

1 **A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis
2 ovule**

3
4 Athul Vijayan^{1,6}, Rachele Tofanelli^{1,6}, Soeren Strauss², Lorenzo Cerrone³, Adrian Wolny^{3,4},
5 Joanna Strohmeier¹, Anna Kreshuk⁴, Fred A. Hamprecht³, Richard S. Smith^{2,5}, and Kay
6 Schneitz^{1,7}

7

8 ¹Plant Developmental Genetics, School of Life Sciences, Technical University of Munich,
9 Freising, Germany

10

11 ²Department of Comparative Developmental and Genetics, Max Planck Institute for Plant
12 Breeding Research, Cologne, Germany

13

14 ³Heidelberg Collaboratory for Image Processing, Dept. of Physics and Astronomy, Heidelberg
15 University, Heidelberg, Germany

16

17 ⁴European Molecular Biology Laboratory, Heidelberg, Germany

18

19 ⁵Present address

20 The John Innes Centre, Norwich Research Park, Norwich, UK

21

22 ⁶Authors contributed equally

23

24 ⁷Corresponding author

25 Plant Developmental Genetics

26 School of Life Sciences

27 Technical University of Munich

28 Emil-Ramann-Str. 4

29 D-85354 Freising

30 Email: kay.schneitz@tum.de

31 Tel: +49 8161 715438

32

33 **Abstract**

34 A fundamental question in biology is how morphogenesis integrates the multitude of distinct
35 processes that act at different scales, ranging from the molecular control of gene expression to
36 cellular coordination in a tissue. Investigating morphogenesis of complex organs strongly
37 benefits from three-dimensional representations of the organ under study. Here, we present a

38 digital analysis of ovule development from *Arabidopsis thaliana* as a paradigm for a complex
39 morphogenetic process. Using machine-learning-based image analysis we generated a three-
40 dimensional atlas of ovule development with cellular resolution. It allows quantitative stage-
41 and tissue-specific analysis of cellular patterns. Exploiting a fluorescent reporter enabled
42 precise spatial determination of gene expression patterns, revealing subepidermal expression
43 of *WUSCHEL*. Underlying the power of our approach, we found that primordium outgrowth
44 progresses evenly, discovered a novel mode of forming a new cell layer, and detected a new
45 function of *INNER NO OUTER* in restricting cell proliferation in the nucellus. Moreover, we
46 identified two distinct subepidermal cell populations that make crucial contributions to ovule
47 curvature. Our work demonstrates the expedience of a three-dimensional digital
48 representation when studying the morphogenesis of an organ of complex cellular architecture
49 and shape that eventually consists of 1,900 cells.

50

51 **Introduction**

52 How organs attain their species-specific size and shape in a reproducible manner is an
53 important question in biology. Tissue morphogenesis constitutes a multi-scale process that
54 occurs in three dimensions (3D) plus time. Thus, quantitative cell and developmental biology
55 must not only address molecular processes but also cellular and tissue-level properties. It
56 necessitates the quantitative 3D analysis of cell size, cell shape, and cellular topology, an
57 approach that has received much less attention (Boutros et al., 2015; Jackson et al., 2019).

58

59 Morphogenesis involves coordination of cellular behaviour between cells or complex
60 populations of cells which may lead to emergent properties of the tissue that are not directly
61 encoded in the genome (Coen et al., 2017; Coen and Rebocho, 2016; Gibson et al., 2011;
62 Jackson et al., 2019). For example, plant cells are connected through their cell walls. The
63 physical coupling of plant cells can cause mechanical stresses that may control tissue shape
64 by influencing growth patterns and gene expression (Bassel et al., 2014; Hamant et al., 2008;
65 Hervieux et al., 2016; Kierzkowski et al., 2012; Landrein et al., 2015; Louveaux et al., 2016;
66 Sampathkumar et al., 2014; Sapala et al., 2018; Sassi et al., 2014; Uyttewaal et al., 2012).
67 Concepts involving the minimization of mechanical stresses caused by differential growth
68 within a tissue have been employed to explain morphogenesis of different plant organs with
69 curved shapes (Lee et al., 2019; Liang and Mahadevan, 2011; Rebocho et al., 2017).

70

71 Developmental changes in the appearance of organs, such as leaves and sepals, are often
72 assessed by focusing on the organ surface (Hong et al., 2016; Hervieux et al., 2016;
73 Kierzkowski et al., 2019). This strategy, however, loses sight of internal cellular growth
74 patterns. Cellular patterns in deeper tissue layers have classically been studied using 2D

75 techniques with modern variations, for example in the study of the hypocotyl, relying on
76 automated quantitative histology (Sankar et al., 2014). However, 2D analysis of cellular
77 patterns can also result in misconceptions as was noticed for the early *Arabidopsis* embryo
78 (Yoshida et al., 2014).

79

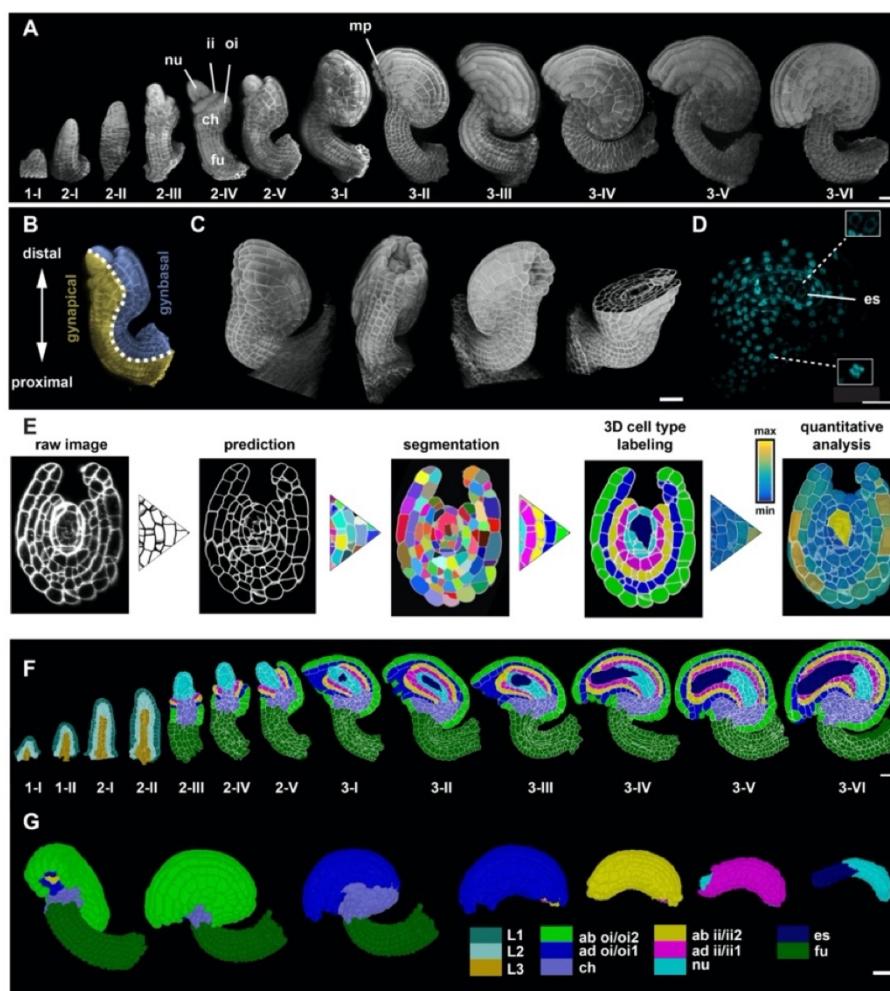
80 Such considerations make it obvious that quantitative and 3D cellular descriptions of the
81 entire tissue under study are essential for a full understanding of tissue morphogenesis (Hong
82 et al., 2018; Kierzkowski and Routier-Kierzkowska, 2019; Sapala et al., 2019). Digital 3D
83 organs with complete cellular resolution represent a natural strategy to approach this
84 endeavour. However, it remains an important challenge to generate such faithful digital
85 representations. Substantial efforts in animal developmental biology did not achieve single-
86 cell resolution (Lein et al., 2007, 2007; Rein et al., 2002; Lein et al., 2007; Dreyer et al., 2010;
87 Asadulina et al., 2012; Anderson et al., 2019), except for *C. elegans* (Long et al., 2009) and
88 the early embryo of the ascidian *Phallusia mammillata* (Guignard et al., 2020; Sladitschek et
89 al., 2020). Model plants, such as *Arabidopsis thaliana*, are uniquely suited for this task. Plants
90 feature a relatively small number of different cell types. Moreover, plant cells are large and
91 immobile. As a consequence, one can often observe characteristic cell division patterns
92 associated with the formation and organization of tissues and organs. So far, 3D digital organs
93 were obtained for tissues of either small size or simple architecture and were incompatible
94 with fluorescent stains (Bassel et al., 2014; Montenegro-Johnson et al., 2015; Pasternak et al.,
95 2017; Schmidt et al., 2014; Yoshida et al., 2014).

96

97 The ovule is the major female reproductive organ of higher plants. It harbors the egg cell
98 which is protected by two integuments, lateral determinate tissues that develop into the seed
99 coat following fertilization. The *Arabidopsis* ovule has been established as an instructive
100 model to study numerous aspects of tissue morphogenesis including primordium formation,
101 the establishment of the female germ line, and integument formation (Chaudhary et al., 2018;
102 Gasser and Skinner, 2019; Nakajima, 2018; Schmidt et al., 2015). The ovule exhibits an
103 elaborate tissue architecture exemplified by its extreme curvature caused in part by the
104 asymmetric growth of the two integuments. This property makes it ideal for addressing the
105 complexity of morphogenetic processes. Qualitative descriptions of ovule development exist
106 (Christensen et al., 1997; Robinson-Beers et al., 1992; Schneitz et al., 1995) but a quantitative
107 cellular characterization is only available for the tissue that forms the germ line (Lora et al.,
108 2017). To make the next step in the study of ovule morphogenesis therefore requires 3D
109 digital ovules with cellular resolution and of all developmental stages.

110

111 Here, we constructed a canonical 4D digital atlas of *Arabidopsis* ovule development with
112 cellular resolution. The atlas covers all stages from early primordium outgrowth to the mature
113 pre-fertilization ovule, provides quantitative information about various cellular parameters,
114 and provides a proof-of-concept analysis regarding gene expression in 3D with cellular
115 resolution. Our quantitative phenotypic analysis revealed a range of novel aspects of ovule
116 morphogenesis and a new function for the regulatory gene *INNER NO OUTER*.


117

118 **Results**

119 *Arabidopsis* ovules become apparent as finger-like protrusions that emanate from the
120 placental tissue of the carpel (Robinson-Beers et al., 1992; Schneitz et al., 1995) (Fig. 1A).
121 The ovule is a composite of three clonally distinct radial layers (Jenik and Irish, 2000;
122 Schneitz et al., 1995). Thus, its organization into L1 (epidermis), L2 (first subepidermal layer)
123 and L3 (innermost layer) follows a general principle of plant organ architecture (Satina et al.,
124 1940). Following primordium formation, three proximal-distal (PD) pattern elements can be
125 recognized: the distal nucellus, central chalaza and proximal funiculus, respectively Fig.
126 1A,B). The nucellus produces the megasporangium (MMC), a large L2-derived cell that
127 eventually undergoes meiosis. Only one of the meiotic products, the functional megasporangium,
128 survives and continues development. It develops into the eight-nuclear, seven-celled haploid
129 embryo sac. The embryo sac, or female gametophyte, carries the actual egg cell. The chalaza
130 is characterized by two integuments that initiate at its flanks. The two sheet-like integuments
131 are determinate lateral organs of epidermal origin that undergo planar or laminar growth
132 (Jenik and Irish, 2000; Schneitz et al., 1995; Truernit and Haseloff, 2008). The integuments
133 grow around the nucellus in an asymmetric fashion eventually forming a hood-like structure
134 and contributing to the curved shape (anatomy) of the mature ovule. Each of the two
135 integuments initially forms a bi-layered structure of regularly arranged cells. Eventually, the
136 inner integument forms a third layer. The outer integument consists of two cell layers
137 throughout its development. The two integuments leave open a small cleft, the micropyle,
138 through which a pollen tube can reach the interior of the ovule (Fig. 1A,C). The funiculus
139 represents a stalk-like structure that carries the vasculature and connects the ovule to the
140 placenta. Ovules eventually orient along the long axis of the gynoecium with the micropyle
141 facing towards the stigma (gynapical side) while the opposite side of the ovule faces away
142 from the stigma (gynbasal side) (Fig. 1B).

143

144

145

146 **Figure 1.** Stage-specific 3D digital ovules with cellular and tissue resolution. (A) 3D rendering of
147 confocal z-stacks of SR2200 stained cell walls of ovule depicting ovule development from initiation at
148 stage 1-I to maturity 3-VI. (B) The different polarities of the ovule: the proximal-distal axis and the
149 gynapical-gynbasal axis are indicated. (C) 3D rendering of confocal z-stacks with multi-view of an
150 ovule depicting the quality of raw microscopic image. (D) Mid-section clip plane from the TO-PRO-3
151 channel displaying a two-nuclear embryo sac and mitotic nuclei. (E) Pipeline generating 3D digital
152 ovules: raw data, PlantSeg cell contour prediction, 3D GASP segmentation, cell type annotation and
153 quantitative analysis. (F) Mid-sagittal section of ovules from stage 1-I to 3-VI showing the cell type
154 organization in wild-type ovules. Stages 1-I to 2-II includes radial L1, L2, L3 labelling. From stage 2-
155 III individual cell type labels are assigned according to the specific tissue. (G) 3D view of a mature
156 ovule with cell type labels. The inner tissues are extracted from the 3D ovule after removing the
157 overlying tissues and visualized separately. Different colors represent different tissue type labels.
158 ii1/ii2, oi1/oi2 designate the integument layers as described in (Beeckman et al., 2000). Abbreviations:
159 ab, abaxial; ad, adaxial; ch, chalaza; es, embryo sac; fu, funiculus; ii, inner integument; mp, micropyle;
160 nu, nucellus; oi, outer integument. Scale bars: 20 μ m.
161

162 Generating stage-specific 3D digital ovules with cellular resolution

163 Ovules are buried within the gynoecium and faithful live imaging of *Arabidopsis* ovule
164 development is not feasible, except for a short period of time and with a focus on a given cell
165 (Tofanelli et al., 2019; Valuchova et al., 2020). Thus, we resorted to imaging cohorts of fixed
166 specimens. We obtained z-stacks of optical sections of fixed and cleared ovules at different

167 stages by laser scanning confocal microscopy (CLSM). The image stacks were further
168 handled using MorphoGraphX (MGX) software (Barbier de Reuille et al., 2015; Strauss et al.,
169 2019). The imaging method has recently been described in detail (Tofanelli et al., 2019). In
170 short, we dissected and fixed ovules of different stages, cleared the ovules using ClearSee
171 (Kurihara et al., 2015) and simultaneously stained the cell wall and nuclei using the
172 fluorescent stains SR2200 (Musielak et al., 2015) and TO-PRO-3 iodide (TO-PRO-3) (Bink et
173 al., 2001; Van Hooijdonk et al., 1994), respectively (Fig. 1C,D).

174

175 We processed the raw 3D datasets using PlantSeg, a deep learning pipeline for 3D
176 segmentation of dense plant tissue at cellular resolution (Wolny et al., 2020) (Fig. 1E). The
177 pipeline includes two major steps: cell wall stain-based cell boundary prediction performed by
178 a convolutional neural network (CNN) and 3D cell segmentation based on the respective cell
179 boundary predictions. Even after extensive optimization (see Materials and Methods), the
180 procedure still resulted in some mistakes. We found that two distinct groups of cells
181 represented the main sources of error. The first group included the MMC and its direct lateral
182 neighbors at stages 2-III to 2-V. The second group encompassed the cells of the late embryo
183 sac (stages 3-V/ 3-VI) (Tofanelli et al., 2019). We believe the reason for these errors lies in
184 poor staining with SR2200 and could be due to their cell walls being particularly thin or of a
185 biochemical composition interfering with staining. Poor staining of the embryo sac cells could
186 be explained by the observation that they exhibit only partially formed cell walls (Mansfield
187 et al., 1991). An additional minor source of errors related to remaining general segmentation
188 mistakes which were partly manually corrected. If the remaining segmentation mistakes
189 exceeded a given threshold, the ovule was excluded from further analysis (see below).

190

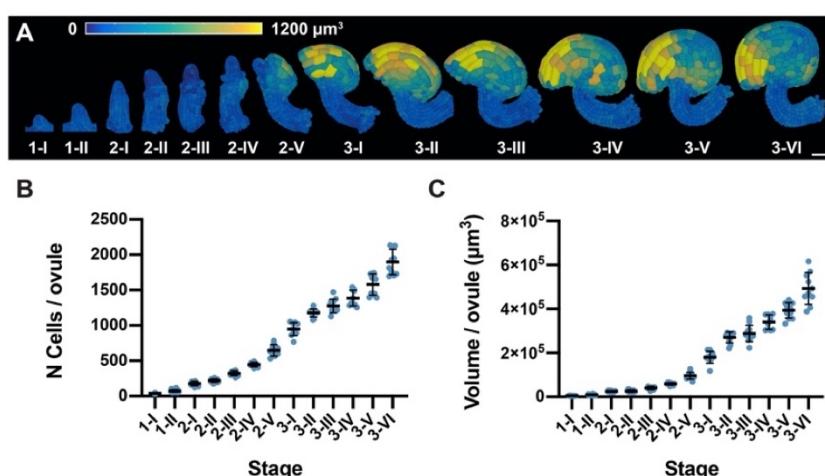
191 Using this methodology we generated a high-quality 3D image dataset consisting of 158 wild-
192 type ovules of the accession Columbia (Col-0, ≥ 10 samples per stage). We selected ovules
193 devoid of apparent segmentation errors for stages 1 to 2-II and 3-I to 3-IV. For stages 2-III to
194 2-V we included ovules containing no more than five under-segmented cells in the region
195 occupied by the MMC and its lateral neighboring cells ($\leq 10\%$ of nucellar cells). Regarding
196 mature ovules (stages 3-V/3-VI) we included ovules devoid of apparent segmentation errors
197 in the sporophytic tissue.

198

199 **Cell-type labelling of 3D digital ovules with cellular resolution**

200 Following the generation of 3D cell meshes we added specific labels to individual cells,
201 thereby describing tissue type, such as radial cell layers (L1, L2, L3), nucellus, internal tissue
202 of the chalaza, inner or outer integument, or the funiculus (see Table S1 for cell types).
203 Staining with TO-PRO-3 also allowed the identification of cells undergoing mitosis (Fig. 1D).

204 Available computational pipelines for near-automatic, geometry-based cell type identification
205 (Montenegro-Johnson et al., 2015; Montenegro-Johnson et al., 2019; Schmidt et al., 2014)
206 failed to provide reasonably good and consistent results. This was likely due to the ovule
207 exhibiting a more complex tissue architecture. We therefore performed cell type labelling by a
208 combination of semi-automated and manual cell type labelling. The combined efforts resulted
209 in a reference set of 158 hand-curated 3D digital ovules of the wild-type Col-0 accession.
210 They feature cellular resolution, cover all stages, and include annotated cell types and cellular
211 features (Fig. 1F).


212

213 **Overall assessment of ovule development**

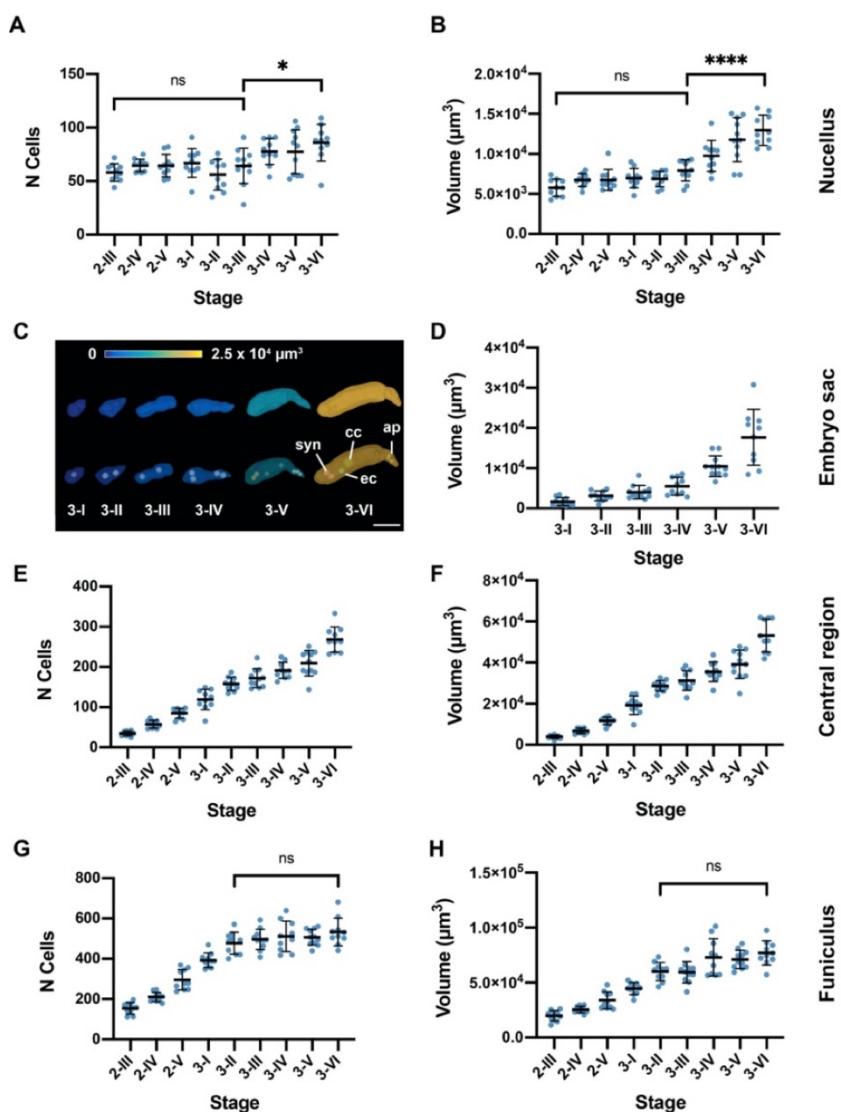
214 The different stages of *Arabidopsis* ovule development were defined previously (Schneitz et
215 al., 1995). Throughout this work we used a more precise definition of the subdivision of stage
216 1 into stage 1-I and 1-II. The subdivision was based on the first appearance of the signal of a
217 reporter for *WUSCHEL* expression which became robustly apparent when ovule primordia
218 consisted of 50 cells (see below). We first determined the average number of cells per ovule
219 and stage (Fig. 2A,B). We counted the cells per ovule at different stages and found an
220 incremental increase in cell number for every consecutive stage of ovule development until
221 ovules at stage 3-VI exhibited an average of about 1900 cells (1897 ± 179.9 (mean \pm SD))
222 (Table 1). We also assessed the mean volume per ovule for each stage by summing up the cell
223 volumes of all cells in a given ovule (Fig. 2A,C) (Table 1). We measured a mean total volume
224 for ovules at stage 3-VI of about $5 \times 10^5 \mu\text{m}^3$ ($4.9 \times 10^5 \pm 0.7 \times 10^5$).

225

226

227

228 **Figure 2.** Ovule developmental stages and overall growth patterns. (A) 3D cell mesh view of wild-type
229 ovules at different stages displaying heatmaps of cell volume ranging from 0 to $1200 \mu\text{m}^3$. (B, C) Plots
230 depicting the total number of cells and total volume of individual ovules from early to late stages of
231 development, respectively. Mean \pm SD is shown. Scale bar: 20 μm .


232

233 **Tissue-specific growth patterns along the PD axis following primordium formation**

234 Next we addressed the question if there exist tissue-specific growth differences. To this end
235 we counted cell numbers and total volumes in the nucellus, embryo sac, chalaza, funiculus
236 and the epidermal cells of the two integuments of stage 2-III to 3-VI digital ovules (Figures 3
237 and 4) (Table 2). We observed that cell numbers in the nucellus stayed roughly constant from
238 stage 2-III up to 3-III (Fig. 3A). At stage 3-I the average cell number per nucellus was $66.9 \pm$
239 13.4. The results suggest that little if any cell proliferation takes place during these stages in
240 the nucellus. Starting with stage 3-IV, however, cell numbers increased and we found an
241 average cell number of 85.9 ± 17.2 at stage 3-VI hinting at somewhat elevated cell
242 proliferation during these latter stages. This pattern was mirrored by a 2.2-fold increase in the
243 average volume of the nucellus across different stages (excluding the developing embryo sac)
244 (Fig. 3B) (stage 2-III: $0.6 \times 10^4 \mu\text{m}^3 \pm 0.1 \times 10^4 \mu\text{m}^3$; stage 3-VI: $1.3 \times 10^4 \mu\text{m}^3 \pm 0.2 \times 10^4$
245 μm^3). Beginning from stage 3-IV we failed to detect nucellar cells at the very micropylar
246 (distal) end of the developing embryo sac (Fig. 1F). This observation confirmed previous
247 observations (Schneitz et al., 1995) and raised the question what happened to these distal
248 nucellar cells. Although we cannot exclude that a small number of cells becomes crushed we
249 did not observe such events in this region. Thus, as the average cell number per nucellus stays
250 constant or even increases slightly we propose that the growing embryo sac “pushes away”
251 some distal nucellar cells.

252

253

254

255 **Figure 3.** Tissue-specific quantitative analysis. (A, B) Plots depicting the number of cells and volume
256 at different developmental stages of the nucellus, respectively. (C) 3D mesh of the embryo sac, from
257 stage 3-I to stage 3-IV, extracted from 3D ovule cell meshes. The volume is represented as a heat map.
258 (D) Plot depicting the embryo sac volume from individual ovule datasets at different stages. (E, F)
259 Plots showing the number of cells and volume of the central region, respectively. (G, H) Plots depicting
260 the number of cells and volume of the funiculus, respectively. Data points indicate individual ovules.
261 Mean \pm SD are represented as bars. Asterisks represent statistical significance (ns, $P \geq 0.5$; *, $P < 0.05$;
262 ****, $P < 0.0001$; Student's t test). Scale bar: 20 μ m.

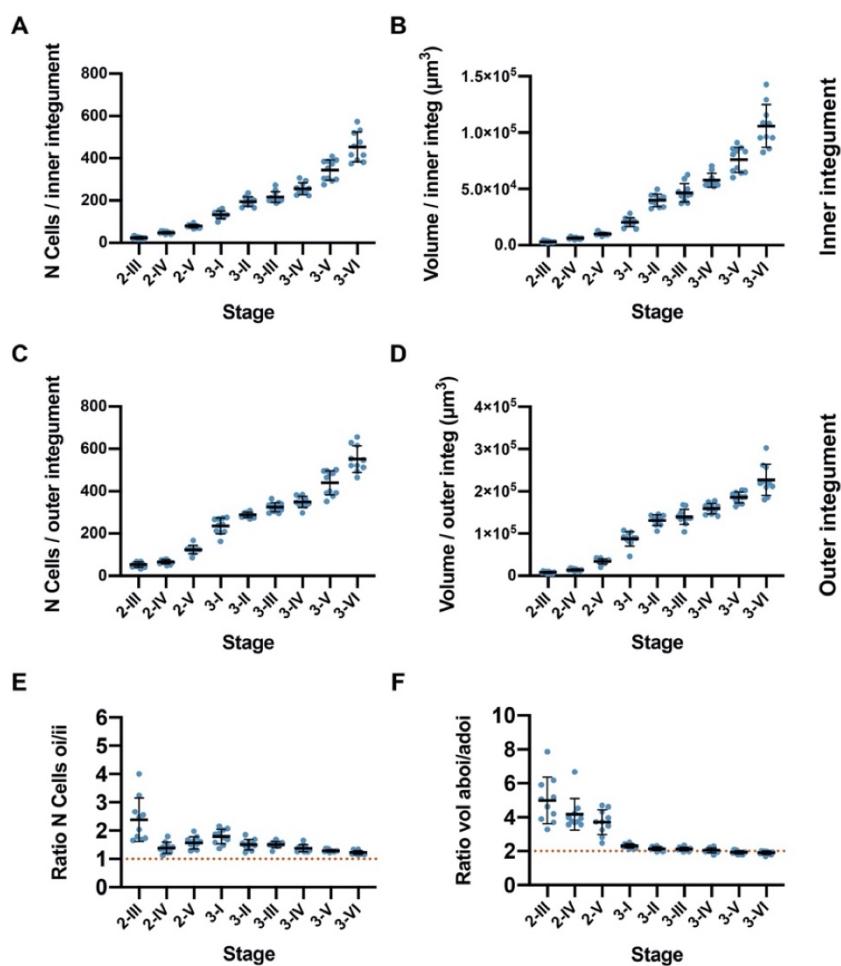
263

264 Following the formation of the functional megasporangium, megasporogenesis and megasporocyte
265 development starts at stage 3-I. Three rounds of mitoses followed by cellularization eventually result in the
266 typical eight-nuclear, seven-celled *Polygonum*-type of embryo sac found at stage 3-VI. The
267 mono-nuclear embryo sac features a volume of $0.2 \times 10^4 \mu\text{m}^3 \pm 0.1 \times 10^4 \mu\text{m}^3$. At stage 3-VI
268 we observed a total volume of $1.8 \times 10^4 \mu\text{m}^3 \pm 0.7 \times 10^4 \mu\text{m}^3$, a nine-fold increase (Fig 3C).

269

270 The central region of the ovule, classically known as chalaza, is of complex composition (see
271 below). Here, we discriminate between the epidermis-derived cells of the two integuments

272 and the internal cells of the central region encapsulated by the epidermis and first focus on the
273 latter. We found a steady increase in the average internal cell number per central region from
274 stage 2-III (35.0 ± 5.7) up to stage 3-VI (268.5 ± 31.4) (Fig. 3E,F) (Table 2). We also
275 observed a steady increase in volume of the internal central region (stage 2-III: $0.4 \times 10^4 \mu\text{m}^3$
276 $\pm 0.1 \times 10^4 \mu\text{m}^3$; stage 3-VI: $5.3 \times 10^4 \mu\text{m}^3 \pm 0.8 \times 10^4 \mu\text{m}^3$). Thus, cell numbers increased 7.7
277 fold while tissue volume increased 13.3 fold over the scored stages.


278

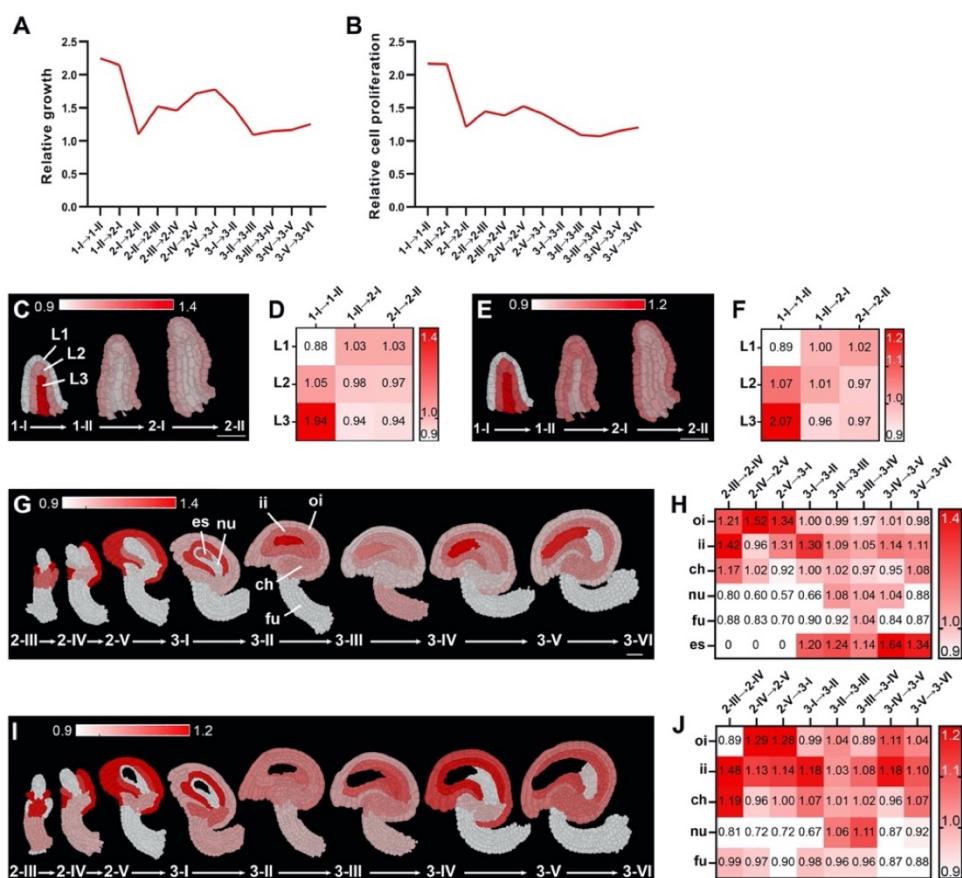
279 Regarding cell number in the funiculus we observed a steady increase in the average cell
280 number per funiculus from stage 2-III until the average cell number per funiculus reached
281 477.1 ± 54.2 at stage 3-II (Fig. 3G) (Table 2). This value stayed about constant throughout the
282 later stages although we observed a minor and statistically insignificant increase to $533.0 \pm$
283 68.6 at stage 3-VI. We further observed an average volume at stage 3-VI of $7.7 \times 10^4 \mu\text{m}^3 \pm$
284 $1.1 \times 10^4 \mu\text{m}^3$ (Fig. 3H). The data suggest that there is very little if any growth in the funiculus
285 after stage 3-II.

286

287 Next we assessed the number of epidermis-derived cells of the two integuments (Fig. 4)
288 (Table 2). Both integuments showed continuous increases in cell number and integument
289 volume for stages 2-III to 3-VI. We observed a 19.3-fold increase in cell number from stage
290 2-III to 3-VI. At stage 2-III the inner integument featured an average cell number of $23.5 \pm$
291 5.5 and at stage 3-VI of 453.9 ± 69.8 (Fig. 4A). Regarding the volume increase of the inner
292 integument we observed an 35.3-fold increase in inner integument volume with an average
293 volume of $0.3 \times 10^4 \mu\text{m}^3 \pm 0.07 \times 10^4 \mu\text{m}^3$ at stage 2-III and $10.6 \times 10^4 \mu\text{m}^3 \pm 1.9 \times 10^4 \mu\text{m}^3$ at
294 stage 3-VI (Fig. 4B). For the outer integument we observed a 10.3-fold increase in cell
295 number with an average number of cells of 53.8 ± 12.1 at stage 2-III and of 551.6 ± 62.7 at
296 stage 3-VI (Fig. 4C). Regarding the volume increase of the outer integument we observed a
297 28.4-fold increase in volume with an average volume of $0.8 \times 10^4 \mu\text{m}^3 \pm 0.02 \times 10^4 \mu\text{m}^3$ at
298 stage 2-III and $22.7 \times 10^4 \mu\text{m}^3 \pm 3.7 \times 10^4 \mu\text{m}^3$ at stage 3-VI (Fig. 4D). We also investigated
299 the ratio of number of cells and volume of the outer integument versus the inner integument
300 (Fig. 4E,F). The data revealed that the outer integument always carried more cells than the
301 inner integument, although the difference was relatively small throughout the various stages
302 with stage 3-VI showing a ratio of 1.2. By contrast, the volume of the outer integument was
303 always more than twice the volume of the inner integument. At stage 3-I in particular we
304 noticed a 4.3-fold larger volume of the outer integument. This value slowly decreased and at
305 stage 3-VI we determined a ratio of 2.2.

306

307


308 **Figure 4.** Quantitative analysis of cellular patterns in the integuments. (A, B) Plots indicating the
309 number of cells and volume of the inner integument from stage 2-III to stage 3-VI. (C, D) Plots
310 indicating the number of cells and volume of the outer integument from stage 2-III to 3-VI stages. (E,
311 F) Plot showing the ratio between the number of cells and tissue volume of the outer and inner
312 integument. Data points indicate individual ovules. Mean ± SD are represented as bars.

313

314 Differential growth patterns contribute to ovule development

315 To gain more insight into the growth dynamics of ovule morphogenesis we estimated stage-
316 specific growth rates by taking the ratio between the mean total volume or mean total cell
317 number of a stage and the corresponding values of the preceding stage (Fig. 5A,B). We
318 observed that the volume increase was highest during primordium formation followed by a
319 noticeable drop during stage 2-I. Growth increased again during stages 2-II to 3-I followed by
320 another drop and a comparably flat curve during the rest of stage 3. In general, the increase in
321 cell number followed a similar pattern except that the rise during stage 2 was less pronounced
322 compared to the corresponding volume increase.

323

324
325
326
327
328
329
330
331

Figure 5. Growth dynamics of *Arabidopsis* ovule development. (A, B) Plots indicating the overall volume or cell number increase from one stage relative to the preceding stage. (C–J) Optical mid-sections and heat maps depicting relative tissue growth across the different ovule stages. Stages are indicated. Heatmap values indicate ratios. (C, D, G, H) Tissue-specific growth rate. (E, F, I, J) Tissue-specific cell proliferation rate. Abbreviations: ch, chalaza; es, embryo sac; fu, funiculus; ii, inner integument; nu, nucellus; oi, outer integument.

332
333
334
335
336
337
338
339
340
341
342
343

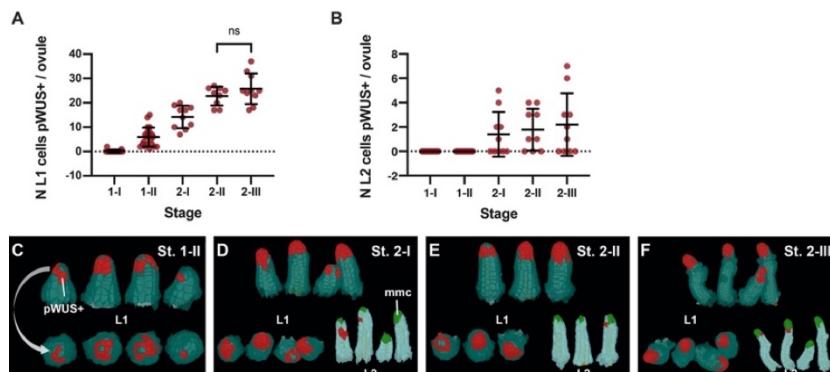
We then investigated the relative growth of the major tissues (Fig. 5C–J). To this end we took the ratio between the mean total volume or mean total cell number of a tissue for two consecutive stages and divided it by the corresponding ovule growth rate. The ratio infers the tissue growth rate with respect to ovule growth. Values above 1 indicate that the tissue is growing at a higher rate than overall ovule growth rate and values below 1 indicate the opposite. We observed that the L3 showed the most relative growth and the L1 the least during stage 1-I (Fig. 5C–F). During stages 1-II to 2-II all three layers contributed similarly to the overall growth. From stage 2-III to 3-VI the nucellus, chalaza, integuments, and eventually the embryo sac showed dynamic changes during development (Fig. 5G–J). For example, up to stage 3-I the outer integument exhibited more relative growth than the inner integument while from stage 3-I on the relative growth pattern was reversed.

344
345

In summary, the results reveal ovule growth to be dynamic both in terms of overall growth and the respective relative contributions of individual tissues during development.

346

347 **WUSCHEL expression is not restricted to the nucellar epidermis**


348 3D digital ovules should allow a detailed investigation of spatial gene expression patterns and
349 with cellular resolution. To test this assumption, we analyzed the expression of *WUSCHEL*
350 (*WUS*, AT2G17950) in the young ovule. *WUS* controls stem cell development in the shoot
351 apical meristem (Gallochet et al., 2015; Mayer et al., 1998). *WUS* is also active during ovule
352 development where it is expressed in the nucellus and controls germ line development and the
353 organization of the central region (Gross-Hardt et al., 2002; Lieber et al., 2011; Sieber et al.,
354 2004; Tucker et al., 2012; Zhao et al., 2017). Investigation of the *WUS* expression pattern by
355 in situ hybridization or reporter gene analysis left open the question whether *WUS* expression
356 is restricted to the nucellar epidermis at all times or whether it is also present in interior tissue.
357 To address this issue we took advantage of a Col reporter line carrying a reporter for *WUS*
358 promoter activity (pWUS::2xVENUS:NLS::tWUS (pWUS)) (Zhao et al., 2017). We
359 generated a total of 67 3D digital ovules from the pWUS reporter line covering stages 1-I to
360 2-III ($9 \leq n \leq 21$ per stage).

361

362 We first asked when the pWUS signal became detectable during ovule development. We
363 found that with two exceptions pWUS signal could robustly be observed starting with ovules
364 carrying 50 or more cells (Fig. 6A,C). Of the 38 digital ovules spanning stage 1 only two
365 cases with fewer than 50 cells showed either one (1048_A, 32 cells) or two (805_E, 48 cells)
366 cells expressing pWUS signal while all ovules with 50 or more cells showed pWUS signal.
367 The morphological distinction between stages 1-I and 1-II had previously not been clearly
368 defined (Schneitz et al., 1995). Thus, we used pWUS expression as a convenient marker to
369 more precisely discriminate between the end of stage 1-I (ovules with fewer than 50 cells) and
370 the start of stage 1-II (ovules with 50 or more cells).

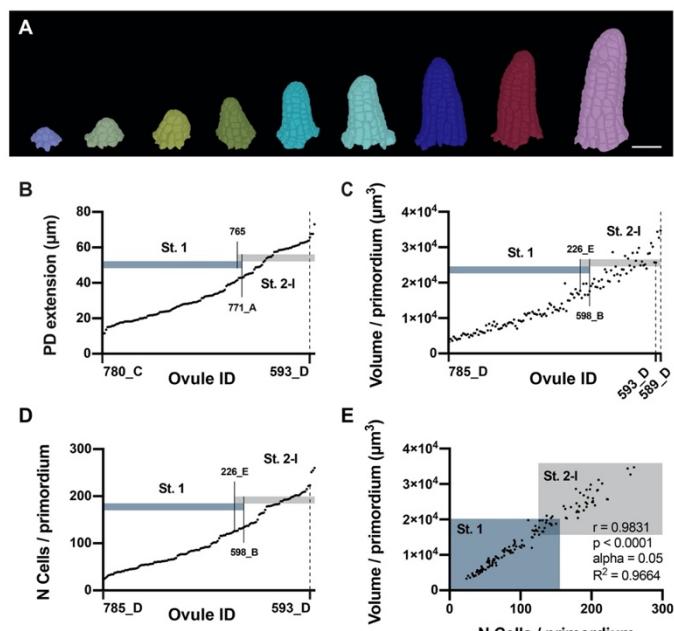
371

372

373

374 **Figure 6.** Expression pattern of the pWUS reporter. (A) Plot showing the number of L1 cells per ovule
375 expressing pWUS across stage 1-I to 2-III. (B) Plot showing the number of L2 cells per ovule
376 expressing pWUS across stage 1-I to 2-III. (C-F) 3D cell meshes displaying L1 and L2 cells expressing

377 pWUS in red from stage 1-II to stage 2-III. Data points indicate individual ovules. Mean \pm SD are
378 represented as bars. Scale bars: 20 μ m.
379

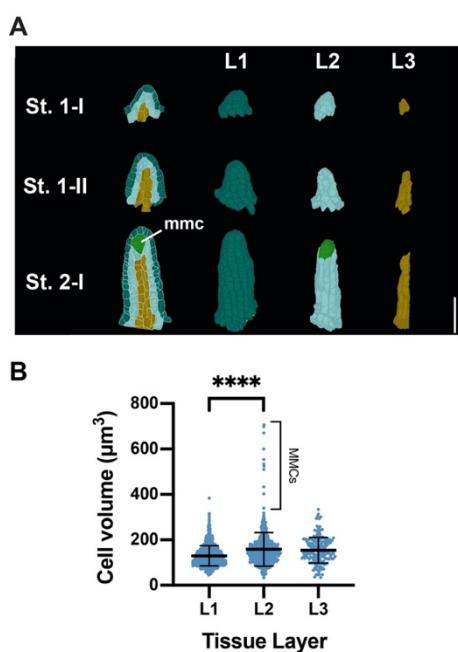

380 Next, we explored the elaboration of the spatial pWUS expression pattern during early
381 primordium development (Fig. 6C-F). Reporter signal was initially detected in the epidermis
382 of the distal tip of the primordium with individual cells or in small irregular patches of cells
383 exhibiting reporter expression. The patchiness of the signal continued through stage 2-II. By
384 stage 2-III, however, most of the epidermal cells of the nucellus exhibited pWUS signal. A
385 pWUS reporter signal in the nucellar epidermis at early stage 2 is consistent with previous
386 reports (Tucker et al., 2012; Zhao et al., 2017). However, we noticed that starting with stage
387 2-I about half of the ovules also exhibited reporter signal in a few cells of the first
388 subepidermal layer (L2) (Fig. 9B, D-F). In those instances, between one to seven L2 cells
389 were found to express the reporter. All the pWUS-expressing L2 cells were neighboring the
390 MMC and resided next to the bottom of the MMC. We did not detect the reporter signal in the
391 MMC itself. Finally, we did not detect signals in the central region or the integuments. Thus,
392 our data indicate a strong temporal control of *WUS* expression with pWUS expression
393 becoming visible in the 50 cell primordium. By contrast, spatial regulation of *WUS* appears
394 less strict as indicated by the variable and spotty expression of pWUS during stages 1-II to 2-
395 I.
396

397 **Ovule primordia grow evenly**

398 To gain more detailed insight into specific aspects of ovule development we explored a range
399 of stage and tissue-specific cellular properties of the 3D digital ovules. We first investigated
400 early primordium development up to the appearance of the MMC at the distal tip of the
401 primordium but prior to the initiation of integument development (stages 1-I, 1-II, and 2-I).
402 To this end we generated a dataset comprising 138 digital primordia of stage 2-I or younger.
403 This dataset included ovules from the high-quality dataset described above but also
404 encompassed ovule primordia that did not make the cut for the high-quality dataset as they
405 possessed slightly higher percentages of undersegmented cells (more than four percent but
406 less than nine percent of missegmented cells per primordium). This approach increased
407 sample size and still allowed error-free determination of cell numbers (by including
408 information from the TO-PRO-3 channel). Moreover, we could also determine the total
409 volume of the primordium, by summing up the volumes of its constituting cells, as
410 undersegmentation errors minimally influence this parameter. Finally, this dataset was useful
411 to determine the PD extension of the primordia.
412

413 We first wanted to assess if primordium outgrowth occurs evenly or if there is evidence for
414 distinct growth phases. We ordered the individual digital primordia according to increasing
415 PD extension (primordium height), primordium volume, or cell number (Fig. 7A-D). We did
416 not detect distinct subclasses of primordia but observed steady and continuous rises in
417 primordium volume and cell number. Taken together, the data support the notion that from
418 the youngest detectable primordia to late stage 2-I primordia outgrowth does not undergo
419 major fluctuations.

420



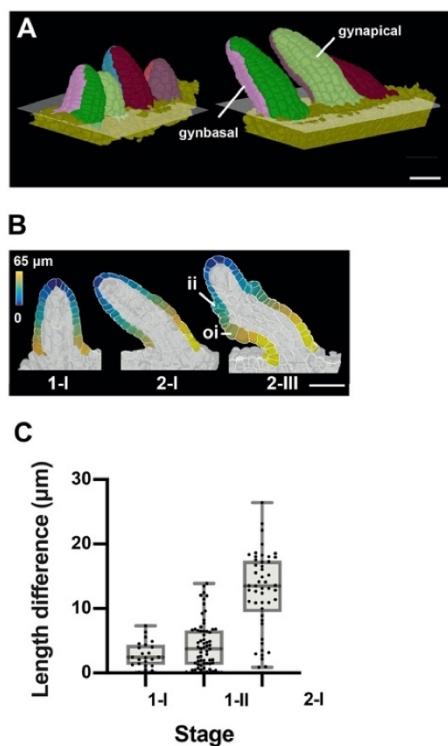
421
422 **Figure 7.** Ovule primordia grow in a continuous fashion. (A) Developmental series of 3D cell meshes
423 of ovule primordia. (B) Plot showing an ordered array of the PD extension of ovule primordia from
424 early initiation to the end of stage 2-I. (C) Plot indicating the total volume of primordia ordered
425 according to increasing volume. (D) Plot depicting the total number of cells in the ovules ordered
426 according to the increasing number of cells. (E) Plot representing the correlation between total number
427 of cells and total volume per primordia. Data points indicate individual ovules. Scale bar: 20 μ m.
428

429 Next we assessed how cell number per primordium and total primordium volume relate to
430 each other. We observed a positive correlation (Fig. 7E). Interestingly, however, data points
431 representing stage 2-I primordia showed noticeably more scattering than the data points of
432 stage 1 primordia. This indicates that for stage 2-I primordia, the total volume in relation to
433 cell number is more variable than for stage 1 primordia. One can also detect more variation in
434 total volume per primordium in the ordered list of total volume per primordium (Fig. 7C).
435 These results are consistent with the notion that growth of stage 1 primordia is under
436 comparably tighter growth control while growth during stage 2-I ovules is more variable (see
437 also below).

438

439 We then addressed the question if there is a rapid transition between stage 1-II and stage 2-I.
440 Stage 2-I is defined by the emergence of the large L2-derived MMC at the distal tip of the
441 primordium (Schneitz et al., 1995). To this end we determined which stage 1 ovules exhibited
442 maximum values for the three parameters mentioned above and which stage 2-I ovules
443 featured the smallest values, respectively (Fig. 7B-D). Taking these considerations into
444 account, ovule primordia grow to a volume of about $1.8 \times 10^4 \mu\text{m}^3$, or a cell number range of
445 approximately 125 to 135 total cells, and to a height range of about 41 to 43 μm when they
446 enter stage 2-I. For each of the three parameters we noticed a small number of ovules that fell
447 into the range of overlap: five for the PD extension and seven each for total volume of
448 primordium and total cell number per primordium. These numbers account for 3.6 percent
449 and 5.1 percent of the total of 138 scored ovules, respectively. This result indicates that ovule
450 primordia grow to a certain size and then rapidly transition from stage 1-II to stage 2-I.
451
452 Assessment of the cell volume of the L2 cells in our datasets of stage 1-II and stage 2-I digital
453 ovules combined with visual inspection of the digital ovule primordia revealed that the MMC
454 can easily be distinguished based on its presence in the L2 and its comparably large cell
455 volume (Fig. 8A,B). At stage 2-I we measured an average MMC volume of $543 \mu\text{m}^3$ ($543.3 \pm$
456 120.6). The smallest MMC at stage 2-I possessed a volume of $339.2 \mu\text{m}^3$, well within the
457 range observed previously (Lora et al., 2017). The largest L2 cell at stage 1-II had a volume
458 of $297.6 \mu\text{m}^3$. We observed a mean cell volume of stage 1-II L2 cells of $153.5 \mu\text{m}^3 \pm 48.3$ ($n =$
459 335) and the volume of this large cell was well beyond the 75% percentile ($187.7 \mu\text{m}^3$).
460 However, visual inspection revealed that this cell did not reside at the tip of the primordium
461 while all the L2 cells located at the tip of the different stage 1-II primordia showed a cell
462 volume that was close to the mean value. While we cannot exclude that MMC development
463 starts already earlier than stage 2-I we propose that by definition a stage 2-I MMC has a
464 minimal cell volume of $335 \mu\text{m}^3$.
465

466
467 **Figure 8.** Radial tissue organization in ovule primordia. (A) Mid-sagittal section view of ovule
468 primordia and extracted 3D cell meshes of L1, L2, L3 layers separately viewed in 3D from stage 1-I to
469 2-I. (B) Plot depicting the cell volumes of the L1, L2, L3 per ovule at stage 2-I. Data points indicate the
470 volumes of individual cells. Mean \pm SD are represented as bars. Asterisks represent statistical
471 significance (****, $P < 0.0001$; Student's t test). Abbreviations: mmc, megasporocyte mother cell. Scale bar:
472 20 μm .

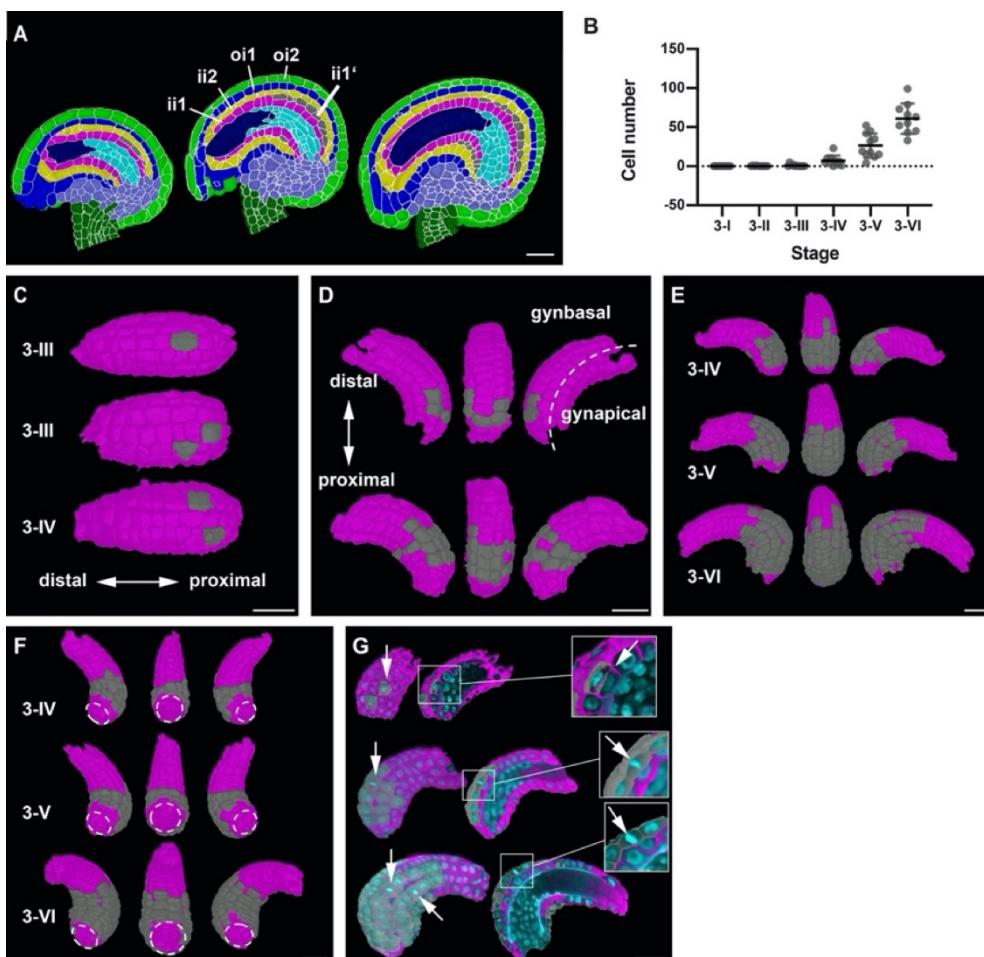

473

474 **Ovule primordium slanting indicates early onset of gynapical-gynbasal polarity**

475 Upon inspecting the 3D meshes of pistil fragments we noticed that many ovule primordia
476 were positioned at a hitherto undescribed slant relative to the placenta surface (Fig. 9). We
477 quantified the slant by measuring the PD distances of the shorter and longer sides of
478 primordia of different stages. We observed that the slant was barely noticeable at stage 1-I,
479 became more tangible during stage 1-II, and was prominent by stage 2-I. At stage 2-III
480 initiation of outer integument occurred more on the side of the small angle of the slant
481 indicating that the small angle was positioned on what will become the gynbasal side of the
482 developing ovule. Thus, we propose that the gynapical-gynbasal polarity of the ovule
483 becomes morphologically detectable already during stage 1 and not only later at stage 2-III
484 when outer integument initiation is discernible at the gynbasal side of the primordium.

485

486



487

488 **Figure 9.** Ovule primordia slanting. (A) 3D mesh view with multiple ovules from the same carpel
489 showing unslanted ovules at stage 1-I and slanted ovules at stage 2-I. The 3D grid represents the
490 surface of the placenta. Color labels depict the gynapical or gynbasal cells, respectively. (B) 2D section
491 view of a 3D cell mesh from an early stage to 2-III ovule. The heatmap on the epidermal cells of
492 gynapical and gynbasal halves depicts the quantified distance value between individual measured cells to
493 the distal tip of primordia. (C) Plot depicting the extent of slanting, quantified by the difference in
494 maximal length on the gynapical and gynbasal sides of ovule at stages 1-I, 1-II and 2-I. Data points
495 indicate individual ovules. Mean \pm SD are represented as bars. Scale bars: 20 μ m.
496

497 **A few scattered asymmetric cell divisions initiate a parenchymatic inner integument 498 layer**

499 A new cell layer is produced by the inner integument shortly before fertilization (Debeaujon
500 et al., 2003; Schneitz et al., 1995). The ii1 or endothelial layer originates this additional cell
501 layer (ii1') by periclinally-oriented asymmetric cell divisions (Fig. 10A). Cells of the ii1'
502 layer are immediately distinguishable from ii1 cells by their altered shape and staining
503 characteristics (Schneitz et al., 1995). Moreover, they do not express a transcriptional reporter
504 for the epidermis-specific *ARABIDOPSIS THALIANA MERISTEM LI* (*ATML1*) gene
505 (Debeaujon et al., 2003). Finally, during early seed development, ii1 cells will produce
506 tannins while ii1' cells will contribute to parenchymatic ground tissue. Thus, cambium-like
507 activity of the ii1 layer results in asymmetric cell divisions, thickening of the inner
508 integument, and formation of distinct tissues with separate functions.
509

510
511 **Figure 10.** Formation of the parenchymatic inner integument layer (ii1'). (A) Mid-sagittal section of
512 wild-type ovule at stages 3-IV, 3-V and 3-VI, showing the initiation of a new cell layer (ii1') in the
513 adaxial inner integument (endothelium/ii1). (B) Plot depicting the number of cells of the developing ii1'
514 layer. Data points indicate individual ovules. Mean \pm SD are represented as bars. (C) 3D top surface
515 view of the adaxial inner integument at stages 3-III and 3-IV showing the occurrence of the first few
516 pioneer cells of the ii1' layer. (D) 3D side surface view of adaxial inner integument depicting the
517 pattern of occurrence of ii1' cells. (E) 3D side surface view of adaxial inner integument at later stages
518 of 3-IV, 3-V and 3-VI where the emergent tissue layer is observed to be a patch of connected cells
519 present only at the proximal region of the inner integument. (F) 3D bottom surface view of ii1' layer at
520 different stages highlighting the formation of a ring-like structure of connected cells covering the
521 proximal half of the inner integument. (G) Section view of the 3D cell meshes of adaxial inner
522 integument with the overlaid nuclei z-stack displaying a periclinal division (top) and anticlinal
523 divisions (center, bottom) in the ii1' layer. Abbreviations: ii1, adaxial inner integument (endothelium);
524 ii1', parenchymatic inner integument layer; ii2, abaxial inner integument; oi1, adaxial outer
525 integument; oi2, abaxial outer integument. Scale bars: 20 μ m.

526
527 The cellular basis and 3D architecture of ii1' layer formation is poorly understood. We
528 followed its formation through all of stage 3 with the help of our 3D digital ovules (Fig. 10B-
529 G). To this end we removed the outer integument and layer ii2 in MGX. We could observe
530 the ii1' layer at various stages of development in 36 digital ovules. In contrast to what was
531 previously described we already observed first signs of ii1' formation at stage 3-II (Fig.
532 10B,C). Two out of the ten digital ovules showed one cell of this layer. At stage 3-III 4/11

533 and at stage 3-VI 9/10 digital ovules showed at least one ii1' layer cell, respectively. By
534 stages 3-V and 3-VI all digital ovules exhibited this layer. The number of ii1' layer cells
535 increased to 60.8 ± 19.5 at stage 3-VI. Thus, at this stage the average ii1' layer consisted of
536 13.4 percent of the total cells of the inner integument and with a volume of $1.53 \times 10^4 \mu\text{m}^3 \pm$
537 $0.5 \times 10^4 \mu\text{m}^3$ contributed 14.4 percent to its total volume.

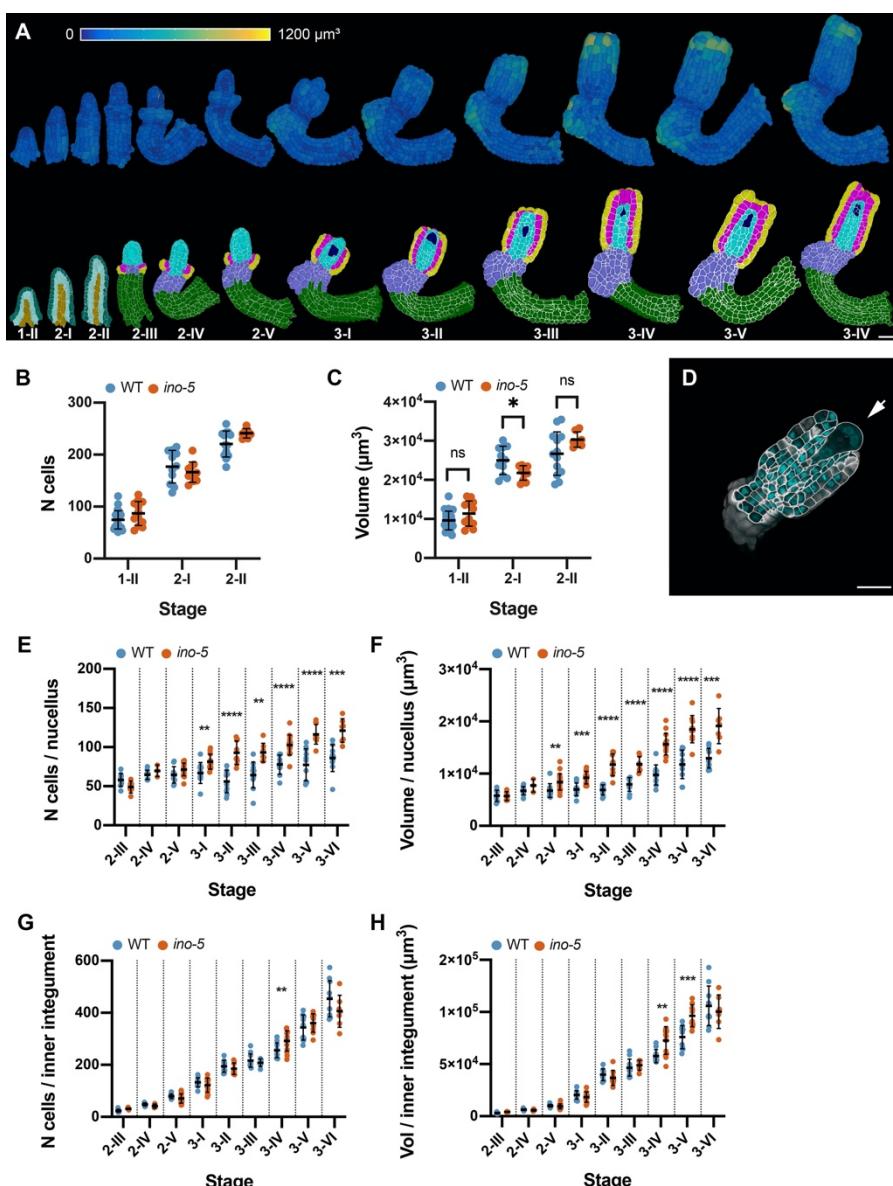
538

539 With respect to the spatial organization of the ii1' layer we observed single cells or patches of
540 cells that were located on both lateral sides of the gynbasal inner integument at stages 3-II and
541 3-III (Fig. 10C). Due to further divisions a patch of connected cells became visible at later
542 stages. Proximal-distal and lateral extension of the ii1' layer occurred until it showed a ring-
543 like structure covering the proximal half of the inner integument at stage 3-VI (Fig. 10D-F).
544 The boundary of the ii1' layer was not smooth but exhibited an irregular appearance.

545

546 We then asked if the ii1' layer is generated entirely through periclinal cell divisions of ii1
547 cells or if anticlinal cell divisions in existing ii1' cells contribute to the formation of this layer.
548 To this end we scored 978 cells of the ii1' layers across the 36 ovules exhibiting a ii1' layer
549 and identified 14 cells in mitosis as indicated by the presence of mitotic figures in the TO-
550 PRO-3 channel (Fig. 10G). Only one of the 14 cells showed a periclinal cell division that
551 generated a cell of the ii1' layer. Interestingly, however, the other 13 mitotic cells were
552 experiencing anticlinal cell divisions.

553


554 Taken together, the results suggest that initiation of the ii1' layer does not involve
555 simultaneous asymmetric cell divisions in many ii1 cells resulting in the formation of a ring
556 or large patch of ii1' tissue. Rather, asymmetric periclinal cell divisions occur only in a few
557 spatially scattered founder cells distributed within the ii1 cell layer. Further anticlinal cell
558 divisions in the ii1' daughters of the founder cells then result in the formation of a continuous
559 ii1' cell layer with irregular edges.

560

561 ***INNER NO OUTER* affects development of the nucellus**

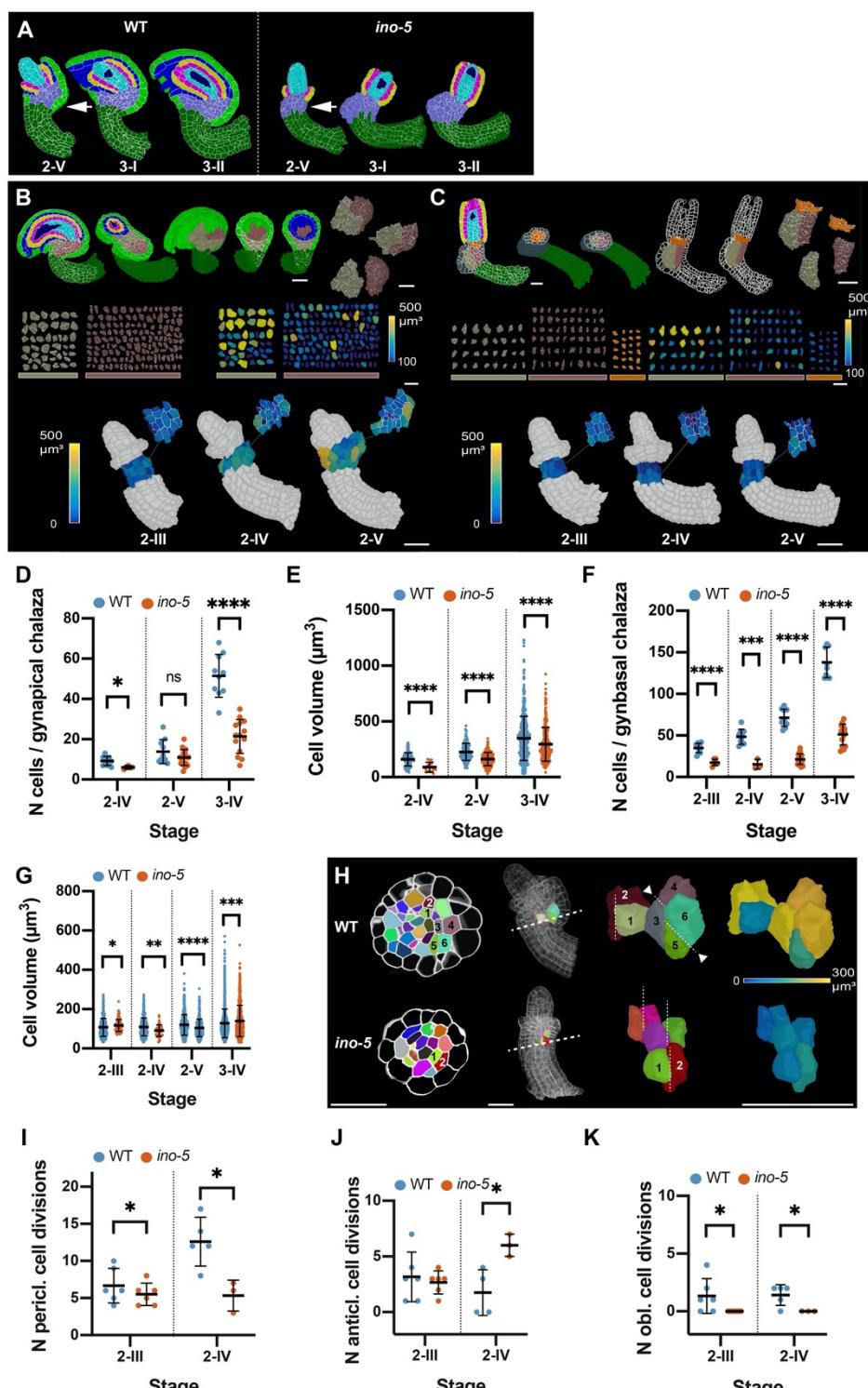
562 The YABBY transcription factor gene *INNER NO OUTER* (*INO*, AT1G23420) is an essential
563 regulator of early pattern formation in the ovule (Baker et al., 1997; Balasubramanian and
564 Schneitz, 2002, 2000; Meister et al., 2002; Schneitz et al., 1997; Sieber et al., 2004;
565 Villanueva et al., 1999). Plants with a defect in *INO* carry ovules that fail to form an outer
566 integument. Moreover, development of the female gametophyte is usually blocked at the
567 mono-nuclear embryo sac stage. *In situ* hybridization and reporter gene studies revealed that
568 *INO* is exclusively expressed in the abaxial layer of the outer integument (oi2). Although the
569 ovule phenotype of *ino* mutants has been well characterized it remained unclear if the inner

570 integument and the nucellus, apart from the defect in embryo sac development, are affected in
571 *ino* mutants. To address these and other issues (see below) we generated *ino-5*, a putative null
572 allele of *INO* in Col-0 that was induced by a CRISPR/Cas9-based approach (see Materials and
573 Methods) and performed a quantitative phenotypic analysis of *ino-5* ovules using a dataset of
574 119 3D digital *ino-5* ovules covering stages 1-II to 3-VI (3 ≤ n ≤ 20 per stage) (Fig. 11A).
575 Ovules lacking *INO* activity are difficult to stage as they lack many of the distinct criteria that
576 define the different stages of wild-type ovule development. To circumvent this problem we
577 staged *ino-5* ovules by comparing the total number of cells and the total volume of *ino-5* 3D
578 digital ovules to the corresponding stage-specific values of wild-type 3D digital ovules for
579 which the outer integument had been removed (Table S2).
580

581
582 **Figure 11.** Quantitative analysis of the *ino-5* digital ovule atlas. (A) Surface view of 3D cell meshes
583 showing heatmaps of cell volumes of *ino-5* ovules from early to late stage of development. The bottom
584 row shows 3D mid-sagittal section views depicting the cell type organization in *ino-5* mutant ovules.

585 (B) Plot showing the total number of cells in wild-type and *ino-5* at early stages of ovule development.
586 (C) Plot showing the total volume of wild-type and *ino-5* ovules at early stages of ovule development.
587 (D) Section view of the cell boundary z-stack (white) overlayed with the z-stack of stained nuclei
588 showing a four-nuclear embryo sac in an *ino-5* ovule. (E, F) Plots comparing total cell number and
589 tissue volume of the nucellus between wild type and *ino-5* at different stages. (G, H) Plots comparing
590 total cell number and tissue volume of the inner integument between wild type and *ino-5* at different
591 stages. Data points indicate individual ovules. Mean \pm SD are represented as bars. Asterisks represent
592 statistical significance (ns, $P \geq 0.5$; *, $P < 0.05$; **, $P < 0.01$, ***, $P < 0.001$; ****, $P < 0.0001$;
593 Student's t test). Scale bars: 20 μ m.
594

595 We first analyzed the total cell number per primordium and the total volume per primordium
596 for *ino-5* ovules of stages 1-II to 2-II. We did not find robust differences between *ino-5* and
597 wild type for the two parameters (Fig. 11B,C). This was to be expected as *INO* expression
598 became first detectable around stage 2-II/III (Balasubramanian and Schneitz, 2000; Meister et
599 al., 2004, 2002; Villanueva et al., 1999). We then asked if *INO* affects the development of the
600 nucellus and the inner integument. To this end we analyzed cellular features of the two tissues
601 of *ino-5* for stages 2-III to 3-VI. We first investigated nucellar development. As a rule, and as
602 previously described, we observed that embryo sac development did not extend beyond the
603 mono-nuclear embryo sac stage although up to four-nuclear embryo sacs could be detected as
604 well (Fig. 11D). We then assessed cell number and tissue volume of the nucellus of *ino-5*
605 (excluding the embryo sac). We observed an elevated number of nucellar cells in *ino-5* ovules
606 starting from late stage 2-V/stage 3-I. Wild-type stage 3-I ovules featured 66.9 ± 13.4 cells
607 per nucellus while *ino-5* carried 81.41 ± 9.6 cells per nucellus (Fig. 11E) (Table 3). The
608 nucellar volume of *ino-5* ($0.9 \pm 0.1 \mu\text{m}^3$) was also increased relative to wild type (0.7 ± 0.1
609 μm^3) (Fig. 11F). The results indicate that *INO* not only affects ontogenesis of the embryo sac
610 but also restricts cell number and nucellus volume during nucellus development.
611


612 We then investigated cell number and tissue volume for the inner integument of *ino-5* (Fig.
613 11G,H) (Tables 2 and 3). We found that the two parameters did not deviate noticeably from
614 wild type except for stages 3-IV and 3-V where we observed a small but perceivable increase
615 in cell number and tissue volume. However, this increase appeared to be transient as both
616 parameters were normal in *ino-5* ovules of stage 3-VI. These findings indicate that *INO* does
617 not exert a major influence on the monitored cellular characteristics of the inner integument.
618

619 **Ovule curvature represents a multi-step process**

620 The curvature of the *Arabidopsis* ovule constitutes an interesting and unique morphogenetic
621 process. It raises the question if curvature can be subdivided into distinct, genetically
622 controlled steps. During stages 2-III to 2-V of wild-type ovule development a prominent kink
623 forms in the ovule primordium resulting in the nucellus pointing towards the gynapical side of

624 the ovule (Figures 1A, 11A and 12A). This early gynapically-oriented kink was absent in *ino-*
 625 5 ovules (Fig. 12A). In later stage *ino-5* ovules, we found aberrant growth on the gynapical
 626 side of the chalaza and the nucellus pointing more to the gynbasal side of the ovule (Fig.
 627 12A). Apart from the absence of the regularly oriented kink in *ino* ovules there is an obvious
 628 effect on the curvature of the ovule since the nucellus and inner integument develop into
 629 straight rather than curved structures.

630

631

632 **Figure 12.** Growth patterns forming the subepidermal central region in wild-type and *ino-5* ovules. (A)
633 Mid-sagittal section view of the cell-type-labelled 3D cell meshes of wild type and *ino-5* showing the
634 differences in tissue organization across stage 2-V to 3-II. (B) Representation of the two chalazal
635 regions in mature wild-type ovules from different perspectives, shaving off cell layers and extracting
636 out individual cells in 3D to visualize cell morphology and cell volume. The bottom row shows the 3D
637 cell meshes of wild-type ovules from stage 2-III to 2-V. The outer integument has been removed to
638 reveal cell volumes of the two subepidermal regions in wild type. The small figure on the top right
639 represents the section view of the 3D cell meshes of the corresponding ovule. (C) Mature *ino-5* ovule
640 depicting the chalazal region and extracted cells types in 3D similar to (B). The bottom row shows 3D
641 cell meshes of *ino-5* ovules from stage 2-III to 2-V. The epidermis has been removed to reveal the cell
642 volumes of the two subepidermal regions in *ino-5*. The small figure on the top right represents the
643 section view of the 3D cell meshes of the corresponding ovule. (D) Comparison of cell numbers
644 between wild type and *ino-5* in the gynapical chalaza of stage 2-IV, 2-V and 3-IV ovules. Data points
645 indicate individual ovules. (E) Comparison of cell volume between wild type and *ino-5* in the gynapical
646 chalaza of stage 2-IV, 2-V and 3-IV ovules. Data points indicate volume of individual cells. (F) Plot
647 comparing the cell number in the gynbasal chalaza between stage 2-IV, 2-V, and 3-IV wild-type and
648 *ino-5* ovules. Data points indicate individual ovules. (G) Plot comparing the cell volume in the
649 gynbasal chalaza between stages 2-IV, 2-V and 3-IV wild-type and *ino-5* ovules. Data points indicate
650 volumes of individual cells. (H) Left section: radial section view depicting the division patterns
651 observed in the chalazal region in wild-type and *ino-5* ovules. The dashed line indicates the section
652 plane shown on the left. Right section: Oblique 3D view of the cells numbered in the radial section
653 view. Dashed lines indicate the cell division plane. Arrowheads highlight oblique periclinal cell
654 division planes. The heat map indicates the volume. (I) Plot comparing the number of periclinal
655 divisions in wild-type and *ino-5* ovules. (J) Plot comparing the number of longitudinal-anticlinal cell
656 divisions in wild type and *ino-5*. (K) Plot comparing the number of oblique divisions in wild type and
657 *ino-5*. Data points indicate individual cell division. Mean \pm SD are represented as bars. Asterisks
658 represent statistical significance (ns, $P \geq 0.5$; *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P <$
659 0.0001; Student's t test). Scale bars: 20 μ m.
660

661 **Two morphologically distinct subepidermal regions contribute to kink formation in the 662 proximal chalaza**

663 Formation of the kink in the early ovule indicates that differential growth patterns in the
664 central region may underlie this process. The differences in kink formation between wild-type
665 and *ino-5* ovules prompted us to investigate the cellular patterns of the subepidermal central
666 region of the two genotypes in more detail. Previous genetic results as well as evolutionary
667 considerations implied that the central region or chalaza can be subdivided into distal and
668 proximal tiers flanked by the inner and outer integuments, respectively (Baker et al., 1997;
669 Endress, 2011; Gasser and Skinner, 2019; Sieber et al., 2004). We focussed on the cellular
670 architecture of the proximal chalaza which constitutes the majority of the central region. In
671 wild-type ovules, we observed that the outer integument was to a large extent made of
672 epidermis-derived cells. However, we also identified two groups of subepidermal cells in the
673 proximal chalaza that contribute to the development of the central region in a differential
674 manner with one group of cells also making an obvious subepidermal contribution to the outer
675 integument (Fig. 12B). Due to their locations the two groups of cells were termed gynapical
676 and gynbasal chalaza, respectively. By stage 3-IV the two cell populations were easily

677 distinguished based on cell shape, volume, and number of the containing cells. We observed
678 fewer but bigger cells in the gynapical chalaza and the opposite for the gynbasal chalaza (Fig.
679 12B, D-G). Furthermore, we noticed that the two tissues eventually exhibit distinct shapes
680 with the gynapical chalaza showing two “wing-like” lateral extensions while the gynbasal
681 chalaza acquires a radially symmetric, rod-like shape (Fig. 12B).

682

683 In stage 2-III/2-IV wild-type ovules most cells of the proximal chalaza appeared relatively
684 homogeneous in size and shape (Fig. 12B,D-G) (Table 4). At stage 2-III, we counted 6.7 ± 2.3
685 periclinal cell division planes in the subepidermal proximal chalaza (Fig. 12H,I). This number
686 increased to 12.6 ± 3.3 by stage 2-IV. We also observed a small number of division planes
687 oriented in a longitudinal-anticlinal fashion ($3.2. \pm 2.2$ at stage 2-III and $1.8. \pm 2.1$ at stage 2-
688 IV) (Fig. 12H,J). These division planes were distributed throughout the subepidermal
689 proximal chalaza. Interestingly, we also found a few oblique division planes (1.3 ± 1.5 at
690 stage 2-III and 1.4 ± 0.9 at stage 2-IV) (Fig. 12K). They were preferentially found at the
691 gynbasal side of the chalaza just underlying the initiating outer integument (Fig. 12B,H,K).
692 Moreover, we observed that the progeny of the gynbasal oblique cell divisions had undergone
693 asymmetric enlargement with the noticeably bigger cell being located directly adjacent to the
694 large epidermal cells associated with the outer integument initiation (Fig. 12H). We should
695 note that by stage 2-IV a few oblique division planes were also observed at the gynapical
696 chalaza. We propose that the periclinal and longitudinal anticlinal divisions result in a
697 widening of the chalaza. The stage 2-III oblique cell divisions accompanied by asymmetric
698 cell enlargement that are preferentially located at the gynbasal side contribute to early kink
699 formation on the gynbasal side of the primordium.

700

701 By stage 2-V cells of the gynapical and gynbasal chalaza became more clearly distinguishable
702 (Fig. 13B) (Table 4). At stage 2-V we observed 13 ± 6 cells in the gynapical chalaza with an
703 average cell volume of $226.4 \mu\text{m}^3 \pm 77.3 \mu\text{m}^3$. By stage 3-VI cell number increased to 59 ± 6
704 cells (a 4.5-fold increase) and the average cell volume to $428.7 \mu\text{m}^3 \pm 284.4 \mu\text{m}^3$ (a 1.9-fold
705 increase). Thus, apart from the gain in cell number the increasing cell volumes of the cells
706 contributed noticeably to the overall volume of the gynapical chalaza. Regarding the gynbasal
707 chalaza we counted 71.2 ± 10 cells in this domain at stage 2-V. At stage 3-VI we found a
708 three-fold increase in cell number with 209 ± 31.5 cells. Average cell volume was $120 \mu\text{m}^3 \pm$
709 $52.7 \mu\text{m}^3$ at stage 2-V a value that did not vary much from the cell volume measured at stage
710 3-VI (Table 4). Thus, the increase in the volume of the gynbasal chalaza appears to be largely
711 driven by cell proliferation. Interestingly, the two tissues reached a similar volume at stage 3-
712 VI.

713

714 Development of the gynapical chalaza eventually resulted in a prominent bulging of the outer
715 integument with cells intercalating between the two epidermis-derived layers of the outer
716 integument (Fig. 12B). We never observed gynbasal chalazal cells to intercalate between the
717 two epidermis-derived cell layers of the outer integument indicating that cells of the gynbasal
718 chalaza do not contribute to the development of the outer integument. Thus, the roughly
719 gynapical and gynbasal halves of the outer integument also differ with respect to a
720 subepidermal contribution to their development with subepidermal cells contributing to the
721 gynapical but not the gynbasal outer integument, respectively.

722

723 In *ino-5* we observed a different cellular pattern in the proximal chalaza (Fig. 12C-K). We
724 detected an overall smaller number of cells in this tissue and cells tended to not reach the
725 extreme sizes observed in wild type. We noticed overall fewer periclinal division planes in
726 stage 2-III/IV *ino-5* ovules (Fig. 12I). Furthermore, we did not observe oblique division
727 planes (Fig 12H,K). Interestingly, however, the number of longitudinal-anticlinal division
728 planes was enhanced (Fig. 13H,J). Since *INO* expression is restricted to the epidermis and
729 eventually the outer layer of the outer integument (Balasubramanian and Schneitz, 2000;
730 Meister et al., 2004, 2002; Villanueva et al., 1999) (Fig. 10A,B) we propose that *INO*
731 regulates kink formation in a non-cell-autonomous fashion. In the absence of *INO* function,
732 fewer periclinal cell divisions take place. Moreover, symmetric longitudinal-anticlinal cell
733 divisions occur in place of the asymmetric oblique cell divisions in the subepidermal proximal
734 chalaza leading to the absence of the enlarged cells abutting the gynbasal epidermis and a
735 failure of kink formation.

736

737 Little cell division and cell enlargement occurred on the gynbasal chalaza of *ino-5* ovules. By
738 contrast, cell divisions and cells with increased size could still be observed at the gynapical
739 side. Eventually, however, the tissue did not extend laterally and thus failed to form the two
740 “wing-like” flaps characteristic for the wild-type gynapical chalaza. As a likely result the
741 tissue formed an obvious frontal protuberance. In addition, the nucellus eventually pointed to
742 the gynbasal side. We assume that the preferential gynapical growth and the absence of the
743 outer integument together lead to the misorientation of the nucellus in *ino-5*.

744

745 In summary, the comparison of wild type and *ino-5* ovules indicates that the central region is
746 of complex composition. On the basis of morphological and genetic results, the data suggest
747 that several distinct groups of cells contribute to its interior cellular architecture. The
748 gynapical and gynbasal chalaza make up most of the subepidermal central region. They
749 eventually reach comparable volumes. The gynapical chalaza shows two “wing-like” lateral
750 extensions while the gynbasal chalaza exhibits a radially symmetric, rod-like shape. Due to its

751 size and shape the gynapical chalaza makes a much larger contribution to the overall
752 widening of the chalaza in comparison to the comparably slender gynbasal chalaza. Finally,
753 cells of the gynapical chalaza provide a subepidermal contribution to the outer integument.

754

755 **Discussion**

756 Using 3D digital ovules we provide the most comprehensive and detailed cellular description
757 of ovule development in *Arabidopsis thaliana* available to date. To this end we established
758 and extensively optimized the necessary microscopy and segmentation pipeline. The entire
759 procedure from imaging to the final segmented digital ovule takes about 45 minutes per z-
760 stack. For younger ovules the procedure takes even less time. This novel methodology
761 enabled a rapid workflow which allowed the generation of a detailed 3D atlas of an organ of
762 such complex architecture. Importantly, our approach revealed single-cell-level information
763 of deeper tissues of the ovule and allowed simultaneous analysis of multiple fluorescent
764 markers. The 3D digital ovules including their quantitative descriptions can be downloaded
765 from the BioStudies data repository at EMBL-EBI (Sarkans et al., 2018). The experimental
766 strategy is applicable to other organs as well (Tofanelli et al., 2019); Wolny et al., 2020). In
767 an exemplary manner, this work demonstrates the exciting new insights that can be obtained
768 when studying tissue morphogenesis in full 3D.

769

770 The unprecedented analytical power inherent in the examination of 3D digital ovules asserted
771 itself at multiple levels. The analysis revealed new insights into the dynamic growth patterns
772 underlying ovule development, identified previously unrecognized cell populations, and
773 provided new information regarding *WUS* expression. 3D digital ovules also enable new
774 insight into gene function by drastically improving the comparative phenotypic analysis
775 between wild-type and mutants. Our data unveiled that *INO* plays an even more important
776 role in the organization of the early ovule than previously appreciated. Indeed, we have found
777 that *ino* mutants not only show a missing outer integument and defective embryo sac
778 development but also exhibit previously unrecognized cellular aberrations in the nucellus and
779 chalaza. It has long been recognized that ontogenesis of the embryo sac correlates with proper
780 integument development although the molecular mechanism remains unclear (Gasser et al.,
781 1998; Grossniklaus and Schneitz, 1998). Our new data allow an alternative interpretation
782 involving hormonal signaling from the chalaza. Cytokinin is known to affect ovule patterning
783 through the control of the expression of the auxin efflux carrier gene *PIN-FORMED 1* (*PIN1*)
784 and a chalaza-localized cytokinin signal is required for early gametophyte development
785 (Bencivenga et al., 2012; Ceccato et al., 2013; Cheng et al., 2013). Thus, the defects in the
786 development of the nucellus and embryo sac of *ino-5* may relate to its cellular
787 misorganization of the subepidermal chalaza and thus altered cytokinin and auxin signaling.

788

789 The analysis of 3D digital ovules enabled interesting new insights into central cellular
790 processes that shape the *Arabidopsis* ovule. Here, we focussed on novel aspects of
791 primordium formation, the initiation and extension of the ii' layer of the inner integument,
792 and ovule curvature. Regarding primordium formation our data support new notions regarding
793 outgrowth and early pattern formation. Our data indicate that primordium outgrowth is even
794 and does not fluctuate between fast and slow phases of growth. Moreover, we discovered
795 primordium slanting, a hitherto unrecognized aspect of early ovule development. Primordium
796 slanting indicates that gynapical-gynbasal polarity becomes visible morphologically much
797 earlier than previously appreciated. The early appearance of gynapical-gynbasal polarity is in
798 line with molecular data (Sieber et al., 2004).

799

800 Our data broadened the repertoire of modes of how a new cell layer can be formed in plants.
801 Cambium-like activity of the innermost layer of the inner integument (endothelium or ii1
802 layer) results in the formation of the ii1' layer (Schneitz et al., 1995; Debeaujon et al., 2003).
803 Early morphological analysis in 2D led to the hypothesis that all cells located in the roughly
804 proximal half of the ii1 layer undergo periclinal divisions resulting in the formation of the ii1'
805 cell layer. This model conformed to the broadly supported notion that periclinal asymmetric
806 cell divisions underlie the formation of new cell layers in plants. For example, in the eight-
807 cell *Arabidopsis* embryo all cells undergo asymmetric cell divisions and thus contribute to the
808 formation of the epidermis (Jürgens and Mayer, 1994; Yoshida et al., 2014). Similarly,
809 periclinal asymmetric cell divisions in all the radially arranged cortex/endodermis initials are
810 thought to contribute to the formation of the cortex and endodermis cell layers of the main
811 root (Di Laurenzio et al., 1996; Dolan et al., 1993). By contrast, our investigation of 3D
812 digital ovules revealed a distinct mode for the formation of the ii1' cell layer. The analysis
813 indicated that only a small number of ii1 cells undergo asymmetric cell divisions and produce
814 the first ii1' cells. Much of subsequent ii1' layer formation appears to rely on symmetric cell
815 divisions that originate in the daughters of those few ii1' founder cells. Thus, formation of the
816 ii1' layer largely depends on lateral extension starting from a few scattered ii1' pioneer cells,
817 a process that may be regarded as layer invasion. It will be interesting to investigate the
818 molecular control of this new type of cell layer formation in future studies.

819

820 We provide novel insight into the internal cellular makeup of the chalaza and how it relates to
821 central aspects of ovule morphogenesis, such as the broadening of the chalaza and kink
822 formation. The morphological comparison of the cellular patterns of the chalaza between wild
823 type and *ino-5* revealed that this region is of complex composition. Our observations indicate
824 that the gynapcial and gynbasal chalaza, two previously unrecognized cell populations of

825 similar size but different shape and cellular composition, contribute to the interior cellular
826 architecture of the proximal central region. In addition, our data suggest that differential
827 growth between the gynapical and gynbasal chalaza results in the bulging of the gynapical
828 chalaza. This process appears to relate to two aspects: the establishment of a group of large
829 cells that in part make a subepidermal contribution to the outer integument and the formation
830 of the “wing-like” flaps in the gynapical chalaza. By contrast, the radially symmetric gynbasal
831 chalaza features a comparably slender shape. Bulging ultimately leads to an arrangement
832 where the nucellus and inner integument appear to sit on top of the gynbasal chalaza.
833

834 Finally, we provide new insight into the genetic and cellular processes regulating ovule
835 curvature. Previous studies hypothesized that ovule curvature is a multi-step process with a
836 major involvement by the proximal chalaza and the integuments (Baker et al., 1997; Schneitz
837 et al., 1997). Here, a detailed comparison between wild-type and *ino-5* 3D digital ovules
838 provided evidence for two distinct processes that contribute to ovule curvature: kink
839 formation in the ovule primordium and bending of the developing integuments. Both
840 processes require *INO* function as neither kink formation nor integument bending take place
841 in *ino-5*. The data support the hypothesis that a small number of asymmetric oblique cell
842 divisions in the stage 2-III gynbasal chalaza lead to the characteristic early kink of the ovule
843 primordium. Regarding integument bending it is noteworthy that despite the straight growth
844 of the inner integument of *ino-5* its general cellular parameters appear largely unaffected. In
845 addition, integument bending is prominent in mutants lacking an embryo sac (Schneitz et al.,
846 1997). These observations indicate that the outer integument imposes bending onto the inner
847 integument and nucellus. Future studies will address in more detail the interplay between
848 genetics, cellular behavior, and tissue mechanics that underlies ovule curvature.
849

850 Materials and Methods

851 Plant work, plant genetics, and plant transformation

852 *Arabidopsis thaliana* (L.) Heynh. var. Columbia (Col-0) was used as wild-type strain. Plants were
853 grown as described earlier (Fulton et al., 2009). The Col-0 line carrying the *WUSCHEL* (*WUS*)
854 promoter construct (pWUS::2xVENUS:NLS::tWUS) is equivalent to a previously described reporter
855 line except that vYFP was exchanged for 2xVENUS (Zhao et al., 2017). The *ino-5* mutation (Col-0)
856 was generated using a CRISPR/Cas9 system in which the egg cell-specific promoter pEC1.2 controls
857 Cas9 expression (Wang et al., 2015). The single guide RNA (sgRNA) 5'-
858 ACCATCTATTGATCTGCCG-3' binds to the region +34 to +55 of the *INO* coding sequence. The
859 sgRNA was designed according to the guidelines outlined in (Xie et al., 2014). The mutant carries a
860 frameshift mutation at position 51 relative to the *INO* start AUG, which was verified by sequencing.
861 The resulting predicted short *INO* protein comprises 78 amino acids. The first 17 amino acids
862 correspond to *INO* while amino acids 18 to 78 represent an aberrant amino acid sequence. Wild-type
863 plants were transformed with different constructs using Agrobacterium strain GV3101/pMP90 (Koncz
864 and Schell, 1986) and the floral dip method (Clough and Bent, 1998). Transgenic T1 plants were
865 selected on Hygromycin (20 µg/ml) plates and transferred to soil for further inspection.
866

867 **Recombinant DNA work**

868 For DNA work, standard molecular biology techniques were used. PCR fragments used for cloning
869 were obtained using Q5 high-fidelity DNA polymerase (New England Biolabs, Frankfurt, Germany).
870 All PCR-based constructs were sequenced.

871

872 **Clearing and staining of ovules**

873 A detailed protocol was recently published (Tofanelli et al., 2019). Fixing and clearing of dissected
874 ovules in ClearSee was done essentially as described (Kurihara et al., 2015). Tissue was fixed in 4%
875 paraformaldehyde in PBS followed by two washes in PBS before transfer into the ClearSee solution
876 (xylitol (10%, w/v), sodium deoxycholate (15%, w/v), urea (25%, w/v), in H₂O). Clearing was done at
877 least overnight or for up to two to three days. Staining with SR2200 (Renaissance Chemicals, Selby,
878 UK) was essentially performed as described in (Musielak et al., 2015). Cleared tissue was washed in
879 PBS and then put into a PBS solution containing 0.1% SR2200 and a 1/1000 dilution of TO-PRO-3
880 iodide (Bink et al., 2001; Van Hooijdonk et al., 1994) (Thermo Fisher Scientific) for 20 minutes.
881 Tissue was washed in PBS for one minutes, transferred again to ClearSee for 20 minutes before
882 mounting in Vectashield antifade agent (Florijn et al., 1995) (Vectashield Laboratories, Burlingame,
883 CA, USA).

884

885 **Microscopy and image acquisition**

886 Confocal laser scanning microscopy of ovules stained with SR2200 and TO-PRO-3 iodide was
887 performed on an upright Leica TCS SP8 X WLL2 Hyvolution 2 (Leica Microsystems) equipped with
888 GaAsP (HyD) detectors and a 63x glycerol objective (HC PL APO CS2 63x/1.30 GLYC, CORR CS2).
889 Scan speed was at 400 Hz, line average between 2 and 4, and the digital zoom between 1 and 2. Laser
890 power or gain was adjusted for z compensation to obtain an optimal z-stack. SR2200 fluorescence was
891 excited with a 405 nm diode laser (50 mW) with a laser power ranging from 0.1 to 1.5 percent intensity
892 and detected at 420 to 500 nm with the gain of the HyD detector set to 20. TO-PRO-3 iodide
893 fluorescence excitation was done at 642 nm with the white-light laser, with a laser power ranging from
894 2 to 3.5 percent and detected at 655 to 720 nm, with the gain of the HyD detector set to 200. For high
895 quality z-stacks, 12-bit images were captured at a slice interval of 0.24 μm with optimized system
896 resolution of 0.063 μm x 0.063 μm x 0.240 μm as final pixel size according to the Nyquist criterion.
897 Some of the z stacks were captured with 2x downsampled voxel size of 0.125 μm x 0.125 μm x 0.24
898 μm where we took advantage of the PlantSeg-trained model to generate equal standard cell
899 segmentation as with images with fine voxels. This was possible because the PlantSeg model
900 “generic_confocal_3d_unet” was trained on downsampled original images and ground truths. The
901 model now requires raw images whose voxels are scaled to the trained dataset so that it generates best
902 cell boundary predictions. Overall, raw images captured with 2x downsampled voxels were helpful in
903 that it simplified the rescaling step in PlantSeg and allowed us to generate raw images in less time
904 without compromising segmentation quality. Scan speed was set to 400 Hz, the pinhole was set to 0.6
905 Airy units, line average was between 2 and 4, and the digital zoom was set between 1 and 2, as
906 required. Laser power or gain was adjusted for z compensation to obtain an optimal z-stack. Images
907 were adjusted for color and contrast using Adobe Photoshop CC (Adobe, San Jose, CA, USA), GIMP
908 (<https://www.gimp.org/>) or MorphographX (Barbier de Reuille et al., 2015) software
909 (<https://www.mpi-z.mpg.de/MorphoGraphX>). Image acquisition parameters for pWUS::2xVenus
910 reporter line were the following: SR2200; 405 diode laser 0.10%, HyD 420–480 nm, detector gain 10.
911 2xVenus; 514 nm Argon laser 2%, HyD 525–550 nm, detector gain 100. TO-PRO-3; 642 nm White
912 Laser 2%, HyD 660–720 nm, detector gain 100. In each case sequential scanning was performed to
913 avoid crosstalk between the spectra.

914

915 **Segmentation**

916 *3D cell segmentation*

917 3D cells were segmented using PlantSeg (Wolny et al. 2020). Cell segmentation using boundary
918 predictions in PlantSeg allowed us to process microscopic image z-stacks captured with coarse voxels,

919 to minimise the segmentation errors, and to reduce the imaging time and hence laser exposure and
920 phototoxicity to samples. The PlantSeg pipeline takes as input a batch of raw images in tiff format
921 depicting the cell walls stained by SR2200 and outputs cell boundary predictions by a U-Net-based
922 convolutional neural network (CNN) (Ronneberger et al., 2015) together with 3D cell segmentation
923 given by partitioning of the boundary predictions. The PlantSeg pipeline is subdivided in four
924 sequential steps. The first step consists of pre-processing the raw files. In particular, we found rescaling
925 the raw images to match the U-Net training data crucial to achieve the best performances. This can be
926 done semi-automatically (see below) by using the guided rescaling tool in the data pre-processing
927 section of the PlantSeg gui. The output of the pre-processing step is saved as hierarchical data format
928 (HDF5). The second step consists of predicting the cell boundaries. PlantSeg has built-in several pre-
929 trained CNNs that can be chosen for different types of raw input data. For boundary prediction the
930 “generic_confocal_3D_unet” CNN was employed, which was trained on the Arabidopsis ovules dataset
931 (<https://osf.io/w38uf>). The third step is where the actual segmentation is obtained. PlantSeg’s
932 segmentation is based on graph partitioning and one can choose between several partitioning strategies,
933 such as Multicut (Speth et al., 2011) or GASP average (Bailoni et al., 2019). The last step deals with
934 image post processing. This step is necessary to convert the images to the original voxel resolution and
935 to convert the results from HDF5 back to tiff file format. A thorough experimental evaluation of the
936 different parameters revealed that optimal results could be obtained by using voxel size 0.15 x 0.15 x
937 0.235 (μm , xyz) for the guided rescaling, “generic_confocal_3D_unet” CNN for cell boundary
938 prediction, and cell segmentation performed by GASP average and watershed in 3D (Bailoni et al.
939 2019) with default parameters. The PlantSeg’s YAML configuration file with all the parameter settings
940 for the pipeline is found in the Supplementary File 1. These settings allowed for near-perfect 3D cell
941 segmentation as only a small number of errors, such as over-segmented cells, had to be corrected by
942 visual inspection of the segmented stack in MGX. In critical cases this included cross-checking the TO-
943 PRO-3 channel which included the stained nuclei. Thus, we now routinely image ovules using these
944 settings. Image acquisition of mature ovules takes about 15 minutes for both channels (SR2200/cell
945 contours; TO-PRO-3/nuclei), running the PlantSeg pipeline requires about 25 minutes on our computer
946 hardware (1x Nvidia Quadro P5000 GPU), and manual correction of segmentation errors takes less
947 than five minutes.

948

949 *Quantifying pWUS nuclei in the ovule*
950 The nuclei labelled by pWUS signal (blobs) were counted using the Local Maxima process in
951 MGX. The raw z-stacks were processed with the process Stack/Filter/Brighten Darken
952 with a value ranging from 2 to 4 depending on image quality. Further Gaussian blur was applied twice
953 with a low sigma of $0.2 \times 0.2 \times 0.2 \mu\text{m}^3$ using Stack/Filter/Gaussian Blur Stack. The
954 processed stack was used to generate local signal maxima of radius $1.5 \mu\text{m}$ in xyz and with a typical
955 threshold of 8000 using process Stack/Segmentation/Local Maxima. The blobs were
956 visualised by creating 3D blob meshes using the process Mesh/Creation/Mesh From Local
957 Maxima. Blob size can be adjusted as required. We used a blob radius of size $1.2 \mu\text{m}$ that fits inside
958 the nuclei. The blobs were also linked to their parent 3D cell meshes using the process
959 Mesh/Nucleus/Label Nuclei. The blob meshes were further linked to their parent 3D cell
960 meshes using the MGX process Mesh/Nucleus/Label Nuclei. This requires the 3D cell meshes
961 to be loaded into the mesh 1 workspace and the blob meshes into the mesh 2 workspace of MGX.
962 This process sets the cell identities of the 3D cell meshes as parents to the blob meshes. Blob numbers
963 were determined in exported .csv files that contained the Blob IDs associated with their parent cell IDs.
964

965 **Generation of 3D Cell meshes and classification of cell types**
966 3D cell meshes were generated in MGX using the segmented image stacks using the process
967 Mesh/Creation/Marching Cube 3D with a cube size of 1. All the cell annotation was
968 performed on the 3D cell meshes in MGX. Tissue surface mesh is required for the method of semi-
969 automatic cell type labelling. Tissue surface mesh is generated from the segmented stack. The
970 segmented stack was first gaussian blurred using the process Stack/Filter/Gaussian Blur

971 Stack with a radius of 0.3 in xyz. The smooth stack was used to generate tissue surface mesh using
972 Mesh/Creation/Marching Cube Surface with a cube size of 1 and threshold 1. The
973 generated surface mesh was then smoothed several times using the process
974 Mesh/Structure/Smooth mesh with 10 passes. For mature ovules cell type annotation, we
975 used the MGX process Mesh/Cell Atlas 3D/Ovule/Detect Cell Layer (a modified
976 3DCellAtlas Meristem tool (Montenegro-Johnson et al., 2019)) with the 3D cell meshes in the mesh 1
977 workspace and the tissue surface mesh in the mesh 2 workspace using a cone angle parameter of 1.2.
978 This process correctly classified about 60 percent of cells based on the layer they belong to. We
979 manually corrected mis-annotations and labelled the rest of the cells by using the mesh tools in MGX.
980 We used the Select Connected Area tool to select individual cells of different layers in 3D and
981 proofread the cell type labelling with Mesh/Cell Types/Classification/Set Cell
982 Type. Each cell layer of the integuments was consecutively shaved off and proofreading was
983 performed using 3D surface view. We further used the processes Mesh/Cell
984 Types/Classification to save all labels, load labels and select cell types as required. The saved
985 cell types.csv file was reloaded onto the original 3D cell mesh and final proofreading was performed in
986 the section view. For primordia we manually annotated the cells using the tools in Mesh/Cell
987 Types/Classification.
988

989 **Exporting attributes from MorphographX for further quantitative analysis**

990 All quantitative cellular features were exported as attributes from MGX. The attributes included cell
991 IDs (segmentation label of individual cells), cell type IDs (tissue annotation), and cell volume. The
992 attributes from individual ovules were exported as .csv files and merged to create long-format Excel-
993 sheets listing all the scored attributes of all the cells from the analyzed ovules. These files are included
994 in the downloadable datasets.

995 **Computer requirements**

996 A minimal setup requires an Intel Core i9 CPU with at least 64 GB of RAM. To take full advantage of
997 the PlantSeg pipeline requires at a minimum an 8 GB NVIDIA GPU/CUDA graphics card (for example
998 a Geforce RTX 2080). For routine work we use a computer with a 16 GB NVIDIA QUADRO P5000
999 card. We use Linux Mint as the operating system (www.linuxmint.com).
1000

1001 **Growth rate and relative tissue growth**

1002 Stage-specific growth rates were estimated by taking the ratio between a given mean parameter of two
1003 consecutive stages ($x(t+\Delta t)/x(t)$). Relative growth of an ovule tissue was estimated by taking the ratio
1004 of the respective mean parameter of two consecutive stages divided by the ovule growth rate
1005 ($y(t+\Delta t)/y(t)/(x(t+\Delta t)/x(t))$).
1006

1007 **Primordia length and slanting**

1008 Length along the surface of the gynapical and gynbasal sides of primordia was quantified for individual
1009 primordia. We extracted a file of epidermal cells at the mid-section of two halves of the ovule and
1010 placed a Bezier grid of size 3 x 3 (xy) on the distal tip of the primordia surface. We then used the MGX
1011 process "Mesh/Heatmap/Measure 3D/Distance to Bezier" to quantify the length. The measured values
1012 are the distance from the Bezier grid to individual cell centroids through the file of connected cells.
1013 Primordia height was quantified by averaging the two values. Slanting was quantified by obtaining the
1014 difference of the maximal values at the gynapical and gynbasal sides, respectively (Supplementary Fig.
1015 1).
1016

1017 **Statistical analysis**

1018 Statistical analysis was performed using a combination of R (R Core Team, 2019) with RStudio
1019 (RStudio Team, 2019), the Anaconda distribution (Anaconda Software Distribution;
1020 <https://anaconda.com>) of the Python SciPy software stack (Oliphant, 2007), and PRISM8 software
1021 (GraphPad Software, San Diego, USA).
1022

1023

1024 **Datasets**

1025 The entire 3D digital ovule datasets can be downloaded from the BioStudies data repository
1026 (<https://www.ebi.ac.uk/biostudies/>). Each dataset contains raw cell boundaries, cell boundaries,
1027 predictions from PlantSeg, nuclei images, segmented cells as well as the annotated 3D cell meshes, and
1028 the associated attribute files in csv format. The 3D mesh files can be opened in MGX. Accession S-
1029 BSST475: the wild-type high-quality dataset and the additional dataset with more segmentation errors.
1030 Accession S-BSST498: pWUS::2xVenus:NLS. Accession S-BSST497: *ino-5*. Accession S-BSST513:
1031 Long-format Excel-sheets listing all the scored attributes of all the cells from the analyzed ovules.
1032

1033

References

1034 Anderson, C., Hill, B., Lu, H.-C., Moverley, A., Yang, Y., Oliveira, N.M.M., Baldock, R.A., Stern,
1035 C.D., 2019. A 3D molecular atlas of the chick embryonic heart. *Dev. Biol.* 456, 40–46.
1036 doi:10.1016/j.ydbio.2019.07.003

1037 Asadulina, A., Panzera, A., Verasztó, C., Liebig, C., Jékely, G., 2012. Whole-body gene expression
1038 pattern registration in *Platynereis* larvae. *EvoDevo* 3, 27. doi:10.1186/2041-9139-3-27

1039 Bailoni, A., Pape, C., Wolf, S., Beier, T., Kreshuk, A., Hamprecht, F.A., 2019. A generalized
1040 framework for agglomerative clustering of signed graphs applied to instance segmentation.
1041 <https://arxiv.org/abs/1906.11713>.

1042 Baker, S.C., Robinson-Beers, K., Villanueva, J.M., Gaiser, J.C., Gasser, C.S., 1997. Interactions
1043 among genes regulating ovule development in. *Genetics* 145, 1109–1124.

1044 Balasubramanian, S., Schneitz, K., 2000. NOZZLE regulates proximal-distal pattern formation, cell
1045 proliferation and early sporogenesis during ovule development in *Arabidopsis thaliana*.
1046 *Development* 127, 4227–4238.

1047 Balasubramanian, S., Schneitz, K., 2002. NOZZLE links proximal-distal and adaxial-abaxial pattern
1048 formation during ovule development in *Arabidopsis thaliana*. *Development* 129, 4291–4300.

1049 Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G.W., Schüpbach, T.,
1050 Tauriello, G., Bajpai, N., Strauss, S., Weber, A., Kiss, A., Burian, A., Hofhuis, H., Sapala, A.,
1051 Lipowczan, M., Heimlicher, M.B., Robinson, S., Bayer, E.M., Basler, K., Koumoutsakos, P.,
1052 Roeder, A.H.K., Smith, R.S., 2015. MorphoGraphX: A platform for quantifying morphogenesis
1053 in 4D. *eLife* 4, 05864. doi:10.7554/eLife.05864

1054 Bassel, G.W., Stamm, P., Mosca, G., Barbier de Reuille, P., Gibbs, D.J., Winter, R., Janka, A.,
1055 Holdsworth, M.J., Smith, R.S., 2014. Mechanical constraints imposed by 3D cellular geometry
1056 and arrangement modulate growth patterns in the *Arabidopsis* embryo. *Proc Natl Acad Sci USA*
1057 111, 8685–8690. doi:10.1073/pnas.1404616111

1058 Beeckman, T., De Rycke, R., Viane, R., Inzé, D., 2000. Histological study of seed coat development
1059 in *Arabidopsis thaliana*. *J. Plant Res.* 113, 139–148. doi:10.1007/PL00013924

1060 Bencivenga, S., Simonini, S., Benková, E., Colombo, L., 2012. The transcription factors BEL1 and
1061 SPL are required for cytokinin and auxin signaling during ovule development in *Arabidopsis*.
1062 *Plant Cell* 24, 2886–2897. doi:10.1105/tpc.112.100164

1063 Bink, K., Walch, A., Feuchtinger, A., Eisenmann, H., Hutzler, P., Höfler, H., Werner, M., 2001. TO-
1064 PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin
1065 sections. *Histochem Cell Biol* 115, 292–299.

1066 Boutros, M., Heigwer, F., Laufer, C., 2015. Microscopy-based high-content screening. *Cell* 163,
1067 1314–1325. doi:10.1016/j.cell.2015.11.007

1068 Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F.A., Palme,
1069 K., Simon, R., Colombo, L., 2013. Maternal control of PIN1 is required for female gametophyte
1070 development in *Arabidopsis*. *PLoS ONE* 8, e66148. doi:10.1371/journal.pone.0066148

1071 Chaudhary, A., Gao, J., Schneitz, K., 2018. The genetic control of ovule development, in: Reference
1072 Module in Life Sciences. Elsevier. doi:10.1016/B978-0-12-809633-8.20737-1

1073 Cheng, C.-Y., Mathews, D.E., Schaller, G.E., Kieber, J.J., 2013. Cytokinin-dependent specification
1074 of the functional megasporangium in the *Arabidopsis* female gametophyte. *Plant J.* 73, 929–940.

1075 doi:10.1111/tpj.12084
1076 Christensen, C.A., King, E.J., Jordan, J.R., Drews, G.N., 1997. Megagametogenesis in *Arabidopsis*
1077 wild type and the Gf mutant. *Sex. Plant Reprod.* 10, 49–64. doi:10.1007/s004970050067
1078 Clough, S.J., Bent, A.F., 1998. Floral dip: a simplified method for *Agrobacterium*-mediated
1079 transformation of *Arabidopsis thaliana*. *Plant J.* 16, 735–743. doi:10.1046/j.1365-
1080 313x.1998.00343.x
1081 Coen, E., Kennaway, R., Whitewoods, C., 2017. On genes and form. *Development* 144, 4203–4213.
1082 doi:10.1242/dev.151910
1083 Coen, E., Rebocho, A.B., 2016. Resolving conflicts: modeling genetic control of plant
1084 morphogenesis. *Dev. Cell* 38, 579–583. doi:10.1016/j.devcel.2016.09.006
1085 Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., Lepiniec, L., 2003.
1086 Proanthocyanidin-accumulating cells in *Arabidopsis* testa: regulation of differentiation and role in
1087 seed development. *Plant Cell* 15, 2514–2531. doi:10.1105/tpc.014043
1088 Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn,
1089 M.G., Feldmann, K.A., Benfey, P.N., 1996. The SCARECROW gene regulates an asymmetric
1090 cell division that is essential for generating the radial organization of the *Arabidopsis* root. *Cell*
1091 86, 423–433. doi:10.1016/s0092-8674(00)80115-4
1092 Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., Scheres, B., 1993.
1093 Cellular organisation of the *Arabidopsis thaliana* root. *Development* 119, 71–84.
1094 Dreyer, D., Vitt, H., Dippel, S., Goetz, B., El Jundi, B., Kollmann, M., Huetteroth, W., Schachtner, J.,
1095 2010. 3D standard brain of the red flour beetle *Tribolium castaneum*: A tool to study
1096 metamorphic development and adult plasticity. *Front. Syst. Neurosci.* 4, 3.
1097 doi:10.3389/neuro.06.003.2010
1098 Endress, P.K., 2011. Angiosperm ovules: diversity, development, evolution. *Ann. Bot.* 107, 1465–
1099 1489. doi:10.1093/aob/mcr120
1100 Florijn, R.J., Slats, J., Tanke, H.J., Raap, A.K., 1995. Analysis of antifading reagents for fluorescence
1101 microscopy. *Cytometry* 19, 177–182. doi:10.1002/cyto.990190213
1102 Fulton, L., Batoux, M., Vaddepalli, P., Yadav, R.K., Busch, W., Andersen, S.U., Jeong, S., Lohmann,
1103 J.U., Schneitz, K., 2009. DETORQUEO, QUIRKY, and ZERZAUST represent novel components
1104 involved in organ development mediated by the receptor-like kinase STRUBBELIG in
1105 *Arabidopsis thaliana*. *PLoS Genet.* 5, e1000355. doi:10.1371/journal.pgen.1000355
1106 Gaillochet, C., Daum, G., Lohmann, J.U., 2015. O cell, where art thou? The mechanisms of shoot
1107 meristem patterning. *Curr. Opin. Plant Biol.* 23, 91–97. doi:10.1016/j.pbi.2014.11.002
1108 Gasser, C.S., Broadhvest, J., Hauser, B.A., 1998. Genetic analysis of ovule development. *Annu. Rev.*
1109 *Plant Physiol. Plant Mol. Biol.* 49, 1–24. doi:10.1146/annurev.arplant.49.1.1
1110 Gasser, C.S., Skinner, D.J., 2019. Development and evolution of the unique ovules of flowering
1111 plants. *Curr. Top. Dev. Biol.* 131, 373–399. doi:10.1016/bs.ctdb.2018.10.007
1112 Gibson, W.T., Veldhuis, J.H., Rubinstein, B., Cartwright, H.N., Perrimon, N., Brodland, G.W.,
1113 Nagpal, R., Gibson, M.C., 2011. Control of the mitotic cleavage plane by local epithelial
1114 topology. *Cell* 144, 427–438. doi:10.1016/j.cell.2010.12.035
1115 Gross-Hardt, R., Lenhard, M., Laux, T., 2002. *WUSCHEL* signaling functions in interregional
1116 communication during *Arabidopsis* ovule development. *Genes Dev.* 16, 1129–1138.
1117 doi:10.1101/gad.225202
1118 Grossniklaus, U., Schneitz, K., 1998. The molecular and genetic basis of ovule and
1119 megagametophyte development. *Seminars in Cell and Developmental Biology* 9, 227–238.
1120 Guignard, L., Fiúza, U.M., Leggio, B., Laussu, J., Faure, E., Michelin, G., Biasuz, K., Hufnagel, L.,
1121 Malandain, G., Godin, C., Lemaire, P., 2020. Contact area-dependent cell communication and the
1122 morphological invariance of ascidian embryogenesis. *Science* 369. doi:10.1126/science.aar5663
1123 Hamant, O., Heisler, M.G., Jönsson, H., Krupinski, P., Uyttewaal, M., Bokov, P., Corson, F., Sahlin,
1124 P., Boudaoud, A., Meyerowitz, E.M., Couder, Y., Traas, J., 2008. Developmental patterning by
1125 mechanical signals in *Arabidopsis*. *Science* 322, 1650–1655. doi:10.1126/science.1165594
1126 Hervieux, N., Dumond, M., Sapala, A., Routier-Kierzkowska, A.-L., Kierzkowski, D., Roeder,

1127 A.H.K., Smith, R.S., Boudaoud, A., Hamant, O., 2016. A mechanical feedback restricts sepal
1128 growth and shape in arabidopsis. *Curr. Biol.* doi:10.1016/j.cub.2016.03.004

1129 Hong, L., Dumond, M., Tsugawa, S., Sapala, A., Routier-Kierzkowska, A.-L., Zhou, Y., Chen, C.,
1130 Kiss, A., Zhu, M., Hamant, O., Smith, R.S., Komatsuzaki, T., Li, C.-B., Boudaoud, A., Roeder,
1131 A.H.K., 2016. Variable Cell Growth Yields Reproducible OrganDevelopment through
1132 Spatiotemporal Averaging. *Dev. Cell* 38, 15–32. doi:10.1016/j.devcel.2016.06.016

1133 Hong, L., Dumond, M., Zhu, M., Tsugawa, S., Li, C.-B., Boudaoud, A., Hamant, O., Roeder, A.H.K.,
1134 2018. Heterogeneity and robustness in plant morphogenesis: from cells to organs. *Annu. Rev.*
1135 *Plant Biol.* 69, 469–495. doi:10.1146/annurev-arplant-042817-040517

1136 Jackson, M.D.B., Duran-Nebreda, S., Kierzkowski, D., Strauss, S., Xu, H., Landrein, B., Hamant, O.,
1137 Smith, R.S., Johnston, I.G., Bassel, G.W., 2019. Global Topological Order Emerges through
1138 Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem. *Cell Syst.*
1139 8, 53–65.e3. doi:10.1016/j.cels.2018.12.009

1140 Jenik, P.D., Irish, V.F., 2000. Regulation of cell proliferation patterns by homeotic genes during
1141 *Arabidopsis* floral development. *Development* 127, 1267–1276.

1142 Jürgens, G., Mayer, U., 1994. *Arabidopsis*, in: Bard, J. (Ed.), *EMBRYOS*, Colour Atlas of
1143 Developing Embryos. Wolfe Publishing, London, pp. 7–21.

1144 Kierzkowski, D., Nakayama, N., Routier-Kierzkowska, A.-L., Weber, A., Bayer, E., Schorderet, M.,
1145 Reinhardt, D., Kuhlemeier, C., Smith, R.S., 2012. Elastic domains regulate growth and
1146 organogenesis in the plant shoot apical meristem. *Science* 335, 1096–1099.
1147 doi:10.1126/science.1213100

1148 Kierzkowski, D., Routier-Kierzkowska, A.-L., 2019. Cellular basis of growth in plants: geometry
1149 matters. *Curr. Opin. Plant Biol.* 47, 56–63. doi:10.1016/j.pbi.2018.09.008

1150 Kierzkowski, D., Runions, A., Vuolo, F., Strauss, S., Lymbouridou, R., Routier-Kierzkowska, A.-L.,
1151 Wilson-Sánchez, D., Jenke, H., Galinha, C., Mosca, G., Zhang, Z., Canales, C., Dello Ioio, R.,
1152 Huijser, P., Smith, R.S., Tsiantis, M., 2019. A Growth-Based Framework for Leaf Shape
1153 Development and Diversity. *Cell* 177, 1405–1418.e17. doi:10.1016/j.cell.2019.05.011

1154 Koncz, C., Schell, J., 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression
1155 of chimaeric genes carried by a novel Agrobacterium binary vector. *Mol. Gen. Genet.* 204, 383–
1156 396.

1157 Kurihara, D., Mizuta, Y., Sato, Y., Higashiyama, T., 2015. ClearSee: a rapid optical clearing reagent
1158 for whole-plant fluorescence imaging. *Development* 142, 4168–4179. doi:10.1242/dev.127613

1159 Landrein, B., Kiss, A., Sassi, M., Chauvet, A., Das, P., Cortizo, M., Laufs, P., Takeda, S., Aida, M.,
1160 Traas, J., Vernoux, T., Boudaoud, A., Hamant, O., 2015. Mechanical stress contributes to the
1161 expression of the STM homeobox gene in Arabidopsis shoot meristems. *elife* 4, e07811.
1162 doi:10.7554/elife.07811

1163 Lee, K.J.I., Bushell, C., Koide, Y., Fozard, J.A., Piao, C., Yu, M., Newman, J., Whitewoods, C.,
1164 Avondo, J., Kennaway, R., Marée, A.F.M., Cui, M., Coen, E., 2019. Shaping of a three-
1165 dimensional carnivorous trap through modulation of a planar growth mechanism. *PLoS Biol.* 17,
1166 e3000427. doi:10.1371/journal.pbio.3000427

1167 Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski,
1168 M.S., Brockway, K.S., Byrnes, E.J., Chen, Lin, Chen, Li, Chen, T.-M., Chin, M.C., Chong, J.,
1169 Crook, B.E., Czaplinska, A., Dang, C.N., Datta, S., Dee, N.R., Jones, A.R., 2007. Genome-wide
1170 atlas of gene expression in the adult mouse brain. *Nature* 445, 168–176. doi:10.1038/nature05453

1171 Liang, H., Mahadevan, L., 2011. Growth, geometry, and mechanics of a blooming lily. *Proc Natl
1172 Acad Sci USA* 108, 5516–5521. doi:10.1073/pnas.1007808108

1173 Lieber, D., Lora, J., Schrempp, S., Lenhard, M., Laux, T., 2011. Arabidopsis WIH1 and WIH2 genes
1174 act in the transition from somatic to reproductive cell fate. *Curr. Biol.* 21, 1009–1017.
1175 doi:10.1016/j.cub.2011.05.015

1176 Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E., 2009. A 3D digital atlas of *C. elegans* and its
1177 application to single-cell analyses. *Nat. Methods* 6, 667–672. doi:10.1038/nmeth.1366

1178 Lora, J., Herrero, M., Tucker, M.R., Hormaza, J.I., 2017. The transition from somatic to germline

1179 identity shows conserved and specialized features during angiosperm evolution. *New Phytol.* 216,
1180 495–509. doi:10.1111/nph.14330

1181 Louveaux, M., Julien, J.-D., Mirabet, V., Boudaoud, A., Hamant, O., 2016. Cell division plane
1182 orientation based on tensile stress in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* 113, E4294–
1183 303. doi:10.1073/pnas.1600677113

1184 Mansfield, S.G., Briarty, L.G., Erni, S., 1991. Early embryogenesis in *Arabidopsis thaliana*. I. The
1185 mature embryo sac. *Can J Bot* 69, 447–460.

1186 Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., Laux, T., 1998. Role of WUSCHEL
1187 in regulating stem cell fate in the *Arabidopsis* shoot meristem. *Cell* 95, 805–815.
1188 doi:10.1016/s0092-8674(00)81703-1

1189 Meister, R.J., Kotow, L.M., Gasser, C.S., 2002. SUPERMAN attenuates positive INNER NO
1190 OUTER autoregulation to maintain polar development of *Arabidopsis* ovule outer integuments.
1191 *Development* 129, 4281–4289.

1192 Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., Gasser,
1193 C.S., 2004. Definition and interactions of a positive regulatory element of the *Arabidopsis* INNER
1194 NO OUTER promoter. *Plant J.* 37, 426–438.

1195 Montenegro-Johnson, T.D., Stamm, P., Strauss, S., Topham, A.T., Tsagris, M., Wood, A.T.A.,
1196 Smith, R.S., Bassel, G.W., 2015. Digital Single-Cell Analysis of Plant Organ Development Using
1197 3DCellAtlas. *Plant Cell* 27, 1018–1033. doi:10.1105/tpc.15.00175

1198 Montenegro-Johnson, T., Strauss, S., Jackson, M.D.B., Walker, L., Smith, R.S., Bassel, G.W., 2019.
1199 3DCellAtlas Meristem: a tool for the global cellular annotation of shoot apical meristems. *Plant*
1200 *Methods* 15, 33. doi:10.1186/s13007-019-0413-0

1201 Musielak, T.J., Schenkel, L., Kolb, M., Henschen, A., Bayer, M., 2015. A simple and versatile cell
1202 wall staining protocol to study plant reproduction. *Plant Reprod.* 28, 161–169.
1203 doi:10.1007/s00497-015-0267-1

1204 Nakajima, K., 2018. Be my baby: patterning toward plant germ cells. *Curr. Opin. Plant Biol.* 41,
1205 110–115. doi:10.1016/j.pbi.2017.11.002

1206 Oliphant, T.E., 2007. Python for Scientific Computing. *Comput. Sci. Eng.* 9, 10–20.
1207 doi:10.1109/MCSE.2007.58

1208 Pasternak, T., Haser, T., Falk, T., Ronneberger, O., Palme, K., Otten, L., 2017. A 3D digital atlas of
1209 the *Nicotiana tabacum* root tip and its use to investigate changes in the root apical meristem
1210 induced by the *Agrobacterium* 6b oncogene. *Plant J.* 92, 31–42. doi:10.1111/tpj.13631

1211 Rebocho, A.B., Southam, P., Kennaway, J.R., Bangham, J.A., Coen, E., 2017. Generation of shape
1212 complexity through tissue conflict resolution. *elife* 6. doi:10.7554/elife.20156

1213 Rein, K., Zöckler, M., Mader, M.T., Grübel, C., Heisenberg, M., 2002. The *Drosophila* standard
1214 brain. *Curr. Biol.* 12, 227–231. doi:10.1016/s0960-9822(02)00656-5

1215 Robinson-Beers, K., Pruitt, R.E., Gasser, C.S., 1992. Ovule development in wild-Type *Arabidopsis*
1216 and two female-sterile mutants. *Plant Cell* 4, 1237–1249. doi:10.1105/tpc.4.10.1237

1217 Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image
1218 Segmentation, in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.), *Medical Image*
1219 *Computing and Computer-Assisted Intervention (MICCAI)*, *Lecture Notes in Computer Science*.
1220 Springer International Publishing, Cham, pp. 234–241. doi:10.1007/978-3-319-24574-4_28

1221 RStudio Team, 2019. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA.

1222 R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for
1223 Statistical Computing, Vienna.

1224 Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A., Boudaoud, A., Hamant,
1225 O., Jönsson, H., Meyerowitz, E.M., 2014. Subcellular and supracellular mechanical stress
1226 prescribes cytoskeleton behavior in *Arabidopsis* cotyledon pavement cells. *elife* 3, e01967.
1227 doi:10.7554/elife.01967

1228 Sankar, M., Nieminen, K., Ragni, L., Xenarios, I., Hardtke, C.S., 2014. Automated quantitative
1229 histology reveals vascular morphodynamics during *Arabidopsis* hypocotyl secondary growth.
1230 *elife* 3, e01567. doi:10.7554/elife.01567

1231 Sapala, A., Runions, A., Routier-Kierzkowska, A.-L., Das Gupta, M., Hong, L., Hofhuis, H., Verger,
1232 S., Mosca, G., Li, C.-B., Hay, A., Hamant, O., Roeder, A.H., Tsiantis, M., Prusinkiewicz, P.,
1233 Smith, R.S., 2018. Why plants make puzzle cells, and how their shape emerges. *elife* 7.
1234 doi:10.7554/eLife.32794

1235 Sapala, A., Runions, A., Smith, R.S., 2019. Mechanics, geometry and genetics of epidermal cell
1236 shape regulation: different pieces of the same puzzle. *Curr. Opin. Plant Biol.* 47, 1–8.
1237 doi:10.1016/j.pbi.2018.07.017

1238 Sarkans, U., Gostev, M., Athar, A., Behrang, E., Melnichuk, O., Ali, A., Minguet, J., Rada, J.C.,
1239 Snow, C., Tikhonov, A., Brazma, A., McEntyre, J., 2018. The BioStudies database—one stop shop
1240 for all data supporting a life sciences study. *Nucleic Acids Res.* 46, D1266–D1270.
1241 doi:10.1093/nar/gkx965

1242 Sassi, M., Ali, O., Boudon, F., Cloarec, G., Abad, U., Cellier, C., Chen, X., Gilles, B., Milani, P.,
1243 Friml, J., Vernoux, T., Godin, C., Hamant, O., Traas, J., 2014. An auxin-mediated shift toward
1244 growth isotropy promotes organ formation at the shoot meristem in *Arabidopsis*. *Curr. Biol.* 24,
1245 2335–2342. doi:10.1016/j.cub.2014.08.036

1246 Satina, S., Blakeslee, A.F., Avery, A.G., 1940. Demonstration of the three germ layers in the shoot
1247 apex of *Datura* by means of induced polyploidy in periclinal chimeras. *Am J Bot* 27, 895–905.

1248 Schmidt, A., Schmid, M.W., Grossniklaus, U., 2015. Plant germline formation: common concepts
1249 and developmental flexibility in sexual and asexual reproduction. *Development* 142, 229–241.
1250 doi:10.1242/dev.102103

1251 Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W.,
1252 Ditengou, F.A., Burkhardt, H., Ronneberger, O., Palme, K., 2014. The iRoCS Toolbox—3D
1253 analysis of the plant root apical meristem at cellular resolution. *Plant J.* 77, 806–814.
1254 doi:10.1111/tpj.12429

1255 Schneitz, K., Hülkamp, M., Kopczak, S.D., Pruitt, R.E., 1997. Dissection of sexual organ
1256 ontogenesis: a genetic analysis of ovule development in *Arabidopsis thaliana*. *Development* 124,
1257 1367–1376.

1258 Schneitz, K., Hülkamp, M., Pruitt, R.E., 1995. Wild-type ovule development in *Arabidopsis*
1259 *thaliana*: a light microscope study of cleared whole-mount tissue. *Plant J.* 7, 731–749.
1260 doi:10.1046/j.1365-313X.1995.07050731.x

1261 Sieber, P., Gheyselinck, J., Gross-Hardt, R., Laux, T., Grossniklaus, U., Schneitz, K., 2004. Pattern
1262 formation during early ovule development in *Arabidopsis thaliana*. *Dev. Biol.* 273, 321–334.
1263 doi:10.1016/j.ydbio.2004.05.037

1264 Sladitschek, H.L., Fiúza, U.-M., Pavlinic, D., Benes, V., Hufnagel, L., Neveu, P.A., 2020.
1265 MorphoSeq: full single-cell transcriptome dynamics up to gastrulation in a chordate. *Cell* 181,
1266 922–935.e21. doi:10.1016/j.cell.2020.03.055

1267 Speth, M., Andres, B., Reinelt, G., Schnörr, C., 2011. Globally optimal image partitioning by
1268 multicuts. Presented at the International Workshop on Energy Minimization Methods in
1269 Computer Vision and Pattern Recognition, Springer, pp. 31–44.

1270 Strauss, S., Sapala, A., Kierzkowski, D., Smith, R.S., 2019. Quantifying Plant Growth and Cell
1271 Proliferation with MorphoGraphX. *Methods Mol. Biol.* 1992, 269–290. doi:10.1007/978-1-4939-
1272 9469-4_18

1273 Tofanelli, R., Vijayan, A., Scholz, S., Schneitz, K., 2019. Protocol for rapid clearing and staining of
1274 fixed *Arabidopsis* ovules for improved imaging by confocal laser scanning microscopy. *Plant*
1275 *Methods* 15, 120. doi:10.1186/s13007-019-0505-x

1276 Truernit, E., Haseloff, J., 2008. *Arabidopsis thaliana* outer ovule integument morphogenesis: ectopic
1277 expression of KNAT1 reveals a compensation mechanism. *BMC Plant Biol.* 8, 35.
1278 doi:10.1186/1471-2229-8-35

1279 Tucker, M.R., Okada, T., Hu, Y., Scholefield, A., Taylor, J.M., Koltunow, A.M.G., 2012. Somatic
1280 small RNA pathways promote the mitotic events of megagametogenesis during female
1281 reproductive development in *Arabidopsis*. *Development* 139, 1399–1404.
1282 doi:10.1242/dev.075390

1283 Uyttewaal, M., Burian, A., Alim, K., Landrein, B., Borowska-Wykręt, D., Dedieu, A., Peaucelle, A.,
1284 Ludynia, M., Traas, J., Boudaoud, A., Kwiatkowska, D., Hamant, O., 2012. Mechanical stress
1285 acts via katanin to amplify differences in growth rate between adjacent cells in *Arabidopsis*. *Cell*
1286 149, 439–451. doi:10.1016/j.cell.2012.02.048

1287 Valuchova, S., Mikulkova, P., Pecinkova, J., Klimova, J., Krumnikl, M., Bainar, P., Heckmann, S.,
1288 Tomancak, P., Riha, K., 2020. Imaging plant germline differentiation within *Arabidopsis* flowers
1289 by light sheet microscopy. *elife* 9. doi:10.7554/eLife.52546

1290 Van Hooijdonk, C.A., Glade, C.P., Van Erp, P.E., 1994. TO-PRO-3 iodide: a novel HeNe laser-
1291 excitable DNA stain as an alternative for propidium iodide in multiparameter flow cytometry.
1292 *Cytometry* 17, 185–189. doi:10.1002/cyto.990170212

1293 Villanueva, J.M., Broadhvest, J., Hauser, B.A., Meister, R.J., Schneitz, K., Gasser, C.S., 1999.
1294 INNER NO OUTER regulates abaxial- adaxial patterning in *Arabidopsis* ovules. *Genes Dev.* 13,
1295 3160–3169.

1296 Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., Chen, Q.-J., 2015. Egg
1297 cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for
1298 multiple target genes in *Arabidopsis* in a single generation. *Genome Biol.* 16, 144.
1299 doi:10.1186/s13059-015-0715-0

1300 Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A.V., Louveaux, M., Wenzl, C., Strauss,
1301 S., Wilson-Sánchez, D., Lymbouridou, R., Steigleder, S., Pape, C., Bailoni, A., Duran-Nebreda,
1302 S., Bassel, G., Lohmann, J.U., Tsiantis, M., Hamprecht, F., Schneitz, K., Maizel, A., Kreshuk, A.,
1303 2020. Accurate and versatile 3D segmentation of plant tissues at cellular resolution. *elife* 9.
1304 doi:10.7554/eLife.57613

1305 Xie, K., Zhang, J., Yang, Y., 2014. Genome-wide prediction of highly specific guide RNA spacers
1306 for CRISPR-Cas9-mediated genome editing in model plants and major crops. *Mol. Plant* 7, 923–
1307 926. doi:10.1093/mp/ssu009

1308 Yoshida, S., Barbier de Reuille, P., Lane, B., Bassel, G.W., Prusinkiewicz, P., Smith, R.S., Weijers,
1309 D., 2014. Genetic control of plant development by overriding a geometric division rule. *Dev. Cell*
1310 29, 75–87. doi:10.1016/j.devcel.2014.02.002

1311 Zhao, X., Bramsiepe, J., Van Durme, M., Komaki, S., Prusicki, M.A., Maruyama, D., Forner, J.,
1312 Medzihradzky, A., Wijnker, E., Harashima, H., Lu, Y., Schmidt, A., Guthörl, D., Logroño, R.S.,
1313 Guan, Y., Pochon, G., Grossniklaus, U., Laux, T., Higashiyama, T., Lohmann, J.U., Schnittger,
1314 A., 2017. RETINOBLASTOMA RELATED1 mediates germline entry in *Arabidopsis*. *Science*
1315 356. doi:10.1126/science.aaf6532

1316

1317 Acknowledgements

1318 We thank members of the Schneitz lab for helpful comments. We also thank Lynette Fulton, Thomas
1319 Greb, and Alexis Maizel for input and comments on the manuscript. We further thank Miltos Tsiantis
1320 for comments and support. We appreciate the gift of the pWUS line by Christian Wenzel and Jan
1321 Lohmann. We further acknowledge support by the Center for Advanced Light Microscopy (CALM) of
1322 the TUM School of Life Sciences. This work was funded by the German Research Council (DFG)
1323 through grants FOR2581 (TP3) to AK and FH, (TP8) to RS, and (TP7) to KS.

1325 Competing interests

1326 There are no financial or non-financial competing interests.

1327

1328 Authors' contributions

1329 AV, RT, RS and KS designed the study. AV, RT, SS, LC and AW performed the experiments. RT,
1330 AV, SS, LC, AW, AK, FH, RS and KS interpreted the results. AK, FH, RS and KS secured funding.
1331 KS wrote the paper. All authors read and approved the final manuscript.

1332

1333

1334

1335 **Tables**

1336

1337 **Table 1. Cell numbers and total volumes of ovules at different stages**

Stage ^a	N Cells	Volume ($\times 10^4 \mu\text{m}^3$)	N Mitotic cells	% mitotic cells
1-I	39.6 ± 5.3	0.5 ± 0.09	1.0 ± 0.0	0.7 ± 1.2
1-II	74.0 ± 17.1	1.0 ± 0.2	1.3 ± 0.5	0.7 ± 0.9
2-I	176.9 ± 31.5	2.5 ± 0.4	3.1 ± 2.1	1.8 ± 1.2
2-II	220.6 ± 24.9	2.7 ± 0.6	2.7 ± 1.6	1.1 ± 0.7
2-III	324.1 ± 32.9	4.1 ± 0.7	3.6 ± 1.7	1.0 ± 0.7
2-IV	447.1 ± 30.7	5.9 ± 0.6	4.1 ± 1.7	0.9 ± 0.4
2-V	648.7 ± 81.5	9.7 ± 1.6	7.3 ± 3.0	1.1 ± 0.5
3-I	948.1 ± 92.5	18.1 ± 2.7	6.4 ± 3.0	0.7 ± 0.3
3-II	1178.0 ± 58.0	27.0 ± 2.5	10.4 ± 4.4	0.9 ± 0.4
3-III	1276.0 ± 97.7	28.9 ± 3.8	10.7 ± 2.8	0.9 ± 0.2
3-IV	1387 ± 111.9	34.0 ± 3.3	5.36 ± 1.8	0.4 ± 0.1
3-V	1580.0 ± 150.7	39.4 ± 3.5	7.9 ± 5.3	0.5 ± 0.3
3-VI	1897.0 ± 179.9	49.4 ± 7.2	11.1 ± 2.7	0.6 ± 0.2

1338

1339 ^aNumber of 3D digital ovules scored: 10 (stages 2-II- 3-II, 3-IV, 3-VI), 11 (stages 2-I, 3-III, 3-V), 13 (stage 2-II), 14 (stage 1-I), 28 (stage 1-II).

1340 Values represent mean \pm SD.

1341

1342

1343 **Table 2. Cell numbers and total volumes of the major ovule tissues**

Stage ^a	Tissue									
	Nucellus		Central Region		Inner Integument		Outer Integument		Funiculus	
	N cells	Volume (x10 ⁴ µm ³)	N cells	Volume (x10 ⁴ µm ³)	N cells	Volume (x10 ⁴ µm ³)	N cells	Volume (x10 ⁴ µm ³)	N cells	Volume (x10 ⁴ µm ³)
2-III	58.1 ± 8.1	0.6 ± 0.1	35.0 ± 5.7	0.4 ± 0.08	23.5 ± 5.5	0.30 ± 0.07	53.8 ± 12.1	0.8 ± 0.2	153.7 ± 28.5	2.0 ± 0.5
2-IV	64.6 ± 5.9	0.7 ± 0.1	57.6 ± 9.7	0.7 ± 0.01	48.1 ± 5.9	0.62 ± 0.08	66.6 ± 10.6	1.4 ± 0.3	210.2 ± 23.6	2.5 ± 0.3
2-V	64.5 ± 10.5	0.7 ± 0.1	85.0 ± 12.2	1.2 ± 0.2	79.3 ± 8.4	1.0 ± 0.1	124.0 ± 20.2	3.4 ± 0.6	295.9 ± 50.0	3.4 ± 0.8
3-I	66.9 ± 13.4	0.7 ± 0.1	118.9 ± 25.4	1.9 ± 0.4	132.6 ± 18.2	2.04 ± 0.4	235.9 ± 37.6	8.8 ± 1.7	392.4 ± 36.4	4.5 ± 0.6
3-II	56.0 ± 14.4	0.7 ± 0.1	158.1 ± 16.6	2.9 ± 0.3	194.7 ± 22.9	4.0 ± 0.6	289.1 ± 12.6	13.2 ± 1.3	477.1 ± 54.2	6.0 ± 0.8
3-III	64.4 ± 16.6	0.8 ± 0.1	172.2 ± 23.4	3.1 ± 0.5	216.8 ± 25.4	4.7 ± 0.8	324.5 ± 21.4	13.9 ± 1.8	496.2 ± 50.6	6.0 ± 1.0
3-IV	77.7 ± 12.2	1.0 ± 0.2	191.3 ± 20.1	3.6 ± 0.5	255.8 ± 28.4	5.8 ± 0.6	349.6 ± 26.6	15.9 ± 1.3	511.1 ± 75.8	7.3 ± 1.7
3-V	77.4 ± 20.4	1.2 ± 0.3	209.2 ± 31.7	3.9 ± 0.7	343.5 ± 48.3	7.6 ± 1.1	439.8 ± 57.0	18.6 ± 1.3	506.8 ± 40.1	7.1 ± 0.8
3-VI	85.9 ± 17.2	1.3 ± 0.2	268.5 ± 31.4	5.3 ± 0.8	453.9 ± 69.8	10.6 ± 1.9	551.6 ± 62.7	22.7 ± 3.7	533.0 ± 68.6	7.7 ± 1.1

1344 ^aNumber of 3D digital ovules scored: 10 (stages 2-II- 3-II, 3-IV, 3-VI), 11 (stages 3-III, 3-V).

1345 Values represent mean ± SD

1346 **Table 3. Cell numbers and total volumes of different tissues in *ino-5***

Stage ^a	Tissue							
	Nucellus		Inner Integument		Funiculus		Central region	
	N cells	Volume ($\times 10^4$ μm^3)	N cells	Volume ($\times 10^4$ μm^3)	N cells	Volume ($\times 10^4$ μm^3)	N cells	Volume ($\times 10^4$ μm^3)
2-III	49 \pm 7.6	0.5 \pm 0.08	31.3 \pm 3.2	0.4 \pm 0.03	189.0 \pm 29	2.4 \pm 0.4	35.8 \pm 37.1	0.3 \pm 0.3
2-IV	69.7 \pm 7.5	0.7 \pm 0.1	41.6 \pm 8.3	0.5 \pm 0.1	202.7 \pm 25	2.2 \pm 0.4	68.3 \pm 6.6	0.6 \pm 0.2
2-V	71.4 \pm 8.1	0.8 \pm 0.1	70.7 \pm 17.7	0.9 \pm 0.2	286.4 \pm 35.2	3.4 \pm 0.5	108.1 \pm 19.3	1.2 \pm 0.3
3-I	81.4 \pm 9.5	0.9 \pm 0.1	122.0 \pm 27.3	1.8 \pm 0.5	379.0 \pm 29.7	4.7 \pm 0.5	134.0 \pm 23.1	1.8 \pm 0.4
3-II	92.6 \pm 15.0	1.1 \pm 0.2	185.1 \pm 21.9	3.9 \pm 0.7	402.9 \pm 32.6	5.1 \pm 0.7	176.9 \pm 24.6	2.6 \pm 0.4
3-III	93.0 \pm 12.0	1.1 \pm 0.1	208.4 \pm 14.6	4.8 \pm 0.5	451.6 \pm 32.7	5.9 \pm 0.7	202.9 \pm 24.1	3.2 \pm 0.5
3-IV	102.7 \pm 12.8	1.5 \pm 0.2	296.9 \pm 43.5	7.3 \pm 1.3	481.3 \pm 45.7	6.7 \pm 0.5	215.4 \pm 30.7	3.6 \pm 0.7
3-V	116.3 \pm 12.5	1.8 \pm 0.2	360.8 \pm 35.2	9.6 \pm 1.0	522.6 \pm 47.4	7.2 \pm 1.1	239.6 \pm 31.2	4.2 \pm 0.7
3-VI	121.1 \pm 15.2	1.9 \pm 0.3	406.1 \pm 61.3	10.0 \pm 1.6	599.6 \pm 40.6	8.8 \pm 0.8	254.4 \pm 48.5	4.5 \pm 0.9

1347

1348 ^aNumber of 3D digital ovules scored: 3 (stages 2-IV), 6 (stages 2-III), 7 (stages 3-III, 3-VI), 9 (stages 3-II), 10 (stages 3-V), 14 (stages 3-I, 3-IV), 20 (stages 2-V). Values
1349 represent mean \pm SD.

1350

1351 **Table 4. Cellular parameters of the proximal chalaza**

Stage ^a	Tissue					
	Gynapical proximal chalaza			Gynbasal proximal chalaza		
	N cells	Cell volume (μm^3)	Tissue volume ($\times 10^4 \mu\text{m}^3$)	N cells	Cell volume (μm^3)	Tissue volume ($\times 10^4 \mu\text{m}^3$)
2-III	-	-	-	35 \pm 5	113 \pm 41.2	0.4 \pm 0.08
2-IV	9 \pm 2	160 \pm 59.6	0.14 \pm 0.03	48 \pm 9	109 \pm 45.6	0.52 \pm 0.1
2-V	13 \pm 6	226.4 \pm 77.3	0.31 \pm 0.1	71.2 \pm 10	120 \pm 52.7	0.85 \pm 0.1
3-I	32 \pm 8	270.4 \pm 121.3	0.87 \pm 0.2	86 \pm 20	120 \pm 59.5	1 \pm 0.2
3-II	50 \pm 8	298 \pm 156	1.5 \pm 0.2	108 \pm 19	127 \pm 70	1.3 \pm 0.2
3-III	51 \pm 13	318.1 \pm 192	1.6 \pm 0.35	121 \pm 32	124 \pm 68	1.5 \pm 0.3
3-IV	52 \pm 11	347.5 \pm 198.2	1.8 \pm 0.36	138 \pm 18	128 \pm 73	1.7 \pm 0.2
3-V	60 \pm 14	336.8 \pm 227.4	2 \pm 0.4	148 \pm 27	126 \pm 70.5	1.8 \pm 0.4
3-VI	59 \pm 6	428.7 \pm 284.4	2.5 \pm 0.4	209 \pm 31	132 \pm 90.7	2.7 \pm 0.4

1352

1353 ^aNumber of 3D digital ovules scored: 10 (stages 2-II- 3-II, 3-IV, 3-VI), 11 (stages 3-III, 3-V).

1354 Values represent mean \pm SD

1355

1356

1357 **Supplementary Materials**

1358

1359 **Supplementary Table 1. Standardized cell type labels**

Cell type	Morphological definition of cell type	Standardized cell type label
Organization		
L1	Outermost cell layer (epidermis)	L1
L2	First sub-epidermal cell layer	L2
L3	All interior cells enclosed by the L2 layer	L3
Distal		D
Proximal		P
Gynapical	Orientation of ovule relative to gynoecium, ovule tissue oriented towards the stigma (tip)	GA
Gynbasal	Orientation of ovule relative to gynoecium, ovule tissue oriented towards the gynophore	GB

	(bottom)	
Lateral		LAT
Median		MED
Adaxial (dorsal)		AD
Abaxial (ventral)		AB
Tissues along proximal-distal axis		
Nucellus	Distal region, harbors the mmc, proximally delineated by adaxial inner integument	n
Chalaza	Central region, flanked by the two integuments, distal end marked by adaxial inner integument, proximal end marked by abaxial outer integument, does not include epidermis	c
Distal chalaza	Formed by the chalazal cells underlying the inner integument, region is misspecified or missing in <i>wus</i> mutants ^a	dc
Proximal chalaza	Formed by the chalazal cells underlying the outer integument	pc
Gynapical proximal chalaza	Group of proximal chalazal cells, positioned at the gynapical side, underlying the epidermal cells forming the frontal base of the hood-like structure generated by the epidermis-derived outer integument	gapch
Gynbasal proximal chalaza	Group of proximal chalazal cells, positioned opposite to the cells of the gynapical chalaza	gbpch
Funiculus	Proximal region, stalk-like structure, carries the vascular strand, distal end marked by chalaza, proximal end marked by placenta	f
Integuments		
Abaxial outer integument	Outermost (ventral) single cell layer of outer integument, entirely made of epidermal cells, proximal end marked by chalaza	Aboi (oi2)
Adaxial outer integument	Innermost (dorsal) single cell layer of outer integument, proximal end marked by chalaza	Adoi (oi1)
Abaxial inner integument	Outer (ventral) single cell layer of inner integument, entirely made of epidermal cells, proximal end marked by chalaza	Abii (ii2)
Adaxial inner integument	Inner (dorsal) single cell layer of inner	Adii (ii1)

	integument, entirely made of epidermal cells, proximal end marked by chalaza	
Parenchymatic extra layer in late inner integument (Schneitz layer)	Cell layer derived from adaxial inner integument, proximal end marked by chalaza	ii1'
Tip cell	Small cell at the micropylar (distal) rim of each of the two developing integuments	tc
Megasporogenesis		
MMC	Single large L2 cell in distal end of nucellus, eventually undergoing meiosis, volume $\geq 335 \mu\text{m}^3$	mmc
Tetrad	Product of meiosis undergone by mmc, multi-planar or linear tetrad of haploid megasporangia	tet
Megagametogenesis^b		
Embryo sac	Haploid female gametophyte, encompasses all stages up to but not including fertilization	es
Embryo sac (FG1)	Mono-nuclear, tear-drop-shaped cell	fg1
Embryo sac (FG2)	Early two-nucleate	fg2
Embryo sac (FG3)	Late two-nucleate, large vacuole prominent	fg3
Embryo sac (FG4)	Four-nucleate, two nuclei at each pole	fg4
Embryo sac (FG5)	Eight-nucleate, seven celled, polar nuclei unfused	fg5
Embryo sac (FG6)	Seven-celled, polar nuclei fused	fg6
Embryo sac (FG7)	Four-celled, three antipodal cells have degenerated	fg7
Embryo sac (FG8)	Three-celled, one synergid has degenerated	fg8
Egg cell		ec
Central cell		cc
Antipodal cell		ap
Cell cycle		
M-phase	Mitotic figures (metaphase, anaphase)	M

Interphase	Cells in G0, S, or G2 phase	I
------------	-----------------------------	---

1360 ^aAs described in [\(Sieber et al. 2004\)](#).

1361 ^bStages according to [\(Christensen et al. 1997\)](#).

1362

1363

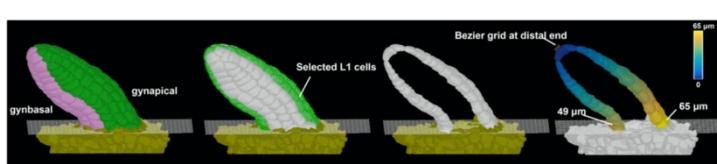
1364 **Supplementary Table 2. Cell numbers and total volumes of *ino-5* ovules staged according to the**
1365 **wild-type cohort with removed outer integument.**

Stage ^{a,b}	N Cells wild type (-oi)	Volume (x10 ⁴ µm ³) wild type (-oi)	N Cells <i>ino-5</i>	Volume (x10 ⁴ µm ³) <i>ino-5</i>
1-II	74.0 ± 17.1	1.0 ± 0.2	87 ± 23.1	1.1 ± 0.3
2-I	176.9 ± 31.5	2.5 ± 0.4	166.2 ± 19.5	2.1 ± 0.1
2-II	220.6 ± 24.9	2.7 ± 0.6	241.1 ± 9.1	3.0 ± 0.2
2-III	270.3 ± 32.4	3.2 ± 0.6	305.5 ± 34.6	3.7 ± 0.3
2-IV	380.5 ± 26.5	4.5 ± 0.4	382.3 ± 45.7	4.1 ± 0.5
2-V	524.7 ± 66.3	6.2 ± 1.0	536.7 ± 60.8	6.4 ± 0.9
3-I	712.2 ± 61.2	9.2 ± 1.1	716.9 ± 58.8	9.4 ± 0.9
3-II	888.4 ± 52.9	13.8 ± 1.3	858.0 ± 28.7	12.7 ± 0.9
3-III	951.2 ± 90.1	14.9 ± 2.1	956.7 ± 28.9	15.5 ± 0.6
3-IV	1037 ± 103.7	18.1 ± 2.2	1102 ± 49.5	19.6 ± 2.1
3-V	1140 ± 96.8	20.8 ± 2.3	1241 ± 32.2	23.5 ± 17.7
3-VI	1345 ± 131.9	26.6 ± 3.7	1383 ± 61.1	25.7 ± 16.8

1366

1367 ^aNumber of 3D digital ovules scored: 10 (stages 2-II- 3-II, 3-IV, 3-VI), 11 (stages 2-I, 3-III, 3-V), 13
1368 (stage 2-II), 14 (stage 1-I), 28 (stage 1-II).

1369 Values represent mean ± SD.


1370

1371 ^bNumber of 3D digital ovules scored for *ino-5* dataset: 3 (stages 2-IV), 6 (stages 2-III), 7 (stages 2-II,
1372 3-III, 3-VI), 9 (stages 3-II), 10 (stages 2-I, 3-V), 12 (stages 1-II), 14 (stages 3-I, 3-IV), 20 (stages 2-V).
1373 Values represent mean ± SD.

1374

1375

Supplementary Fig. 1. Primordium length and slant measurement

1376

1377 **Figure S1.** Primordium length and slant measurement. 3D surface view of primordia displaying the
1378 method for length measurement. The heatmap on the extracted cells depicts the quantified distance
1379 value between individual measured cells to the distal tip of primordia. Scale bars: 20 µm.
1380

```
1381 Supplementary File 1. Yaml file with PlantSeg parameters.
1382 # Contains the path to the directory or file to process
1383 path: /home/ovuleseg/image_data_in
1384
1385 preprocessing:
1386     # enable/disable preprocessing
1387     state: true
1388
1389     # create a new sub folder where all results will be stored
1390     save_directory: plantseg
1391
1392     # Rescaling the volume is essential for the generalization of the
1393     # networks.
1394     # The rescaling factor can be computed as the resolution
1395     # of the volume at hand divided by the resolution of the dataset
1396     # used in
1397     # training. Be careful, if the difference is too large check for
1398     # a different
1399     # model.
1400     factor: [1.0, 0.5, 0.5]
1401
1402     # the order of the spline interpolation
1403     order: '2'
1404
1405     # optional: perform Gaussian smoothing or median filtering on the
1406     # input.
1407     filter:
1408
1409         # enable/disable filtering
1410         state: false
1411
1412         # Accepted values: 'gaussian'/'median'
1413         type: gaussian
1414
1415         # sigma (gaussian) or disc radius (median)
1416         param: 1.0
1417
1418     cnn_prediction:
1419         # enable/disable UNet prediction
1420         state: true
1421
1422         # Trained model name, more info on available models and custom
1423         # models
1424         # in the README
1425         model_name: generic_confocal_3d_unet
1426
1427         # If a CUDA capable gpu is available and corrected setup use
1428         "cuda",
1429         # if not you can use "cpu" for cpu only inference (slower)
1430         device: cuda
1431
1432         # (int or tuple) mirror pad the input stack in each axis for best
1433         # prediction performance
1434         #mirror_padding: [16, 32, 32]
1435
1436         # how many subprocesses to use for data loading
1437         # num_workers: 8
1438
1439         # patch size given to the network (adapt to fit in your GPU mem)
1440         patch: [64, 256, 256]
1441
1442         # stride between patches (make sure the the patches overlap in
```

```
1443     order
1444     # to get smoother prediction maps)
1445     stride: Accurate (slowest)
1446
1447     # "best" refers to best performing on the val set (recommended),
1448     # alternatively "last" refers to the last version before
1449     interruption
1450     version: best
1451
1452     # If "True" forces downloading networks from the online repos
1453     model_update: false
1454
1455     cnn_postprocessing:
1456     # enable/disable cnn post processing
1457     state: true
1458
1459     #if True convert result to tiff
1460     tiff: true
1461
1462     # rescaling factor
1463     factor: [1.0, 2.0, 2.0]
1464
1465     # spline order for rescaling
1466     order: 2
1467
1468     # define output data type
1469     output_type: data_uint8
1470
1471
1472     segmentation:
1473     #enable/disable segmentation
1474     state: true
1475
1476     # Name of the algorithm to use for inferences. Options: MultiCut,
1477     # MutexWS, GASP, DtWatershed
1478     name: GASP
1479
1480     # Segmentation specific parameters here, balance
1481     # under-/over-segmentation; 0 - aim for undersegmentation,
1482     # 1 - aim for oversegmentation. (Not active for DtWatershed)
1483     beta: 0.5
1484
1485     # directory where to save the results
1486     save_directory: GASP_0.5
1487
1488     # enable/disable watershed
1489     run_ws: true
1490
1491     # use 2D instead of 3D watershed
1492     ws_2D: false
1493
1494     # probability maps threshold
1495     ws_threshold: 0.5
1496
1497     # set the minimum superpixels size
1498     ws_minsize: 50
1499
1500     # sigma for the gaussian smoothing of the distance transform
1501     ws_sigma: 2.0
1502
1503     # sigma for the gaussian smoothing of boundary
1504     ws_w_sigma: 0.0
1505
```

```
1506      # set the minimum segment size in the final segmentation.
1507      # (Not active for DtWatershed)
1508      post_minsize: 50
1509
1510  segmentation_postprocessing:
1511      # enable/disable segmentation post processing
1512      state: true
1513
1514      # if True convert to result to tiff
1515      tiff: true
1516
1517      # rescaling factor
1518      factor: [1, 1, 1]
1519
1520      # spline order for rescaling (keep 0 for segmentation post
1521      processing
1522      order: 0
1523
1524
1525
```