

1 An in-silico study to determine whether changes to mitochondria
2 organization through engineered mitochondrial dynamics can
3 enhance bioenergetics in cardiomyocytes

4
5 Adarsh Kumbhari¹, Shouryadipta Ghosh², Peter S. Kim¹, Vijay Rajagopal^{2,*}

6
7 ¹School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia;

8 ²Cell Structure and Mechanobiology Group, Melbourne School of Engineering, University of
9 Melbourne, Melbourne, VIC, 3010, Australia;

10 *Correspondence: vijay.rajagopal@unimelb.edu.au

11

12 **SUMMARY**

13 Mitochondria are the powerhouse of the cell and owing to their unique energetic demands,
14 heart muscles contain a high density of mitochondria. In conditions such as heart failure and
15 diabetes-induced heart disease, changes in the organization of cardiac mitochondria are
16 common. While recent studies have also shown that cardiac mitochondria split and fuse
17 throughout the cell, a mechanistic understanding of how mitochondrial dynamics may affect
18 energy output is lacking. Using a mathematical model that has been fitted to experimental
19 data, we test if briefly altering fission or fusion rates improves ATP production and supply in
20 cardiomyocytes. Unexpectedly, we found that cardiac bioenergetics, e.g., the ADP/ATP ratio,
21 were robust to changes in fusion and fission rates and consequently mitochondria
22 organization. Our study highlights complex nonlinear feedback loops that are at play in the
23 cross-talk between mitochondrial dynamics and bioenergetics. The study motivate further in-
24 silico and experimental investigations to determine the mechanistic basis for new therapies
25 that target mitochondrial dynamics.

26 **INTRODUCTION**

27 Mitochondria meet cellular energy demands by converting nutrients into chemical energy in the
28 form of adenosine triphosphate (ATP). In cardiomyocytes, mitochondria have a particularly
29 challenging job, as the heart must pump up to six liters of blood per minute, continuously from
30 birth (Cattermole et al., 2017). Far from being static, mitochondria are continually splitting and
31 fusing in response to energy demands and stressors (Youle and van der Bliek, 2012). While
32 there is an emerging body of experimental work on fission and fusion, there are no quantitative
33 frameworks that investigate if changes to mitochondria arrangement through fission and fusion,
34 can help with bioenergetics.

35

36 Cardiac mitochondria are organized into networks of clusters that are interspersed between
37 contractile protein bundles (Ghosh et al., 2018; Glancy et al., 2017). Furthermore, recent
38 studies have shown that cardiac mitochondria dynamically change their organization (Ong et
39 al., 2015; Glancy et al., 2017) and that it is disrupted in diseased cells (Cao and Zheng, 2019;
40 Galloway and Yoon, 2015). For example, Chen et al. (2012) observed that deficiencies in
41 mitochondrial fusion proteins Mfn1 and Mfn2 cause mild cardiomyopathy. Additionally, defects
42 in the mitochondrial fusion protein OPA1 may cause left ventricular hypertrophy (Piquereau et
43 al., 2012), leading to an increased risk of arrhythmias and heart failure (Frey et al., 2004; Frey
44 and Olson, 2003). Studies by Jarosz et al. (2017) and others have also shown altered
45 organization of mitochondria in diabetes-induced heart disease.

46

47 A key idea is that mitochondrial fission and fusion ensure mitochondrial quality control. For
48 example, mitochondrial fusion mediates internal machinery sharing, such as mitochondrial
49 respiration and the equilibration of mitochondrial membrane potential (Chen et al., 2005; Eisner
50 et al., 2014; Eisner et al., 2018; Twig et al., 2008). Thus, by diluting mitochondrial damage,
51 fusion facilitates quality control. Drp1 governs mitochondrial fission (Eisner et al., 2018; Ong et
52 al., 2015), which facilitates quality control by promoting the fragmentation of highly damaged
53 mitochondria and limits the propagation of mitochondrial dysfunction (Eisner et al., 2018;
54 Glancy et al., 2017; Ong et al., 2015). Fission decreases during periods of bioenergetic stress

55 (Gomes et al., 2011; Liesa and Shirihai, 2013), but may increase locally to minimize the spread
56 of mitochondrial dysfunction.

57

58 Additionally, mitochondria may increase their mass via biogenesis in response to nutrient
59 deprivation or biophysical stress (Jager et al., 2007; Mihaylova and Shaw, 2011; Scarpulla,
60 2011). Mitochondrial biogenesis is mediated by the protein PGC-1 α and facilitates quality
61 control by promoting mitochondrial homeostasis (Boland et al., 2013; Dalmasso et al., 2017).
62 Despite tantalizing evidence that mitochondrial dynamics could be a possible therapeutic target
63 to improve mitochondrial function and hence energy production (Ong et al., 2015; Ong et al.,
64 2010), the precise mechanistic and causal relationship between mitochondrial dynamics and
65 bioenergetics is still to be explored and would help identify effective drug targets that are based
66 on the underlying mechanism.

67

68 We have recently shown that changes to mitochondria morphology and their spatial distribution
69 can influence the distribution of energy metabolites and consequently contractile force under
70 hypoxic, and high-workload conditions (Jarosz et al., 2017; Ghosh et al., 2018). These findings
71 were based on a biophysics-based computational model of mitochondrial function and spatially
72 detailed geometric models of cardiomyocyte architecture derived from electron microscopy
73 images. The works of Eisner et al. (2017) and Glancy et al. (2017) suggest that mitochondrial
74 fusion and fission rates increase at high workloads. These experimental and computational
75 studies suggest that dynamic alterations to mitochondria density and organization, via altered
76 fusion and fission rates, might help meet high energy demands at high workloads.

77

78 In this study, we integrated the current understanding, that is outlined above, of the role of
79 fusion/fission dynamics, biogenesis, and mitochondria organization on cardiac bioenergetics
80 into a semi-quantitative mechanistic modelling framework. We have considered three plausible
81 mechanisms by which mitochondrial dynamics and biogenesis can regulate mitochondrial
82 bioenergetics: (i) increased mitochondrial connectivity can enhance the OXPHOS capacity of
83 individual mitochondria; (ii) increased mitochondrial volume can increase the total OXPHOS
84 capacity of the cell; and (iii) mitochondrial network reorganization can favorably alter the

85 diffusion distances between mitochondria and myofibrils for a rapid and steady supply of ATP.
86 We used this model to test whether increasing or decreasing fusion or fission rates would affect
87 bioenergetics. Specifically, we sought to: (i) investigate whether mitochondria network
88 morphological changes stemming from alterations in network connectivity affect bioenergetics
89 in physiological and pathological conditions; (ii) investigate how altered bioenergetics could
90 affect fusion/fission dynamics; and (iii) determine key parameters that need to be measured to
91 robustly validate or negate our model predictions and thus formalize a mechanistic model of
92 the link between mitochondrial dynamics and bioenergetics. As a simplifying assumption, we
93 limit our study to investigate cross-talk on an acute scale of two minutes, which suffices to
94 observe dynamic changes in mitochondria network morphology experimentally (Glancy et al.,
95 2017).

96

97 Our computational model is a hybrid agent-based- and partial differential equation model. The
98 agent-based model (ABM) simulates changes in mitochondrial connectivity and mitochondrial
99 mass such as fission, fusion, and biogenesis, while the partial differential equation (PDE)
100 system models various bioenergetic interactions such as oxidative-phosphorylation
101 (OXPHOS), ATP hydrolysis, and the breakdown of reactive oxygen species. In particular, we
102 assumed that mitochondrial connectivity, via fission and fusion, directly feeds forward into
103 OXPHOS and electron transport chain (ETC) kinetics, which then feeds back into fission and
104 fusion dynamics. We then calibrated the model against existing experimental data on cardiac
105 mitochondrial bioenergetics and dynamics in the literature.

106

107 Remarkably, our simulations show that bioenergetics are robust to varied fission and fusion
108 rates in the short term under physiological conditions. However, fusion and fission may
109 enhance bioenergetics when mitochondrial function is compromised. Since these findings
110 largely depend on ETC enzyme kinetic rates, they highlight the need for experimental
111 measurements of how ETC enzyme kinetics change during mitochondrial fission and fusion.
112 Moreover, we predict that high workloads may increase mitochondrial volume fractions, which
113 may enhance energetics to meet these high workload demands. Indeed, this study reveals a

114 challenging inverse problem, if the ADP/ATP ratio is robust to changes in fission and fusion,
115 when and under what circumstances do fission and fusion impact bioenergetics?

116

117 **RESULTS**

118 **A hybrid agent-based model of mitochondrial dynamics and continuum reaction-
119 diffusion model of bioenergetics**

120 Details of the mathematical model equations that were coupled to create our computational
121 model of mitochondrial dynamics and bioenergetics are provided in the [Methods](#) section. [Figure](#)
122 [1A](#) illustrates the initial geometry used by the model and is inspired by longitudinal views of
123 cardiac cell architecture under the electron microscope. [Figure 1B](#) outlines the basic factors
124 that change during interactions. In brief, mitochondrial dynamics and biogenesis are modulated
125 by energetic stress – a catch-all term that encompasses the ratio of ADP-to-ATP, mitochondrial
126 connectivity, and mitochondrial damage. Consequently, changes in energetic stress can alter
127 the mitochondrial network architecture which further leads to alterations in the mitochondrial
128 ATP synthesis rate and the resulting ADP-to-ATP ratio across the cell. The mitochondrial ADP-
129 to-ATP ratio then governs the energetic stress, establishing a feedback loop between
130 mitochondrial dynamics and bioenergetics. Further details are provided in the [Methods](#) section,
131 specifically in the subsection titled “Agent based model” .

132

133 [Figure 2](#) demonstrates that the model captures the key bioenergetic and mitochondrial
134 dynamics features found in current experimental data in the literature. In particular, the model
135 reproduces intracellular ADP (see [Figure 2A](#)) and O₂ distributions (see [Figure 2B](#)) similar to
136 those reported by [Vendelin et al. \(2000\)](#) and [Takahashi et al. \(1998\)](#). To simulate the different
137 workloads depicted in [Figure 2A](#), we individually vary X_{ATPase} , a parameter that quantifies ATP
138 consumption (see [Methods](#), specifically the subsection “ATP consumption”, for specific
139 details). To emulate the experimental set up of [Takahashi et al. \(1998\)](#) in [Figure 2B](#), we
140 change the boundary value of O₂ from 47.25 μM to 21 μM, which results in a parabolic O₂
141 distribution *qualitatively* similar to that reported by [Takahashi et al. \(1998\)](#).

142

143

144 **The model predicts that rate changes in fission and fusion rates do not impact ADP/ATP
145 ratios in healthy cardiomyocytes**

146 To determine the impact of fission and fusion rates on the average ADP/ATP ratio in healthy
147 cells, we simultaneously vary our characteristic fission and fusion rates, λ_{split} and λ_{fuse} , over a
148 range of -80% to 200% while holding all other parameters constant at their base values.

149 These characteristic fission and fusion rates are linked to the probability of a fission or fusion
150 event occurring via the following formulas:

151
$$p_{\text{fuse}} = 1 - \exp \left[- \left(\lambda_{\text{fuse}} + \frac{E_s}{I_{E_0} + E_s} \right) \Delta t \right], \text{ and } p_{\text{split}} = \max \left[1 - \exp(-\lambda_{\text{split}} M_X \Delta t), \frac{d}{d_c + d} \right].$$

152 In these formulas, Δt is the size of each ABM time step, E_s describes energetic stress (defined
153 in Equation 44), M_X denotes the mitochondrial mass of a given mitochondrial matrix, and d
154 describes mitochondrial damage. Further details are given in the [Methods](#) section, specifically
155 the subsection “Agent based model”. Given that *large* changes to either fission or fusion are
156 likely to be highly deleterious ([Ong et al., 2015](#)), we assume our range of -80% to 200% is
157 physiologically reasonable. For each fusion or fission rate, we consider the average ADP/ATP
158 ratio from 5 model runs for a simulated duration of 2 minutes. We find that at basal levels, the
159 average ADP/ATP ratio is 9.17×10^{-3} (see [Movie S1](#) for a visualization of the ADP/ATP dynamics
160 predicted by the model). Moreover, we find that varying our fission and fusion rates result in
161 minimal deviations from our basal ADP/ATP ratio despite inducing changes in mitochondria
162 network morphology, specifically, the median mitochondrial cluster size (see [Figure 3](#)). This
163 suggests that ADP/ATP ratios in healthy cells are robust to variations in fission and fusion over
164 short timeframes. The same pattern of robustness is also observed in the average PCr/ATP
165 ratio, another bioenergetic parameter that is used to assess cardiac performance.

166

167 To identify the mechanisms that help in maintaining the robustness of ADP/ATP ratios, we
168 analyzed the average mitochondrial membrane potential, the average concentration of
169 inorganic phosphate, and the average ATP hydrolysis rate. We found that the net myofibrillar
170 ATP hydrolysis rate, $v_{\text{ATPase}} = \frac{X_{\text{ATPase}}}{1 + R \frac{[\text{ATP}][\text{Pi}]}{[\text{ADP}]}}$ (see [Methods](#), specifically the subsection “ATP

171 consumption”, for more details), which is equivalent to mitochondrial ATP synthesis rate in a
172 steady state, does not vary substantially despite the variation in median mitochondrial cluster
173 size. Similarly, the average membrane potential was also robust to changes in λ_{split} and λ_{fuse} .

174

175 This bioenergetic stability can be attributed to several mechanisms. In our model, energetic
176 stress modulates the frequency of fission and fusion events. These events alter mitochondria
177 network morphology, which affects OXPHOS activity. As a result, the ADP/ATP ratio changes
178 and with it energetic stress. This change is then integrated into our fission and fusion rates,
179 thus establishing a feedback loop. These feedback controls result in a stable state of
180 mitochondrial dynamics, whereby bioenergetic parameters do not vary substantially, despite
181 changes to the characteristic fission and fusion rates (see [Figure 3](#); also see [Movie S1](#)).

182

183 In addition to these control mechanisms, robustness is additionally maintained via
184 intracellular shuttling, specifically, adenylate kinase shuttling ([Dzeja and Terzic, 2009](#)) and
185 creatine kinase phosphate shuttling ([Bessman and Geiger, 1981](#); [Meyer et al., 1984](#)). These
186 shuttles impart an additional layer of robustness to ADP/ATP ratios and ATP hydrolysis rates
187 for varied characteristic fission and fusion rates.

188 **Model predicts high workloads increase dynamism while hypoxia causes mitochondrial
189 clustering**

190 *High workloads*

191 To determine how mitochondrial dynamics are acutely affected by an increased workload, we
192 track the number of fission and fusion events that occur for VO_2 values ranging from $80 \text{ }\mu\text{mol}$
193 $\text{min}^{-1} \text{ g dw}^{-1}$ to $140 \text{ }\mu\text{mol min}^{-1} \text{ g dw}^{-1}$. These particular values are motivated by calculations by
194 [Vendelin et al. \(2000\)](#), who estimate the largest physiological VO_2 in adult rat hearts to be
195 $160 \text{ }\mu\text{mol min}^{-1} \text{ g dw}^{-1}$. As such, VO_2 values ranging from $80 \text{ }\mu\text{mol min}^{-1} \text{ g dw}^{-1}$ (50% of the
196 largest physiological value) to $140 \text{ }\mu\text{mol min}^{-1} \text{ g dw}^{-1}$ (87.5% of the largest physiological value),
197 describe high workload conditions. We found that the number of fusion events increased with
198 workload (see [Figure 4A](#)) for the entire range of VO_2 . This is a consequence of the gradual rise
199 in ADP/ATP ratio (see [Figure 2A](#)) which contributes to an elevation of energetic stress, which
200 in turn increases the rates of fusion and biogenesis. However, higher energetic stress also

201 leads to an increased likelihood of mitochondrial damage (see Equation 48), which would result
202 in a slight increase in fission (see Equation 47) and membrane depolarization (see [Figure 4B](#);
203 see also Equation 31). The net effects of higher fission and fusion rates are larger median sizes
204 of mitochondrial clusters (see [Figure 4B](#)) which is consistent with experimental studies ([Picard](#)
205 [et al., 2013](#); [Yoo et al., 2019](#)). It is important to note that these studies track changes on a scale
206 of hours. By contrast, our simulations track changes on a scale of minutes. As such, increases
207 in the median cluster size may not represent true biogenesis (which occurs on a scale of ~ 23
208 minutes at basal conditions, [Dalmasso et al. \(2017\)](#)), but rather aggregation as a result of
209 increases in mitochondrial outer membrane connectivity which can take place within a shorter
210 time frame (scale of seconds) ([Glancy et al., 2017](#)). Nevertheless, these findings highlight how,
211 by modulating the frequency of mitochondrial dynamics, mitochondria effectively perform
212 network maintenance ensuring consistent energetics even in high workload conditions.

213

214 *Hypoxia*

215 To determine how short-term mitochondrial dynamics differs under hypoxic conditions, we
216 simulate hypoxia and track network fragmentation. Hypoxia is simulated by imposing a constant
217 concentration of 5 μ M on the boundary. We found that under hypoxic conditions, mitochondrial
218 membrane potentials were rapidly depolarized (visualized in [Movie S2](#)), resulting in an increase
219 in the ADP/ATP ratio (also visualized in [Movie S2](#)). Under our modelling assumptions, this
220 increases energetic stress (see Equation 44). Consequently, under hypoxic conditions,
221 mitochondrial networks in our model rapidly increased fusion (see [Figure 4C](#); see also [Movie](#)
222 [S2](#)). Hypoxic conditions result in certain mitochondrial subnetworks becoming damaged,
223 resulting in an average increase in fission (see [Figure 4C](#)) over time. Once segregated, healthy
224 or only mildly damaged mitochondria can fuse to form a robust subnetwork resulting in large
225 mitochondrial clusters (see [Figure 4D](#)). This suggests that by segregating damaged
226 subnetworks and fusing together, mitochondria can reduce the spread of dysfunction, thereby
227 allowing the cell to become more robust to hypoxia. The concept of mitochondria acutely
228 segregating damaged subnetworks to improve performance has been also observed in the
229 literature ([Glancy et al., 2017](#)).

230

231 **Bioenergetics are only mildly robust to altered fission and fusion rates in disease states**

232
233 Finally, we sought to determine if a disease state, such as diabetes, results in enhanced
234 sensitivity to changes in fission and fusion rates. To answer this, we simulated mitochondrial
235 dysfunction observed in diabetic cardiomyopathy. More specifically, we leveraged a study by
236 [Ghosh \(2019\)](#), in which Beard's biophysical model of OXPHOS ([Beard, 2005](#)) is fit to type I
237 diabetic rat heart data from [Pham et al. \(2014\)](#). That is, to simulate a type I diabetic cell, we
238 decreased the rate of Complex I and Complex V activity by factors of 0.288 and 2.72×10^{-4}
239 respectively and increased the rate of proton leakage by a factor of 1.75. We then
240 simultaneously varied our characteristic fission and fusion rates, λ_{split} and λ_{fuse} , over a range of
241 -80% to 200% while simulating a high-intensity workload of $\text{VO}_2 = 100 \text{ } \mu\text{mol min}^{-1} \text{ g dw}^{-1}$.

242

243 We found that modifications to the rates of fission and fusion still did not markedly improve
244 bioenergetics as mediated by mitochondria network morphology (see [Figure 5](#)), despite an
245 increase in the median cluster size. Our simulations suggest that increases in fission, which
246 decrease the median cluster size, are compensated for by an increase in the mitochondrial
247 area fraction. The converse, however, does not appear to be true, i.e., increases in fusion
248 activity do not decrease the mitochondrial area fraction. Importantly, these two compensatory
249 changes in network morphology may help regulate bioenergetics in damaged situations:
250 increased area fractions may enhance bioenergetics by increasing the availability of ATP in the
251 myofibrils ([Ghosh, 2019](#)); while increased cluster sizes cause increases in connectivity and
252 thus enhance OXPHOS (as defined in Equation 30, see subsection "ATP production via
253 OXPHOS" within the Methods section for more details). As a result of these feedback
254 mechanisms, the cell maintains an average membrane potential that is robust to changes in
255 fission and fusion. Notably, simulating diabetes does result in the average concentration of Pi
256 being more sensitive (relative to our simulations at basal conditions) to changes in fission and
257 fusion. This is a consequence of Pi regulating mitochondrial metabolism to a greater degree
258 than the ADP/ATP ratio. However, given that type I diabetes is a chronic condition, we accept
259 that on a longer timescale, promoting elongation via fusion – which in our computational model
260 lowers energetic stress – may protect the cell from further damage, either as a result of impaired
261 OXPHOS function or due to external stressors.

262 **DISCUSSION**

263 In this study, we develop a semi-mechanistic model to quantitatively explore the range of fission
264 and fusion behaviors that may help with ATP distribution. Our modelling reveals that varied
265 fusion and fission rates do not result in substantial changes to ADP/ATP ratios in
266 cardiomyocytes in the short term. Furthermore, our modelling shows that changes in
267 connectivity alone do not have an immediate impact on bioenergetics as has been suggested
268 in the literature ([Hoitzing et al., 2015](#)).

269

270 **Our model highlights the robustness of bioenergetics to changes in mitochondria**
271 **OXPHOS and fusion/fission properties:** Scholars debate the link between ATP synthesis
272 and mitochondrial dynamics. For example, [Cipolat et al. \(2006\)](#); [Frezza et al. \(2006\)](#); [Olichon](#)
273 [et al. \(2003\)](#); and [Gilkerson et al. \(2003\)](#), propose that mitochondrial networks can increase
274 ATP production because of changes in membrane shape. [Parra et al. \(2011\)](#) propose that by
275 more uniformly distributing mitochondrial membrane potentials, increased connectivity may
276 improve bioenergetics. In direct contrast, [Hoitzing et al. \(2015\)](#) suggests that mitochondrial
277 dynamics may have no function in relation to increased ATP production. Our model does not
278 involve parameters for individual mitochondrial morphology but identifies two levels of
279 metabolic robustness to changes in fission and fusion rates: mitochondria network morphology
280 and bioenergetics. At the network morphology level, changes in connectivity affect
281 bioenergetics, which controls energetic stress. These changes in stress then modulate the
282 rates of fission and fusion, which establishes a feedback loop, resulting in a stable state of
283 mitochondrial dynamics. At the bioenergetic level, intracellular shuttles such as adenylate
284 kinase shuttling ([Dzeja and Terzic, 2009](#)) and creatine phosphate shuttling ([Bessman and](#)
285 [Geiger, 1981](#); [Meyer et al., 1984](#)) mediate energetic buffering. These feedback mechanisms
286 result in ADP/ATP and PCr/ATP ratios robust to rate changes. Arguably, changing our model
287 of energetic stress to depend on more dynamic factors may reduce this robustness. Future
288 work will address this by using network motifs ([Milo et al., 2002](#); [Li et al., 2014](#)), to identify
289 factors that when incorporated into our stress calculation, would increase the sensitivity of
290 ADP/ATP to varied fusion and fission rates.

291

292 **Our model is not a complete representation of the cross-talk between energetics and
293 mitochondrial dynamics:**

294 Our model does not account for the pleiotropic effects of fission and fusion on cellular
295 architecture, nor does it account for possible changes in signaling pathways, which may serve
296 as an additional energetic buffer or perhaps even a compensatory role in bioenergetics. For
297 example, in the context of acute ischemic reperfusion injury, [Hall et al. \(2016\)](#) note that inhibiting
298 fusion proteins disrupts the tethering between mitochondria and the sarcoplasmic reticulum,
299 but paradoxically has a cardioprotective effect. Investigating how mitochondrial dynamics
300 reshape cellular architecture is a key area that we will explore in future work. The model
301 representation of mitochondrial networks in two-dimensions and the reduced order
302 representation of individual mitochondrion morphology also remove the possibility to interrogate
303 the role of mitochondrion size and shape on bioenergetics. Nevertheless, the model provides
304 insights on the role that mitochondria fusion/fission dynamics may confer based on current
305 understanding of the relationship between energetics and mitochondrial dynamics.

306

307 It is possible that modulation of fusion and fission may indirectly or directly affect mitochondrial
308 expression of respiratory complexes, which could then affect ADP/ATP ratios more drastically.
309 For example, in our model, we assumed that enzyme activity responds linearly to changes in
310 connectivity. However, the transportation rate of metabolites from the IMM to the IMS via ANT
311 saturates out for large ATP concentrations ([Beard, 2005](#)), which when coupled with PCr
312 shuttling, maintains a stable ADP/ATP ratio ([Bessman and Geiger, 1981](#); [Meyer et al., 1984](#)).
313 Indeed, while dramatic (10^2 to 10^4 fold) decreases in enzyme activity, comparable to chronic
314 disease conditions ([Wu et al., 2007](#)), do increase the average ADP/ATP ratio across the cell in
315 our simulations, they do not substantially decrease the average mitochondrial membrane
316 potential (see Table 5). Thus, implementing a larger change in enzyme activity due to
317 mitochondrial connectivity is unlikely to *qualitatively* change our findings in the present model.

318

319 Finally, previous modelling work conducted by [Dalmasso et al. \(2017\)](#) suggests that
320 mitochondrial populations establish and maintain homoeostasis, not by fission and fusion, but
321 rather by mitochondrial motility. However, in cardiomyocytes mitochondria are organized into

322 parallel columns extending along the length of the cell, which impairs motility (Cao and Zheng,
323 2019). Specifically, Eisner et al. (2017) observe that mitochondria in cardiomyocytes do not
324 exhibit motility *in vivo*. However, the impact of cross-sectional network morphology on
325 bioenergetics is still unresolved in our two-dimensional model. Additionally, our model does not
326 necessarily distinguish between increased connectivity due to increased tethering of inter-
327 mitochondrial junctions (IMJ) versus increased connectivity due to mitochondrial fusion. For
328 example, Picard et al. (2013) note that acute exercise increases both IMJ tethering and
329 mitochondrial mass, without an increase in fission or fusion (as quantified by the expression of
330 fusion proteins such as Mfn1, Mfn2, and Opa1, and fission proteins such as Drp1 and Fis1).
331 Future work will address this by using a finite element method to generalize the model to three
332 dimensions, and then metabolically coupling it to an experimentally validated model of IMJ
333 coupling that we intend to develop.

334

335 **Our model provides several experimentally testable predictions:** Firstly, our model
336 simulations predict that changes in fission and fusion activity – at least on a timescale of two
337 minutes – do not substantially affect bioenergetics, namely, $\Delta\Psi$. Additionally, our model
338 predicts that as workload, quantified via VO_2 , increases, so too does the frequency of fission
339 and fusion events across the cell, and the median mitochondrial cluster size. While hypoxia is
340 generally understood to induce mitochondrial fragmentation (when studied *in vitro* on a
341 timescale of hours), our simulations suggest that this is preceded by a brief moment of
342 mitochondrial aggregation. In other words, during hypoxia, mitochondria may acutely, i.e., on a
343 timescale of two minutes, aggregate together before fragmenting or undergoing elongation. We
344 emphasize that as simulations from a mathematical model, our results are hypothetical and as
345 such, highlight the need for systematic quantitative measurements of mitochondrial dynamics.
346 Indeed, we will refine our model along with our model assumptions as more experimental data
347 becomes available.

348

349 **Our model highlights the need for quantitative, mechanistic understanding of**
350 **mitochondrial dynamics to identify pathways for novel therapies:** For example, supposing
351 fission and fusion events do modulate ETC activity in cardiomyocytes at basal conditions, then
352 how large a change in $\Delta\Psi$ – either directly or via changes in enzyme activity in the ETC – do

353 we observe? Moreover, our model assumes that we can induce a set change in fission and
354 fusion activity. Experimentally, however, this is challenging in part because mitochondria can
355 change their shape without necessarily increasing their expression of fission and fusion
356 proteins (Picard et al., 2013). This leads to an additional question – can we induce changes in
357 fission and fusion activity in a manner that is decoupled from inducing deleterious change in
358 cell function (e.g., hypoxia or UV-induced damage). And finally, when and under what
359 circumstances do mitochondria “switch” from fusion-dominated dynamics to fission-dominated
360 dynamics, to minimize cellular stress. These experiments will provide critical insights into how
361 mitochondrial form and cardiac metabolism are linked, and as a consequence help either
362 robustly validate or negate our model’s findings with solid quantitative data.

363

364 In conclusion, our model suggests that ATP synthesis is robust to changes in fission and fusion
365 rates. By combining experimental data with a system of mathematical equations, we developed
366 a model that accounts for what has been speculated in the literature. We demonstrated that
367 mitochondria achieve this robust adaptability by dynamically upregulating the number of fission
368 and fusion events using a simple feedback-feedforward mechanism. Our modelling results
369 suggest that changes in ATP synthesis might stem from changes to the respiratory-chain
370 machinery caused by fission or fusion events. Indeed, our study leads to an interesting
371 question, if in both healthy and damaged cardiomyocytes the ADP/ATP ratio is robust to
372 changes in fission and fusion, when and under what circumstances are bioenergetics
373 impacted?

374

375 **ACKNOWLEDGMENTS**

376 The authors would like to thank Siavash B. Kalkhoran and Derek J. Hausenloy for their critical
377 reading of this manuscript. A.K. was supported by an Australian Government Research
378 Training Program (RTP) Scholarship; P.S.K. was supported by an Australian Research
379 Council Discovery Project [DP180101512]; and S.G. and V.R. were supported by an
380 Australian Research Council Discovery Project [DP170101358].

381 **AUTHOR CONTRIBUTIONS**

382 Conceptualization, A.K., S.G., P.S.K., and V.R.; Methodology, A.K., S.G., and V.R.; Software,
383 A.K. and S.G.; Formal Analysis, A.K. and S.G.; Writing – Original Draft, A.K.; Writing – Review
384 & Editing, A.K., S.G., P.S.K., and V.R.; Supervision, P.S.K. and V.R.

385 **DECLARATION OF INTERESTS**

386 The authors declare no competing interests.

387 **FIGURE LEGENDS**

388 **Figure 1. Initial model geometry**

389 (A) Initial conditions used for simulations. Colors denote locally unique mitochondrial clusters.
390 (B) Block diagram depicting the model set up. Starred boxes indicate variables that we vary in
391 this study.

392

393 **Figure 2. The model reproduces dynamics from the experimental literature**

394 (A) Comparison between our model predictions for spatially averaged ADP vs VO₂ against
395 data from [Vendelin et al. \(2000\)](#). (B) Comparison between model predictions for radial oxygen
396 profiles against data from [Takahashi et al. \(1998\)](#).

397

398 **Figure 3. Bioenergetics are robust to rate changes**

399 The average ADP/ATP ratio; average concentration of inorganic phosphate; average
400 membrane potential; average ATP hydrolysis rate; average mitochondrial area fraction; and
401 the median mitochondrial cluster size for varied characteristic fission and fusion rates. Colors
402 denote the percentage deviation from the basal value (no changes to fission and fusion).

403

404 **Figure 4. Mitochondrial dynamics under high workloads and hypoxia**

405 (A) Mitochondrial dynamics for various workloads. (B) Median mitochondrial cluster size and
406 mean mitochondrial membrane potential for various workloads. (C) Mitochondrial dynamics in
407 hypoxic conditions. Rates represent averages across the cell for the duration of the
408 simulation. (D) Visualization of the mitochondrial network in hypoxic conditions.

409

410 **Figure 5. Bioenergetics are mildly robust to rate changes when simulating**
411 **mitochondrial dysfunction as observed in diabetic cardiomyopathy**
412 The average ADP/ATP ratio; average concentration of inorganic phosphate; average
413 membrane potential; average ATP hydrolysis rate; average mitochondrial area fraction; and
414 the median mitochondrial cluster size for varied characteristic fission and fusion rates. Colors
415 denote the percentage deviation from the basal value (no changes to fission and fusion).

416 **TABLES**

417 **Table 1. List of variables used in PDE model**

Variable	Description
t	Time (seconds)
ATP	ATP concentration (μ M)
MgATP	Mg bound ATP concentration (μ M)
ADP	ADP concentration (μ M)
MgADP	Mg bound ADP concentration (μ M)
AMP	AMP concentration (μ M)
PCr	Phosphocreatine concentration (μ M)
Cr	Creatine concentration (μ M)
Pi	Inorganic phosphate concentration (μ M)
O_2	Oxygen concentration (μ M)
H^+	H^+ concentration (also expressed in pH)
K^+	Potassium ion concentration (μ M)
Mg^{2+}	Free magnesium ion concentration (μ M)
NADH	NADH concentration (μ M)
NAD	NAD concentration (μ M)
Q	Ubiquinone concentration (μ M)
QH_2	Ubiquinol concentration (μ M)
Cred	Cytochrome C (reduced) concentration (μ M)
Cox	Cytochrome C (oxidized) concentration (μ M)
$\Delta\Psi$	Mitochondrial membrane potential (mV)

418

419 **Table 2. Details of mitochondrial reactions**

Symbol for flux	Description	Source
v_{ATPase}	ATP consumption in myofibrils	Wu et al. (2008)
v_{CK}	Creatine kinase reaction	Vendelin et al. (2000)
v_{AK}	Adenylate kinase reaction	Vendelin et al. (2000)
v_{DH}	Dehydrogenase flux representing the TCA cycle and other NADH-producing reactions	Beard (2005)
$v_{\text{C1}}, v_{\text{C2}}, v_{\text{C3}}, \text{ and } v_{\text{C5}}$	Flux through complex I, complex III, complex IV, and complex V (F_0F_1 - ATP synthase)	Beard (2005)
v_{leak}	Flux of proton leak across the inner membrane	Beard (2005)
v_{ANT}	Rate of exchange of metabolites through adenine nucleotide translocases (ANT)	Beard (2005)
v_{PiH}	Flux through Phosphate Hydrogen co-transporter	Beard (2005)
v_{KH}	Flux through K^+/H^+ antiporter	Beard (2005)
v_{mtCK}	Flux of mitochondrial creatine kinase reaction	Ghosh (2019)
v_{MiAK}	Flux of mitochondrial adenylate kinase reaction	Vendelin et al. (2000)

420

421 **Table 3. Parameter estimates for the PDE and ABM models**

Parameter	Description	Estimate	Source
D_{ANP}	Diffusivity of ATP, ADP, and AMP	30 $\mu\text{m}^2\text{s}^{-1}$	Simson et al. (2016)
D_{PCr}, D_{Cr}	Diffusivity of PCr and Cr	260 $\mu\text{m}^2\text{s}^{-1}$	Vendelin et al. (2000)
D_{Pi}	Diffusivity of Pi	327 $\mu\text{m}^2\text{s}^{-1}$	Meyer et al. (1984)
D_{O_2}	Diffusivity of O ₂	300 $\mu\text{m}^2\text{s}^{-1}$	Rumsey et al. (1990)
PCr_{total}	Total concentration of PCr and Cr in myofibrils and inner membrane space	23 mM	Vendelin et al. (2000)
ANP_{total}	Total concentration of ATP, ANP, and ADP in the cell	10 mM	Vendelin et al. (2000)
K_{DT}	Mg ²⁺ dissociation constant for myofibrillar ATP	24 μM	Vendelin et al. (2000)
K_{DD}	Mg ²⁺ dissociation constant for myofibrillar ADP	347 μM	Vendelin et al. (2000)
K_{DTm}	Mg ²⁺ dissociation constant for mitochondrial ATP	17 μM	Vendelin et al. (2000)
K_{DDm}	Mg ²⁺ dissociation constant for mitochondrial	282 μM	Vendelin et al. (2000)

	ADP		
NAD_{total}	Total matrix NAD(H) concentration	2970 μM	Beard (2005)
Q_{total}	Total matrix ubiquinol concentration	1350 μM	Beard (2005)
x_{buff}	Constant representing the buffering capacity of the matrix space	100 M^{-1}	Beard (2005)
C_{total}	Total IMS cytochrome C concentration	2700 μM	Beard (2005)
C_{IMS}	Capacitance of the inner membrane	1 $\mu\text{M/L/mV}$	Beard (2005)
R_{exch}	Coefficient of restricted ATP diffusion	0.01	Aliev and Saks (1997)
$W_{microcomp}$	micro compartment volume per total mitochondrial volume	0.1	Aliev and Saks (1997)
W_M	Water volume per total mitochondrial volume	0.72376	Beard (2005)
W_{IMS}	IMS water volume per total mitochondrial volume	$0.1W_M$	Beard (2005)

W_X	Matrix water volume per total mitochondrial volume	$0.9W_M$	Beard (2005)
I_{E_0}	Stress saturation constant	5×10^{-2}	Assumption validated against Vendelin et al. (2000)
λ_{fuse}	Characteristic mitochondrial fusion rate	$1.67 \times 10^{-2} \text{ s}^{-1}$	Eisner et al. (2017)
M_{max}	Maximum mitochondrial cluster size	$43 \mu\text{m}^2$	Estimate validated against Vendelin et al. (2000) and Takahashi et al. (1998)
λ_{biogen}	Characteristic mitochondrial biogenesis rate	$5.77 \times 10^{-4} \text{ s}^{-1}$	Estimate from Dalmasso et al. (2017)
λ_{split}	Characteristic mitochondrial fission rate	$2 \times 10^{-3} \text{ s}^{-1}$	Estimate
d_c	Intensity of damage-induced fission	250	Estimate
M_{single}	Mass of single mitochondrion	$8.25 \times 10^{-1} \mu\text{m}^2$	Estimate validated against Vendelin et al. (2000) and Takahashi et al. (1998)

M_0	Average mass of mitochondrial cluster	22 μm^2	Estimate validated against Vendelin et al. (2000) and Takahashi et al. (1998)
p_d	Max probability of spontaneous damage	0.01	Estimate
k_{damage}	Progressive damage rate	10^{-3} s^{-1}	Estimate
T_d	Damage threshold	10	Estimate
p_{death}	Probability of a mitochondrial agent “dying”	0.6	Estimate

422

423

Table 4. Initial conditions for PDE model

State Variable	Initial value	Compartment
ATP	9638.08 μM	Myofibrils
	8964.91 μM	IMM
	9610.35 μM	IMS
ADP	92.5336 μM	Myofibrils
	1035.09 μM	IMM
	113.792 μM	IMS
ATP _G	200007.8 μM	IMM
AMP	6.61147 μM	Myofibrils
	13.0731 μM	IMM
	13.0731 μM	IMS
PCr	12000.1 μM	Myofibrils
	11998.6 μM	IMM

	11998.6 μ M	IMS
Cr	12000 μ M	Myofibrils
	12001.4 μ M	IMM
	12001.4 μ M	IMS
Pi	2341.77 μ M	Myofibrils
	2058.61 μ M	IMM
	2306.24 μ M	IMS
O ₂	47.25 μ M	Myofibrils
	47.25 μ M	IMM
	47.25 μ M	IMS
K ⁺	0.15 M	Myofibrils
	137085 μ M	IMM
	0.15 M	IMS
Mg ²⁺	1 mM	Myofibrils
	3.8×10 ² mM	IMM
	1 mM	IMS
H ⁺	0.072530 pH	IMM
NADH	1552.31 μ M	IMM
QH ₂	597.711 μ M	IMM
Cred	439.884 μ M	IMM
ΔΨ	174.993 mV	IMM

424

425 **Table 5. Very large changes to enzyme activity with basal fission and fusion rates**

Fold change in complex I	Fold change in complex III	Fold change in complex IV	Fold change in complex V	ADP/ATP ratio ($\times 10^3$)	ΔΨ	Mitochondrial volume fraction	Median cluster size
1	1	1	1	9.1677	163.75	0.37539	9.24
10 ⁻⁴	10 ⁻³	10 ⁻³	10 ⁻²	53.68	125.69	0.41369	19.305
10 ⁻⁴	10 ⁻²	10 ⁻²	10 ⁻³	30.17	135.76	0.40281	16.83
10 ⁻³	10 ⁻⁴	10 ⁻⁴	10 ⁻²	115.67	119.65	0.43929	22.44
10 ⁻³	10 ⁻²	10 ⁻²	10 ⁻⁴	37.96	147.12	0.40304	16.17

10 ⁻²	10 ⁻⁴	10 ⁻⁴	10 ⁻³	98.13	118.42	0.42791	19.8
------------------	------------------	------------------	------------------	-------	--------	---------	------

426

427 **METHODS**

428 **Lead contact and materials availability**

429 Further information and requests for resources and reagents should be directed to and will be
430 fulfilled by the Lead Contact, Vijay Rajagopal (vijay.rajagopal@unimelb.edu.au).

431 **Experimental model and subject details**

432 *Animals*

433 The initial geometry of the model was inspired from an image of a longitudinal section of the
434 cell. This image was acquired as part of a three-dimensional stack of electron microscopy
435 images of a block of cardiac tissue from the left ventricular wall of an adult male Sprague
436 Dawley rat. Details of the tissue preparation and imaging protocol used to collect these
437 images can be found in [Hussain et al. \(2018\)](#). The longitudinal image was subsequently
438 processed to identify and demarcate mitochondria boundaries and subsequently used to
439 initiate the simulations. All animal procedures followed guidelines approved by the University
440 of Auckland Animal Ethics Committee (for animal procedures conducted in Auckland,
441 Application Number R826).

442 **Method Details**

443 To quantify the role of mitochondrial network morphology on bioenergetics, we formulate a
444 hybrid PDE-ABM system. We model biochemical reactions with a system of experimentally
445 validated reaction-diffusion equations on a rectangular domain $[0, L] \times [0, H]$; and use an
446 agent-based model to describe changes in mitochondrial network morphology such as fission,
447 fusion and biogenesis. We assume a constant pH of 7.1 and unless stated otherwise all
448 fluxes are functions of state variables.

449

450 *Partial differential equation model*

451 **ATP consumption**

452 To model bioenergetics in the myofibrillar region of the cell, we slightly modify the
453 bioenergetic model of [Ghosh \(2019\)](#) who considers several populations: [ATP], [ADP], and
454 [AMP], the concentration of adenosine triphosphate, adenosine diphosphate, and adenosine
455 monophosphate; [Pi], the concentration of inorganic phosphate; [Cr] and [PCr], the
456 concentration of creatine and phosphocreatine; [O₂], the concentration of oxygen; and
457 [MgATP] and [MgADP], the concentration of magnesium-bound ATP and ADP. A table of all
458 state variables is provided in Table 1. The interactions between these populations are
459 described with a PDE system:

$$\frac{\partial[\text{ATP}]}{\partial t} = D_{ANP} \nabla^2[\text{ATP}] - v_{CK} + v_{AK} - v_{\text{ATPase}}, \quad (1)$$

$$\frac{\partial[\text{ADP}]}{\partial t} = D_{ANP} \nabla^2[\text{ADP}] + v_{CK} - 2v_{AK} + v_{\text{ATPase}}, \quad (2)$$

$$\frac{\partial[\text{AMP}]}{\partial t} = D_{ANP} \nabla^2[\text{AMP}] + v_{AK}, \quad (3)$$

$$\frac{\partial[\text{PCr}]}{\partial t} = D_{PCr} \nabla^2[\text{PCr}] + v_{CK}, \quad (4)$$

$$\frac{\partial[\text{O}_2]}{\partial t} = D_{O_2} \nabla^2[\text{O}_2], \quad (5)$$

$$\frac{\partial[\text{Pi}]}{\partial t} = D_{Pi} \nabla^2[\text{Pi}] + v_{\text{ATPase}}, \quad (6)$$

$$\frac{\partial[\text{Cr}]}{\partial t} = D_{Cr} \nabla^2[\text{Cr}] - v_{CK}, \quad (7)$$

$$[\text{MgATP}] = \left(\frac{\text{Mg}^{2+}}{K_{DT} + \text{Mg}^{2+}} \right) [\text{ATP}], \quad (8)$$

$$[\text{MgADP}] = \left(\frac{\text{Mg}^{2+}}{K_{DD} + \text{Mg}^{2+}} \right) [\text{ADP}], \quad (9)$$

$$\text{Mg}^{2+} = 1 \text{ mM}, \quad (10)$$

$$\text{K}^+ = 0.15 \text{ M}, \quad (11)$$

460 where the transport of metabolites across the cell is modelled using diffusion. Here,
461 ATP is hydrolyzed – or consumed – at rate v_{ATPase} ; ATP and AMP are catalyzed via
462 adenylate kinase at rate v_{AK} ; and creatine is converted into phosphocreatine via the creatine
463 phosphate shuttle at rate v_{CK} . Details of these rates are provided in Table 2.

464

465 To approximate the cardiac cycle, we modify the ATP consumption rate used by [Ghosh et al.](#)
466 (2018)

$$v_{\text{ATPase}} = \frac{X_{\text{ATPase}}}{1 + R \frac{[\text{ATP}][\text{Pi}]}{[\text{ADP}]}} \quad (12)$$

467 by multiplying it with a tent function $\Lambda(t) = \sum_{j=0}^{\infty} \Lambda_j(t)$, where

$$\Lambda_j(t) = \begin{cases} \frac{t - 0.18j}{0.03} & 0 \leq t - 0.18j < 0.03, \\ \frac{0.03 - (t - 0.18j)}{0.06} & 0.03 \leq t - 0.18j < 0.06, \\ 0 & 0.06 \leq t - 0.18j < 0.18. \end{cases} \quad (13)$$

468 This function increases linearly from zero to one during the first 30 ms, decreases linearly to
 469 zero during the next 30 ms, and remains at zero until the end of the cardiac cycle at 180 ms.
 470 Here, X_{ATPase} is a model parameter that quantifies ATP consumption at various workloads
 471 and R is a fixed mass-action ratio. Unless stated otherwise, we assume a high-intensity
 472 workload of $\text{VO}_2 = 100 \mu\text{mol min}^{-1} \text{ g dw}^{-1}$ corresponding to a value of $X_{\text{ATPase}} = 5 \times 10^4 \mu\text{M/s}$.
 473

474 **ATP production via OXPHOS**

475 In [Ghosh et al. \(2018\)](#), the dynamics inside a mitochondrial matrix are described by two
 476 separate but metabolically linked PDE systems. One PDE system models the production of
 477 metabolites via OXPHOS in the inner mitochondrial membrane (IMM), while the other system
 478 models the transport of these metabolites from the IMM to the inter-membrane space (IMS).
 479 Once in the IMS, metabolites may diffuse into the myofibrillar region. To link these
 480 bioenergetic models to the ABM, we modify the OXPHOS model so that ETC enzyme activity
 481 and proton leakage depend on mitochondrial connectivity.

482
 483 The production of ATP via OXPHOS in the IMM is described by the following system of
 484 PDEs:

$$\frac{\partial[\text{NADH}]}{\partial t} = \frac{v_{DH} - v_{C1}}{W_x}, \quad (14)$$

$$\frac{\partial[\text{QH}_2]}{\partial t} = \frac{v_{C1} - v_{C3}}{W_x}, \quad (15)$$

$$\frac{\partial[\text{Cred}]}{\partial t} = 2 \frac{v_{C3} - v_{C4}}{W_{IMS}}, \quad (16)$$

$$\frac{\partial \text{O}_2}{\partial t} = - \frac{v_{C4}}{2W_{IMS}}, \quad (17)$$

$$\frac{\partial [\text{H}^+]}{\partial t} = x_{\text{buff}} \frac{[\text{H}^+]}{W_x} (v_{DH} - 5v_{C1} - 2v_{C3} - 4v_{C4} + (n_A - 1)v_{C5} + 2v_{PiH} + v_{\text{leak}} - v_{KH}), \quad (18)$$

$$\frac{\partial \Delta \Psi}{\partial t} = \frac{4v_{C1} + 2v_{C3} + 4v_{C4} - n_A v_{C5} - v_{ANT} - v_{\text{leak}}}{C_{\text{IMS}}}, \quad (19)$$

$$\frac{\partial [\text{ATP}]}{\partial t} = \frac{v_{C5} - v_{ANT}}{W_X}, \quad (20)$$

$$\frac{\partial [\text{ADP}]}{\partial t} = -\frac{v_{C5} - v_{ANT}}{W_X}, \quad (21)$$

$$\frac{\partial [\text{Pi}]}{\partial t} = \frac{v_{PiH} - v_{C5}}{W_X}, \quad (22)$$

$$\frac{\partial [\text{K}^+]}{\partial t} = \frac{v_{KH}}{W_X}, \quad (23)$$

$$[\text{MgATP}] = \left(\frac{\text{Mg}^{2+}}{K_{DTm} + \text{Mg}^{2+}} \right) [\text{ATP}], \quad (24)$$

$$[\text{MgADP}] = \left(\frac{\text{Mg}^{2+}}{K_{DDm} + \text{Mg}^{2+}} \right) [\text{ADP}], \quad (25)$$

$$[\text{NAD}] = \text{NAD}_{\text{total}} - [\text{NADH}], \quad (26)$$

$$Q = Q_{\text{total}} - [\text{QH}_2], \quad (27)$$

$$[\text{Cox}] = C_{\text{total}} - [\text{Cred}], \quad (28)$$

$$\text{Mg}^{2+} = 3.8 \times 10^2 \text{ } \mu\text{M}, \quad (29)$$

485 Here, ATP is produced via a series of protein complexes: complex I, complex III, complex IV
 486 and complex V at rates v_{C1}, v_{C3}, v_{C4} , and v_{C5} . While it is known that mitochondrial connectivity
 487 affects the electron transport chain (Fu et al., 2019; Parra et al., 2011; Pernas and Scorrano,
 488 2016; Youle and van der Bliek, 2012), it is unclear if all or only some complexes are affected.
 489 Accordingly, we multiply the rates v_{C1}, v_{C3}, v_{C4} , and v_{C5} by

$$M_X/M_0, \quad (30)$$

490 where M_X is the mitochondrial mass of a given matrix and M_0 is the average mass of a
 491 mitochondrial matrix – thereby assuming that mitochondrial connectivity increases protein
 492 complex activity.

493
 494 Mitochondrial connectivity may also modulate proton leakage (Fu et al., 2019; Parra et al.,
 495 2011; Pernas and Scorrano, 2016; Youle and van der Bliek, 2012). Moreover, mitochondrial
 496 damage can depolarize membrane potentials via increased proton leakage (Halestrap et al.,

497 2004; Matsuda et al., 2010; Zorov et al., 2014; Zorova et al., 2018; Park et al., 2011). We
 498 account for these observations by multiplying the rate of proton leakage v_{leak} , by

$$d + \frac{2M_0}{M_0 + M_X}. \quad (31)$$

499 The first term in Equation 31 ensures that proton leakage increases with mitochondrial
 500 damage, d , while the second term, $\frac{2M_0}{M_0 + M_X}$, ensures that mitochondrial connectivity decreases
 501 proton leakage.

502
 503 Additionally, ATP is transported to the IMS via adenine nucleotide translocase (ANT) at rate
 504 v_{ANT} ; inorganic phosphate is co-transported at rate v_{PiH} ; and potassium and protons are
 505 exchanged at rate v_{KH} . Finally, dehydrogenase flux stemming from the citric acid cycle
 506 occurs at rate v_{DH} .

507
 508 The transport of metabolites in the IMM to the IMS is described by the following system of
 509 PDEs:

$$\frac{\partial[\text{ATP}]}{\partial t} = D_{\text{ANP}} \nabla^2[\text{ATP}] + v_{\text{MiAK}} - v_{\text{mtCK}} + v_{\text{ANT}}, \quad (32)$$

$$\frac{\partial[\text{ADP}]}{\partial t} = D_{\text{ANP}} \nabla^2[\text{ADP}] + v_{\text{mtCK}} - 2v_{\text{MiAK}} - v_{\text{ANT}}, \quad (33)$$

$$\frac{\partial[\text{AMP}]}{\partial t} = D_{\text{ANP}} \nabla^2[\text{AMP}] + v_{\text{MiAK}}, \quad (34)$$

$$\frac{\partial[\text{PCr}]}{\partial t} = D_{\text{PCr}} \nabla^2[\text{PCr}] + v_{\text{mtCK}}, \quad (35)$$

$$\frac{\partial[\text{Cr}]}{\partial t} = D_{\text{Cr}} \nabla^2[\text{Cr}] - v_{\text{mtCK}}, \quad (36)$$

$$\frac{\partial[\text{O}_2]}{\partial t} = D_{\text{O}_2} \nabla^2[\text{O}_2] - v_{\text{C4}}/2, \quad (37)$$

$$\frac{\partial[\text{Pi}]}{\partial t} = D_{\text{Pi}} \nabla^2[\text{Pi}] - v_{\text{PiH}}, \quad (38)$$

$$[\text{MgATP}] = \left(\frac{\text{Mg}^{2+}}{K_{DTm} + \text{Mg}^{2+}} \right) [\text{ATP}], \quad (39)$$

$$[\text{MgADP}] = \left(\frac{\text{Mg}^{2+}}{K_{DDm} + \text{Mg}^{2+}} \right) [\text{ADP}], \quad (40)$$

$$\text{Mg}^{2+} = 1 \mu\text{M}, \quad (41)$$

$$K^+ = 0.15M. \quad (42)$$

$$\frac{\partial [ATP]_G}{\partial t} = \frac{R_{exch}([ATP] - [ATP]_G) + v_{ANT} - v_{mtCK}}{W_{microcomp}}, \quad (43)$$

510

511 Here, ATP is transported via the protein adenine nucleotide translocase at rate v_{ANT} ; ATP
512 and AMP in the IMM are catalyzed via mitochondrial adenylate kinase at rate v_{MiAK} ; creatine
513 is converted into phosphocreatine in the IMM at rate v_{mtCK} ; inorganic phosphate is co-
514 transported at rate v_{PiH} ; and oxygen is consumed in the IMM at rate $v_{C4}/2$. Equation 43, is a
515 microcompartment between ANT and mitochondrial CK, that based on previous work by [Aliev](#)
516 [and Saks \(1997\)](#), models phosphocreatine shuttling. Details of these rates are provided in
517 Table 2.

518

519 **Boundary conditions and initial conditions**

520 As implemented by [Ghosh et al. \(2018\)](#), we impose no-flux boundary conditions (BC) on all
521 state variables except oxygen, for which we impose a constant Dirichlet BC of 47.25 μM on
522 the boundary. We use constant initial conditions, with details provided in Table 4.

523

524 *Agent based model*

525 Increased ATP demand along with oxidative stress is conducive to mitochondrial fusion and
526 biogenesis, along with fission of damaged mitochondria ([Dalmasso et al., 2017](#); [Mihaylova](#)
527 [and Shaw, 2011](#); [Toyama et al., 2016](#); [Egan et al., 2011](#)). To this end, we model changes in
528 network morphology with an agent-based model.

529

530 **Energetic stress**

531 To model biophysical stressors, we introduce the concept of energetic stress

$$E_s = \frac{\langle A_D \rangle}{\langle A \rangle} \frac{1}{M_x} + d. \quad (44)$$

532 The fraction $\langle A_D \rangle / \langle A \rangle$ is the average ADP to ATP ratio within the mitochondrial matrix, acting
533 as a measure of biophysical stress. [Parra et al. \(2011\)](#) speculate that increased connectivity
534 improves bioenergetics by more uniformly distributing the mitochondrial membrane potential.
535 We account for this by introducing a connectivity penalty to energetic stress of the form $1/M_x$,

536 where M_X denotes the mitochondrial mass of a given matrix. The final term d denotes the
537 level of mitochondrial damage (see [Damage](#))

538

539 **Fusion**

540 We assume that the probability of a mitochondrion undergoing fusion at each time step is
541 given by

$$p_{\text{fuse}} = 1 - \exp \left[- \left(\lambda_{\text{fuse}} + \frac{E_s}{I_{E_0} + E_s} \right) \Delta t \right]. \quad (45)$$

542 The size of each time step is denoted by Δt , and the characteristic fusion rate is denoted by
543 λ_{fuse} . Our characterisation ensures that as energetic stress, E_s , increases, the probability of
544 fusion also increases. Here, I_{E_0} is a stress saturation constant. If a fusion event occurs, our
545 mitochondrion (hereafter referred to as an agent) will fuse with all adjacent agents, *unless* the
546 mass of the resultant agent exceeds M_{max} .

547

548 **Biogenesis**

549 Similarly, we assume the probability of a mitochondrion undergoing biogenesis at each time
550 step is given by

$$p_{\text{biogen}} = 1 - \exp \left[- \left(\lambda_{\text{biogen}} + \frac{E_s}{I_{E_0} + E_s} \right) \Delta t \right]. \quad (46)$$

551 The parameter λ_{biogen} denotes the characteristic biogenesis rate. If a biogenesis event occurs,
552 our mitochondrial matrix increases its mass by a single mitochondrion, *unless* the mass of the
553 resultant matrix exceeds M_{max} or if there is no free space. The biogenesis process is
554 implemented by associating a vacant cell to either the left or right of the current mitochondrial
555 matrix with our agent. We assume that the contents of the cytosol are pushed away and
556 distributed equally amongst neighboring cells.

557

558 **Fission**

559 We assume that the probability of a mitochondrion undergoing fission at each time step is
560 given by

$$p_{\text{split}} = \max \left[1 - \exp(-\lambda_{\text{split}} M_x \Delta t), \frac{d}{d_c + d} \right], \quad (47)$$

561 where λ_{split} is the characteristic fission rate and M_x the mitochondrial mass of a given matrix.

562 The level of mitochondrial damage is described by $d \geq 1$, and the extent to which

563 mitochondrial damage drives fission is described by d_c .

564

565 Our characterization assumes that in healthy mitochondria, fission occurs independently of

566 energetic stress and is proportional to the number of agents in the given matrix. In [Glancy et](#)

567 [al. \(2017\)](#), the authors note that damaged mitochondria rapidly increase fission to minimize

568 the propagation of mitochondrial dysfunction. We capture this behavior by assuming that the

569 probability of fission in damaged mitochondria is driven by damage according to the term $\frac{d}{d_c+d}$.

570 As local damage increases, the probability of fission approaches one. The switch between

571 basal fission and damaged-induced fission occurs when the probability of damaged-induced

572 fission matches the probability of basal-level fission, that is, when $1 - \exp(-\lambda_{\text{split}} M_x \Delta t) =$

573 $\frac{d}{d_c+d}$. However, this switching condition is purely phenomenological and as such requires

574 further experimentation to either be phenomenologically refined or replaced with a

575 mechanistic model.

576

577 Suppose our agent has an initial mitochondrial mass of M . Now let M_{single} denote the mass of

578 a single mitochondrion. We assume that fission only occurs if $M > 2M_{\text{single}}$. This implies that

579 an agent must consist of more than two linked mitochondria for fission to occur, which is

580 implemented for computational reasons. If fission occurs, the original agent divides into two

581 new agents of mass M_1 and M_2 , where M_1 is chosen as a uniform random variable between

582 M_{single} and $M - M_{\text{single}}$ and $M_2 = M - M_1$.

583

584 **Damage**

585 Mitochondria segregate damaged mitochondria via fission ([Twig et al., 2008](#); [Youle and van](#)

586 [der Bliek, 2012](#); [Glancy et al., 2017](#)). Mitochondrial damage is described by the variable d

587 and is assumed to exist in two states, low and high. We assume that after fission, the

588 probability of the newly separated mitochondria becoming damaged is p_{damage} . This probability

589 is defined as

$$p_{\text{damage}} = p_d \frac{E_s}{E_s + I_{E_0}}, \quad (48)$$

590 where the parameter p_d describes the maximal probability of mitochondrial damage. The
591 factor $\frac{E_s}{E_s + I_{E_0}}$ ensures that increased energetic stress results in an increased likelihood of
592 mitochondrial damage.

593
594 Damaged mitochondria start from a low-damage state, corresponding to $d = 1$ and increases
595 by $1 - e^{-k_{\text{damage}}\Delta t}$ every time step. Once damage hits a critical threshold $d = T_d$, our state
596 switches from a low-damage state to a high-damage state. Mitochondria that are highly
597 damaged are assumed to be susceptible to increased turnover ([Hamacher-Brady and Brady, 2016](#)). The probability of mitochondrial turnover is given by $p_{\text{death}} > 0.5$. This approach to
598 modelling mitochondrial damage is similar to the approach utilised by [Dalmasso et al. \(2017\)](#).
599 Here, turnover is not referring to cell death nor mitophagy *per se*, but rather refers to a
600 mitochondrial agent dying.

602
603 Healthy mitochondria are treated as having a zero-damage state, i.e., $d = 0$. If two
604 mitochondria with damage states of d_1 and d_2 fuse, then the resultant damage is assumed to
605 be the average of the two, i.e. $(d_1 + d_2)/2$. If this value is below one, the mitochondria are no
606 longer marked as damaged.

607
608 *Parameter estimates*
609 A summary of parameter values is provided in Table 3. Where possible, we have used data
610 from animal models to characterize our estimates; however, some of the available data
611 comes from *in vitro* models due to the limited availability of animal data. For the PDE model,
612 we used the flux terms implemented by [Ghosh et al. \(2018\)](#). Details of how these parameters
613 were estimated are provided therein. We used manual calibration instead of formal parameter
614 fitting, which in our case is not feasible due to a lack of data directly corresponding to specific
615 model parameters. We summarize how we obtained these estimates for our ABM parameters
616 below. Unless stated otherwise, we assume a high-intensity workload of
617 $\text{VO}_2=100 \text{ }\mu\text{mol min}^{-1} \text{ g dw}^{-1}$.

618

619 **Agent-based model**

- 620 • λ_{split} : As a plausible estimate, we use a characteristic fission rate of $2 \times 10^{-3} \text{ s}^{-1}$.
- 621 • λ_{fuse} : Using a murine cardiomyocyte model, [Eisner et al. \(2017\)](#) estimate a
622 characteristic fusion rate of $1.67 \times 10^{-2} \text{ s}^{-1}$.
- 623 • λ_{biogen} : In [Dalmasso et al. \(2017\)](#) the authors optimize a mathematical model to
624 estimate a characteristic biogenesis frequency of 28.9 minutes, which equates to
625 $1/28.9 \text{ min}^{-1} = 5.77 \times 10^{-4} \text{ s}^{-1}$.
- 626 • M_0 , M_{single} , and M_{max} : Based on our image data we estimate $M_{\text{single}} = 8.25 \times 10^{-1} \mu\text{m}^2$
627 and $M_{\text{max}} = 43 \mu\text{m}^2$. Motivated by this we set $M_0 = \frac{1}{2}(M_{\text{single}} + M_{\text{max}}) \approx 22 \mu\text{m}^2$.
- 628 • d_c , p_d , k_{damage} , and T_d : As plausible estimates, we use $d_c = 250$, $p_d = 0.01$,
629 $k_{\text{damage}} = 10^{-3} \text{ s}^{-1}$, and $T_d = 10$.
- 630 • p_{death} : We arbitrarily set the probability of a mitochondrial agent dying to be 0.6.

631

632 *Simulations*

633 The initial geometry of our mitochondrial network was inspired by tissue samples taken from a
634 Sprague Dawley rat. Our initial conditions are a simplified 2D electron microscopy
635 representation of a healthy rat heart and are visualized in [Figure 1A](#). We assume that the
636 lateral and longitudinal dimensions of our hypothetical cardiomyocyte are 79 μm and
637 15.75 μm respectively. Our spatial increments, Δx and Δy are taken to be 1 μm and 0.75 μm
638 respectively. These increments coincide with the typical dimensions of a fibre-parallel
639 mitochondrion, allowing us to model mitochondrial matrices as mesh-points on our domain.
640 We note that using a different initial condition does not appear to change our results (see
641 [Figure S1](#)).

642

643 Our PDEs are discretized using the method of lines and solved using semi-implicit Strang
644 splitting. Our linear and non-linear components are both solved with MATLAB's inbuilt stiff
645 ODE solver "ode15s" with an absolute error tolerance of 10^{-6} . Our ABM time step, Δt , is set to
646 be 0.01 s.

647

648 To determine the minimum number of ABM runs, we screen for variance stability (Lee et al.,
649 2015; Lorscheid et al., 2012), i.e., identify the number of runs required for the coefficient of
650 variation to be less than some fixed tolerance. We find that with 5 runs, the coefficients of
651 variation for our ADP/ATP ratios are below 10^{-2} , which is considered acceptable in the
652 literature (Lee et al., 2015). Thus, the results from our ABM represent an average from 5 runs
653 unless stated otherwise.

654 SUPPLEMENTAL INFORMATION

655 **Movie S1. Simulation of the model at baseline conditions.**

656 Inset depicts a moving histogram depicting the distribution of mitochondrial (normalized so
657 that the total area sums to one). Also depicted are the ADP/ATP ratios; Pi concentrations;
658 and the $\Delta\Psi$'s predicted by the model. These values oscillate for each cardiac cycle. Related
659 to [Figure 3](#).

660 **Movie S2. Simulation of the model under hypoxia.**

661 The value of O_2 on the boundary is 5 μM at a workload of $VO_2 = 100 \mu mol min^{-1} g dw^{-1}$. Inset
662 depicts a moving histogram depicting the distribution of mitochondrial (normalized so that the
663 total area sums to one). Additionally depicted are the ADP/ATP ratios; O_2 concentrations; and
664 the $\Delta\Psi$'s predicted by the model. These values oscillate for each cardiac cycle. Related to
665 [Figure 4C](#).

666 **Figure S1. Sensitivity of ADP/ATP ratio with different initial conditions.**

667 Bioenergetics are robust to changes in the characteristic fission rate, λ_{split} , and fusion rate,
668 λ_{split} , regardless of the initial condition used in the model. Related to [Methods](#).

669 REFERENCES

670 ALIEV, M. K. & SAKS, V. A. 1997. Compartmentalized energy transfer in cardiomyocytes:
671 use of mathematical modeling for analysis of in vivo regulation of respiration.
672 *Biophysical Journal*, 73, 428-45.

673 BEARD, D. A. 2005. A Biophysical Model of the Mitochondrial Respiratory System and
674 Oxidative Phosphorylation. *PLoS Computational Biology*, 1, e36.

675 BESSMAN, S. P. & GEIGER, P. J. 1981. Transport of energy in muscle: the
676 phosphorylcreatine shuttle. *Science*, 211, 448-52.

677 BOLAND, M., CHOORASIA, A. & MACLEOD, K. 2013. Mitochondrial Dysfunction in Cancer.
678 *Frontiers in Oncology*, 3, 292.

679 CAO, Y.-P. & ZHENG, M. 2019. Mitochondrial dynamics and inter-mitochondrial
680 communication in the heart. *Archives of Biochemistry and Biophysics*, 663, 214-219.

681 CATTERMOLE, G. N., LEUNG, P. Y., HO, G. Y., LAU, P. W., CHAN, C. P., CHAN, S. S.,
682 SMITH, B. E., GRAHAM, C. A. & RAINER, T. H. 2017. The normal ranges of
683 cardiovascular parameters measured using the ultrasonic cardiac output monitor.
684 *Physiol Rep.*, 5.

685 CHEN, H., CHOMYN, A. & CHAN, D. C. 2005. Disruption of fusion results in mitochondrial
686 heterogeneity and dysfunction. *Journal of Biological Chemistry*, 280, 26185-26192.

687 CHEN, Y., CSORDAS, G., JOWDY, C., SCHNEIDER, T. G., CSORDAS, N., WANG, W., LIU,
688 Y., KOHLHAAS, M., MEISER, M., BERGEM, S., NERBONNE, J. M., DORN, G. W. &
689 MAACK, C. 2012. Mitofusin 2-containing mitochondrial-reticular microdomains direct
690 rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk.
691 *Circulation Research*, 111, 863-875.

692 CIPOLAT, S., RUDKA, T., HARTMANN, D., COSTA, V., SERNEELS, L., CRAESSAERTS,
693 K., METZGER, K., FREZZA, C., ANNAERT, W., D'ADAMIO, L., DERKS, C.,
694 DEJAEGERE, T., PELLEGRINI, L., D'HOOGE, R., SCORRANO, L. & DE
695 STROOPER, B. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release
696 during apoptosis via OPA1-dependent cristae remodeling. *Cell*, 126, 163-175.

697 DALMASSO, G., MARIN ZAPATA, P. A., BRADY, N. R. & HAMACHER-BRADY, A. 2017.
698 Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular
699 Homeostasis and Heterogeneity. *PLoS One*, 12, e0168198.

700 DZEJA, P. & TERZIC, A. 2009. Adenylate kinase and AMP signaling networks: metabolic
701 monitoring, signal communication and body energy sensing. *Int J Mol Sci*, 10, 1729-
702 72.

703 EGAN, D. F., SHACKELFORD, D. B., MIHAYLOVA, M. M., GELINO, S., KOHNZ, R. A.,
704 MAIR, W., VASQUEZ, D. S., JOSHI, A., GWINN, D. M., TAYLOR, R., ASARA, J. M.,
705 FITZPATRICK, J., DILLIN, A., VIOLET, B., KUNDU, M., HANSEN, M. & SHAW, R.
706 J. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase
707 connects energy sensing to mitophagy. *Science*, 331, 456-61.

708 EISNER, V., CUPO, R. R., GAO, E., CSORDÁS, G. O., SLOVINSKY, W. S., PAILLARD, M.,
709 CHENG, L., IBETTI, J., CHEN, S. R. W., CHUPRUN, J. K., HOEK, J. B., KOCH, W.
710 J. & HAJNÓCZKY, G. O. 2017. Mitochondrial fusion dynamics is robust in the heart
711 and depends on calcium oscillations and contractile activity. *Proceedings of the
712 National Academy of Sciences*, 114, E859-E868.

713 EISNER, V., LENAERS, G. & HAJNÓCZKY, G. 2014. Mitochondrial fusion is frequent in
714 skeletal muscle and supports excitation-contraction coupling. *Journal of Cell Biology*,
715 205, 179-195.

716 EISNER, V., PICARD, M. & HAJNÓCZKY, G. 2018. Mitochondrial dynamics in adaptive and
717 maladaptive cellular stress responses. *Nature Cell Biology*, 20, 755-765.

718 FREY, N., KATUS, H. A., OLSON, E. N. & HILL, J. A. 2004. Hypertrophy of the heart: a new
719 therapeutic target? *Circulation*, 109, 1580-1589.

720 FREY, N. & OLSON, E. N. 2003. Cardiac hypertrophy: the good, the bad, and the ugly.
721 *Annual Review of Physiology*, 65, 45-79.

722 FREZZA, C., CIPOLAT, S., MARTINS DE BRITO, O., MICARONI, M., BEZNOUSSENKO, G.
723 V., RUDKA, T., BARTOLI, D., POLISHUCK, R. S., DANIAL, N. N., DE STROOPER,
724 B. & SCORRANO, L. 2006. OPA1 controls apoptotic cristae remodeling
725 independently from mitochondrial fusion. *Cell*, 126, 177-189.

726 FU, W., LIU, Y. & YIN, H. 2019. Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and
727 Mitophagy in the Regulation of Stem Cell Behaviors. *Stem Cells Int*, 2019, 9757201.

728 GALLOWAY, C. A. & YOON, Y. 2015. Mitochondrial dynamics in diabetic cardiomyopathy.
729 *Antioxidants and Redox Signaling*, 22, 1545-1562.

730 GHOSH, S. 2019. *Role of ultrastructural alterations in diabetic cardiomyopathy*. Doctor of
731 Philosophy PhD, The University of Melbourne.

732 GHOSH, S., TRAN, K., DELBRIDGE, L. M. D., HICKEY, A. J. R., HANSEN, E., CRAMPIN,
733 E. J. & RAJAGOPAL, V. 2018. Insights on the impact of mitochondrial organisation
734 on bioenergetics in high-resolution computational models of cardiac cell architecture.
735 *PLoS Computational Biology*, 14, e1006640.

736 GILKERSON, R. W., SELKER, J. M. & CAPALDI, R. A. 2003. The cristal membrane of
737 mitochondria is the principal site of oxidative phosphorylation. *FEBS Lett.*, 546, 355-
738 358.

739 GLANCY, B., HARTNELL, L. M., COMBS, C. A., FEMNOU, A., SUN, J., MURPHY, E.,
740 SUBRAMANIAM, S. & BALABAN, R. S. 2017. Power grid protection of the muscle
741 mitochondrial reticulum. *Cell Reports*, 19, 487-496.

742 GOMES, L. C., DI BENEDETTO, G. & SCORRANO, L. 2011. During autophagy mitochondria
743 elongate, are spared from degradation and sustain cell viability. *Nature Cell Biology*,
744 13, 589-598.

745 HALESTRAP, A. P., CLARKE, S. J. & JAVADOV, S. A. 2004. Mitochondrial permeability
746 transition pore opening during myocardial reperfusion--a target for cardioprotection.
747 *Cardiovasc Res*, 61, 372-85.

748 HALL, A. R., BURKE, N., DONGWORTH, R. K., KALKHORAN, S. B., DYSON, A.,
749 VICENCIO, J. M., DORN, G. W., II, YELLON, D. M. & HAUSENLOY, D. J. 2016.
750 Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial
751 infarction. *Cell Death Dis*, 7, e2238.

752 HAMACHER-BRADY, A. & BRADY, N. R. 2016. Mitophagy programs: mechanisms and
753 physiological implications of mitochondrial targeting by autophagy. *Cellular and
754 Molecular Life Sciences*, 73, 775-95.

755 HOITZING, H., JOHNSTON, I. G. & JONES, N. S. 2015. What is the function of mitochondrial
756 networks? A theoretical assessment of hypotheses and proposal for future research.
757 *Bioessays*, 37, 687-700.

758 HUSSAIN, A., GHOSH, S., KALKHORAN, S. B., HAUSENLOY, D. J., HANSEN, E. &
759 RAJAGOPAL, V. 2018. An automated workflow for segmenting single adult cardiac
760 cells from large-volume serial block-face scanning electron microscopy data. *Journal
761 of Structural Biology*, 202, 275-285.

762 JAGER, S., HANDSCHIN, C., ST-PIERRE, J. & SPIEGELMAN, B. M. 2007. AMP-activated
763 protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-
764 1alpha. *Proceedings of the National Academy of Sciences*, 104, 12017-12022.

765 JAROSZ, J., GHOSH, S., DELBRIDGE, L. M., PETZER, A., HICKEY, A. J., CRAMPIN, E. J.,
766 HANSEN, E. & RAJAGOPAL, V. 2017. Changes in mitochondrial morphology and
767 organization can enhance energy supply from mitochondrial oxidative
768 phosphorylation in diabetic cardiomyopathy. *Am J Physiol Cell Physiol*, 312, C190-
769 C197.

770 LEE, J.-S., FILATOVA, T., LIGMANN-ZIELINSKA, A., HASSANI-MAHMOOEI, B.,
771 STONEDAHL, F., LORSCHEID, I., VOINOV, A., POLHILL, J. G., SUN, Z. &
772 PARKER, D. C. 2015. The Complexities of Agent-Based Modeling Output Analysis.
773 *Journal of Artificial Societies and Social Simulation*, 18, 4.

774 LI, N., CRUZ, J., CHIEN, C. S., SOJOURDI, S., RECHT, B., STONE, D., CSETE, M.,
775 BAHMILLER, D. & DOYLE, J. C. 2014. Robust efficiency and actuator saturation
776 explain healthy heart rate control and variability. *Proc Natl Acad Sci U S A*, 111,
777 E3476-85.

778 LIESA, M. & SHIRIHAI, O. S. 2013. Mitochondrial dynamics in the regulation of nutrient
779 utilization and energy expenditure. *Cell Metabolism*, 17, 491-506.

780 LORSCHEID, I., HEINE, B.-O. & MEYER, M. 2012. Opening the 'black box' of simulations:
781 increased transparency and effective communication through the systematic design
782 of experiments. *Computational and Mathematical Organization Theory*, 18, 22-62.

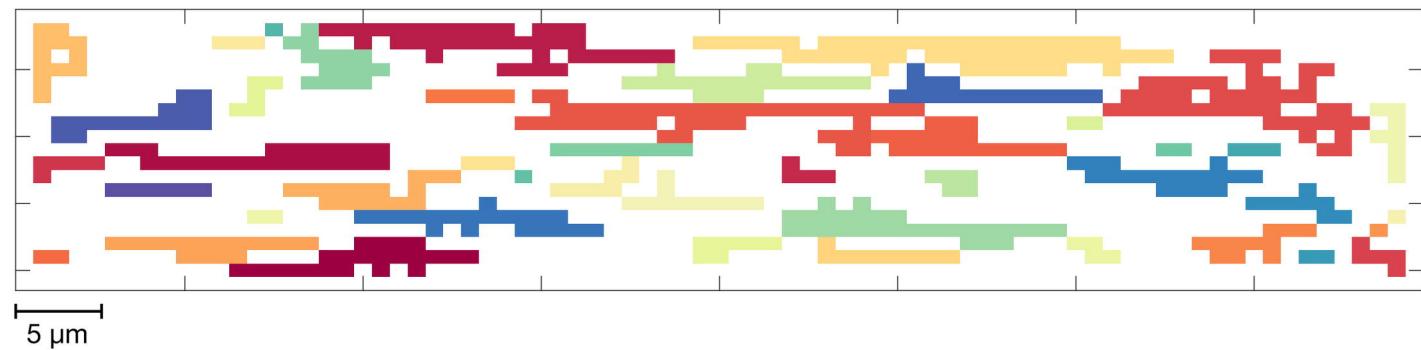
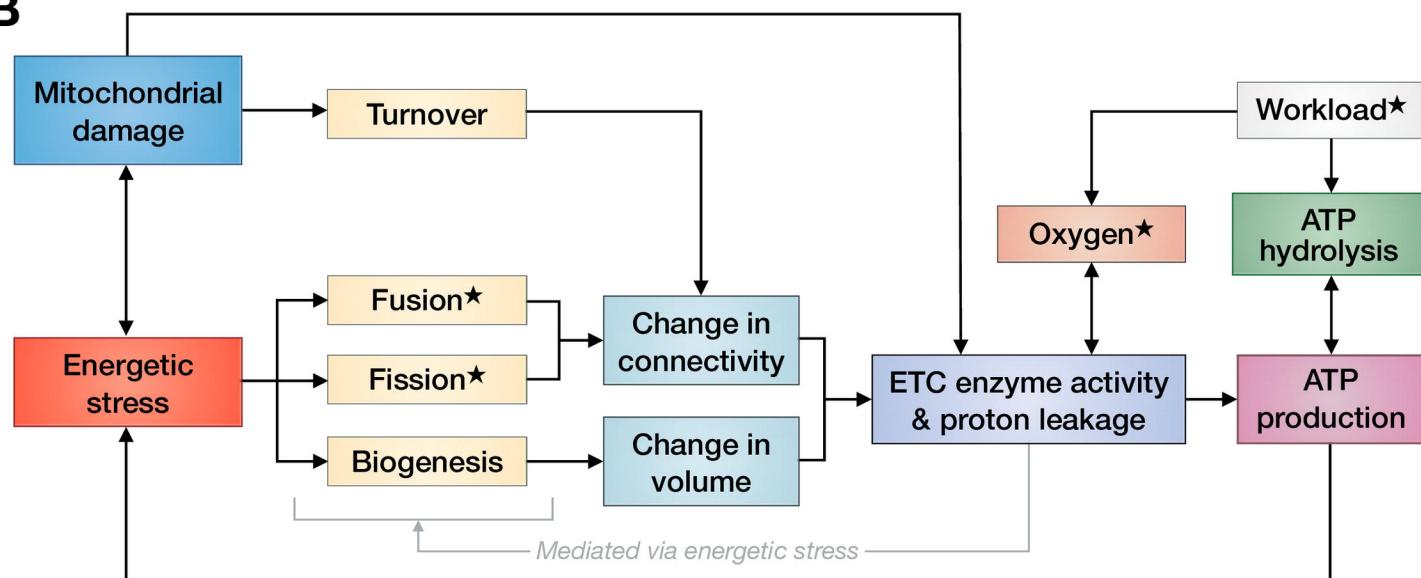
783 MATSUDA, N., SATO, S., SHIBA, K., OKATSU, K., SAISHO, K., GAUTIER, C. A., SOU, Y.
784 S., SAIKI, S., KAWAJIRI, S., SATO, F., KIMURA, M., KOMATSU, M., HATTORI, N. &
785 TANAKA, K. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to
786 damaged mitochondria and activates latent Parkin for mitophagy. *J Cell Biol*, 189,
787 211-21.

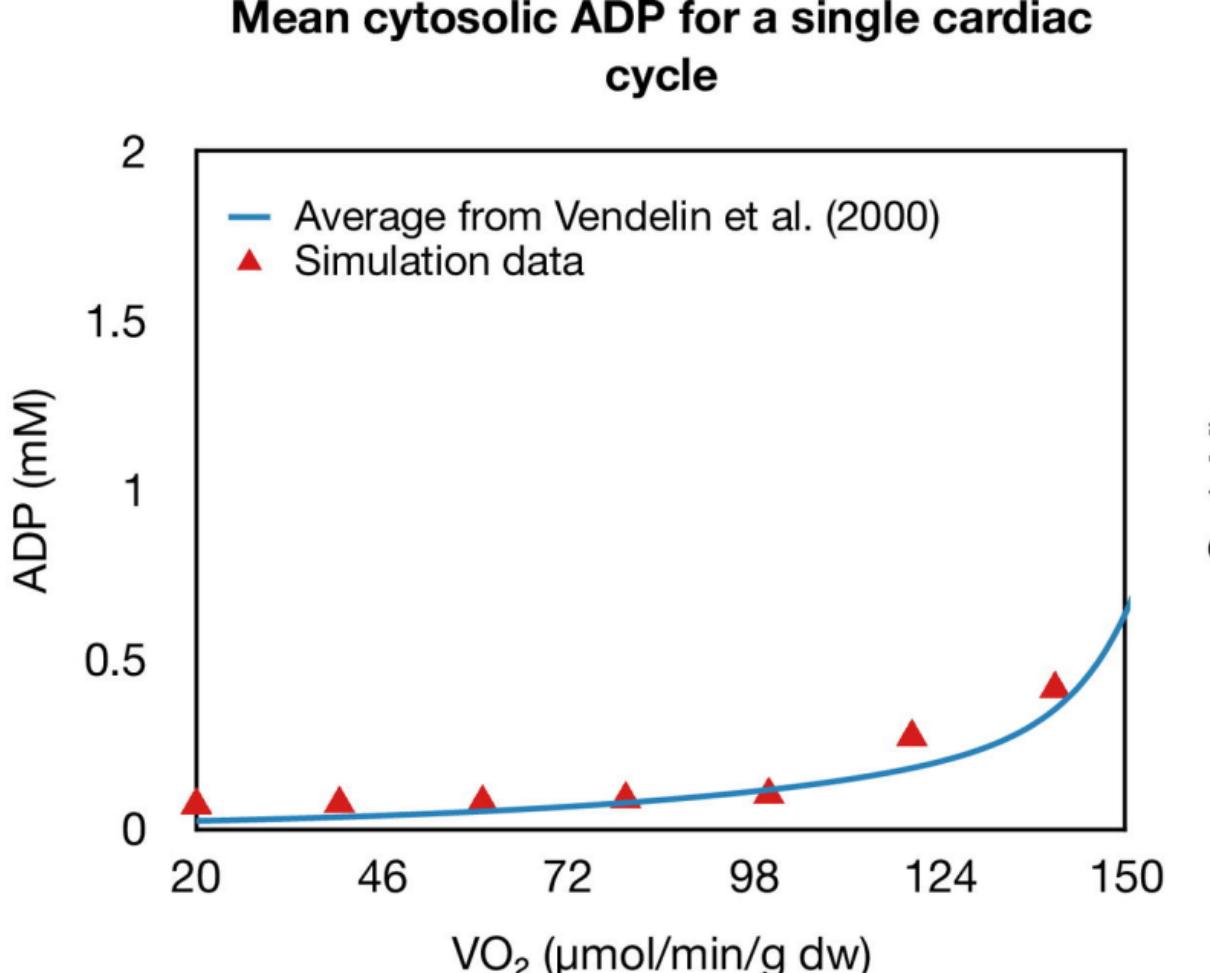
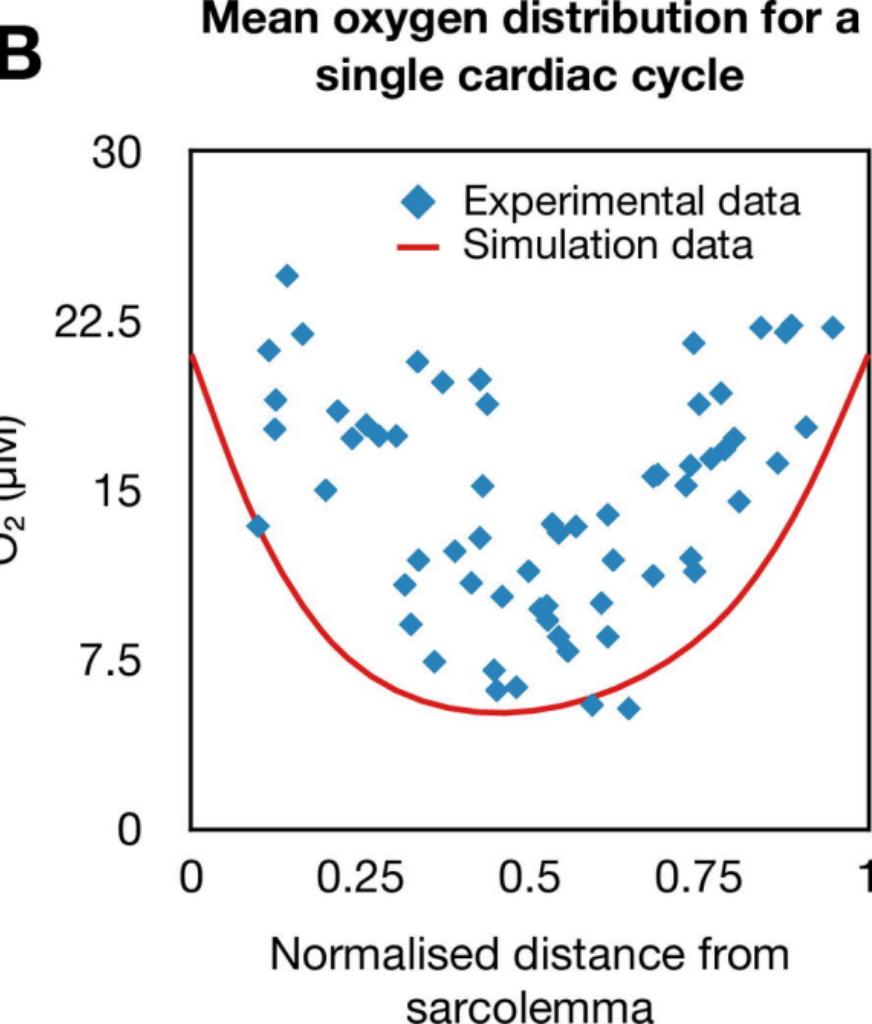
788 MEYER, R. A., SWEENEY, H. L. & KUSHMERICK, M. J. 1984. A simple analysis of the
789 "phosphocreatine shuttle". *Am J Physiol*, 246, C365-77.

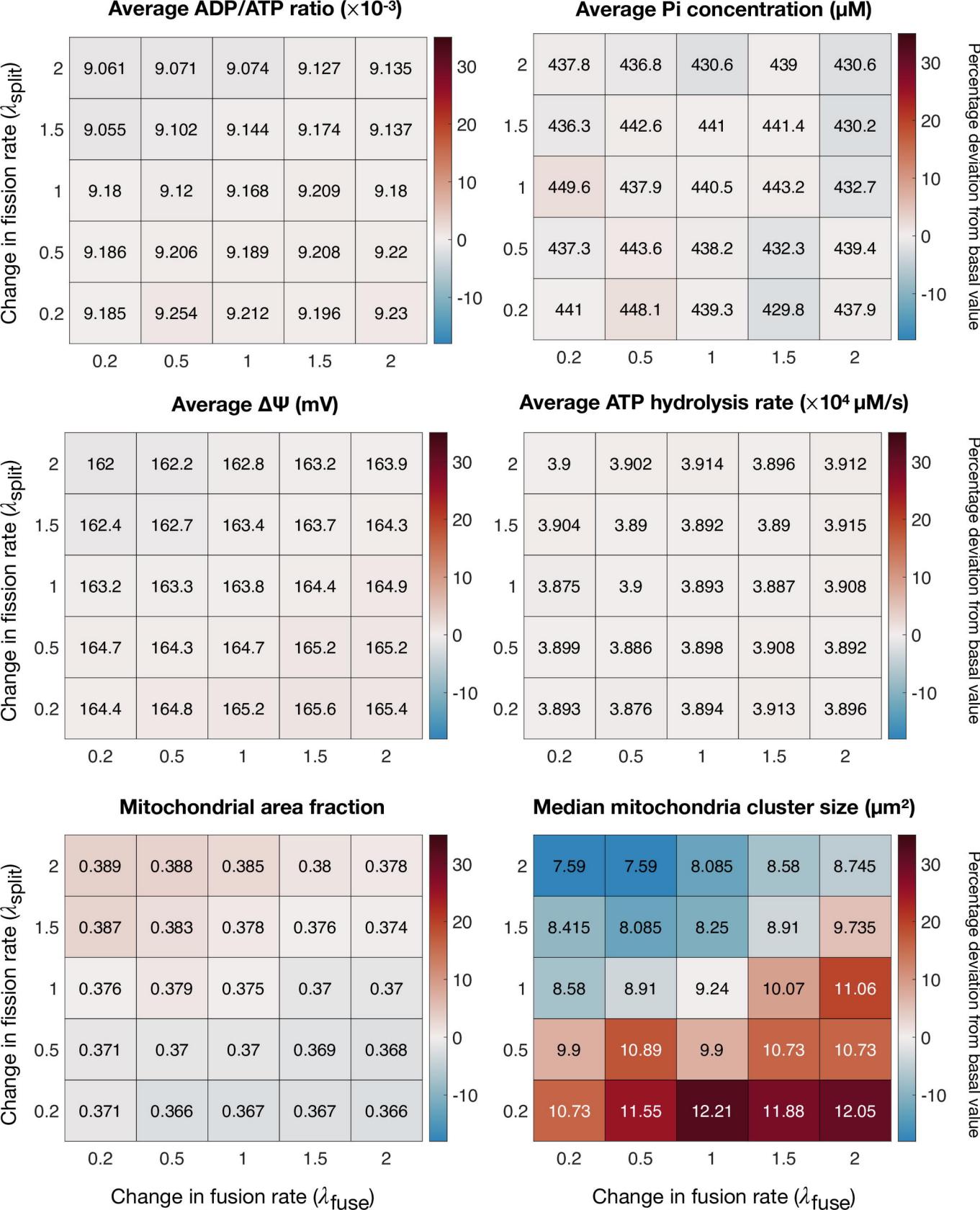
790 MIHAYLOVA, M. M. & SHAW, R. J. 2011. The AMPK signalling pathway coordinates cell
791 growth, autophagy and metabolism. *Nature Cell Biology*, 13, 1016-23.

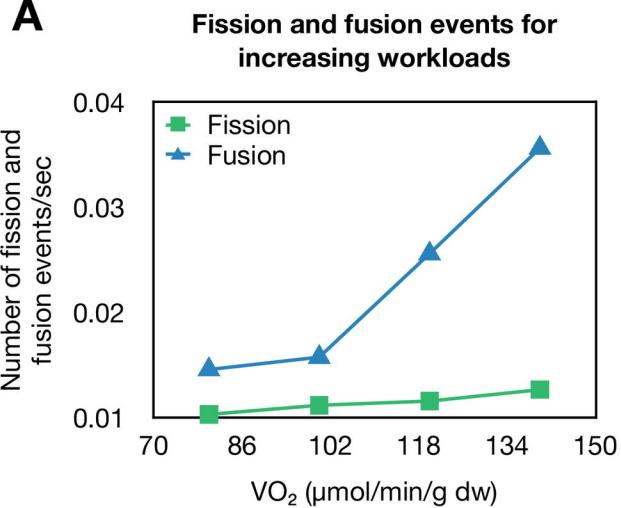
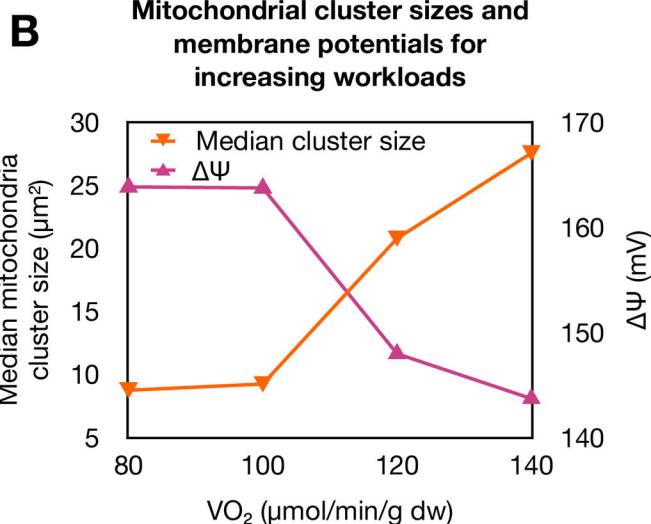
792 MILO, R., SHEN-ORR, S., ITZKOVITZ, S., KASHTAN, N., CHKLOVSKII, D. & ALON, U.
793 2002. Network motifs: simple building blocks of complex networks. *Science*, 298,
794 824-7.

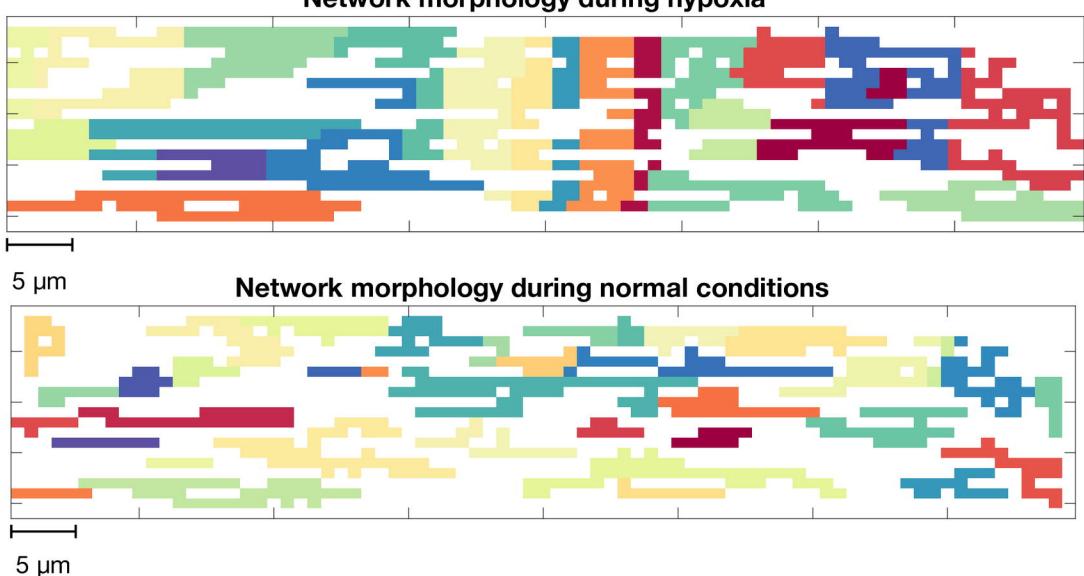
795 OLICHON, A., BARICAULT, L., GAS, N., GUILLOU, E., VALETTE, A., BELENGUER, P. &
796 LENAERS, G. 2003. Loss of OPA1 perturbs the mitochondrial inner membrane
797 structure and integrity, leading to cytochrome c release and apoptosis. *J. Biol. Chem.*,
798 278, 7743-7746.

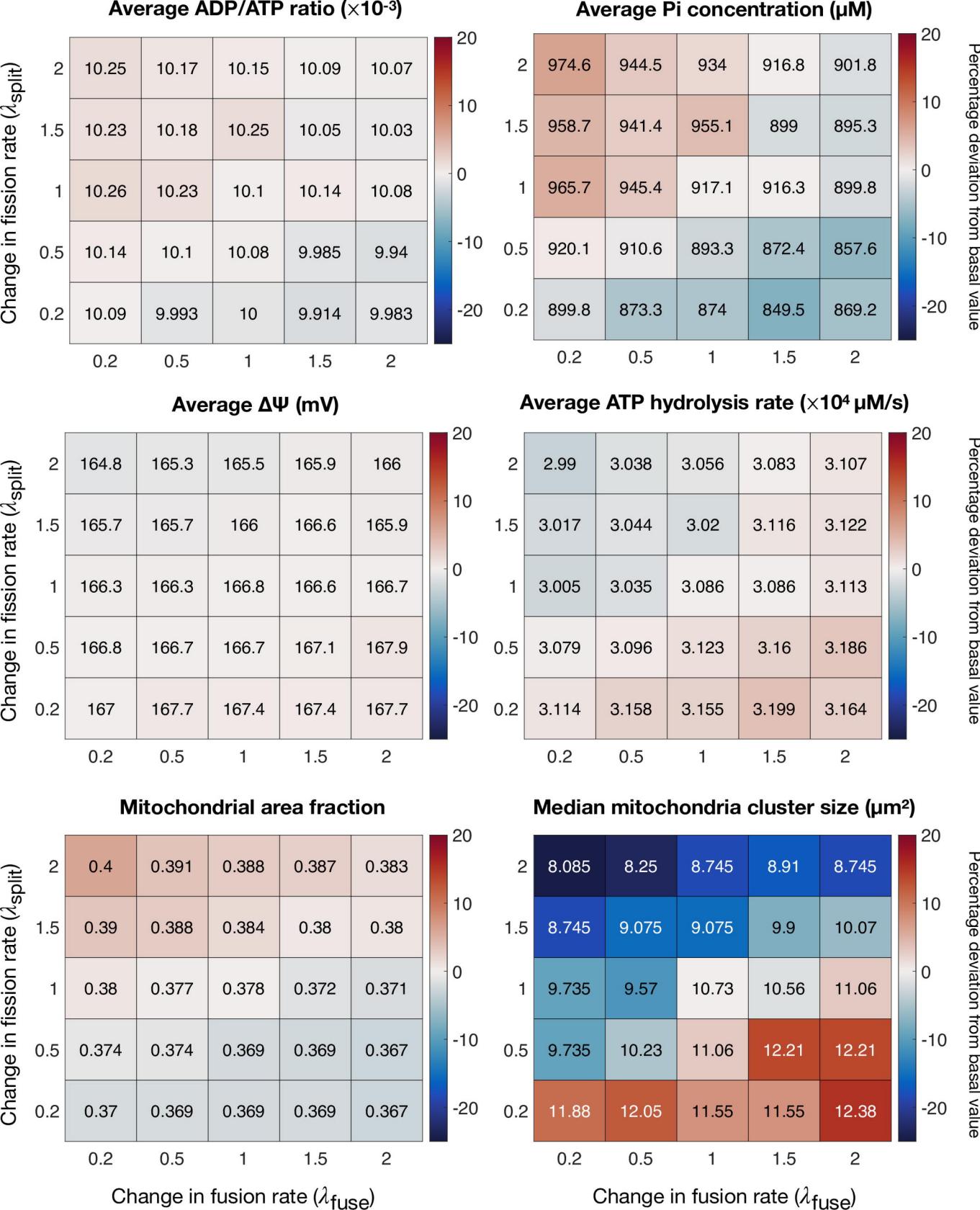


799 ONG, S.-B., KALKHORAN, S. B., CABRERA-FUENTES, H. A. & HAUSENLOY, D. J. 2015.
800 Mitochondrial fusion and fission proteins as novel therapeutic targets for treating
801 cardiovascular disease. *European Journal of Pharmacology*, 763, 104-14.
802 ONG, S. B., SUBRAYAN, S., LIM, S. Y., YELLON, D. M., DAVIDSON, S. M. & HAUSENLOY,
803 D. J. 2010. Inhibiting mitochondrial fission protects the heart against
804 ischemia/reperfusion injury. *Circulation*, 121, 2012-2022.
805 PARK, J., LEE, J. & CHOI, C. 2011. Mitochondrial network determines intracellular ROS
806 dynamics and sensitivity to oxidative stress through switching inter-mitochondrial
807 messengers. *PLoS One*, 6, e23211.
808 PARRA, V., VERDEJO, H., DEL CAMPO, A., PENNANEN, C., KUZMICIC, J., IGLEWSKI, M.,
809 HILL, J. A., ROTHERMEL, B. A. & LAVANDERO, S. 2011. The complex interplay
810 between mitochondrial dynamics and cardiac metabolism. *J. Bioenerg. Biomembr.*,
811 43, 47-51.
812 PERNAS, L. & SCORRANO, L. 2016. Mito-Morphosis: Mitochondrial Fusion, Fission, and
813 Cristae Remodeling as Key Mediators of Cellular Function. *Annu Rev Physiol*, 78,
814 505-31.
815 PHAM, T., LOISELLE, D., POWER, A. & HICKEY, A. J. 2014. Mitochondrial inefficiencies and
816 anoxic ATP hydrolysis capacities in diabetic rat heart. *Am J Physiol Cell Physiol*, 307,
817 C499-507.
818 PICARD, M., GENTIL, B. J., MCMANUS, M. J., WHITE, K., ST LOUIS, K., GARTSIDE, S. E.,
819 WALLACE, D. C. & TURNBULL, D. M. 2013. Acute exercise remodels mitochondrial
820 membrane interactions in mouse skeletal muscle. *J Appl Physiol (1985)*, 115, 1562-
821 71.
822 PIQUEREAU, J., CAFFIN, F., NOVOTOVA, M., PROLA, A., GARNIER, A., MATEO, P.,
823 FORTIN, D., HUYNH, L. E. H., NICOLAS, V., ALAVI, M. V., BRENNER, C.,
824 VENTURA-CLAPIER, R., VEKSLER, V. & JOUBERT, F. 2012. Down-regulation of
825 OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation
826 to pressure overload. *Cardiovascular Research*, 94, 408-417.
827 RUMSEY, W. L., SCHLOSSER, C., NUUTINEN, E. M., ROBIOLIO, M. & WILSON, D. F.
828 1990. Cellular energetics and the oxygen dependence of respiration in cardiac
829 myocytes isolated from adult rat. *Journal of Biological Chemistry*, 265, 15392-402.
830 SCARPULLA, R. C. 2011. Metabolic control of mitochondrial biogenesis through the PGC-1
831 family regulatory network. *Biochimica et Biophysica Acta*, 1813, 1269-1278.
832 SIMSON, P., JEPIHHINA, N., LAASMAA, M., PETERSON, P., BIRKEDAL, R. & VENDELIN,
833 M. 2016. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles
834 are complemented with a small number of open mitochondrial voltage-dependent
835 anion channels. *J Mol Cell Cardiol*, 97, 197-203.
836 TAKAHASHI, E., SATO, K., ENDOH, H., XU, Z.-L. & DOI, K. 1998. Direct observation of
837 radial intracellular PO_2 gradients in a single cardiomyocyte of the rat. *American*
838 *Journal of Physiology-Heart and Circulatory Physiology*, 275, H225-H233.
839 TOYAMA, E. Q., HERZIG, S., COURCHET, J., LEWIS, J., TOMMY L, LOSÓN, O. C.,
840 HELLBERG, K., YOUNG, N. P., CHEN, H., POLLEUX, F., CHAN, D. C. & SHAW, R.
841 J. 2016. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in
842 response to energy stress. *Science*, 351, 275-281.
843 TWIG, G., ELORZA, A., MOLINA, A. J., MOHAMED, H., WIKSTROM, J. D., WALZER, G.,
844 STILES, L., HAIGH, S. E., KATZ, S., LAS, G., ALROY, J., WU, M., PY, B. F., YUAN,
845 J., DEENNEY, J. T., CORKEY, B. E. & SHIRIHAI, O. S. 2008. Fission and selective
846 fusion govern mitochondrial segregation and elimination by autophagy. *EMBO*
847 *Journal*, 27, 433-446.
848 VENDELIN, M., KONGAS, O. & SAKS, V. 2000. Regulation of mitochondrial respiration in
849 heart cells analyzed by reaction-diffusion model of energy transfer. *American Journal*
850 *of Physiology-Cell Physiology*, 278, C747-64.
851 WU, F., ZHANG, E. Y., ZHANG, J., BACHE, R. J. & BEARD, D. A. 2008. Phosphate
852 metabolite concentrations and ATP hydrolysis potential in normal and ischaemic
853 hearts. *Journal of Physiology*, 586, 4193-208.
854 YOO, S. Z., NO, M. H., HEO, J. W., PARK, D. H., KANG, J. H., KIM, J. H., SEO, D. Y., HAN,
855 J., JUNG, S. J. & KWAK, H. B. 2019. Effects of Acute Exercise on Mitochondrial
856 Function, Dynamics, and Mitophagy in Rat Cardiac and Skeletal Muscles. *Int*
857 *Neurotol J*, 23, S22-31.



858 YOULE, R. J. & VAN DER BLIEK, A. M. 2012. Mitochondrial fission, fusion, and stress.
859 *Science*, 337, 1062-5.

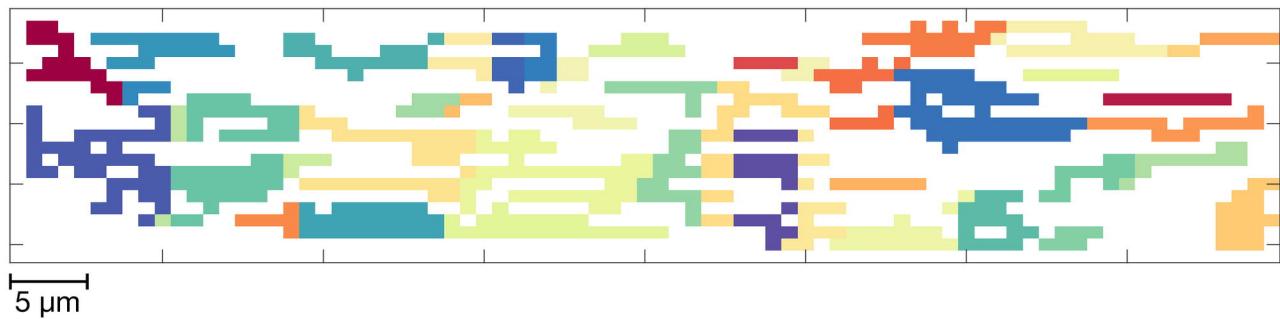

860 ZOROV, D. B., JUHASZCOVA, M. & SOLLOTT, S. J. 2014. Mitochondrial reactive oxygen
861 species (ROS) and ROS-induced ROS release. *Physiol Rev*, 94, 909-50.

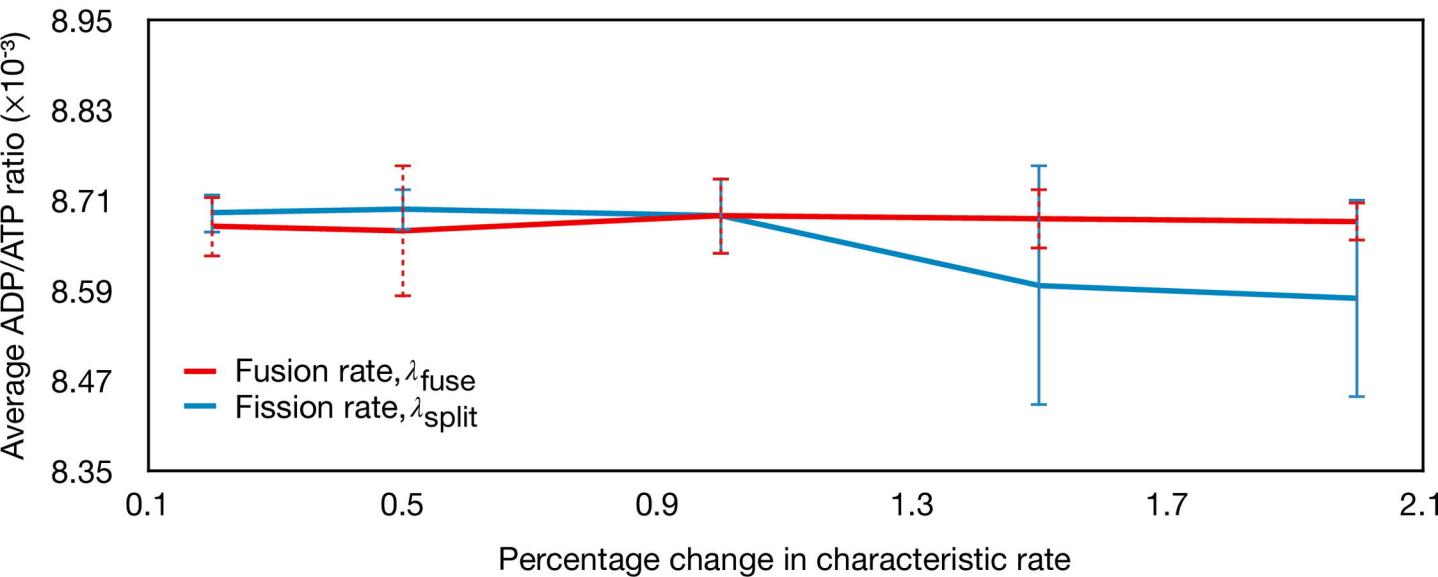




862 ZOROVA, L. D., POPKOV, V. A., PLOTNIKOV, E. Y., SILACHEV, D. N., PEVZNER, I. B.,
863 JANKAUSKAS, S. S., BABENKO, V. A., ZOROV, S. D., BALAKIREVA, A. V.,
864 JUHASZCOVA, M., SOLLOTT, S. J. & ZOROV, D. B. 2018. Mitochondrial membrane
865 potential. *Anal Biochem*, 552, 50-59.


866

A**B**


A**B**


A**B****C****D**

New initial condition

Sensitivity of bioenergetics to characteristic fission and fusion rates

