

1 **Chronic lithium treatment alters the excitatory/inhibitory balance**
2 **of synaptic networks and reduces mGluR5-PKC signaling**

3

4 Khayachi A¹., Ase A. R¹., Liao C^{1,2}., Kamesh A¹., Kuhlmann N¹., Schorova L³., Chaumette
5 B^{4,5}., Dion P¹., Alda M⁶., Séguéla P¹., Rouleau G.A.^{1,2*} & Milnerwood A. J^{1*}.

6

7 ¹Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill
8 University, Montréal, Quebec, Canada.

9 ²Department of Human Genetics, McGill University, Montréal, Quebec, Canada.

10 ³McGill University Health Center Research Institute, Montréal, Quebec, Canada.

11 ⁴Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266,
12 GHU Paris Psychiatrie et Neurosciences, Paris, France.

13 ⁵Department of Psychiatry, McGill University, Quebec, Canada.

14 ⁶Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.

15

16

17 *** Corresponding Authors:**

18 Dr Austen J. Milnerwood, PhD & Dr. Guy A. Rouleau, MD, PhD, FRCPC, OQ

19 Department of Neurology and Neurosurgery

20 McGill University

21 Montréal, Québec, Canada H3A 2B4

22 E-mail: austen.milnerwood@mcgill.ca & guy.rouleau@mcgill.ca

23

24

25

26 **Running title:** Lithium shifts the synaptic network balance toward inhibition.

27

28

29 **ABSTRACT**

30 Bipolar disorder (BD) is characterized by cyclical alternations between mania and depression, often
31 comorbid with psychosis, and suicide. The mood stabilizer lithium, compared to other medications, is
32 the most efficient treatment for prevention of manic and depressive episodes. The pathophysiology
33 of BD, and lithium's mode of action, are yet to be fully understood. Evidence suggests a change in the
34 balance of excitatory/inhibitory activity, favouring excitation in BD. Here, we sought to establish a
35 holistic appreciation of the neuronal consequences of lithium exposure in mouse cortical neurons
36 and identify underlying mechanisms. We found that chronic (but not acute) lithium treatment
37 significantly reduced intracellular calcium flux, specifically through the activation of the metabotropic
38 glutamatergic receptor mGluR5. This was associated with altered phosphorylation of PKC and GSK3
39 kinases, reduced neuronal excitability, and several alterations to synapse function. Consequently,
40 lithium treatment shifts the excitatory/inhibitory balance in the network toward inhibition. Together,
41 the results revealed how lithium dampens neuronal excitability and glutamatergic network activity,
42 which are predicted to be overactive in the manic phase of BD. Our working model of lithium action
43 enables the development of targeted strategies to restore the balance of overactive networks,
44 mimicking the therapeutic benefits of lithium, but with reduced toxicity.

45

46 **INTRODUCTION**

47 Bipolar disorder (BD) is a major psychiatric illness affecting 1-3% of the population worldwide and
48 one of the top 10 causes of disability (1, 2). BD starts in adolescence and has a life-long course,
49 characterized by frequently disabling episodes of mania and depression, often associated with
50 psychosis and suicide (3). The etiology of BD is complex and unclear, with genetic and environmental
51 factors implicated. Currently, except for very rare cases, no monogenic cause has been consistently
52 identified, and genome-wide association study (GWAS) hits have been found in varied biological
53 processes, including pathways related to intracellular signal transduction, glutamate synaptic
54 function, hormone signaling, and immune system regulation (4-6). The unknown cause and apparent
55 genetic heterogeneity of BD are a challenge to research efforts, especially those aimed at developing
56 appropriate disease models.

57 Lithium is an effective treatment for mania and has been consistently shown to reduce suicide and
58 overall mortality (7). Despite its narrow therapeutic range and potential side effects such as tremor,
59 polyuria, decreased thyroid function, and renal toxicity in a minority of patients (8), lithium remains
60 the first line treatment for prevention of both manic and depressive episodes in BD. For many
61 patients, it is the most effective mood stabilizer (9, 10), and in addition to reducing suicide risk, it
62 often enables patients to regain social and occupational function (7). Despite the widespread use of
63 lithium as a BD treatment for over 60 years, the mode of action needs to be better understood, as
64 does the reason why it is effective in only ~30% of BD patients (11, 12).

65
66 Studies aimed at elucidating lithium's mode of action have found macroscopic changes in brain
67 structure (13) and alterations at the cellular level (14). For the latter, it has been shown that acute
68 lithium administration increases glutamate signaling (15, 16). In contrast, longer-term chronic
69 treatment over 6-7 days confers protection against glutamate-induced excitotoxicity, by reducing
70 NMDA receptor-dependent calcium flux (17). It has also been shown that lithium alters various
71 intracellular signaling cascades, by decreasing second messenger and calcium signaling, while
72 inhibiting several enzymes and kinases such as glycogen synthesis kinase 3 (GSK3), extracellular-
73 regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and inositol monophosphate
74 phosphatase (IMPase) (14, 18, 19). The resulting alterations to intracellular signaling likely also
75 converge upon the regulation of gene expression, synaptic transmission and plasticity,
76 neuroprotection, and circadian biology.

77
78 Several genomic studies correlated specific loci with lithium responsiveness (20), suggesting a shared
79 genetic predisposition both to disease and response to treatment. Single nucleotide polymorphisms
80 (SNPs) in the *PLCG1* gene have been associated with response to lithium, indicating that the
81 phospholipase C (PLC)-phosphatidylinositol4,5-biphosphate (PIP2)-inositol triphosphate (IP3)
82 signaling pathway may be an important target of lithium. Interestingly, our unpublished data (72)
83 report an association between a SNP in the *GRM5* gene encoding the metabotropic glutamate
84 receptor 5 (mGluR5) and response to lithium suggesting that mGluR5 activity and downstream PLC-
85 IP3 signaling is also involved in lithium's therapeutic action. Other studies have found SNPs
86 associated with BD in the *GRIN2A*(6) and *GRIA2* genes that encode NMDA and AMPA receptor
87 subunits, respectively. Intriguingly, only SNPs in *GRIA2* were associated with lithium responsiveness
88 (5, 21), suggesting that lithium alters the regulation of Ca^{2+} -permeable AMPA receptors. Beyond
89 genomic association, it remains unclear how lithium interacts with mGluR5, *PLCG1* and *GluA2*
90 signaling to produce the beneficial outcome in lithium-responsive patients.

91

92 Here, we sought to establish a holistic appreciation of the neuronal consequences of chronic lithium
93 exposure in mouse cortical neurons and begin to determine the underlying mechanisms. We
94 performed messenger RNA (mRNA) sequencing in neurons treated chronically with lithium and
95 discovered altered transcriptional regulation of genes involved in glutamate receptor trafficking and
96 intracellular calcium signaling. We found that chronic (but not acute) lithium treatment significantly
97 reduced excitatory receptor-mediated intracellular calcium flux, specifically through the mGluR5
98 receptor. This was associated with altered phosphorylation of PKC and GSK3 kinases, reduced
99 neuronal excitability, and several alterations to synapse function. Specifically, chronic lithium
100 exposure reduced excitatory synapse activity and density, while increasing inhibitory synapse activity
101 and density. Consequently, lithium treatment altered the excitatory/inhibitory (E/I) balance in the
102 network, favouring inhibition. Together, the results shed light on how lithium may dampen neuronal
103 excitability and glutamatergic network activity, which are predicted to be overactive in the manic
104 phase of BD (22-24).

105 In addition, this discovery strengthens the potential clinical use of lithium to treat disorder with
106 altered excitatory/inhibitory network activity such as epilepsy and several forms of autism. This study
107 could also help to develop targeted strategies to restore the balance of overactive networks,
108 mimicking the therapeutic benefits of lithium, but with reduced toxicity.

109

110

111 **MATERIALS AND METHODS**

112

113 **Primary neuronal cultures and animals**

114 Cortical neurons were prepared from wild-type (WT) embryonic (E15.5) C57BL/6 mice as previously
115 described (25). Animals were maintained within the Centre for Neurological Disease Modeling
116 according to the Canadian Council on Animal Care regulations (AUP 2017-7888B). Briefly, cortical
117 neurons were plated in Neurobasal medium (ThermoFisher 21103049) supplemented with 1x B27
118 (ThermoFisher 1750044), 1x glutaMax (ThermoFisher 35050061) on 60-mm dishes or 12-mm glass
119 coverslips (VWR) pre-coated with poly-D-Lysine (0.1 mg mL⁻¹; Sigma). Neurons (600,000 cells per 60-
120 mm dish or 80,000 cells per 12-mm coverslip) were then used at 18- 20 days *in vitro* (DIV).

121

122 **Drug treatment**

123

124 The therapeutic range of LiCl (lithium) treatment is between 0.75-1.5mM. In this study, neurons were
125 treated chronically with ~1.5mM LiCl (Sigma L9650) for 7 days starting at 11 DIV post-differentiation.
126 As controls, neurons were treated with ~1.5mM of NaCl (Sigma S5886) to keep the same amount of
127 chloride in the dish as neurons treated with LiCl. Experiments were performed at 18 to 20 DIV.

128

129 **Data manipulation and statistical analyses**

130

131 Statistical analyses were performed using GraphPad Prism software (GraphPad software, Inc). All
132 data are expressed as mean ± standard error of the mean (s.e.m.). Paired t-tests (Fig 5A,B,C),
133 parametric unpaired t-tests (Figs: 2C-G; 5D-F; Supplementary Figs: 3B; 4C,f; 5A-C) or non-parametric
134 Mann-Whitney tests (Figs: 2H; 3B-E; 4; Supplementary Fig. 2A-C) were used to compare medians of
135 two sets. One-sample t-tests were used with hypothetical value 100 for control (Figs: 3G; 5G, H;
136 Supplementary Fig: 2D, E). Normality for all groups was verified using the Shapiro-Wilk tests and
137 p<0.05 was considered significant.

138

139 **Data availability**

140

141 All relevant data are in the figures and supplementary figures. Raw data could be requested from
142 the corresponding author.

143

144 A detailed “Materials and Methods” section can be found in the supplementary information.

145

146 **RESULTS**

147 **Chronic lithium treatment alters the expression of genes involved in synaptic activity, calcium**
148 **signaling and neuronal excitability.**

149 To identify the cellular processes altered by long-term exposure to lithium, we used a concentration
150 designed to match those used in clinical practice. We examined whether there were detectable
151 changes to neuronal gene expression induced by chronic lithium (cLiCl) treatment, using whole
152 transcriptome sequencing in cortical neuron cultures at 18 DIV. Thirty genes were differentially
153 expressed following 7 days of cLiCl treatment, relative to control (Fig. 1a and Supplementary Fig. 1).
154 Using Reactome and GO analyses of gene clusters, we determined which pathways were significantly
155 altered by cLiCl treatment. We identified pathways associated with trafficking of AMPA receptors,
156 glutamate binding, activation of AMPA receptors and synaptic activity ($P=9.7E-5$). Calcium ion
157 signaling ($P=4.9E-4$), CREB phosphorylation and RAS signaling ($P=2.5E-4$ and $P=2.8E-4$) pathways
158 were also implicated, as were pathways related to neurotransmission by chemical synapses ($P=1.1E-3$;
159 Fig. 1B).

160

161 **Sub-toxic lithium treatment reduces spine density and alters dendritic spine morphology**

162 The therapeutic window for lithium is very narrow (0.5 to \sim 1.5mM) and the line between efficacy and
163 toxicity is fine. It is proposed that lithium is toxic above 2mM (26); thus, we confirmed that our
164 chronic lithium treatment at \sim 1.5mM for 7 days had no detectable toxicity, as assayed by a cell
165 viability test, in primary cortical neurons (Fig. 2C).

166 Excitatory synapses develop their specialized synaptic structures as they mature, over a similar
167 timeframe *in vivo* and in primary culture. Immature postsynaptic protrusions, filopodia and thin
168 spines, re-appear on dendrites between 4 & 7 DIV after excitatory neurites have regenerated, and
169 new contacts begin to form between axons and dendrites. As postsynaptic structures mature, they
170 become shorter, fatter, and mushroom-like. By 21 DIV spine densities stabilize, with 80-90% of
171 protrusions exhibiting mature morphology (27-29). Several studies have suggested lithium treatment
172 leads to dendritic spines morphological changes (30-32). To determine whether chronic lithium
173 treatment affects dendritic spine density and maturation, we analyzed the presence and morphology
174 of dendritic protrusions in GFP-filled neurons after cLiCl treatment (Fig. 2A, B).

175

176 cLiCl treatment slightly reduced the density of protrusions in mouse cortical neurons (Fig. 2D; control
177 8.34 ± 0.21 ; cLiCl $7.33 \pm 0.21 / 10\mu\text{m}$) suggesting a reduction in the number of excitatory synapses.
178 Analyses of the morphology of the remaining protrusions showed a significant reduction of $\sim 5.3\%$ in
179 the number of mature spines (mushroom spine type, see supplementary Methods for spine
180 characterization guidelines; Fig. 2E). No changes occurred in the number of stubby spines ($\sim 25\%$), but
181 the percentage of immature spines (thin and filopodia spines) increased by $\sim 5\%$ in cLiCl-treated
182 neurons (Fig. 2F, G), matching the reduction in mature protrusions. In addition, we observed a
183 tendency towards a reduction in the mean head diameter of mature spines with cLiCl treatment,
184 from $\sim 0.68\mu\text{m}$ to $\sim 0.64\mu\text{m}$ (Fig. 2H). Together, the data show that cLiCl treatment results in smaller
185 and fewer mature spines, indicating that lithium affects either spine maturation or maintenance of
186 spine maturity in primary mouse cortical neurons.

187

188 **Lithium induces excitatory and inhibitory synaptic changes**

189 To examine whether the cLiCl induced changes to synapse densities reflecting the results obtained
190 with spines in Fig. 2, we assayed for pre- and post-synaptic markers of excitatory and inhibitory
191 synapses. To estimate excitatory synapse number, we quantified the density, intensity and
192 colocalization of the presynaptic vesicular glutamate transporter 1 (VGluT1) and postsynaptic density
193 protein 95 (PSD95; Fig. 3A, C). PSD95 puncta density was significantly reduced by cLiCl treatment
194 (control 18.9 ± 1.5 ; cLiCl 12.9 ± 0.9 puncta/ $10\mu\text{m}$), in agreement with the reduction in protrusion
195 density and number of mature spines in neurons treated with cLiCl (Fig. 3C, D). Further, there were
196 significantly fewer VGluT1/PSD95 co-clusters in cLiCl-treated neurons (control 5.9 ± 0.5 ; cLiCl $4.5 \pm$
197 0.4 co-clusters/ $10\mu\text{m}$; Fig. 3D), indicative of a reduction in excitatory synapse number after cLiCl
198 treatment. VGluT1 (and VGAT, see below) puncta intensity was increased in remaining cLiCl-treated
199 clusters (Supplementary Fig. 2B, C; VGluT1: control: 10.97 ± 0.3 ; cLiCl: 13.41 ± 0.5 a.u.; VGAT: control,
200 12.91 ± 0.4 ; LiCl, 17.07 ± 0.6 a.u.). Conversely, PSD95 puncta intensity was reduced in cLiCl-treated
201 cultures (control, 6.99 ± 0.4 ; cLiCl: 5.67 ± 0.2 a.u.; Fig. 3E), in agreement with the reduction of the
202 mean head diameter of mature spines seen in Fig 2H. Puncta density and colocalization of the
203 inhibitory presynaptic vesicular GABA transporter (VGAT) and postsynaptic GABA receptor scaffold
204 Gephyrin were also quantified (Fig. 3A, B). We observed a significant increase in the density of
205 Gephyrin puncta, and VGAT/Gephyrin co-clusters, in cLiCl-treated neurons (control: 7.34 ± 0.5 ; cLiCl:
206 11.56 ± 1.4 Gephyrin puncta/ $10\mu\text{m}$; control: 1.87 ± 0.09 ; cLiCl: 2.58 ± 0.2 of VGAT/Gephyrin co-
207 clusters/ $10\mu\text{m}$; Fig. 3B). Gephyrin puncta intensity was unchanged but VGAT puncta density was
208 increased in cLiCl-treated neurons (supplementary Fig. 2A, B). The data indicate that lithium
209 treatment increased the number of inhibitory synapses.
210

211 To further assess the reduction in number of excitatory synapses (Fig. 3D) induced by cLiCl, and
212 determine whether other synaptic changes are occurring, we measured protein levels of PSD95,
213 GluA1 and GluA2 AMPAR receptor subunits by western blot (Fig. 3F, G). GluA1 protein was
214 unchanged, whereas GluA2 and PSD95 were significantly reduced in response to cLiCl (-13.8% GluA2
215 and -16.9% PSD95 of controls; Fig. 3G). This data suggests that cLiCl treatment downregulates GluA2-
216 containing AMPA receptors, as well as the number of excitatory synapses. Interestingly, the results
217 were accentuated by a higher dose of cLiCl (3.5mM; -54.42% GluA2 and -54.49% PSD95 of controls;
218 Supplementary Fig. 2D). Notably, the expression level of AMPA receptors and PSD95 were
219 unchanged when neurons were treated acutely (aLiCl,1.5mM) for 4h (Supplementary Fig. 2E),
220 suggesting longer time is needed for LiCl to alter the levels of these proteins. The expression levels of
221 Synapsin1 and Gephyrin were unchanged by cLiCl or aLiCl (1.5mM, Fig. 3G and Supplementary Fig.
222 2D, E).
223

224 **Lithium decreases neuronal excitability and excitatory synaptic transmission, while increasing 225 inhibitory synaptic transmission**

226 To examine the functional consequence of lithium treatment on neuronal networks, we assessed
227 intrinsic membrane excitability and action potential generation, in addition to quantification of
228 excitatory and inhibitory synaptic transmission. To assess neuronal excitability, we recorded
229 membrane deflection in response to current injection (Supplementary Fig. 3B) and action potential
230 (AP) firing induced by depolarizing currents in current clamp. Although highly variable, cLiCl-treated
231 neurons appeared to fire fewer APs than control neurons (Fig. 4A-C and supplementary Fig. 3A),
232 indicating that cLiCl reduces cell excitability. We then assayed sodium and potassium currents in
233 voltage clamp and found both were reduced in cLiCl-treated neurons. Specifically, peak sodium
234 current was -16.3% of control (Fig. 4D, E; control: 4.97 ± 0.3 pA; cLiCl : 4.16 ± 0.3 pA), and slow and

235 fast potassium currents were reduced -19.3% and -12.13% in cLiCl-treated neurons, compared to
236 controls (Slow K current; control: 2.6 ± 0.15 pA; cLiCl: 2.1 ± 0.13 pA; Fast K current; control: 3.3 ± 0.19
237 pA; cLiCl: 2.9 ± 0.16 pA; Fig. 4F-H, and supplementary Fig. 3C) These data demonstrate that cLiCl
238 treatment alters sodium and potassium channel conductances, and decreases membrane excitability.
239

240 Synaptic network activity was assessed by recording quanta of AMPAR-mediated miniature
241 excitatory, and GABAR-mediated miniature inhibitory post-synaptic currents (mEPSCs and mIPSCs) by
242 voltage-clamp recording (Fig. 4I, K). In neurons treated with cLiCl, mEPSC event amplitude was 27%
243 increased compared to control neurons (control: 29.67 ± 1.5 pA; cLiCl: 37.71 ± 1.9 pA) and event
244 frequency was reduced by 47% (control: 12.44 ± 1.4 Hz; cLiCl: 6.5 ± 1 Hz; Fig. 2J and supplementary
245 Fig. 4A, B), while no changes were observed in event decay tau (Fig. 4J). Event amplitude was not
246 different for mIPSCs (control: 23.46 ± 1.8 pA; cLiCl: 24.25 ± 1.9 pA), but there was a significant
247 increase in mIPSC event frequency in cLiCl treated cultures (control: 3.3 ± 0.35 Hz; cLiCl: 4.8 ± 0.53
248 Hz; Fig. 4L and supplementary Fig. 4D, E), and again no change in event decay tau (Fig. 4I). Measures
249 of membrane properties of voltage-clamp recordings can be found in supplementary Fig 4C, F.
250 Together, electrophysiological experiments demonstrate that cLiCl treatment alters synaptic network
251 properties by decreasing excitatory and increasing inhibitory activity.
252
253

254 **Chronic lithium treatment downregulates mGluR-mediated calcium response and signaling.**

255 Since cLiCl treatment downregulated the major depolarizing AMPAR current at glutamatergic
256 synapses, it is of interest to determine which regulatory signal transduction pathways are altered,
257 and whether any changes in these are a consequence, or cause, of altered synaptic transmission. To
258 this end, we investigated ionotropic and metabotropic glutamate receptor-mediated calcium
259 signaling, in cultures acutely or chronically treated with LiCl. Ratiometric calcium imaging was
260 conducted to measure intracellular calcium levels and flux upon stimulation. Tetrodotoxin (TTX) was
261 added to block sodium channels and action potential burst firing, thus calcium flux was directly in
262 response to glutamate receptor activation. The intracellular calcium level at rest was similar between
263 cLiCl and control-treated neurons (Supplementary Fig. 5A). Control neurons were first exposed to
264 repeated glutamate pulses, which did not attenuate calcium (Ca^{2+}) flux upon repeated applications
265 (Supplementary Fig. 5B). Then, following exposure to $1\mu M$ glutamate, an acute (5min $1.5mM$) LiCl
266 treatment was applied prior to repeated glutamate stimulations. The second calcium response was
267 similar to the first, indicating that LiCl does not directly reduce glutamate-induced Ca^{2+} flux or act as
268 an antagonist of glutamate receptors (Fig. 5A). The use of specific agonists of NMDA (Fig. 5B) and
269 mGluR5 (Fig. 5C) shows that acute LiCl treatment had no differential effect on either NMDA or
270 mGluR5-mediated Ca^{2+} responses (Fig. 5B, C). A medium-term LiCl treatment for 4h similarly did not
271 alter glutamate-induced Ca^{2+} flux (supplementary Fig 5C).
272

273 In contrast to acute application, glutamate stimulation of neurons that were chronically treated with
274 cLiCl (7 days) exhibited a significant decrease in Ca^{2+} response amplitude (cLiCl: $\Delta F=73.9\%$ of control;
275 Fig. 5D). The amplitude of the Ca^{2+} response upon specific activation of NMDA receptors was
276 unchanged, indicating that chronic LiCl treatment did not affect NMDAR-mediated Ca^{2+} responses
277 (Fig. 5E). Conversely, cLiCl treatment significantly reduced Ca^{2+} response amplitude produced by
278 direct stimulation of mGluR5 (by DHPG agonism; cLiCl, $\Delta F=70.8\%$ of control; Fig. 5F). The data suggest
279 that cLiCl exposure specifically reduces Ca^{2+} release from the endoplasmic reticulum (ER). This
280 attenuation of Ca^{2+} responses to glutamate and DHPG stimulation could be due to impaired receptor
281 activation e.g., a reduction in the number or sensitivity of mGluR5 receptors at the cell surface, or IP3

282 receptors on the ER. Alternatively, lithium may affect the mGluR5-PLC-PIP2-DAG-IP3 signaling
283 cascade, i.e. through altered PLC activation, PIP2 hydrolysis or DAG and IP3 availability in the cell.
284 Either possibility would result in reduced ER calcium release.

285 To determine whether cLiCl-induced attenuation of glutamate-mediated Ca^{2+} responses affects
286 downstream signaling pathways, we assayed a major downstream target of mGluR5 activation,
287 protein kinase C (PKC), which is responsible for regulating a wide range of neuronal function, such as
288 excitability, neurotransmission, and plasticity (33-37). PKC γ isoform is exclusively expressed in the
289 brain, and its activity is regulated by phosphorylation at threonine 514 (phPKC γ). The levels of
290 phPKC γ measured by Western Blot from neurons treated with 2, 5 and 10mM of LiCl for 4h were
291 similar to controls (Fig. 5G). However, phPKC γ levels, were reduced following cLiCl (1.5mM)
292 treatment (a reduction of 21.67%; Fig. 5G). Our data demonstrate that PKC γ activity is not directly
293 affected by LiCl, but is a consequence of prolonged exposure.

294
295 A second major downstream effector of mGluR5 stimulation is GSK3 β , a kinase involved in several
296 neuronal processes such as cytoskeletal reorganization and neuroplasticity (38). Phosphorylation of
297 GSK3B at the Serine 9 (phGSK3 β) residue inhibits GSK3 β kinase activity. In contrast to acute LiCl
298 effects on PKC, a 4h LiCl treatment with increasing concentrations (2, 5 and 10mM) and chronic LiCl
299 treatment both significantly increased phGSK3 β , in a dose-dependent manner (Fig. 5H). These results
300 demonstrate that LiCl has a rapid, and likely direct, effect on GSK3 β kinase activity (LiCl 2mM: 144%;
301 LiCl 5mM: 147%; LiCl 10mM: 163% and cLiCl 1.5mM: 129.5% of controls).

302
303

304

305 **DISCUSSION**

306 Here, we provide the first holistic report of chronic lithium treatment decreasing the balance of
307 excitatory to inhibitory synaptic transmission in cortical neuron networks. This appeared to be a
308 result of altered intracellular calcium signal transduction, expressed by changes to the number and
309 function of excitatory, and inhibitory synaptic connections.

310 Throughout development and into adulthood, neural connectivity at synapses is subject to dynamic
311 regulation including formation, maintenance, and elimination of synapses themselves. Synaptic
312 transmission is believed to be the means by which all experiences and motivations are stored and
313 utilized, and synaptic plasticity (rapid, activity-dependent alterations to synaptic transmission) is the
314 leading candidate for the cellular basis of learning and memory. In the mammalian forebrain, most
315 excitatory synapses occur on dendritic spines, and changes to their number, morphology, and activity
316 are modelled by increases (long term potentiation; LTP) and decreases (long-term depression; LTD) in
317 synaptic weighting (39, 40). With LTP, spines enlarge and become more mushroom-like, whereas LTD
318 is associated with spine shrinkage. Disruptions to dendritic spine shape, size or number accompany
319 many neurodegenerative diseases, and it has been suggested that dendritic spine alterations are also
320 the substrate of many neuropsychiatric disorders, particularly those that involve deficits in
321 information processing, such as autism spectrum disorder and schizophrenia (40).

322 Decreased spine density has been shown *post-mortem* in a preliminary study of the subiculum in
323 mood disorder patients (41), and the prefrontal cortex of BD patients (42). It is unclear how reduced
324 spine density in these individuals might reflect a general state of the condition, a brain region-specific
325 effect, or whether it could even be a result of successful medication. In our hands, lithium reduced
326 measures of excitatory spine maturity, and appeared to utilize processes similar to those employed
327 during physiological LTD, decreasing excitatory activity and the number of mature vs. immature
328 spines. The increase of mEPSC amplitude observed here in neurons treated with cLiCl could reflect
329 the increase of immature spines phenotype as suggested in previous studies (43-45).

330
331 In support of our results, chronic lithium treatment reduced spine density in a Fragile X mouse model
332 (30). However, spine density was shown to be increased with acute lithium treatment in a DIXDC1 KO
333 mouse model of depression (31). It may be that lithium generally facilitates network rearrangements
334 and normalizes spine dysfunction in whichever direction is required, but further investigations may
335 provide consensus on which direction and over what time-frame changes usually occur. It has also
336 been proposed that lithium rescues spine pathology in BD by reducing phosphorylation of the
337 cytoskeleton regulator collapsing response mediator protein-2 (CRPM2) (32), in rat hippocampal
338 cultures, chronic treatment with a dose 2x higher than here, resulted in enlarged spines and
339 increased spine density. Here, we found that chronic lithium not only reduced spine number, but also
340 decreased the percentage of mature spines, mature spine width, and PSD95 puncta intensity. These
341 discrepancies may be due to the higher dose and/or different responses between rat hippocampus
342 and mouse cortex. More studies will be required to settle this discrepancy.

343
344 Several rodent models of mania have been generated which traditionally relied upon
345 pharmacological (e.g., psychostimulant amphetamine-induced) or environmental (sleep deprivation-
346 induced) stresses to induce mania-like states, and more recently several transgenic mice have been
347 developed (46, 47). A recent study using knock-in mice of the Ank3 W1989R (48), a variant reported
348 as carried by a BD family (and found in approximately 1:10,000 European Americans) (49), showed a
349 reduction in mIPSCs and an increase in mEPSC frequency, leading to neuronal hyperexcitability. If this
350 is the case in untreated lithium-responsive patients, then our finding that chronic lithium treatment

351 has the opposite effect may explain its therapeutic effect. This could also explain the efficacy of
352 lithium in BD Ank3 mutation carriers(48). Elsewhere, Yang et al (50) generated forebrain-specific
353 PLC γ 1 knock-out mice that exhibited manic-like behavior and cognitive deficits associated with a
354 significant reduction in mIPSC frequency. Here, we show that chronic lithium treatment promotes
355 inhibitory transmission, and increases gephyrin clusters at inhibitory synapses. Together, these
356 studies suggest that manic phases correspond to an increased E/I synaptic ratio. Our results are in
357 line with other studies (51, 52) indicating that chronic lithium treatment can counteract
358 abnormalities in E/I circuit balance observed in the mania state of BD animal models, by rearranging
359 the number, morphology and function of excitatory and inhibitory synapses, in a manner that favours
360 inhibition. On this note, elsewhere, lithium has also been shown to reduce synaptic AMPA receptor
361 expression (53-55), again consistent with the reduction in excitatory synapse number observed here.
362

363 An important aspect of our results is the demonstration that chronic effects of lithium are distinct
364 from acute effects. Specifically, lithium treatment from 5min to 4h did not affect glutamate-mediated
365 Ca $^{2+}$ responses, demonstrating that lithium did not act as an antagonist of glutamate receptor
366 transmission in our hands. Conversely, mGluR5 glutamate receptor-mediated Ca $^{2+}$ signaling was
367 specifically reduced in neurons chronically treated with LiCl, suggesting that time is required for
368 lithium to attenuate the mGluR5-PIP2-IP3 pathway. Sourial-Bassilious et al (56) concluded lithium
369 attenuates intracellular Ca $^{2+}$ levels due to the downregulation of mGluR5 expression at the plasma
370 membrane, as well as a decrease in intracellular Ca $^{2+}$ in the ER. Others have suggested lithium
371 inhibits inositol monophosphatase and inositol polyphosphate-1-phosphatase, in addition to the
372 inositol transporter (57). This would reduce PIP2 and IP3 availability in the cell to trigger Ca $^{2+}$ release
373 from the ER. Either way, we sought to find out whether a decrease in Ca $^{2+}$ signaling caused by
374 chronic lithium treatment altered downstream effectors.
375

376 Our results demonstrate that chronic and acute lithium inhibit GSK3 β kinase activity, in a dose
377 dependent manner, but only chronic treatment reduces PKC γ kinase activity. These two kinases are
378 major regulators of synaptic receptor traffic and function (58), actin cytoskeleton reorganization,
379 neuronal transmission and plasticity, as well as gene expression (37, 38, 59-61). This may be the
380 primary mechanism by which lithium acts to prevent mania in BD, where the glutamatergic system is
381 predicted to be overactivated (22-24) and the inhibitory system downregulated (62, 63). On this
382 background, increased PKC activity and levels have been found *post-mortem* in the frontal cortex of
383 bipolar patients. Furthermore, PKC hyperactivity has been detected in the blood of BD patients (64)
384 and animal models of mania, in agreement with our conclusions here and in support of the potential
385 for PKC inhibitors as therapeutics for mania in BD (59, 65-67). It has been previously shown that
386 lithium can reduce glutamatergic neurotransmission by slowing synaptic vesicle (SV) exocytosis (68).
387 This may explain increased VGlut1 cluster intensity we saw here (Supplementary Fig. 2b, c). Although
388 evidence is lacking for how lithium might alter the kinetics of the SV cycle, we would expect reduced
389 GSK3 and PKC activity to impact presynaptic function. It may also be that intracellular Ca $^{2+}$ signaling,
390 via presynaptic mGluR5 autoreceptors (69) is reduced, which may impair vesicular release (70).
391
392

393 Recent advances in human induced pluripotent stem cell (iPSC) technology have provided the means
394 by which to study an individual patient's neurons. Recently, Mertens et al (71) discovered
395 hyperexcitability in iPSC-derived hippocampal-like neurons from BD patients, which was reversed by
396 lithium treatment (in cells from BD lithium responders). These tools will facilitate our future studies
397 of lithium's mode of action, at the cellular and network level, in neurons from BD lithium responders

398 vs non-responders. We will also determine whether the working model we provide here operates in
399 human scenarios. Ongoing efforts will examine the mGluR5-PLC-IP3 intracellular Ca^{2+} signaling
400 pathway in neurons from BD lithium responders, and the effects of lithium treatment. We hope this
401 will facilitate development of novel disease-modifying therapies for BD, with the same therapeutic
402 benefit of lithium, but with less side-effects.
403

404 **ACKNOWLEDGMENTS**

405 We gratefully acknowledge the financial supports from Fonds de recherche en santé du Québec
406 (FRSQ), Ellen foundation and Killam to A.J.M, the Canadian Institutes of Health Research (CIHR) grant
407 (#332971 to G.A.R), ERA PerMed grant to MA and G.A.R, the Healthy Brains for Healthy Lives (HBHL)
408 and Bettencourt-Schueller fondation grants to BC and the RI-MUHC 2020 fellowship to LS. We also
409 thank the microscopy platform of the Montreal Neurological Institute (MNI) and the Molecular Tools
410 Platform of the CERVO Brain Research Center for providing us the AAV constructs. We would also like
411 to thank the animal care facility of MNI and Bruno Vieira for assistance with mice handling. We also
412 thank Dr Simon Wing lab for the kind gift of reagents. G.A.R. holds a Canada Research Chair in
413 Genetics of the Nervous System and the Wilder Penfield Chair in Neurosciences. C.L. is a recipient of
414 the Vanier Canada Graduate Scholarship from the CIHR.
415

416 **AUTHOR CONTRIBUTIONS**

417 AK performed all the spine morphology, density and excitatory/inhibitory synapses analyses. AK,
418 AKam and NK performed the electrophysiological recordings, analyzed by AK. A.R.A performed and
419 analyzed the calcium imaging experiments. CL analyzed the RNA sequencing. LS performed the cell
420 viability test and provided some computational tools to analyze imaging data. AK prepared all
421 neuronal cultures and all biochemical experiments. AK, A.J.M and G.A.R contributed to study design,
422 curation and development, and data interpretation. A.J.M and G.A.R provided the overall supervision
423 and funding. AK wrote the original draft and all authors revised and commented on the manuscript,
424 edited by A.J.M.
425

426 **AUTHOR CONTRIBUTIONS**

427 All the authors declare no conflict of interest.
428

429 **REFERENCES**

- 430 1. Angst J. The emerging epidemiology of hypomania and bipolar II disorder. *Journal of affective disorders*. 1998;50(2-3):143-51.
- 431 2. Moreira ALR, Van Meter A, Genzlinger J, Youngstrom EA. Review and Meta-Analysis of Epidemiologic Studies of Adult Bipolar Disorder. *The Journal of clinical psychiatry*. 2017;78(9):e1259-e69.
- 432 3. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, et al. Bipolar disorders. *Nat Rev Dis Primers*. 2018;4:18008.
- 433 4. Forstner AJ, Hofmann A, Maaser A, Sumer S, Khudayberdiev S, Muhleisen TW, et al. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. *Translational psychiatry*. 2015;5:e678.
- 434 5. Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J, et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. *The American journal of psychiatry*. 2009;166(6):718-25.
- 435 6. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. *Nat Genet*. 2019;51(5):793-803.
- 436 7. Cipriani A, Hawton K, Stockton S, Geddes JR. Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. *BMJ (Clinical research ed)*. 2013;346:f3646.
- 437 8. Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. *Int J Bipolar Disord*. 2016;4(1):27-.
- 438 9. Hayes JF, Marston L, Walters K, Geddes JR, King M, Osborn DP. Lithium vs. valproate vs. olanzapine vs. quetiapine as maintenance monotherapy for bipolar disorder: a population-based UK cohort study using electronic health records. *World psychiatry : official journal of the World Psychiatric Association (WPA)*. 2016;15(1):53-8.
- 439 10. Miura T, Noma H, Furukawa TA, Mitsuyasu H, Tanaka S, Stockton S, et al. Comparative efficacy and tolerability of pharmacological treatments in the maintenance treatment of bipolar disorder: a systematic review and network meta-analysis. *The lancet Psychiatry*. 2014;1(5):351-9.
- 440 11. Rybakowski JK. Response to lithium in bipolar disorder: clinical and genetic findings. *ACS chemical neuroscience*. 2014;5(6):413-21.
- 441 12. Rybakowski JK, Chlopocka-Wozniak M, Suwalska A. The prophylactic effect of long-term lithium administration in bipolar patients entering treatment in the 1970s and 1980s. *Bipolar disorders*. 2001;3(2):63-7.
- 442 13. Anand A, Nakamura K, Spielberg JM, Cha J, Karne H, Hu B. Integrative analysis of lithium treatment associated effects on brain structure and peripheral gene expression reveals novel molecular insights into mechanism of action. *Translational psychiatry*. 2020;10(1):103.
- 443 14. Malhi GS, Tanius M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. *Current understanding*. *CNS drugs*. 2013;27(2):135-53.
- 444 15. Hokin LE, Dixon JF, Los GV. A novel action of lithium: stimulation of glutamate release and inositol 1,4,5 trisphosphate accumulation via activation of the N-methyl D-aspartate receptor in monkey and mouse cerebral cortex slices. *Advances in enzyme regulation*. 1996;36:229-44.
- 445 16. Dixon JF, Hokin LE. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. *Proceedings of the National Academy of Sciences*. 1998;95(14):8363.
- 446 17. Nonaka S, Hough CJ, Chuang DM. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. *Proc Natl Acad Sci U S A*. 1998;95(5):2642-7.
- 447 18. Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. *Molecular psychiatry*. 2015;20(6):661-70.
- 448 19. Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks.

479 20. Turecki G, Grof P, Grof E, D'Souza V, Lebuis L, Marineau C, et al. Mapping susceptibility genes
480 for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. *Molecular
481 psychiatry*. 2001;6(5):570-8.

482 21. Seelan RS, Khalyfa A, Lakshmanan J, Casanova MF, Parthasarathy RN. Deciphering the lithium
483 transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells.
484 *Neuroscience*. 2008;151(4):1184-97.

485 22. Michael N, Erfurth A, Ohrmann P, Gossling M, Arolt V, Heindel W, et al. Acute mania is
486 accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex.
487 *Psychopharmacology*. 2003;168(3):344-6.

488 23. Ongür D, Jensen JE, Prescott AP, Stork C, Lundy M, Cohen BM, et al. Abnormal glutamatergic
489 neurotransmission and neuronal-glial interactions in acute mania. *Biological psychiatry*.
490 2008;64(8):718-26.

491 24. Ng WX, Lau IY, Graham S, Sim K. Neurobiological evidence for thalamic, hippocampal and
492 related glutamatergic abnormalities in bipolar disorder: a review and synthesis. *Neuroscience and
493 biobehavioral reviews*. 2009;33(3):336-54.

494 25. Khayachi A, Gwizdek C, Poupon G, Alcor D, Chafai M, Casse F, et al. Sumoylation regulates
495 FMRP-mediated dendritic spine elimination and maturation. *Nat Commun*. 2018;9(1):757.

496 26. Hedya SA, Avula A, Swoboda HD. Lithium Toxicity. *StatPearls*. Treasure Island (FL): StatPearls
497 Publishing

498 StatPearls Publishing LLC.; 2020.

499 27. Papa M, Bundman MC, Greenberger V, Segal M. Morphological analysis of dendritic spine
500 development in primary cultures of hippocampal neurons. *J Neurosci*. 1995;15(1 Pt 1):1-11.

501 28. Boyer C, Schikorski T, Stevens CF. Comparison of Hippocampal Dendritic Spines in Culture and
502 in Brain. *The Journal of Neuroscience*. 1998;18(14):5294.

503 29. Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T. Drebrin-dependent actin clustering
504 in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine
505 morphogenesis. *J Neurosci*. 2003;23(16):6586-95.

506 30. Liu ZH, Chuang DM, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of
507 fragile X syndrome. *The international journal of neuropsychopharmacology*. 2011;14(5):618-30.

508 31. Martin PM, Stanley RE, Ross AP, Freitas AE, Moyer CE, Brumback AC, et al. DIXDC1
509 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse
510 density via GSK3 and Wnt/beta-catenin signaling. *Molecular psychiatry*. 2018;23(2):467-75.

511 32. Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the
512 lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal
513 modulator in bipolar pathogenesis. *Proc Natl Acad Sci U S A*. 2017;114(22):E4462-e71.

514 33. Saito N, Shirai Y. Protein kinase C gamma (PKC gamma): function of neuron specific isotype.
515 *Journal of biochemistry*. 2002;132(5):683-7.

516 34. Callender Julia A, Newton Alexandra C. Conventional protein kinase C in the brain: 40 years
517 later. *Neuronal Signaling*. 2017;1(2).

518 35. Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassoria SS, Carvalho AF, et al. Role of Protein
519 Kinase C in Bipolar Disorder: A Review of the Current Literature. *Molecular Neuropsychiatry*.
520 2017;3(2):108-24.

521 36. Freeley M, Kelleher D, Long A. Regulation of Protein Kinase C function by phosphorylation on
522 conserved and non-conserved sites. *Cellular signaling*. 2011;23(5):753-62.

523 37. Sossin WS. Isoform specificity of protein kinase Cs in synaptic plasticity. *Learning & memory*
524 (Cold Spring Harbor, NY). 2007;14(4):236-46.

525 38. Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 Function in the Brain during Development,
526 Neuronal Plasticity, and Neurodegeneration. *Int J Alzheimers Dis*. 2011;2011:189728-.

527 39. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the
528 hippocampus. *Nature*. 1993;361(6407):31-9.

529 40. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in
530 neuropsychiatric disorders. *Nat Neurosci*. 2011;14(3):285-93.

531 41. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, et al. Structural abnormalities of
532 subiculum dendrites in subjects with schizophrenia and mood disorders: preliminary findings. *Archives*
533 of general psychiatry

534 2000;57(4):349-56.

535 42. Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in
536 schizophrenia and bipolar disorder. *JAMA psychiatry*. 2014;71(12):1323-31.

537 43. Segal M, Greenberger V, Korkotian E. Formation of dendritic spines in cultured striatal
538 neurons depends on excitatory afferent activity. 2003;17(12):2573-85.

539 44. Segal M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic
540 spines to enhance neuronal viability. 2010;31(12):2178-84.

541 45. Segal M. Dendritic spines and long-term plasticity. *Nature Reviews Neuroscience*.
2005;6(4):277-84.

542 46. Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future.
543 *Neuroscience*. 2016;321:163-88.

544 47. Lee Y, Zhang Y, Kim S, Han K. Excitatory and inhibitory synaptic dysfunction in mania: an
545 emerging hypothesis from animal model studies. *Experimental & molecular medicine*. 2018;50(4):12.

546 48. Nelson AD, Caballero-Floran RN, Rodriguez Diaz JC, Hull JM, Yuan Y, Li J, et al. Ankyrin-G
547 regulates forebrain connectivity and network synchronization via interaction with GABARAP.
548 *Molecular psychiatry*. 2018.

549 49. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-
550 coding genetic variation in 60,706 humans. *Nature*. 2016;536(7616):285-91.

551 50. Yang YR, Jung JH, Kim SJ, Hamada K, Suzuki A, Kim HJ, et al. Forebrain-specific ablation of
552 phospholipase Cgamma1 causes manic-like behavior. *Molecular psychiatry*. 2017;22(10):1473-82.

553 51. Motohashi N, Ikawa K, Kariya T. GABAB receptors are up-regulated by chronic treatment with
554 lithium or carbamazepine. *GABA hypothesis of affective disorders?* *European journal of*
555 *pharmacology*. 1989;166(1):95-9.

556 52. Tyagarajan SK, Ghosh H, Yevenes GE, Nikonenko I, Ebeling C, Schwerdel C, et al. Regulation of
557 GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin.
558 *Proc Natl Acad Sci U S A*. 2011;108(1):379-84.

559 53. Du J, Creson TK, Wu L-J, Ren M, Gray NA, Falke C, et al. The role of hippocampal GluR1 and
560 GluR2 receptors in manic-like behavior. *J Neurosci*. 2008;28(1):68-79.

561 54. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST, et al. Modulation of synaptic plasticity by
562 antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. *J Neurosci*.
563 2004;24(29):6578-89.

564 55. Gray NA, Du J, Falke CS, Yuan P, Manji HK. Lithium regulates total and synaptic expression of
565 the AMPA glutamate receptor GluR2 in vitro and in vivo. *Annals of the New York Academy of*
566 *Sciences*. 2003;1003:402-4.

567 56. Sourial-Bassillious N, Rydelius PA, Aperia A, Aizman O. Glutamate-mediated calcium signaling:
568 a potential target for lithium action. *Neuroscience*. 2009;161(4):1126-34.

569 57. Harwood AJ. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited.
570 *Molecular psychiatry*. 2005;10(1):117-26.

571 58. Wei J, Liu W, Yan Z. Regulation of AMPA receptor trafficking and function by glycogen
572 synthase kinase 3. *J Biol Chem*. 2010;285(34):26369-76.

573 59. Abrial E, Lucas G, Scarna H, Haddjeri N, Lambas-Senas L. A role for the PKC signaling system in
574 the pathophysiology and treatment of mood disorders: involvement of a functional imbalance?
575 *Molecular neurobiology*. 2011;44(3):407-19.

576 60. Jaworski T, Banach-Kasper E, Gralec K. GSK-3beta at the Intersection of Neuronal Plasticity
577 and Neurodegeneration. *Neural Plast*. 2019;2019:4209475.

578 61. Lee H-K. Synaptic plasticity and phosphorylation. *Pharmacol Ther*. 2006;112(3):810-32.

579 62. Brambilla P, Perez J, Barale F, Schettini G, Soares JC. GABAergic dysfunction in mood
580 disorders. *Molecular psychiatry*. 2003;8(8):721-37, 15.

581 63. Ruiz-Veguilla M, Martin-Rodriguez JF, Palomar FJ, Porcacchia P, Alvarez de Toledo P, Perona-
582 Garcelan S, et al. Trait- and state-dependent cortical inhibitory deficits in bipolar disorder. *Bipolar
583 disorders*. 2016;18(3):261-71.

584 64. Hahn CG, Friedman E. Abnormalities in protein kinase C signaling and the pathophysiology of
585 bipolar disorder. *Bipolar disorders*. 1999;1(2):81-6.

586 65. Szabo ST, Machado-Vieira R, Yuan P, Wang Y, Wei Y, Falke C, et al. Glutamate receptors as
587 targets of protein kinase C in the pathophysiology and treatment of animal models of Mania.
588 *Neuropharmacology*. 2009;56(1):47-55.

589 66. Einat H, Yuan P, Szabo ST, Dogra S, Manji HK. Protein Kinase C Inhibition by Tamoxifen
590 Antagonizes Manic-Like Behavior in Rats: Implications for the Development of Novel Therapeutics for
591 Bipolar Disorder. *Neuropsychobiology*. 2007;55(3-4):123-31.

592 67. Abrial E, Bétourné A, Etiévant A, Lucas G, Scarna H, Lambás-Señas L, et al. Protein Kinase C
593 Inhibition Rescues Manic-Like Behaviors and Hippocampal Cell Proliferation Deficits in the Sleep
594 Deprivation Model of Mania. *International Journal of Neuropsychopharmacology*. 2015;18(2).

595 68. Tang W, Cory B, Lim KL, Fivaz M. The mood stabilizer lithium slows down synaptic vesicle
596 cycling at glutamatergic synapses. *bioRxiv*. 2019:780866.

597 69. Musante V, Neri E, Feligioni M, Puliti A, Pedrazzi M, Conti V, et al. Presynaptic mGlu1 and
598 mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings.
599 *Neuropharmacology*. 2008;55(4):474-82.

600 70. Pittaluga A. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System.
601 *Front Pharmacol*. 2016;7:295-.

602 71. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in
603 hyperexcitable neurons from patients with bipolar disorder. *Nature*. 2015;527(7576):95-9.

604 72 Nunes A, Stone W, Ardau R, Berghöfer A, Bocchetta A, Chillotti C, et al. Exemplar Scoring
605 Identifies Genetically Separable Phenotypes of Lithium Responsive Bipolar Disorder. Our
606 unpublished data.

607

608 **FIGURE LEGENDS**
609

610 **Figure 1: Chronic lithium treatment alters gene expression in mouse cortical neurons.**

611 **A)** Gene clustering of differentially expressed genes of primary cortical mouse neurons at 18 DIV
612 treated chronically with LiCl (1.5mM) for 7 days compared to controls. Each gene cluster is identified
613 by a color. **B)** Significant pathways of gene clusters identified through gene network analysis for
614 lithium treatment effect on primary cortical mouse neurons.
615

616 **Figure 2: Chronic lithium treatment leads to changes in spine morphology.**

617 **A)** Representative confocal image of dendrites expressing free GFP, bar 10 μ m. **B)** enlargement of a
618 dendrite expressing free GFP treated or not with LiCl (1.5mM) for 7 days, bar 10 μ m. **C)** Cell viability
619 test shows no toxic effect of LiCl (1.5mM) on neurons treated for 7 days, from 5 independent
620 experiments. Scatter plots show the density of protrusions (**D**) and the relative proportion of
621 mushroom spines (**E**) stubby spines (**F**) and thin spines (**G**) treated or not with LiCl for 7 days. **H)**
622 Scatter plots show the spine head mushroom diameter from neurons treated or not by LiCl. Data
623 shown in **C-H** are the mean \pm s.e.m. and statistical significance determined by parametric unpaired t-
624 test for **C-G** and non-parametric Mann-Whitney test for **H**. N=~5000 protrusions per condition from
625 ~45 neurons from four independent experiments, *** p < 0.0005, ** p = 0.0013.
626

627 **Figure 3: Chronic lithium treatment induces excitatory and inhibitory synaptic changes.**

628 **A)** Representative confocal image of dendrites expressing free GFP from neurons treated or not with
629 LiCl (1.5mM) for 7 days, with antibodies directed against Vgat and Gephyrin. Arrowheads show the
630 Vgat and Gephyrin puncta localization and the co-localization between Vgat and Gephyrin in the
631 merge indicating the inhibitory synapses. Bar, 10 μ m. **B)** Scatter plots show quantification of Gephyrin
632 puncta density/10 μ m and Vgat-Gephyrin co-cluster density representing the density of inhibitory
633 synapses per 10 μ m from secondary/tertiary dendrites from neurons treated or not with LiCl (1.5mM)
634 for 7 days. N = 32 neurons per condition from three separate experiments.

635 **C)** Representative confocal image of dendrites expressing free GFP from neurons treated or not with
636 LiCl (1.5mM) for 7 days, with antibodies directed against Vglut1 and PSD95. Arrowheads show the
637 Vglut1 and PSD95 puncta localization and the co-localization between Vglut1 and PSD95 in the merge
638 indicating the excitatory synapses. Bar, 5 μ m. **D)** Scatter plots show quantification of PSD95 puncta
639 density/10 μ m and Vglut1-PSD95 co-cluster density representing the density of excitatory synapses
640 per 10 μ m from secondary/tertiary dendrites as well as PSD95 puncta intensity **E** from neurons
641 treated or not with LiCl (1.5mM) for 7 days. N = 30 neurons per condition from three separate
642 experiments. Data shown in **B-E** are the mean \pm s.e.m. and statistical significance was determined
643 using a non-parametric Mann-Whitney test.

644 **F)** Representative immunoblots anti-Synapsin1, GluA1, GluA2, PSD95, Gephyrin and GAPDH of 18 DIV
645 neuronal extract from neurons treated chronically or not with LiCl (1.5mM). **G)** Quantification with
646 scatter plot of some presynaptic and postsynaptic protein expression levels normalized with GAPDH
647 and represented as percentage of control of 18 DIV neuronal extract from neurons treated
648 chronically or not with LiCl (1.5mM) from three to seven separate experiments. Data show the
649 mean \pm s.e.m and statistical significance was determined using one sample t test with hypothetical
650 value 100 for control.
651
652

653 **Figure 4: Chronic lithium treatment reduces neuronal excitability and excitatory transmission, while**
654 **increasing inhibitory synaptic transmission.**

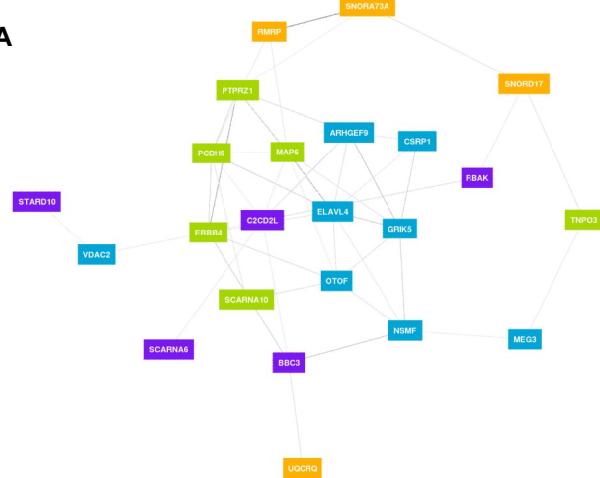
655 Representative action potential trains in control **(A)** and chronically LiCl (1.5mM) treated neurons **(B)**
656 at DIV 18, in response to a 1 second depolarizing 120 pA current step from ~-65mV. **C**) Frequency-
657 current (F-I) plot among repetitively-firing neurons. Frequency represents the mean number of
658 spikes/second from ~32 neurons per condition from four independent experiments.
659 Voltage dependence of the amplitude of the sodium current in **D** and quantification of the peak
660 amplitude of sodium currents in neurons treated or not chronically with LiCl (1.5mM) in **E**. Voltage
661 dependence of the amplitude of the slow potassium current in **F** and quantifications of the peak
662 amplitude of the slow and fast potassium currents in neurons treated or not chronically with LiCl
663 (1.5mM) in **G** and **H**. The data from **D-H** are from five separate experiments and show the
664 mean ± s.e.m and statistical significance was determined by a non-parametric Mann-Whitney test.
665 **I**) Representative sample traces of mEPSCs from neurons treated or not with LiCl (1.5mM) for 7 days.
666 Scale bar showed as inset. **J**) Scatter plot show quantification of amplitude, frequency and decay tau
667 of mEPSCs of ~45 neurons from four independent experiments. **K**) Representative sample traces of
668 mIPSCs from neurons treated or not with LiCl (1.5mM) for 7 days. Scale bar showed as inset. **L**)
669 Scatter plot show quantification of amplitude, frequency and decay tau of mIPSCs of ~26 neurons
670 from three independent experiments. Data shown in **J** and **L** are the mean ± s.e.m. and statistical
671 significance determined by non-parametric Mann-Whitney test.

672

673 **Figure 5: Chronic lithium treatment reduces mGluR-mediated calcium response and signaling.**

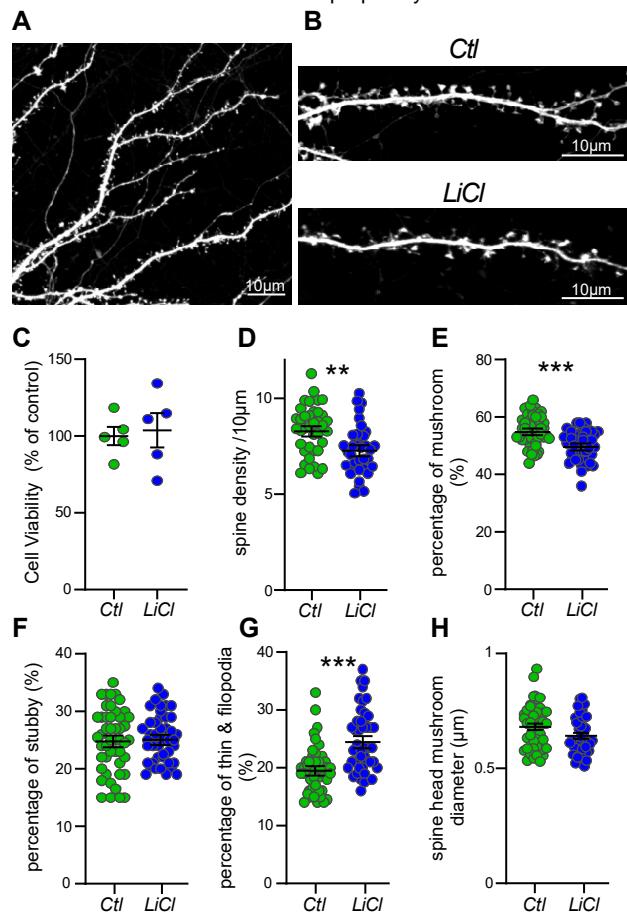
674 **A-C**) Representative sample traces of calcium responses after glutamate (1 μ M), NMDA (10 μ M) and
675 DHPG (100 μ M) stimulation with histograms showing the quantification of calcium changes upon
676 stimulation in mouse primary cortical neurons. The second stimulations are preceded by acute LiCl
677 (1.5mM) treatment of 5min, then followed by 2sec of KCl stimulation. **D-F**) Representative sample
678 traces of calcium responses after glutamate (1 μ M), NMDA (10 μ M) and DHPG (100 μ M) stimulation
679 with histograms showing the quantification of calcium changes as percentage of control upon drugs
680 stimulations in mouse primary cortical neurons chronically treated or not with LiCl (1.5mM) for 7
681 days. Number of neurons is indicated on each histogram from 3 independent experiments. Data
682 shown in **A-F** are the mean ± s.e.m. and statistical significance determined by paired t-test for acute
683 treatment **(A-C)** and unpaired t-test for chronic treatment **(D-F)**.

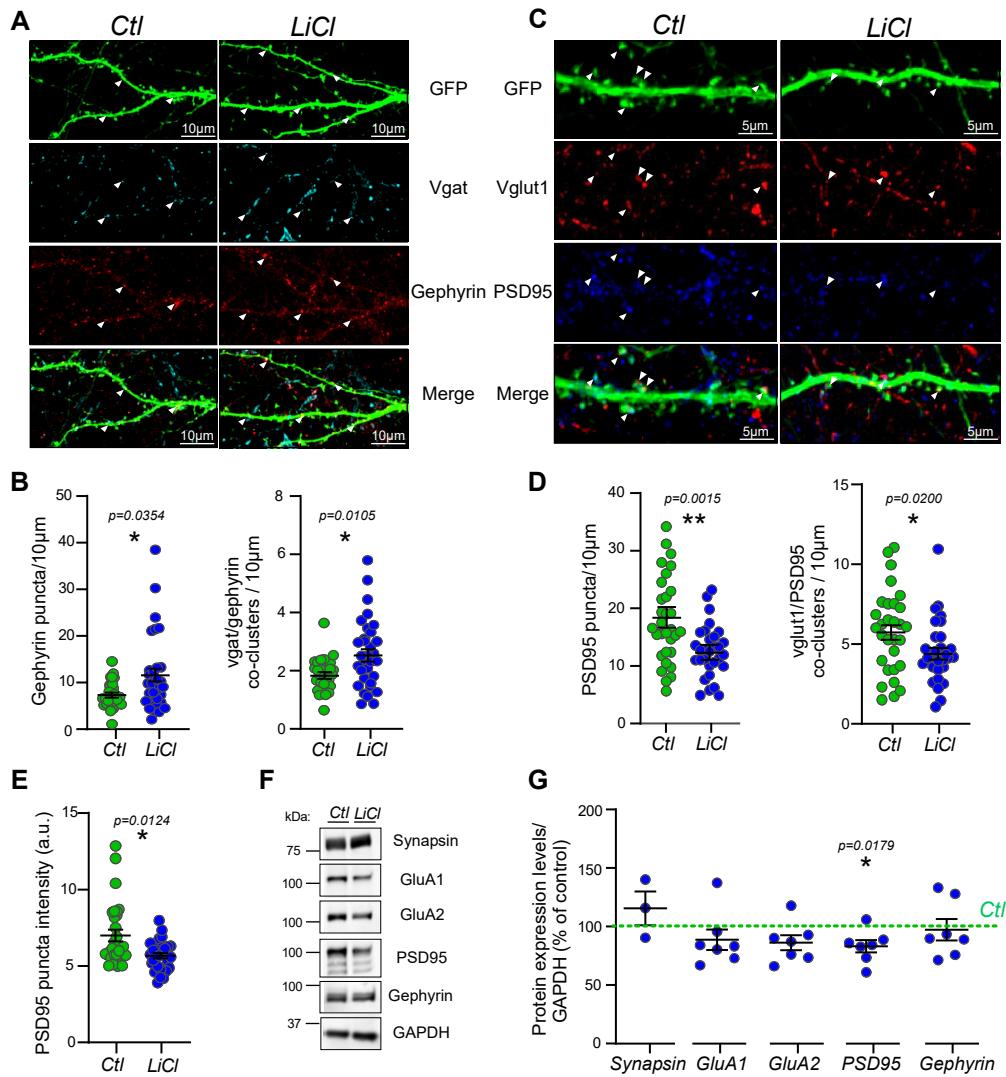
684 **G-H**) Representative immunoblots and quantification of anti-phosphorylated levels of PKC γ (Thr514)
685 and GSK-3 β (Ser9) normalized with GAPDH and represented as percentage of control from neuronal
686 extract from mouse primary cortical neurons treated with 2, 5 and 10mM of LiCl for 4h, or chronically
687 by LiCl (1.5mM) for 7 days. The data are from four (for phPKC) and six (for phGSK3) separate
688 experiments and show the mean ± s.e.m. and statistical significance determined by one sample t-test
689 with hypothetical value 100 for control.

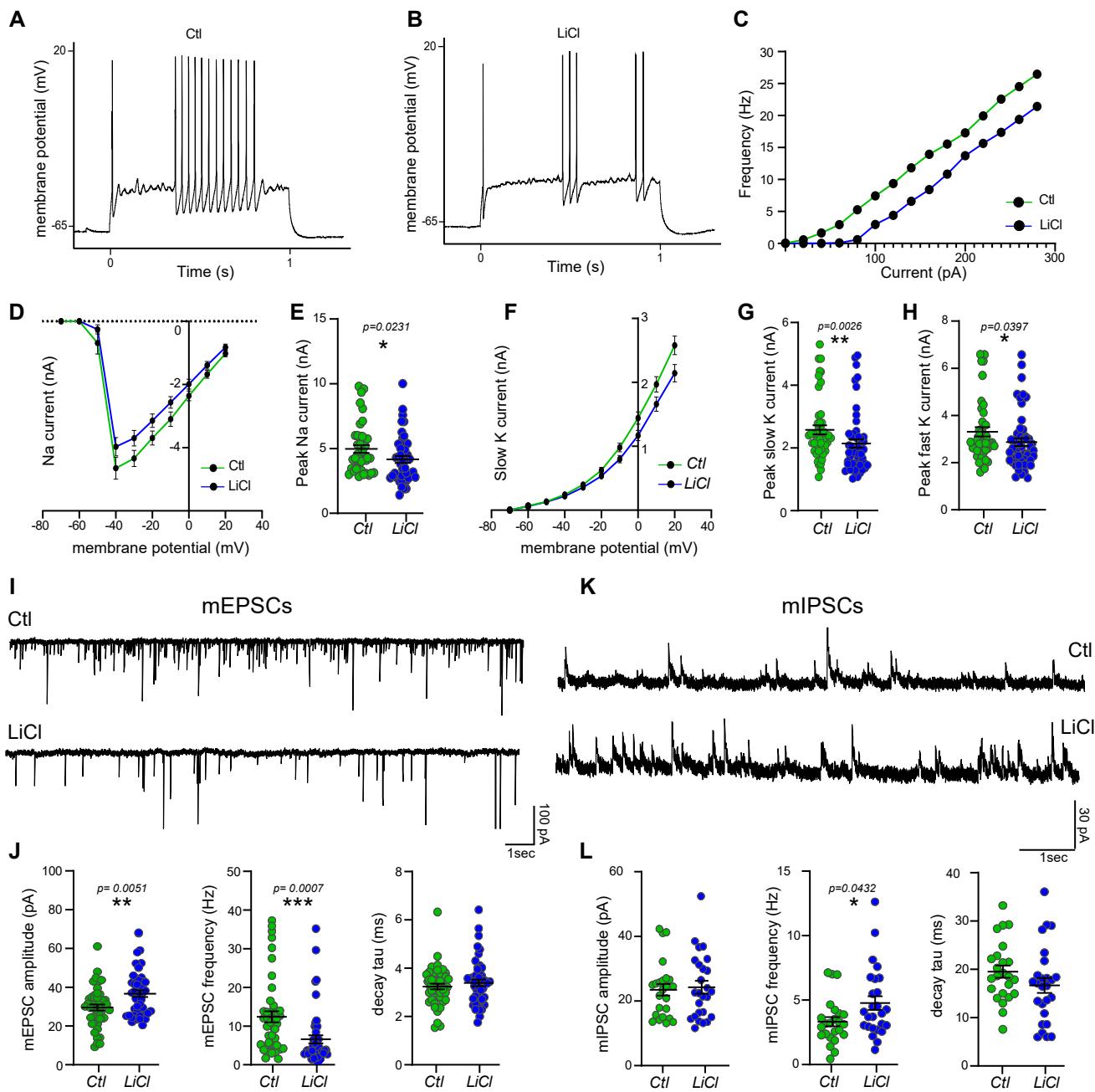

690

691

692


693


A



B

Pathway	P
Trafficking of AMPA receptors	0.000096800
Glutamate binding, activation of AMPA receptors and synaptic activity	0.000096800
Calcium ion binding	0.000490000
CREB phosphorylation through the activation of CamkII	0.000246660
Ras activation upon Ca2+ influx through NMDA receptor	0.000284473
tRNA processing in the nucleus	0.000730176
SUMOylation of DNA replication proteins	0.000929913
COPI-independent Golgi-to-ER retrograde traffic	0.000990993
Transmission across Chemical Synapses	0.001112485

