

1 **CD8⁺ T cell priming in oral mucosa-draining lymph nodes supports systemic**
2 **immunity**

3

4 Juliana Barreto de Albuquerque^{1,2}, Diego von Werdt², David Francisco³, Geert van
5 Geest³, Lukas M. Altenburger¹, Jun Abe¹, Xenia Ficht^{4,5}, Matteo Iannacone^{4,5,6}, Remy
6 Bruggmann³, Christoph Mueller^{2,*}, Jens V. Stein^{1,*}

7

8 ¹ Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700
9 Fribourg, Switzerland

10 ² Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008
11 Bern, Switzerland

12 ³ Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of
13 Bern, 3012 Bern, Switzerland

14 ⁴ Division of Immunology, Transplantation and Infectious Diseases, IRCCS San
15 Raffaele Scientific Institute, Milan, Italy

16 ⁵ Vita-Salute San Raffaele University, Milan, Italy

17 ⁶ Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy

18

19 * These authors contributed equally.

20 Lead contact: Jens V. Stein
21 Department of Oncology, Microbiology and Immunology
22 University of Fribourg
23 Ch. du Musée 5
24 CH-1700 Fribourg
25 email: jens.stein@unifr.ch

26

27 **Running title**

28 T cell priming in oral mucosa-draining lymph nodes.

29 **Summary**

30 *Listeria monocytogenes* ingestion leads to priming of cytotoxic T cells in oral mucosa
31 draining mandibular lymph nodes, which contribute to systemic host protection.

32 **Abstract**

33 The gastrointestinal (GI) tract constitutes an essential barrier against ingested
34 pathogens. While immune reactions are well-studied in the lower GI tract, it remains
35 unclear how adaptive immune responses are initiated during microbial challenge of the
36 oral mucosa, the primary site of pathogen encounter in the upper GI tract. Here, we
37 identify mandibular lymph nodes (mandLN) as sentinel lymphoid organs that collect
38 orally administered *Listeria monocytogenes* (Lm), leading to local CD8⁺ T cell
39 activation. In contrast to CD8⁺ T effector cells (T_{EFF}) generated in mesenteric lymph
40 nodes, mandLN CD8⁺ T_{EFF} lacked a gut-seeking phenotype but contributed to systemic
41 host protection. Accordingly, mandLN stromal and dendritic cells expressed low levels
42 of enzymes required for gut homing imprinting. Our findings extend the concept of
43 regional specialization of immune responses along the length of the GI tract, with
44 mandLN acting as oral lymph-draining counterparts of intestinal lymph-draining LN of
45 the lower GI tract.

46

47 **Introduction**

48 The digestive, or gastrointestinal (GI), tract constitutes the major external surface of the
49 human body and comprises the upper GI tract with oral cavity, pharynx and
50 esophagus, and the lower GI tract with stomach, small and large intestine and rectum.
51 The GI tract needs to offset permissive uptake and digestion of nutrient and water with
52 protection against invading pathogens. Accordingly, GI immune responses range from
53 tolerance against commensals and food antigens to reactivity against ingested
54 pathogens. Innate and adaptive immune responses have been most extensively
55 studied in the lower GI tract (Kiyono and Azegami, 2015; Faria et al., 2017; Belkaid and
56 Harrison, 2017; Schulz and Pabst, 2013; Shale et al., 2013; Mowat and Agace, 2014).
57 Gut-associated lymphoid tissues (GALT) of the small intestine such as Peyer's patches
58 (PP) form together with gut lymph nodes (gLN) complementary inductive sites for
59 intestinal immune reactions (Brandtzaeg et al., 2008). M cells embedded in the
60 epithelium overlying GALT sample luminal Ag, while gLN including mesenteric LN
61 (MLN) screen intestinal lymph to intercept pathogens, which have breached the
62 epithelial barrier. Both MLN and PP promote the generation of gut-homing $\alpha 4\beta 7^{\text{high}}$
63 CCR9⁺ CD4⁺ and CD8⁺ T effector cells (T_{EFF}) (Mora et al., 2003). This phenomenon
64 relies on retinoic acid (RA) generation by the retinal aldehyde dehydrogenase
65 (RALDH)-expressing CD103⁺ migratory dendritic cells (DC) and stromal cells of
66 intestinal Ag-sampling lymphoid tissue, which induces a gut-seeking phenotype in
67 activated lymphocytes (Iwata et al., 2004; Erkelens and Mebius, 2017; Larange and
68 Cheroutre, 2016). Recent findings have further refined our understanding of gut
69 immunity by identifying compartmentalized tolerogenic and inflammatory CD4⁺ T cell
70 immune responses in individual gLN, which drain lymph from proximal versus distal
71 segments of the intestinal GI tract (Esterhazy et al., 2019). Thus, the lower GI tract is
72 characterized by regional specialization of adaptive immune reactions according to the
73 local microenvironment (Mowat and Agace, 2014).

74 The upper GI tract, in particular the mucosa of the oral cavity, also contains an
75 abundant microbiota and constitutes the first site of contact with dietary Ag and
76 ingested pathogens (Moutsopoulos and Konkel, 2018; Gaffen and Moutsopoulos,
77 2020). The oral barrier has recently gained attention for its complex immune network
78 characterized by abundant Th17 CD4⁺ T cells and numerous macrophage subsets
79 (Park et al., 2017; Moutsopoulos and Konkel, 2018; Gaffen and Moutsopoulos, 2020).
80 In contrast, the initiation of adaptive immune responses against microbes sampled from
81 oral mucosa has not been well characterized, in particular for cytotoxic CD8⁺ T cell
82 responses that occur in response to intracellular pathogens of the oral cavity. In this
83 context, mice lack tonsils, and lumen-sampling M cells are restricted to nasopharynx-
84 associated lymphoid tissue (NALT) of the nasal cavity (Pabst, 2015). Yet, to the best of
85 our knowledge, no comprehensive attempt has been made to map oral mucosa-
86 draining LN, although in a rodent periodontitis model, antibacterial responses are
87 detectable in mandibular and accessory mandibular LN (here collectively abbreviated
88 as mandLN; also sometimes referred to as superficial cervical LN) (Mkonyi et al., 2012;
89 Van den Broeck et al., 2006; Lohrberg and Wilting, 2016). Our current understanding is
90 limited since most oral immunization models in small rodents bypass the oral cavity by
91 employing intragastric (i.g.) gavage. In models where pathogens are administered
92 intraorally (i.o.), the analysis of immune responses often excludes lymphoid tissue of
93 the neck and head region (D'Orazio, 2014; Sheridan et al., 2014). Taken together, it
94 remains unclear how microbial uptake by the oral mucosa initiates local priming and
95 whether this process impacts on distal immune responses (Moutsopoulos and Konkel,
96 2018).
97 Here, we administered *Listeria monocytogenes* (Lm) into the oral cavity of
98 immunocompetent mice to mimic a first encounter with an ingested microbe. Lm is a
99 food-borne gram-positive bacterium, which infects macrophages and hepatocytes in its
100 target organs spleen and liver and is cleared by cytotoxic effector CD8⁺ T_{EFF}. We
101 uncovered early priming and proliferation of Ag-specific CD8⁺ T cells in mandLN that

102 preceded activation kinetics in spleen, MLN and PP. In contrast to CD8⁺ T_{EFF} primed in
103 MLN after i.g. Lm gavage, mandLN CD8⁺ T_{EFF} did not display a gut-homing $\alpha 4\beta 7^{\text{high}}$
104 CCR9⁺ phenotype. Instead, mandLN CD8⁺ T_{EFF} contributed to systemic host protection
105 similar to T_{EFF} generated in spleen by i.v. Lm infection. This finding correlated with low
106 expression of genes imprinting gut homing in the mandLN microenvironment. Our
107 observations expand the emerging concept of a compartmentalized host immune
108 response along the length of the entire GI tract according to the Ag sampling location,
109 leading to preferential generation of systemically disseminating T_{EFF} in oral mucosa-
110 draining mandLN and gut-seeking T_{EFF} in MLN.

111 **Results and discussion**

112 *Ingested Lm is intercepted in mandLN and leads to local LN hyperplasia*

113 To examine drainage of oral mucosa lymph, we injected a lymph tracer into gingiva and

114 observed rapid accumulation (≤ 5 min) in draining mandLN (**Fig. 1A**), suggesting a

115 connecting lymphatic network between oral cavity and mandLN. In tissue sections, the

116 gingiva adjacent to teeth was reported to contain numerous lymphatic vessels, which

117 are located more superficially than in most mucosal tissues (Ushijima et al., 2008;

118 Mkonyi et al., 2012). To obtain an overview of the non-sectioned oral lymphatic

119 network, we carefully exposed the mandibular gingiva and draining mandLN in a

120 Prox1-GFP reporter mouse strain for lymphatic vessels (Choi et al., 2011) (**Fig. S1A**).

121 We confirmed the presence of an extensive gingival lymphatic network around the

122 mandibular incisors (**Fig. 1B, C**) connected to mandLN (**Fig. 1D**).

123 We investigated the relevance of lymphatic drainage in a model of oral infection. Lm

124 expressing the model antigen ovalbumin (Lm-OVA) (Zehn et al., 2009) was directly

125 administered into the oral cavity of C57BL/6 mice. In the first 8 days post i.o. infection,

126 we isolated mandLN, spleen, MLN and PP of infected mice and determined Lm-OVA

127 spread by colony forming unit (CFU) analysis. We compared these values to CFU

128 counts after i.v. administration of Lm-OVA (**Fig. 1E**). We observed that mandLN

129 contained the highest Lm-OVA CFU per organ on d 1 following i.o. infection, whereas

130 spleen contained the highest CFU following systemic administration (**Fig. 1F**). On d 3

131 after i.o. infection, Lm-OVA became also detectable in spleen and MLN (**Fig. 1F**).

132 Nonetheless, Lm-OVA CFU counts, when detectable, remained lower for MLN than

133 mandLN and were barely detectable in PP before d 8 after i.o. infection (**Fig. 1F**). This

134 is in line with the notion that $> 90\%$ of ingested bacteria are killed by gastric acids

135 (Saklani-Jusforgues et al., 2000; Pitts and D'Orazio, 2018). Residual Lm in the

136 intestinal lumen may have been degraded by digestive enzymes, or failed to cross the

137 mucus layer of the intestinal epithelium or their tight junctions, or become cleared by

138 peristaltic contraction and mucus secretion. Together, these factors likely contribute to

139 the thwarted and delayed onset of Lm capture in PP and MLN in our model of oral
140 infection.

141 To explore whether Lm retention leads to increased lymphocyte numbers in reactive
142 LN, we determined lymphoid organ cellularity following i.v. and i.o. Lm-OVA infection.
143 We observed a rapid onset of mandLN hyperplasia following i.o. infection, consistent
144 with local bacterial sampling at early time points (**Fig. 1G**). In contrast, i.v. Lm-OVA
145 infection did not cause mandLN hypercellularity at any time point analyzed, whereas
146 splenocyte numbers became significantly increased on d 8 p.i. (**Fig. 1G**). In our model
147 of oral infection, Lm-OVA did not cause significant increases in MLN and PP cellularity,
148 reflecting limited CFU detection in the first week p.i. at these sites (**Fig. 1G**).
149 Expression of a mutant internalin InlA^m increases its binding affinity to mouse E-
150 cadherin by four orders of magnitude (Wollert et al., 2007). As a result, i.g. gavage of
151 Lm-InlA^m leads to a higher *in vivo* virulence as compared to non-murinized InlA Lm
152 strains (Monk et al., 2010). To examine whether the interplay of InlA and E-cadherin
153 facilitates early Lm accumulation in mandLN, we compared CFU counts of Lm-OVA
154 and Lm-InlA^m after i.o. infection. Lm-InlA^m CFU counts in mandLN were significantly
155 increased at 24 h p.i. as compared to Lm-OVA, suggesting that E-cadherin binding to
156 oral mucosa epithelium might increase transport to mandLN (**Fig. 1H**). As caveat, this
157 finding may have been influenced by the higher virulence of the Lm strain carrying the
158 InlA mutation as compared to the Lm-OVA strain (Bécavin et al., 2014). To further
159 investigate the mechanism underlying the rapid appearance of ingested Lm in
160 mandLN, we i.o. administered Lm-OVA in CCR7^{-/-} recipients, which lack DC trafficking
161 from peripheral tissues to sentinel LN (Förster et al., 2008; Schulz et al., 2016).
162 Bacterial loads in CCR7^{-/-} mandLN on d 1 p.i were comparable to WT values,
163 suggesting that active DC migration to mandLN was not a limiting factor for initial Lm
164 accumulation in draining LN (**Fig. 1I**). These observations prompted us to examine a
165 passive transport mechanism for ingested Lm via oral cavity-draining lymphatic
166 vessels. We administered GFP-expressing Lm (Lm-GFP) onto the gingiva of mice

167 prepared for intravital imaging to directly explore its retention in draining mandLN. To
168 this end, we adapted a model originally developed for submandibular salivary gland
169 surgery (Ficht et al., 2018) to visualize the adjacent mandLN (**Fig. S1B**). Lm-GFP
170 accumulated in the subcapsular sinus (SCS) of mandLN within 120 min post oral
171 deposition, as assessed by two-photon microscopy (2PM)-based intravital imaging
172 (**Fig. 1J**). Taken together, these data suggest that oral uptake of Lm leads to its
173 drainage to mandLN, at least in part via afferent lymphatics of the oral mucosa.

174

175 *Ag-specific CD8⁺ T cells form clusters and dynamically interact with CD11c⁺ cells*
176 *mandLN following i.o. Lm infection*

177 To quantify the relevance of Lm capture in mandLN on CD8⁺ T cell activation, we
178 transferred fluorescent protein-expressing OT-I TCR tg T cells, which recognize the
179 OVA₂₅₇₋₂₆₄ peptide in the context of H-2K^b (Hogquist et al., 1994), together with
180 fluorescently labeled polyclonal CD8⁺ T cells into CD11c-YFP hosts. In these
181 recipients, CD11c⁺ cells including antigen-presenting DC express YFP (Lindquist et al.,
182 2004). One day later, we i.o. infected mice with Lm-OVA and isolated mandLN at 1, 2
183 and 3 d p.i. for histological analysis. At 1 d p.i., we observed occasional large clusters
184 of OT-I but not polyclonal CD8⁺ T cells around CD11c⁺ cells in both mandibular and
185 accessory mandibular LN, suggesting early Ag-driven interactions (**Fig. 2A**, left panel).

186 These clusters became smaller on d 2 and 3 post i.o. infection (**Fig. 2A**, middle and
187 right panel). As changes in dynamic T cell behavior act as sensitive indicator for
188 priming and precede detectable expression of activation markers (Moreau and Bousso,
189 2014; Sivapatham et al., 2019), we performed 2PM of mandLN in C57BL/6 or CD11c-
190 YFP recipients containing tdT⁺ or dsRed⁺ OT-I T cells and polyclonal control CD8⁺ T
191 cells during the first 72 h post i.o. Lm-OVA infection. To benchmark physiological T cell
192 behavior in steady state, we analyzed naïve OT-I motility parameters in mandLN of
193 uninfected mice. OT-I T cells displayed high speeds ($15.4 \pm 5.1 \mu\text{m}/\text{min}$; mean \pm SD),
194 low arrest coefficients (median of 1.6% of track segments $< 5 \mu\text{m}/\text{min}$; **Fig. 2C and D**)

195 and a corrected track straightness of 8.3 ± 2.7 (median \pm SD, corresponding to a non-
196 corrected meandering index of 0.61 ± 0.21) (Beltman et al., 2009) (**Video S1**). These
197 values are comparable to T cell motility parameters observed in resting skin-draining
198 LN (Germain et al., 2006; Mempel et al., 2004; Breart and Bousso, 2006), and serve as
199 reference for inflammation-induced changes of dynamic T cell behavior. At d 1 post i.o.
200 Lm infection, polyclonal CD8⁺ T cells displayed a random motility pattern comparable to
201 T cell migration in non-inflamed mandLN, albeit with slightly decreased speeds ($12.0 \pm$
202 $4.5 \mu\text{m}/\text{min}$) and increased arrest coefficients (**Fig. 2C and 2D**). This finding is in line
203 with mild motility changes displayed by non-cognate T cells in reactive LN (Mempel et
204 al., 2004). In contrast, many OT-I T cells were found to cluster around CD11c⁺ APC on
205 d 1 and 2 p.i. (**Fig. 2B; Video S2**), and most OT-I T cells, in particular in clusters,
206 displayed decreased speeds and high arrest coefficients (**Fig. 2C and 2D**). Such a
207 behavior is consistent with interaction dynamics driven by high cognate pMHC levels
208 displayed on APC (Henrickson et al., 2008; Sivapatham et al., 2019). Starting on d 2
209 post i.o. Lm infection, OT-I T cell speeds and arrest coefficients began to recover,
210 suggesting decreasing Lm-derived Ag presentation (**Fig. 2C and D**). On d 3 post i.o.
211 Lm infection, OT-I cells ceased to cluster and showed speeds and arrest coefficients
212 largely comparable to polyclonal CD8⁺ T cells (**Fig. 2C and D; video S3**). The analysis
213 of the corrected track straightness followed a similar pattern, with OT-I T cells showing
214 transient confinement on d 1 and 2 p.i., which became less apparent on d 3 p.i. (**Fig.**
215 **2E**). Taken together, our confocal and dynamic imaging data are consistent with fast
216 and efficient antigen processing in oral mucosa-draining mandLN, leading to cognate T
217 cell – APC interactions within the first 2 d post i.o. infection.

218

219 *Oral infection leads to rapid CD8⁺ T cell activation in mandLN over a wide range of Lm*
220 *inocula*

221 The imaging data suggested cognate OT-I T cell priming by CD11c⁺ antigen-presenting
222 DC. We therefore compared the activation status of migratory and resident DC in
223 resting and i.o. challenged mandLN by flow cytometry 24 h after i.o. Lm-OVA infection.
224 Both populations showed higher and/or more frequent expression of CD80 and CD86
225 as compared to DC isolated from non-infected mandLN, in line with an activated
226 phenotype (**Fig. S2A-C**). In particular, the proportion of CD86-expressing CD11c^{high}
227 MHC II⁺ resident DC increased from 29 to 47%, with an MFI increase of 35% (mean of
228 two independent experiments with n = 8 control and 8 Lm-infected mice).
229 We correlated these observations with induction of early activation markers CD69 and
230 CD25 on OT-I T cells following i.o. Lm-OVA infection (for gating strategy see **Fig.**
231 **S2D**). One d post i.o. Lm infection, mandLN OT-I T cells displayed increased levels of
232 CD69, followed by augmented CD25 expression starting on d 2 p.i. (**Fig. 3A and 3B**).
233 At this time point, OT-I T cells in spleen and MLN showed a delayed and less
234 pronounced increase in these markers compared to mandLN OT-T cells (**Fig. 3A and**
235 **3B**). Similar results were obtained for PP OT-I T cells (not shown).
236 Next, we examined the onset of cell proliferation. To restrict potential cross-
237 contamination by interorgan cell trafficking after Lm infection, we performed these
238 experiments in the presence of FTY720, which sequesters T cells in lymphoid tissue. In
239 line with increased CD25 expression, more than half (58 ± 14.7%; median ± SD) of
240 mandLN OT-I T cells had undergone cell proliferation at d 3 post i.o. infection *versus*
241 12 ± 5.3% and 5 ± 14% of spleen and MLN OT-I T cells, respectively (**Fig. 3C and 3D**).
242 This trend continued d 4 post i.o. infection (**Fig. 3D**) and was reflected by an earlier and
243 more pronounced expansion of OT-I T cells in mandLN after i.o. *versus* i.v. in the first 5
244 d p.i. (**Fig. 3E**).
245 Irrespective of the route of Lm infection, mandLN T_{EFF} were CD44^{high} CD62L^{high or low} on
246 d 5 p.i., whereas spleen T_{EFF} were predominantly CD44^{high} CD62L^{low} (**Fig. S2E and**
247 **S2F**). In the memory phase (d 30 p.i.), most mandLN OT-I T cells showed a CD44^{high}
248 CD62L^{high} central memory-like phenotype while spleen also contained a minor

249 population of CD44^{high} CD62L^{low} effector memory-like cells (**Fig. S2F**), again
250 independent of the route of infection. We further examined OT-I differentiation into
251 CD127⁻ KLRG-1⁺ short-lived effector cells (SLEC) and CD127⁺ KLRG-1⁻ memory
252 precursor effector cells (MPEC) after oral *versus* systemic Lm infection (**Fig. S2E**). In
253 both routes of infection, we observed comparable SLEC and MPEC proportions on d 5
254 p.i. (**Fig. S2G**). At d 30 p.i., KLRG1⁻ CD127⁺ central memory-like T cells prevailed in
255 mandLN and spleen after either infection route (**Fig. S2G**).
256 To test the impact of initial bacterial load on local OT-I T cell activation, we titrated the
257 Lm inoculum and measured OT-I T cell activation and proliferation on d 3 post i.o.
258 infection (**Fig. 3F**; **Fig. S2H**). We observed a dose-dependent effect on total mandLN
259 cellularity and percent CD69⁺ endogenous CD8⁺ T cells, which became less
260 pronounced with decreasing Lm inoculum (**Fig. S2I and S2J**). This was reflected by a
261 Lm inoculum-dependent activation marker expression and proliferation in OT-I T cells
262 (**Fig. 3G-J**). Notably, we observed increased expression of CD69 and CD25, as well as
263 proliferation with an inoculum of only 10⁶ Lm (**Fig. 3G-J**; **Fig. S2H**). In sum, our data
264 show that early T cell interactions with CD11c⁺ antigen-presenting cells accelerates
265 T_{EFF} generation in oral mucosa-draining mandLN. Furthermore, we observed that
266 across four orders of magnitude of initial Lm inoculum, sufficient antigenic material is
267 collected by sentinel mandLN to induce detectable CD8⁺ T cell responses.

268

269 *MandLN T_{EFF} contribute to the early peripheral cytotoxic T cell pool in spleen*
270 To quantify to which extent mandLN OT-I cells contribute to the early peripheral CD8⁺
271 T_{EFF} pool, we performed i.o. infections in absence or presence of FTY720 to prevent
272 egress from the priming lymphoid organ (**Fig. 4A**). As predicted, FTY720 treatment led
273 to a 4.4x- and 5x-fold increase in mandLN OT-I T_{EFF} on d 4 and 5 post i.o. Lm infection,
274 respectively. This increase was mirrored by a concomitant decrease in spleen OT-I
275 T_{EFF} from 125 ± 39 to $41 \pm 7 \times 10^4$ cells/organ (mean \pm SEM) in the absence and
276 presence of FTY720, respectively, on d 4 p.i., corresponding to a 67% reduction (**Fig.**

277 **4B**). The decrease in splenic OT-I T_{EFF} numbers became a non-significant tendency on
278 d 5 post i.o. infection (499 ± 165 and $209 \pm 54 \times 10^4$ cells/organ in absence and
279 presence of FTY720, respectively; **Fig. 4B**). The partial rescue of spleen OT-I numbers
280 on d 5 likely reflects Lm spread to spleen by d 3 p.i. and onset of OT-I cell division by d
281 4 p.i. (**Fig. 1B and Fig. 3D**). In contrast, MLN OT-I T cell numbers on d 4 or 5 p.i. were
282 not altered by FTY720 treatment (**Fig. 4B**). These data suggest that initial CD8⁺ T cell
283 activation in mandLN leads to a rapid release of OT-I T_{EFF} into the circulation, which in
284 part relocate to spleen and represent a sizeable proportion of circulating cytotoxic T
285 cells early after infection.

286

287 *mandLN T_{EFF} lack gut-homing receptors but support systemic protection*
288 A hallmark of intestinal mucosa-surveilling inductive lymphoid tissue is the RA-
289 mediated induction of gut-homing trafficking molecules on activated T cells, which
290 promote their subsequent accumulation in lamina propria, GALT and gLN (Mora et al.,
291 2003). To analyze whether this is also the case for mandLN draining the oral mucosa,
292 we transferred OT-I T cells into mice that were subsequently challenged with i.g., i.o. or
293 i.v. Lm-OVA in presence of FTY720 (**Fig. 4C**). All administration routes led to efficient
294 activation of OT-I T cells by day 5 p.i. as assessed by CD44 upregulation (**Fig. 4D and**
295 **4E**). After i.g. infection, OT-I T_{EFF} isolated from MLN expressed higher levels of the
296 MAdCAM-1 ligand $\alpha 4\beta 7$ as compared to spleen OT-I T_{EFF} after i.v. infection (**Fig. 4D**
297 and **4E**), in line with published observations (Mora et al., 2003; Sheridan et al., 2014).
298 Similarly, CCR9 expression was efficiently induced in MLN T_{EFF} ($29.8 \pm 6.8\%$ mean \pm
299 SEM from 2 independent experiments with $n = 8$ mice). In contrast, mandLN T_{EFF} failed
300 to increase $\alpha 4\beta 7$ and CCR9 expression (**Fig. 4D and 4E**).
301 We set out to correlate these data with the protective capacity of mandLN-generated
302 T_{EFF} as compared to those generated in spleen and MLN. We adoptively transferred
303 OT-I CD8⁺ T cells and infected recipient mice separately by i.o., i.v. or i.g. Lm-OVA

304 administration in the presence of FTY720. On day 5 p.i., we isolated OT-I T_{EFF} from
305 mandLN, spleen and MLN, respectively, and transferred equal numbers of effector
306 cells separately into secondary recipient mice, which were i.g. infected with Lm-OVA
307 (**Fig. 4F**). We chose the i.g. route of infection for secondary recipients to induce Lm
308 spread to MLN and PP, as i.v. or i.o. administration of Lm does not result in efficient
309 MLN or intestinal infection (Kursar et al., 2002). This approach therefore allows to
310 assess the potential for T_{EFF} protection in mucosal *versus* systemic sites. Irrespective
311 of the priming site, OT-I T_{EFF} isolated from spleen, MLN and mandLN showed a
312 comparable reduction of bacterial burden in spleen on d 3 p.i. (**Fig. 4G**), while liver was
313 not strongly infected in our setting (not shown). In contrast, mandLN OT-I T_{EFF} did not
314 confer protection to MLN or PP, similar to results obtained after transfer of splenic OT-I
315 T_{EFF} (**Fig. 4G**). In turn, MLN OT-I T_{EFF} caused a reduction in MLN and PP Lm burden in
316 secondary recipients (**Fig. 4G**). This decrease became significant for bacterial loads in
317 MLN when compared to no OT-I transfer or transfer of mandLN and spleen OT-I T_{EFF} in
318 side-by-side comparisons ($p < 0.05$, Mann-Whitney). In sum, in our model OT-I T_{EFF}
319 generated in oral mucosal-draining mandLN constitute a large fraction of the peripheral
320 T_{EFF} pool early after pathogen ingestion. Our findings further indicate that mandLN T_{EFF}
321 are capable to reduce systemic Lm burden but do not contribute to substantial
322 protection of intestinal lymphoid tissue.

323

324 *mandLN stromal cells and DC display low expression of RA-producing enzymes*
325 The lymphoid microenvironment including stromal cells and DC provides critical cues
326 for tissue-selective imprinting of effector homing potential. To characterize the gene
327 expression profile of stromal cells, we performed a single cell RNA sequencing
328 (scRNASeq) analysis of the CD45 $^+$ TER-119 $^+$ stromal compartment of mandLN and
329 compared it with stromal cells isolated from MLN and skin-draining inguinal, axillary
330 and brachial peripheral LN (PLN). Unsupervised clustering of combined stromal
331 scRNASeq data identified multiple Col1a1 $^+$ and Col1a2 $^+$ fibroblast-like and Cdh5 $^+$

332 vascular cell populations (**Fig. 5A and Fig. S3**). While scRNAseq data suggested
333 comparable expression of the RA-producing enzyme Aldh1a1 in fibroblast-like cells of
334 all three LN, expression of Aldh1a2 and Aldh1a3 was higher in MLN than in PLN or
335 mandLN fibroblasts (**Fig. 5B and 5C**). Furthermore, the transcription factor WT1, which
336 drives expression of Aldh1a1 and Aldh1a2 (Buechler et al., 2019), was mainly
337 expressed in MLN fibroblast-like cells (**Fig. 5B and 5C**). To corroborate these data, we
338 performed qPCR analysis for RA-generating enzymes on sorted CD45⁻ TER-119⁻
339 stromal cells isolated from MLN, PLN and mandLN. This analysis showed that mRNA
340 levels of all three Aldh1a isoforms were higher in MLN as compared to PLN and
341 mandLN stromal cells (**Fig. 5D**). Since DC contribute to gut-homing phenotype
342 imprinting in activated T cells (Erkelens and Mebius, 2017), we isolated CD45⁺ CD11c⁺
343 MHC-II^{high} DC from MLN, PLN and mandLN and compared mRNA levels of Aldh1a1-3
344 by qPCR. While Aldh1a1 and Aldh1a3 were expressed at low levels in all CD11c⁺
345 populations, Aldh1a2 mRNA levels were highest in MLN CD11c⁺ cells (**Fig. 5D**). Taken
346 together, the mandLN microenvironment shares with skin-draining PLN the lack of gut-
347 homing imprinting capacity.

348 The mucosa lining the oral cavity is the first site of contact with ingested microbes
349 before their passage to the esophagus, stomach and intestinal tract. The presence of
350 lymphatic vessels in the mucosa lining the oral cavity suggests a continuous
351 surveillance of regional lymph by sentinel LN (Ando et al., 2011; Ushijima et al., 2008).
352 The sequestration of orally administered Lm in mandLN observed here suggests that
353 lymphatic drainage leads to continuous sampling of the oral microbiome at this
354 anatomical localization, confirming observations made after oral delivery of
355 *Trypanosoma cruzi* (Barreto de Albuquerque et al., 2018; Silva dos Santos et al.,
356 2017). It remains unclear how Lm entry into oral lymphatic vessels is regulated. In the
357 oral cavity, the gingival sulcus, which is the space between the gingiva and teeth, is a
358 particularly vulnerable site exposed to trauma caused by mastication and biting. Its
359 epithelium is non-keratinized and transitions to the junctional epithelium that binds

360 directly to teeth (Moutsopoulos and Konkel, 2018; Gaffen and Moutsopoulos, 2020).
361 Conceivably, lymphatic vessels below the crevicular epithelium lining the gingival sinus
362 may participate in collecting microbe-containing tissue fluids for transport to mandLN.
363 In addition, the vascular-rich sublingual mucosa has absorptive properties, which is
364 clinically relevant to systemically administer drugs or vaccines (Gaffen and
365 Moutsopoulos, 2020). Oral microbiota might be collected here for lymphatic transport to
366 regional LN, a process which may be further facilitated by the lack of a thick mucus
367 layer as is present in intestinal mucosa. These observations do not exclude a role for
368 migratory DC in transporting Ag from the oral mucosa to mandLN. Furthermore, our
369 study does not address how the presence of food, on which Lm is usually found,
370 affects microbial drainage to mandLN or its passage through the stomach and small
371 intestine. It has been reported that infection with food-borne Lm leads to the
372 appearance of endogenous T_{EFF} in MLN and PP one week post Lm infection (Sheridan
373 et al., 2014). While mandLN had not been analyzed in that study, these data are
374 consistent with the kinetics of Lm dissemination to MLN and PP reported here.
375 One of the pillars of cellular immune responses is the imprinting of tissue-specific
376 homing molecules during T cell activation. In skin-draining LN, sunlight-generated
377 vitamin D3 imprints expression of CCR4, CCR10 and P- and E-selectin ligands, while
378 GALT and gLN process dietary carotenes and retinol to imprint a gut-homing $\alpha_4\beta_7^+$
379 CCR9⁺ phenotype (Iwata et al., 2004; Sigmundsdottir and Butcher, 2008). This
380 remarkable “division of labor” ensures an optimal use of resources to direct T cell
381 responses to the anatomical site of pathogen entry. Most of this paradigm has been
382 established by analyzing lymphocyte activation in lymphoid tissue of the lower GI tract.
383 This raises the question why mandLN differ from those sites, even though both drain
384 lymph from microbe-rich mucosal tissue. One explanation is that the induction of RA-
385 generating enzymes in migratory CD103⁺ DC for gut-homing phenotype imprinting in T
386 cells requires RA generated by epithelial cells of the small intestine (Molenaar et al.,
387 2011; Johansson-Lindbom et al., 2005; Larange and Cheroutre, 2016). Similarly, we

388 observed low expression of RA-producing enzymes in stromal cells of mandLN,
389 suggesting that RA is not present in sufficiently high concentration in oral cavity-
390 draining mandLN to direct substantial T_{EFF} trafficking towards gut. In this context,
391 mandLN do not only drain lymph from the oral mucosa but also of the anterior eye
392 chamber, NALT and skin as well as cerebrospinal fluid of the central nervous system
393 (CNS) (Boonman et al., 2004; Pabst, 2015; Ma et al., 2019; Van den Broeck et al.,
394 2006) (**Fig. 5E**). This may further influence the expression of genes that direct homing
395 patterns in dendritic and stromal cells, e.g. to minimize loss of $CD8^+$ T_{EFF} to intestinal
396 sites during CNS inflammation. In line with our findings, i.n. Lm infection leading to Ag
397 presentation in NALT does not confer intestinal immunity (Sheridan et al., 2014).
398 An open question is to which extent mandLN priming contributes to the generation of
399 systemic and oral mucosa $CD8^+$ memory cells. After adoptive transfer of mandLN OT-I
400 T_{EFF} into infection-matched recipients, we recovered memory T cells in spleen but not in
401 MLN or PP (not shown). Furthermore, the requirements for entry into the oral cavity are
402 not well defined to date and we found lymphocytes difficult to extract from this location
403 in a quantitative manner (not shown). Of note, 2PM imaging identified memory T cells
404 in the oral mucosa at > 30 d post i.o. Lm infection (**Video S4**), suggesting that mandLN
405 may contribute to local memory generation of their surveilled barrier tissue.
406 PP and gLN constitute a complementary surveillance system of the lower GI tract, with
407 PP containing gut lumen-sampling M-cells and gLN draining lymphatic vessels
408 originating in lamina propria. Our data suggest that mandLN form together with M-cell-
409 containing MALT including tonsils (in humans) and NALT a comparable “dual
410 surveillance” system for the oropharyngeal section of the upper GI tract (**Fig. 5E**). The
411 role for mandLN in this process has thus far remained largely overlooked, since most
412 immunologists use i.v. infection of Lm as a robust systemic infection model or bypass
413 the oral cavity by i.g. infection. Taken together, our study adds the increasingly
414 acknowledged site-specific imprinting of host immune responses along the length of

415 the GI tract, consistent with an instructional role for the Ag sampling location (Mowat
416 and Agace, 2014; Esterhazy et al., 2019).

417 **Material and methods**

418 *Mice*

419 Female C57BL/6JRj (Janvier, Le Genest-Saint-Isle, France), CCR7^{-/-} (Forster et al.,
420 1999), Tg(Itgax-Venus)1Mnz “CD11c-YFP” (Lindquist et al., 2004) and Tg(Prox1-
421 EGFP)KY221Gsat “Prox1-GFP” (Choi et al., 2011) mice were used for imaging, as
422 recipients for T cell adoptive transfer or Lm infection. Polyclonal T cells were isolated
423 from C57BL/6 or “Ubi-GFP” donors (Schaefer et al., 2001). Tg(TcraTcrb)1100Mjb OT-I
424 TCR mice (Hogquist et al., 1994) backcrossed on a GFP⁺ (Schaefer et al., 2001),
425 dsRed⁺ (Kirby et al., 2009) or tdT⁺ (Madisen et al., 2010; de Vries et al., 2000)
426 background were described before (Ficht et al., 2019). In some experiments, CD45.1^{+/+}
427 or CD45.1^{+/+}/CD45.2⁺ OT-I were used. All animals were bred in specific pathogen-free
428 conditions at the Central animal facility of the University of Bern, and University of
429 Fribourg. All animal work has been approved by the Cantonal Committees for Animal
430 Experimentation and conducted according to federal guidelines.

431

432 *T cell purification and adoptive transfer*

433 Spleens and LN were dissociated using 70 µm cells strainers, and CD8⁺ T cells were
434 negatively isolated using the EasySepTM Mouse CD8⁺ T cell Isolation Kit (Stem Cell
435 Technologies, Grenoble, France) or MojoSortTM Isolation Kits (BioLegend, San Diego,
436 US) according to the manufacturer's protocol. Purity of isolated CD8⁺ T cells was >
437 90%. For 2PM imaging, polyclonal CD8⁺ T cells were labelled with 20 µM
438 CellTrackerTMBlue CMAC (7-amino-4-chloromethylcoumarin; Invitrogen) for 20-30 min
439 at 37° C. For proliferation assays, OT-I T cells were labelled with 5 µM CellTraceTM
440 Violet (Invitrogen) at 37° C for 20-30 min.

441

442 *Bacterial infection and CFU quantification*

443 Lm strain 10403s expressing ovalbumin (Lm-OVA) (Zehn et al., 2009) or GFP (Lm-
444 GFP) (Abrams et al., 2020) and *Lm* strain EGD-e, carrying a recombinant InIA with
445 S192N and Y369S mutations (Lm-InIA^m) (Monk et al., 2010) were kindly provided by
446 Profs. Doron Merkler (University of Geneva, Switzerland), Neal M. Alto (University of
447 Texas, Southwestern Medical Center, US) and Colin Hill (University College Cork,
448 Ireland), respectively. Bacteria from glycerol stocks were grown in Brain heart infusion
449 (BHI) medium until mid-log phase was reached. Prior and after infection, mice were
450 deprived of food and water for 4 h and at least 15 min respectively, and received 2 x
451 10⁹ CFU in the oral cavity by pipetting into the mouth over 1-5 min as described
452 (Barreto de Albuquerque et al., 2015) or directly into the stomach by intragastric
453 gavage, or i.v. 5 x 10³ CFU. For Lm titration, 10⁹, 10⁸, 10⁷ and 10⁶ CFU were used.
454 Bacterial suspensions were serially diluted and plated on BHI agar plates to verify the
455 actual number of CFU in the inoculum.
456 For CFU quantification, mandLN, MLN, PP and spleen were aseptically harvested,
457 homogenized in a 70 µm nylon filter and lysed in sterile water. Alternatively, organs
458 were homogenized using MagNALyser tubes Green Beads (Roche, France) containing
459 sterile PBS (5000 rpm for 1 min). Serial dilutions of homogenates were plated on BHI
460 agar, and colonies were counted after 24 h of incubation at 37°C. For PP, BHI agar
461 plates contained 200 µg/mL streptomycin to prevent gut bacteria contamination, since
462 the 10403s strain is streptomycin resistant. CFU was adjusted according to the
463 dilutions and calculated per number of LN or PP collected. For protection experiments,
464 spleen, liver, PP and MLN were lysed in 2-mL tubes containing one steal bead and 1
465 mL PBS + 0.1% Tween20 (Sigma-Aldrich, St. Louis, USA), using a QiaTissueLyzer
466 (Qiagen, Venlo, Netherlands) at 25 Hz, 3 min. Serial dilutions were plated on BHI agar,
467 and colonies were counted after 48 h of incubation at 30°C. For PP, BHI agar plates
468 contained 200 µg/mL streptomycin. CFU was adjusted according to the dilutions and
469 calculated per gram of organ.
470

471 *FTY720 treatment*

472 Lymphocyte egress from lymphoid tissue was blocked by treating mice intraperitoneally
473 with 2 mg/kg FTY720 (Sigma), a sphingosine-1-phosphate receptor 1 (S1PR1)
474 inhibitor, starting at d 1 p.i. with repeated doses after 48 h.

475

476 *Flow cytometry*

477 LN, PP and spleen were harvested at the indicated time points and single cell
478 suspensions were obtained by passing organs through 70 µm cell strainers. Red blood
479 cell lysis was performed on splenocytes. Counting of viable cells negative for Trypan
480 blue was performed using Neubauer chamber. Fc receptors were blocked with purified
481 anti-CD16/CD32 mAb (2.4G2) in FACS buffer (PBS with 2% FCS, 2 mM EDTA and
482 0.05% NaN₃) for 10 min. Cell surface stainings were performed with the appropriate
483 combinations of mAbs on ice for 30 min in the dark and washed in FACS buffer (**Table**
484 **1**). Zombie AquaTM, Zombie VioletTM or Zombie RedTM (BioLegend) were used to
485 discriminate live and dead cells. After staining, cells were fixed for 20 min with 2%
486 paraformaldehyde, washed and resuspended in PBS. Acquisition was performed using
487 LSR Fortessa (BD Bioscience), LSR II (BD Bioscience), LSR II (BD Bioscience) or
488 Attune NxT Flow cytometer (Thermo Fisher) and analyzed using FlowJo (TreeStar)
489 software.

Antibody/streptavidin	Fluorochrome	Clone	Concentration (µg/mL)	Company	Reference number
CD103	APC	2 E7	2	BioLegend	121414
CD11b	PE-Cy7	M1/70	0.4	BioLegend	101215
CD11c	BV605	N418	2	BioLegend	117334
CD127	APC	A7R34	2	BioLegend	135012
CD19	biotinylated	6D5	5	BioLegend	115503
CD199 (CCR9)	PE-Cy7	CW1.2	1	BioLegend	128711
CD25	APC	PC61	1	BioLegend	102012
CD44	biotinylated	IM7	2.5	BD Biosciences	553132

CD44	PerCP	IM7	2	BioLegend	103036
CD44	PerCP-Cy5.5	IM7	2	BioLegend	103032
CD45.1	PE	A20	1	BioLegend	110708
CD45.2	AF488	A20	2.5	BioLegend	110718
CD62L	BV421	MEL-14	0.5	BioLegend	104436
CD69	BV711	H1.2F3	1	BioLegend	104537
CD69	PE	H1.2F3	1	BioLegend	104508
CD8	APC/Fire 750	53-6.7	1	BioLegend	100766
CD80	FITC	16-10A1	2.5	BioLegend	104705
CD86	APC-Fire 750	GL-1	1	BioLegend	105045
CXCR3	BV510	CXCR3-173	2	BioLegend	126527
CXCR3	BV605	CXCR3-173	2	BioLegend	126523
I-A/I-E (MHCII)	BV421	M5/114.15.2	0.5	BioLegend	107632
KLRG1	PE-Cy7	2F1	1	BioLegend	138415
LPAM-1 ($\alpha_4\beta_7$)	APC	DATK32	2	eBioscience	17-5887-82
Ly-6G/C	biotinylated	Gr-1	2.5	BioLegend	108403
NK1.1	PE	PK136	1	BioLegend	108707
streptavidin	BV711	–	0.5	BioLegend	405241
streptavidin	PE	–	2	BioLegend	405203
TCR β	biotinylated	H57-597	2.5	BioLegend	109203

490 **Table 1.**

491 For flow cytometry analysis of DCs, LN were cut in small fragments and digested in
492 type IV collagenase (1 mg/mL, Worthington) and DNase I (100 U/mL; Roche) in 24-well
493 plates under rotation at 20 rpm for 15-20 min at 37°C. Tissue fragments were
494 dissociated by pipetting using a Pasteur pipette and incubated for additional 15 min. In
495 case tissue fragments were not completely dissociated by pipetting using a 1 mL
496 microtiter pipette, samples were incubated for additional 10 min. For sorting of DC and
497 stromal cells, we used collagenase P (0.5 mg/mL; Roche), Dispase II (0.5 mg/mL;
498 Roche) and DNase I (100 U/ml; Roche) for digestion in a 5-mL round bottom tube.
499

500 *Intravital imaging of mandLN and gingiva*

501 Mice were anesthetized by i.p. injection of 8-10 μ L/g Ketamine (20 mg/mL) and
502 xylazine (1 mg/mL) and after 15 min, 30 μ L i.p. of acepromazine (2.5 mg/mL).

503 Anesthesia was supplemented when needed with ketamine/xylazine (half dose of
504 xylazine). The fur was removed from the operating area using an electric razor followed
505 by hair removal cream. Mice were placed on a customized stage used for
506 submandibular salivary gland (SMG) imaging (Ficht et al., 2018). Neck and teeth were
507 fixed to reduce shifting. To expose mandLNs, a 0.5 - 1 cm incision was made along the
508 neck region in the skin above the left lobe of the SMG. Under the stereomicroscope,
509 surrounding connective tissue between left and right lobes of the SMG, and between
510 the left lobe and the adjacent skin were disrupted to set the left lobe free. Blood and
511 lymphatic vessels, and the mandLN were kept untouched and moisturized with saline
512 during the surgical procedure. The left lobe of the SMG was pulled on top of a coverslip
513 on a holder and glued using veterinary adhesive (Vetbond, M3). A ring of grease
514 (Glisseal N, VWR) was made in order to create space to be filled with saline and keep
515 the tissues moisturized. The SMG was fixed in a position to expose the mandLN and
516 fat tissue was carefully removed. Another holder with coverslip was placed on top and
517 touching the LN without impairing the blood flow. To maintain physiological
518 temperature, a heating ring was connected to a water bath.

519 To expose the gingiva, a 0.5 cm incision was made in the lower lip using an electric
520 cauterizer. Sutures were tied to both sides and fixed into the surface of the surgical
521 stage to stretch the area and expose the inferior teeth. Viscotears (Alcon) was used to
522 keep the tissue moisturized and a holder with a coverslip was placed on top. To
523 maintain physiological temperature, a heating ring was connected to a water bath and
524 a temperature probe was used. For 2PM imaging of Lm accumulation in mandLN, we
525 pipetted 20 μ L Lm-GFP ($4-8 \times 10^8$ CFU/ml) into the oral cavity and surgically prepared
526 mice 1-2 h later by exposing gingiva and mandLN as described above. After addition of
527 another 10 μ L Lm-GFP to gingiva, we analyzed mandLN by 2PM imaging.

528 2PM was performed with an Olympus BX50WI microscope equipped with 20X
529 Olympus (NA 0.95) or 25X Nikon (NA 1.0) objectives and a TrimScope 2PM system
530 controlled by ImSpector software (LaVisionBiotec). Prior to recording, Alexa Fluor 633-

531 or Alexa Fluor 488 conjugated MECA-79 (10 µg/mouse) was injected i.v. to label high
532 endothelial venules (HEV). For 2-photon excitation, a Ti:sapphire laser (Mai Tai HP)
533 was tuned to 780 or 840 nm. For 4-dimensional analysis of cell migration, 11 to 16 x-y
534 sections with z-spacing of 4 µm were acquired every 20 s for 20-30 min; the field of
535 view was 150-350 x 150-350 µm. Emitted light and second harmonic generation (SHG)
536 signals were detected through 447/55 nm, 525/50 nm, 593/40 nm and 655/40 nm
537 bandpass filters with non-scanned detectors when using C57BL/6 recipient mice. For
538 CD11c-YFP⁺ recipient mice, 447/55 nm, 513/20 nm, 543/39 nm and 624/30 nm were
539 used as bandpass filters. SHG or HEV signal were used as anatomical reference
540 channel for real-time offset correction to minimize tissue shift (Vladymyrov et al., 2016).
541 Sequences of image stacks were transformed into volume-rendered four-dimensional
542 videos with using Imaris software (Bitplane), which was also used for semi-automated
543 tracking of cell motility in three dimensions. Cell centroid data was used to calculate
544 key parameters of cell motility using Matlab (R2019b, MathWorks). Speed was defined
545 as total track length divided by total track duration in µm/min. The arrest coefficient was
546 derived from the percentage of time a cell is migrating below a motility threshold speed
547 of 5 µm/min. Meandering index was calculated by dividing displacement by track
548 length. Since the meandering index is influenced by track duration (Beltman et al.,
549 2009), we calculated the corrected track straightness defined as meandering index
550 multiplied by the square root of cell track duration.

551

552 *Stereomicroscope imaging*

553 MandLN and gingiva were exposed and pictures were taken using a Leica MZ16 FA
554 stereomicroscope equipped with color high resolution camera (Leica). Images were
555 processed using Adobe Photoshop CS6.

556

557 *Immunofluorescence of LN sections*

558 Mice were anesthetized with i.p. injection of ketamine and xylazine and perfused with
559 cold 2% PFA. MandLN were harvested and fixed overnight in 4% PFA, and dehydrated
560 in 30% sucrose overnight prior to embedding in TissueTek O.C.T. compound (Sakura)
561 for cryostat sectioning. Slides with 10 μ m-thick cryosections were mounted with
562 ProLongTM Gold Antifade Mountant (Molecular Probes). Fluorescence microscopy was
563 performed using Leica SP5 confocal microscope with 20X (NA 0.7) and 63X (NA 1.3)
564 Leica objectives. Images were processed using Adobe Photoshop CS6 and Imaris
565 8.4.1 (Bitplane). Brightness and contrast were adjusted for each image individually.
566

567 *Single cell gene expression and data analysis*

568 Single cell gene expression of CD45⁻ stromal cells was measured using the 10x
569 Chromium system, with the Next GEM Single Cell 3' Reagent Kit v3.1 (10x Genomics,
570 Pleasanton, CA, USA). GEM generation and barcoding, reverse transcription, cDNA
571 amplification and 3' Gene Expression library generation steps were all performed
572 according to the manufacturer's user guide. Specifically, the designated volume of
573 each cell suspension (800 -1200 cells/ μ L) and nuclease-free water were used for a
574 targeted cell recovery of 10'000 cells according to the Cell Suspension Volume
575 Calculator Table of the abovementioned user guide. GEM generation was followed by
576 a GEM-reverse transcription incubation, a clean-up step and 15 cycles of cDNA
577 amplification. The quality and quantity of the cDNA was assessed using fluorometry
578 and capillary electrophoresis, respectively. The barcoded cDNA libraries were pooled
579 and sequenced paired-end and single indexed on an Illumina NovaSeq 6000
580 sequencer using a S2 flowcell (100 cycles). The read setup was as follows: read 1: 28
581 cycles, i7 index: 8 cycles, i5: 0 cycles and read 2: 91 cycles. An average of
582 740,045,087 reads/library were obtained, which corresponds to an average of 74,091
583 reads/cell.

584 Mapping and counting of the UMIs for the samples from mandLN, MLN and PLN were
585 performed using Cellranger (version 3.0.2, 10x Genomics) with the reference genome

586 GRCm38.93 from Ensembl to build the necessary index files. Subsequent analysis was
587 performed in R (version 4.0.2) (R Core Team, 2016). The Scater package (version
588 1.14) (McCarthy et al., 2017) was used to assess the proportion of ribosomal and
589 mitochondrial genes as well as the number of detected genes. Cells were considered
590 as outliers and filtered out if the value of the proportion of expressed mitochondrial
591 genes or the number detected genes deviated more than three median absolute
592 deviations from the median across all cells. After quality control, the sample from
593 mandLN retained 4434 cells, the sample from MLN retained 10058 cells and the
594 sample from PLN retained 7750 cells. Normalization between samples was done with
595 the deconvolution method of Lun et al. (Lun et al., 2016b) using the package Scran
596 (version 1.14) (Lun et al., 2016a). Samples were integrated with the
597 FindIntegrationAnchors function of the package Seurat (version 3.1) based on the first
598 20 principal components (PCs) (Stuart et al., 2019). Graph-based clustering was done
599 with the FindNeighbors and FindClusters functions of the Seurat package using the first
600 40 PCs from the dimensionality reduction step. The Clustree package (version 0.4)
601 (Zappia and Oshlack, 2018) was used to determine the resolution resulting in clustering
602 concurring with the presumed cell types, which was 0.4. Clusters were annotated
603 based on marker genes that were identified with the FindMarkers function of Seurat.
604 Following this, seven clusters were removed from the analysis as they represented
605 undesired hematopoietic cells. The remaining cells were re-clustered in an identical
606 fashion but with a resolution of 0.3.

607

608 *Quantitative PCR*

609 For sorting of DC and stromal cells, cells suspensions were stained with mAbs (**Table**
610 **1**) and propidium iodide to discriminate between live *versus* dead cells. CD45⁺ MHC-
611 II^{high} CD11c⁺ DCs and CD45⁻ stromal cells were sorted using a FACSaria Fusion (BD).
612 For real-time quantitative RT-PCR (qPCR), the total RNA from 2.7-30 x 10⁴ sorted DC
613 and stromal cells was extracted using Trizol Reagent (Sigma-Aldrich) and coprecipitant

614 GlycoBlue™ (Invitrogen). Reverse transcriptase reactions were performed using High-
615 Capacity cDNA Reverse Transcription kit (Applied Biosystems, USA) according to the
616 manufacturer's instructions. Real-time RT-PCR assays were performed on
617 StepOnePlus (Applied Biosystems, USA) using FastStart Universal SYBR Green
618 Master (Rox) (Roche, Switzerland). QuantiNova LNA-enhanced primers for *Aldh1a1*,
619 *Aldh1a2*, *Aldh1a3* and as endogenous housekeeping reference gene hypoxantine-
620 guanine phosphoribosyltransferase (HPRT) were purchased from Qiagen (Germany)
621 (**Table 2**). Real-time PCR reactions were performed in duplicates in a total volume of
622 20 µL. The cycling conditions were: 95°C for 10 min, followed by 40 cycles at 95°C for
623 10 s and 60°C for 30 s. After amplification, dissociation curves were performed to
624 monitor primers specificity, revealing only one melting peak for each amplified
625 fragments. qPCR data were normalized to the housekeeping gene HPRT and the
626 relative changes in mRNA expression were calculated by $2^{-\Delta Ct}$.

Assay Name	Full name	Gene ID	Ref Seq	Catalogue #
MM_HPRT_2521490	hypoxanthine guanine phosphoribosyl transferase	15452	NM_013556	SBM1225379
MM_ALDH1A1_20456 06	aldehyde dehydrogenase family 1, subfamily A1	11668	NM_001361506	SBM0801506
MM_ALDH1A2_19667 74	aldehyde dehydrogenase family 1, subfamily A2	19378	NM_009022	SBM0722689
MM_ALDH1A3_21256 65	aldehyde dehydrogenase family 1, subfamily A3p	56847	NM_053080	SBM0881559

627 **Table 2.**

628

629 *Statistical analysis*

630 Student's t-test, Mann-Whitney U-test, ANOVA or Kruskal-Wallis test were used to
631 determine statistical significance as indicated (Prism, GraphPad). Significance was set
632 at p < 0.05.

633

634 *Supplemental material*

635 Fig. S1. Depiction of surgery for gingiva and mandLN.

636 Fig. S2. Flow cytometry of DC and CD8⁺ T cell subsets.

637 Fig. S3. Expression of selected genes of interests by scRNAseq.

638 Video S1. OT-I in uninfected mandLN.

639 Video S2. OT-I in mandLN on d 2 post i.o. Lm infection.

640 Video S3. OT-I in mandLN on d 3 post i.o. Lm infection.

641 Video S4. OT-I in gingiva in memory phase.

642

643 **Author contribution**

644 JBdA performed experiments with help from DvW, LMA and XF. JA, GvG and DF
645 performed scRNAseq analysis under supervision of RB. XF and MI provided a script for
646 cell tracking analysis. JBdA, CM and JVS designed experiments and wrote the
647 manuscript with input from all coauthors.

648

649 **Acknowledgments**

650 This work benefitted from the Microscopy Imaging Center of the University of Bern and
651 the Biolimage Light Microscopy Facility and Cell Analytics Facility of the University of
652 Fribourg. We thank Daniela Grand, Antoinette Hayoz and Pablo Bànicles for expert
653 technical assistance, Pamela Nicholson, Catia Coito, Marion Ernst and Daniela Steiner
654 from the Next-Generation Sequencing Platform of the University of Bern and Profs.
655 Doron Merkler, Neal Alto and Colin Hill for sharing Listeria strains.

656

657 **Funding**

658 This work was funded by Swiss National Foundation (SNF) project grant
659 31003A_172994 and Sinergia project CRSII5_170969 (to JVS and RB), a Brazilian
660 PhD Exchange Scholarship from Research Support Foundation of Rio de Janeiro State
661 (FAPERJ) and a Swiss Government Excellence Scholarship (both to JdBA). MI is
662 supported by European Research Council (ERC) consolidator grant 725038, Italian
663 Association for Cancer Research (AIRC) grants 1989 and 22737, Italian Ministry of
664 Health (MoH) grant RF-2018-12365801, Lombardy Foundation for Biomedical
665 research (FRRB) grant 2015-0010, the European Molecular Biology Organization
666 Young Investigator Program, and a Career Development from the Giovanni Armenise-
667 Harvard Foundation. X.F. is supported by a postdoctoral fellowship from AIRC and
668 Marie Skłodowska-Curie actions (COFUND grant 23906). The authors declare no
669 competing financial interests.

670 **References**

671 Abrams, M.E., K.A. Johnson, S.S. Perelman, L.-S. Zhang, S. Endapally, K.B. Mar, B.M.
672 Thompson, J.G. McDonald, J.W. Schoggins, A. Radhakrishnan, and N.M. Alto. 2020.
673 Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface
674 accessible cholesterol. *Nat Microbiol.* 5:929–942. doi:10.1038/s41564-020-0701-5.

675 Ando, Y., O. Murai, Y. Kuwajima, S. Furukawa, D. Sasaki, Y. Okawa, T. Yaegashi, H.
676 Miura, and A. Fujimura. 2011. Lymphatic architecture of the human gingival interdental
677 papilla. *Lymphology.* 44:146–154.

678 Barreto de Albuquerque, J., D. Silva dos Santos, A.R. Pérez, L.R. Berbert, E. de
679 Santana-van-Vliet, D.A. Farias-de-Oliveira, O.C. Moreira, E. Roggero, C.E. de
680 Carvalho-Pinto, J. Jurberg, V. Cotta-de-Almeida, O. Bottasso, W. Savino, and J. de
681 Meis. 2015. Trypanosoma cruzi Infection through the Oral Route Promotes a Severe
682 Infection in Mice: New Disease Form from an Old Infection? *PLoS Negl Trop Dis.*
683 9:e0003849. doi:10.1371/journal.pntd.0003849.

684 Barreto de Albuquerque, J., D. Silva dos Santos, J.V. Stein, and J. de Meis. 2018. Oral
685 Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental
686 Infection? From Target Tissues, Parasite Evasion, and Immune Response. *Front.*
687 *Immun.* 9:375–9. doi:10.3389/fimmu.2018.01734.

688 Belkaid, Y., and O.J. Harrison. 2017. Homeostatic Immunity and the Microbiota.
689 *Immunity.* 46:562–576. doi:10.1016/j.immuni.2017.04.008.

690 Beltman, J.B., A.F.M. Marée, and R.J. de Boer. 2009. Analysing immune cell migration.
691 *Nat Rev Immunol.* 9:789–798. doi:10.1038/nri2638.

692 Bécavin, C., C. Bouchier, P. Lechat, C. Archambaud, S. Creno, E. Gouin, Z. Wu, A.
693 Kühbacher, S. Brisse, M.G. Pucciarelli, F. García-del Portillo, T. Hain, D.A. Portnoy, T.
694 Chakraborty, M. Lecuit, J. Pizarro-Cerdá, I. Moszer, H. Bierne, and P. Cossart. 2014.
695 Comparison of widely used *Listeria monocytogenes* strains EGD, 10403S, and EGD-e
696 highlights genomic variations underlying differences in pathogenicity. *mBio.* 5:e00969–
697 14. doi:10.1128/mBio.00969-14.

698 Boonman, Z.F.H.M., G.J.D. van Mierlo, M.F. Fransen, K.L.M.C. Franken, R. Offringa,
699 C.J.M. Melief, M.J. Jager, and R.E.M. Toes. 2004. Intraocular tumor antigen drains
700 specifically to submandibular lymph nodes, resulting in an abortive cytotoxic T cell
701 reaction. *J. Immunol.* 172:1567–1574. doi:10.4049/jimmunol.172.3.1567.

702 Brandtzaeg, P., H. Kiyono, R. Pabst, and M.W. Russell. 2008. Terminology:
703 nomenclature of mucosa-associated lymphoid tissue. *Mucosal Immunol.* 1:31–37.
704 doi:10.1038/mi.2007.9.

705 Breart, B., and P. Bousso. 2006. Cellular orchestration of T cell priming in lymph
706 nodes. *Curr Opin Immunol.* 18:483–490. doi:10.1016/j.coi.2006.05.006.

707 Buechler, M.B., K.-W. Kim, E.J. Onufer, J.W. Williams, C.C. Little, C.X. Dominguez, Q.
708 Li, W. Sandoval, J.E. Cooper, C.A. Harris, M.R. Junntila, G.J. Randolph, and S.J.
709 Turley. 2019. A Stromal Niche Defined by Expression of the Transcription Factor WT1
710 Mediates Programming and Homeostasis of Cavity-Resident Macrophages. *Immunity*.
711 51:119–130.e5. doi:10.1016/j.jimmuni.2019.05.010.

712 Choi, I., H.K. Chung, S. Ramu, H.N. Lee, K.E. Kim, S. Lee, J. Yoo, D. Choi, Y.S. Lee,
713 B. Aguilar, and Y.-K. Hong. 2011. Visualization of lymphatic vessels by Prox1-promoter
714 directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse.
715 *Blood*. 117:362–365. doi:10.1182/blood-2010-07-298562.

716 D'Orazio, S.E.F. 2014. Animal models for oral transmission of Listeria monocytogenes.
717 *Front Cell Infect Microbiol.* 4:15. doi:10.3389/fcimb.2014.00015.

718 de Vries, W.N., L.T. Binns, K.S. Fancher, J. Dean, R. Moore, R. Kemler, and B.B.
719 Knowles. 2000. Expression of Cre recombinase in mouse oocytes: a means to study
720 maternal effect genes. *genesis*. 26:110–112.

721 Erkelens, M.N., and R.E. Mebius. 2017. Retinoic Acid and Immune Homeostasis: A
722 Balancing Act. *Trends Immunol.* 38:168–180. doi:10.1016/j.it.2016.12.006.

723 Esterhazy, D., M.C.C. Canesso, L. Mesin, P.A. Muller, T.B.R. de Castro, A. Lockhart,
724 M. ElJalby, A.M.C. Faria, and D. Mucida. 2019. Compartmentalized gut lymph node
725 drainage dictates adaptive immune responses. *Nature*. 569:126–130.
726 doi:10.1038/s41586-019-1125-3.

727 Faria, A.M.C., B.S. Reis, and D. Mucida. 2017. Tissue adaptation: Implications for gut
728 immunity and tolerance. *Journal of Experimental Medicine*. 214:1211–1226.
729 doi:10.1084/jem.20162014.

730 Ficht, X., F. Thelen, B. Stolp, and J.V. Stein. 2018. Preparation of Murine
731 Submandibular Salivary Gland for Upright Intravital Microscopy. *J Vis Exp.*
732 doi:10.3791/57283.

733 Ficht, X., N. Ruef, B. Stolp, G.P.B. Samson, F. Moalli, N. Page, D. Merkler, B.J.
734 Nichols, A. Diz-Muñoz, D.F. Legler, V. Niggli, and J.V. Stein. 2019. In Vivo Function of
735 the Lipid Raft Protein Flotillin-1 during CD8+ T Cell-Mediated Host Surveillance. *The*
736 *Journal of Immunology*. ji1900075. doi:10.4049/jimmunol.1900075.

737 Forster, R., A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-Müller, E. Wolf, and M.
738 Lipp. 1999. CCR7 coordinates the primary immune response by establishing functional
739 microenvironments in secondary lymphoid organs. *Cell*. 99:23–33. doi:10.1016/s0092-
740 8674(00)80059-8.

741 Förster, R., A.C. Davalos-Misslitz, and A. Rot. 2008. CCR7 and its ligands: balancing
742 immunity and tolerance. *Nat Rev Immunol*. 8:362–371. doi:10.1038/nri2297.

743 Gaffen, S.L., and N.M. Moutsopoulos. 2020. Regulation of host-microbe interactions at
744 oral mucosal barriers by type 17 immunity. *Sci Immunol*. 5:eaau4594.
745 doi:10.1126/sciimmunol.aau4594.

746 Germain, R.N., M.J. Miller, M.L. Dustin, and M.C. Nussenzweig. 2006. Dynamic
747 imaging of the immune system: progress, pitfalls and promise. *Nature Publishing*
748 *Group*. 6:497–507. doi:10.1038/nri1884.

749 Henrickson, S.E., T.R. Mempel, I.B. Mazo, B. Liu, M.N. Artyomov, H. Zheng, A.
750 Peixoto, M.P. Flynn, B. Senman, T. Junt, H.C. Wong, A.K. Chakraborty, and U.H. von
751 Andrian. 2008. T cell sensing of antigen dose governs interactive behavior with
752 dendritic cells and sets a threshold for T cell activation. *Nat Immunol*. 9:282–291.
753 doi:10.1038/ni1559.

754 Hogquist, K.A., S.C. Jameson, W.R. Heath, J.L. Howard, M.J. Bevan, and F.R.
755 Carbone. 1994. T cell receptor antagonist peptides induce positive selection. *Cell*.
756 76:17–27.

757 Iwata, M., A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S.-Y. Song. 2004.
758 Retinoic acid imprints gut-homing specificity on T cells. *Immunity*. 21:527–538.
759 doi:10.1016/j.jimmuni.2004.08.011.

760 Johansson-Lindbom, B., M. Svensson, O. Pabst, C. Palmqvist, G. Márquez, R. Förster,
761 and W.W. Agace. 2005. Functional specialization of gut CD103+ dendritic cells in the
762 regulation of tissue-selective T cell homing. *J. Exp. Med.* 202:1063–1073.
763 doi:10.1084/jem.20051100.

764 Kirby, A.C., M.C. Coles, and P.M. Kaye. 2009. Alveolar Macrophages Transport
765 Pathogens to Lung Draining Lymph Nodes. *J. Immunol.* 183:1983–1989.
766 doi:10.4049/jimmunol.0901089.

767 Kiyono, H., and T. Azegami. 2015. The mucosal immune system: From dentistry to
768 vaccine development. *Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.* 91:423–439.
769 doi:10.2183/pjab.91.423.

770 Kursar, M., K. Bonhagen, A. Köhler, T. Kamradt, S.H.E. Kaufmann, and H.-W.
771 Mittrücker. 2002. Organ-specific CD4+ T cell response during *Listeria monocytogenes*
772 infection. *J. Immunol.* 168:6382–6387. doi:10.4049/jimmunol.168.12.6382.

773 Larange, A., and H. Cheroutre. 2016. Retinoic Acid and Retinoic Acid Receptors as
774 Pleiotropic Modulators of the Immune System. *Annu. Rev. Immunol.* 34:369–394.
775 doi:10.1146/annurev-immunol-041015-055427.

776 Lindquist, R.L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M.L. Dustin,
777 and M.C. Nussenzweig. 2004. Visualizing dendritic cell networks in vivo. *Nat Immunol.*
778 5:1243–1250. doi:10.1038/ni1139.

779 Lohrberg, M., and J. Wilting. 2016. The lymphatic vascular system of the mouse head.
780 *Cell Tissue Res.* 366:667–677. doi:10.1007/s00441-016-2493-8.

781 Lun, A.T.L., D.J. McCarthy, and J.C. Marioni. 2016a. A step-by-step workflow for low-
782 level analysis of single-cell RNA-seq data with Bioconductor. *F1000Res.* 5:2122.
783 doi:10.12688/f1000research.9501.2.

784 Lun, A.T.L., K. Bach, and J.C. Marioni. 2016b. Pooling across cells to normalize single-
785 cell RNA sequencing data with many zero counts. *Genome Biology.* 17:75–14.
786 doi:10.1186/s13059-016-0947-7.

787 Ma, Q., Y. Decker, A. Müller, B.V. Ineichen, and S.T. Proulx. 2019. Clearance of
788 cerebrospinal fluid from the sacral spine through lymphatic vessels. *Journal of*
789 *Experimental Medicine.* 216:2492–2502. doi:10.1084/jem.20190351.

790 Madisen, L., T.A. Zwingman, S.M. Sunkin, S.W. Oh, H.A. Zariwala, H. Gu, L.L. Ng,
791 R.D. Palmiter, M.J. Hawrylycz, A.R. Jones, E.S. Lein, and H. Zeng. 2010. A robust and
792 high-throughput Cre reporting and characterization system for the whole mouse brain.
793 *Nature Neuroscience.* 13:133–140. doi:10.1038/nn.2467.

794 McCarthy, D.J., K.R. Campbell, A.T.L. Lun, and Q.F. Wills. 2017. Scater: pre-
795 processing, quality control, normalization and visualization of single-cell RNA-seq data
796 in R. *Bioinformatics*. 33:1179–1186. doi:10.1093/bioinformatics/btw777.

797 Mempel, T.R., S.E. Henrickson, and U.H. von Andrian. 2004. T-cell priming by dendritic
798 cells in lymph nodes occurs in three distinct phases. *Nature*. 427:154–159.
799 doi:10.1038/nature02238.

800 Mkonyi, L.E., A. Bletsa, A.I. Bolstad, V. Bakken, H. Wiig, and E. Berggreen. 2012.
801 Gingival lymphatic drainage protects against *Porphyromonas gingivalis*-induced bone
802 loss in mice. *American Journal Of Pathology*. 181:907–916.
803 doi:10.1016/j.ajpath.2012.05.027.

804 Molenaar, R., M. Knippenberg, G. Goverse, B.J. Olivier, A.F. de Vos, T. O'Toole, and
805 R.E. Mebius. 2011. Expression of retinaldehyde dehydrogenase enzymes in mucosal
806 dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin
807 A. *The Journal of Immunology*. 186:1934–1942. doi:10.4049/jimmunol.1001672.

808 Monk, I.R., P.G. Casey, C. Hill, and C.G.M. Gahan. 2010. Directed evolution and
809 targeted mutagenesis to murinize *Listeria monocytogenes* internalin A for enhanced
810 infectivity in the murine oral infection model. *BMC Microbiology*. 10:318–13.
811 doi:10.1186/1471-2180-10-318.

812 Mora, J.R., M.R. Bono, N. Manjunath, W. Weninger, L.L. Cavanagh, M. Rosemblatt,
813 and U.H. von Andrian. 2003. Selective imprinting of gut-homing T cells by Peyer's
814 patch dendritic cells. *Nature*. 424:88–93. doi:10.1038/nature01726.

815 Moreau, H.D., and P. Bousso. 2014. Visualizing how T cells collect activation signals in
816 vivo. *Curr Opin Immunol*. 26:56–62. doi:10.1016/j.co.2013.10.013.

817 Moutsopoulos, N.M., and J.E. Konkel. 2018. Tissue-Specific Immunity at the Oral
818 Mucosal Barrier. *Trends Immunol*. 39:276–287. doi:10.1016/j.it.2017.08.005.

819 Mowat, A.M., and W.W. Agace. 2014. Regional specialization within the intestinal
820 immune system. *Nat Rev Immunol*. 14:667–685. doi:10.1038/nri3738.

821 Pabst, R. 2015. Mucosal vaccination by the intranasal route. Nose-associated lymphoid
822 tissue (NALT)-Structure, function and species differences. *Vaccine*. 33:4406–4413.
823 doi:10.1016/j.vaccine.2015.07.022.

824 Park, J.-Y., H. Chung, Y. Choi, and J.-H. Park. 2017. Phenotype and Tissue Residency
825 of Lymphocytes in the Murine Oral Mucosa. *Front. Immun.* 8:1628–10.
826 doi:10.3389/fimmu.2017.00250.

827 Pitts, M.G., and S.E.F. D'Orazio. 2018. A Comparison of Oral and Intravenous Mouse
828 Models of Listeriosis. *Pathogens*. 7. doi:10.3390/pathogens7010013.

829 R Core Team, 2016. *R: A Language and Environment for Statistical Computing*,
830 Vienna, Austria.

831 Saklani-Jusforgues, H., E. Fontan, and P.L. Goossens. 2000. Effect of acid-adaptation
832 on *Listeria monocytogenes* survival and translocation in a murine intragastric infection
833 model. *FEMS Microbiol. Lett.* 193:155–159. doi:10.1111/j.1574-6968.2000.tb09418.x.

834 Schaefer, B.C., M.L. Schaefer, J.W. Kappler, P. Marrack, and R.M. Kedl. 2001.
835 Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. *Cell*
836 *Immunol.* 214:110–122. doi:10.1006/cimm.2001.1895.

837 Schulz, O., and O. Pabst. 2013. Antigen sampling in the small intestine. *Trends*
838 *Immunol.* 34:155–161. doi:10.1016/j.it.2012.09.006.

839 Schulz, O., S.I. Hammerschmidt, G.L. Moschovakis, and R. Förster. 2016. Chemokines
840 and Chemokine Receptors in Lymphoid Tissue Dynamics. *Annu. Rev. Immunol.*
841 34:203–242. doi:10.1146/annurev-immunol-041015-055649.

842 Shale, M., C. Schiering, and F. Powrie. 2013. CD4(+) T-cell subsets in intestinal
843 inflammation. *Immunol Rev.* 252:164–182. doi:10.1111/imr.12039.

844 Sheridan, B.S., Q.-M. Pham, Y.-T. Lee, L.S. Cauley, L. Puddington, and L. Lefrançois.
845 2014. Oral infection drives a distinct population of intestinal resident memory CD8(+) T
846 cells with enhanced protective function. *Immunity*. 40:747–757.
847 doi:10.1016/j.jimmuni.2014.03.007.

848 Sigmundsdottir, H., and E.C. Butcher. 2008. Environmental cues, dendritic cells and
849 the programming of tissue-selective lymphocyte trafficking. *Nat Immunol.* 9:981–987.
850 doi:10.1038/ni.f.208.

851 Silva dos Santos, D., J. Barreto de Albuquerque, B. Guerra, O.C. Moreira, L.R. Berbert,
852 M.T. Ramos, B.A.S. Mascarenhas, C. Britto, A. Morrot, D.M. Serra Villa-Verde, L.R.
853 Garzoni, W. Savino, V. Cotta-de-Almeida, and J. de Meis. 2017. Unraveling Chagas

854 disease transmission through the oral route: Gateways to *Trypanosoma cruzi* infection
855 and target tissues. *PLoS Negl Trop Dis.* 11:e0005507.
856 doi:10.1371/journal.pntd.0005507.

857 Sivapatham, S., X. Ficht, J. Barreto de Albuquerque, N. Page, D. Merkler, and J.V.
858 Stein. 2019. Initial Viral Inoculum Determines Kinapse-and Synapse-Like T Cell Motility
859 in Reactive Lymph Nodes. *Front. Immun.* 10:2086. doi:10.3389/fimmu.2019.02086.

860 Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalex, W.M. Mauck, Y. Hao, M.
861 Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive Integration of Single-Cell
862 Data. *Cell.* 177:1888–1902.e21. doi:10.1016/j.cell.2019.05.031.

863 Ushijima, N., K. Inoue, T. Domon, and S. Yoshida. 2008. Distribution and organization
864 of lymphatic vessels in the mouse gingiva: An immunohistochemical study with LYVE-
865 1. *Archives of Oral Biology.* 53:652–658. doi:10.1016/j.archoralbio.2008.01.012.

866 Van den Broeck, W., A. Derore, and P. Simoens. 2006. Anatomy and nomenclature of
867 murine lymph nodes: Descriptive study and nomenclatory standardization in
868 BALB/cAnNCrl mice. *J Immunol Methods.* 312:12–19. doi:10.1016/j.jim.2006.01.022.

869 Vladymyrov, M., J. Abe, F. Moalli, J.V. Stein, and A. Ariga. 2016. Real-time tissue
870 offset correction system for intravital multiphoton microscopy. *Journal of Immunological
871 Methods.* 438:35–41. doi:10.1016/j.jim.2016.08.004.

872 Wollert, T., B. Pasche, M. Rochon, S. Deppenmeier, J. van den Heuvel, A.D. Gruber,
873 D.W. Heinz, A. Lengeling, and W.-D. Schubert. 2007. Extending the host range of
874 *Listeria monocytogenes* by rational protein design. *Cell.* 129:891–902.
875 doi:10.1016/j.cell.2007.03.049.

876 Zappia, L., and A. Oshlack. 2018. Clustering trees: a visualization for evaluating
877 clusterings at multiple resolutions. *Gigascience.* 7. doi:10.1093/gigascience/giy083.

878 Zehn, D., S.Y. Lee, and M.J. Bevan. 2009. Complete but curtailed T-cell response to
879 very low-affinity antigen. *Nature.* 458:211–214. doi:10.1038/nature07657.

880

881 **Figure legends**

882 **Figure 1. Lm inoculation into oral cavity leads to rapid bacterial accumulation in**
883 **mandLN. A.** Drainage of a tracer injected into the gingiva to mandLN (arrowheads). **B.**
884 Overview of lymphatic vessel network in gingiva of Prox1-GFP reporter mouse. **C.** 2PM
885 reconstruction of lymphatic network in gingiva surrounding mandibular incisors. Scale
886 bar, 20 μ m. **D.** Overview of lymphatic vessels between mandibular incisors and
887 mandLN of Prox1-GFP reporter mouse. MM, masseter muscle; mandLN, mandibular
888 lymph node; SLG, sublingual salivary gland; SMG, submandibular salivary gland. **E.**
889 Experimental setup for oral infection. **F.** Lm-OVA CFU per lymphoid organ after
890 intraoral (i.o.) *versus* intravenous (i.v.) Lm infection. Lines depict median, dotted line is
891 limit of detection. **G.** Lymphoid organ cellularity during i.o. and i.v. Lm-OVA infections.
892 **H.** CFU counts in mandLN after i.o. infection of Lm-OVA *versus* Lm-InIA^m. **I.** Lm-OVA
893 CFU counts in mandLN after i.o. infection of WT or CCR7^{-/-} mice. **J.** Lm-GFP
894 accumulation (arrowheads) after i.o. infection at distinct depths from mandLN capsule.
895 SHG, second harmonic generation. Scale bar, 40 μ m. Data in F and G are from 2-3
896 independent experiments with each 2-3 mice/time point. Data in G were analyzed using
897 a Kruskal-Wallis test against “d 0”. Data in H and I are pooled from 2-3 independent
898 experiments with each 4-5 mice/group and analyzed using a Mann-Whitney test. *, p <
899 0.05; **, p < 0.01; ***, p < 0.001.

900

901 **Figure 2. Visualization of CD8⁺ T cell dynamics in mandLN after oral Lm uptake.**

902 **A.** Confocal images of mandLN sections after i.o. Lm-OVA administration. Scale bar,
903 200 (upper) and 20 (lower) μ m. **B.** Representative 2PM images of infected mandLN of
904 CD11c-YFP host containing OT-I cells and polyclonal T cells at d 2 p.i.. Left panel
905 shows OT-I clusters around CD11⁺ cells (dotted line), right panel shows overlaid tracks
906 of OT-I (yellow) and polyclonal CD8⁺ T cells (blue). Scale bar, 20 μ m. **C-E.**
907 Quantification of imaging data. Track speeds (**C**), arrest coefficient (**D**), and corrected
908 track straightness (**E**). Lines in C and D depict median. Data in C were analyzed using

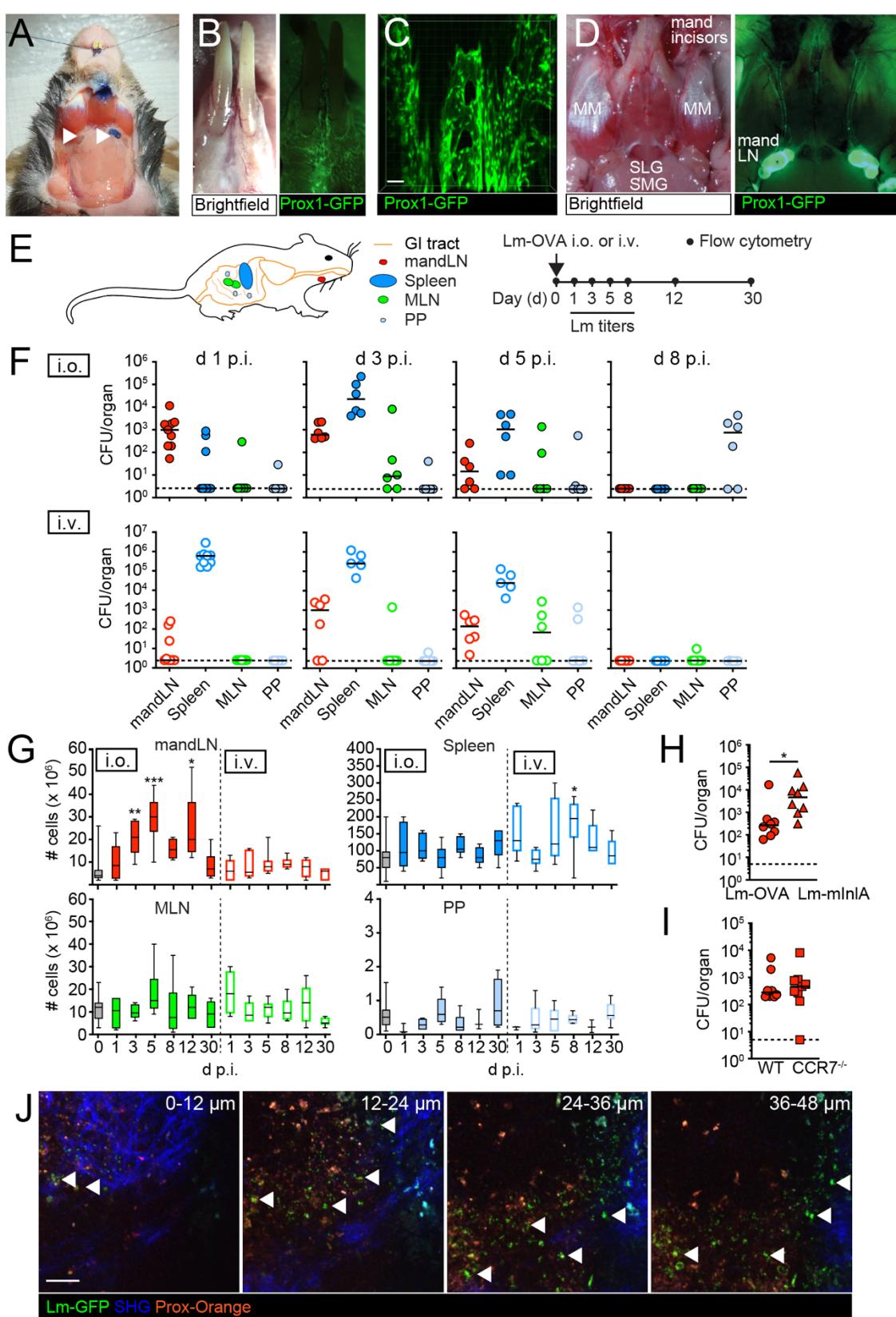
909 ANOVA with Sidak's multiple comparison test, in D using Kruskal-Wallis with Dunn's
910 multiple comparison test and in E using Mann-Whitney test. Data are representative (A)
911 or pooled (C-E) from at least two independent experiments. *, p < 0.05; **, p < 0.01; ***,
912 p < 0.001.

913

914 **Figure 3. Oral Lm uptake triggers rapid CD8⁺ T cell activation and proliferation in**
915 **mandLN. A and B.** CD69 (**A**) and CD25 (**B**) expression in OT-I cells isolated from
916 mandLN, spleen and MLN after i.o. Lm-OVA infection. **C.** Representative flow
917 cytometry plots of OT-I T cell proliferation after i.o. Lm-OVA infection. Numbers indicate
918 percent proliferated cells. **D.** OT-I proliferation in mandLN, spleen and MLN after i.o.
919 Lm infection. **E.** OT-I cell number in lymphoid organs after i.o. and i.v. infection.
920 Numbers depict fold increase of median in d 3 OT-I cell numbers over d 0. **F.**
921 Experimental layout for Lm-OVA inoculum titration. **G-J.** CD69 expression (**G**), MFI
922 CD69 (**H**), CD25 expression (**I**) and proliferation (**J**) on mandLN OT-I T cells after
923 titrating Lm-OVA inoculum. Numbers in J indicate median \pm SEM. Data in A and B are
924 pooled from 2-5 experiments per time point with 3 mice per experiment. Data in D are
925 pooled from 2 independent experiments. Data in E and G are pooled from 2-3
926 independent experiments with each 2-3 mice/group/time point and analyzed using a
927 Kruskal-Wallis test against "d 0" and "no Lm", respectively. Lines in A, B, D, E and G-J
928 depict median. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

929

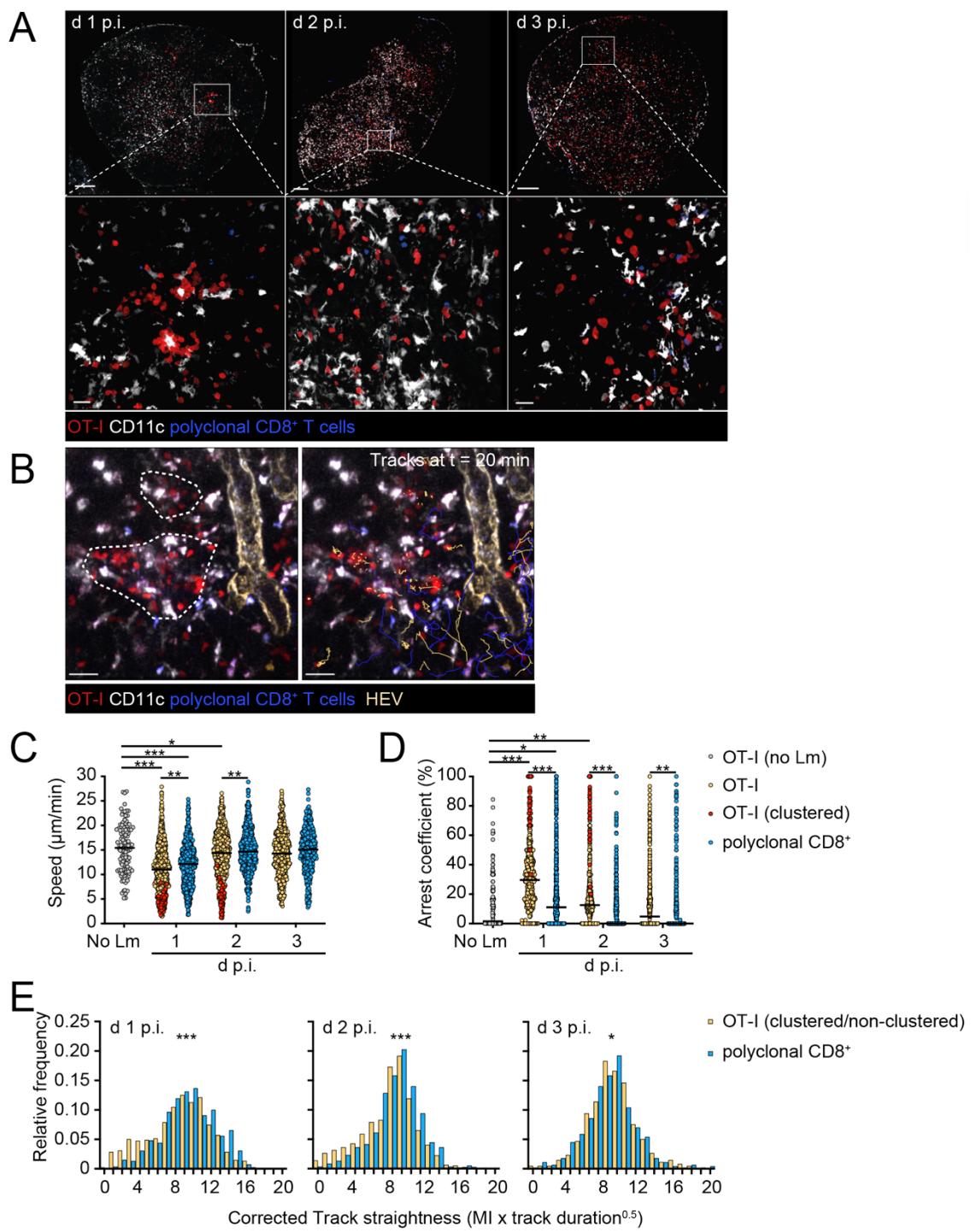
930 **Figure 4. mandLN effector CD8⁺ T cells contribute to systemic immunity. A.**
931 Experimental layout of egress blockade. **B.** OT-I cell numbers in mandLN, spleen and
932 MLN on d 4 and 5 post i.o. Lm-OVA infection in presence or absence of FTY720. **C.**
933 Experimental layout of homing receptor analysis. **D.** Representative flow cytometry
934 plots of CD44, α 4 β 7 and CCR9 expression in OT-I T_{EFF} on day 5 post Lm-OVA
935 infection via i.o., i.g. and i.v. route. Gray line, FMO control. Numbers depict percent
936 positive cells. **E.** Quantification of percent positive and MFI of depicted markers in OT-I


937 **T_{EFF}. F.** Experimental layout of adoptive transfer experiment. **G.** Lm-OVA CFU in
938 spleen, MLN and PP after adoptive transfer of no OT-I or transfer of splenic, mandLN
939 and MLN T_{EFF}. Numbers indicate percentage of organs with Lm-OVA CFU above limit
940 of detection (dotted line). The dotted square highlights OT-I^{MLN}-mediated clearance of
941 bacteria in MLN and PP. Data in B are pooled from 2 independent experiments and
942 analyzed using an unpaired t-test. Data in E are from one of two independent
943 experiments and analyzed using ANOVA. Data in G are pooled from 4 independent
944 experiments with each 4-5 mice/group and analyzed using a Kruskal Wallis test against
945 “no OT-I”. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

946

947 **Figure 5. The mandLN microenvironment shows low expression of genes for gut-
948 homing imprinting of effector CD8⁺ T cells. A.** UMAP clustering of pooled CD45⁻
949 stromal compartments of MLN, PLN and mandLN based on scRNAseq data. Numbers
950 indicate individual clusters. **B.** Expression of *Aldh1a1*, *Aldh1a2*, *Aldh1a3* and *WT1* in
951 MLN (10058 cells), PLN (7750 cells) and mandLN stroma (4434 cells) based on
952 scRNAseq data. **C.** Expression frequency of *Aldh1a1*, *Aldh1a2*, *Aldh1a3* and *WT1* in
953 fibroblast-like cells based on data in B. **D.** *Aldh1a1*, *Aldh1a2*, *Aldh1a3* expression in
954 CD45⁻ TER-119⁻ stromal cells and CD11c⁺ MHC-II⁺ DC isolated from of MLN, PLN and
955 mandLN assessed by qPCR. Shown are the 2^{-ΔCT} means of duplicates from two
956 independent experiments (grey and white fill). Bars represent mean. **E.** Graphical
957 summary. CSF, cerebrospinal fluid; AEC, anterior eye chamber.

958


959 **Figures**

960

Figure 1

961

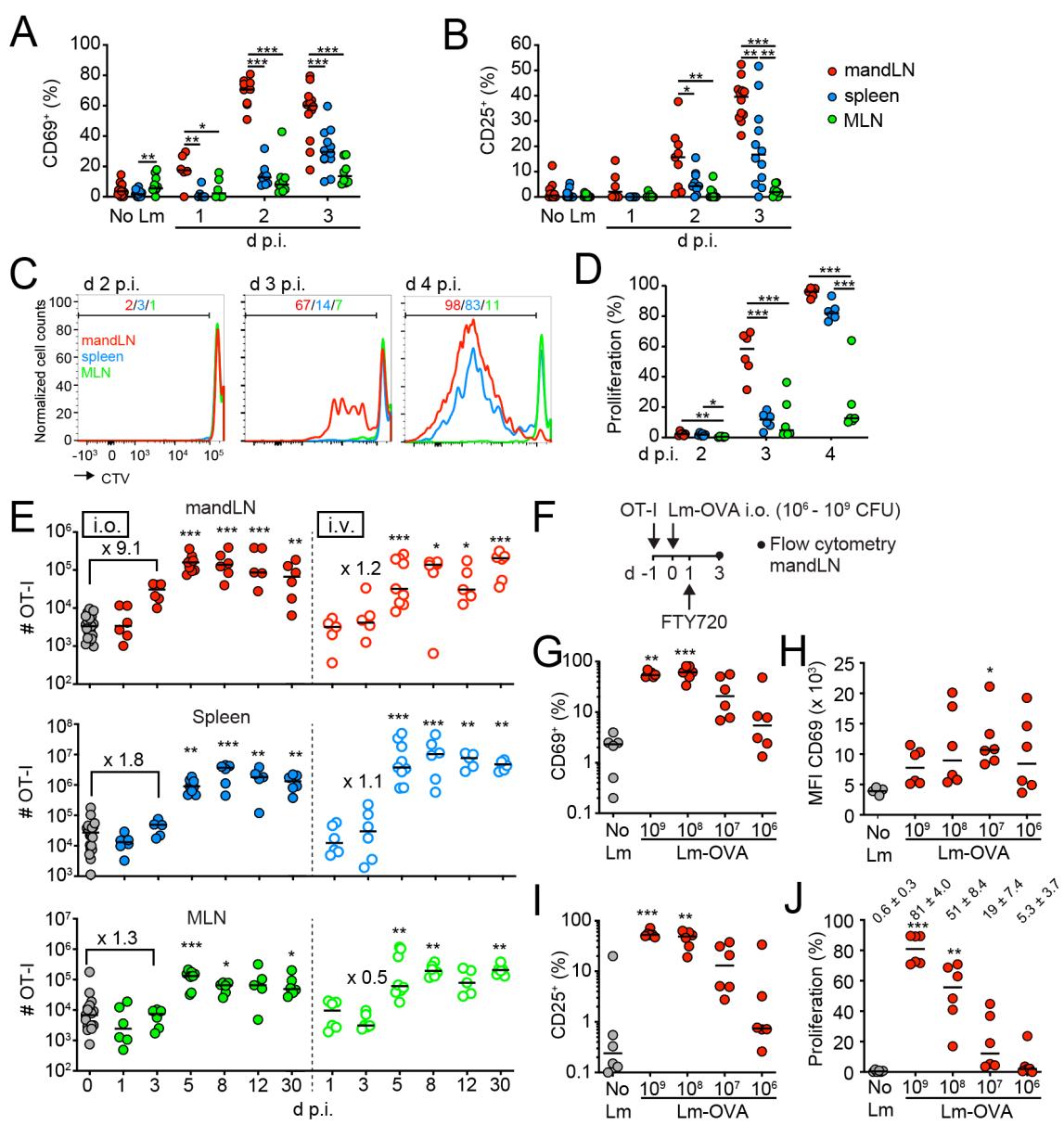
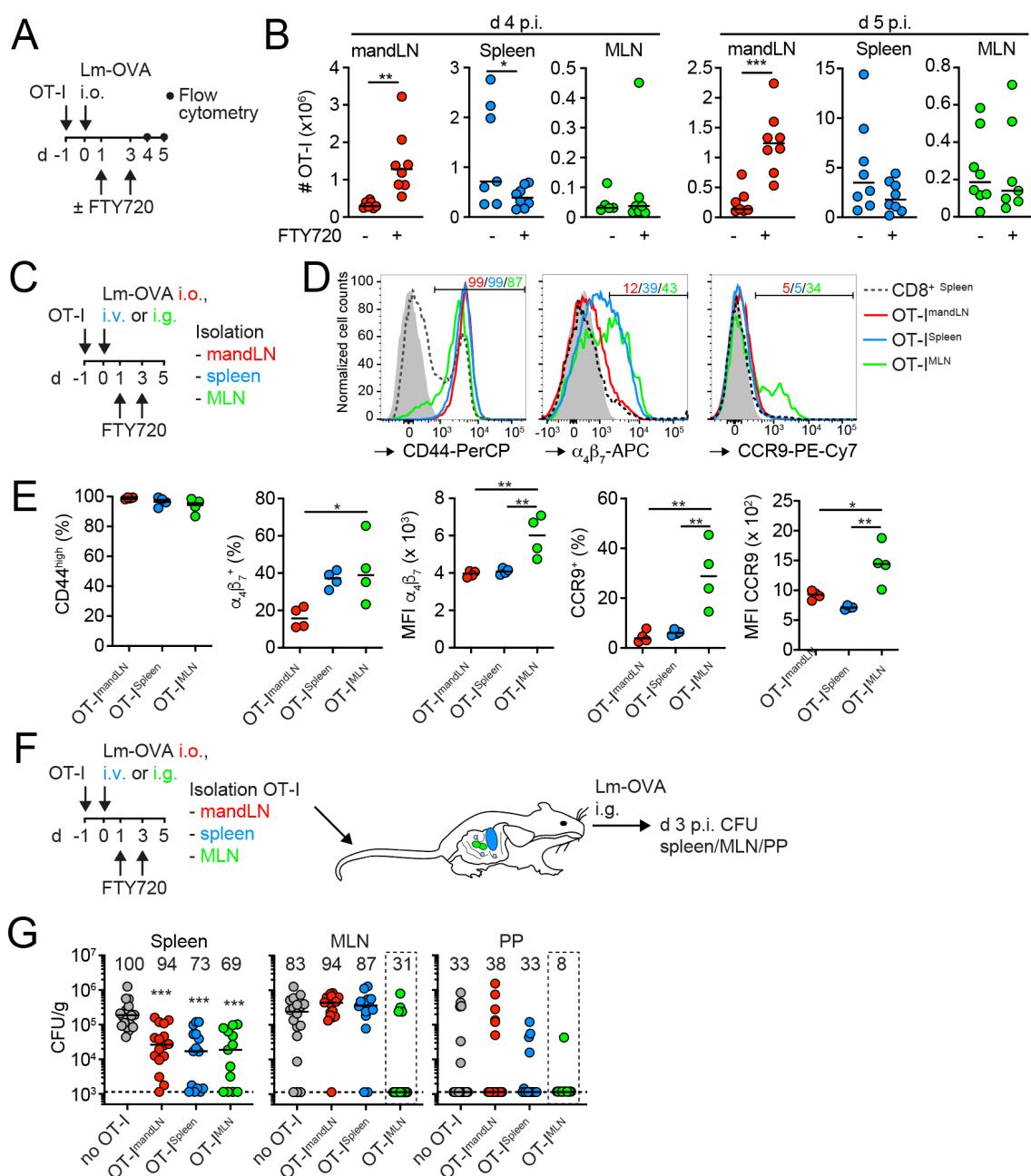



Figure 3

963

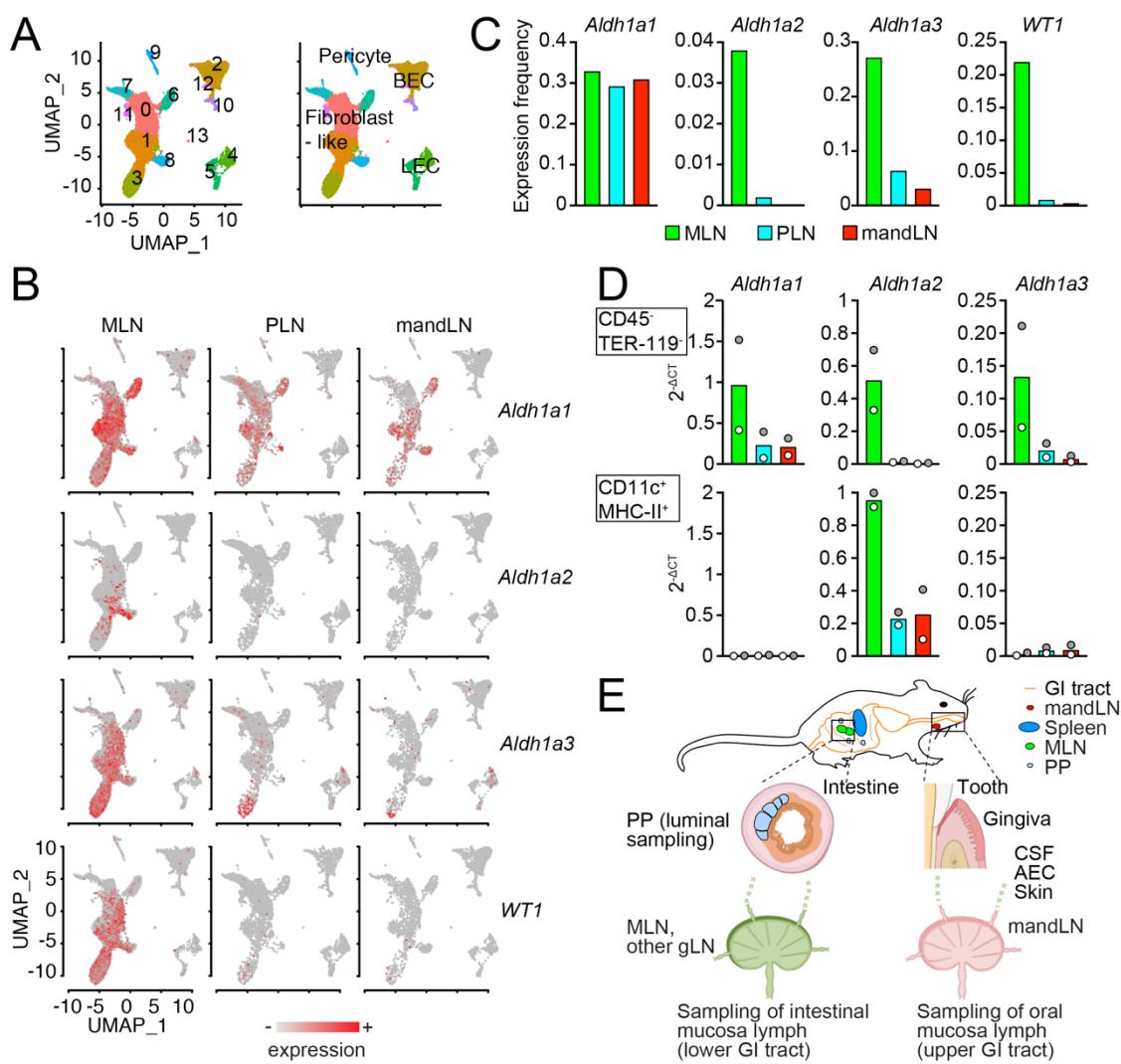


Figure 5

965

966

967 **Supplemental Figure legend**

968 **Figure S1.** Surgical setup (left panels) and stereomicroscope images (right panels) of
969 gingiva (**A**) and mandLN (**B**). SMG, submandibular salivary gland.

970

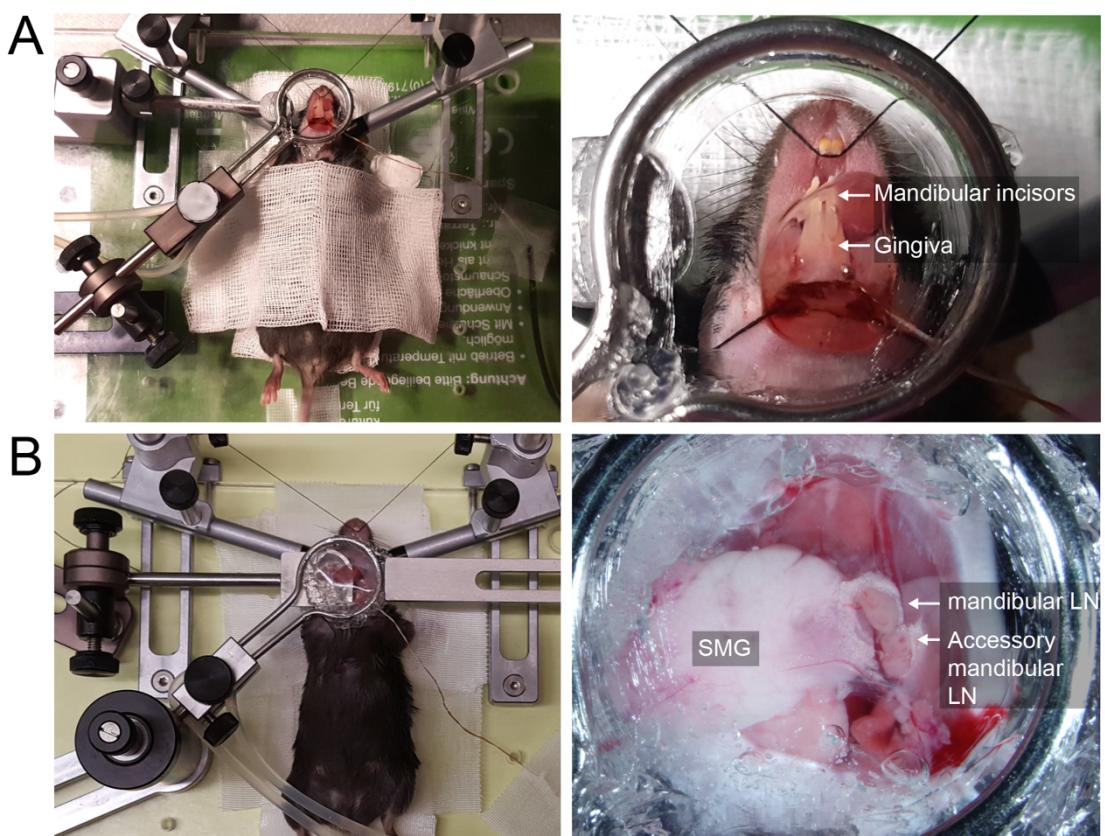
971 **Figure S2. Flow cytometry analysis of DC and CD8⁺ T cells.** **A.** Representative flow
972 cytometry plot for migratory and resident DC and CD80/CD86 expression in each DC
973 population. Gray shade, FMO; gray line, no Lm; red line, after i.o. Lm-OVA infection.
974 Numbers indicate percent expressing cells. **B and C.** CD80 (**C**) and CD86 (**D**)
975 expression and MFI on migratory and resident DC. Data in B and C are from one of two
976 independent experiments with 4 mice/group and analyzed using an unpaired t-test. **D**
977 **and E.** Examples of gating strategy (D) and flow cytometry plots (E). **F and G.** Pie
978 charts showing the proportion of OT-I populations based on CD44/CD62L (**F**) and
979 KL RG1/CD127 (**G**) expression on d 5 and 30 following i.o. and i.v. infections. **H.**
980 Representative flow cytometry plots of CD69/CD25 expression and proliferation in
981 mandLN OT-I T cells on d 3 p.i. with decreasing Lm-OVA inoculum. **I.** MandLN
982 cellularity on d 3 after i.o. Lm-OVA infection. **J.** CD69 expression and MFI CD69 on
983 endogenous mandLN CD8⁺ cells with decreasing Lm-OVA inoculum. *, p < 0.05; **, p <
984 0.01.

985

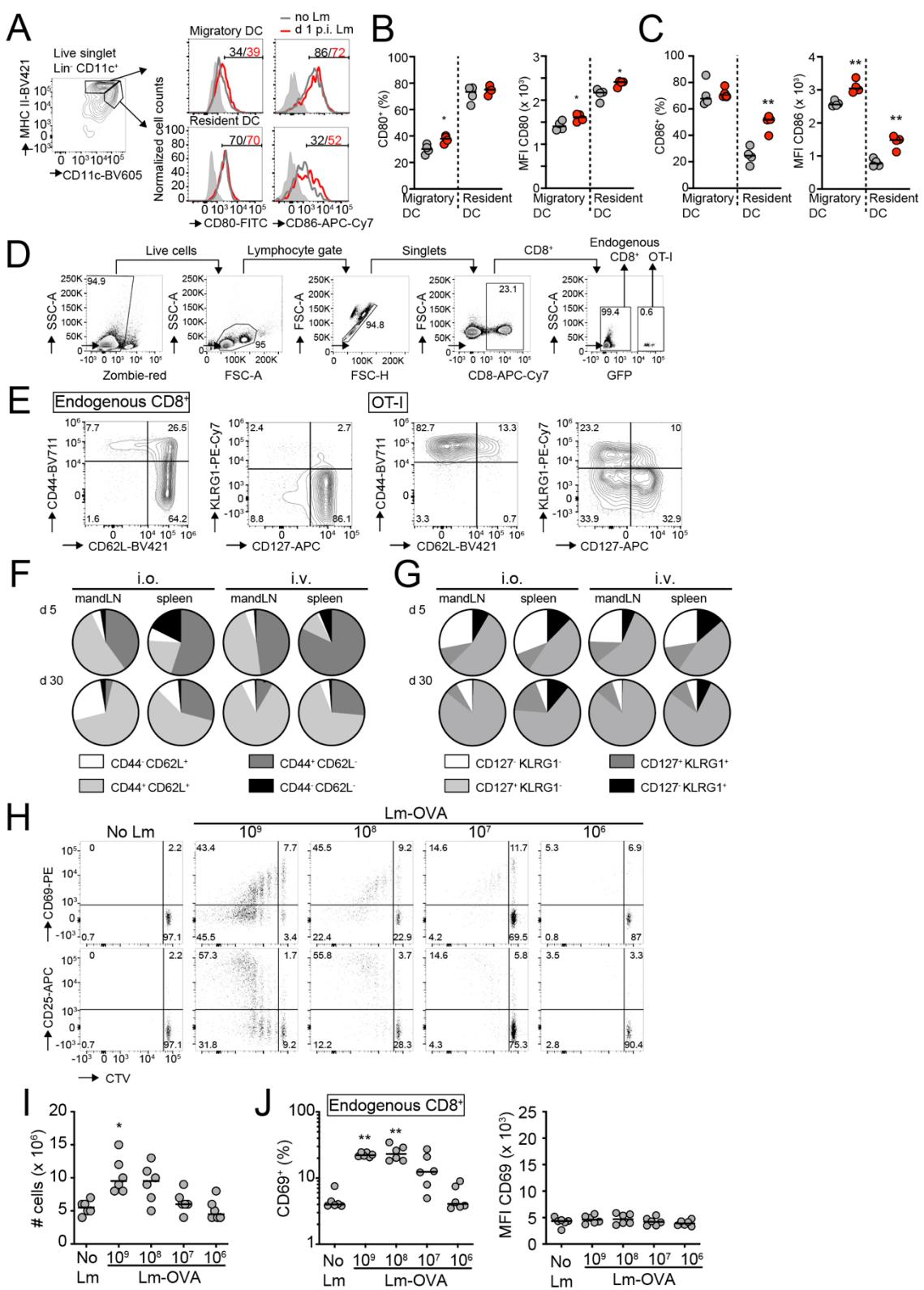
986 **Figure S3.** Expression of selected genes of interests in stromal cell clusters by
987 scRNAseq. *Col1a1*, collagen type I alpha 1 chain; *Col1a2*, collagen type I alpha 2
988 chain; *Pdpn*, podoplanin; *Cdh5*, VE-cadherin; *Chst4*, Carbohydrate Sulfotransferase 4;
989 *Tnfsf11*, TNF Superfamily Member 11 (RANKL).

990

991 **Supplementary video legend**

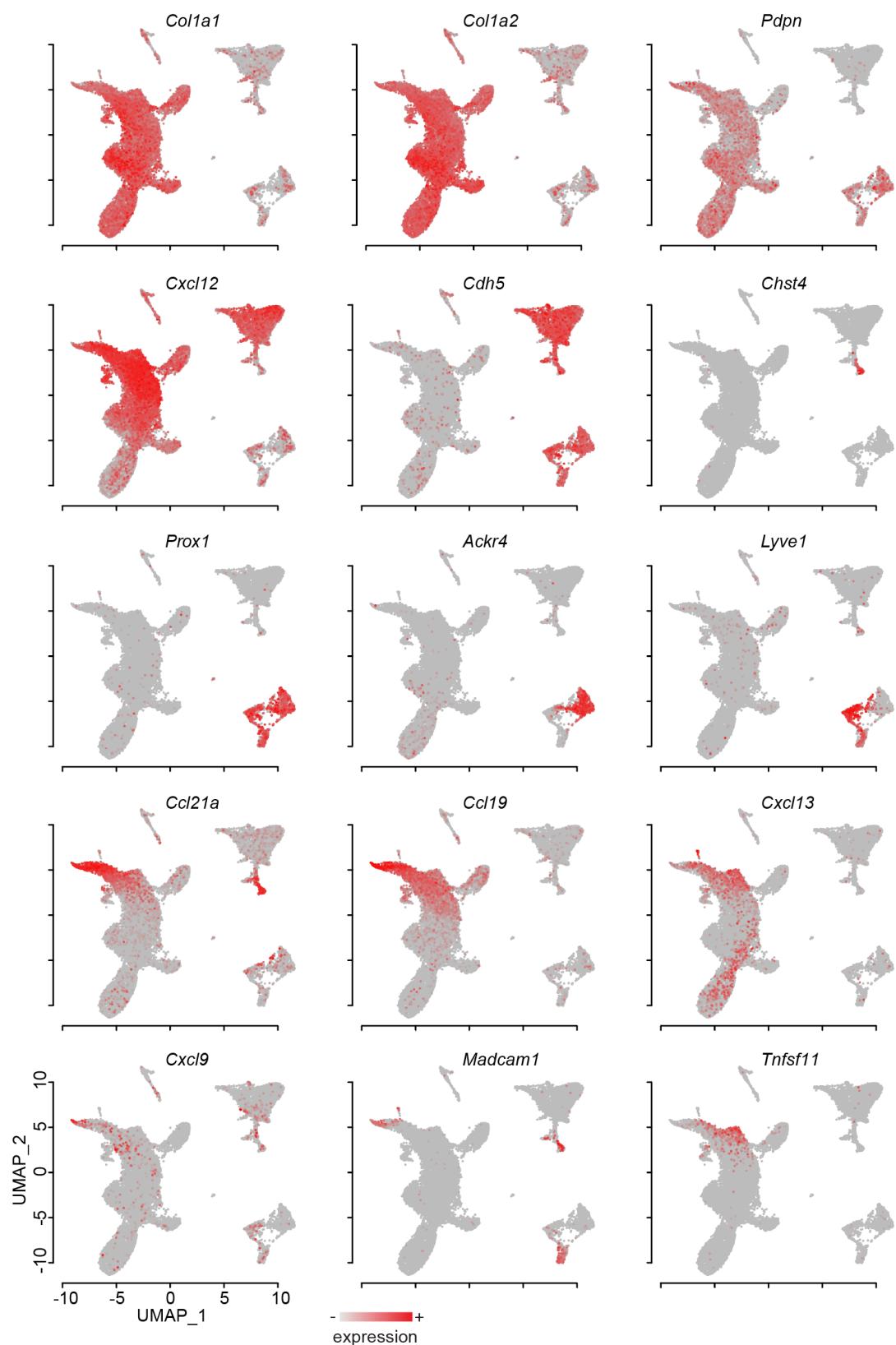

992 **Video S1.** OT-I motility in mandLN in the absence of infection. Scale bar, 30 μ m; time
993 in min:s.

994 **Video S2.** Polyclonal CD8 $^{+}$ and OT-I T cell motility in mandLN on d 2 post i.o. Lm-OVA
995 infection. Scale bar, 30 μ m; time in min:s.


996 **Video S3.** Polyclonal CD8 $^{+}$ and OT-I T cell motility in mandLN on d 3 post i.o. Lm-OVA
997 infection. Scale bar, 30 μ m; time in min:s.

998 **Video S4.** OT-I T cell migration in gingiva in memory phase following i.o. Lm-OVA
999 infection. Scale bar, 50 μ m; time in min:s.

1000


1001 Figure S1

1002

Figure S2

1003

1004

Figure S3

1005