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Abstract

Technological and computational advances in genomics and interactomics have made it
possible to identify rapidly how disease mutations perturb interaction networks within
human cells. In this study, we investigate at large-scale the effects of network
perturbations caused by disease mutations within the human three-dimensional (3D),
structurally-resolved macromolecular interactome. We show that disease-associated
germline mutations are significantly enriched in sequences encoding protein-protein
interfaces compared to mutations identified in healthy subjects from the 1000 Genomes
and ExAC projects; these interface mutations correspond to protein-protein interaction
(PPI)-perturbing alleles including p.Ser127Arg in PCSK9 at the PCSK9-LDLR interface.
In addition, somatic missense mutations are significantly enriched in PPI interfaces
compared to non-interfaces in 10,861 human exomes across 33 cancer subtypes/types
from The Cancer Genome Atlas. Using a binomial statistical model, we computationally
identified 470 PPIs harboring a statistically significant excess number of missense
mutations at protein-protein interfaces (termed putative oncoPPIs) in pan-cancer
analysis. We demonstrate that the oncoPPIs, including histone H4 complex in individual
cancer types, are highly correlated with patient survival and drug resistance/sensitivity
in human cancer cell lines and patient-derived xenografts. We experimentally validate
the network effects of 13 oncoPPls using a systematic binary interaction assay. We
further showed that ALOX5 p.Met146Lys at the ALOX5-MAD1L1 interface and RXRA
p.Ser427Phe at the RXRA-PPARG interface promote significant tumor cell growth using
cell line-based functional assays, providing a functional proof-of-concept. In summary, if

broadly applied, this human 3D interactome network analysis offers a powerful tool for
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prioritizing alleles with mutations altering PPIs that may contribute to the pathobiology of
human diseases, and may offer disease-specific targets for genotype-informed

therapeutic discovery.

INTRODUCTION

Owing to robust technological advances of next-generation sequencing of human
genomes, there are approximately 9 billion single-nucleotide variants, including 4.6
million missense variants, that have been identified in over 140,000 exomes and
genomes in the human genome aggregation database’. Interpretation of the clinical
pathogenetic effects of variants is crucial for the advancement of precision medicine.
However, our ability to understand the functional and biological consequences of
genetic variants identified by human genome sequencing projects is very limited. Many
computational approaches can identify only a small proportion of pathogenic variants
with the high confidence required in clinical settings. Studies of human genome
sequencing projects have reported potential associations with the functional regions
altered by somatic mutations, such as molecular drivers in cancers.? > However, many
important issues in the field remain unclear, including the phenotypic consequences of
different mutations within the same gene and the same mutation across different cell
lineages.

Recent efforts using systematic analyses of 1,000-3,000 missense mutations in
Mendelian disorders* ® and ~2,000 de novo missense mutations in developmental

disorders® demonstrate that disease-associated alleles commonly alter distinct protein-
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protein interactions (PPls) rather than grossly affecting the folding and stability of
proteins.* 5 Network-based approaches have already offered novel insights into
disease-disease’ and drug-disease®'? relationships within the human interactome. Yet,
the functional consequences of disease mutations on the comprehensive human
interactome and their implications for therapeutic development remain understudied.
Several studies have suggested that protein structure-based mutation enrichment
analysis offers potential tools for identification of possible cancer driver genes'!, such as
hotspot mutation regions in three-dimensional (3D) protein structures (i.e., protein-
ligand binding pocket)'?'4. Development of novel computational and experimental
approaches for the study of functional consequences of mutations at single residue
resolution is crucial for our understanding of the pleiotropic effects of disease risk genes
and offers potential strategies for accelerating precision medicine.® 15 16

In this study, we investigated comprehensively the network effects of disease-
associated mutations at amino acid resolution within the three-dimensional
macromolecular interactome of structurally-resolved and computationally-predicted
protein-protein interfaces. We provide evidence across large-scale populations covering
both disorders caused by germline mutation (e.g., hypercholesterolemia and
cardiovascular disease) and those caused by somatic mutations (e.g., cancers) for
widespread perturbations of PPIs due to missense mutations. Furthermore, we
demonstrate with subsequent experimental validation that PPI-perturbing mutations
strongly correlate with patient survival and drug responses in these cancers. These
results offer network-based prognostic and pharmacogenomic approaches to

understanding complex genotype-phenotype relationships and therapeutic responses in
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the clinical settings, and have implications for our understanding of the biological

consequences of this important, prevalent class of disease-associated mutations.

RESULTS

Widespread network perturbations by disease germline mutations

To investigate the effects of disease-associated mutations at amino acid resolution on a
PPI network, we constructed a structurally-resolved human protein-protein interactome
network by assembling three types of experimentally validated binary PPIs having
experimental or predicted interface information: (a) PPIs with crystal structures from the
RCSB protein data bank', (b) PPIs with homology modeling structures from
Interactome3D'®, and (c) experimentally determined PPIs with computationally
predicted interface residues from Interactome INSIDER'® (see online Methods). In total,
we considered 121,575 PPIs (edges or links) connecting 15,046 unique proteins
(nodes). We find that disease-associated mutations from the Human Gene Mutation
Database (HGMD)?° are significantly enriched in PPI interfaces of the respective
proteins compared to variations identified in individuals from 1000 Genomes?' (P <
2.2x107'®, Fisher’s test, Fig. 1a) and ExAC?? (P < 2.2x107'®, Fisher’s test, Fig. 1a)
projects. In addition, we find the same level of enrichment for mutant interface residues
with both crystal structures (Supplementary Fig. 1) and within the high-throughput
systematic interactome (see Methods) identified by (unbiased) yeast two-hybrid (Y2H)
screening assays?® (Supplementary Fig. 2). Fig. 1b reveals the global view of network

perturbations in disease-associated germline mutations from the HGMD?. In Fig. 1b,
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each node represents a gene product (protein) and each edge represents a PPI
harboring at least one disease-associated mutation at its interface. For example,
multiple disease-associated gene products, such as p53, LMNA, CFTR, HBA, and

GJB2, have networks altered by multiple interface, disease-associated mutations.

Proprotein convertase subitilisin/kexin type 9 (PCSK9), first discovered by human
genetic screening studies in 2003, has generated great interest in genomics-informed
drug discovery for cardiovascular disease?*. We, therefore, investigated whether the
PCSKO allele carrying a p.Ser127Arg substitution perturbs the interaction between
PCKS9 and LDLR (low-density lipoprotein receptor protein), which could have
implications for hypercholesterolemia and atherothrombotic cardiovascular disease
(Fig. 1c). To predict the effect of a p.Ser127Arg substitution on the PCSK9-LDLR
interaction, we performed 400 ns molecular dynamics (MD) simulations (see Methods
and Supplementary Fig. 3) to predict that the binding affinity between p.Ser127Arg
PCSK9 and LDLR would be increased (545 kJ/mol) versus wild-type (691 kdJ/mol,
Supplementary Fig. 4). We focused on the interaction between the beta-propeller region
of LDLR and the non-covalently bound propeptide (residues 61-152) of PCSK9. The
binding affinity (AAG) of p.Ser127Arg relative to that of wild type is predicted to change
by -14 kJ/mol, suggesting that the strength of interaction with LDLR is perturbed due to

the p.Ser127Arg substitution.

We next focused on the propeptide of PCSK9, where the total change in binding affinity
by p.Ser127Arg is predicted to be altered by -211 kd/mol (Supplementary Fig. 4). The
region centered on the p.Ser127Arg substitution (Supplementary Fig. 4) is key to the

increased binding affinity in the mutant PCSK92°. While interactions between the
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propeptide of PCSK9 and the beta-propeller of LDLR do exist in the wild-type system,
they do not involve the region surrounding residue 127 (Supplementary Fig. 4). Much of
the change in the binding affinity, on a per residue basis, is due to a steep increase in
the electrostatic interaction energy with the mutated residue (Arg127), which accounts
for the greatest contribution to the overall change in binding affinity (Supplementary Fig.
4), significantly affecting the overall binding affinity. For example, a number of arginine
residues in the alpha helix (Leu88-Arg105) distal to the interface between the beta-
propeller of LDLR and the propeptide are predicted to exhibit an increase in their
binding affinity due to an increase in electrostatic interactions. This increase in
electrostatic interactions stems from a roughly 15 A decrease in the distance between
the center of the helix and the interaction region, measured from the alpha carbon of
Arg86 in PCSK9 and Arg385 of LDLR (Supplementary Fig. 5). For the PCSK9
p.Ser127Arg-LDLR complex, the combination of the extra length of the sidechain, in
addition to the charged guanidinium functionality, would allow interactions with the
sidechains of Arg385 and His386 on LDLR. In summary, combining human interactome
analyses and computational biophysical modeling strongly supports an interaction
perturbation model for p.Ser127Arg, in agreement with the notion of PPI-perturbing
alleles.

Landscape of PPIl-perturbing alleles in human cancer/somatic mutations

We next turned to an investigation of the somatic mutation load between PPI interface
and non-interface regions. In total, we inspected 1,750,987 missense somatic mutations
from 10,861 tumor exomes across 33 cancer types from The Cancer Genome Atlas

(TCGA) in the interface regions of 121,575 PPIs (see Methods). We found a
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significantly higher somatic mutation burden on PPI interfaces compared to non-
interfaces across all 33 cancer types (P < 2.2x10-'6, two-sided Wilcox test, Fig. 2a). For
breast cancer, the average missense mutation burden leading to amino acid
substitutions is 20 per 1 million residues in interface regions, significantly higher than
that of non-interface regions (4 per 1 million, 5-fold enrichment, P < 2.2x107'8, two-sided
Wilcoxon test). We found the same trend that somatic mutations are highly enriched in
both crystal structure-derived (Supplementary Fig. 6) and computationally inferred
(Supplementary Fig. 7) PPI interfaces compared to non-interface regions across all 33
cancer types, as well. To reduce the risk of sub-optimal data quality and literature bias in
the human interactome, we also performed the same mutation burden analysis in
structurally-resolved, unbiased PPIs. We found a higher mutation load at the interface
residues of the physical human interactome using co-crystal structures only
(Supplementary Fig. 8) and unbiased, binary PPIs identified by Y2H with available co-
crystal structure-derived interfaces and computationally predicted interfaces, as well
(Supplementary Fig. 9), supporting the robustness of the analysis. We further
investigated the cumulative distribution of deleterious amino acid substitutions between
PPl interface and non-interface regions. Deleterious substitutions quantified by both
SIFT (Fig. 2b) and PolyPhen-2 (Fig. 2¢c) scores (see Methods) are significantly enriched
in PPl interfaces compared to non-interfaces. Altogether, widespread interaction
perturbations caused by somatic mutations can contribute to tumorigenesis, as well,
suggesting the functional significance of PPI interfaces in human disease. Following this
analysis, we next pursued the identification of putative oncoPPlIs (PPIs in which there is

a significant enrichment in interface mutations in one or the other of the two protein
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binding pairs across individuals) by systematically exploring the mutation burden

between PPI interfaces versus non-interfaces across 10,861 tumor exomes.

Systematic identification of interface mutation-enriched PPls

Based on the observation that somatic missense mutations are enriched at PPI
interfaces (Fig. 2a) and that mutations at PPI interfaces are more likely to be
deleterious than those at the non-interfaces (Fig. 2b and 2c¢), we proposed a statistical
model to prioritize putative oncoPPIs which harbor a statistically significant excess
number of amino acid substitutions at PPI interfaces by applying a binomial distribution
(see Methods). In total, we investigated the somatic mutations in 10,861 tumor-normal
pairs across 33 cancer types in TCGA database (see online Methods). These 33 major
cancer types consisted of acute myeloid leukemia (LAML), adrenocortical carcinoma
(ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),
cervical carcinoma (CESC), cholangiocarcinoma (CHOL), colon and rectal
adenocarcinoma (COAD/READ), diffuse large B cell ymphomas (DLBC), esophageal
carcinoma (ESCA), glioblastoma (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma
(KIRC), kidney papillary cell carcinoma (KIRP), low grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV),
pancreatic ductal adenocarcinoma (PAAD), paraganglioma and pheochromocytoma
(PCPG), prostate adenocarcinoma (PRAD), sarcoma (SARC), rectal adenocarcinoma
(READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid
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carcinoma (THCA), testicular germ cell cancer (TGCT), thymoma (THYM), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), and uveal
melanoma (UVM). In total, we identify 470 putative oncoPPIs harboring interface
mutation-enriched PPIs with a false positive rate g < 0.01 in pan-cancer analysis (Fig.
2d, Supplementary Fig. 10 and Supplementary Table 1). A significant determinant of
the highest proportion is the BRAF p.Val600Glu substitution, a well-studied,
promiscuous variant for multiple cancers that is now targeted for individualized cancer

therapy.

We then investigated the distribution of the number of putative oncoPPls
identified across 33 individual cancer types. In total, 3,579 putative oncoPPIs reached a
level of significance (FDR q < 0.05, Supplementary Table 1) across 29 cancer types in
which we found at least one putative oncoPPI (see Methods); ACC, KICH, MESO, and
THYM each has none (Supplementary Fig. 11). Among the 10,861 TCGA tumor
samples analyzed in this study, 4,405 (40%) samples are covered by at least one
putative oncoPPl. When focusing on individual cancer types, we find up to 91% of UVM
and 86% of SKCM patients harbored at least one oncoPPI (Supplementary Fig. 12).
Figure 3 illustrates the landscape of putative oncoPPIs across 33 cancer types. For
example, the top five oncoPPls include SGK1-BRAF, DDX5-PIK3CA, GNAQ-FLOT?2,
GNA11-RGS3, and SPOP-H2AFY. The top five PPI-perturbing somatic mutations are
p.Arg132His in IDH1, p.Val600GIu in BRAF, p.His1047Arg in PIK3CA, p.GIn209Leu in
GNA11, and p.Phe133Leu in SPOP (Fig. 3). For example, p.Phe133Leu in SPOP has
been reported to be a hotspot driver mutation in prostate cancer®. The p.GIn209Leu in

GNA11 was reported as a driver mutation by altering crucial signaling networks in uveal

11


https://doi.org/10.1101/2020.09.18.302588
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.302588; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

melanoma?’. In summary, many known driver mutations are commonly located in
regions that are part of interaction interface of one or the other binding partner proteins,
indicating the potential for widespread interaction perturbations in human cancer (Fig.
3). [All oncoPPls and PPI-perturbing mutations in Fig. 3 can be freely accessed at

https://mutanome.lerner.ccf.org/.]

Pharmacogenomics landscape of PPIl-perturbing mutations

We next examined whether or not putative oncoPPIs can predict anticancer drug
responses (Fig. 4a). We used ANOVA to determine if there is a significant difference
between the cell lines of the PPI interface-mutated group and the PPI interface wild-type
group in terms of their sensitivity/resistance (the half-maximal inhibitory concentration
[1Cs0]) to the drug under consideration. By analyzing drug pharmacogenomics profiles of
over 1,000 cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC)
database (see Methods), we found that interface-predicted mutations of oncoPPlIs are
highly correlated with sensitivity or resistance to multiple therapeutic agents
(Supplementary Table 2). Figure 4b shows that oncoPPIs are highly correlated with the
sensitivity or resistance of 66 clinically investigational or approved anticancer agents in
cancer cell lines. For example, foretinib is an experimental agent that inhibits the c-Met
and VEGFR2 kinases for the treatment of multiple cancer types.?® We find that PPI-
perturbing mutations in SNAI1 and ACTNZ2 are responsible for resistance to foretinib
(Supplementary Fig. 13). SNAI1, encoding zinc finger protein SNAI1, is part of the snail
family of transcription factors involved in regulating the epithelial-to-mesenchymal
transition.?® VEGFR stimulates SNAI1 expression in breast tumor cancer cells?®, leading
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to resistance of VEGFR inhibitors (foretinib) by PPI-perturbing mutations on SNAI1 and
ACTN2. GNAI2, encoding G protein subunit alpha 12, has been reported as a potential
molecular driver in ovarian cancer.®® Here, we find that PPI-perturbing mutations in
GNAI2 that directly disrupts interactions with RGS20 and TRIPG6 are associated with
resistance to several chemotherapeutic agents, including gemcitabine and tamoxifen

(Supplementary Fig. 13).

To assess better the clinical potential of the PPI-perturbing mutations, we further
investigated their correlation with anticancer drug response by analyzing the data from
in vivo compound screens between ~1,000 patient-derived tumor xenograft (PDXs)
models and 62 medications (including both monotherapy and combination therapy).3! In
total, we found 2,808 significant correlations (P < 0.05, ANOVA test, see Methods)
between 49 medications and 1,411 putative oncoPPIs (Fig. 4c). For example, amino
acid substitutions in VCL (vinculin), located at the interface between VCL and FXR1
(fragile X mental retardation syndrome-related protein 1), are significantly correlated
with resistance to encorafenib, an FDA-approved BRAF inhibitor for the treatment of
melanoma,? compared to patients without VCL-FXR1 perturbing mutations. FXR1-
BRAF fusion has been found in glioma,3% 34 which may explain the correlation of
encorafenib’s response with interface substitutions that disrupt VCL-FXR1 (Fig. 4d).
Additionally, we found that interface substitutions that disrupt BRAF-MAP2K1 are
significantly associated with response to combination therapy with ribociclib (a
CDK4/CDKS6 inhibitor in clinical trial for treatment of multiple cancer types®) and
encorafenib in PDXs, suggesting potential pharmacogenomic biomarkers for rational

development of combination therapy in cancer. In summary, PPI-perturbing mutations
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offer potential as pharmacogenomics biomarkers in both cancer cell lines and PDX

models, which warrants further investigation using patient data.

Discovery of PPl-perturbing alleles in histone H4 complex

We next investigated the correlation between patient survival and oncoPPIs. Serine-
and arginine-rich splicing factor 1 (SRSF1) plays a crucial role in breast cancer by
regulating alternative splicing®. We find that interface substitutions of p53 or SRSF1 are
significantly enriched in p53-SRSF1, and are significantly associated with poor survival
rate in BLCA (P = 6.1 x 103, Log-rank test), BRCA (P = 6.4 x 104), and COAD (P =7.2
x 10%), among 33 cancer types (Supplementary Fig. 14). Interestingly, mutations on p53
alone are modestly associated with poor survival rate in BRCA (P = 0.03, Log-rank test),
but are not associated with BLCA (p = 0.79) and COAD (p = 0.11, Supplementary Fig.
15) survival rates. Histone acetyltransferase p300 (EP300) regulates transcription of
genes via chromatin remodeling, playing an important role in melanoma cell
oncogenesis®’. We find that amino acid substitutions of EP300 or NFYB at the
interfaces of EP300 and NFYB (nuclear transcription factor Y subunit beta) significantly
correlate with poor survival rate in melanoma patients (p = 0.02, Log-rank test,
Supplementary Fig. 16). For colon cancer (COAD), PPI-perturbing mutations in PLG
(plasminogen) or SMAD4 (mothers against decapentaplegic homolog 4) are highly

correlated with poor survival (P < 1.0x104, Log-rank test, Supplementary Fig. 16).

Histone H4, encoded by HIST1HA4A, is one of the five main histone proteins

involved in gene regulation, DNA repair, and chromatin structure.3® Histone H4
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mutations remain understudied in human diseases, including cancers. Figure 5a shows
multiple potential PPI-perturbing mutations on histone H4 in complex with DAXX (death-
associated protein 6), H3F3A (H3 histone family member 3A), and CENPA (centromere
protein A). We found a high mutational burden of the histone H4 complex in multiple
cancer types (Fig. 5b), especially for UCEC, LUAD, LUSC, HNSC, and BLCA. Figure
5c illustrates several selected H4 interface substitutions of the histone H4 complex.
H3F3A, encoding histone H3.3, has been implicated in multiple cancer types, such as
malignant pediatric brain cancers.?® Interface substitutions of HIST1H4A or H3F3A in
H3.3-H4 interfaces are significantly associated with poor survival in COAD (Fig. 5e) and
response to multiple anticancer drugs, such as paclitaxel and BMS-754807 (Fig. 5f).
DAXX, encoding death-associated protein 6, plays essential roles in H3.3-specific
chaperone function by its central region folding with the H3.3/H4 dimer.*® We found
multiple interface substitutions between histone H4-DAXX, which are potentially
involved in tumorigenesis and drug responses (Fig. 5¢). For example, PPI-perturbing
mutations in histone H4 that disrupt the DAXX interaction are significantly associated
with poor survival in COAD and LUSC, and are further associated with drug responses
in those malignancies (Fig. 5e and 5f) compared to interface wild-type patients. In
summary, PPIl-perturbing alleles in the histone H4 complex indicate one example of

highly clinically relevant mechanisms in cancer.

Experimental validation of PPI-perturbing alleles

To test PPI-perturbing alleles experimentally, we selected and cloned 13 high-
confidence oncoPPls using our previously established binary interaction mapping
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vectors (see Methods). We selected these 23 missense mutations using subject matter
expertise based on a combination of factors: (i) interface mutations with crystal structure
evidence; (ii) PPIl-perturbing mutations that are significantly correlated with drug
response and patient survival; and (iii) mutations that affect the interaction which can be
detected by yeast-two hybrid (Y2H) assay used in the Human Reference Interactome
mapping project*'. In total, we selected 23 somatic missense mutations across 13

oncoPPIs (Supplementary Table 3) for testing by Y2H (see Methods).

We first tested the impact of these mutations on the corresponding 13 oncoPPls
using our well-established Y2H assay*. All yeast colonies that grow on non-selective
media, as well as selective media, are picked, and the presence of the desired allele is
further confirmed by full-length sequencing. As shown in Fig. 6, among 23 tested
mutations, 17 (74%) led to lost PPIs or reduced the detected effects of PPIs, while 6
(26%) maintained the interactions predicted to be affected by the mutation
(Supplementary Table 3). Our experimental results are consistent with the PPI test
results of disease mutations in our previous study*, in which approximately two-thirds of
disease mutations are PPI-perturbing. Importantly, this study did not identify the location

of the mutation in the protein tertiary structure.

Among the tested mutations, the p.Met146Lys mutation (Fig. 6b) in ALOX5
(arachidonate 5-lipoxygenase) disrupts its interaction with MAD1L1, a mitotic spindle
assembly checkpoint protein. Both ALOX5 and MAD1L1 have been reported to be
involved in tumorigenesis and/or tumor progression of several cancer types.4? 43,
Another example is the p.Arg382Trp mutation in HOMEZ (homeobox and leucine zipper

encoding) that alters the interaction between HOMEZ and EBF1 (early B-cell factor 1).
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We performed Zdock protein docking analysis** of the effect of p.Arg382Trp on the
HOMEZ and EBF1 interaction (Supplementary Fig. 17). We computationally
constructed the homology structure of the HOMEZ and EBF1 complex from the
monomer structures of HOMEZ homeobox domain (PDB: 2ECC) and EBF1 IPT/TIG
domain (PDB: 3MQlI). According to the docking structure model with the best predicted
score (Fig. 6¢ and Supplementary Fig. 17), Arg382 is located at the binding interface of
HOMEZ and EBF1, forming one salt-bridge and one hydrogen-bond with Asp285 and
Asn286 in EBF1, respectively. Interestingly, p.Arg382Trp disrupts the salt-bridge and
hydrogen bond and further alters surface topography due to the size and shape
difference between Arg and Trp, which contribute to the binding free energy loss of the
protein complex. By superimposing homeobox-DNA complex structure onto the
HOMEZ-EBF1 complex model (Supplementary Fig. 17), we observe that HOMEZ
contains two distinct binding interfaces of its homeobox domain to interact with DNA and
EBF1 simultaneously. Although p.Arg382Trp disrupts the interaction of HOMEZ and

EBF1, it may also alter the protein-DNA interaction, as well.

We next focused on the RHOA-ARHGDIA interaction as it has an available co-
crystal structure (Supplementary Fig. 18). In the RHOA-ARHGDIA system, the
p.Pro75Ser substitution causes a shift in the secondary structure of the region. Using
MM/PBSA to calculate the interaction enthalpy, we observe a difference of over 100
kJ/mol incident in the mutated protein, indicating a significant loss in interaction inherent
in the mutation, consistent with our experimental data (Fig. 6b and 6d). RHOA is a well-
known oncogene in which multiple mutations were reported to be likely pathogenic in

various types of cancers, including lymphoma and adenocarcinoma®®. Its interaction
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with ARHGDIA is important for inactivation and stabilization of RHOA. Loss of the
RHOA-ARHGDIA interaction could, therefore, lead to tumor cell proliferation and
metastasis.*% 4’ These observations suggest that p.Pro75Ser is a potential functional
PPI-perturbing mutation that alters the RHOA-ARHGDIA interaction in cancer cells. In
summary, our experimental assays and computational biophysical analyses identify
network perturbations by PPI-perturbing mutations that can potentially lead to discovery

of novel molecular mechanisms in cancer.

Functional validation

We next turned to functional validation using two selected systems: 1) RXRA
p.Ser427Phe mutation at the RXRA-PPARG interface, and 2) ALOXS5 p.Met146Lys
mutation at the ALOX5-MAD1L1 interface (Fig. 6b). RXRA is a member of the nuclear
receptor superfamily and plays critical roles in pathologic processes of multiple
diseases, including oncogenesis*®. Our oncoPPI analysis revealed that p.Ser427Phe in
RXRA played crucial roles in tumorigenesis, including pancreatic carcinogenesis (Fig.
7a). To reveal an oncogenic role of p.Ser427Phe in pancreatic cancer, we transfected
the wild-type (WT) and p.Ser427Phe mutant RXRA into pancreatic cancer cells
(Supplementary Fig. 19). We observed that p.Ser427Phe promoted tumor cell growth
and clone formation in two pancreatic cancer cell lines: Capan-2 and SW1990 (Fig. 7b-
7d). It has been reported that p.Ser427Phe in RXRA simulated peroxisome proliferator
activated receptors (PPARSs) to drive urothelial proliferation and a PPARs-specific
antagonist can block the mutant RXRA-driven cell proliferation*®. To test this hypothesis,

Capan-2 and SW199 transfected with WT or RXRA p.Ser427Phe were treated with
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GSKO0660, a potent PPAR[3/d antagonist. As shown in Fig. 7e, p.Ser427Phe-expressing
Capan-2 are modestly susceptible to GSK0660 (ICs0= 1.11 uM), when compared with
empty vector (EV, 1C5=8.41 uM) or WT (ICso= 2.51 pM)-transfected cells. A similar
result was also obtained using the SW1990 cell line (EV: ICs0= 6.99 uM, WT: IC50=2.84
MM and p.Ser427Phe: 1IC50=1.80 pM, Fig. 7e and 7f). Taken together, these data show
that RXRA-PPARG-perturbing mutation p.Ser427Phe promotes pancreatic cancer cell
growth and sensitivity of PPARs antagonists.

ALOX5, a key enzyme in the biosynthesis of leukotrienes®, plays roles in
tumorigenesis and tumor progression®’. Our Y2H assay showed that p.Met146Lys in
ALOXS5 (Fig. 7g) perturbed the physical interaction between ALOX5 and MAD1L1. To
examine the functional role of p.Met146Lys in ALOX5 on cancer cell proliferation, we
generated ALOXS5 p.Met146Lys using standard site-directed mutagenesis
(Supplementary Fig. 20a). We next expressed WT and p.Met146Lys mutant ALOXS in
two lung cancer cell lines: H1299 and H460 (Supplementary Fig. 20b-20d). Figure 7h-
7j found that p.Met146Lys significantly promotes cell proliferation and clone formation of
H1299 and H460 cell lines. Taken together, these cell line-based functional experiments
provide a proof-of-concept evidence for the functional consequences of PPI-perturbing

alleles in cancer.

DISCUSSION
Previous studies have demonstrated that the human protein-protein interactome

provides powerful network-based tools to quantify disease-disease’ relationships and
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drug-disease®'° relationships; however, the functional network consequences of
disease-associated mutations remain largely unknown. In this study, we developed a
human structurally-resolved macromolecular interactome framework for comprehensive
identification of PPI-perturbing alleles in human disease. We showed the widespread
network perturbations by both disease-associated germline and somatic mutations.
Specifically, we revealed that disease-associated germline mutations are significantly
enriched in PPl interfaces in comparison to mutations identified in healthy subjects from
the 1,000 Genomes and ExAC projects; furthermore, somatic missense mutations from
TCGA are significantly enriched in PPI interfaces compared to non-interfaces, as well.
To benchmark our method, we assembled a large-scale whole-exome sequencing
dataset of 10,861 human exomes across 33 cancer subtypes/types from TCGA. Via a
binomial statistical model, we identified 470 PPIs harboring a statistically significant
excess number of missense mutations at PPI interfaces (oncoPPIs) in pan-cancer
analysis, and validated select predictions experimentally. We demonstrated that
network-predicted oncoPPIs were highly correlated with patient survival and drug
resistance/sensitivity in human cancer cell lines and patient-derived xenografts, offering
powerful prognostic markers and pharmacogenomics biomarkers for potential clinical
guidance. Altogether, these findings provide network medicine-based fundamental
pathogenic molecular mechanisms and offer potential disease-specific targets for
genotype-informed therapeutic discovery.

Our systematic network strategy provides a practical approach to identifying
functional consequences of candidate disease alleles by altering network effects

compared to traditional gene-based statistical models. Multiple PPI-perturbing alleles,
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including ROHA p.Pro75Ser at the RHOA-ARHGDIA, offer novel network-based
mechanistic insights into disease-associated mutations. PPI-perturbing mutations are
significantly associated with poor survival rate in cancer patients, while mutations in the
gene alone did not typically correlate with patient survival (Supplementary Figs. 14 and
15). In addition, PPI-perturbing mutations were significantly correlated with drug
sensitivity or resistance, but mutations in a gene alone typically failed to predict drug
responses (Fig. 4 and Supplementary Fig. 21). We found that the proteins involving in
the oncoPPIs do not directly overlap with known drug targets (Supplementary Fig. 22).
One possible explanation is that the oncoPPIs influence the downstream or upstream
network-associated protein targets of the drugs. In support of this view, we found that
known drug targets did overlap with the neighbors of oncoPPIs (Supplementary Fig.
22), rather than the oncoPPlIs directly, supporting the network-based effects of drug
targets in the human interactome, as we demonstrated in our previous studies® '°.

We found that gene expression of oncoPPIs is unlikely to be cancer type-specific
(Supplementary Fig. 23). This conclusion is consistent with our recent human
interactome analysis showing no significant enrichment for PPIs between causal
disease proteins and tissue-specific expressed proteins*'. One possible explanation for
this finding is that PPIs are more likely to be altered by somatic coding mutations that
alter physical binding affinity. For example, we found that p.Met146Lys specifically
perturbed the interaction between ALOX5 and MAD1L1 (Fig. 6b and Supplemental Fig.
20). Previous studies have shown low or no correlation between protein expression or
activity and gene expression®2. There are many factors that influence the correlation

between protein expression or activities and mRNA abundance, including post-
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translational modification of proteins, RNA editing, and others®2 53,

We acknowledge several potential limitations in the current study. Different tissue
collection protocols, different sequencing approaches, and variant calling and filtering
approaches from TCGA may generate the potential risk of a significant false positive
rate. Although we found the same level of enrichment for mutant interface residues
using both crystal structures and within the high-throughput systematic interactome
identified by unbiased Y2H assays?3, some potential noise of computational inferred PPI
interface may exist. We compiled a comprehensive, structurally-resolved interactome
network based on our sizeable efforts, and on the incompleteness of the human
interactome which may limit coverage for some unknown disease proteins or mutations.
Recent machine learning approaches, such as deep learning approaches® %5, can
increase the coverage of the structurally-resolved human interactome for future studies.
Moving forward, our approach may directly facilitate the biological interpretation of
mutations and inform disease-driven PPI allele identification in multiple ongoing and
future human genome sequencing efforts, including TopMed®¢, PVDOMICS?®’,
International Cancer Genome Consortium (ICGC)%, All of US%, and many others.
Altogether, we can minimize the translational gap between genomic medicine and
clinical benefits, a significant path from network medicine to precision medicine.

In summary, our study demonstrates that the identification of PPI-perturbing
alleles, including oncoPPIs facilitates the biological interpretation of mutations and
offers potential therapeutic targets (including potential PPI inhibitor design) for
undruggable proteins, such as tumor suppressor genes or undruggable oncogenes®.

Our catalog of PPI-perturbing alleles and oncoPPlIs (https://mutanome.lerner.ccf.org/)
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could inform the clinical annotation of patients with both germline and somatic
mutations, and offers the promise of precision diagnosis and personalized treatment in

clinical practice.

ONLINE METHODS

Building the human protein-protein interactome

To build a comprehensive human binary protein-protein interactome, we assembled
three types of experimental evidence: (1) PPIs with crystal structures from the RCSB
protein data bank'’, (2) PPIs with homology modeling structures from Interactome3D"8,
and (3) experimentally determined binary PPIs with computationally predicted interface
residues from Interactome INSIDER?. For crystal structures and homology models of
PPls, any residue that is at the surface of a protein (=15% exposed surface) and whose
solvent accessible surface area (SASA) decreases by 21.0 A2 in complex is considered
to be at the interface. In addition, we also assembled computationally predicted
interfaces using the ECLAIR classifier for experimentally identified PPIs from
Interactome INSIDER'®. Genes were mapped to their Entrez ID based on the NCBI
database®® as well as their official gene symbols based on GeneCards
(http://www.genecards.org/). The resulting predicted human binary interactome
constructed in this way includes 121,575 PPIs (edges or links) connecting 15,046

unique proteins (nodes).
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Collection and preparation of genome sequencing data

We downloaded the tumor-normal pairwise somatic mutation data for patients from
TCGA GDC Data Portal®! using R package TCGA-assembler®?. Disease-associated
missense mutations were downloaded from HGMD?°. Population-based missense
mutations were obtained from the 1000 Genomes Project?’ (phase 3, 2,504 individuals)
and from ExAC database (v0.3.1, 60,706 individuals)?’. We downloaded putative
somatic mutations for 1,001 cancer cell lines from the Genomics of Drug Sensitivity in
Cancer (GDSC, http://lwww.cancerrxgene.org/). The list of genomic variants found in
these cell lines by whole exome sequencing was also obtained from GDSC. The
sequencing variants were identified by comparison to a reference genome. The
resulting variants were then filtered using the data from NHLBI GO Exome Sequencing
Project and the 1000 Genomes Project to remove sequencing artefacts and germline
variants®. In addition, we used ANNOVAR®* to map these somatic mutations in the
protein sequences for identifying the corresponding amino acid changes via RefSeq ID.
The functional impact of nonsynonymous SNVs (single nucleotide variants) was
measured by both SIFT®® and PolyPhen-2 scores®. For this analysis, we obtained
SIFT and PolyPhen-2 scores from the ANNOVAR annotation database. We then
converted RefSeq ID to UniProt ID using a UniProt ID mapping tool

(http://www.uniprot.org/uploadlists/).

Significance test of PPl interface mutations

For each gene g; and its PPl interfaces, we assumed that the observed number of
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mutations for a given interface followed a binomial distribution, binomial (T, py,), in
which T was the total number of mutations observed in one gene and p,, was the
estimated mutation rate for the region of interest under the null hypothesis that the
region was not recurrently mutated. Using length(g;) to represent the length of the
protein product of gene g;, for each interface, we computed the P value — the
probability of observing more than k mutations around this interface out of T total
mutations observed in this gene — using the following equation:
PX2k)=1-PX<k)=1-3E3Op51-p,) "™ (1)

length of interface
length(g;)

in which p,. = . Finally, we set the minimal P value across all the

interfaces in a specific protein as the representative P value of its coding gene g;,

denoted P(g;).

Cancer cell line annotation

We downloaded the annotation file of the cancer cell lines: molecular and drug-
response data availability, microsatellite instability status, growth properties and media,
and TCGA and COSMIC tissue classification, from GDSC

(http://www.cancerrxgene.org/). The details were described in a previous study®3.

Drug sensitivity data

Natural log half-maximal inhibitory concentration (ICso) and the area under the dose-

response curve (AUC) values for all screened cell line/drug combinations were
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downloaded from GDSC. After applying the data preparation procedure described in a
previous study %, a total of 251 drugs tested in 1,074 cancer cell lines with 224,510 data
points were used. In addition, we collected anticancer drug response data from in vivo
compound screens between ~1,000 patient-derived tumor xenograft models (PDXs) and

62 treatments across six indications.3’

ANOVA model

For each drug, we constructed a drug-response vector consisting of n ICso values from
treatment of n cell lines. Next, a drug-response vector was modeled as a linear
combination of the tissue of origin of the cell lines, screening medium, growth
properties, and the status of a genomic feature:

ICs5y = Mut + Tissue + Medium + MSI (2)
where Mut is mutations and MSI is Microsatellite Instability (including small indels)
In this study, considering the data sparsity, we only performed pan-cancer analysis. A
genomic feature-drug pair was tested only if the final drug-response vector contained at
least 3 positive cell lines and at least 3 negative cell lines. The effect size was quantified
through the Cohen’s d statistic using the difference between two means divided by a
pooled standard deviation for the data. The resulting P-values were corrected by the
Benjamini-Hochberg method 7. All statistical analyses were performed using the R

package (v3.2.3, http://www.r-project.org/).

Pathway enrichment analysis
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We used ClueGO © for enrichment analysis of genes in the canonical KEGG pathways.
A hypergeometric test was performed to estimate statistical significances, and all P
values were adjusted for multiple testing using Bonferroni’s correction (adjusted P

values).

Cloning of disease mutations

We generated the predicted disease mutants by implementing a site-directed
mutagenesis pipeline as described below. For each mutation, two “primary PCRs” were
performed to generate DNA fragments containing the mutation and a “stitch PCR” was
performed to fuse the two fragments to obtain the mutated ORF. For the primary PCRs,
two universal primers (E2E forward and E2E reverse) and two ORF-specific internal
forwards and reverse primers were used. The two ORF-specific primers contained the
desired nucleotide change. The fragments generated by the primary PCRs were fused
together by the stitch PCR using the universal primers to generate the mutated ORF.
The final product was a full length ORF containing the mutation of interest. All the
mutated ORFs were cloned into a Gateway donor vector, pPDONR223, by BP reaction
followed by bacterial transformation and selection using spectinomycin. Two single
colonies were picked for each transformant. All picked colonies were transferred into
pDEST-AD and pDEST-DB by LR reaction followed by bacterial transformation and
selection using ampicillin. The plasmids were then extracted, purified and transformed

into Y8930 yeast strain for the pairwise test.

Pairwise test to identify perturbed interactions
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The pairwise test was performed in 96 well format. The ORFs were inoculated in SC-
Leu and SC-Trp media overnight and mated in YEPD media the following day. All WT
and mutant alleles in pPDEST-DB were mated with their interacting partner in pDEST-AD
(DB-ORFXxAD-ORF) as well as pDEST-AD without the ORF inserted (DB-ORFxAD-
empty). After incubation at 30°C overnight, mated yeasts were transferred into SC-Leu-
Trp media to select for diploids. The following day, the diploid yeasts were spotted on
SC-Leu-Trp-His+1mM 3AT and SC-Leu-Trp media to control for mating success.

After 3 days of growth at 30°C, each spot on plates was scored with a growth
score ranging from O to 4, 0 being no growth, 1 being one or two colonies, 2 being some
colonies, 3 being many colonies, 4 being a large consolidated spot in which no
individual colonies can be distinguished. Pairs for which the SC-Leu-Trp spot was
scored as 3 or 4 and the 3AT spot were valid (yeasts were spotted and no
contamination or other experimental failure) were considered as successfully tested. A
successfully tested pair can be further classified as positive, negative, or auto-activator
and depends on the growth scores of DB-ORFxAD-ORF and DB-ORF-AD-empty on
SC-Leu-Trp-His+1mM 3AT plates. If growth score of DB-ORFxAD-ORF = 0, the pair
was classified as negative; if growth score of DB-ORFxAD-ORF - DB-ORFxAD-empty =
2, the pair was classified as positive (Supplementary Table 3); otherwise the pair was
classified as auto-activator. Pairs were scored blindly with respect to their identity using
in-house software.

In parallel, we made lysates of all SC-Leu-Trp plates to perform duplex PCR
using barcoded AD/DB and Term primers followed by pooling and sequencing with the

PacBio Sequel system. We used SMRT tools (v5.1.0) and ISO-SEQ (v3.1) software
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packages to analyze raw sequencing results. The pipeline includes five main steps to
obtain high-quality sequences; 1) generating circular consensus (CCS) reads, 2)
demultiplexing and primer removal, 3) classifying full-length CCS reads, 4) clustering
full-length non-chimeric (FLNC) reads, and, finally, 5) polishing cluster sequences.
Polished sequences were then aligned to the ORF sequences using BLAST. Colonies
with the exact full-length sequence as expected (with, and only with, the expected
mutations, fully covered by polished reads) were considered as sequence-confirmed.

Only pairs that were successfully tested, classified as positive or negative, for
which the wild-type allele was classified as positive with a growth score = 2, and that
were sequence-confirmed were considered for all further analysis. An interaction was
considered perturbed by an allele if the growth score of the allele was < 1 and the
growth score was smaller than the growth score of the corresponding wild-type pair by
at least two. Otherwise, an interaction was considered partially perturbed by an allele if
the growth score of the wild-type pair was greater than the growth score for that

interaction with the respective allele by one.

System construction for molecular simulation

The crystal structures (PDBs: 1CCO0O and 3MOC) were accessed from the RCSB PDB
protein data bank. Co-crystalized ions were retained from the structure. Non-terminal
missing loops were reconstructed using Modeller9.18 within UCSF Chimera where
required. Protonation states for charged residues were determined using PROPKA 2.0.
Mutations and preparation of the system for molecular dynamics simulation were

accomplished using the quick MD simulator module of CHARMM-GUI. Following a
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processing step, including adding hydrogens and patching the terminal regions, a water
box using TIP3 water molecules with edges at least 12 A from the protein was added.

The system was neutralized to a NaCl concentration of 150 mM.

Simulation parameters

Molecular dynamics simulations were carried out using GROMACS 2018.27 on the
Pitzer computing cluster at the Ohio Supercomputer Center. Initial minimizations of the
systems were carried out using steepest descent until the energy of the system reached
machine precision. Following minimization, an NVT equilibration step with positional
restraints of 400 kJ mol"' nm on backbone atoms and 40 kJ mol"' nm2 on side chain
atoms was run using a timestep of 2 fs for 500 000 steps, yielding 1 ns of equilibration.
Finally, NPT dynamics were run with no positional restraints for 400 ns using the same 2
fs timestep from equilibration, after which the system was determined by its root-mean-
squared deviation (RMSD) to be reasonably well equilibrated.

Hydrogen atoms were constrained using the LINCS algorithm. Temperature
coupling to 310.15° K was done separately for the protein and the water/ions using a
Nose-Hoover thermostat and a 1 ps coupling constant. For the NPT dynamics
simulation, isotropic pressure coupling to 1 bar was done using a Parrinello-Rahman
barostat with a coupling constant of 5.0 ps and compressibility of 4.5e-05 bar™. The
pair-list cutoff was constructed using the Verlet scheme, updated every 20 evaluations
with a cutoff distance of 12 A. Particle mesh Ewald (PME) electrostatics were chosen to
describe coulombic interactions using the same cutoff as in the pair-list. The van der

Waals forces were smoothly switched to zero between 10 and 12 A using a force-switch
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modifier to the cut-off scheme.

Post-processing and RMSD plots were generated using standard GROMACS
tools. MM/PBSA energies were calculated on 1,001 frames over the final 100 ns of
each simulation using g_mmpbsa, which uses APBS to determine the polar and non-
polar contributions to the binding energy. Briefly, the binding free energy can be
expressed as

AGpinging = Geompiex — (Gproteinl + Gproteinz) (3)

where complex refers to the protein-protein complex, and protein 1 and protein 2 the
respective proteins in the complex. The individual free energies for each component
above are determined by

Gy = (Emm) + (Gsowation) =TS~ (4)
where (E,;,) is the vacuum molecular mechanics energy, (Ggowation) the solvation
energy, and TS the entropic contribution. Entropic contributions were not included owing
to computational cost and evidence that the inclusion of the entropy term does not
always improve the accuracy of the calculations. The molecular mechanics energy and
solvation energy can be further broken down into their component energies:

Eym = Epondea + Enonbondea = Ebondea + Evaw + Eetec (9)

Gsowation = Gpotar T Gnonpotar (6)
Here, Ep,naeq 1S Z€ro, since we have used the single trajectory approach. E, 4, and E,.
are the van der Waals and electrostatic contributions to the vacuum binding, respectively,

while Gpoiar @and Gronpoiar are the electrostatic and non-electrostatic contributions to the

solvation energy.
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Expression vector construction

pCDNAS3-RXRA was generated using standard molecular cloning methods. pcDNA3-
ALOX5 was kindly provided by Prof. Colin D. Funk (Department of Biochemistry,
Queen’s University, Canada). Site-directed mutagenesis were performed using the
KOD-Plus-Mutagenesis Kit (TOKOYO, Cat. SMK-101) according to the manufacturer’s
instructions. RXRA p.Ser427Phe and ALOX5 p.Met146Lys were generated from the
vectors, pCDNA3-RXRA and pcDNA3-ALOXS5, respectively. All of the generated

plasmids were confirmed by Sanger sequencing.

Cell culture and transfection

Human cancer cell lines (Capan-2, SW1990, H1299 and H460) were obtained from
American Type Culture Collection (ATCC). All cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM, Gibco, Cat. 11995040) supplemented with 10% Fetal
Bovine Serum (FBS, Gibco, Cat. 10099-141) and maintained under an atmosphere
containing 5% CO2 at 37 °C. All cell lines were negative for mycoplasma. Pancreatic
cancer cell lines (Capan-2 and SW1990) were transfected with empty vector (EV),
pcDNA3-RXRA WT, or pcDNA3-RXRA p.Ser427Phe, and lung cancer cell lines (H1299
and H460) were transfected with EV, pcDNA3-ALOX5 WT, or pcDNA3-ALOX5

p.Met146Lys using Lipofectamine 2000 (Invitrogen, Cat.11668019).

Cell Proliferation Assay
Cell viability was determined by using CellTiter 96® AQueous Non-Radioactive Cell

Proliferation Assay (MTS, Promega, Cat. G5421) according to manufacturer’s
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recommendation. In brief, treated cancer cells were seed into 96-well plates at a density
of 3,000-5,000 cells/well and incubated for the indicated time. Next, 20 ul/well of
combined MTS/PMS solution were added and the absorbance was recorded at 490 nm

using a microplate reader Synergy 2 (BioTek, Winooski, VT, USA).

Western blotting

Cells were lysed with RIPA lysis buffer (20 mM Tris-HCI, 37 mM NaClz, 2 mM EDTA,
1% Triton-X, 10% glycerol, 0.1% SDS, and 0.5% sodium deoxycholate) with protease
and phosphatase inhibitors (Roche). Protein samples were quantified (Pierce BCA
Protein Assay Kit, Thermo Fisher Scientific), subjected to SDS-PAGE and transferred to
PVDF membranes. Membranes were incubated with primary antibodies, including
RXRA (1:1000, Proteintech, Cat. 21218-1-APP) and ALOXS5 (1:1000, Abclonal, Cat.

A2877), and subsequent secondary antibodies.

Colony formation assay

Transfected cells were seeded into six-well plates at a density of 3,000 cells

per well in 2 ml of DMEM medium supplemented with 10% FBS. The medium was
replaced every 3 days. After 14 days, viable colonies were fixed in 4%
paraformaldehyde and stained with 0.1% crystal violet at room temperature. Formed

colonies were photographed with an inverted fluorescence microscope (Olympus).

Code availability. All codes written for and used in this study are available from the

corresponding author upon reasonable request.
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Data availability. All mapping interface mutations, network-predicted oncoPPIs across
pan-cancer and 33 individual cancer types, the human protein-protein interactome, and
predicted drug responses and patient survival analysis are freely available at the

website: https://mutanome.lerner.ccf.org/ and https://github.com/ChengF-

Lab/oncoPPIs.
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Figure Legends

Fig. 1. Proof-of-concept of protein-protein interaction-perturbing alleles in human
diseases. (a) Distribution of mutation burden at protein-protein interfaces for disease-
associated germline mutations from HGMD in comparison to mutations from the 1,000
Genome Project (1KGP) and ExXAC Project. P-value was calculated by Fisher’s test. (b)
A subnetwork highlights disease module for all human disease-associated mutations at
protein-protein interfaces. An edge denotes at least one disease-associated mutation
from HGMD at the interfaces of experimentally identified binary PPIs. Three types of
protein-protein interfaces are illustrated: (i) PPIs with crystal structures (PDB), (ii) PPls
with homology models (13D), and (iii) experimentally determined PPls with
computationally predicted interface residues (ECLAIR) (see Methods). Some edges with
multiple types of evidences of protein-protein interface-associated mutations. Node size
is counted by degree (connectivity). (¢) An example of a PPI-perturbing mutation

(p-Ser127Arg in PCSKO9) affecting the PCSK9 and LDLR complex (PDB id: 3MOC).
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Fig. 2. Network perturbation by missense somatic mutations in human cancers. (a)
Distribution of missense mutations in protein-protein interfaces versus non-interfaces
across 33 cancer types/subtypes from The Cancer Genome Atlas. (b & ¢) Cumulative
frequencies of SIFT (b) and PolyPhen-2 scores (c) for protein-protein interface mutations
(red) versus non-interface (green) mutations. Abbreviations of 33 cancer types are
provided in the main text. (d) A circos plot illustrating the landscape of significant mutation-
perturbed PPls (termed putative oncoPPls) which harbor a statistically significant excess
number of missense mutations at PPl interfaces across 33 cancer types. The bar denotes
the number of putative oncoPPIs across each cancer type/subtype. The detailed data are
provided in Supplementary Table 1 and Supplementary Fig. 12. The oncoPPlIs with
various significance levels were plotted in three inner layers: red (P < 1 x 1079), green (1
x 105< P <1 x 1079, and blue (P > 1 x 107%). The links connecting two PPIs indicate
that two cancer types share the same oncoPPl. Some significant oncoPPls and their

related mutations are plotted on the outer surface.

Fig. 3. Landscape of protein-protein interaction-perturbing mutations across 33
cancer types. The circos plot displays significant mutation perturbed protein-protein
interactions (termed putative oncoPPls, see Methods) which harbor a statistically
significant excess number of missense mutations at PPI interfaces across 33 cancer
types. The putative oncoPPIls with various significance levels are plotted in three inner
layers: red (P < 1x10719), green (1x1071% < P < 1x107%), and blue (P > 1x107%). The links

(edges) connecting two oncoPPIs indicate two cancer types share the same oncoPPIs.
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Some significant oncoPPls and their related mutations are plotted on the outer surface.
The length of each line is proportional to -logio(P). All oncoPPIs and PPI-perturbing

mutations are free available at https://mutanome.lerner.ccf.org/.

Fig. 4. Pharmacogenomics landscape of protein-protein interaction-perturbing
alleles. (a) Experimental design of pharmacogenomics predicted by PPI-perturbing
alleles. (b) Drug responses evaluated by mutation-perturbed PPls (putative oncoPPIs)
which harbor a statistically significant excess number of missense mutations at PPI
interfaces by following a binomial distribution across 66 selected anticancer therapeutic
agents in cancer cell lines. Each node denotes a specific oncoPPI. The size of a node
denotes the p-value levels computed by ANOVA (see Methods). Color of nodes
represents three different types of PPIs (see Figure 1c legend). (d) Drug responses
evaluated by oncoPPIs in the Patient-Derived Xenograft (PDX) models. (e & f)
Highlighted examples of drug response for encorafenib and its combinations (LEEO011
and encorafenib) predicted by interface mutations on VCL-FXR1 and BRAF-MAP2K1,

respectively.

Fig. 5. Protein-protein interaction-perturbing alleles in histone H4 complex. (a)
PPI-perturbing mutation network of histone H4 complex in human cancer. (b) Mutational
landscape of histone H4 complex across 33 cancer types. (c) Selected PPI-perturbing
mutations in histone H4 complex. (d) Interface mutations between histone H4 and
DAXX. (e) Interface mutations of histone H4 complex are significantly correlated with

survival in colon adenocarcinoma (COAD) and lung squamous cell carcinoma (LUSC).
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(F) Interface mutations of histone H4 complex are significantly correlated with anticancer
drug responses, including paclitaxel, BMC-754807 (an IGF-1R inhibitor), and EHT-1864

(a Rho inhibitor).

Fig. 6. Experimental investigation of alleles with perturbed physical protein-
protein interactions. (a) Distribution of three types of mutational consequences on
PPls, unperturbed, partially perturbed, and perturbed. (b) Y2H readouts of oncoPPlIs
with and without mutations. “+” represents selection for existence of AD and DB
plasmids that carry ORFs for PPI testing, “-” represents selection for auto-activators, “T”
represents selection for PPIs. Growth indicates interaction, no growth suggests no
interaction (see Methods and Supplementary Table 3). Growth indicates interaction, no
growth suggests no interaction (see Methods and Supplementary Table 3). (¢) HOMEZ-
EBF1 complex model and the location of the interface mutation, p.Arg382Trp on
HOMEZ. The complex model was built by Zdock protein docking simulation (see
Methods). (d) Distribution of calculated binding affinity (PBSA) of RHOA-ARHGDIA
complex (PDB id: 1CCO0) directed by p.Pro75Ser mutation on RHOA. Color bar indicates

binding affinity (see Methods) from high (blue) to low (red). WT: wild-type.

Fig. 7. Mutants of RXRA and ALOX5 promote cancer cell growth.

(a) The structure of RXRA and PPARG complex. (b and c) The relative cell growth of
Capan-2 and SW1990 cells transfected with pCDNA3-RXRA WT or pCDNA3-RXRA
p.Serd427Phe. Cell proliferation was measured by MTS assay at 24-hrs intervals up to

72 hrs. The graph presents the mean + SD derived from three independent
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experiments. The Student’s t-test was used to test for statistical significance, *P<0.01,
***P<0.001. (d) For the colony formation assay, cells were maintained in normal media
containing 10% FBS for 14 days, and then fixed and stained with crystal violet. (e and f)
Suppression of WT and mutant RXRA-driven cell proliferation by GSK0660, a potent
PPAR/® antagonist. Capan-2 and SW1990 cells were transfected with pCDNA3 empty
vector (EV), pPCDNA3-RXRA WT, or pCDNA3-RXRA p.Ser427Phe, and then treated
with various concentrations of GSK0660 for 72 hrs. The graph presents the mean £ SD
derived from three independent experiments. (g) An example of a perturbed allele,
p.Met146Lys on ALOXS crystal structure (PDB id: 3V98). (h and i) The relative cell
growth of H1299 and H460 cells transfected with pCDNA3-ALOX5 WT or pCDNA3-
ALOXS p.Met146Lys. Cell proliferation was measured by the MTS method at 24-hrs
intervals up to 72 hrs (see Online Methods). The graph presents the mean + SD derived
from three independent experiments. Student’s t-test was used to test for statistical
significance, *P<0.01. (j) For the colony formation assay, cells were maintained in
normal media containing 10% FBS for 14 days, and then fixed and stained with crystal

violet.
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