intravasate and are shed into the bloodstream leveraging their 

enhanced motility [3]. A few of these cells survive in the circulation to extravasate, locally invade 

and form premetastatic niches in secondary organs (e.g. lungs in breast cancer), and colonize 

through re-acquisition of epithelial characteristics via mesenchymal to epithelial transition (MET) 

[3]. While our understanding of the processes involved in metastasis has improved substantially 

in recent years, detecting phenotypic subtypes with metastatic competence has proven to be 

elusive due in part to the substantial heterogeneity observed in these cell populations [4]. 

Furthermore, our understanding of what imparts metastatic potential remains rudimentary, and 

biomarkers that can recognize such competence across different carcinomas are still lacking.  

Early genomic analyses of tumors revealed additional organ-specific mutations in 

metastatic tumors despite sharing common ancestors [5]. Similarly, transcriptional analyses of 

breast cancer metastasis to various organs including lungs and brain have also identified largely 

distinct signatures characteristic of organotropism [6, 7]. However, these population-based 

analyses require elaborate sample preparation and fail to capture the variations in phenotypes at 

a single-cell level. Recently, we and others have also investigated the physical properties 

associated with the differences in metastatic phenotypes in specialized microfluidic platforms [8-

15]. The pursuit of isolating CTC from blood to determine the course of metastatic disease has 

resulted in the proliferation of several cell labeling methods that leverage known epithelial markers 

for identification [16-21]. However, the use of epithelial markers may not be sufficient to detect 

CTC that undergo EMT to acquire mesenchymal properties, particularly in triple-negative breast 

cancers [22]. Also, the sensitivity of these methods is challenged by the small number of known 

markers of metastatic progression that can be targeted simultaneously. 

To address these challenges, several techniques based on optical microscopy and 

imaging have attempted label-free phenotyping of cancer cells [23-27]. For example, phenotypic 

changes of 4T1 murine breast cancer cells in response to drug treatment were characterized in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.309138doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309138
http://creativecommons.org/licenses/by-nc-nd/4.0/


terms of morphological parameters extracted from fluorescence images in 3D cultures [25]. 

Rohde and co-workers have developed an automated platform for morphological analysis of 

cellular phenotypes using transport-based morphometry [24], which we recently used to analyze 

the quantitative phase images of activated and naïve CD8+ T cells [28]. Similar optical methods 

have also been leveraged for single-cell analysis of cancer phenotypes [29, 30], which often 

require large datasets for building robust prediction models. 

In this study, we employed 3D optical diffraction tomography (ODT) and label-free Raman 

spectroscopy to quantitatively investigate both morphological and molecular differences between 

isogenic breast cancer cells of varying metastatic potential. We used a set of three isogenic cell 

lines composed of the parental MDA-MB-231 triple-negative breast cancer cell line (P231), 

circulating tumor cells (CTC), and lung metastatic cells (LM) where the latter two were derived 

respectively from the circulation and lungs of a mouse bearing parental P231 cells [31, 32]. 

Compared to the widely used qualitative phase imaging methods, such as Zernike phase contrast 

and differential interference contrast, quantitative phase imaging methods recover the phase 

delay caused by the sample, decoupled from absorption information. ODT is a form of quantitative 

phase imaging that allows morphological analysis of single-cells based on their 3D refractive 

index (RI) profiles [33-35]. In addition to providing traditional measures of morphology such as 

area and aspect ratio, the RI information allows a label-free and non-contact route for the 

determination of cell dry mass and local thickness of specimens with nanometric sensitivity [36]. 

The additional morphological insights provided by optical diffraction tomography have been 

increasingly exploited for label-free and stain-free in vitro analysis of cells and tissues [33, 34, 

37]. Yet, most of the cellular studies have focused on either visualization of morphological 

dynamics in response to external stimuli such as drug exposure in single-cells or rapid 

identification of cells such as bacteria and white blood cells using deep learning by leveraging 

large datasets [38, 39]. Its utility in assessment of phenotypic differences among closely related 

mammalian cancer cells, particularly in data-limited settings, remains largely unexplored.  

Raman spectroscopy, on the other hand, provides a label-free route for assessment of 

biological specimens with exquisite molecular specificity [40, 41]. This optical technique, based 

on the inelastic scattering of light, probes vibrational modes of molecules and allows direct 

profiling of molecular composition of biological specimens including live cells and tissues in their 

native states  [40-42]. The simple integration of Raman spectroscopy with optical microscopy 

facilitates seamless vibrational spectroscopic imaging at diffraction-limited spatial resolution with 

subcellular resolution. Several groups including our own laboratory have exploited the high 

resolution and rich molecular information afforded by Raman spectroscopic imaging to study the 
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molecular progression of cancer [23, 41, 43-45]. Due to the low likelihood of spontaneous Raman 

scattering, most single-cell imaging studies have focused on employing nanoparticles for 

plasmonic enhancement of signals and selective tagging of subcellular regions of interest [46, 

47]. Therefore, only a few studies have attempted label-free characterization of cells for studying 

biological processes associated with physiological changes, disease progression, and drug 

response [48-50]. Our recent label-free Raman investigation in pellets of isogenic breast cancer 

cell lines that exhibit organotropism to brain, liver, lung, and spine revealed distinct metastatic 

organ-specific spectral signatures that were confirmed by metabolomics analysis [23]. Due to the 

long acquisition time, label-free Raman spectroscopic studies have either exploited high-

resolution single-cell maps for analysis of limited cells or bulk sampling of cell populations that 

permits the use of machine learning algorithms for classification problems by generating large 

datasets at the cost of spatial information. This tradeoff between obtaining higher spatial 

resolution maps and acquiring sufficiently large datasets amenable for machine learning has 

largely prevented the use of machine learning techniques to learn and predict cellular phenotypes 

from Raman images with single-cell analytical resolution. 

Therefore, in this study, we sought to test whether morphological attributes encoded by 

ODT and biomolecular insights obtained using Raman spectroscopy can predict the phenotype 

of the closely related isogenic cell lines P231, CTC and LM of varying metastatic potentials with 

statistical confidence. Using the 3D RI profiles obtained from ODT of single-cells, we compared 

the distributions of morphological parameters such as area, aspect ratio, and dry mass across 

the three classes, and used their combination to train and test random forest classifiers for 

automated identification. By leveraging coarse Raman sampling of single cancer cells to reduce 

the acquisition time and obtain spectral maps from a larger number of cells, we explored the 

intersection of the abovementioned resolution-sampling tradeoff to find a solution for identifying 

metastatic phenotype of cancer cells with single-cell analytical resolution. To show that coarse 

Raman maps capture sufficient information for achieving single-cell phenotyping, we used 

random forests to iteratively test spectral maps of individual cells against classifiers trained on the 

data from the remaining cells in the dataset. Furthermore, we used multivariate curve resolution 

alternating least squares (MCR-ALS) analysis to identify the spectra from subcellular 

compartments and test the utility of random forest classification in predicting the metastatic 

phenotype when only spectra from either nucleus or cytoplasm are available. The ability to use 

specific subcellular regions of the cell for chemical imaging is expected to further reduce the 

spectral acquisition time and boost the number of cells in the training dataset to capture population 

heterogeneity. Such label-free identification of cells with high metastatic competence would not 
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only have a profound impact on the prediction of a patient’s risk of developing metastasis but also 

inform the design of optimal, personalized therapeutic treatments. 

 
Materials and methods 

Cell culture 

An isogenic panel of varying metastatic potential derived from the human breast cancer cell line 

MDA-MB-231 was used in this study. In addition to the td-Tomato expressing parental MDA-MB-

231 cells (P231), the panel consisted of CTC and LM cells previously obtained after orthotopic 

implantation of the parental cells in the fourth right mammary fat pad of female athymic nu/nu 

female mouse (NCI) as detailed in our previous publications [31, 32]. The three cell lines were 

cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), 100 U/ml 

penicillin, and 100 µg/ml streptomycin and maintained at 37 0C and 5% CO2 in a humidified 

incubator. 

Optical diffraction tomography and data analysis 

The three cell lines were seeded in glass coverslip-bottom Petri dishes for tomography. The 

morphological assessment of the cells was performed on an ODT system (HT-1H, Tomocube 

Inc., Republic of Korea) comprised of a 60X water-immersion objective (1.2 NA), an off-axis Mach-

Zehnder interferometer with a 532 nm laser and a digital micromirror device (DMD) for 

tomographic scanning of each cell [51]. The 3-D RI distribution of the cells was reconstructed 

from the interferograms using the Fourier diffraction theorem as described previously [52]. 

TomoStuido (Tomocube Inc, Republic of Korea) was used to perform reconstruction and 

visualization of 3D RI maps and their 2D maximum intensity projections (MIP). The 2D MIP 

images were segmented using CellProfilerTM (v3.1.9) software to isolate single-cells using Otsu 

two-class thresholding and neglecting the partial cells at the boundaries of raw images [53, 54]. 

After segmentation, we obtained 57, 35, and 44 cells in P231, CTC, and LM classes respectively. 

The area of each cell was calculated by counting the number of non-zero pixels in their 

corresponding segmentation masks generated by the CellProfilerTM software [55]. Similarly, the 

perimeter and aspect ratio were calculated respectively as the number of non-zero pixels at the 

edges of the masks and the ratio of major and minor axes lengths [55]. The cell dry mass was 

calculated from the 3D RI profile [56]. The morphological parameters were used to train a random 

forest classifier with 100 trees using the MATLAB TreeBagger class and inspect the out-of-bag-

error. 
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Raman spectroscopic imaging 

The cells from three different passages (biological repeats) for each class were seeded on quartz 

slides (1 in x 1 in) coated with poly-lysine and incubated overnight to facilitate cell attachment for 

Raman imaging. The cells were fixed using 4% paraformaldehyde and washed prior to imaging 

in phosphate buffered saline (PBS) at room temperature. Five cells from each slide (technical 

repeats) were randomly selected for Raman mapping. The coarse single-cell Raman imaging 

experiments were performed on a HORIBA XploRA PLUS confocal Raman microscope. A 532 

nm diode laser was used for excitation and delivered to the sample via a 60X water immersion 

objective (1.2 NA). The backscattered Raman light was dispersed using an 1800 lines/mm 

diffraction grating and imaged on a thermoelectrically cooled CCD coupled to the microscope. 

The spectra were acquired from the points on a coarse rectangular grid overlaid on each single 

cell to obtain spectra from various subcellular regions and capture intracellular spatial 

heterogeneity. Each spectrum in the fingerprint region (600-1950 cm-1) was acquired by exposing 

the sample to a laser power ca. 1 mW at each point for 2.5s (5 accumulations of 0.5s exposure). 

Raman data analysis  

All the Raman spectral analysis was performed in MATLAB 2017b (Mathworks) environment. 

Spectroscopic imaging of each cell provided a hyperspectral dataset, where each pixel on the 

rectangular mapping grid corresponds to a Raman spectrum. The hyperspectral datasets from all 

the cells were unfolded (by preserving the spatial information and cell identity) and concatenated 

to form a combined spectral dataset for further analysis. The spectra in the fingerprint region were 

subjected to background subtraction using a fifth-order best-fit polynomial-based fluorescence 

removal method and cosmic ray removal using median filtering on the groups of spectra from 

each cell. Next, the points on the mapping grid exterior of the imaged cell were identified by Otsu 

thresholding on the 1452 cm-1 peak (CH2 bending mode of proteins) intensity and labeled 

separately for further analysis. The spectra were finally vector normalized to remove the variations 

in laser power across the experiments.  

To identify spectra from specific subcellular regions, we performed MCR-ALS analysis for 

decomposing each spectrum into its constituents by iterative fitting under nonnegativity 

constraints on the obtained component spectra (loadings) and their contributions (scores) [57]. 

The components were identified as rich in cytoplasm, nucleus, and background (quartz and water) 

characteristics and confirmed by re-constructing the score maps for each cell. Each spatial 

location in the cell is assigned either cytoplasm, nucleus, mixed or background based on the Otsu 

thresholding of the cytoplasm-like and nucleus-like component scores, which were both 

negatively correlated [54]. The scores corresponding to cytoplasm-like and nucleus-like 
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constituents were compared across the three cell lines through violin plots with outlier suppression 

for clarity. The significance of differences between medians was determined using Wilcoxon rank-

sum test with the conventional threshold. 

Random forest classifiers (bootstrap-aggregated or bagged decision trees) were trained 

using the TreeBagger class in MATLAB to enable the identification of the metastatic phenotypes. 

We used a leave-one-cell-out protocol by leaving one cell out each time as a test case and training 

random forest classifiers on spectra from the remaining cells. Several iterations of training were 

performed for each test case by selecting randomized subsets of training data to ensure equal 

membership for all the three classes and to avoid overtraining for the class with high data 

availability. The spectra of the excluded cell were subjected as a test dataset and the class label 

for the entire cell was determined according to the following class assignment criterion. Since the 

test dataset (left-out cell) remained the same for all training iterations, the median of predicted 

labels for each spectrum was used for decision making at the cell level. For each cell, the majority 

class was assigned as the predicted class if its membership was at least 30% higher than the 

random chance prediction and 30% higher than the membership of the second majority class. If 

these conditions were not met by the majority class, the test cell was labeled unclassified. To 

verify the ability of cytoplasm and nucleus spectra for the identification of metastatic phenotype, 

the random forest classifiers were run on the cytoplasm- and nucleus-rich spectra identified by 

the MCR-ALS analysis, in addition to running them on the entire spectral dataset. 

 

Results and discussion 

The availability of isogenic breast cancer cells of varying metastatic potential derived from the 

same MDA-MB-231 human breast cancer cell line (Fig. 1A) enabled us to investigate the utility 

of label-free optical imaging for the identification of metastatic phenotypes at the single-cell level. 

We used parental P231 cells along with their circulating (CTC) and lung metastatic (LM) variants 

to assess the efficacy of ODT (Fig. 1B) and Raman spectroscopy (Fig. 1C) for capturing the 

phenotypic differences in terms of their morphological and molecular attributes. Our previous 

characterization of these cell lines confirmed their distinct metastatic abilities commensurate with 

the stage and organ from which they were isolated [31]. Our recent investigation of the biophysical 

properties of these cells revealed that the LM cells are most motile and least stiff, which bestow 

them with unique invasive capability [8].  
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Figure 1. Label-free identification of metastatic phenotypes. (A) Circulating tumor cells (CTC) 
and lung metastatic cells (LM) used in the study were isolated from the blood and lungs of mice 
bearing parental MDA-MB-231 (P231) tumor xenografts. (B) Refractive index tomograms were 
segmented to isolate single-cells for morphological assessment. (C) Coarse Raman maps of 
single-cells were subjected to MCR-ALS analysis to identify subcellular regions rich in cytoplasm 
and nucleus prior to the use of supervised classification using random forests.  
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Figure 2. Morphological assessment of metastatic phenotypes. Representative 3D refractive 
tomograms of (A) P231, (B) CTC, and (C) LM cells show the intracellular variation of the refractive 
index. The maximum intensity projections of (D) P231, (E) CTC, and (F) LM were used for 
determining the 2D morphological parameters. The violin plots show the variations in (G) area, 
(H) aspect ratio, and (I) dry mass across the three classes. (J) The out-of-bag classification error 
plot shows that random forests build on the morphological parameters fail to accurately predict 
metastatic phenotypes. The scale bars represent 5 µm. * represents statistically significant 
differences at p < 0.05 threshold (Wilcoxon rank-sum test).  
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To understand the morphological differences among the phenotypically distinct isogenic 

cell lines, we acquired 3D RI tomograms of single cancer cells belonging to each group. While 

the RI tomograms of cells from all three cell groups (Fig. 2A-C) show expected intracellular 

heterogeneity arising from RI variations across subcellular compartments, the intercellular 

differences are not apparent from gross visual inspection. Therefore, the maximum intensity 

projections of the RI tomograms (Fig. 2D-F) were subjected to further assessment using 

CellProfilerTM software to quantify morphological parameters such as area and aspect ratio. Also, 

we calculated the cell dry mass directly from the 3D RI tomograms to include an additional 

dimension in the morphological analysis that cannot be readily measured from brightfield or phase 

contrast microscopy. As seen in Fig. 2G, we observed that the area of the cells increased steadily 

with the increase in metastatic potential from P231 to LM. However, a significant increase in 

aspect ratio (Fig. 2H) was only observed for the CTC in comparison to the P231 and LM classes, 

while the differences between the latter were not statistically significant. These observations are 

consistent with the characteristics of EMT and MET processes in metastasis of P231 cells to lungs 

that respectively result in the acquisition of a spindle shape by the CTC for enhanced motility to 

reach the metastatic site and re-acquisition of epithelial shape for promoting the proliferation of 

LM cells to form metastatic tumors [3]. We observed that the cell dry mass (Fig. 2I) increased 

with the metastatic potential of the isogenic cells, but the difference was statistically significant 

only for LM cells in comparison to P231 and CTC. The increase in the cell dry mass of the LM 

cells is consistent with the prior observation of an increased RI and cell dry mass of cancer cells 

in comparison with normal cells due to the higher accumulation of proteins associated with the 

higher proliferation of the former group [58]. Our observation expands this idea to the metastatic 

regime and provides a rationale to explore cell dry mass as a potential biomarker of invasiveness 

in future studies. 

While the phenotypically distinct cell lines showed variable differences in individual 

morphological parameters, their utility for identifying phenotypes of single cancer cells is 

dependent on the existence of clear class boundaries between the three classes. The violin and 

box plots (Fig. 2G-I) show the appreciable overlap in the distribution of each morphological 

parameter across the metastatic potential thus making univariate analyses challenging for class 

separation. While prior studies have leveraged deep learning methods for cellular classification 

based on latent morphological features from the complete cell images, they have largely probed 

simpler systems such as bacteria, blood cells, immune cells, and anthrax spores compared to the 

current cohort of isogenic breast cancer cells [38, 39]. Since our current study is focused on the 

detection of the cellular phenotypes within the constraints of small training datasets, we trained 
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random forest classifier to test if supervised models leveraging these three morphological 

parameters can accurately predict the metastatic phenotype of test samples. The out-of-bag 

classification error rate (Fig. 2J), calculated for each training sample by testing them against the 

decision trees in the forest that did not use them for training, was found to asymptotically plateau 

around 46% (compared to 33.3% random chance). These results indicate that while phenotype 

differences among the isogenic cells show subtle but significant morphological differences, they 

are not sufficient for robust classification of closely related cells at a single-cell analytical 

resolution, particularly when the training data is relatively scarce. 

Next, we sought to check if molecular information provided by vibrational spectroscopy 

can enable the identification of metastatic phenotypes at a single-cell analytical resolution. 

Therefore, to build a dataset large enough for training machine learning models, we performed 

coarse Raman microscopy of all three isogenic cell lines. The entirety of each cell was mapped 

coarsely (average of 67 pixels per cell) to capture intracellular heterogeneity. While these coarse 

Raman images (Fig. 3A) do not offer diffraction-limited spatial resolution, they capture enough 

information for the cell classification task and help significantly reduce the spectral acquisition 

time for each cell. The mean (+/- 1 s.d.) of the spectra from the three cell lines (Fig. 3B) show 

prominent peaks at 931 cm-1, 1003 cm-1, 1085 cm-1, 1303 cm-1, 1450 cm-1, 1658 cm-1 indicative of 

the common biological constituents of cells and tissues [59]. Since there are no discernible visible 

differences between the spectra of the three cell lines, we used MCR-ALS analysis to decompose 

the spectra into component spectra and their scores. MCR-ALS decomposition allows 

representation of each spectrum in the dataset as a weighted sum of iteratively generated pure 

component-like basis spectra, without requiring any composition estimates as inputs [57]. In this 

study, a simple three-component MCR-ALS decomposition provided component loadings 

harboring features of cytoplasm, nucleus, and quartz background from the slide on which the cells 

were cultured (Fig. 3C). We identified MC1 and MC2 as loadings resembling cytoplasm and 

nucleus due to the prominence of cytoplasm features at 1003 cm-1 (C–C stretching vibration of 

the aromatic ring in the phenylalanine side chain) and 1639 cm-1 (amide I feature in proteins) in 

the former and nucleic acid features at 788 cm-1 (O-P-O stretching in DNA) and 1092 cm-1 

(symmetric PO2
- stretching in DNA) in the latter. The assignment is also justified by the strong 

negative correlation between the MC1 and MC2 scores for each cell, assessed by an average 

correlation coefficient of -0.98 over all the cells in the study.  
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Figure 3. MCR segmentation of single-cell Raman images. (A) Representative coarse Raman 
maps reconstructed using the 1452 cm-1 peak intensity shown for P231, CTC, and LM cells. (B) 
Mean Raman spectra (with the shadow representing 1 s.d. and vertical offset for clarity) are shown 
and some prominent biological peaks highlighted for the three isogenic cell lines used in the study. 
(C) The three MCR component loadings derived from the combined spectral dataset are shown. 
MC1, MC2, and MC3 respectively show cytoplasm-like, nucleus-like, and quartz background 
spectral features. (D) The segmentation maps constructed by thresholding on MCR component 
scores for the cells in panel A are shown. The violin plots with embedded box and whisker plots 
show the distribution of MCR scores for cytoplasm-like (E) and nucleus-like (F) loadings. The 
scale bars represent 2 µm. * represents statistically significant differences at p < 0.05 threshold 
(Wilcoxon rank-sum test).  
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We further verified the assignment by reconstructing the abundance maps for the scores 

of MC1 and MC2. We assigned each pixel as cytoplasm, nucleus, or mixed by thresholding on 

the MC1 and MC2 scores. Using this MCR-ALS decomposition of spectral dataset allows better 

visualization of the spatial demarcation between cytoplasm and nucleus, which was not apparent 

in the coarse Raman maps at individual wavenumbers. The identification of pixels as those rich 

in cytoplasm and nucleus allow us to dissect the heterogeneous single-cell Raman measurements 

into relatively homogenous subsets for identifying subcellular compartments that capture the 

information necessary for identification of metastatic phenotypes. The remaining loading MC3, 

showing features at 801 cm-1 and 1064 cm-1, captures the minor contributions of quartz substrate 

in the cell spectra. We compared the scores of the cytoplasm-like and nucleus-like components 

to understand the relative abundance of these components in the cells of varying metastatic 

potential. The violin plots of MC1 and MC2 show that while the median values for the cytoplasm 

scores are significantly higher for the CTC in comparison to the P231 cells, the median for the LM 

cells is significantly lower in comparison to both P231 and CTC groups. Since the nucleus scores 

are negatively correlated with the cytoplasm scores, their medians show an opposite trend. The 

similarity of P231 and LM scores and their deviation from CTC hint at the ability of Raman 

spectroscopy to identify the differences associated with the EMT and MET processes that make 

CTC dissimilar to the P231 and LM cells. These observations are consistent with our prior 

characterization of these cell lines that showed significant differences in the mRNA expression 

levels of osteopontin (OPN), CD44, and vimentin (VIM) – genes involved in EMT, cell migration, 

extracellular matrix organization, and cell adhesion – in CTC and LM cells compared to the P231 

cells [31]. Since the MCR scores represent the contribution of the pure component-like spectra to 

each spectrum irrespective of its location in the cell, the observed differences in the scores across 

the metastatic cascade provide relatively limited direct biological insights. However, these 

statistically significant differences in the MC component scores provide a rationale for exploring 

supervised classification techniques for the determination of metastatic phenotypes in the studied 

cancer cell lines. 
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Figure 4. Leave-one-cell-out random forest classification of Raman images at a single-cell 
level. The leave-one-cell-out random forest predictions are shown for the multiclass classification 
task by including (A) all the spectra in the dataset, (B) spectra with high cytoplasm MC scores, 
and (C) spectra with high nucleus MC scores. Each column represents one unique cell, while the 
top and bottom rows respectively show the true and predicted class labels. The other rows show 
the normalized prediction frequencies (color bars at the bottom represent color scales) of spectra 
from each cell into the three classes. The classification results are summarized for each class to 
include the number of cells correctly classified (C), unclassified (U), and misclassified (M) out of 
the total (T) cells in the class.  
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We employed a multiclass random forest classifier to quantify our ability to classify P231, 

CTC, and LM cells based on the biochemical information encoded in their Raman spectra. 

Random forests are ensemble classifiers that employ a collection of decision trees constructed 

by random sampling of instances and variables in each tree to yield fast and generalizable models 

that are void of dependence on specific features or training instances [60]. Due to these 

characteristics and the ability to parallelize the tree construction, random forest classifiers are 

gaining attention in a variety of research areas including image classification and vibrational 

spectroscopy [61]. First, we subjected the entire spectral data consisting of spectra from all 

subcellular compartments (cytoplasm, nucleus, and mixed) to a leave-one-cell-out random forest 

classification task (as described in Methods). Briefly, we trained the classifier iteratively by leaving 

spectra from one cell at a time from the training dataset and subjecting it as a test dataset to the 

developed model. We observed satisfactory prediction performance across the three classes with 

only 4 misclassifications and 1 unclassification among 45 cells (Fig. 4A). The majority of 

misclassifications occurred between P231 and LM classes, while all CTC were classified 

accurately. This observation is in agreement with the similarity of both cytoplasm and nucleus 

MCR scores for P231 and LM classes and their deviation from CTC. The misclassifications of 

P231 cells can also be attributed to the presence of cells in the P231 group that have future 

propensity to intravasate into circulation and colonize lungs (i.e. future CTC and LM cells). Unlike 

most of the previous studies where the classification of spectra is done at a bulk level [23, 62, 63], 

the leave-one-cell-out analysis allowed us to demonstrate not only the ability to identify metastatic 

potential at a single-cell level but also the robustness of such classification by completely 

excluding representation of the test data from the training dataset. 

While the leave-one-cell-out analysis provided an excellent prediction of phenotype for the 

cells in all the three classes, the use of the entire dataset comprised of spectra from different 

subcellular regions introduces substantial intra-class heterogeneity in the training dataset and 

may make prediction challenging. Such difficulty can be further exacerbated if the target 

phenotype changes are specifically guided by local molecular variations in particular regions, for 

example in the nucleus of cells treated with chemotherapeutic drugs. While there is no direct 

attribution of metastatic phenotypes observed in the isogenic panel employed in this study to 

specific compartments, we sought to train and test the random forest classifiers using subsets of 

the spectral dataset from the regions identified as cytoplasm and nucleus using MCR-ALS 

decomposition. The deviation of the observations from the baseline results obtained by subjecting 

the entire dataset will provide preliminary insights into specific localization of changes in 

subcellular regions that render the CTC and LM cells more metastatic in comparison to the 
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parental P231 cells. First, we restricted our analysis to include only spectra that exhibit high scores 

for cytoplasm-like loading (MC1) in training and test datasets. The leave-one-cell-out analysis of 

the cytoplasm spectra (Fig. 4B) from the three classes yielded similar predictions with a slight 

improvement in the classification of LM cells, where a previously misclassified cell was now 

unclassified due to the relative increase of spectral classification into LM group. However, we 

found new unclassifications and misclassifications, respectively, in the P231 and CTC classes. 

Next, we performed the leave-one-cell-out analysis on the subset of dataset comprised only of 

spectra that show high scores of nucleus-like loading (MC2). We observed that the exclusion of 

cytoplasm spectra (Fig. 4C) resulted in the deterioration of performance in CTC and LM classes 

without affecting the P231 classification. Together, these results show that while the prediction of 

P231 and LM cells are primarily driven by the spectra acquired from the nucleus and cytoplasm 

respectively, the classification of CTC is more challenging and requires spectra from both regions. 

While these observations are preliminary and require further investigation in a larger cohort of 

cells, the results hint at the sufficiency of spectra from specific subcellular regions to predict subtle 

phenotypic differences associated with metastatic potential in closely related isogenic cells. 

In conclusion, our label-free optical study revealed morphological and molecular 

differences among isogenic breast cancer cells of progressively increasing metastatic potential. 

Using 3D RI tomograms, we showed that the parental P231, circulating CTC, and lung metastatic 

LM cells showed subtle yet significant variations in morphology as assessed by area, aspect ratio, 

and cell dry mass. The observations were consistent with prior evidence of EMT and MET 

processes that guide the metastatic progression of these MDA-MB-231 breast cancer cells. To 

uniquely predict the metastatic potential of these cells with single-cell analytical resolution, we 

used Raman spectroscopic imaging to capture their biomolecular composition along with the 

spatial details. The use of MCR-ALS decomposition allowed better visualization and demarcation 

of the nucleus and cytoplasm despite the low resolution of the coarse Raman images. Finally, our 

random forest classification models incorporating a leave-one-cell-out strategy provided a route 

identification of subtle metastatic phenotype of cells at a single-cell level based on the coarse 

Raman maps. Further classification using the spectra individually from cytoplasm and nucleus 

regions as identified by MCR-ALS decomposition showed that specific subsets were sufficient for 

the identification of metastatic phenotypes. Taken together, these studies show that optical 

imaging and spectroscopy are sensitive to the differences in the cellular states guided by 

biological processes. We envision that coarse Raman imaging will be leveraged to build large 

spectral datasets from clinical samples that are amenable to machine learning analysis for 

determination of biomolecular phenotype/variant at a single-cell resolution to avoid loss of 
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information associated with the population analyses. The imaging protocol and leave-one-cell-out 

random forest routine can readily be extended to the investigation of a variety of phenomena such 

as drug response, stem cell differentiation, and immune cell activation. 
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