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ABSTRACT 

Methylation levels at specific CpG positions in the genome have been used to develop accurate 

estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are 

generally species-specific, the principles underpinning them appear to be conserved at least across the 

mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and 

several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca 

mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation 

array (HorvathMammalMethylChip40), we profiled n=281 tissue samples (blood, skin, adipose, kidney, 

liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for 

macaques. These clocks differ with regards to applicability to different tissue types (pan-tissue, blood, 

skin), species (macaque only or both humans and macaques), and measure of age (chronological age 

versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation 

(R=0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within 

the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, 

skin). It is expected that the macaque clocks will reveal an epigenetic aging rate associated with a host 

of health conditions and thus lend themselves for identifying and validating anti-aging interventions. 

 

INTRODUCTION 

The rising costs of healthcare have fueled the growing need to address the root cause of most diseases 

and health conditions. Age is, without doubt, the strongest correlative factor across a wide range of 

pathologies. As such, investigations into the mechanisms and causes of aging, as well as interventions 

that might ameliorate its effects, hold great promise for improving health. To meet this end, animal 

models that closely recapitulate human aging are essential. Rhesus macaques (Macaca mulatta) are the 

most widely used nonhuman primate in biomedical research and share over 92% DNA sequence 

homology with humans (1). They have an average lifespan in captivity of approximately 27 years, 

maximal lifespan of 42 years, and experience aging processes that are very similar to humans. With 

these features, the rhesus macaque presents as an excellent subject for the understanding of aging in 

humans and also other closely-related primate species (2, 3). Despite these attractive features, the 

employment of rhesus macaques in such research remains modest. This is due to both the prohibitive 

cost of maintaining a colony and the relatively long lifespan of these primates (4). These challenges, 

however, can be effectively addressed if accurate and robust biomarkers of biological age are 

established. Such biomarkers would change the experimental endpoint from longevity (measure of time 

from birth to death), to biological age (the measure of health and fitness). The application of biomarkers 

will greatly reduce the duration and cost of primate studies, while generating a much more meaningful 

understanding of why we age and provide the means to evaluate anti-aging interventions. 

 

We report here, the development of DNA methylation-based biomarkers of age, known as epigenetic 

clocks. The development of such clocks was inspired by the vision that combining methylation levels 

of multiple CpGs that change with age would produce an accurate age estimator (reviewed in (5-7)). 

This notion was made possible by the technical advancement of array platforms that provide accurate 

quantitative measurements of methylation for thousands of specific CpGs in the genome and 

subsequently furthered the development of several human epigenetic clocks. Human and mouse pan-

tissue DNA methylation (DNAm) age estimators exhibited important characteristics for aging studies, 

namely application to all sources of DNA (from sorted cells, tissues, and organs) and across the entire 

age spectrum (from prenatal tissue to centenarians) (5, 8-10). A substantial body of literature report that 

human epigenetic clocks capture many aspects of biological age (5). As such, the discrepancy between 

DNAm age and chronological age (termed as “epigenetic age acceleration”) is predictive of all-cause 

mortality in humans even after adjusting for a variety of known risk factors (11-13). Several age related 
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conditions are also associated with epigenetic age acceleration, including, but not limited to, cognitive 

and physical functioning (14), centenarian status (13, 15), Down syndrome (16), HIV infection (17), 

obesity (18).  

 

Recently, mouse epigenetic clocks were successfully applied to evaluate and confirm benchmark 

longevity interventions such as calorie restriction and ablation of growth hormone receptor (9, 10, 19-

22). These observations strongly suggest that the capture of biological age by epigenetic clocks is not 

the preserve of human clocks but is a feature that applies several mammalian species. Since age-related 

DNA methylation change appears to be evolutionarily conserved, accurate age estimators, such as those 

developed for humans, may be applied across species. Although the human pan-tissue clock can indeed 

be applied to chimpanzee DNA methylation profiles, its performance with profiles of other animals 

decline as a result of evolutionary genome sequence divergence (8). Here we describe the development 

and performance of several epigenetic clocks for rhesus macaques, two of which are dual-species clocks 

that apply both to humans and rhesus macaques.  

 

RESULTS 

 

DNA methylation data  

All rhesus macaque DNA methylation profiles were generated on a custom methylation array 

(HorvathMammalMethylChip40) that measures the methylation level of 36,000 CpGs with flanking 

DNA sequences that are conserved across the mammalian class. We obtained 281 DNA methylation 

profiles from 8 different tissues of rhesus macaque (Macaca mulatta) with ages that ranged from 1.8 

years to 42 years (Table 1). An unsupervised hierarchical analysis clustered the methylation profiles by 

tissue type (Supplementary Figure 1). DNA methylation-based age estimators (epigenetic clocks) 

were developed using data from n=281 tissues, of which the most numerous were blood (N=199) and 

skin (N=51). Postmortem tissues (omental adipose, brain cortex, kidney, liver, lung, and skeletal 

muscle) were also available, but from fewer than 7 animals (Table 1). To generate dual-species 

epigenetic clocks that apply to both human and rhesus macaque, n=850 human tissue samples that were 

similarly profiled on HorvathMammalMethylChip40 were added to the rhesus macaque training set 

(Methods). 

 

Epigenetic clocks  

From these datasets, we generated five epigenetic clocks for macaques. These clocks differ with regards 

to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans 

and macaques), and measure of age (chronological age versus relative age). As indicated by their names, 

pan-tissue clocks apply to all tissues, while the other clocks are developed for specific tissues/organs 

(blood, skin). The macaque pan-tissue clock was trained on all available tissues and applies only to 

rhesus macaques. The two human-macaque pan-tissue clocks, on the other hand, were derived from 

DNA methylation profiles from both species and are distinct from each other based on the unit of age 

that is employed. One estimates chronological age (in units of years), while the other estimates relative 

age, which is the ratio of chronological age to maximum lifespan, with values between 0 and 1. This 

ratio allows alignment and biologically meaningful comparison between species with very different 

lifespan (rhesus macaque and human), which is not afforded by mere measurement of chronological 

age. The maximum recorded lifespans for rhesus macaques and humans are 42 years and 122.5 years, 

respectively, according to the updated version of the anAge data base (23), thus there is an approximate 

3:1 age ratio. 
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To arrive at unbiased estimates of the rhesus macaque pan-tissue clock, we carried out cross-validation 

analysis of the training data, followed by evaluation with an independent data set from another 

nonhuman primate species (vervet monkey). The cross-validation study reports unbiased estimates of 

the age correlation R (defined as Pearson correlation between the DNAm age estimate and 

chronological age) as well as the median absolute error. 

 

The resulting macaque pan-tissue clock is highly accurate in age-estimation across tissues (R=0.95, 

median absolute error 1.4 years, Figure 1A) and in individual types (R>=0.93, Supplementary Figure 

2C-I), except for adipose tissue (R=0.73, Supplementary Figure 2B) for which only n=5 samples were 

available. The human-rhesus macaque clock for age is highly accurate when both species are analyzed 

together (R=0.98, Figure 1D), with a slight reduction when the analysis is restricted to rhesus macaque 

tissues (R=0.95, Figure 1E).  

 

Similarly, the human-rhesus macaque clock for relative age exhibits high correlation regardless of 

whether the analysis is done with samples from both species (R=0.97, Figure 1F) or with only rhesus 

macaque samples (R=0.95, Figure 1G). The employment of relative age circumvents the inevitable 

unequal distribution of data at the opposite ends of the age range when chronological age of species 

with very different lifespans are measured using a single formula. A cross validation analysis reveals 

that both human-macaque clocks lead to high accuracy (R>=0.97) in human blood and skin samples 

(Figure 2).  

 

Cross-species performance of the rhesus macaque pan-tissue clock 

To determine the extent by which the rhesus macaque epigenetic clock can be applied to another 

primate, we used it to estimate the age of numerous tissues (blood, brain cortex, and liver) of the vervet 

monkey (Chlorocebus sabaeus), which is another Old World monkey separated 12.5 million years ago 

from the macaques. Despite this, we observed high correlations between the chronological age of 

vervets and their predicted age based on the macaque pan-tissue clock: R=0.96 in vervet blood, R=0.92 

in vervet cortex, and R=0.98 in vervet liver (Figure 3A-D). It is worth noting that the comparison of 

correlation coefficients between different tissues is not straightforward as these values are dependent 

on the age distribution of the samples that are evaluated (e.g. minimum and maximum age) and also on 

the sample size, albeit to a lesser extent. While the correlations are nevertheless impressively high, the 

level of concordance between chronological age and estimated age are less so, in particular with cortex, 

which exhibited an off set of 9 years (Figure 3B). Nevertheless, there is reasonably good concordance 

between chronological age of vervets and the estimated age of their blood (median error 1.7 years, 

Figure 3B) and liver (median error 3.5 years, Figure 3C) by the macaque pan-tissue clock.  

 

Epigenome-Wide Association Studies (EWAS) of chronological age in rhesus Macaque 

In total, 36,733 probes from HorvathMammalMethylChip40 could be mapped to specific loci in rhesus 

Macaque (Macaca mulatta.Mmul_10.100) genome. These loci are located proximal to 6154 genes. It 

is expected that findings resulting from the use of these clocks can be extrapolated to humans and other 

mammals since the mammalian array is designed to cover the most conserved regions across different 

mammalian genomes. To characterize the CpGs that change with macaque age (age-related CpGs) in 

different tissues, epigenome-wide association studies were carried out, which showed clear tissue-

specificity of age-related CpGs (and their proximal genes) (Figure 4A). Hence, aging effects in one 

tissue do not appear to be reflected in another tissue (Supplementary Figure 3). This, however, may 

be owed to the limited sample size in non-blood tissue (Table 1).  
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To identify CpGs whose methylation are most affected by age in all the tissues analyzed, DNAm 

changes were analyzed at a nominal p value < 10-4. The top DNAm changes and their proximal genes 

in each tissue are as follows: adipose, CHD3 promoter (Correlation test Z statistic z = -6); 

blood, VGF promoter (z = 16); cerebral cortex, PAX6 5’UTR (z = 5); kidney, AGAP3 intron (z = -8.7); 

liver, ONECUT2 exon (z = 7.9); lung, distal intergenic region upstream of ZNF507 (z = 6.5), 

and GRIA1 promoter (z= -5.7); muscle, MN1 intron (z = -6.5); and skin, LHFPL4 intron (z = 11). Meta-

analysis of these eight tissues, showed the top DNAm changes to include hypermethylation 

in VGF promoter (z = 14.8), four CpGs in KLF14 promoter (z = 12.7 to 14.5), SST promoter (z = 12.9), 

and LHFPL4 exon (z = 12.8) (Figure 4A). To identify CpGs that exhibited consistent age-associated 

methylation change across multiple (but not necessarily all) tissues, we generated an upset plot, which 

can be interpreted as a generalization of a Venn diagram. The upset plot analysis highlighted four CpGs 

in the KLF14 promoter as being age-related in at least 4 tissues (adipose, blood, cortex, and skin, Figure 

4C). The KLF14 promoter controls expression of the KLF14 protein, which is itself a transcriptional 

factor that regulates the expression of TGFBII receptor. 

 

Age-associated CpGs in different tissues were found to be distributed in genic and intergenic regions 

that can be defined relative to transcriptional start sites (Figure 4B). However, in tissues with sufficient 

sample numbers (blood and skin), CpGs located in promoters and 5’UTRs had a higher percentage of 

DNAm change than the background. Moreover, the DNAm changes in promoter and 5’UTR were 

mainly hypermethylation in all tissues. This result parallels prior observed patterns in DNAm aging in 

other species. We proceeded to identify putative transcriptional factors whose binding motifs were 

enriched for the top CpGs located in promoter or 5’UTR with DNAm changes, in either direction and 

in each tissue (Figure 4D). The top TF motifs were Zic1 and Zic2, which had 5 CpGs that become less 

methylated with age in muscle. These ZIC1 and ZIC2 transcription factors are particularly interesting 

because they regulate the expression of the APOE gene, which is associated with longevity and is the 

most commonly identified genetic risk factor of Alzheimer's disease (24). Thus, methylation change in 

this motif might underlie age-associated expression in this protein. For blood and lung, the top enriched 

motif is the TFAP2C (AP-2 gamma transcriptional factor) binding site that becomes increasingly 

hypomethylated with age. This motif also exhibited similar age-related changes in other mammalian 

species and is associated with genes that are involved in cell-cycle arrest, germ cell development, and 

implicated in several types of cancers (25, 26). 

 

Discussion 

Since the inception of the human pan-tissue epigenetic clock in 2013, the field has surged, and more 

epigenetic clocks have been developed for more applications incorporating different biological 

parameters that capture a wider range of health effects than mapped in earlier clocks. The human 

epigenetic clocks have many biomedical applications, including in human clinical trials where they can 

be used to assess the subjects’ biological age in response to interventions (5, 27).  

 

The utility of these human clocks prompted development of similar ones for other mammalian species. 

Clocks developed for mice are particularly important as they allow modelling of epigenetic age in an 

animal for which there is good biological understanding (9, 10, 19-22). In addition to its impressive 

legacy in biological sciences, the advantage of a mouse model lies in no small part to its size, which 

facilitates its maintenance at an affordable cost, even at high numbers. Despite the many advantageous 

features, there is still a large gap in translating findings to primates. Hence, nonhuman primates play an 

indispensable role in preclinical investigations of potential interventions that might slow aging. As a 

case in point, both the National Institute on Aging and the University of Wisconsin have conducted 

longitudinal studies in rhesus macaques to determine whether the promising anti-aging intervention, 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307108doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307108
http://creativecommons.org/licenses/by-nc/4.0/


 
 

6 
 

caloric restriction, would also apply to primates and hence, more plausibly translate to human aging 

(28-30). Indeed, these studies have yielded valuable information about the role of diet composition, 

fasting timing, and overall intake on healthspan and lifespan(29-31). Despite their importance, such 

lifespan and healthspan studies in nonhuman primates can exceed the career span of the investigators 

and are costly. Therefore, the development of suitable biomarkers for biological age promises to greatly 

reduce the cost and time needed for carrying out such studies and can accelerate our ability to translate 

interventions.  

 

As indicated, although the pan-tissue human clock can be directly applied to chimpanzees, which 

diverged from humans approximately 6.3 million years ago, it cannot be applied to any other nonhuman 

primates since they are more distantly related to humans. Thus, the development of specific epigenetic 

clocks for other nonhuman primate species is necessary. A critical step that obviates the species barrier 

was the development of a mammalian DNA methylation array (HorvathMammalMethylChip40) that 

profiles 36,000 CpGs with flanking DNA sequences that are conserved across multiple mammalian 

species. This allows DNA methylation profiling of virtually all mammalian species. The rhesus 

macaque DNA methylation profiles detailed here were derived from eight tissue types and represent the 

largest dataset to date of single-base resolution methylomes in highly conserved region across multiple 

tissues and ages.  

 

This successful derivation of the multiple rhesus macaque epigenetic clocks attests, yet again, to the 

conservation of epigenetic aging mechanisms across the mammalian class. The macaque clock exhibits 

impressive age correlation with the vervet monkey clock, a species which diverged 12.5 million years 

ago. Moreover, the evolutionary conservation of epigenetic aging is further exemplified by 

demonstrating the feasibility of combining methylation profiles of humans and rhesus macaque. These 

species diverged 29 million years ago yet a single mathematical formula can be applied to generate 

human-rhesus macaque clocks. This single formula human-macaque clock is equally applicable to both 

species, and thereby demonstrates conservation of aging mechanisms, which alternatively could be 

deduced with the existence of multiple individual clocks for other mammals.  

 

The significance of this unification under one formula has far reaching implications which extend 

beyond its utility in directly translating age-related findings in rhesus macaques to humans. With this 

tool, one can consider the root contributions to aging as it affirms the increasing evidence that aging is 

a coordinated biological process, harmonized throughout the body. This ushers in the possibility that 

when a regulator or coordinator of aging rate is identified, there is potential to modulate it through 

interventions. As this mechanism is conserved across species, interventions that successfully alter the 

epigenetic aging rate of rhesus macaques, as measured using the human-rhesus macaque clock, will 

likely exert similar effects in humans. If validated, this would be a milestone in aging research. 

 

Although genome- and epigenome-wide analyses often yield a large number of potential target genes 

and pathways related to aging, it is not immediately obvious which ones are actually relevant. Yet, with 

repeated analyses of age-related CpGs in different species within the mammalian class, the relevant 

candidates can be identified. Here once again, the advantage of the HorvathMammalMethylChip40 

comes to fore. As a case in point, analysis of datasets derived from this array revealed CpGs within the 

TFAP2 binding site were increasingly unmethylated with age across different mammalian species 

including rhesus macaque. Additionally, candidates such as Zic1 and Zic2, which did not feature in 

previously analyzed mammalian species, were uncovered and may indicate species-specific genes 

related to aging. Evolutionary selection and adaptation would predict a divergence in genes and 

pathways between species, and this is akin to other biological processes, such as cell cycle regulation, 
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where a basic mechanism is conserved across species, but special additions, deletions, and 

modifications are identified in only a select species or group.  

 

Just as there are species differences, age-related DNA methylation changes are tissue-specific. Sample 

size was a limitation of the current study, and thus we can draw only limited conclusions from our data 

presented here. This notwithstanding, it is interesting to note that CpGs within the KLF14 promoter 

were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). KLF14 is a 

transcription factor that regulates the TGFBII receptor. This has potential physiological significance 

because the ligand of this receptor, TGFB, exerts diverse cellular effects including telomere regulation, 

unfolded protein response, autophagy, DNA repair, cellular senescence and stem cell aging. As a 

consequence, TGFB signaling is frequently involved in age-related pathologies such as cardiovascular 

disease, Alzheimer’s disease, and osteoarthritis (32). 

This is just one example from our extensive analysis of the rhesus epigenome that has broad tissue 

application and highlights the need for more in-depth empirical investigations to test and reveal the 

underlying mechanisms of epigenetic aging. Toward this end, the epigenetic clocks will play a pivotal 

role in uncovering potential candidates, monitoring aging rates, and testing putative aging interventions. 

The rhesus epigenetic clocks described here would play an inordinately important role in the translation 

of such interventions to humans.  

 

Materials and Methods 

 

Materials 

Rhesus macaque 

In total, we analyzed N=281 rhesus macaque tissue samples from 8 different sources of DNA (Table 

1). The rhesus monkeys have been housed continuously at the NIH Animal Center, Poolesville, MD. 

The animal center is fully accredited by the American Association for Accreditation of Laboratory 

Animal Care, and all procedures were approved by the Animal Care and Use Committee of the NIA 

Intramural Program. Monkeys were of a heterogenous genetic background, both Chinese and Indian 

origin. 

 

Monkeys were housed individually in standard nonhuman primate caging on a 12h light/12h dark cycle, 

room temperature 78+/-2 degrees humidity at 60+/-20%. All monkeys had extensive visual, auditory, 

and olfactory but limited tactile contact with monkeys housed in the same room. Monkeys received 2 

meals per day at estimated ad libitum levels throughout the study. Water was always available ad 

libitum. Monkeys were monitored minimally 3 times daily by trained animal care staff.  

 

Sample Collection 

Monkeys were fasted overnight, approximately 16-18 hours. Monkeys were anesthetized with either 

Ketamine, 7-10 mg/kg, IM or Telazol, 3-5 mg/kg, IM. Blood samples were obtained by venipuncture 

of the femoral vein using a vacutainer and EDTA tubes. Samples were immediately placed on dry ice 

and stored at -80 degrees. Skin samples were collected at the same time from an alcohol-wiped area of 

the back between the shoulder blades. Omental fat, kidney, liver, lung, skeletal muscle, and brain cortex 

were collected during necropsies scheduled for other study purposes. At that time, tissues were flash 

frozen in liquid nitrogen following collection and stored at -80 degrees. These tissues were selected for 

use based on having matching blood samples. None of the monkeys were sacrificed for this study.  

 

Vervet monkey animals 

The vervet monkey data are described in a companion paper (33). 
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Human tissue samples 

To build the human-rhesus macaque clock, we analyzed previously generated methylation data from 

n=850 human tissue samples (adipose, blood, bone marrow, dermis, epidermis, heart, keratinocytes, 

fibroblasts, kidney, liver, lung, lymph node, muscle, pituitary, skin, spleen) from individuals whose 

ages ranged from 0 to 93 years. The tissue samples came from three sources: tissue and organ samples 

from the National NeuroAIDS Tissue Consortium (34), blood samples from the Cape Town Adolescent 

Antiretroviral Cohort study (35)., skin and other primary cells provided by Kenneth Raj (36). Ethics 

approval (IRB#15-001454, IRB#16-000471, IRB#18-000315, IRB#16-002028). 

 

DNA methylation profiling 

We generated DNA methylation data using the custom Illumina chip "HorvathMammalMethylChip40". 

By design, the mammalian methylation array facilitates epigenetic studies across mammalian species 

(including rhesus macaques and humans) due to its very high coverage (over thousand-fold) of highly-

conserved CpGs in mammals. Toward this end, bioinformatic sequence analysis was employed to 

identify 36,000 highly conserved CpGs across 50 mammalian species (Arneson, Ernst, Horvath, in 

preparation). These 36k CpGs exhibit flanking sequences that are highly conserved across mammals. 

In addition, the custom array contains two thousand probes selected from human biomarker studies. 

Each probe is designed to cover a certain subset of species. The particular subset of species for each 

probe is provided in the chip manifest file and can be found at Gene Expression Omnibus (GEO) at 

NCBI as platform GPL28271. The SeSaMe normalization method was used to define beta values for 

each probe (37). 

 

Penalized Regression models 

Details on the clocks (CpGs, genome coordinates) and R software code are provided in the Supplement. 

Our pan-tissue clock for rhesus macaque is based on 71 CpGs that are present on a custom chip 

(HorvathMammalMethylChip40). Our human-rhesus macaque epigenetic clock for chronological age 

is based on 508 CpGs. Another human-rhesus macaque epigenetic clock for relative age is based on 

623 CpGs. We developed epigenetic clocks for rhesus macaques by regressing chronological age on 

the CpGs on the mammalian array. We used all tissues for the pan-tissue clock. 

 

Penalized regression models were created with the R function "glmnet" (38). We investigated models 

produced by both “elastic net” regression (alpha=0.5). The optimal penalty parameters in all cases were 

determined automatically by using a 10 fold internal cross-validation (cv.glmnet) on the training set. 

By definition, the alpha value for the elastic net regression was set to 0.5 (midpoint between Ridge and 

Lasso type regression) and was not optimized for model performance. We performed a cross-validation 

scheme for arriving at unbiased (or at least less biased) estimates of the accuracy of the different DNAm 

based age estimators. One type consisted of leaving out a single sample (LOOCV) from the regression, 

predicting an age for that sample, and iterating over all samples.  

For the cross-validation procedure, the penalized regression algorithm automatically selected a different 

sets of CpGs from the array for each fold. In case of LOO cross validation, the CpG selection was based 

on n-1 observations. A critical step is the transformation of chronological age (the dependent variable). 

While no transformation was used for the pan-tissue clock for rhesus macaque, we did use a log linear 

transformation for the dual species clock of chronological age (Supplementary Methods). 

 

Relative age estimation 

To introduce biological meaning into age estimates of rhesus macaques and humans that have very 

different lifespan, as well as to overcome the inevitable skewing due to unequal distribution of data 
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points from rhesus macaques and humans across age range, relative age estimation was made using the 

formula: Relative age= Age/maxLifespan where the maximum lifespan for rhesus macaques and 

humans were set to 42 years and 122.5 years, respectively. The maximum lifespan for the two species 

was chosen from the updated version of the anAge data base (23). 

 

Epigenome wide association studies (EWAS) of age 

EWAS was performed in each tissue separately using the R function "standardScreeningNumericTrait" 

from the "WGCNA" R package (39). Next, the results were combined across tissues using Stouffer's 

meta-analysis method. Our epigenome wide association test studies of chronological age reveal that 

aging effects in one tissue are sometimes poorly conserved in another tissue.  

 

Transcription factor enrichment and chromatin states 

 The FIMO (Find Individual Motif Occurrences) program scans a set of sequences for matches of known 

motifs, treating each motif independently (40). We ran TF motif (FIMO) scans of all probes on the 

HorvathMammalMethyl40 chip using motif models from TRANSFAC, UniPROBE, Taipale, 

Taipaledimer and JASPAR databases. A FIMO scan p-value of 1E-4 was chosen as cutoff (lower FIMO 

p-values reflect a higher probability for the local DNA sequence matching a given TF motif model). 

This cutoff implies that we find almost all TF motif matches that could possibly be associated with each 

site, resulting in an abundance of TF motif matches. We caution the reader that our hypergeometric test 

enrichment analysis did not adjust for CG content. 
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Figure legends 

 

 
Figure 1: Cross-validation study of epigenetic clocks for rhesus macaques and humans. A-C) 

Three epigenetic clocks that apply only to macaques. Leave-one-sample-out estimate of DNA 

methylation age (y-axis, in units of years) versus chronological age for A) all available macaque 

tissues, B) blood, C) skin. Ten -old cross validation analysis of the human-macaque monkey clocks 

for D,E) chronological age and F,G) relative age, respectively. D,F) Human samples are colored in 

red and macaque samples are colored by macaque tissue type, and analogous in E,G) but restricted to 

macaque samples (colored by macaque tissue type). Each panel reports the sample size (in 

parenthesis), correlation coefficient, median absolute error (MAE). 
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Figure 2. Human-macaque clocks applied to select human tissues. Leave-one-human sample-out 

(LOHO) cross fold cross validation estimates of the human-macaque clock for A,C) chronological age 

and C,D) relative age, respectively. A,B) Human blood samples. C,D) Human skin samples. Each 

panel reports the sample size (in parenthesis), correlation coefficient, median absolute error (MAE). 
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Figure 3. Macaque clocks applied to tissues from vervet monkey (Chlorocebus sabaeus). Each dot 

corresponds to a tissue sample from vervet monkeys. Each dot is colored by tissue type: blood 

(green), cerebral cortex (red), liver (purple). Chronological age of the vervet specimens (x-axis) 

versus the DNAm age estimate of the A) pan-tissue macaque clock, B) blood macaque clocks, C) skin 

macaque clock, D) human-macaque clock for chronological age, E) human-macaque clock for relative 

age. Each panel reports the sample size (in parenthesis), correlation coefficient, median absolute error 

(MAE). 
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Figure 4. Epigenome-wide association (EWAS) of chronological age in adipose, blood, cerebral 

cortex, kidney, liver, lung, muscle, and skin of rhesus macaque. A) Manhattan plots of the EWAS 

of chronological age. The coordinates are estimated based on the alignment of Mammalian array probes 

to Mmul_10.100 genome assembly. The direction of associations with p < 10-4 (red dotted line) is 

highlighted by red (hypermethylated) and blue (hypomethylated) colors. Top 30 CpGs was labeled by 

the neighboring genes. B) Location of top CpGs in each tissue relative to the closest transcriptional start 

site. Top CpGs were selected at p < 10-4 and further filtering based on z score of association with 

chronological age for up to 500 in a positive or negative direction. The number of selected CpGs: 

adipose, 62; blood, 1000; cerebral cortex, 40; kidney, 380; liver, 230; lung, 186; muscle, 47; skin, 1000; 

and meta-analysis, 1000. The grey color in the last panel represents the location of 36733 mammalian 

BeadChip array probes mapped to Mmul_10.100 genome. C) Upset plot representing the overlap of 

aging-associated CpGs based on meta-analysis or individual tissues. Neighboring genes of the 

overlapping CpGs were labeled in the figure. D) Transcriptional motif enrichment for the top CpGs in 

the promoter and 5`UTR of the neighboring genes. The enrichment was tested using a hypergeometric 

test (Methods).  

 

 

Tissue N No.Female Mean.Age Min.Age Max.Age 

Adipose 5 2 31.3 23.5 42 

Blood 199 71 17.2 1.79 42 

Cortex 6 3 29 17.2 42 

Kidney 4 1 28.7 23.5 33.4 

Liver 5 4 25.1 17.2 42 

Lung 6 3 29 17.2 42 

Muscle 5 2 30.1 17.2 42 

Skin 51 13 18.8 7.61 42 

 

Table 1. Description of biological materials from which DNA methylation profiles were derived. 

N=Total number of tissues. Number of females. Age: mean, minimum and maximum in units of years. 
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Supplementary Figures 

 
Supplementary Figure 1. Unsupervised hierarchical clustering of tissue samples.  

Average linkage hierarchical clustering based on the interarray correlation coefficient (Pearson 

correlation). A height cut-off of 0.05 led to branch colors that largely correspond to Tissue type (second 

panel). A handful of arrays are severe outliers (left- and right most clusters) as indicated by the third 

color band (turquoise samples are severe outliers). These technical outliers probably result from 

insufficient amounts of DNA. These outlying samples were removed from the analysis. 
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Supplementary Figure 2: Pan-tissue clock for rhesus macaque applied to different tissues. Each 

panel correlates the chronological age (x-axis) at the time of tissue collection with the leave-one-out 

(LOO) estimate of DNA methylation age. A) All tissues. Dots are colored by tissue type as indicated in 

the remaining panels. Results for B) adipose, C) blood, D) brain cortex, E) kidney, F) liver, G) lung, H) 

muscle, I) skin. Each panel reports the sample size (N), Pearson correlation, and the median absolute 

error, i.e. the median of the absolute difference between DNAmAgeLOO and chronological age. The 

dashed line is the diagonal y=x. The solid line corresponds to the least-squares regression line. 
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Supplementary Figure 3. EWAS was performed in each rat tissue separately using the R function 

"standardScreeningNumericTrait" from the "WGCNA" R package. Z statistics from correlation tests in 

different tissues. Upper panel report scatter plots for Z statistics in different tissues. Lower panels: 

corresponding Pearson correlation coefficients. 
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