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Abstract 

Technological and computational advances in genomics and interactomics have made it 

possible to identify rapidly how disease mutations perturb interaction networks within 

human cells. In this study, we investigate at large-scale the effects of network 

perturbations caused by disease mutations within the human three-dimensional (3D), 

structurally-resolved macromolecular interactome. We show that disease-associated 

germline mutations are significantly enriched in sequences encoding protein-protein 

interfaces compared to mutations identified in healthy subjects from the 1000 Genomes 

and ExAC projects; these interface mutations correspond to protein-protein interaction 

(PPI)-perturbing alleles including p.Ser127Arg in PCSK9 at the PCSK9-LDLR interface. 

In addition, somatic missense mutations are significantly enriched in PPI interfaces 

compared to non-interfaces in 10,861 human exomes across 33 cancer subtypes/types 

from The Cancer Genome Atlas. Using a binomial statistical model, we computationally 

identified 470 PPIs harboring a statistically significant excess number of missense 

mutations at protein-protein interfaces (termed putative oncoPPIs) in pan-cancer 

analysis. We demonstrate that the oncoPPIs, including histone H4 complex in individual 

cancer types, are highly correlated with patient survival and drug resistance/sensitivity 

in human cancer cell lines and patient-derived xenografts. We experimentally validate 

the network effects of 13 oncoPPIs using a systematic binary interaction assay. We 

further showed that ALOX5 p.Met146Lys at the ALOX5-MAD1L1 interface and RXRA 

p.Ser427Phe at the RXRA-PPARG interface promote significant tumor cell growth using 

cell line-based functional assays, providing a functional proof-of-concept. In summary, if 

broadly applied, this human 3D interactome network analysis offers a powerful tool for 
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prioritizing alleles with mutations altering PPIs that may contribute to the pathobiology of 

human diseases, and may offer disease-specific targets for genotype-informed 

therapeutic discovery. 

 

 

INTRODUCTION 

Owing to robust technological advances of next-generation sequencing of human 

genomes, there are approximately 9 billion single-nucleotide variants, including 4.6 

million missense variants, that have been identified in over 140,000 exomes and 

genomes in the human genome aggregation database1. Interpretation of the clinical 

pathogenetic effects of variants is crucial for the advancement of precision medicine. 

However, our ability to understand the functional and biological consequences of 

genetic variants identified by human genome sequencing projects is very limited. Many 

computational approaches can identify only a small proportion of pathogenic variants 

with the high confidence required in clinical settings. Studies of human genome 

sequencing projects have reported potential associations with the functional regions 

altered by somatic mutations, such as molecular drivers in cancers.2, 3 However, many 

important issues in the field remain unclear, including the phenotypic consequences of 

different mutations within the same gene and the same mutation across different cell 

lineages. 

Recent efforts using systematic analyses of 1,000-3,000 missense mutations in 

Mendelian disorders4, 5 and ~2,000 de novo missense mutations in developmental 

disorders6 demonstrate that disease-associated alleles commonly alter distinct protein-
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protein interactions (PPIs) rather than grossly affecting the folding and stability of 

proteins.4, 5 Network-based approaches have already offered novel insights into 

disease-disease7 and drug-disease8-10 relationships within the human interactome. Yet, 

the functional consequences of disease mutations on the comprehensive human 

interactome and their implications for therapeutic development remain understudied. 

Several studies have suggested that protein structure-based mutation enrichment 

analysis offers potential tools for identification of possible cancer driver genes11, such as 

hotspot mutation regions in three-dimensional (3D) protein structures (i.e., protein-

ligand binding pocket)12-14. Development of novel computational and experimental 

approaches for the study of functional consequences of mutations at single residue 

resolution is crucial for our understanding of the pleiotropic effects of disease risk genes 

and offers potential strategies for accelerating precision medicine.3, 15, 16 

In this study, we investigated comprehensively the network effects of disease-

associated mutations at amino acid resolution within the three-dimensional 

macromolecular interactome of structurally-resolved and computationally-predicted 

protein-protein interfaces. We provide evidence across large-scale populations covering 

both disorders caused by germline mutation (e.g., hypercholesterolemia and 

cardiovascular disease) and those caused by somatic mutations (e.g., cancers) for 

widespread perturbations of PPIs due to missense mutations. Furthermore, we 

demonstrate with subsequent experimental validation that PPI-perturbing mutations 

strongly correlate with patient survival and drug responses in these cancers. These 

results offer network-based prognostic and pharmacogenomic approaches to 

understanding complex genotype-phenotype relationships and therapeutic responses in 
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the clinical settings, and have implications for our understanding of the biological 

consequences of this important, prevalent class of disease-associated mutations. 

 

 

RESULTS 

Widespread network perturbations by disease germline mutations 

To investigate the effects of disease-associated mutations at amino acid resolution on a 

PPI network, we constructed a structurally-resolved human protein-protein interactome 

network by assembling three types of experimentally validated binary PPIs having 

experimental or predicted interface information: (a) PPIs with crystal structures from the 

RCSB protein data bank17, (b) PPIs with homology modeling structures from 

Interactome3D18, and (c) experimentally determined PPIs with computationally 

predicted interface residues from Interactome INSIDER19 (see online Methods). In total, 

we considered 121,575 PPIs (edges or links) connecting 15,046 unique proteins 

(nodes). We find that disease-associated mutations from the Human Gene Mutation 

Database (HGMD)20 are significantly enriched in PPI interfaces of the respective 

proteins compared to variations identified in individuals from 1000 Genomes21 (P < 

2.2×10-16, Fisher’s test, Fig. 1a) and ExAC22 (P < 2.2×10-16, Fisher’s test, Fig. 1a) 

projects. In addition, we find the same level of enrichment for mutant interface residues 

with both crystal structures (Supplementary Fig. 1) and within the high-throughput 

systematic interactome (see Methods) identified by (unbiased) yeast two-hybrid (Y2H) 

screening assays23 (Supplementary Fig. 2). Fig. 1b reveals the global view of network 

perturbations in disease-associated germline mutations from the HGMD20. In Fig. 1b, 
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each node represents a gene product (protein) and each edge represents a PPI 

harboring at least one disease-associated mutation at its interface. For example, 

multiple disease-associated gene products, such as p53, LMNA, CFTR, HBA, and 

GJB2, have networks altered by multiple interface, disease-associated mutations. 

Proprotein convertase subtilisin/kexin type 9 (PCSK9), first discovered by human 

genetic screening studies in 2003, has generated great interest in genomics-informed 

drug discovery for cardiovascular disease24. We, therefore, investigated whether the 

PCSK9 allele carrying a p.Ser127Arg substitution perturbs the interaction between 

PCKS9 and LDLR (low-density lipoprotein receptor protein), which could have 

implications for hypercholesterolemia and atherothrombotic cardiovascular disease 

(Fig. 1c). To predict the effect of a p.Ser127Arg substitution on the PCSK9-LDLR 

interaction, we performed 400 ns molecular dynamics (MD) simulations (see Methods 

and Supplementary Fig. 3) to predict that the binding affinity between p.Ser127Arg 

PCSK9 and LDLR would be increased (545 kJ/mol) versus wild-type (691 kJ/mol, 

Supplementary Fig. 4). We focused on the interaction between the beta-propeller region 

of LDLR and the non-covalently bound propeptide (residues 61-152) of PCSK9. The 

binding affinity (DDG) of p.Ser127Arg relative to that of wild type is predicted to change 

by -14 kJ/mol, suggesting that the strength of interaction with LDLR is perturbed due to 

the p.Ser127Arg substitution. 

We next focused on the propeptide of PCSK9, where the total change in binding affinity 

by p.Ser127Arg is predicted to be altered by -211 kJ/mol (Supplementary Fig. 4). The 

region centered on the p.Ser127Arg substitution (Supplementary Fig. 4) is key to the 

increased binding affinity in the mutant PCSK925. While interactions between the 
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propeptide of PCSK9 and the beta-propeller of LDLR do exist in the wild-type system, 

they do not involve the region surrounding residue 127 (Supplementary Fig. 4). Much of 

the change in the binding affinity, on a per residue basis, is due to a steep increase in 

the electrostatic interaction energy with the mutated residue (Arg127), which accounts 

for the greatest contribution to the overall change in binding affinity (Supplementary Fig. 

4), significantly affecting the overall binding affinity. For example, a number of arginine 

residues in the alpha helix (Leu88-Arg105) distal to the interface between the beta-

propeller of LDLR and the propeptide are predicted to exhibit an increase in their 

binding affinity due to an increase in electrostatic interactions. This increase in 

electrostatic interactions stems from a roughly 15 Å decrease in the distance between 

the center of the helix and the interaction region, measured from the alpha carbon of 

Arg86 in PCSK9 and Arg385 of LDLR (Supplementary Fig. 5). For the PCSK9 

p.Ser127Arg-LDLR complex, the combination of the extra length of the sidechain, in 

addition to the charged guanidinium functionality, would allow interactions with the 

sidechains of Arg385 and His386 on LDLR. In summary, combining human interactome 

analyses and computational biophysical modeling strongly supports an interaction 

perturbation model for p.Ser127Arg, in agreement with the notion of PPI-perturbing 

alleles.  

Landscape of PPI-perturbing alleles in human cancer/somatic mutations 

We next turned to an investigation of the somatic mutation load between PPI interface 

and non-interface regions. In total, we inspected 1,750,987 missense somatic mutations 

from 10,861 tumor exomes across 33 cancer types from The Cancer Genome Atlas 

(TCGA) in the interface regions of 121,575 PPIs (see Methods). We found a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.18.302588doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.302588
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

significantly higher somatic mutation burden on PPI interfaces compared to non-

interfaces across all 33 cancer types (P < 2.2×10-16, two-sided Wilcox test, Fig. 2a). For 

breast cancer, the average missense mutation burden leading to amino acid 

substitutions is 20 per 1 million residues in interface regions, significantly higher than 

that of non-interface regions (4 per 1 million, 5-fold enrichment, P < 2.2×10-16, two-sided 

Wilcoxon test). We found the same trend that somatic mutations are highly enriched in 

both crystal structure-derived (Supplementary Fig. 6) and computationally inferred 

(Supplementary Fig. 7) PPI interfaces compared to non-interface regions across all 33 

cancer types, as well. To reduce the risk of sub-optimal data quality and literature bias in 

the human interactome, we also performed the same mutation burden analysis in 

structurally-resolved, unbiased PPIs. We found a higher mutation load at the interface 

residues of the physical human interactome using co-crystal structures only 

(Supplementary Fig. 8) and unbiased, binary PPIs identified by Y2H with available co-

crystal structure-derived interfaces and computationally predicted interfaces, as well 

(Supplementary Fig. 9), supporting the robustness of the analysis. We further 

investigated the cumulative distribution of deleterious amino acid substitutions between 

PPI interface and non-interface regions. Deleterious substitutions quantified by both 

SIFT (Fig. 2b) and PolyPhen-2 (Fig. 2c) scores (see Methods) are significantly enriched 

in PPI interfaces compared to non-interfaces. Altogether, widespread interaction 

perturbations caused by somatic mutations can contribute to tumorigenesis, as well, 

suggesting the functional significance of PPI interfaces in human disease. Following this 

analysis, we next pursued the identification of putative oncoPPIs (PPIs in which there is 

a significant enrichment in interface mutations in one or the other of the two protein 
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binding pairs across individuals) by systematically exploring the mutation burden 

between PPI interfaces versus non-interfaces across 10,861 tumor exomes. 

 

Systematic identification of interface mutation-enriched PPIs 

Based on the observation that somatic missense mutations are enriched at PPI 

interfaces (Fig. 2a) and that mutations at PPI interfaces are more likely to be 

deleterious than those at the non-interfaces (Fig. 2b and 2c), we proposed a statistical 

model to prioritize putative oncoPPIs which harbor a statistically significant excess 

number of amino acid substitutions at PPI interfaces by applying a binomial distribution 

(see Methods). In total, we investigated the somatic mutations in 10,861 tumor-normal 

pairs across 33 cancer types in TCGA database (see online Methods). These 33 major 

cancer types consisted of acute myeloid leukemia (LAML), adrenocortical carcinoma 

(ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), 

cervical carcinoma (CESC), cholangiocarcinoma (CHOL), colon and rectal 

adenocarcinoma (COAD/READ), diffuse large B cell lymphomas (DLBC), esophageal 

carcinoma (ESCA), glioblastoma (GBM), head and neck squamous cell carcinoma 

(HNSC), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma 

(KIRC), kidney papillary cell carcinoma (KIRP), low grade glioma (LGG), liver 

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell 

carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), 

pancreatic ductal adenocarcinoma (PAAD), paraganglioma and pheochromocytoma 

(PCPG), prostate adenocarcinoma (PRAD), sarcoma (SARC), rectal adenocarcinoma 

(READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid 
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carcinoma (THCA), testicular germ cell cancer (TGCT), thymoma (THYM), uterine 

corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), and uveal 

melanoma (UVM). In total, we identify 470 putative oncoPPIs harboring interface 

mutation-enriched PPIs with a false positive rate q < 0.01 in pan-cancer analysis (Fig. 

2d, Supplementary Fig. 10 and Supplementary Table 1). A significant determinant of 

the highest proportion is the BRAF p.Val600Glu substitution, a well-studied, 

promiscuous variant for multiple cancers that is now targeted for individualized cancer 

therapy. 

We then investigated the distribution of the number of putative oncoPPIs 

identified across 33 individual cancer types. In total, 3,579 putative oncoPPIs reached a 

level of significance (FDR q < 0.05, Supplementary Table 1) across 29 cancer types in 

which we found at least one putative oncoPPI (see Methods); ACC, KICH, MESO, and 

THYM each has none (Supplementary Fig. 11). Among the 10,861 TCGA tumor 

samples analyzed in this study, 4,405 (40%) samples are covered by at least one 

putative oncoPPI. When focusing on individual cancer types, we find up to 91% of UVM 

and 86% of SKCM patients harbored at least one oncoPPI (Supplementary Fig. 12). 

Figure 3 illustrates the landscape of putative oncoPPIs across 33 cancer types. For 

example, the top five oncoPPIs include SGK1-BRAF, DDX5-PIK3CA, GNAQ-FLOT2, 

GNA11-RGS3, and SPOP-H2AFY. The top five PPI-perturbing somatic mutations are 

p.Arg132His in IDH1, p.Val600Glu in BRAF, p.His1047Arg in PIK3CA, p.Gln209Leu in 

GNA11, and p.Phe133Leu in SPOP (Fig. 3). For example, p.Phe133Leu in SPOP has 

been reported to be a hotspot driver mutation in prostate cancer26. The p.Gln209Leu in 

GNA11 was reported as a driver mutation by altering crucial signaling networks in uveal 
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melanoma27. In summary, many known driver mutations are commonly located in 

regions that are part of interaction interface of one or the other binding partner proteins, 

indicating the potential for widespread interaction perturbations in human cancer (Fig. 

3). [All oncoPPIs and PPI-perturbing mutations in Fig. 3 can be freely accessed at 

https://mutanome.lerner.ccf.org/.] 

 

Pharmacogenomics landscape of PPI-perturbing mutations 

We next examined whether or not putative oncoPPIs can predict anticancer drug 

responses (Fig. 4a). We used ANOVA to determine if there is a significant difference 

between the cell lines of the PPI interface-mutated group and the PPI interface wild-type 

group in terms of their sensitivity/resistance (the half-maximal inhibitory concentration 

[IC50]) to the drug under consideration. By analyzing drug pharmacogenomics profiles of 

over 1,000 cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) 

database (see Methods), we found that interface-predicted mutations of oncoPPIs are 

highly correlated with sensitivity or resistance to multiple therapeutic agents 

(Supplementary Table 2). Figure 4b shows that oncoPPIs are highly correlated with the 

sensitivity or resistance of 66 clinically investigational or approved anticancer agents in 

cancer cell lines. For example, foretinib is an experimental agent that inhibits the c-Met 

and VEGFR2 kinases for the treatment of multiple cancer types.28 We find that PPI-

perturbing mutations in SNAI1 and ACTN2 are responsible for resistance to foretinib 

(Supplementary Fig. 13). SNAI1, encoding zinc finger protein SNAI1, is part of the snail 

family of transcription factors involved in regulating the epithelial-to-mesenchymal 

transition.29 VEGFR stimulates SNAI1 expression in breast tumor cancer cells29, leading 
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to resistance of VEGFR inhibitors (foretinib) by PPI-perturbing mutations on SNAI1 and 

ACTN2. GNAI2, encoding G protein subunit alpha I2, has been reported as a potential 

molecular driver in ovarian cancer.30 Here, we find that PPI-perturbing mutations in 

GNAI2 that directly disrupts interactions with RGS20 and TRIP6 are associated with 

resistance to several chemotherapeutic agents, including gemcitabine and tamoxifen 

(Supplementary Fig. 13). 

To assess better the clinical potential of the PPI-perturbing mutations, we further 

investigated their correlation with anticancer drug response by analyzing the data from 

in vivo compound screens between ~1,000 patient-derived tumor xenograft (PDXs) 

models and 62 medications (including both monotherapy and combination therapy).31 In 

total, we found 2,808 significant correlations (P < 0.05, ANOVA test, see Methods) 

between 49 medications and 1,411 putative oncoPPIs (Fig. 4c). For example, amino 

acid substitutions in VCL (vinculin), located at the interface between VCL and FXR1 

(fragile X mental retardation syndrome-related protein 1), are significantly correlated 

with resistance to encorafenib, an FDA-approved BRAF inhibitor for the treatment of 

melanoma,32 compared to patients without VCL-FXR1 perturbing mutations. FXR1-

BRAF fusion has been found in glioma,33, 34 which may explain the correlation of 

encorafenib’s response with interface substitutions that disrupt VCL-FXR1 (Fig. 4d). 

Additionally, we found that interface substitutions that disrupt BRAF-MAP2K1 are 

significantly associated with response to combination therapy with ribociclib (a 

CDK4/CDK6 inhibitor in clinical trial for treatment of multiple cancer types35) and 

encorafenib in PDXs, suggesting potential pharmacogenomic biomarkers for rational 

development of combination therapy in cancer. In summary, PPI-perturbing mutations 
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offer potential as pharmacogenomics biomarkers in both cancer cell lines and PDX 

models, which warrants further investigation using patient data. 

 

Discovery of PPI-perturbing alleles in histone H4 complex 

We next investigated the correlation between patient survival and oncoPPIs. Serine- 

and arginine-rich splicing factor 1 (SRSF1) plays a crucial role in breast cancer by 

regulating alternative splicing36. We find that interface substitutions of p53 or SRSF1 are 

significantly enriched in p53-SRSF1, and are significantly associated with poor survival 

rate in BLCA (P = 6.1 x 10-3, Log-rank test), BRCA (P = 6.4 x 10-4), and COAD (P = 7.2 

x 10-3), among 33 cancer types (Supplementary Fig. 14). Interestingly, mutations on p53 

alone are modestly associated with poor survival rate in BRCA (P = 0.03, Log-rank test), 

but are not associated with BLCA (p = 0.79) and COAD (p = 0.11, Supplementary Fig. 

15) survival rates. Histone acetyltransferase p300 (EP300) regulates transcription of 

genes via chromatin remodeling, playing an important role in melanoma cell 

oncogenesis37. We find that amino acid substitutions of EP300 or NFYB at the 

interfaces of EP300 and NFYB (nuclear transcription factor Y subunit beta) significantly 

correlate with poor survival rate in melanoma patients (p = 0.02, Log-rank test, 

Supplementary Fig. 16). For colon cancer (COAD), PPI-perturbing mutations in PLG 

(plasminogen) or SMAD4 (mothers against decapentaplegic homolog 4) are highly 

correlated with poor survival (P < 1.0×10-4, Log-rank test, Supplementary Fig. 16). 

Histone H4, encoded by HIST1H4A, is one of the five main histone proteins 

involved in gene regulation, DNA repair, and chromatin structure.38 Histone H4 
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mutations remain understudied in human diseases, including cancers. Figure 5a shows 

multiple potential PPI-perturbing mutations on histone H4 in complex with DAXX (death-

associated protein 6), H3F3A (H3 histone family member 3A), and CENPA (centromere 

protein A). We found a high mutational burden of the histone H4 complex in multiple 

cancer types (Fig. 5b), especially for UCEC, LUAD, LUSC, HNSC, and BLCA. Figure 

5c illustrates several selected H4 interface substitutions of the histone H4 complex. 

H3F3A, encoding histone H3.3, has been implicated in multiple cancer types, such as 

malignant pediatric brain cancers.39 Interface substitutions of HIST1H4A or H3F3A in 

H3.3-H4 interfaces are significantly associated with poor survival in COAD (Fig. 5e) and 

response to multiple anticancer drugs, such as paclitaxel and BMS-754807 (Fig. 5f). 

DAXX, encoding death-associated protein 6, plays essential roles in H3.3-specific 

chaperone function by its central region folding with the H3.3/H4 dimer.40 We found 

multiple interface substitutions between histone H4-DAXX, which are potentially 

involved in tumorigenesis and drug responses (Fig. 5c). For example, PPI-perturbing 

mutations in histone H4 that disrupt the DAXX interaction are significantly associated 

with poor survival in COAD and LUSC, and are further associated with drug responses 

in those malignancies (Fig. 5e and 5f) compared to interface wild-type patients. In 

summary, PPI-perturbing alleles in the histone H4 complex indicate one example of 

highly clinically relevant mechanisms in cancer. 

 

Experimental validation of PPI-perturbing alleles 

To test PPI-perturbing alleles experimentally, we selected and cloned 13 high-

confidence oncoPPIs using our previously established binary interaction mapping 
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vectors (see Methods). We selected these 23 missense mutations using subject matter 

expertise based on a combination of factors: (i) interface mutations with crystal structure 

evidence; (ii) PPI-perturbing mutations that are significantly correlated with drug 

response and patient survival; and (iii) mutations that affect the interaction which can be 

detected by yeast-two hybrid (Y2H) assay used in the Human Reference Interactome 

mapping project41. In total, we selected 23 somatic missense mutations across 13 

oncoPPIs (Supplementary Table 3) for testing by Y2H (see Methods). 

We first tested the impact of these mutations on the corresponding 13 oncoPPIs 

using our well-established Y2H assay4. All yeast colonies that grow on non-selective 

media, as well as selective media, are picked, and the presence of the desired allele is 

further confirmed by full-length sequencing. As shown in Fig. 6, among 23 tested 

mutations, 17 (74%) led to lost PPIs or reduced the detected effects of PPIs, while 6 

(26%) maintained the interactions predicted to be affected by the mutation 

(Supplementary Table 3). Our experimental results are consistent with the PPI test 

results of disease mutations in our previous study4, in which approximately two-thirds of 

disease mutations are PPI-perturbing. Importantly, this study did not identify the location 

of the mutation in the protein tertiary structure. 

Among the tested mutations, the p.Met146Lys mutation (Fig. 6b) in ALOX5 

(arachidonate 5-lipoxygenase) disrupts its interaction with MAD1L1, a mitotic spindle 

assembly checkpoint protein. Both ALOX5 and MAD1L1 have been reported to be 

involved in tumorigenesis and/or tumor progression of several cancer types.42, 43. 

Another example is the p.Arg382Trp mutation in HOMEZ (homeobox and leucine zipper 

encoding) that alters the interaction between HOMEZ and EBF1 (early B-cell factor 1). 
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We performed Zdock protein docking analysis44 of the effect of p.Arg382Trp on the 

HOMEZ and EBF1 interaction (Supplementary Fig. 17). We computationally 

constructed the homology structure of the HOMEZ and EBF1 complex from the 

monomer structures of HOMEZ homeobox domain (PDB: 2ECC) and EBF1 IPT/TIG 

domain (PDB: 3MQI). According to the docking structure model with the best predicted 

score (Fig. 6c and Supplementary Fig. 17), Arg382 is located at the binding interface of 

HOMEZ and EBF1, forming one salt-bridge and one hydrogen-bond with Asp285 and 

Asn286 in EBF1, respectively. Interestingly, p.Arg382Trp disrupts the salt-bridge and 

hydrogen bond and further alters surface topography due to the size and shape 

difference between Arg and Trp, which contribute to the binding free energy loss of the 

protein complex. By superimposing homeobox-DNA complex structure onto the 

HOMEZ-EBF1 complex model (Supplementary Fig. 17), we observe that HOMEZ 

contains two distinct binding interfaces of its homeobox domain to interact with DNA and 

EBF1 simultaneously. Although p.Arg382Trp disrupts the interaction of HOMEZ and 

EBF1, it may also alter the protein-DNA interaction, as well. 

We next focused on the RHOA-ARHGDIA interaction as it has an available co-

crystal structure (Supplementary Fig. 18). In the RHOA-ARHGDIA system, the 

p.Pro75Ser substitution causes a shift in the secondary structure of the region. Using 

MM/PBSA to calculate the interaction enthalpy, we observe a difference of over 100 

kJ/mol incident in the mutated protein, indicating a significant loss in interaction inherent 

in the mutation, consistent with our experimental data (Fig. 6b and 6d). RHOA is a well-

known oncogene in which multiple mutations were reported to be likely pathogenic in 

various types of cancers, including lymphoma and adenocarcinoma45. Its interaction 
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with ARHGDIA is important for inactivation and stabilization of RHOA. Loss of the 

RHOA-ARHGDIA interaction could, therefore, lead to tumor cell proliferation and 

metastasis.46, 47 These observations suggest that p.Pro75Ser is a potential functional 

PPI-perturbing mutation that alters the RHOA-ARHGDIA interaction in cancer cells. In 

summary, our experimental assays and computational biophysical analyses identify 

network perturbations by PPI-perturbing mutations that can potentially lead to discovery 

of novel molecular mechanisms in cancer. 

 

Functional validation 

We next turned to functional validation using two selected systems: 1) RXRA 

p.Ser427Phe mutation at the RXRA-PPARG interface, and 2) ALOX5 p.Met146Lys 

mutation at the ALOX5-MAD1L1 interface (Fig. 6b). RXRA is a member of the nuclear 

receptor superfamily and plays critical roles in pathologic processes of multiple 

diseases, including oncogenesis48. Our oncoPPI analysis revealed that p.Ser427Phe in 

RXRA played crucial roles in tumorigenesis, including pancreatic carcinogenesis (Fig. 

7a). To reveal an oncogenic role of p.Ser427Phe in pancreatic cancer, we transfected 

the wild-type (WT) and p.Ser427Phe mutant RXRA into pancreatic cancer cells 

(Supplementary Fig. 19). We observed that p.Ser427Phe promoted tumor cell growth 

and clone formation in two pancreatic cancer cell lines: Capan-2 and SW1990 (Fig. 7b-

7d). It has been reported that p.Ser427Phe in RXRA simulated peroxisome proliferator 

activated receptors (PPARs) to drive urothelial proliferation and a PPARs-specific 

antagonist can block the mutant RXRA-driven cell proliferation49. To test this hypothesis, 

Capan-2 and SW199 transfected with WT or RXRA p.Ser427Phe were treated with 
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GSK0660, a potent PPARβ/δ antagonist. As shown in Fig. 7e, p.Ser427Phe-expressing 

Capan-2 are modestly susceptible to GSK0660 (IC50= 1.11 μM), when compared with 

empty vector (EV, IC50=8.41 μM) or WT (IC50= 2.51 μM)-transfected cells. A similar 

result was also obtained using the SW1990 cell line (EV: IC50 = 6.99 μM, WT: IC50=2.84 

μM and p.Ser427Phe: IC50=1.80 μM, Fig. 7e and 7f). Taken together, these data show 

that RXRA-PPARG-perturbing mutation p.Ser427Phe promotes pancreatic cancer cell 

growth and sensitivity of PPARs antagonists. 

ALOX5, a key enzyme in the biosynthesis of leukotrienes50, plays roles in 

tumorigenesis and tumor progression51. Our Y2H assay showed that p.Met146Lys in 

ALOX5 (Fig. 7g) perturbed the physical interaction between ALOX5 and MAD1L1. To 

examine the functional role of p.Met146Lys in ALOX5 on cancer cell proliferation, we 

generated ALOX5 p.Met146Lys using standard site-directed mutagenesis 

(Supplementary Fig. 20a). We next expressed WT and p.Met146Lys mutant ALOX5 in 

two lung cancer cell lines: H1299 and H460 (Supplementary Fig. 20b-20d). Figure 7h-

7j found that p.Met146Lys significantly promotes cell proliferation and clone formation of 

H1299 and H460 cell lines. Taken together, these cell line-based functional experiments 

provide a proof-of-concept evidence for the functional consequences of PPI-perturbing 

alleles in cancer. 

 

 

DISCUSSION 

Previous studies have demonstrated that the human protein-protein interactome 

provides powerful network-based tools to quantify disease-disease7 relationships and 
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drug-disease8-10 relationships; however, the functional network consequences of 

disease-associated mutations remain largely unknown. In this study, we developed a 

human structurally-resolved macromolecular interactome framework for comprehensive 

identification of PPI-perturbing alleles in human disease. We showed the widespread 

network perturbations by both disease-associated germline and somatic mutations. 

Specifically, we revealed that disease-associated germline mutations are significantly 

enriched in PPI interfaces in comparison to mutations identified in healthy subjects from 

the 1,000 Genomes and ExAC projects; furthermore, somatic missense mutations from 

TCGA are significantly enriched in PPI interfaces compared to non-interfaces, as well. 

To benchmark our method, we assembled a large-scale whole-exome sequencing 

dataset of 10,861 human exomes across 33 cancer subtypes/types from TCGA. Via a 

binomial statistical model, we identified 470 PPIs harboring a statistically significant 

excess number of missense mutations at PPI interfaces (oncoPPIs) in pan-cancer 

analysis, and validated select predictions experimentally. We demonstrated that 

network-predicted oncoPPIs were highly correlated with patient survival and drug 

resistance/sensitivity in human cancer cell lines and patient-derived xenografts, offering 

powerful prognostic markers and pharmacogenomics biomarkers for potential clinical 

guidance. Altogether, these findings provide network medicine-based fundamental 

pathogenic molecular mechanisms and offer potential disease-specific targets for 

genotype-informed therapeutic discovery. 

 Our systematic network strategy provides a practical approach to identifying 

functional consequences of candidate disease alleles by altering network effects 

compared to traditional gene-based statistical models. Multiple PPI-perturbing alleles, 
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including ROHA p.Pro75Ser at the RHOA-ARHGDIA, offer novel network-based 

mechanistic insights into disease-associated mutations. PPI-perturbing mutations are 

significantly associated with poor survival rate in cancer patients, while mutations in the 

gene alone did not typically correlate with patient survival (Supplementary Figs. 14 and 

15). In addition, PPI-perturbing mutations were significantly correlated with drug 

sensitivity or resistance, but mutations in a gene alone typically failed to predict drug 

responses (Fig. 4 and Supplementary Fig. 21). We found that the proteins involving in 

the oncoPPIs do not directly overlap with known drug targets (Supplementary Fig. 22). 

One possible explanation is that the oncoPPIs influence the downstream or upstream 

network-associated protein targets of the drugs. In support of this view, we found that 

known drug targets did overlap with the neighbors of oncoPPIs (Supplementary Fig. 

22), rather than the oncoPPIs directly, supporting the network-based effects of drug 

targets in the human interactome, as we demonstrated in our previous studies9, 10. 

 We found that gene expression of oncoPPIs is unlikely to be cancer type-specific 

(Supplementary Fig. 23). This conclusion is consistent with our recent human 

interactome analysis showing no significant enrichment for PPIs between causal 

disease proteins and tissue-specific expressed proteins41. One possible explanation for 

this finding is that PPIs are more likely to be altered by somatic coding mutations that 

alter physical binding affinity. For example, we found that p.Met146Lys specifically 

perturbed the interaction between ALOX5 and MAD1L1 (Fig. 6b and Supplemental Fig. 

20). Previous studies have shown low or no correlation between protein expression or 

activity and gene expression52. There are many factors that influence the correlation 

between protein expression or activities and mRNA abundance, including post-
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translational modification of proteins, RNA editing, and others52, 53. 

 We acknowledge several potential limitations in the current study. Different tissue 

collection protocols, different sequencing approaches, and variant calling and filtering 

approaches from TCGA may generate the potential risk of a significant false positive 

rate. Although we found the same level of enrichment for mutant interface residues 

using both crystal structures and within the high-throughput systematic interactome 

identified by unbiased Y2H assays23, some potential noise of computational inferred PPI 

interface may exist. We compiled a comprehensive, structurally-resolved interactome 

network based on our sizeable efforts, and on the incompleteness of the human 

interactome which may limit coverage for some unknown disease proteins or mutations. 

Recent machine learning approaches, such as deep learning approaches54, 55, can 

increase the coverage of the structurally-resolved human interactome for future studies. 

Moving forward, our approach may directly facilitate the biological interpretation of 

mutations and inform disease-driven PPI allele identification in multiple ongoing and 

future human genome sequencing efforts, including TopMed56, PVDOMICS57, 

International Cancer Genome Consortium (ICGC)58, All of US59, and many others. 

Altogether, we can minimize the translational gap between genomic medicine and 

clinical benefits, a significant path from network medicine to precision medicine. 

 In summary, our study demonstrates that the identification of PPI-perturbing 

alleles, including oncoPPIs facilitates the biological interpretation of mutations and 

offers potential therapeutic targets (including potential PPI inhibitor design) for 

undruggable proteins, such as tumor suppressor genes or undruggable oncogenes3. 

Our catalog of PPI-perturbing alleles and oncoPPIs (https://mutanome.lerner.ccf.org/) 
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could inform the clinical annotation of patients with both germline and somatic 

mutations, and offers the promise of precision diagnosis and personalized treatment in 

clinical practice. 

 

ONLINE METHODS 

Building the human protein-protein interactome 

To build a comprehensive human binary protein-protein interactome, we assembled 

three types of experimental evidence: (1) PPIs with crystal structures from the RCSB 

protein data bank17, (2) PPIs with homology modeling structures from Interactome3D18, 

and (3) experimentally determined binary PPIs with computationally predicted interface 

residues from Interactome INSIDER19. For crystal structures and homology models of 

PPIs, any residue that is at the surface of a protein (≥15% exposed surface) and whose 

solvent accessible surface area (SASA) decreases by ≥1.0 Å2 in complex is considered 

to be at the interface. In addition, we also assembled computationally predicted 

interfaces using the ECLAIR classifier for experimentally identified PPIs from 

Interactome INSIDER19. Genes were mapped to their Entrez ID based on the NCBI 

database60 as well as their official gene symbols based on GeneCards 

(http://www.genecards.org/). The resulting predicted human binary interactome 

constructed in this way includes 121,575 PPIs (edges or links) connecting 15,046 

unique proteins (nodes). 
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Collection and preparation of genome sequencing data 

We downloaded the tumor-normal pairwise somatic mutation data for patients from 

TCGA GDC Data Portal61 using R package TCGA-assembler62. Disease-associated 

missense mutations were downloaded from HGMD20. Population-based missense 

mutations were obtained from the 1000 Genomes Project21 (phase 3, 2,504 individuals) 

and from ExAC database (v0.3.1, 60,706 individuals)22. We downloaded putative 

somatic mutations for 1,001 cancer cell lines from the Genomics of Drug Sensitivity in 

Cancer (GDSC, http://www.cancerrxgene.org/). The list of genomic variants found in 

these cell lines by whole exome sequencing was also obtained from GDSC. The 

sequencing variants were identified by comparison to a reference genome. The 

resulting variants were then filtered using the data from NHLBI GO Exome Sequencing 

Project and the 1000 Genomes Project to remove sequencing artefacts and germline 

variants63.  In addition, we used ANNOVAR64 to map these somatic mutations in the 

protein sequences for identifying the corresponding amino acid changes via RefSeq ID. 

The functional impact of nonsynonymous SNVs (single nucleotide variants) was 

measured by both SIFT65  and PolyPhen-2 scores66. For this analysis, we obtained 

SIFT and PolyPhen-2 scores from the ANNOVAR annotation database. We then 

converted RefSeq ID to UniProt ID using a UniProt ID mapping tool 

(http://www.uniprot.org/uploadlists/). 

 

Significance test of PPI interface mutations 

For each gene 𝑔" and its PPI interfaces, we assumed that the observed number of 
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mutations for a given interface followed a binomial distribution, binomial (𝑇,	𝑝&'), in 

which 𝑇 was the total number of mutations observed in one gene and 𝑝&' was the 

estimated mutation rate for the region of interest under the null hypothesis that the 

region was not recurrently mutated. Using 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔") to represent the length of the 

protein product of gene 𝑔", for each interface, we computed the P value –  the 

probability of observing more than 𝑘 mutations around this interface out of 𝑇 total 

mutations observed in this gene – using the following equation: 

𝑃(𝑋 ≥ 𝑘) = 1 − P(𝑋 < 𝑘) = 1 − ∑ (9
:
)𝑝&'

: (1 − 𝑝&') 
9;:<;=

:>?         (1) 

in which 𝑝&' = 	 @AB&CD	EF	"BCAGFHIA
@AB&CD(&')

. Finally, we set the minimal P value across all the 

interfaces in a specific protein as the representative P value of its coding gene 𝑔", 

denoted 𝑃(𝑔"). 

 

Cancer cell line annotation 

We downloaded the annotation file of the cancer cell lines: molecular and drug-

response data availability, microsatellite instability status, growth properties and media, 

and TCGA and COSMIC tissue classification, from GDSC 

(http://www.cancerrxgene.org/). The details were described in a previous study63. 

 

Drug sensitivity data 

Natural log half-maximal inhibitory concentration (IC50) and the area under the dose-

response curve (AUC) values for all screened cell line/drug combinations were 
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downloaded from GDSC. After applying the data preparation procedure described in a 

previous study 63, a total of 251 drugs tested in 1,074 cancer cell lines with 224,510 data 

points were used. In addition, we collected anticancer drug response data from in vivo 

compound screens between ~1,000 patient-derived tumor xenograft models (PDXs) and 

62 treatments across six indications.31 

 

ANOVA model 

For each drug, we constructed a drug-response vector consisting of 𝑛 IC50 values from 

treatment of 𝑛 cell lines. Next, a drug-response vector was modeled as a linear 

combination of the tissue of origin of the cell lines, screening medium, growth 

properties, and the status of a genomic feature: 

𝐼𝐶L? = 𝑀𝑢𝑡 + 𝑇𝑖𝑠𝑠𝑢𝑒 + 𝑀𝑒𝑑𝑖𝑢𝑚 +𝑀𝑆𝐼         (2) 

where Mut is mutations and MSI is Microsatellite Instability (including small indels) 

In this study, considering the data sparsity, we only performed pan-cancer analysis. A 

genomic feature-drug pair was tested only if the final drug-response vector contained at 

least 3 positive cell lines and at least 3 negative cell lines. The effect size was quantified 

through the Cohen’s 𝑑 statistic using the difference between two means divided by a 

pooled standard deviation for the data. The resulting P-values were corrected by the 

Benjamini-Hochberg method 67. All statistical analyses were performed using the R 

package (v3.2.3, http://www.r-project.org/). 

 

Pathway enrichment analysis 
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We used ClueGO 68 for enrichment analysis of genes in the canonical KEGG pathways. 

A hypergeometric test was performed to estimate statistical significances, and all P 

values were adjusted for multiple testing using Bonferroni’s correction (adjusted P 

values). 

 

Cloning of disease mutations 

We generated the predicted disease mutants by implementing a site-directed 

mutagenesis pipeline as described below. For each mutation, two “primary PCRs” were 

performed to generate DNA fragments containing the mutation and a “stitch PCR” was 

performed to fuse the two fragments to obtain the mutated ORF. For the primary PCRs, 

two universal primers (E2E forward and E2E reverse) and two ORF-specific internal 

forwards and reverse primers were used. The two ORF-specific primers contained the 

desired nucleotide change. The fragments generated by the primary PCRs were fused 

together by the stitch PCR using the universal primers to generate the mutated ORF. 

The final product was a full length ORF containing the mutation of interest. All the 

mutated ORFs were cloned into a Gateway donor vector, pDONR223, by BP reaction 

followed by bacterial transformation and selection using spectinomycin. Two single 

colonies were picked for each transformant. All picked colonies were transferred into 

pDEST-AD and pDEST-DB by LR reaction followed by bacterial transformation and 

selection using ampicillin. The plasmids were then extracted, purified and transformed 

into Y8930 yeast strain for the pairwise test. 

 

Pairwise test to identify perturbed interactions 
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The pairwise test was performed in 96 well format. The ORFs were inoculated in SC-

Leu and SC-Trp media overnight and mated in YEPD media the following day. All WT 

and mutant alleles in pDEST-DB were mated with their interacting partner in pDEST-AD 

(DB-ORFxAD-ORF) as well as pDEST-AD without the ORF inserted (DB-ORFxAD-

empty). After incubation at 30ºC overnight, mated yeasts were transferred into SC-Leu-

Trp media to select for diploids. The following day, the diploid yeasts were spotted on 

SC-Leu-Trp-His+1mM 3AT and SC-Leu-Trp media to control for mating success.  

After 3 days of growth at 30ºC, each spot on plates was scored with a growth 

score ranging from 0 to 4, 0 being no growth, 1 being one or two colonies, 2 being some 

colonies, 3 being many colonies, 4 being a large consolidated spot in which no 

individual colonies can be distinguished. Pairs for which the SC-Leu-Trp spot was 

scored as 3 or 4 and the 3AT spot were valid (yeasts were spotted and no 

contamination or other experimental failure) were considered as successfully tested. A 

successfully tested pair can be further classified as positive, negative, or auto-activator 

and depends on the growth scores of DB-ORFxAD-ORF and DB-ORF-AD-empty on 

SC-Leu-Trp-His+1mM 3AT plates. If growth score of DB-ORFxAD-ORF = 0, the pair 

was classified as negative; if growth score of DB-ORFxAD-ORF - DB-ORFxAD-empty ≥ 

2, the pair was classified as positive (Supplementary Table 3); otherwise the pair was 

classified as auto-activator. Pairs were scored blindly with respect to their identity using 

in-house software. 

In parallel, we made lysates of all SC-Leu-Trp plates to perform duplex PCR 

using barcoded AD/DB and Term primers followed by pooling and sequencing with the 

PacBio Sequel system. We used SMRT tools (v5.1.0) and ISO-SEQ (v3.1) software 
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packages to analyze raw sequencing results. The pipeline includes five main steps to 

obtain high-quality sequences; 1) generating circular consensus (CCS) reads, 2) 

demultiplexing and primer removal, 3) classifying full-length CCS reads, 4) clustering 

full-length non-chimeric (FLNC) reads, and, finally, 5) polishing cluster sequences. 

Polished sequences were then aligned to the ORF sequences using BLAST. Colonies 

with the exact full-length sequence as expected (with, and only with, the expected 

mutations, fully covered by polished reads) were considered as sequence-confirmed. 

Only pairs that were successfully tested, classified as positive or negative, for 

which the wild-type allele was classified as positive with a growth score ≥ 2, and that 

were sequence-confirmed were considered for all further analysis. An interaction was 

considered perturbed by an allele if the growth score of the allele was ≤ 1 and the 

growth score was smaller than the growth score of the corresponding wild-type pair by 

at least two. Otherwise, an interaction was considered partially perturbed by an allele if 

the growth score of the wild-type pair was greater than the growth score for that 

interaction with the respective allele by one. 

 

System construction for molecular simulation 

 
The crystal structures (PDBs: 1CC0 and 3M0C) were accessed from the RCSB PDB 

protein data bank.  Co-crystalized ions were retained from the structure.  Non-terminal 

missing loops were reconstructed using Modeller9.18 within UCSF Chimera where 

required. Protonation states for charged residues were determined using PROPKA 2.0.  

Mutations and preparation of the system for molecular dynamics simulation were 

accomplished using the quick MD simulator module of CHARMM-GUI.  Following a 
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processing step, including adding hydrogens and patching the terminal regions, a water 

box using TIP3 water molecules with edges at least 12 Å from the protein was added.  

The system was neutralized to a NaCl concentration of 150 mM.   

 

Simulation parameters 

Molecular dynamics simulations were carried out using GROMACS 2018.27 on the 

Pitzer computing cluster at the Ohio Supercomputer Center.  Initial minimizations of the 

systems were carried out using steepest descent until the energy of the system reached 

machine precision.  Following minimization, an NVT equilibration step with positional 

restraints of 400 kJ mol-1 nm-2 on backbone atoms and 40 kJ mol-1 nm-2 on side chain 

atoms was run using a timestep of 2 fs for 500 000 steps, yielding 1 ns of equilibration.  

Finally, NPT dynamics were run with no positional restraints for 400 ns using the same 2 

fs timestep from equilibration, after which the system was determined by its root-mean-

squared deviation (RMSD) to be reasonably well equilibrated. 

Hydrogen atoms were constrained using the LINCS algorithm. Temperature 

coupling to 310.15° K was done separately for the protein and the water/ions using a 

Nose-Hoover thermostat and a 1 ps coupling constant.  For the NPT dynamics 

simulation, isotropic pressure coupling to 1 bar was done using a Parrinello-Rahman 

barostat with a coupling constant of 5.0 ps and compressibility of 4.5e-05 bar-1. The 

pair-list cutoff was constructed using the Verlet scheme, updated every 20 evaluations 

with a cutoff distance of 12 Å. Particle mesh Ewald (PME) electrostatics were chosen to 

describe coulombic interactions using the same cutoff as in the pair-list.  The van der 

Waals forces were smoothly switched to zero between 10 and 12 Å using a force-switch 
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modifier to the cut-off scheme. 

Post-processing and RMSD plots were generated using standard GROMACS 

tools.  MM/PBSA energies were calculated on 1,001 frames over the final 100 ns of 

each simulation using g_mmpbsa, which uses APBS to determine the polar and non-

polar contributions to the binding energy. Briefly, the binding free energy can be 

expressed as 

Δ𝐺W"BX"B& = 𝐺IEYZ@A: − [𝐺ZGECA"B= + 𝐺ZGECA"B\]        (3) 

where complex refers to the protein-protein complex, and protein 1 and protein 2 the 

respective proteins in the complex. The individual free energies for each component 

above are determined by 

𝐺: = 〈𝐸``〉 + 〈𝐺bE@cHC"EB〉 − 𝑇𝑆							(4) 

where 〈𝐸``〉 is the vacuum molecular mechanics energy, 〈𝐺bE@cHC"EB〉 the solvation 

energy, and TS the entropic contribution. Entropic contributions were not included owing 

to computational cost and evidence that the inclusion of the entropy term does not 

always improve the accuracy of the calculations.  The molecular mechanics energy and 

solvation energy can be further broken down into their component energies: 

𝐸`` = 𝐸WEBXAX + 𝐸BEBWEBXAX = 𝐸WEBXAX + 𝐸cXe + 𝐸A@AI         (5) 

𝐺bE@cHC"EB = 𝐺ZE@HG + 𝐺BEBZE@HG        (6) 

Here, 𝐸WEBXAX is zero, since we have used the single trajectory approach. 𝐸cXe  and 𝐸A@AI  

are the van der Waals and electrostatic contributions to the vacuum binding, respectively, 

while 𝐺ZE@HG  and 𝐺BEBZE@HG  are the electrostatic and non-electrostatic contributions to the 

solvation energy.  
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Expression vector construction 

pCDNA3-RXRA was generated using standard molecular cloning methods. pcDNA3-

ALOX5 was kindly provided by Prof. Colin D. Funk (Department of Biochemistry, 

Queen’s University, Canada). Site-directed mutagenesis were performed using the 

KOD-Plus-Mutagenesis Kit (TOKOYO, Cat. SMK-101) according to the manufacturer’s 

instructions. RXRA p.Ser427Phe and ALOX5 p.Met146Lys were generated from the 

vectors, pCDNA3-RXRA and pcDNA3-ALOX5, respectively. All of the generated 

plasmids were confirmed by Sanger sequencing. 

 

Cell culture and transfection 

Human cancer cell lines (Capan-2, SW1990, H1299 and H460) were obtained from 

American Type Culture Collection (ATCC). All cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM, Gibco, Cat. 11995040) supplemented with 10% Fetal 

Bovine Serum (FBS, Gibco, Cat. 10099-141) and maintained under an atmosphere 

containing 5% CO2 at 37 °C. All cell lines were negative for mycoplasma. Pancreatic 

cancer cell lines (Capan-2 and SW1990) were transfected with empty vector (EV), 

pcDNA3-RXRA WT, or pcDNA3-RXRA p.Ser427Phe, and lung cancer cell lines (H1299 

and H460) were transfected with EV, pcDNA3-ALOX5 WT, or pcDNA3-ALOX5 

p.Met146Lys using Lipofectamine 2000 (Invitrogen, Cat.11668019). 

 

Cell Proliferation Assay 

Cell viability was determined by using CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (MTS, Promega, Cat. G5421) according to manufacturer’s 
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recommendation. In brief, treated cancer cells were seed into 96-well plates at a density 

of 3,000–5,000 cells/well and incubated for the indicated time. Next, 20 μl/well of 

combined MTS/PMS solution were added and the absorbance was recorded at 490 nm 

using a microplate reader Synergy 2 (BioTek, Winooski, VT, USA). 

 

Western blotting  

Cells were lysed with RIPA lysis buffer (20 mM Tris-HCl, 37 mM NaCl2, 2 mM EDTA, 

1% Triton-X, 10% glycerol, 0.1% SDS, and 0.5% sodium deoxycholate) with protease 

and phosphatase inhibitors (Roche). Protein samples were quantified (Pierce BCA 

Protein Assay Kit, Thermo Fisher Scientific), subjected to SDS-PAGE and transferred to 

PVDF membranes. Membranes were incubated with primary antibodies, including 

RXRA (1:1000, Proteintech, Cat. 21218-1-APP) and ALOX5 (1:1000, Abclonal, Cat. 

A2877), and subsequent secondary antibodies. 

 

Colony formation assay 

Transfected cells were seeded into six-well plates at a density of 3,000 cells 

per well in 2 ml of DMEM medium supplemented with 10% FBS. The medium was 

replaced every 3 days. After 14 days, viable colonies were fixed in 4% 

paraformaldehyde and stained with 0.1% crystal violet at room temperature. Formed 

colonies were photographed with an inverted fluorescence microscope (Olympus). 

 

Code availability. All codes written for and used in this study are available from the 

corresponding author upon reasonable request. 
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Data availability. All mapping interface mutations, network-predicted oncoPPIs across 

pan-cancer and 33 individual cancer types, the human protein-protein interactome, and 

predicted drug responses and patient survival analysis are freely available at the 

website: https://mutanome.lerner.ccf.org/  and https://github.com/ChengF-

Lab/oncoPPIs. 
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Figure Legends 

Fig. 1. Proof-of-concept of protein-protein interaction-perturbing alleles in human 

diseases. (a) Distribution of mutation burden at protein-protein interfaces for disease-

associated germline mutations from HGMD in comparison to mutations from the 1,000 

Genome Project (1KGP) and ExAC Project. P-value was calculated by Fisher’s test. (b) 

A subnetwork highlights disease module for all human disease-associated mutations at 

protein-protein interfaces. An edge denotes at least one disease-associated mutation 

from HGMD at the interfaces of experimentally identified binary PPIs. Three types of 

protein-protein interfaces are illustrated: (i) PPIs with crystal structures (PDB), (ii) PPIs 

with homology models (I3D), and (iii) experimentally determined PPIs with 

computationally predicted interface residues (ECLAIR) (see Methods). Some edges with 

multiple types of evidences of protein-protein interface-associated mutations. Node size 

is counted by degree (connectivity). (c) An example of a PPI-perturbing mutation 

(p.Ser127Arg in PCSK9) affecting the PCSK9 and LDLR complex (PDB id: 3M0C).  
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Fig. 2. Network perturbation by missense somatic mutations in human cancers. (a) 

Distribution of missense mutations in protein-protein interfaces versus non-interfaces 

across 33 cancer types/subtypes from The Cancer Genome Atlas. (b & c) Cumulative 

frequencies of SIFT (b) and PolyPhen-2 scores (c) for protein-protein interface mutations 

(red) versus non-interface (green) mutations. Abbreviations of 33 cancer types are 

provided in the main text. (d) A circos plot illustrating the landscape of significant mutation-

perturbed PPIs (termed putative oncoPPIs) which harbor a statistically significant excess 

number of missense mutations at PPI interfaces across 33 cancer types. The bar denotes 

the number of putative oncoPPIs across each cancer type/subtype. The detailed data are 

provided in Supplementary Table 1 and Supplementary Fig. 12. The oncoPPIs with 

various significance levels were plotted in three inner layers: red (P < 1 × 10−10), green (1 

× 10−5 < P < 1 × 10−10), and blue (P > 1 × 10−5). The links connecting two PPIs indicate 

that two cancer types share the same oncoPPI. Some significant oncoPPIs and their 

related mutations are plotted on the outer surface. 

 

Fig. 3. Landscape of protein-protein interaction-perturbing mutations across 33 

cancer types. The circos plot displays significant mutation perturbed protein-protein 

interactions (termed putative oncoPPIs, see Methods) which harbor a statistically 

significant excess number of missense mutations at PPI interfaces across 33 cancer 

types. The putative oncoPPIs with various significance levels are plotted in three inner 

layers: red (P < 1×10−10), green (1×10−10 < P < 1×10−5), and blue (P > 1×10−5). The links 

(edges) connecting two oncoPPIs indicate two cancer types share the same oncoPPIs. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.18.302588doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.302588
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

Some significant oncoPPIs and their related mutations are plotted on the outer surface. 

The length of each line is proportional to -log10(P). All oncoPPIs and PPI-perturbing 

mutations are free available at https://mutanome.lerner.ccf.org/. 

 

Fig. 4. Pharmacogenomics landscape of protein-protein interaction-perturbing 

alleles. (a) Experimental design of pharmacogenomics predicted by PPI-perturbing 

alleles. (b) Drug responses evaluated by mutation-perturbed PPIs (putative oncoPPIs) 

which harbor a statistically significant excess number of missense mutations at PPI 

interfaces by following a binomial distribution across 66 selected anticancer therapeutic 

agents in cancer cell lines. Each node denotes a specific oncoPPI. The size of a node 

denotes the p-value levels computed by ANOVA (see Methods). Color of nodes 

represents three different types of PPIs (see Figure 1c legend). (d) Drug responses 

evaluated by oncoPPIs in the Patient-Derived Xenograft (PDX) models. (e & f) 

Highlighted examples of drug response for encorafenib and its combinations (LEE011 

and encorafenib) predicted by interface mutations on VCL-FXR1 and BRAF-MAP2K1, 

respectively. 

 

Fig. 5. Protein-protein interaction-perturbing alleles in histone H4 complex. (a) 

PPI-perturbing mutation network of histone H4 complex in human cancer. (b) Mutational 

landscape of histone H4 complex across 33 cancer types. (c) Selected PPI-perturbing 

mutations in histone H4 complex. (d) Interface mutations between histone H4 and 

DAXX. (e) Interface mutations of histone H4 complex are significantly correlated with 

survival in colon adenocarcinoma (COAD) and lung squamous cell carcinoma (LUSC). 
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(f) Interface mutations of histone H4 complex are significantly correlated with anticancer 

drug responses, including paclitaxel, BMC-754807 (an IGF-1R inhibitor), and EHT-1864 

(a Rho inhibitor). 

 

Fig. 6. Experimental investigation of alleles with perturbed physical protein-

protein interactions. (a) Distribution of three types of mutational consequences on 

PPIs, unperturbed, partially perturbed, and perturbed. (b) Y2H readouts of oncoPPIs 

with and without mutations. “+” represents selection for existence of AD and DB 

plasmids that carry ORFs for PPI testing, “-” represents selection for auto-activators, “T” 

represents selection for PPIs. Growth indicates interaction, no growth suggests no 

interaction (see Methods and Supplementary Table 3).  Growth indicates interaction, no 

growth suggests no interaction (see Methods and Supplementary Table 3). (c) HOMEZ-

EBF1 complex model and the location of the interface mutation, p.Arg382Trp on 

HOMEZ. The complex model was built by Zdock protein docking simulation (see 

Methods). (d) Distribution of calculated binding affinity (PBSA) of RHOA-ARHGDIA 

complex (PDB id: 1CC0) directed by p.Pro75Ser mutation on RHOA. Color bar indicates 

binding affinity (see Methods) from high (blue) to low (red). WT: wild-type. 

 

Fig. 7. Mutants of RXRA and ALOX5 promote cancer cell growth. 

(a) The structure of RXRA and PPARG complex. (b and c) The relative cell growth of 

Capan-2 and SW1990 cells transfected with pCDNA3-RXRA WT or pCDNA3-RXRA 

p.Ser427Phe. Cell proliferation was measured by MTS assay at 24-hrs intervals up to 

72 hrs. The graph presents the mean ± SD derived from three independent 
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experiments. The Student’s t-test was used to test for statistical significance, *P<0.01, 

***P<0.001. (d) For the colony formation assay, cells were maintained in normal media 

containing 10% FBS for 14 days, and then fixed and stained with crystal violet. (e and f) 

Suppression of WT and mutant RXRA-driven cell proliferation by GSK0660, a potent 

PPARβ/δ antagonist. Capan-2 and SW1990 cells were transfected with pCDNA3 empty 

vector (EV), pCDNA3-RXRA WT, or pCDNA3-RXRA p.Ser427Phe, and then treated 

with various concentrations of GSK0660 for 72 hrs. The graph presents the mean ± SD 

derived from three independent experiments. (g) An example of a perturbed allele, 

p.Met146Lys on ALOX5 crystal structure (PDB id: 3V98). (h and i) The relative cell 

growth of H1299 and H460 cells transfected with pCDNA3-ALOX5 WT or pCDNA3-

ALOX5 p.Met146Lys. Cell proliferation was measured by the MTS method at 24-hrs 

intervals up to 72 hrs (see Online Methods). The graph presents the mean ± SD derived 

from three independent experiments. Student’s t-test was used to test for statistical 

significance, *P<0.01. (j) For the colony formation assay, cells were maintained in 

normal media containing 10% FBS for 14 days, and then fixed and stained with crystal 

violet.  
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