

1 Subcortical Atlas of the Rhesus Macaque (SARM) for 2 Magnetic Resonance Imaging

4 Renée Hartig^{a,b,c}, Daniel Glen^d, Benjamin Jung^{e,f}, Nikos K. Logothetis^{b,g}, George Paxinos^h,
5 Eduardo A. Garza-Villarrealⁱ, Adam Messinger^f, Henry C. Evrard^{a,b,j}

7 ^a Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen,
8 Germany

9 ^b Max Planck Institute for Biological Cybernetics, Tübingen, Germany

10 ^c Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical
11 Faculty Mannheim, Heidelberg University, Mannheim, Germany

12 ^d Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, USA

13 ^e Department of Neuroscience, Brown University, Providence RI USA

14 ^f Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA

15 ^g University of Manchester, Manchester, United Kingdom

16 ^h Neuroscience Research Australia and The University of New South Wales, Sydney, NSW
17 2031, Australia

18 ⁱ Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla,
19 Queretaro, Mexico

20 ^j Center for Biomedical Imaging and Neuromodulation (C-BIN), Nathan S. Kline Institute for
21 Psychiatric Research, Orangeburg, New York, USA

23 Corresponding author:

24 Henry C. Evrard

25 Henry.Evrard@nki.rfmh.org, Henry.Evrard@tuebingen.mpg.de, Henry.Evrard@cin.uni-tuebingen.de

27 Nathan S. Kline Institute for Psychiatric Research

28 140 Old Orangeburg Road

29 Orangeburg, New York 10962, USA

31 Highlights

32

- We present the Subcortical Atlas of the Rhesus Macaque (SARM).
- SARM provides a neuroanatomical reference frame for neuroimaging analysis.
- The entire subcortex is mapped, including the thalamus, basal ganglia, and brainstem.
- ROIs are grouped hierarchically, making SARM useful at multiple spatial resolutions.
- SARM is in the NMT v2 template space and complements the CHARM atlas for the cortex.

38

39

Abstract

40 Digitized neuroanatomical atlases are crucial for localizing brain structures and analyzing
41 functional networks identified by magnetic resonance imaging (MRI). To aid in MRI data
42 analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using
43 a high-resolution *ex vivo* structural imaging scan. The structural scan and its parcellation were
44 warped to the updated [NIMH Macaque Template](#) (NMT v2), an *in vivo* population template,
45 where the parcellation was refined to produce the Subcortical Atlas of the Rhesus Macaque
46 (SARM). The subcortical parcellation and nomenclature reflect those of the 4th edition of the
47 Rhesus Monkey Brain in Stereotaxic Coordinates (RMBSC4; Paxinos et al., in preparation). The
48 SARM features six parcellation levels, arranged hierarchically from fine regions-of-interest
49 (ROIs) to broader composite regions, suited for fMRI studies. As a test, we ran a functional
50 localizer for the dorsal lateral geniculate (DLG) nucleus in three macaques and found significant
51 fMRI activation in this atlas region. The SARM has been made openly available to the
52 neuroimaging community and can easily be used with common MR data processing software,
53 such as AFNI, where the atlas can be embedded into the software alongside cortical macaque
54 atlases.

55

Keywords

56 segmentation; fMRI; anatomy; cerebellum; thalamus; brainstem

57

Abbreviations

58 **fMRI** functional Magnetic Resonance Imaging
59 **DLG** Dorsal Lateral Geniculate
60 **NHP** non-human primate
61 **NMT v2** NIMH Macaque Template
62 **RMBSC4** 4th edition of the Rhesus Monkey Brain in Stereotaxic Coordinates
63 **ROIs** regions of interest
64 **SARM** Subcortical Atlas of the Rhesus Macaque
65 **CHARM** Cortical Hierarchy Atlas of the Rhesus Macaque

66

1. Introduction

67 As functional magnetic resonance imaging (fMRI) continues to advance spatiotemporal
68 resolution limits, there is a growing opportunity for researchers to examine subcortical regions
69 and their involvement in cortico-subcortical networks. These smaller subcortical regions have,
70 however, largely been absent from digitized atlases applicable to MRI research with non-human
71 primates (NHPs). In contrast to human research, where several subcortical atlases exist, NHP
72 researchers typically have to employ workarounds and parcellate individual regions of interest
73 (ROIs) themselves. To address this void, we present the Subcortical Atlas of the Rhesus
74 Macaque (SARM), a digital subcortical atlas offering a standardized parcellation for ROI and
75 network analyses.

76 The development of the SARM is timely. While previously used in only a few primate
77 research centers, fMRI is now being employed in many NHP laboratories (Milham et al., 2018).
78 The use of contrast agents, improved sequences, and high-field magnets is increasing the
79 signal-to-noise ratio and spatial resolution into the realm where subcortical activations can be
80 reproducibly detected (e.g., Baker et al., 2006; Ortiz-Rios et al., 2015; Quan et al., 2020).
81 Technological improvements in data collection methods have also resulted in greater potential
82 for employing fMRI concurrently with subcortical electrical microstimulation (Logothetis et al.,
83 2010; Arsenault & Vanduffel, 2019; Murris, Arsenault & Vanduffel, 2020), optogenetics (Nassi et
84 al., 2015; Klein et al., 2016; Stauffer et al., 2016), or electrophysiological recordings (Logothetis
85 et al., 2012), all the while capturing the mesoscopic and systems-level effects (see also, Klink et
86 al., this issue). Such studies require fine-grain delineations of the subcortex to aid both in
87 planning stereotaxic implantations and interpreting local signal modulation. Finally, while NHP
88 fMRI still typically relies on two or three subjects, there is a growing interest in using larger
89 groups and applying group analyses (e.g. Fox et al., 2018). The advent of multi-center data
90 sharing (Milham et al., 2018) also allows for the possibility of larger sample sizes, and clearly
91 calls for group-level analyses performed on data aligned to a population brain template with
92 standardized atlases (Milham et al., 2020; Jung et al., this issue).

93 Previous NHP studies examining subcortical activity have created their own individual
94 masks covering regions known to include specific brainstem nuclei. For example, Logothetis et
95 al. (2012) manually segmented 25 subcortical ROIs for each of their five subjects separately.
96 Noonan et al. (2014) masked the area between the medulla and midbrain for localizing activity
97 from serotonergic nuclei with 0.5 mm spatial resolution. Murris et al. (2020) registered their

98 functional data to the D99 macaque template (Reveley et al., 2017) and then added ROIs for
99 the ventral tegmental area (VTA) and accumbens nucleus (Acb), which are absent in the D99
100 atlas. While creating individual masks is one strategy to study regional fMRI activity, precise
101 delineation of structural boundaries requires not only high-quality structural scans but a great
102 deal of labor and anatomical expertise. Furthermore, for comparisons across individuals or
103 group-level analysis, single-subject scans and regional masks must then be nonlinearly
104 registered to a common reference template. While warping of fMRI data to a standard space
105 can be successful for fairly large subcortical parcellations (e.g., the hippocampus, amygdala,
106 and distinguishable midbrain regions; Fox et al., 2015), nonlinear registration of smaller
107 subcortical structures can be a delicate step in the data processing pipeline. The SARM allows
108 for varying alignment and resolution limits, providing hierarchically arranged groupings of
109 regions that are suited for different purposes, including functional neuroimaging studies.

110 In comparison to human MRI brain atlases (e.g., Accolla et al., 2014; Pipitone et al.,
111 2014; Ewert et al., 2017; Pauli et al., 2018), and despite the existence of NHP paper atlases
112 including an exhaustive mapping of the subcortex (Paxinos et al., 2009; Martin & Bowden,
113 2000), limited efforts have been made to digitize the macaque subcortex parcellations. Previous
114 attempts to digitize subcortical parcellations from printed macaque atlases have provided some
115 segmentation of the subcortex. For example, the Saleem and Logothetis (2012) atlas was
116 digitized by alignment to a high-resolution MRI of an *ex vivo* surrogate (Reveley et al. 2017).
117 However, this digital D99 atlas includes only some subcortical structures (e.g., hippocampus,
118 amygdala, striatum, and claustrum). Likewise, the parcellation of post-mortem macaque brains
119 by Calabrese et al. (2015) contains a detailed segmentation of most telencephalic and
120 diencephalic brain nuclei (Paxinos et al., 2009) but little to no parcellation of the brainstem. The
121 NeuroMaps macaque atlas covers the whole brain and is presented on an *ex vivo* juvenile
122 rhesus macaque brain (Bakker, Tiesinga & Kötter, 2015; Rohlfing et al., 2012). The NeuroMaps
123 segmentation was later refined on the INIA19 adult population *in vivo* symmetric template
124 (Rohlfing et al., 2012). Rohlfing and colleagues noted, however, that their segmentation of the
125 basal forebrain, hypothalamus and amygdala is incomplete and that the internal segmentation
126 of the thalamus, midbrain and hindbrain may not be reliable. Although a more detailed digital
127 subcortical map is needed, segmenting all the minute cytoarchitectonic subnuclei that can be
128 appreciated under the microscope would be of little value at fMRI resolution. Using an updated
129 version of the Rhesus Monkey Brain in Stereotaxic Coordinates (Paxinos et al., 2009; Paxinos
130 et al., in preparation) for guidance, the SARM addresses the need for a more comprehensive

131 subcortical segmentation while attempting to strike a practical balance between anatomical
132 details and the constraints imposed by the lower anatomical resolution of MRI.

133 While *ex vivo* scans, such as the D99 surrogate or the Calabrese *ex vivo* population
134 template (Calabrese et al., 2015), can provide great detail because they are not impacted by
135 animal movement or physiological noise, *in vivo* templates better reflect the living brain's
136 configuration (e.g., with regard to size, ventricle shape, and the presence of cerebrospinal fluid).
137 Atlases drawn on a single subject template can precisely reflect the particular anatomy of that
138 subject but may not be morphologically representative of the species due to large inter-
139 individual variability. The SARM was fit to version 2 of the NIMH Macaque Template (NMT v2),
140 a high-resolution population template based on *in vivo* scans collected at high field strength (4.7
141 T) from a large cohort (N=31) of adult rhesus monkeys (Seidlitz et al, 2018; Jung et al., this
142 issue). The NMT v2 compares favorably to the INIA19 template in terms of resolution (0.25 mm
143 vs. 0.50 mm isotropic), allowing for finer parcellation of subcortical structures, and is already
144 home to the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM; Jung et al., this issue).
145 Because average population templates are representative, most individuals will require
146 relatively little distortion to be aligned to such a template as compared to an *ex vivo* or individual
147 scan (Kochunov et al., 2001; Molfese et al., 2015; Feng et al., 2017). This, in effect, minimizes
148 alignment errors, which are of particular importance for small subcortical nuclei.

149 To create the SARM, we relied on the high resolution and precision of an *ex vivo* single-
150 subject structural scan and previously obtained histological material to draw the primary
151 structures. These regions were then warped to the symmetric version of the NMT v2, where
152 they were manually refined to reflect the representative anatomy of the population template. The
153 SARM parcellation was then hierarchically grouped into larger composite structures to create
154 region of interest (ROI) clusters suitable for (f)MRI analysis. The SARM is available on various
155 online platforms ([PRIME-RE](#), [Zenodo](#), and [AFNI](#)), where it is being continuously improved and
156 further delineated.

157

2. Materials & Methods

158

2.1 Atlas Preparation

159 2.1.1 Ex Vivo Anatomical Sample

160 A whole-brain *ex vivo* sample from one adult female rhesus macaque (G12; *Macaca mulatta*; ~8
161 kg) was used as a single-subject anatomical template to parcellate the subcortex. This subject
162 was part of an anatomical study approved by the local authorities and in full compliance with the
163 European Parliament and Council Directive 2010/63/EU. The subject was not involved in any
164 invasive procedures and never underwent intracerebral surgery. After transcardial fixation with
165 4% formalin (Evrard et al., 2012), the brain was placed into a jar of agar and positioned upright
166 in a horizontal 7T Bruker BioSpec scanner, with the brain oriented parallel to the scanner
167 (dorsal side positioned upward) (Bruker BioSpin, Ettlingen, Germany). The entire brain was
168 scanned using a high-resolution fast low-angle shot (FLASH) sequence (voxel dimensions:
169 0.15x0.15x1.0 mm; flip angle: 50°; TR/TE: 2500/9 msec; field-of-view (FOV): 70x52 mm; matrix
170 size: 468x346; 78 coronal slices).

171 2.1.2 Segmentation in Individual (G12) Space

172 Subcortical ROIs were manually drawn by author HCE onto coronal slices of the G12 high-
173 resolution *ex vivo* anatomical scan using the Amira software (Amira 6.0.1; FEI). The fine spatial
174 resolution of the contrast variation in the slices enabled recognizing and mapping discrete
175 anatomical regions identified in corresponding histological sections from the 4th edition of the
176 Rhesus Monkey Brain in Stereotaxic Coordinates (RMBSC4; Paxinos et al., in preparation). The
177 order of the figures in this upcoming edition does not differ from the 2nd edition; thus readers can
178 still refer to the printed second edition of RMBSC (Paxinos et al., 2009) when references to
179 specific figures are made in the text below. These reference sections previously underwent
180 Nissl and AChE staining (Paxinos et al., 2009), and were recently scanned using a slide-
181 scanner microscope (AxioScan; Zeiss) for further examination (Paxinos et al., in preparation).
182 The ROIs were drawn while examining all three stereotaxic planes to reduce inconsistencies in
183 delineation across slices. Regions defined in RMBSC4 that were too small and not clearly
184 discernible from changes in contrast in the G12 scan were grouped together in larger ROIs, as
185 detailed in the Results (Section 3.1). Additional resources included prior architectonic
186 parcellations of the hypothalamus (Saper et al., 2012), thalamus (Olszewski, 1952; Calzavara et

187 al., 2005; Evrard and Craig, 2008; Mai and Forutan, 2012), amygdala (Amaral et al., 1992;
188 Stefanacci et al., 2000), and basal ganglia (Haber et al., 2012).

189 **2.1.3 Nonlinear Registration**

190 The single-subject (G12) *ex vivo* structural scan and subcortical segmentation were nonlinearly
191 registered to the symmetric NMT v2 full-head anatomical template for rhesus macaques. The
192 NMT v2 template (Jung et al., this issue) is in stereotaxic orientation (Horsley and Clarke, 1908;
193 also referred to as the Frankfurt Zero plan). The subcortical segmentation was refined on a
194 single hemisphere (the left) of the NMT v2 and mirrored onto the opposite hemisphere in order
195 to assure that the resulting parcellation has left and right ROIs of equal size.

196 To coregister the G12 template and atlas to the NMT v2, the NIFTI images were first
197 converted to MINC format (<http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC>) and the origin
198 of the spatial coordinates was adjusted to correspond to the intersection of the midsagittal
199 section and the interaural line (i.e., ear bar zero, EBZ). Then, we used *volmash* and *volflip*
200 ([MINC widgets](#)) to reorient the images to the NMT v2. The G12 template was then converted
201 back to NIFTI. Using Advanced Normalization Tools (ANTs; version 2.3.1.dev159-gea5a7;
202 Avants et al., 2014), we made a negative image of the G12 so its contrast would be similar to
203 the T1-weighted NMT v2 template. The G12 template showed air bubble-induced artifacts
204 around the left lateral ventricle that affected registration. To correct these artifacts and improve
205 registration, we manually traced each artifact to the underlying tissue (namely, the putamen)
206 and matched it with the tissue's intensity. This new volume was then corrected for N4 Bias Field
207 artifacts (Tustison et al., 2010). The ANTs registration pipeline was optimized using an in-house
208 script that employed a custom mask of the subcortex for some of the registration steps. After
209 computing the G12 to NMT v2 template registration, we used *antsApplyTransformation* to
210 nonlinearly coregister the subcortical parcellation to the NMT v2 with Generic Label
211 interpolation.

212 **2.1.4 Refinement of ROIs in the NMT v2 Template**

213 The resulting atlas regions suffered from some irregularities stemming from the limitations of the
214 original anisotropic voxels (high resolution within the coronal plane, but coarser resolution
215 across planes) and from the interpolation methods associated with the nonlinear warp of the
216 ROI labels. Therefore, we followed the ANTs-based alignment pipeline with a procedure to
217 spatially regularize regions using AFNI commands. The regions were processed with a modal

218 smoothing technique that replaces each voxel with the most common label in a 1- or 2-voxel
219 spherical neighborhood around every voxel. A select list of thin or small regions were smoothed
220 using the 1 voxel mode, and all other regions were smoothed using the 2 voxel mode. The data
221 were masked by the CSF and blood vessel segmentations from NMT v2. Each ROI was
222 automatically further refined by examining the distribution of voxel intensities in NMT v2. For
223 each ROI, we sampled voxel intensities of NMT v2 in that ROI, and voxels farther than three
224 standard deviations away from the mean intensity (potentially indicating encroachment of the
225 ROI into a different tissue class) were compared with eight neighboring voxels and reassigned
226 to the label of the voxel with the most similar intensity. This outlier detection was performed
227 across ten iterations. The quality of the alignment between the transformed G12 and the NMT
228 v2 template was assessed by viewing the former on the outline of the latter using
229 @chauffeur_afni. Finally, the atlas was assessed for discontinuities, and discontinuous clusters
230 smaller than five percent of the size of the largest portion of the ROI were replaced with labels
231 from neighboring voxels. With the atlas regions now transformed to the NMT v2 symmetric
232 template space, the regions were manually adjusted, again in Amira by author HCE, with
233 reviewing by authors HCE and GP, to reflect the anatomical transitions evident in this population
234 template. Before exporting from AMIRA, a Gaussian smoothing (2x2x2 pixel filter mask) was
235 applied across the 3D volume using the “Smooth Labels” function. Following AMIRA export, the
236 SARM regions were modally smoothed with a 1.8 voxel radius and discontinuous clusters
237 smaller than five percent of the size of the largest portion of the ROI were again replaced with
238 labels from neighboring voxels. At each step, volume changes of each ROI were tracked to
239 prevent large, unintended changes to the ROIs.

240 **2.2 Subcortical Naming Hierarchy**

241 **2.2.1 Hierarchical Grouping**

242 To create ROIs of varying spatial resolution, the neighboring regions in the primary parcellation
243 were iteratively grouped to form a hierarchy of subcortical structures across six levels that
244 describes progressively larger and more general anatomical regions. This hierarchy forms the
245 SARM. The finest level of the SARM hierarchy (level 6) individually itemizes each of our
246 manually drawn ROIs, which were defined on the basis of the RMBSC4, as described above.
247 Composite regions in levels 1-5 were successively built from smaller adjacent areas in the next
248 finer level. While the brain can most broadly be subdivided into the forebrain, midbrain, and
249 hindbrain, level 1 begins with the developmental and embryological sub-divisions of the

250 subcortex, namely the tel-, di-, mes-, met-, and myel-encephalon. The SARM levels 2-4 consist
251 of ROIs of sufficient size to accommodate functional imaging voxels that are typically 1.25-1.50
252 mm on a side, whereas levels 5-6 ROIs may benefit from the higher resolution of structural
253 imaging. Levels 5 and 6 of the SARM were left largely similar to allow for potential future
254 delineation of SARM regions. In most cases, we grouped the ROIs based on their
255 developmental and/or functional relationships (Mai and Paxinos, 2012; Puelles et al., 2013; see
256 also Calabrese et al., 2015 for a similar approach), with the condition that these ROIs had to be
257 spatially contiguous. In other cases, in particular at coarser levels, ROIs had to be grouped
258 solely based on their spatial proximity.

259 Independent of their hierarchical classification, all ROIs were classified as being
260 primarily subcortical gray matter or white matter. In select instances, ROIs composed primarily
261 of white matter or other tissue types were included in larger composite ROIs to make them
262 whole (e.g. the internal capsule was included in the striatum to bridge the caudate and
263 putamen) and because sparse cell bodies within such white matter regions can lead to their
264 functional activation.

265 **2.2.2 Nomenclature**

266 Each ROI and group of ROIs has a unique full name and abbreviation. At levels 5 and 6, the
267 names and abbreviations of the ROIs typically match those defined in the RMBSC4, with some
268 exceptions (see Results) to accommodate the most commonly used naming convention in NHP
269 fMRI. At levels 2 to 4, the names and abbreviations of the groups of ROIs reflect either a
270 common developmental origin (e.g., pallial vs. subpallial amygdala; Puelles et al., 2013), a
271 classical neuroanatomical grouping (e.g., basal ganglia; Mai and Paxinos, 2012) or a spatial
272 proximity (e.g., dorsal vs. ventral mesencephalon).

273 AFNI allows for flexible indexing of ROIs by either index number, abbreviation, or the full
274 name of the ROI. To prevent conflicts between index numbers and names, SARM abbreviations
275 do not start with a number (e.g., the abducens nucleus is abbreviated 6N in RMBSC4 but N6 in
276 SARM). In addition, to maximize compatibility with scripts and programs, abbreviations do not
277 include special characters, and full names use underscores in place of spaces. A full list of the
278 current SARM regions is provided in **Supplementary Table 1**. A spreadsheet of the hierarchy
279 and full list of SARM structures is also available for download with the NMT v2 package.

280

2.3 Functional Localizer

281 To illustrate the usefulness of this atlas within the context of fMRI data analysis, a functional
282 localizer for the dorsal lateral geniculate nucleus (DLG) (also referred to as the lateral geniculate
283 nucleus, LGN) was included, from a larger experimental program, with three adult rhesus
284 macaques (*Macaca mulatta*; 1 female; average weight: 10.11 kg). Experiments were conducted
285 following a previously described opiate-based anesthesia protocol (Logothetis et al., 2010).
286 Animals were treated according to the guidelines of the European Parliament and Council
287 Directive 2010/63/EU on the protection of animals used for experimental and other scientific
288 purposes. Experimental protocols were approved by the local German authorities.

289 **2.3.1 Image Acquisition**

290 Neuroimaging data were acquired using a vertical 7 Tesla NMR scanner (Bruker, Billerica, MA,
291 U.S.A.) and Paravision software (version 5). fMRI data were acquired with a quadrature coil and
292 double-shot gradient-echo echo planar imaging (GE-EPI; voxel dimensions: 0.75x0.75x2.0 mm;
293 flip angle: 53°; TR/TE: 2000/19 msec; FOV: 96x96 mm; matrix size: 128x128; 20 axial slices).
294 Slice volumes were acquired contiguously. During each experiment, a T2-weighted rapid
295 acquisition with relaxation enhancement (RARE) scan was collected to image the native
296 structural space (RARE factor: 8; voxel dimensions: 0.375x0.375x1.0 mm; flip angle: 180°;
297 TR/TE: 6500-8500/16 msec; FOV: 96x96 mm; matrix size: 256x256; 40 axial slices). Acquired
298 data were converted offline from Bruker file format to 4D NIFTI files using the Unix-based
299 [pvconv](#).

300 **2.3.2 Stimulus**

301 A flickering checkerboard stimulus was visually presented (Logothetis et al., 1999) during a 10
302 minute GE-EPI scan, consisting of 300 volumes. The stimulus was presented for 4 sec
303 preceded by an 8 sec OFF period, and followed by a longer 18 sec OFF period, allowing return
304 of the blood-oxygen-level-dependent (BOLD) signal to baseline. Two sessions per subject were
305 collected and analyzed using two common software packages (SPM & AFNI) to validate the
306 application of SARM for studying subcortical activity across different processing pipelines.

307 **2.3.3 SPM-Based Image Analysis**

308 Functional data were realigned using SPM12 (Statistical Parametric Mapping; Wellcome
309 Department of Imaging Neuroscience, London, UK) to obtain six rigid-body transformation

310 parameters and then aligned to each subject's native anatomical (RARE) scan. Each subject's
311 RARE was subsequently translated to the NMT v2 space, and this linear transformation was
312 applied to all relevant functional scans. Data were nonlinearly aligned using SPM-based Dartels,
313 a diffeomorphic warping algorithm (Ashburner, 2007), which relies on tissue class identification
314 and segmentation. The resulting deformation matrix was applied to each individual's RARE and
315 fMRI images. At each step, the spatial alignment was checked by direct visual examination. The
316 EPIs were smoothed (2 mm FWHM Gaussian) and the fMRI data were estimated using a
317 General Linear Model (GLM), which included as regressors the rigid-body transformation
318 parameters, in the event-related responses correlated with the visual stimulus presentation (B_1)
319 and the baseline activity (B_0). The fMRI data were averaged across sessions for each subject,
320 and significant activations were assessed with a T-contrast ($p < 0.05$, FDR-corrected).

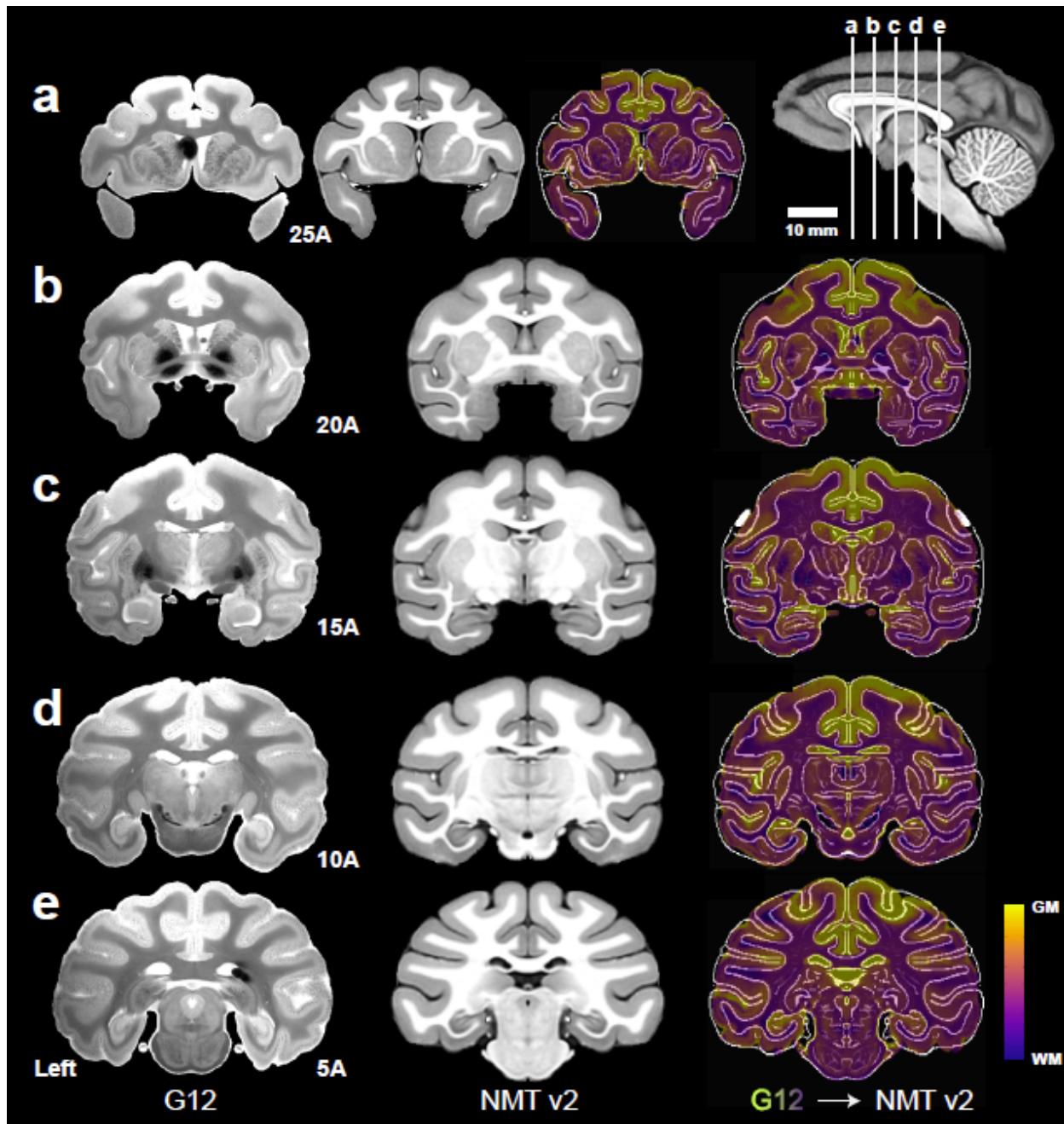
321 **2.3.4 AFNI-Based Image Analysis**

322 Using AFNI (Cox, 1996), functional data were processed by first computing the alignment of
323 each subject's T2 structural (RARE) scan to the NMT v2 template using the @animal_warper
324 pipeline (Jung et al., this issue). To address the contrast (e.g., of CSF, GM and WM) profile
325 inversion between NMT v2 and the functional localizer datasets, we used an alignment method
326 that identifies local negative correlations to minimize the cost function, the Local Pearson
327 Correlation (lpc; Saad, 2009). This cost function was used for both affine and nonlinear
328 alignment. The alignment was assessed using AFNI visualization tools. The affine and nonlinear
329 transformations and the skull-stripped dataset served as the input to the functional processing
330 performed by afni_proc.py. This processing used typical options for motion correction, alignment
331 of the functional data to the individual's T2 anatomical dataset, and modal smoothing (by 1
332 voxel), followed by a per-voxel mean scaling. The normalized functional data were interpolated
333 to an isotropic voxel resolution of 1.25 mm^3 . The functional paradigm was modeled using a
334 BLOCK hemodynamic response function model, stimuli convolved with a 4-sec duration boxcar
335 function and normalized to unit size.

336 **2.4 Data Accessibility and Availability**

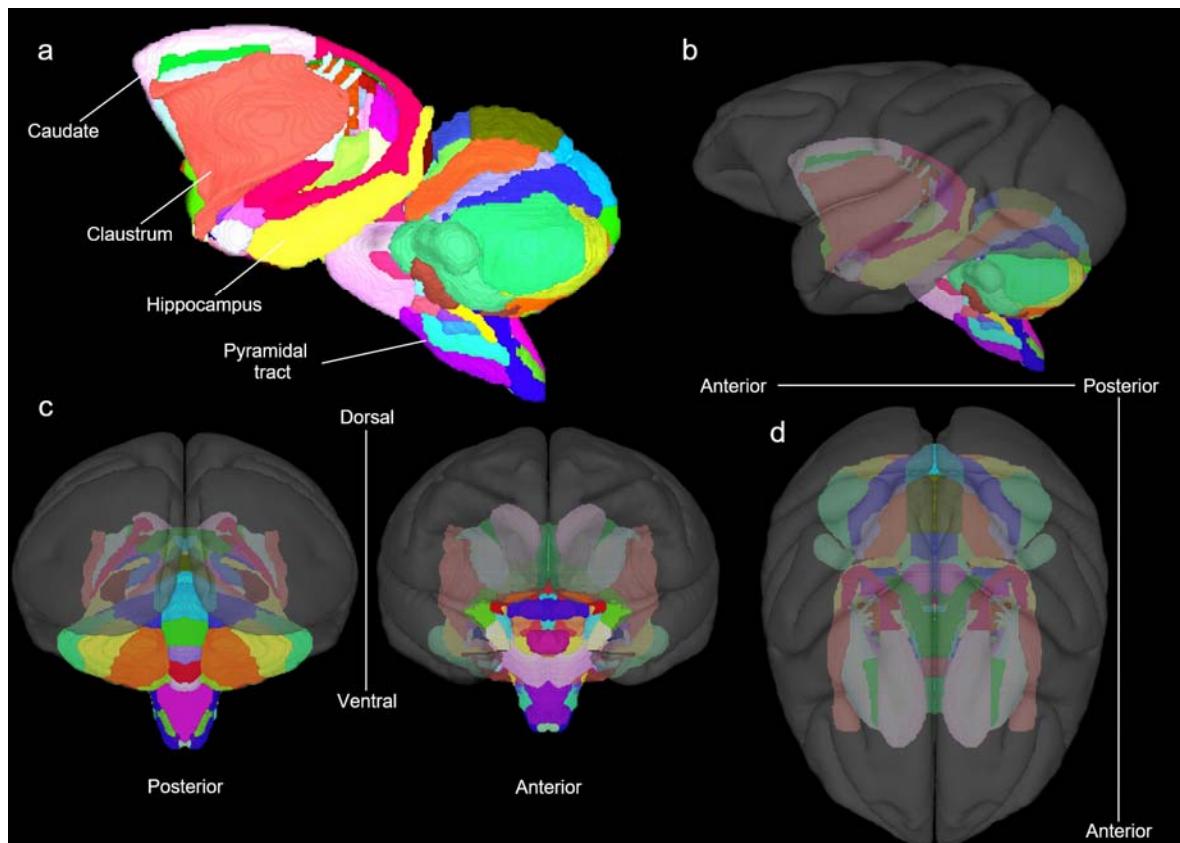
337 The SARM and NMT v2 files are provided in NifTI and GifTI file format for compatibility with
338 most neuroimaging programs. This package also includes: the original G12 dataset with ROI
339 drawings in their original space and the full list of SARM ROIs, abbreviations, and grouping
340 levels. For data transformation and analysis, relevant scripts are also provided. All resources

341 described are currently openly available or will be made available in the near future through the
342 PRIME-Resource Exchange (<https://prime-re.github.io/>) (Messinger et al., this issue), Zenodo
343 (<https://zenodo.org/record/4026520#.X10X95P0nlw>), and can be downloaded along with the
344 NMT v2 from the AFNI website
345 (https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/macaque_tempatl/atlas_sarm.html) or
346 using the AFNI command @Install_NMT.

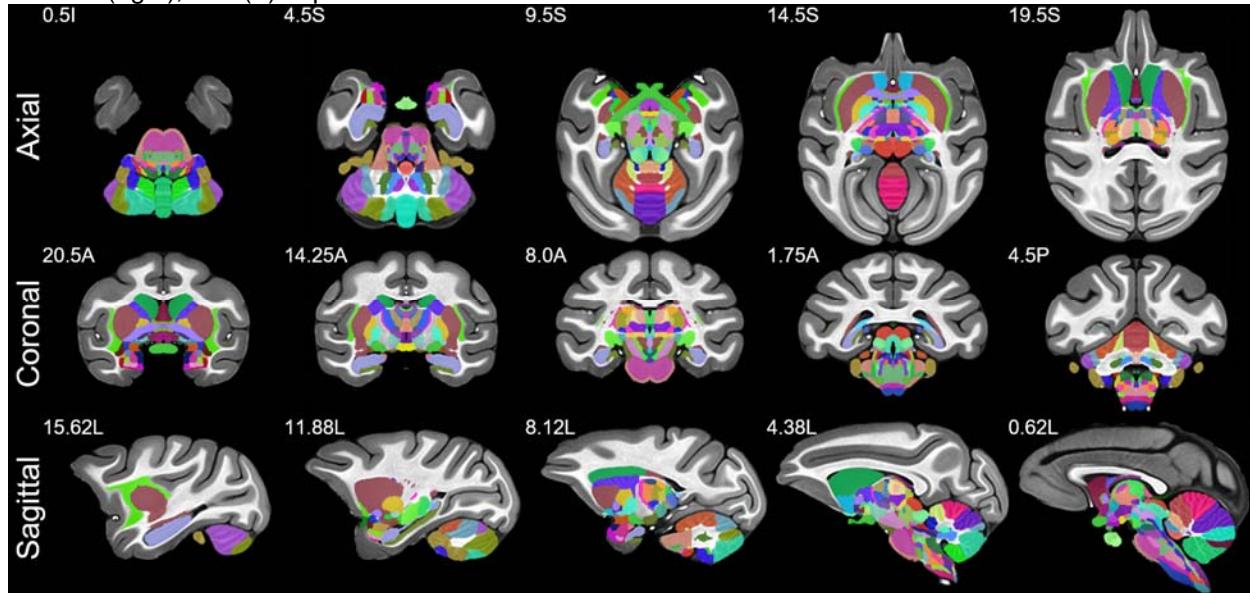

347 3. Results

348 3.1 Subcortical ROI Segmentation and Hierarchical Grouping

349 This first version of the SARM (SARM v1) contains 206 primary subcortical ROIs. These ROIs
350 were first drawn on the G12 high-resolution scan and then nonlinearly aligned to the NMT v2
351 population-averaged symmetrical template. Most of these ROIs were anatomically identifiable in
352 G12 and, to some extent, in NMT v2, based on local signal contrast variations. Regions likely to
353 be relevant for MRI analyses, but not readily identifiable in either scan, were delineated based
354 on their most likely topological localization and neighborhood relationships, using RMBSC4 as
355 the principal reference (Paxinos et al., 2009; Paxinos et al., *in preparation*). Individual ROIs
356 represent either a single homogeneous anatomical entity, as defined in RMBSC4, or a collection
357 of smaller cytoarchitectonic entities that could not be distinguished from one another due to a
358 lack of contrast differentiation. Beyond the definition of the manually drawn primary ROIs, we
359 created ROIs of progressively larger size by successively aggregating primary ROIs across six
360 hierarchical levels. These six levels can accommodate structural and functional neuroimaging
361 datasets of various spatial resolutions and analyses at different degrees of anatomical detail.
362 The following sections report, successively, the alignment of G12 to NMT v2 (Section 3.1.1),
363 general observations on the hierarchical grouping of the ROIs (Section 3.1.2), and, finally, an
364 overview of the definition of the individual ROIs and their hierarchical groups (Section 3.1.3).


365 3.1.1 Alignment of G12 to NMT v2

366 Figure 1 portrays the G12 *ex vivo* anatomical MRI in stereotaxic space, corresponding to the
367 NMT v2 template at 5 representative coronal sections, where the nonlinear alignment computed
368 using ANTs was overlaid onto the edge contours of the NMT v2 template.


379 The G12 scan and its subcortical labels were resampled to match the NMT v2 resolution
380 (0.25 mm³ isotropic), and the out-of-plane detail in the G12 was interpolated to match the NMT
381 v2 resolution. Differences in morphology due to their preparations were noted (i.e., sulcal
382 positioning, ventricle size and *ex vivo* fixation effects, as well as the presence of artifacts like air
383 bubbles), because these may result in nonlinear registration errors or require repositioning
384 greater than what is allowed by the nonlinear registration algorithm (cost function tradeoff).

385 The subcortical labels aligned to the NMT v2 exhibited some small irregularities along
386 the region edges. These were mitigated with modal smoothing, clustering and outlier detection
387 to make for more natural, locally consistent regions. At this stage, the regions underwent
388 manual correction, followed by additional post-processing (see [Section 2.1.4](#)). The 3D
389 consistency of the completed ROIs was verified by visualizing the surface of each region using
390 AMIRA and AFNI's surface viewer SUMA (Saad et al., 2004) (Fig. 2). The primary subcortical
391 parcellation that forms the finest hierarchical level of the SARM (level 6; see Section 3.1.2) is
392 shown in Figure 3.

393
394 **Figure 2. Surface views of SARM (level 6) in the NMT v2.0 symmetric template.** Volumetric atlas
395 regions were converted into individual surfaces for surface-based analysis. (a) A lateral view of the
396 subcortical surfaces, displayed in color using SUMA (Saad et al., 2004). The subcortical regions are

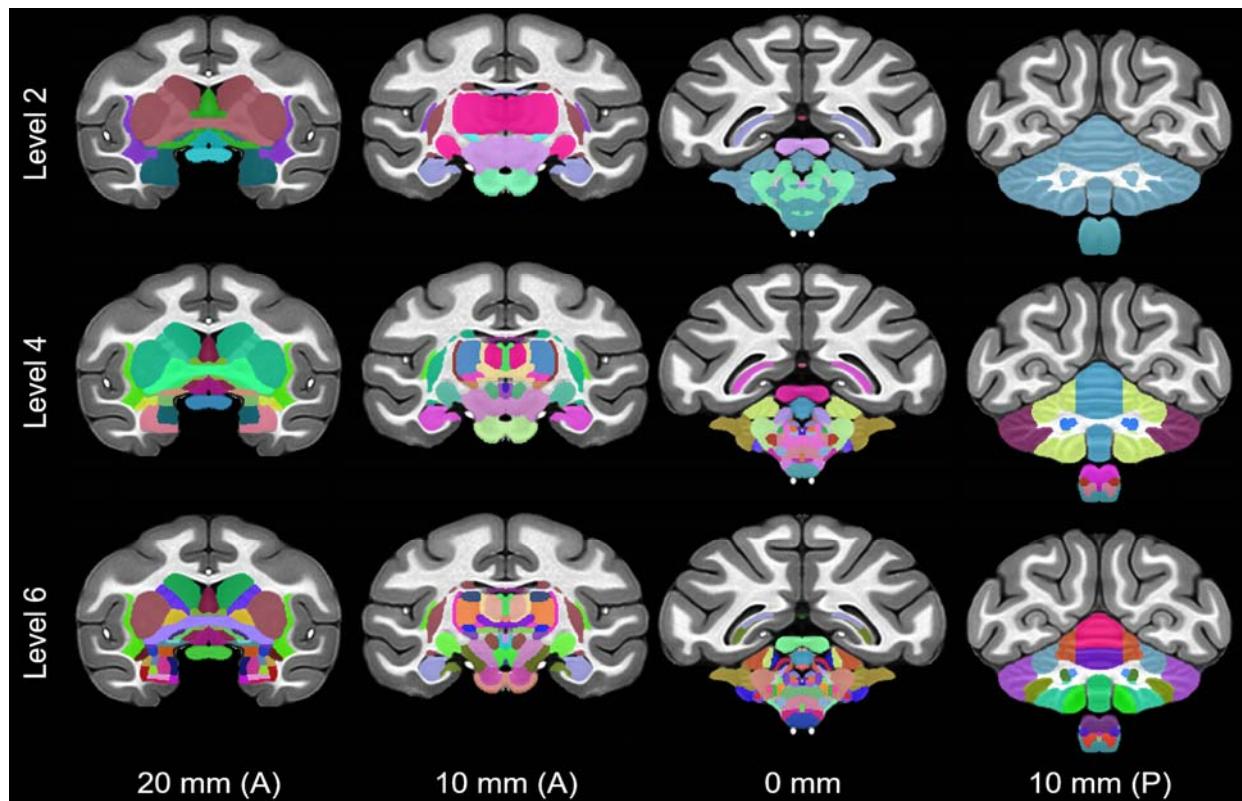
397 shown with respect to the NMT v2 surface (shown in gray scale) in a (b) left lateral, (c) posterior (left),
398 anterior (right), and (d) superior view.

399
400 **Figure 3. Subcortical regions in NMT v2 space.** The subcortical parcellation of the G12 subject was
401 warped to the NMT v2 symmetric template and manually adjusted to match the template's morphology.
402 These regions constitute level 6 of the SARM and are shown in color on the symmetric brain-extracted
403 NMT v2 template. Slice coordinates relative to the origin (EBZ; ear bar zero) are in mm in the
404 superior/inferior (top), anterior/posterior (middle), and left/right (bottom) directions.
405

406 3.1.2. Hierarchical Grouping

407 The 206 manually-drawn primary ROIs comprise the finest level (level 6) of the SARM.
408 Following the same principle as in the CHARM (Jung et al., this issue), these 206 ROIs were
409 organized hierarchically into six levels of granularity. Individual ROIs were assembled into
410 progressively larger (and, in most cases, spatially contiguous) groups from levels 5 to 1. Each
411 ROI or group of ROIs at a lower level (e.g., level 4) belongs to exactly one group in the next
412 higher level (e.g., level 3). Table 1 shows the number of ROIs in each level and characterizes
413 their volumes in the NMT v2. Whole-brain coronal views of the SARM levels 2, 4, and 6 are
414 shown in Figure 4. The various levels were designed to be suitable for either structural or
415 functional MRI analyses, with their different spatial resolutions. Users can combine more than
416 one grouping level within a single analysis to, for instance, examine the relationships between a
417 specific nucleus and larger composite brain regions. To further illustrate the SARM hierarchy,
418 Figure 5 provides an exploration of the amygdala. The dendrogram demonstrates how the
419 amygdala splits into its constituent regions, and these component structures are depicted on a
420 coronal section for levels 3-6.

421


422

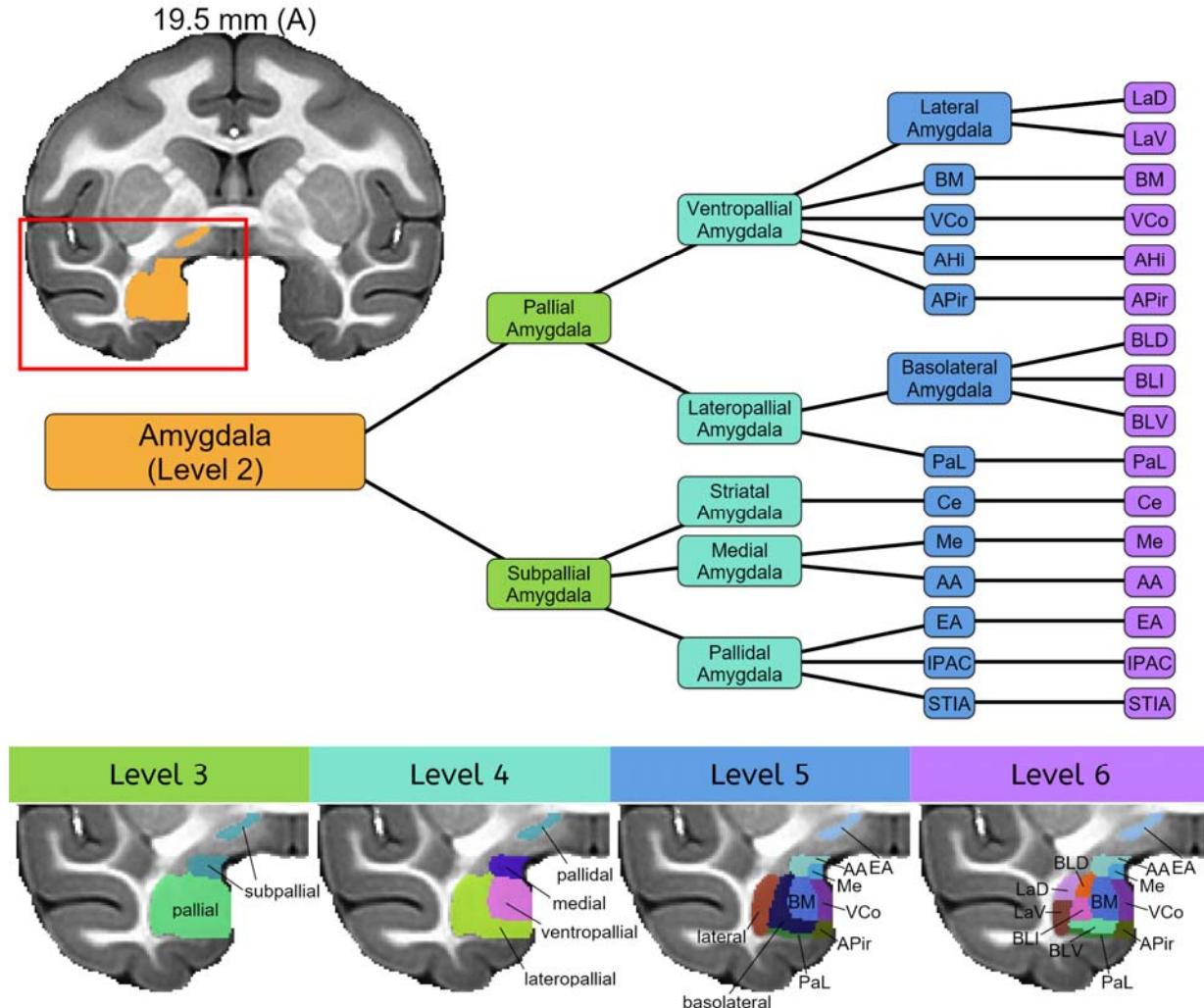
423 **Table 1. Basic characteristics of the SARM hierarchy.**

Level	# of ROIs	ROI Vol., median (mm ³)	ROI Vol., 5-95% (mm ³)
1	5	2,570	1,232 - 8,273
2	15	649	46 - 5,228
3	35	309	55 - 2,112
4	70	123	19 - 1,269
5	167	36	3 - 510
6	206	36	3 - 497

424 **Table 1. The SARM Group Hierarchy.** For each level of the hierarchy, the number of ROIs used to
425 parcellate the subcortex, their median volume, and the 5th-95th percentile of their volumes are listed. At
426 lower levels, ROIs are combined into fewer and larger composite structures. The full table of SARM
427 region names, abbreviations, and constituents is provided as a CSV file in the distribution package and is
428 also shown in Table S1.

429

430


431

432

433

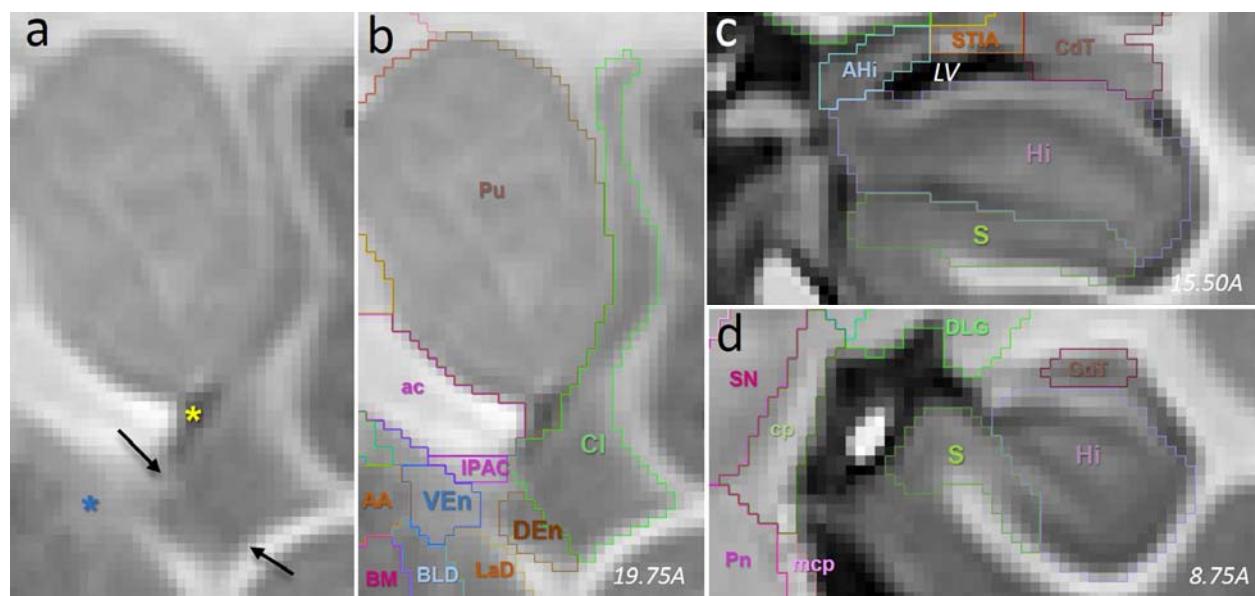
Figure 4. SARM's Hierarchical ROI Groupings. Representative coronal slices through the symmetric NMT v2 in stereotaxic space, showing levels 2, 4 and 6 of the SARM hierarchy. Level 2 contains relatively broad composite structures, level 4 contains somewhat finer groupings, and level 6 consists of the finest

434 anatomical segmentation. Slice coordinates are in mm anterior (A) or posterior (P) to the origin (EBZ; ear
435 bar zero).

436 **Figure 5. Hierarchical parcellation of the amygdala.** The amygdala, a subcortical region within the
437 telencephalon, is shown in orange on the right hemisphere of a coronal section. The bottom row shows
438 amygdala subdivisions for levels 3-6 of the hierarchical atlas in various colors on close ups of the right
439 temporal lobe region contained in the red box on the full coronal section. The color-coded dendrogram
440 shows the hierarchical relationship between the components of levels 3-6. Level 3 distinguishes the
441 portions of amygdala deriving from the pallium and subpallium during development. At level 4,
442 regions arising from particular domains within the pallium or subpallium are differentiated. These regions are
443 further divided into the various amygdala nuclei and subnuclei in levels 5 and 6. Note other subcortical
444 regions are not shown. **Abbreviations:** **AA**, anterior amygdaloid area; **AHi**, amygdalohippocampal area;
445 **APir**, amygdalopiriform transition; **BLD**, **BLI**, and **BLV**, basolateral dorsal, intermediate, and ventral
446 amygdaloid n.; **BM**, basomedial amygdaloid n.; **Ce**, central amygdaloid n.; **EA**, extended amygdala;
447 **IPAC**, posterior interstitial nucleus; **LaD** and **LaV**, lateral dorsal and ventral amygdaloid n.; **Me**, median
448 amygdaloid n.; **PaL**, paralaminar amygdaloid n.; **STIA**, intraamygdaloid division of the bed n. of the stria
449 terminalis; **VCo**, ventral cortical amygdaloid n..

450

451
452
453
454


455 **3.1.3 ROI and Hierarchical Grouping Definition**

456 Supplementary Table 1 (Table S1) itemizes the 206 ROIs at level 6 and shows their progressive
457 hierarchical grouping, from level 5 to level 1. Level 1 assembles all ROIs according to the
458 classical developmental division of the neuraxis, namely the (subcortical) telencephalon,
459 diencephalon, mesencephalon, metencephalon, and myelencephalon. The ordering of these
460 ROIs reflects that, together, the subcortical telencephalon and diencephalon comprise the
461 subcortical forebrain, the mesencephalon is synonymous with the midbrain, and the
462 metencephalon and myelencephalon make up the hindbrain. Level 2 divides the telencephalon
463 into lateral and ventral pallium (LVPal), medial pallium (MPal), amygdala (Amy), basal ganglia
464 (BG), diagonal subpallium (DSP), and preoptic (preoptic) regions. The order in which these
465 divisions are listed roughly follows the developmental partition proposed by Puelles et al.
466 (2013), with entirely pallial groups (LVPal and MPal) first, followed by the amygdala with its
467 pallial and subpallial components (see level 3), and, finally, by entirely subpallial groups (BG,
468 DSP and preoptic). At level 2, the diencephalon is divided into the hypothalamus (Hy),
469 prethalamus (PreThal), thalamus (Thal), and epithalamus (EpiThal). The mesencephalon was
470 not divided at level 2, but the region was relabeled “midbrain” (Mid) to match the more common
471 choice of terminology employed beyond level 2. Still at level 2, the metencephalon was split into
472 the pons (Pons) and the cerebellum (Cb), whereas the myelencephalon remained whole, but
473 switched names to the term medulla (Med). Levels 3 to 6 propose a progressively more refined
474 parcellation of the larger groups of level 2, ending with level 6, which lists each individually
475 drawn ROI. Levels 5 and 6 were left largely similar to allow for future versions of the SARM
476 (now SARM v1) to incorporate additional sub-structures. In general, beyond level 2, the
477 hypothalamic, thalamic, mes-, met- and myel-encephalic ROIs were not grouped according to
478 the ontological plan because most of the small ontologically related ROIs of these regions are
479 spatially non-contiguous in the adult brain. Instead, these ROIs were mainly grouped according
480 to either functional or purely topological criteria, with the practical condition that they remain
481 contiguous, as this has greater relevance for targeting of subcortical regions and neuroimaging
482 analytical strategies (e.g. clustering). The next sections briefly describe the rationale for the
483 drawing of the ROIs and their grouping at and below level 2.

484 **3.1.3.1 Lateral and Ventral Pallium.** The lateral and ventral pallium (LVPal) group contains 4
485 primary ROIs (Table S1). The claustrum (Cl) and the dorsal and ventral endopiriform claustrum

486 (DEn and VEn) were all identifiable in the G12 (not shown) and the NMT v2 (Fig. 6a,b). DEn
487 appeared as a separate entity at the 'heel' of Cl (see arrows in Fig. 6a). VEn was recognized by
488 a consistently lighter contrast in comparison with the darker nuclei of the amygdala (see blue
489 asterisk in Fig. 6a). The small bundle of capillaries (base of the lenticulostriatal arteries) located
490 at the base of the putamen (Pu) and above the 'heel' of Cl was incorporated into the Pu ROI by
491 default (yellow asterisk in Fig. 6a). The piriform cortex (Pir; not shown) was recognized by its
492 thinner cortical width at the medial junction of the orbitofrontal and temporal cortices
493 (Carmichael and Price, 1994; Evrard et al., 2014), although its exact border with Cl at the limen
494 insulae and with the amygdalo-piriform transition (APir) in the temporal lobe could not be
495 ascertained.

496 At level 4, DEn and VEn are grouped in En (Table S1). At level 3, En is grouped with Pir
497 in the ventral pallium (VPal), from which En and Pir originate along with other olfactory
498 structures (Puelles et al., 2013) that were not segmented here (but see CHARM; Jung et al., this
499 issue). Also at level 3, Cl constitutes the only ROI of the lateral pallium (LPal). At level 2, LPal

Figure 6. SARM lateral, ventral, and medial pallial ROIs. (a,b) Coronal section through the right hemisphere of NMT v2 (corresp. to RMBSC Fig. 48) with delineations of Cl, DEn and VEn. In (a), the black arrows indicate the border between Cl and DEn; the blue asterisk marks the consistently lighter contrast of VEn; the yellow asterisk indicates a bundle of capillaries incorporated into the Pu ROI. (c,d) Coronal sections through the right hemisphere of NMT v2 (RMBSC4 Fig. 63 and 77, respectively) illustrating the delineations of Hi and S. **Abbreviations:** **AA**, anterior amygdaloid area; **ac**, anterior commissure; **AHi**, amygdalohippocampal area; **CdT**, tail of the caudate; **BM**, basomedial amygdaloid n.; **BLD**, basolateral amygdaloid n.; **cp**, cerebral peduncle; **Cl**, claustrum; **DEn**, dorsal endopiriform claustrum; **DLG**, dorsal lateral geniculate; **Hi**, hippocampus; **IPAC**, interstitial nucleus of the posterior part of the anterior commissure; **LV**, lateral ventricle; **mcp**, medial cerebellar peduncle; **Pn**, pontine nucleus; **Pu**, putamen; **S**, subiculum complex; **SN**, substantia nigra; **STIA**, intraamygdaloid stria terminalis; **VEn**, ventral endopiriform claustrum. In all panels, left is medial and top is dorsal.

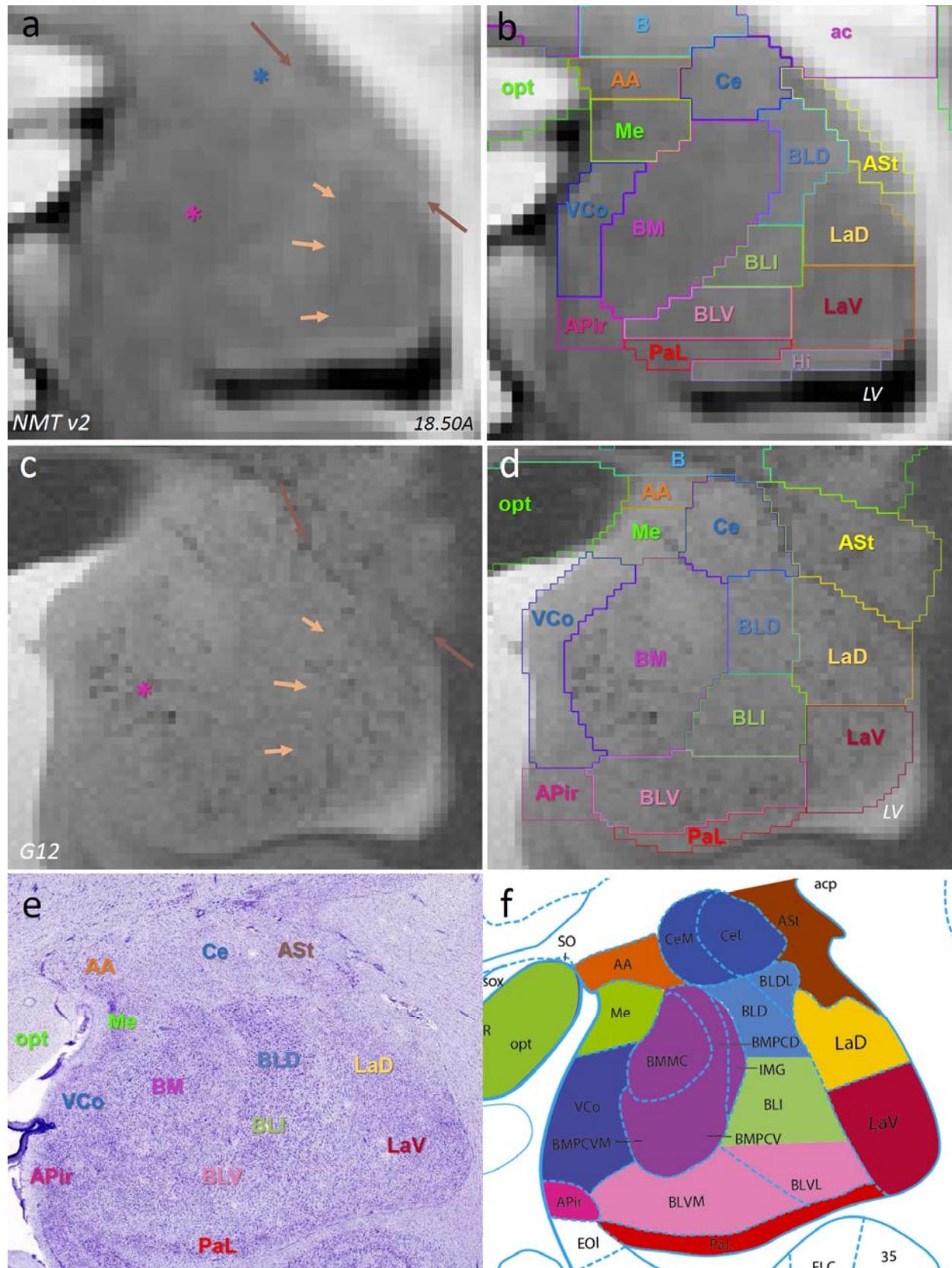
500 and VPal are grouped under LVPal.

501

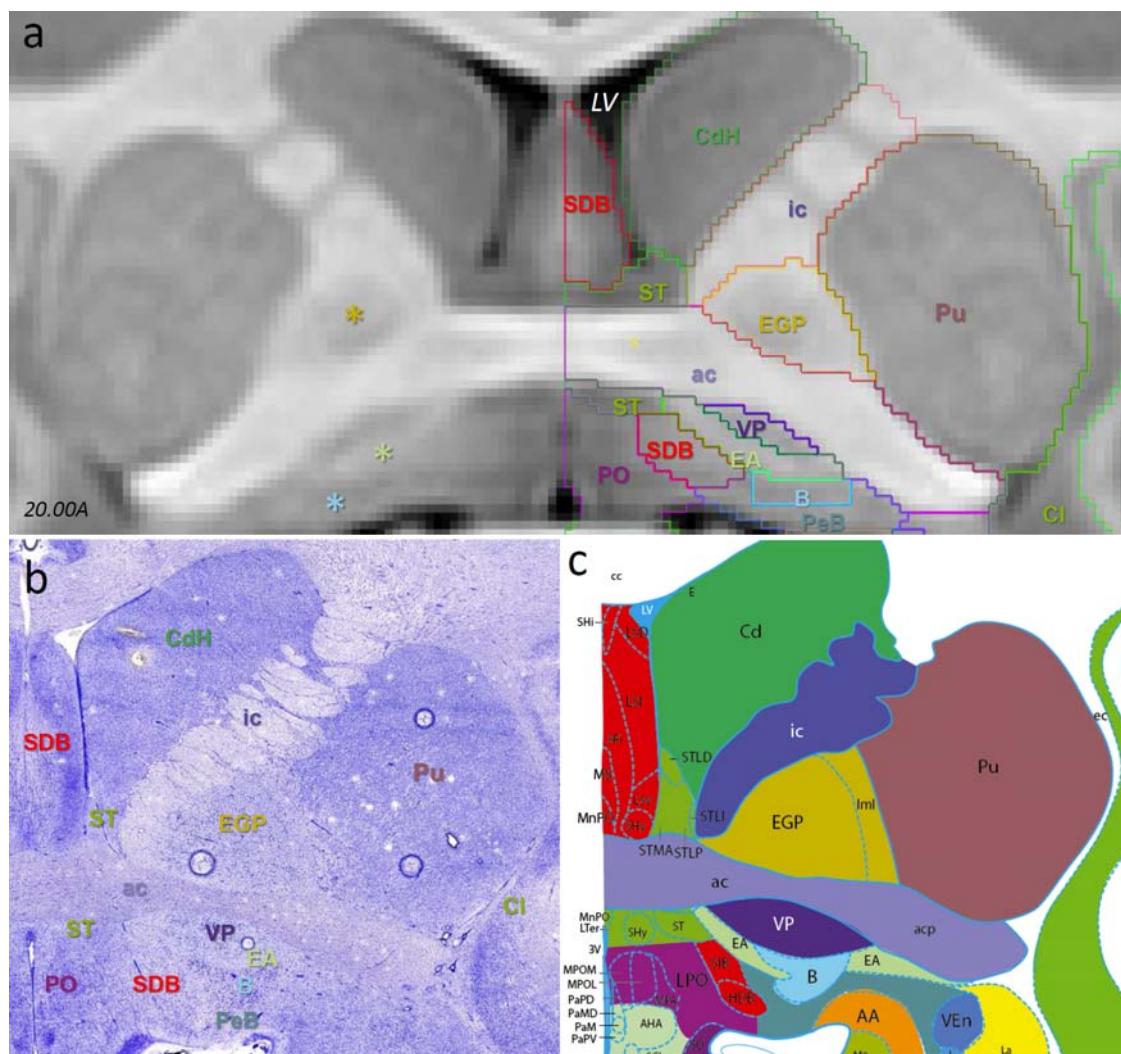
502 **3.1.3.2 *Medial Pallium (Hippocampal Formation)*.** The hippocampus (Hi) and subiculum
503 complex (S) were segmented without distinguishing their internal subdivisions (i.e., CA1-3,
504 dentate gyrus, parasubiculum, presubiculum, subiculum *per se*, and prosubiculum) (Table S1;
505 Fig. 6c,d). They were grouped together, along with the fimbria (fi), as hippocampal formation
506 (HF) at levels 3 and 4. Although being acellular, the fimbria was added to the HF group in order
507 to take into account the lower spatial resolution of functional scans that may not distinguish fi
508 from Hi and S. The fornix (f) was drawn throughout the lateral ventricle mainly for illustrative
509 purposes. It was not added to the HF group to avoid false attribution of activation possibly
510 originating from regions located in the vicinity of the distant f (e.g., septum and dorsal thalamus).
511 Finally, at level 2, HF and f were grouped together in the medial pallium (MPal), from which they
512 originate (Puelles et al., 2013).

513 **3.1.3.3 *Amygdala*.** The amygdala was delineated into 16 primary ROIs (Table S1). Figure 7
514 illustrates the segmentation of the amygdala at one representative anteroposterior level in NMT
515 v2, G12 and RMBSC4. Throughout the anteroposterior extent of the amygdala, the dorsal and
516 ventral parts of the lateral amygdaloid nucleus (LaD and LaV) were recognizable by their darker
517 contrast, compared to the lighter dorsal, intermediate and ventral parts of the basolateral
518 nucleus (BLD, BLI and BLV). The theoretical location of the basomedial nucleus (BM) often
519 contained a darker region in both NMT v2 and G12, which likely corresponds to the
520 parvocellular or magnocellular division of BM and contrasts with the lighter and more
521 homogeneous ventral cortical nucleus (VCo). The paralaminar nucleus (PaL) appeared as a thin
522 sheet of lighter (G12), and somewhat darker (NMT v2), contrast at the base of the amygdala.
523 The central nucleus (Ce) was less distinct, but its theoretical anatomical location largely
524 corresponded to a circular area with a lighter contrast in NMT v2. Medial to Ce, AA and the
525 medial nucleus (Me) appeared darker in NMT v2 and lighter in G12. The boundaries between
526 Me and AA, between BLD, BLI, and BLV, and between LaD and LaV were drawn based on their
527 theoretical topological localization (Amaral et al., 1992; Stefanacci et al., 2000; Paxinos et al.,
528 2009). Lateral to the amygdala, the amygdalostriatal transition area (ASt) appears as a distinct
529 region, separated by a thin but distinct lighter (NMT v2) or darker (G12) strip of white matter.
530 Dorsal to the amygdala proper, the interstitial nucleus of the posterior part of the anterior
531 commissure (IPAC), the intra-amygdaloid division of the bed nucleus of the stria terminalis

532 (STIA), and the extended amygdala (EA) are all readily distinguishable in NMT v2. For example,
533 EA appears as a distinct lighter band underneath the ventral pallidum (VP) (Fig. 8a).


534 As shown in Fig. 5, the amygdala is divided at level 3 on developmental grounds into its
535 pallial and subpallial portions. At level 4, the former splits into the portions arising from the
536 ventral and lateral pallium, while the latter divides into the striatal, medial, and pallidal
537 amygdala. These are then further divided into individual nuclei (level 5) and, in the case of the
538 lateral and basolateral nuclei, into subnuclei (level 6). The different ROIs of the pallidal
539 amygdala are not all contiguous. For example, EA has no boundary with other amygdaloid
540 nuclei. Therefore, the pallidal amygdala ROI is one of the two SARM group ROIs containing
541 non-contiguous ROIs. See 3.1.3.11 for the other exception in the medulla.

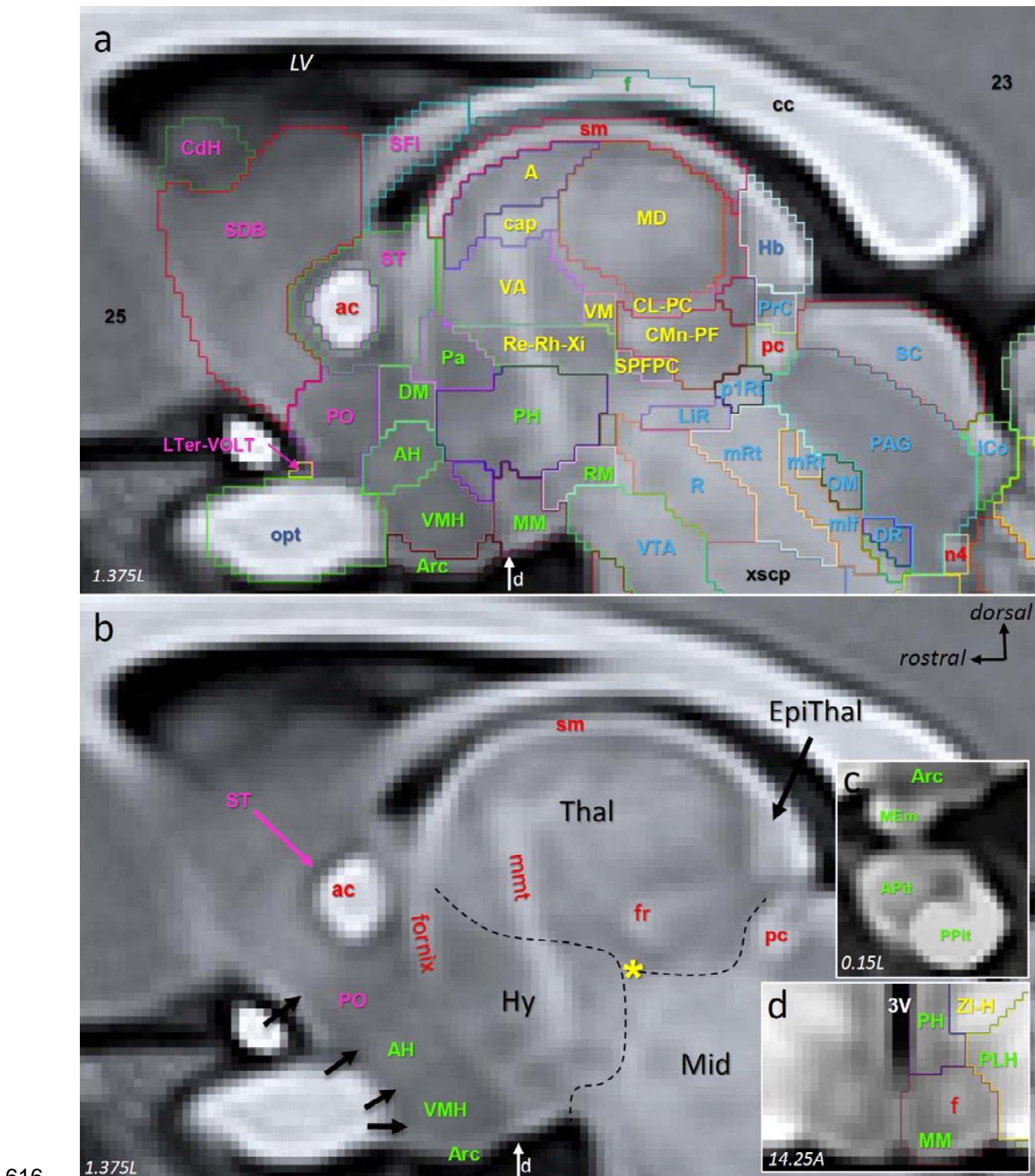
542 **3.1.3.4 Basal Ganglia.** The basal ganglia (BG) was delineated into 12 primary ROIs (Table S1).
543 The head of the caudate (CdH) and the putamen (Pu) were identifiable due to their prominent
544 size and distinct boundary with the internal capsule (ic), anterior capsule (ac), corpus callosum
545 (cc), external capsule (ec), and white matter of the cerebral cortex (Fig. 8). The ventral
546 boundary between CdH and the anterior portion of the bed nucleus of the stria terminalis (ST)
547 was marked by an abrupt darkening of the signal in ST (see also Section 3.1.3.5). The ventral
548 boundaries of CdH and Pu with the accumbens nucleus (Acb; not shown) were identified by a
549 consistent change to a more heterogeneous contrast pattern in Acb. The tail of the caudate
550 (CdT) was distinct all along the lateral ventricle (LV) (Fig. 10) and in proximity to the amygdala,
551 where it borders the amygdalostriatal transition area (ASt; not shown). The external (EGP; Fig.
552 8) and internal (IGP; not shown) globus pallidus were readily identifiable due to their slightly
553 darker contrast, compared to the surrounding white matter. They were distinguishable from one
554 another due to their characteristic shapes and their separation by the thin medial medullary
555 lamina (not shown). The ventral pallidum (VP) appeared distinctly darker between ac and EA
556 (Fig. 8).


557 At level 5, CdH and CdT were grouped as caudate (Cd), and EGP, IGP and their ventral
558 ansa lenticularis tract (al; not shown) were grouped as globus pallidus (GP). At level 4, Cd, Pu,
559 ASt, and ic (which contains strands of neurons) were grouped as dorsal striatum (DStr), and
560 Acb and Tu were grouped as ventral striatum (VStr). At level 3, DStr and VStr were grouped as
561 striatum. GP, ac and VP were grouped as pallidum (Pd) at levels 4 and 3. The inclusion of white
562 matter tracts (e.g., ac in Pd) enables using broad ROIs in fMRI analyses with rather low spatial

563 resolution, and in which the BOLD signal would likely 'spread' over multiple neighboring
564 structures, without possible distinction between smaller ROIs.

565

567 **Figure 7. SARM's amygdaloid ROIs.** Coronal slices through the right hemisphere at approximately the
568 same location in (a, b) NMT v2, (c, d) G12, and (e,f) a corresponding pair of RMBSC4 Nissl-stained
569 section and diagram (Fig. 56). The brown arrow in (a,c) points at the boundary between ASt and the
570 amygdala. The blue asterisk in (a) points at a zone of lighter contrast, likely corresponding to Ce. The
571 light orange arrows in (a, c) point at the putative border of LaD and LaV with BLD, BLI and BLV. The
572 mauve asterisks in panels (a, c) mark the darker contrast included in BM. **Abbreviations:** AA, anterior
573 amygdaloid area; ac, anterior commissure; A_{Pir}, amygdalopiriform transition area; ASt, amygdalostriatal
574 transition area; B, basal n.; BLD, BLI, BLV, dorsal, intermediate and ventral parts of the basolateral
575 amygdaloid n.; BM, basomedial amygdaloid n.; Ce, central amygdaloid n.; LaD and LaV, dorsal and
576 ventral parts of the lateral amygdaloid n.; LV, lateral ventricle; Me, medial amygdaloid n.; opt, optic
577 tract/chiasma; PaL, paralaminar amygdaloid n.; VCo, ventral cortical amygdaloid n.. In all panels, left is


578 medial and top is dorsal.

579 **Figure 8. SARM telencephalic ROIs.** Coronal slices through (a) the symmetric NMT v2 and (b,c) the
580 approximately corresponding pair of RMBSC4 Nissl-stained section and diagram (Fig. 50). The asterisks
581 on the left side in (a) emphasize contrasts corresponding to the location of EGP (yellow), EA (pale green),
582 and B (blue). Only the anterior portion of SFi is included in the SDB ROI; further caudally, SFi is
583 recognized as a single ROI (see Fig. 9). In all panels, the top is dorsal. In (b,c), left is medial.
584 **Abbreviations:** B, basal nucleus; CdH, head of the caudate nucleus; Cl, claustrum; EA, extended
585 amygdala; EGP, external globus pallidus; ic, internal capsule; PeB, peri-basal region; PO, preoptic area;
586 Pu, putamen; SDB, septum and diagonal band; ST, stria terminalis; VP, ventral pallidum. For the missing
587

588 abbreviations in (c), see Paxinos et al., 2009, where most abbreviations are similar to Paxinos et al., in
589 preparation.

590 **3.1.3.5 Diagonal Subpallium.** The ontological definition of the diagonal subpallium (DSP)
591 includes the basal nucleus of Meynert (B), the bed nucleus of the stria terminalis (ST), and
592 different parts of the septum and diagonal band of Broca region (SDB and SFi) (Table S1)
593 (Puelles et al., 2013). B is anatomically formed by an ill-defined group of cholinergic neurons at
594 the base of the basal ganglia. In some slices of NMT v2, the putative location of B could
595 correspond to a slightly darker region ventral to EA and VP (see blue asterisk in Fig. 8a, left);
596 however, this appearance is not consistent. Thus, for the most part, the delineation of B is
597 based on its most likely localization, underneath VP anteriorly (Fig. 8) and in between IGP, the
598 optic tract (opt) and Pu posteriorly (not shown; see for example RMBSC4 Fig. 66). To take into
599 account this less obvious delineation, the region surrounding our delineation of B is labeled as
600 'peri-basal region' in the SARM v1 (PeB; Fig. 8), which corresponds, in RMBSC4 to a rather
601 undefined region sandwiched between B and other regions such as AA, Ce and SDB. B and
602 PeB are grouped in the basal nucleus 'region' (BR) at levels 5 and 4. Anteriorly, the different
603 parts of ST form a distinct 'ring' of dark signal around ac (ST; Fig. 9a,b). Posteriorly, ST mingles
604 with various fiber tracts and appears lighter (Fig. 9a,b). The different components of the medial
605 and lateral septum, as well as those of the diagonal band of Broca, were not readily
606 distinguishable from one another in G12, although the medial portion of the septum appears
607 lighter in NMT v2 and could be ascribed to the medial septum in a future version of the SARM
608 (Fig. 8). Ventrally and posteriorly, SDB (i.e., SIB and HDB in Figure 8c) is consistently darker
609 than EA but lighter than PO, and sits 'sandwiched' between them. For the time being, these
610 anterior and posteroventral regions are grouped in SDB. However, dorsally and posteriorly, one
611 component of the septum that runs along the anterior portion of the lateral ventricle, namely the
612 septimbrial nucleus (SFi), was labeled as a distinct ROI (Fig. 9). SDB and SFi are grouped in
613 the septum diagonal band region (SDBR) at level 4. BR, ST, and SDBR are grouped in DSP at
614 levels 3 and 2.

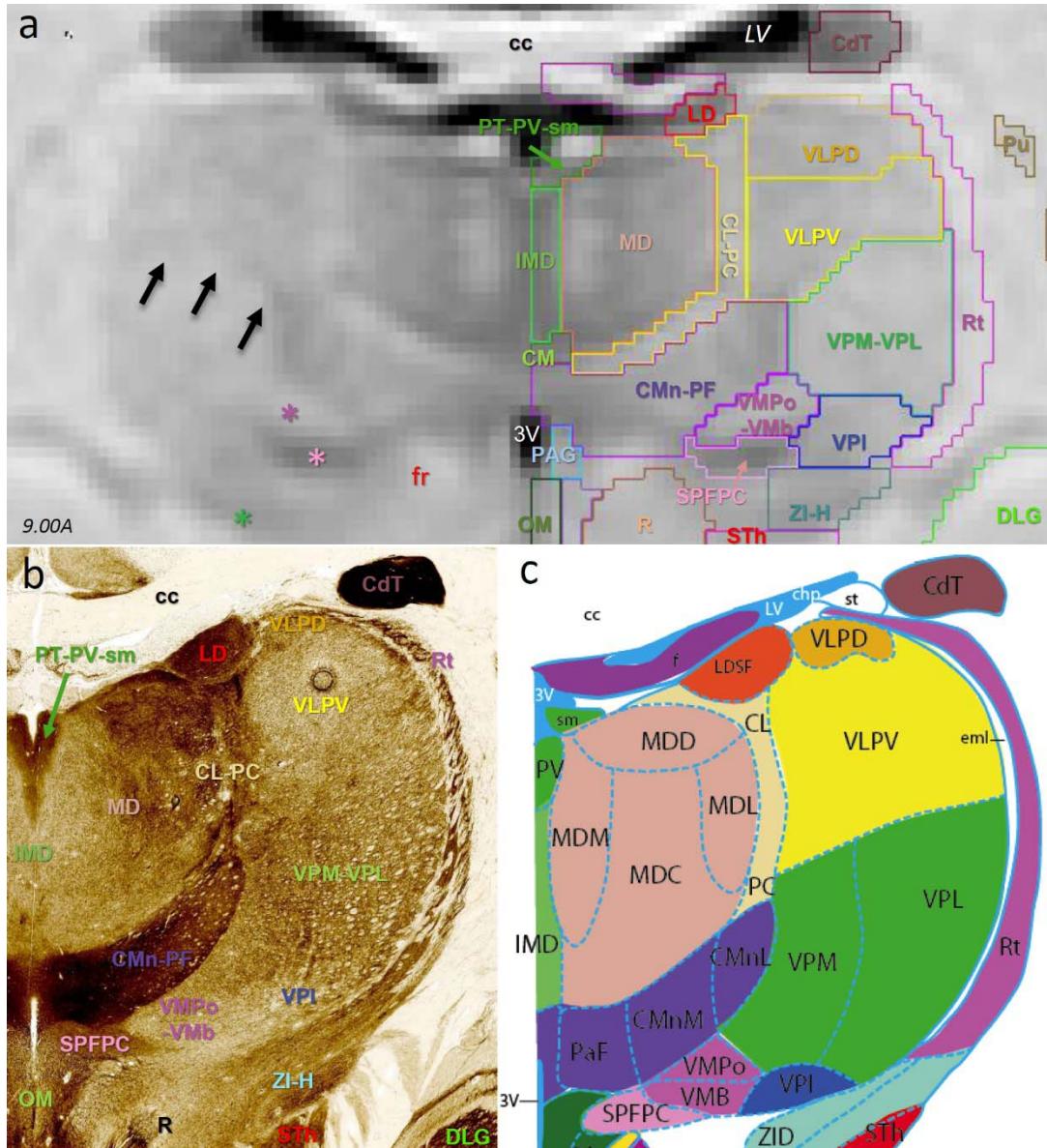
615

622 characterizes SPFPC (see also Fig. 10). The thin dashed lines emphasize the distinctive change in
623 contrast between Thal, Mid, and Hy. The pink arrow points at the ring of dark contrast of ST around ac.
624 The four black arrows on the left side of (b) mark the contrast changes between PO, AH, VMH, and Arc.
625 Panel (c) shows a mid-sagittal view of the subjacent (ventral to Arc) pituitary regions APit and PPit, as
626 well as MEm. Panel (d) shows a symmetrical coronal view of MM with a distinctively lighter contrast in its
627 center, corresponding to f. The vertical white arrow at the base of the hypothalamus in panels (a,b)
628 indicates the anteroposterior level of the coronal view shown in panel (d). **Abbreviations:** 23 and 25,
629 cortical areas 23 and 25; 3V, third ventricle; A, anterior thal. n.; ac, anterior commissure; AH, anterior hy.
630 n.; APit, anterior pituitary; Arc., arcuate n.; cap, capsule of the anterior thalamic nucleus; cc, corpus
631 callosum; CdH, head of the caudate nucleus; CL-PC, centrolateral and paracentral thal. n.; CMn-PF,
632 centromedian and parafascicular thal. n.; DM, dorsomedial hy. n.; DR, dorsal Raphe; EpiThal,
633 epithalamus; f, fornix; fr, fasciculus retroflexus; Hb, habenula; Hy, hypothalamus; ICo, inferior colliculus;
634 LH, lateral hypothalamic area; LiR, linear Raphe; LTer-VOLT, lamina terminalis and vascular organ of the
635 lamina terminalis; LV, lateral ventricle; MD, mediodorsal thal. n.; MEm, medial eminence; Mid, midbrain;
636 mlf, medial longitudinal fascicle; MM, mammillary n.; mRt, midbrain reticulum; n4, 4th cranial nerve
637 (crossing); OM, oculomotor complex; p1RT, prosomere 1 reticulum; Pa, paraventricular hy. n.; PAG,
638 periaqueductal gray; pc, posterior commissure; PH, posterior hy. n.; PLH, peduncular lateral
639 hypothalamus; PO, preoptic area; PPit, posterior pituitary; PrC, precommissural n.; R, red n.; Re-Rh-Xi,
640 reunions, rhomboid and xiphoid thal. n.; RM, retro-mammillary n.; SC, superior colliculus; SDB, septum-
641 diagonal band; SFi, septimbral n.; sm, stria medullaris; SPFPC, subparafascicular parvocellular thal. n.;
642 ST, bed n. of the stria terminalis; Thal, thalamus; VA, ventral anterior thal. n.; VM, ventromedial thal. n.;
643 VMH, ventromedial hy. n.; VTA, ventral tegmental area; xscp, crossing of the superior cerebellar
644 peduncle; ZI-H, zona incerta and lenticular fascicles (H fields).
645

646 **3.1.3.6 Preoptic Area and Hypothalamus.** The preoptic complex (POC; levels 2 and 3) and
647 the hypothalamus (Hy; level 2) contain 3 and 17 ROIs, respectively (Table S1). At level 4, the
648 POC bifurcates into the preoptic region (POR) and the subjacent segments of the optic nerve
649 and chiasma (opt), which, despite being functionally unrelated, were artificially merged because
650 they frequently ‘fuse’ at low MRI resolutions. At levels 5 and 6, POR partitions into the different
651 (poorly distinguishable) nuclei of the preoptic area (PO), *per se*, and the medial lamina
652 terminalis, and its vascular organ (drawn together as LTer-VOLT). LTer-VOLT and opt are
653 readily identifiable throughout G12 and NMT v2, due to their starkly distinct contrast and
654 macroscopic location of LTer-VOLT over opt or at the base of PO (Fig. 9a,b). PO is identified by
655 its canonical location at the level of the optic chiasma and along the anterior part of the third
656 ventricle (3V), as well as by its distinct darker contrast. The latter defines rather sharp
657 boundaries with SDB, anteriorly, and with the anterior hypothalamic nucleus (AH), posteriorly,
658 as indicated by the black arrows in Figure 9b.

659 Most of the larger subdivisions of Hy are distinguishable due to local variations in signal
660 intensity and/or the presence of specific white matter tracts, such as the mammillothalamic tract
661 (mt). For example, the boundaries between AH, the ventral medial nucleus (VMH), and the
662 arcuate nucleus (Arc) were marked by abrupt changes in contrast, similar to the boundary
663 between PO and AH (see black arrows in Fig. 9b). The perifornical (PeF; not shown), retro-

664 mammillary nucleus (RM) and, more particularly, mammillary nucleus are recognizable by their
665 specific relation to the fornix (f) and mt, which are both identifiable as continuous dorsoventral
666 tracts between the thalamus and hypothalamus (Fig. 9b). The mammillary nucleus of the
667 hypothalamus (MM), which typically surrounds f, is also recognizable due to the bulge
668 (mammillary body) that it forms at the base of the diencephalon (Fig. 9d). The different divisions
669 of the lateral hypothalamic region (LHy; level 5) - that is, the lateral nucleus (LH), peduncular
670 lateral nucleus (PLH), and juxtaparaventricular nucleus (JPLH) - are delineated mainly based on
671 their lighter signal, compared to neighboring ROIs (not shown). The limit between the anterior
672 LH and posterior PLH is set at the level at which the fornix reaches the hypothalamus (not
673 shown; see RMBSC4 Fig. 55). The paraventricular nucleus (Pa) and the posterior hypothalamic
674 nucleus (PH) are distinctively darker and located medially, along 3V. The subthalamic nucleus
675 (STh; not shown; abbreviated elsewhere as STN), which is also part of the hypothalamus
676 (Puelles et al., 2013), is consistently identifiable due to a light circular signal located in-between
677 the darker zona incerta (ZI-H; see Section 3.1.3.7) and substantia nigra (SN; see Section
678 3.1.3.8). Finally, the pituitary (Pit; or hypophysis) is connected to Hy via the distinct medial
679 eminence (MEm), and contains an anterior (APit; adenohypophysis) and a posterior (PPit;
680 neurohypophysis) division, which are both recognizable in the NMT v2 due to much brighter
681 contrast for PPit, compared to APit (Fig. 9c).

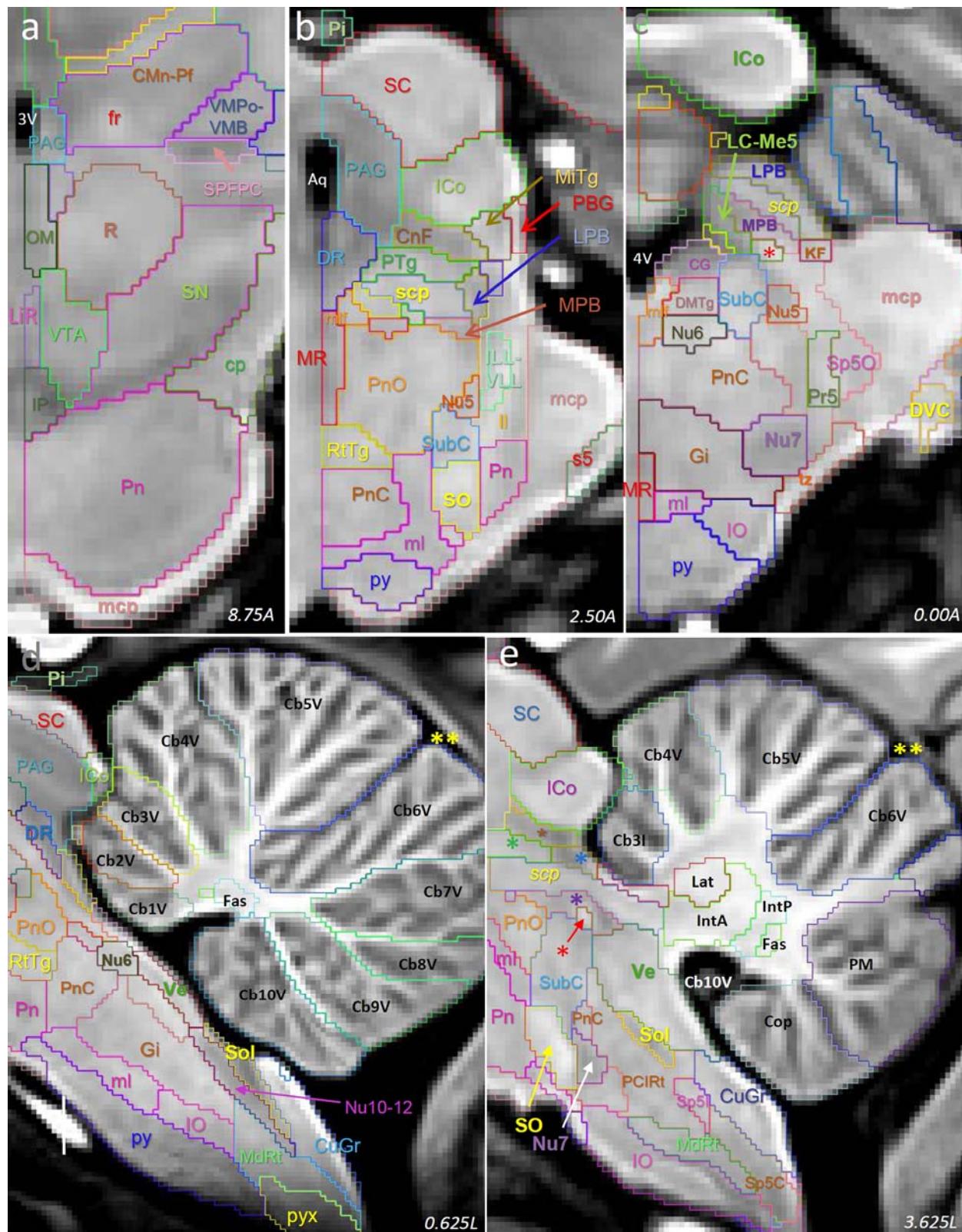

682 The hierarchical grouping of Hy is based mostly on a classical neuroanatomical
683 grouping (Saper, 2012), rather than on ontological grouping (Puelles et al., 2013), due to the
684 non-contiguity of the alar and basal hypothalamic nuclei in the adult Hy. At level 3, Hy is divided
685 into tuberal (THy), posterior (PHy) and pituitary (Pit) groups (Table S1). The tuberal
686 hypothalamus contains the paraventricular hypothalamus (Pa; also singled out as medial tuberal
687 hypothalamus at level 4), as well as the supraoptic hypothalamus (SOpt), the ventromedial
688 hypothalamic nucleus (VMH), the medial eminence (MEm) and the arcuate nucleus (Arc),
689 grouped together as ventral tuberal hypothalamus at level 4, and, finally, the anterior
690 hypothalamic area (AH), the dorso-medial hypothalamic nucleus (DM), and the three distinct
691 lateral hypothalamic nuclei (LH, JPLH, and PLH), grouped together as dorsal tuberal
692 hypothalamus at level 4. The level 3 posterior hypothalamus contains the posterior nucleus *per*
693 *se* (PH), as well as the prefoncal hypothalamus (PeF), the mammillary hypothalamus (MM) and
694 the retro-mammillary hypothalamus (RMM) grouped together as ventral posterior hypothalamus
695 at level 3. Pit forms a separate group at levels 3 and 4, with APit and PPit being considered
696 separately at levels 5 and 6.

697 **3.1.3.7 Epithalamus, thalamus, and prethalamus.** The epithalamus (EpiThal; levels 2-3)
698 contains the pineal gland (Pi; levels 4-6) and the habenula (Hb; levels 4-6). Pi forms a distinct
699 round structure at the midline, above the superior colliculus (SC) (not shown). Hb is located
700 posterior and medial to the thalamus. It is recognizable in NMT v2 by its bright and
701 heterogeneous signal (Fig. 9). The thalamus (Thal) contains 34 ROIs at level 6 (Table S1).
702 These ROIs remain listed individually at level 5, except for the anterior thalamus (A) and the
703 capsule of the anterior nucleus (cap) (Fig. 9a), which are then grouped to form the anterior
704 thalamus region (AR) ROI. At levels 4 and 3, the ROIs are grouped into 12 and 6 larger groups,
705 respectively. At level 4, most of the ROIs are grouped based on their connections (e.g., spinal,
706 cerebellar, and palladio-nigral groups) and classical functional attributions (e.g., “non-specific”
707 intralaminar and midline groups). The dorsal lateral geniculate (DLG; abbreviated elsewhere as
708 LGN) and medial geniculate (MG) nuclei remain ungrouped at level 4, due to their size,
709 anatomical distinctiveness, and functional specificity. At level 3, most of the level 4 ROIs are
710 grouped into yet larger entities based purely on their location within Thal. MG and DLG are
711 grouped into a geniculate ROI (GThal). The reticular thalamus (Rt) remains ungrouped until
712 level 2 (Thal) due to its anatomical distinctiveness.

713 Most level 6 ROIs of the thalamus are distinguishable in G12 and NMT v2. For example,
714 Figure 10 illustrates the delineation and signal contrast of several distinct thalamic ROIs in one
715 coronal slice of NMT v2. The boundary between some ROIs, such as the posterodorsal and
716 posteroventral parts of the ventrolateral nucleus (VLPD and VLPV), had to be based on their
717 theoretical location and topological relationships. But, in most cases, there was a consistent
718 shift in contrast at ROI borders, such as at the boundary between VLPV (darker) and the medial
719 and lateral parts of the ventral nucleus (VPM-VPL; see black arrows in the left side of Fig. 10a).
720 The brighter signal of the VPM-VPL ROI is consistent throughout its anteroposterior extent.

721 The delineations of the inter-mediodorsal nucleus (IMD), mediiodorsal nucleus (MD) and
722 centrolateral and paracentral nuclei (CL-PC) ROIs were marked by rather sharp changes in
723 signal, from darker in IMD to much lighter in CL-PC. The brighter signal in the medial part of MD
724 likely corresponds to its medial portion (MDM in RMBSC4), which could be added in a future
725 version of SARM. Dorsal to IMD, the stria medullaris tract, paraventricular and paratenial nuclei
726 were grouped into one ROI (PT-PV-sm) due to their small individual sizes. Ventral to CL-PC, the
727 centromedial and parafascicular complex (CMn-PF) is identifiable by its darker contrast, which
728 reveals the typical wing-shaped form of CMn-PF, and by the passage of the fasciculus

729 retroflexus (fr). fr is located just ventral to CMn-PF in Figure 10a, but it can be seen crossing
730 CMn-PF in the parasagittal view of NMT v2 in Figure 9a,b and in the coronal view of Figure 11a.


Figure 10. SARM's thalamic ROIs in coronal view. (a-c) Coronal slice through the NMT v2 in stereotaxic space (a), and a corresponding pair of RMBSC4 Nissl AChE stain section (b) and diagram (c) (Fig. 71). In (a), the black arrows point at the boundary between VLPV and VPM-VPL. The asterisks emphasize the localizations of VMPo-VMb (dark pink), SPFPC (light pink), and ZI-H (green). The red “fr” indicates the localization of the fasciculus retroflexus, ventral to CMn-PF. (In more posterior slices, fr ascends through CMn-Pf, as illustrated in Fig. 9b and 11a.) **Abbreviations (a,b):** **3v**, third ventricle; **CdT**, the tail of the caudate; **CL-PC**, centrolateral and paracentral thal. n.; **CM**, central medial thal. n.; **CMn-PF**, centromedial and parafascicular thal. n.; **DLG**, dorsolateral geniculate thal. n.; **IMD**, intermediodorsal thal. n.; **LD**, laterodorsal thal. n.; **LV**, lateral ventricle; **MD**, mediodorsal thal. n.; **OM**, oculomotor complex; **PAG**, periaqueductal gray; **R**, red n.; **Rt**, reticular thal. n.; **Pu**, putamen; **PT-PV-sm**, ensemble of the stria medullaris, paraventral nucleus and paratenial thal. n.; **SPFPC**, subparafascicular parvocellular thal. n.; **STh**, subthalamic n.; **VLPD** and **VLPV**, posterodorsal and posteroventral parts of the ventrolateral thal. n.; **VMPo-VMB**, posterior and basal parts of the ventromedial thal. n.; **VPI**, ventroposterior inferior thal. n.; **VPM-VPL**, ventroposterior medial and lateral thal. n.; **ZI-H**, zona incerta and lenticular fascicles (H fields). For the missing abbreviations in (c), see Paxinos et al., 2009, where most abbreviations are similar to Paxinos et al., in preparation.

732 VMb) are identified together as a small, brighter region tucked between CMn-PF and the
733 consistently darker and sharply delimited subparafascicular parvocellular ROI (SPFPC; see also
734 Fig. 9a, 10, and 11a). The ventroposterior inferior nucleus (VPI) ROI, which appears lighter in
735 G12 (not shown), is delineated in the NMT v2 mainly based on its theoretical location at the
736 lateral and ventral base of the thalamus, dorsal to the darker ROI of the zona incerta and H
737 fields (ZI-H). ZI-H, which is the only ROI of the pre-thalamus (PreThal), is characterized by a
738 thin strip of darker signal (see green asterisk in the left side of Fig. 10a), sandwiched at more
739 anterior levels between two lighter strips, likely corresponding to the H1 and H2 fields of the
740 lenticular fascicle (not present at the AP level shown in Fig. 10). The reticular thalamus ROI (Rt)
741 is defined by a thin lighter ‘band’ (in coronal slices) covering the lateral aspect of Thal
742 throughout its rostrocaudal extent.

743 **3.1.3.8 Prepectum and Midbrain.** The small prepectum (PrT) and vast midbrain (Mid) contain 4
744 and 27 ROIs, respectively. The posterior commissure (pc) of the prepectum appears distinctly in
745 the sagittal slice in Fig. 9a,b. The other 3 ROIs of the prepectum are delineated mainly based on
746 their theoretical location in the vicinity of pc, with, however, a slight contrast differentiation for
747 the precommissural nucleus (PrC, Fig. 9a,b) and, to a lesser extent, the posterior commissural
748 nuclei (PCom-MCPC). The midbrain contains several large and distinct ROIs, including the
749 periaqueductal gray (PAG), superior colliculus (SC), inferior colliculus (ICo), and substantia
750 nigra (SN), visible in Figures 9a and 11 (PAG, SC, and ICo). Some smaller ROIs could be
751 delineated based on their distinctively darker or lighter contrast (e.g., interpeduncular nucleus,
752 IP; pedunculopontine tegmentum, PTg; caudal pontine reticulum, PnC; dorsal and median
753 Raphe, DR and MR; superior cerebellar peduncle, scp). Finally, other midbrain ROIs were
754 drawn based on the localization of the aforementioned distinct ROIs. For example, a ventral
755 tegmental ROI was drawn at the base of the midbrain, near its junction with the retro-
756 mammillary nucleus of the hypothalamus (RM), dorsal to the distinctly darker IP, and in between
757 the ventral halves of SN. Lastly, the red nucleus (R) was drawn based on the occurrence of a
758 slight contrast variation forming an ovoid region, dorsal to VTA (Fig.11a).

759 In the prepectum, pc and two small adjacent ROIs PrC and PCom-MCPC are grouped at
760 level 5 as the posterior commissural region (PCR), to which the prosomeric 1 reticular formation
761 (p1Rt) is added at levels 2-4, to form the PrT ROI. In the midbrain, most level 6 ROIs remain the
762 same at level 5, except for the saginum nucleus ROI (Sag-RL), which joins ICo to form the
763 inferior colliculus complex (ICoC). At level 4, ROIs are grouped mainly based on coarse
764 anatomical or cytological relatedness. For example, SC and ICoC are grouped into a colliculi

765 (Co) ROI; the several tegmental nuclei (e.g., microcellular tegmentum, MiTg, and anterior
766 tegmental nucleus, ATg) are grouped into a midbrain tegmentum ROI (TgMid). Similarly, the
767 midbrain dopaminergic complex (DA-Mid) was formed from the large midbrain dopaminergic cell
768 group ROIs (i.e., VTA, SN and RF) and surrounding structures (e.g., IP). At level 3, these ROIs
769 are further grouped, mainly based on their cardinal location (i.e., dorsal, lateral, medial, and
770 ventral).

771

772

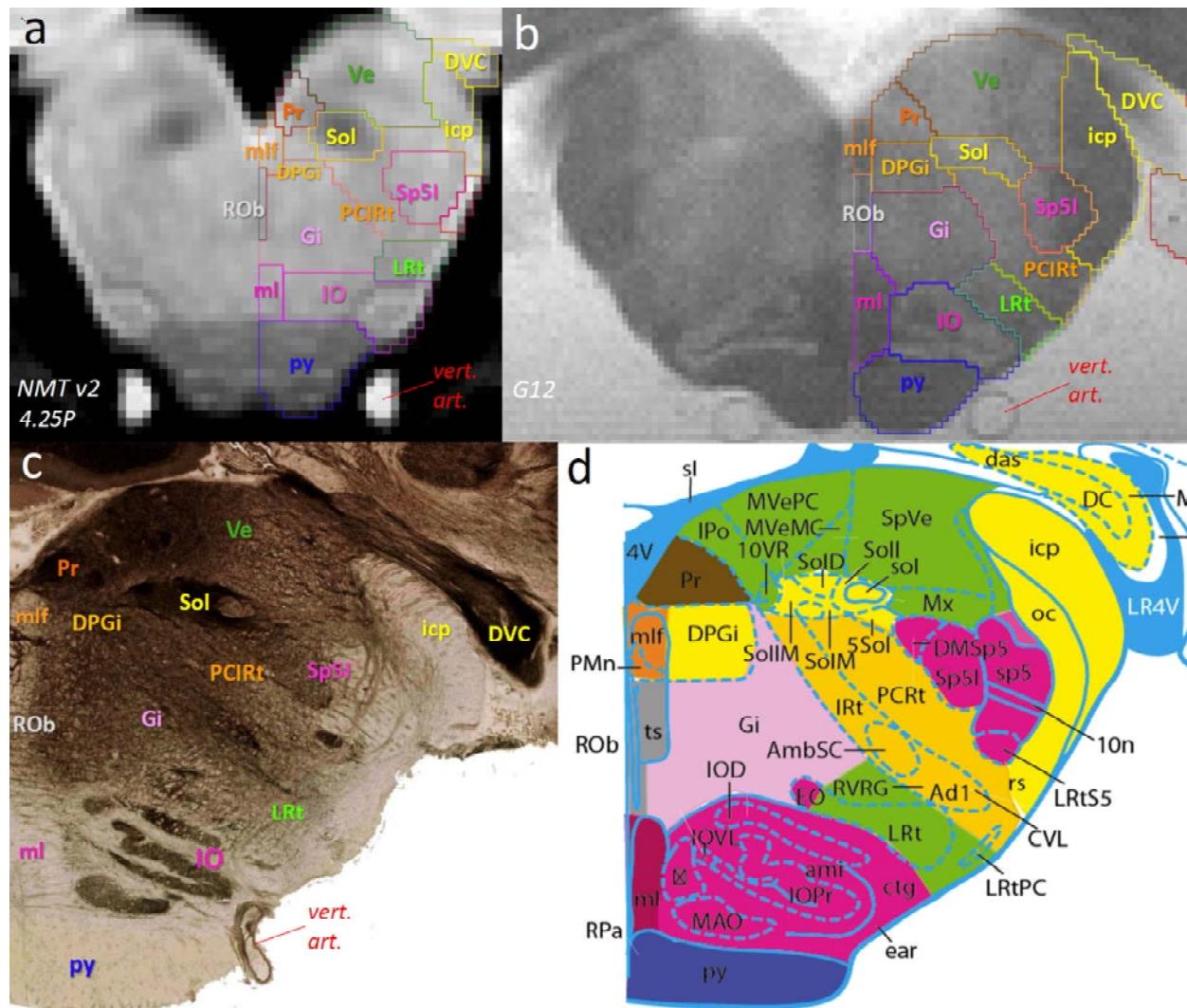
773

774

Figure 11. SARM hindbrain ROIs in coronal and parasagittal views. Coronal (a-c) and parasagittal (d,e) slices through the NMT v2 showing ROI delineations at various levels of the neuraxis. In (d,e), the double yellow asterisks indicate the position of the anterior cerebellar fissure that separates anterior and

775 posterior lobes. In (e), the asterisks indicate the locations of CnF (brown), PTg (green), LPB (blue), and
776 MPB (purple). The red asterisk indicates the location of the me5. In (a-c), left is medial and top is dorsal.
777 In (d,e) left is rostral and top is dorsal. **Abbreviations:** **3V**, third ventricle; **4V**, fourth ventricle; **Aq**,
778 aqueduct; **Cb3I**, intermediate part of the cerebellar lobule 3; **Cb1-10V**, vermis part of cerebellar lobules 1-
779 10; **CG**, central gray n.; **CMn-PF**, centromedial and parafascicular thal. n.; **CnF**, cuneiform n.; **Cop**,
780 cerebellar copula; **cp**, cerebral peduncle; **CuGr**, cuneate and gracile n.; **DMTg**, dorsomedial tegmentum;
781 **DR**, dorsal Raphe; **DVC**, dorsal and ventral cochlear n.; **Fas**, fastigial (medial) n.; **fr**, fasciculus
782 retroflexus; **Gi**, gigantocellular reticular n.; **ICo**, inferior colliculus; **IntA**, anterior interposed n.; **IntP**,
783 posterior interposed n.; **IO**, inferior olive; **KF**, Kolliker-Fuse n.; **Lat**, lateral (dentate) n.; **LC-Me5**: locus
784 coeruleus and mesencephalic 5 region; **LiR**, linear Raphe; **ll**, lateral lemniscus; **LPB**, lateral parabrachial
785 n.; **mcp**, medial cerebellar peduncle; **MdRt**, medullary reticular formation; **me5**, motor trigeminal root;
786 **MiTg**, microcellular tegmental n.; **ml**, medial lemniscus; **mlf**, medial longitudinal fascicle; **MPB**, medial
787 parabrachial n.; **MR**, medial Raphe; **Nu5**, trigeminal motor n.; **Nu6**, abducens n.; **Nu7**, facial n.; **Nu10-12**,
788 hypoglossal and motor vagus n.; **OM**, oculomotor complex; **PAG**, periaqueductal gray; **PBG**,
789 parabigeminal n.; **PCIRt**, parvicellular and intermediate reticular n.; **Pi**, pineal gland; **PM**, paramedian
790 cerebellar lobule; **Pn**, pontine n.; **PnC**, caudal pontine reticulum; **PnO**, oral pontine reticulum; **Pr5**,
791 principal trigeminal sensory nucleus; **PTg**, pedunculopontine tegmentum; **py**, pyramidal tract; **pyx**,
792 pyramidal tract decussation; **R**, red n.; **RtTg**, reticulotegmental formation; **s5**, sensory root of the
793 trigeminal nerve; **SC**, superior colliculus; **scp**, superior cerebellar peduncle; **SN**, substantia nigra; **Sol**,
794 solitary tract n.; **Sp5C**, caudal spinal trigeminal n.; **Sp5I**, intermediate spinal trigeminal n.; **Sp5O**, oral
795 spinal trigeminal nucleus; **SPFPC**, subparafascicular parvocellular thal. n.; **SO**, superior olive; **SubC**,
796 subcoeruleus; **tz**, **trapezoid bundle region**; **Ve**, vestibular n.; **VMpo-VMB**, posterior and basal parts of
797 the ventromedial thal. N.; **VTA**, ventral tegmental area.
798

799 **3.1.3.9 Pons.** The ‘pons’ region of the metencephalon contains 24 ROIs (Table S1), mostly
800 illustrated in Figure 11. The most prominent pons ROI is the pontine nucleus (Pn), located
801 ventrally and well demarcated from the medial cerebellar peduncle (mcp) (Fig. 11a,c,d). The
802 superior olive (SO) forms a bright column posterior to Pn and directly anterior to the darker Nu7
803 (Fig. 11b, c and e). The lateral and medial parabrachial nuclei (LPB and MPB) form darker
804 bands around the superior cerebellar peduncle (scp), with LPB being posterior to the lighter PTg
805 (Fig. 11b,c,e). Lateral to MPB, we ascribed a small region to a ROI putatively containing both
806 the locus coeruleus and the mesencephalic trigeminal nucleus (Me5). The localization of this
807 ROI is supported by the position of the central gray nucleus (CG), recognizable medial to MPB,
808 and the presence of a small lighter region that corresponds most likely to the efferent trigeminal
809 mesencephalic nerve (me5; marked by the red asterisks in Fig. 11c,e). The lateral lemniscus
810 complex (ll+), which carries projections from the cochlear nucleus, was identified as a light
811 bundle in the lateral portion of the pons, between SO and ICo, which both receive cochlear
812 inputs. Within the boundaries of ll+, we drew ROIs most likely to correspond to the position of
813 the dorsal (DLL) and inferior and ventral (ILL-VLL) lateral lemniscal nuclei (Fig. 11b). Other pons
814 regions, such as the oral and caudal pontine reticulum (PnO and PnC, Fig. 11b-e), were drawn
815 based on their relative position to the structures that were readily identifiable.


816 **3.1.3.10 Cerebellum.** The cerebellum (level 2) contains 27 ROIs (Table S1), including 21
817 cortical ROIs, 4 deep nuclei ROIs, and 2 fiber tracts. The 21 cortical areas consist of the 10
818 lobules, which are partitioned into the more medial vermis lobules (CbV1 to CbV10; Fig. 11d)
819 and four intermediate lobules (Cb3l to Cb6l; Cb3l is shown in Fig. 11e). The intermediate
820 lobules are continuous with and lateral to the corresponding vermis lobules. The other cortical
821 ROIs are the paramedian lobule (PM), simple lobule (Sim), copula of the pyramis (Cop),
822 ansiform lobules crus 1 (Crus1) and crus 2 (Crus2) ROIs, as well as the flocculus (Fl) and
823 paraflocculus (PFl). See Figure 11e for PM and Cop. The deep nuclei are the classical lateral or
824 dentate (Lat), anterior interposed (IntA), posterior interposed (IntP), and medial or fastigial (Fas)
825 cerebellar nuclei (Fig. 11e). While the deep nuclei are clearly revealed by an abruptly darker
826 contrast in G12 (not shown), they are identifiable only by a slightly lighter contrast in NMT v2.
827 This slight increase in lightness is, however, sufficient to delineate the edges of each nucleus.
828 The two tracts are the inferior cerebellar peduncle and olivocerebellar tracts, which are both
829 located close enough to the cerebellum to be allocated to this region, instead of others (unlike
830 mcp and scp, which are mostly represented outside the cerebellum).

831 At level 5, the vermis lobule ROIs are grouped into anterior and posterior vermis ROIs
832 (VCbCx and PVCbCx) based on the boundary defined by the primary fissure (double yellow
833 asterisks in Fig. 11d,e) between Cb5V and Cb6V. In addition, the intermediate lobule ROIs,
834 along with Cop, Sim and PM, are grouped into an intermediate cerebellar cortex ROI (ICbCx).
835 Also at level 5, Crus 1 and 2 fuse into a lateral cerebellar cortex (LCbCx) ROI, and Fl and PFl
836 fuse into the Fl-PFl ROI. At level 4, the vermis cerebellar cortex (VCbCx) ROI combines the
837 anterior and posterior vermis ROIs, the deep cerebellar nuclei (DCb) ROI merges the deep
838 nuclei into one, and a cerebellar 'white matter' (wmCb) ROI captures the two fiber tracts. At
839 level 3, all the cortical ROIs are grouped under a cerebellar cortex ROI (CbCx), which then
840 coexists with the DCb and wmCb ROIs.

841 **3.1.3.11 Medulla.** The myelencephalon (level 1) or medulla (level 2) contains 26 ROIs
842 (Supplementary Table 1). Figure 11d,e and 12 illustrate several of these ROIs. The most
843 obvious ROIs were the solitary tract nucleus (Sol), hypoglossal and motor vagus nuclei (Nu10-
844 12) lying directly ventral to Sol, and the facial motor nucleus (Nu7), due to their sharply delimited
845 darker contrast. The dark Nu7 markedly contrasted against the bright contrast of SO, which lies
846 just anterior to Nu7 (Fig. 11e). The vestibular (Ve) and cuneate-gracile nuclei (CuGr) formed
847 characteristic domes rostral and caudal to Sol, respectively (Fig. 11d). Ventrally, the pyramidal
848 tract (py), decussation of the pyramidal tract (pyx), and inferior olive (IO) were identifiable by

849 their bulging morphology and heterogeneous contrast (Fig. 11d,e; Fig. 12a,b). The cochlear
850 nuclei (DVC, Fig. 12) formed a distinct structure located lateral to the medulla, within the
851 vestibulocochlear nerve (n8). The oral, intermediate (Fig. 12), and caudal spinal trigeminal
852 nuclei (Sp5O, Sp5I, and Sp5C) form a continuous rostrocaudal column made of a medial
853 cellular region (the nucleus itself) and of a lateral fibrous region (the nerve, sp5). Other
854 structures, such as, for example, the paragigantocellular (Gi; Fig. 12) and medullar (MdRt)
855 reticular nuclei, presented a rather homogeneous appearance and were drawn based on their
856 theoretical localization, in between the identifiable regions.

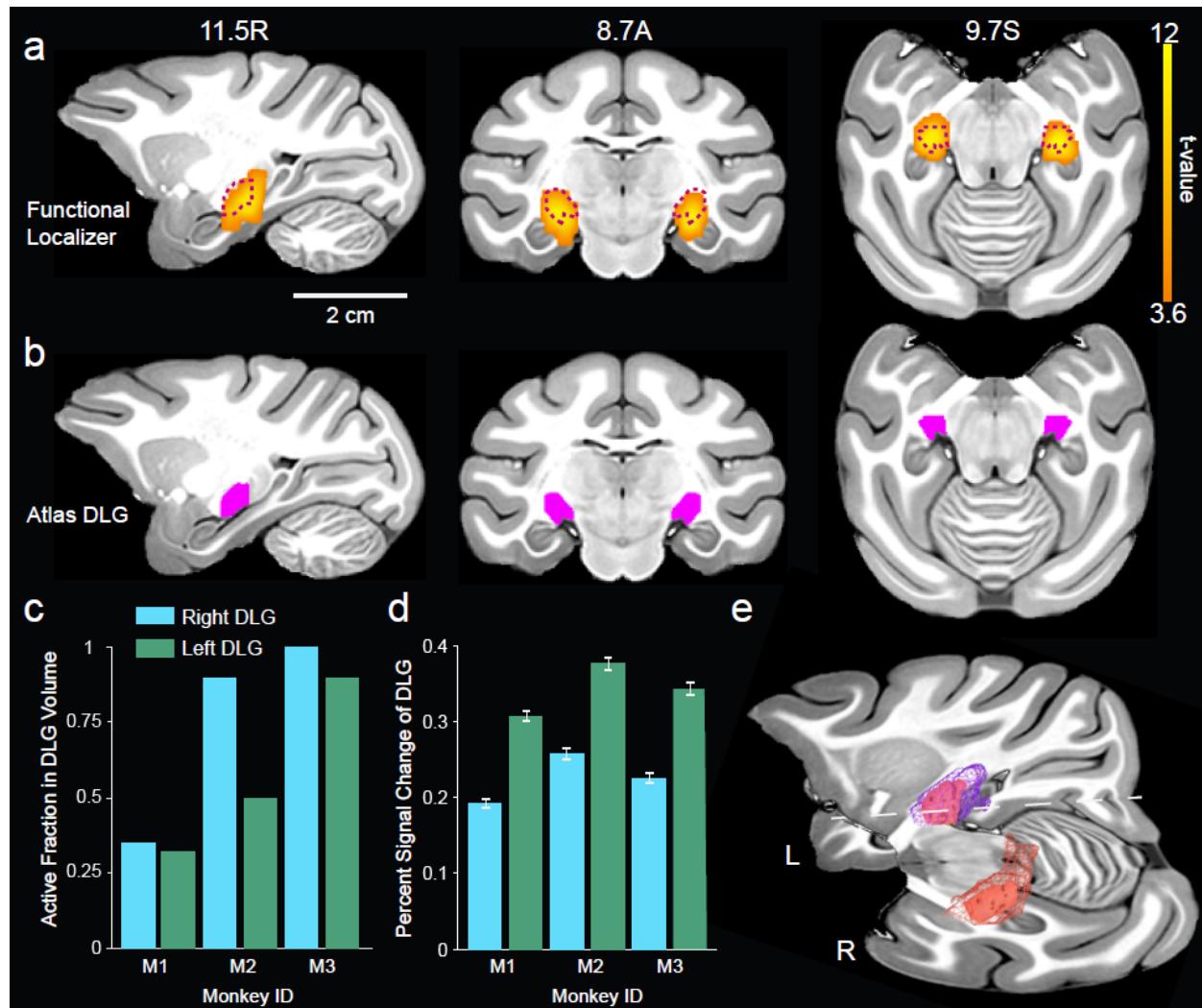
857 At level 5, Sp5O, Sp5I, and Sp5C are grouped into a larger spinal trigeminal nucleus
858 ROI (Sp5). At level 4, the ROIs are grouped into 8 composite structures based on their
859 functional relatedness. For example, Ve, DVC, n8, and Pr were grouped in a larger vestibulo-
860 cochlear complex (VCC). Among the 8 composite level 4 ROIs, the medullar Raphe
861 (MedRaphe) and medullar motor nuclei (MedMC) are composed of non-contiguous primary
862 ROIs. Finally, at level 3, the ROIs were grouped based on basic cardinal direction (dorsal,
863 intermediate, and ventral medulla).

864

865 **Figure 12. SARM medullar ROIs in coronal view.** Coronal slices through the left and right hemispheres
866 of (a) the symmetrical NMT v2 and (b) the G12. Corresponding RMBSC4 slice through the right
867 hemisphere showing (c) an acetylcholinesterase staining and (d) its diagram (Fig. 109). **Abbreviations:**
868 **DVC**, dorsal and ventral cochlear n.; **DPGi**, dorsal paragigantocellular nucleus; **Gi**, gigantocellular
869 reticular n.; **icp**, inferior cerebellar peduncle; **IO**, inferior olive; **LRt**, lateral reticular n.; **ml**, medial
870 lemniscus; **mlf**, medial longitudinal fascicle; **PCIRt**, parvicellular and intermediate reticular n.; **Pr**,
871 prepositus n.; **py**, pyramidal tract; **ROb**, Raphe obscurus n.; **Sol**, solitary tract n.; **Sp5l**, intermediate
872 spinal trigeminal n.; **Ve**, vestibular n. In all panels, left is medial and top is dorsal. For the missing
873 abbreviations in (d), see Paxinos et al., 2009, where most abbreviations are similar to Paxinos et al., in
874 preparation.
875
876

877

3.2 Functional Localizer


878 **3.2.1 Individual registration to SARM in NMT v2**

879 The functional localizer data from three rhesus macaque subjects (M1-M3) were nonlinearly
880 registered to the NMT v2 template space for analysis. The quality of the anatomical registration
881 was visually checked (Sections 2.23 & 2.24). As an illustration of the alignment quality,
882 **Supplementary Figure 2** shows the anatomical correspondence between the three macaque
883 subjects and the NMT v2 in the coronal and sagittal planes. Representative coordinates within
884 the periaqueductal gray (PAG, a midbrain region), and the dorsolateral geniculate (DLG) of the
885 right thalamus are labeled.

886 **3.2.1 Subcortical Activation Clusters**

887 A functional paradigm was used as a validation test to determine whether the SARM could
888 sufficiently localize activity to an expected subcortical region. For this, we used fMRI data
889 collected from three monkeys during a visual stimulus paradigm (flickering checkerboard) that
890 was shown by Logothetis and colleagues (1999) to robustly activate the DLG, which is also
891 known as the lateral geniculate nucleus, or LGN. All functional volumes (i.e. time points)
892 collected were included in the analysis. From this analysis (AFNI- and SPM-based), the
893 statistical results were computed across 2 functional scan sessions per individual. For both
894 analysis packages, we found a consistent, bilateral response within and in the vicinity of the
895 DLG (Fig. 13). To compare the extent of functional activity to the anatomically defined DLG, the
896 significant functional activity correlated with the visual flicker stimulus in monkey subject 3 (M3
897 in Fig. 13a; $p = 0.05$, FDR-corrected) is shown in conjunction with the contour of the DLG in the
898 NMT v2 (SARM levels 4-6; Fig. 13b). In the case of subject M3, almost all of the DLG was
899 activated as determined by the fraction of functionally activated voxels in the atlas DLG (Figure
900 13c). BOLD activity within this SARM region was consistently positive in all 3 macaques during
901 presentation of the visual stimulus (Figure 13d). The average BOLD percent signal change
902 across the DLG for all subjects and hemispheres was found to be $0.28 \pm 0.07\%$ (mean \pm STD). To
903 illustrate the extent of functional activation spread, a 3D rendering of subject M3's DLG-
904 localized activation clusters with the atlas DLG (underlaid) was created using SUMA (Saad et al.
905 2004; Figure 13e). This analysis shows how the SARM can be used for quantifying BOLD
906 activity in individual ROIs and determining the specificity of functional activation. The SARM

907 can, furthermore, be used to assess how an anatomical region responds to a functional
908 manipulation.

910 **Figure 13. Functional Localizer for DLG.** The functional activity elicited in anesthetized monkeys by a
911 flickering checkerboard stimulus was evaluated using the atlas-defined Dorsal Lateral Geniculate (DLG)
912 region. **(a)** Significant positive BOLD activity elicited in monkey M3 is shown on three sections of the NMT
913 v2 volume that include the DLG. Color shows the t-value of significantly activated voxels (FDR-correction
914 at $p = 0.05$; results calculated by the SPM12 analysis pipeline). The anatomical borders of the SARM's
915 DLG are shown in **(b)** in magenta and with a dashed outline in **(a)**. Slice coordinates are in mm relative to
916 the origin (EBZ; ear bar zero). DLG activation in each hemisphere was quantified for 3 macaque monkeys
917 (Monkey IDs: M1-M3) by **(c)** the fraction of functional voxels within the DLG region that were significantly
918 activated ($p < 0.05$, FDR-corrected) and **(d)** the percent signal change (i.e., beta coefficient) associated
919 with the flickering checkerboard (i.e., the 4 sec stimulus ON period) averaged across all functional voxels
920 in the DLG. Error bars plotted represent the standard deviation. **(e)** 3D renderings of the DLG as defined
921 by the atlas (smaller) and functionally by the localizer (larger) displayed in SUMA for monkey M3, against
922 an intersecting axial and sagittal slice (unthresholded, $p < 0.07$; results calculated by the AFNI analysis
923 pipeline).

924

4. Discussion

925 Here, we have introduced the SARM, a digital neuroanatomical parcellation atlas of the
926 macaque monkey subcortex. This atlas is mapped onto the symmetric NMT v2 population
927 template, which reflects the average morphology of an adult rhesus macaque. The SARM offers
928 a subcortical reference matrix that is suitable for the localization of any neuroimaging results in
929 single-subject and group analyses, as well as for experimental surgical planning. Being in fixed
930 stereotaxic coordinates, the SARM referential remains fixed, regardless of changes in border
931 definitions or the nomenclature of anatomical regions with subsequent optimizations. The atlas
932 was originally drawn on the high-resolution coronal sections of an *ex vivo* MRI of a single
933 subject, with reference to histological material from other subjects, and then manually revised
934 after nonlinear alignment to the *in vivo* population template. Subcortical areas in the forebrain,
935 midbrain, and hindbrain were parcellated according to the Rhesus Monkey Brain in Stereotaxic
936 Coordinates atlas (Paxinos et al., 2009), with revisions that will be reflected in a new edition
937 (Paxinos et al., in preparation). Not all of the small subcortical cytoarchitectonic regions defined
938 in the RMBSC4 (~900) were drawn. Instead, we incorporated, in larger ROIs, small
939 cytoarchitectonic structures that cannot be identified using the lower MRI resolution, and that
940 would not be pertinent for the localization of BOLD activity. Some of the smaller
941 cytoarchitectonic regions within a single ROI may be functionally unrelated, as they were
942 grouped ‘around’ a larger region, mainly based on their spatial proximity. However, Table S1
943 lists all the small cytoarchitectonic regions assumed to be included within each SARM ROI. This
944 will allow users to evaluate, based on their paradigm, whether the main or a smaller region
945 might be responsible for the observed BOLD signal.

946 Refinements of the SARM will be released periodically based on user community
947 feedback. In addition, SARM describes the anatomy at 6 different spatial scales, so that it can
948 be used to name and localize small nuclei, mid-size structures suited to describe fMRI
949 activations, and the major developmental divisions of the subcortex. Finally, we tested and
950 validated the SARM using a DLG functional localizer to localize and quantify BOLD activity with
951 respect to different subcortical regions. Further analyses can essentially be computed using the
952 SARM parcellation presented here, whereby functional activity from any atlas label can be
953 assessed both in terms of areal specificity and sensitivity.

954 The utility of an MRI atlas is largely determined by how well data can be warped
955 between the native individual space and the common space of the atlas. Data is commonly

956 warped to the common space of an atlas for analysis but may also be warped from the common
957 space to an individual scan. Achieving an accurate registration between the source and target
958 datasets is critical for these processes. By providing the SARM on the *in vivo* population NMT
959 v2, we hope to facilitate simple and accurate alignment between *in vivo* functional data and a
960 template that closely matches its morphology. To obtain an accurate subcortical atlas, special
961 attention was paid here to ROI positioning after alignment of the G12 parcellation to the NMT
962 v2. We assessed this alignment visually on the structural template and examined various
963 interpolation and regularization schemes to minimize errors. Residual inconsistencies between
964 the subcortical labeling and the NMT v2 structure were manually corrected, ensuring an
965 accurate representation of the subcortex in the NMT v2 space.

966 As there are many spatial scales by which the macaque subcortex can be subdivided,
967 one strategy is to parcellate different brain areas as finely as afforded by cytoarchitectonics.
968 However, for MRI studies, such a fine parcellation is often unnecessary as the discernible
969 differences between structures are limited by image resolution. Further, the fine scale of some
970 cytoarchitectonic structures can be problematic. Small or thin structures are susceptible to large
971 distortions during nonlinear alignment or resampling and may introduce discontinuities or
972 abnormal shapes or cause a region to disappear entirely. Additionally, after resampling to an
973 fMRI grid, some small regions might only consist of a few voxels, making averaging over such
974 ROIs limited, statistically underpowered, and sensitive to registration errors. To avoid this,
975 individual researchers may combine regions to ensure they are robust and adequately sample
976 the desired area, but this can introduce ambiguity. For instance, one researcher's definition of
977 the regions comprising the amygdala may differ from another, and replicability suffers when
978 researchers lack a consistent definition of brain structures. Atlases circumvent this issue by
979 providing independent, structurally defined regions for ROI analysis and quantification. This
980 capability additionally avoids the potential pitfall of circular analysis, where functional activity is
981 localized to a group of structures, and those structures are then analyzed using the same data
982 (Kriegeskorte et al., 2010).

983 The SARM addresses both the issues of ROI size and consistency by introducing
984 hierarchical groupings. The fine-to-gross classification provides the specificity needed for use
985 with histological material, high-resolution structural scans and targeted brain interventions as
986 well as larger well-defined composite regions suited for reliable fMRI sampling. The SARM's
987 finer levels (levels 5 and 6) may have some utility at typical fMRI resolutions but are rather
988 advantageous for detailed structure analysis (e.g., MRI voxel intensity, comparisons to

989 histological material, describing surgical, tracer or pharmacological injection sites). The
990 composite regions of levels 1-4 are sufficiently large to limit the impact of nonlinear registration
991 errors and to include a sufficient number of voxels for averaging over a ROI.

992 The SARM's composite ROIs are additionally useful for meta-analyses and cross-
993 species comparisons, as finer parcellations differ between anatomists, species (NHP and
994 human), and individuals. By providing composite structures based on cytoarchitectonics and
995 developmental regions, we defined regions that can be used to analyze a target structure at
996 resolutions suited for structural MRI, diffusion MRI and fMRI studies. Conveniently, the SARM
997 can be used in conjunction with the Cortical Hierarchical Atlas of the Rhesus Macaque
998 (CHARM; Jung et al., this issue). This provides researchers with an additional degree of
999 freedom to study subcortical-cortical relationships at varying scales.

1000 There are a few limitations of the current atlas implementation that could be improved in
1001 future iterations. First, while the in-plane resolution of the high-resolution scan (G12) was
1002 sufficient for definition of subcortical structures, the out-of-plane resolution (1 mm) limited the
1003 available information for tracking these structures in the anteroposterior axis. When these
1004 structures were warped to scans with higher out-of-plane resolution, manual adjustments were
1005 necessary to resolve discontinuities and inaccurate labeling driven by resampling. Isotropic
1006 high-resolution imaging in all dimensions facilitates the creation of digital atlases and their
1007 generalizability. Secondly, collecting an *in vivo* scan of the G12 subject would have helped to
1008 account for disparities between *in vivo* and *ex vivo* preparations and could have acted as an
1009 intermediate target when warping between the high-resolution *ex vivo* scan and the *in vivo* NMT
1010 v2. Thirdly, *in vivo* and *ex vivo* multimodal neuroimaging would have been helpful in delineating
1011 fine boundaries of subcortical structures and improved alignment to scans with differing
1012 contrast. It may also permit detecting structures that were not readily identifiable here (e.g., Ce).

1013 Another consideration unique to NHP imaging is the orientation of the brain in the
1014 scanner. Humans are typically scanned in the supine position. However, macaques are
1015 scanned in various positions. The "sphinx" position is the most common, but being seated in a
1016 vertical scanner is also fairly common. Visual inspection of scans collected in the sphinx and
1017 seated positions suggest a change in the brainstem's orientation with respect to the rest of the
1018 brain. Affine alignment is unable to correct for such relative differences in brainstem orientation,
1019 and depending on the algorithm, even nonlinear alignment tools may be limited, insofar as the
1020 brainstem can be adjusted. Further investigation is required to evaluate how well brainstem

1021 structures are registered between a stereotaxic template and functional data collected in the
1022 vertical seated orientation. Additionally, it is worth noting that *ex vivo* tissue sections may differ
1023 from brain imaging due to differences in features (i.e., brainstem orientation, CSF volume,
1024 ventricle size, and sulcal position). In particular, coronal sectioning through the brainstem for
1025 histological analysis might be perpendicular to the rostrocaudal axis, whereas for an MR scan,
1026 coronal sections are generally oriented with respect to the telencephalon.

1027 Users must carefully consider the issue of alignment between their datasets and the
1028 atlas in template space. If alignment is not done properly, a mislocation in ROI assignment can
1029 occur. The same notion applies when attempting to warp an atlas to individual scans. The
1030 SARM can always be further improved by using additional isotropic high-resolution structural
1031 scans, by using Positron Emission Tomography (PET) with chemoarchitectonically specific
1032 radiolabeled ligands (e.g., Oler et al., 2012) or by applying other functional localizers (e.g.,
1033 mechanoreceptive stimuli for localizing activity in thalamic nuclei CuGR and VPL-VPM or
1034 auditory stimuli to activate DCV and MG). The SARM atlas regions can be further organized by
1035 functional modalities and connectivity-based clustering. It is strongly recommended to examine
1036 the vicinity of functional activations and evaluate the relevance of BOLD signal overlap with
1037 specific ROIs. Indeed, with the lower spatial voxel resolution of functional scans, and as
1038 observed in our localizer validation experiment, significant BOLD signal can spread beyond
1039 intrinsic structural landmarks. Level 4 of the SARM hierarchy should be rather safe for most
1040 fMRI analyses, but the higher the level, the more careful one has to be to check the quality of
1041 fMRI registration.

1042 The SARM is intended to support subcortical localization for a host of neuroimaging
1043 datasets (i.e., fMRI, PET, or diffusion imaging). While studies using a small number of macaque
1044 subjects can rely on directly comparing their signal location to print atlases, the SARM allows for
1045 morphing data from multiple subjects to an MRI-based atlas (and vice versa) to conduct group-
1046 level analyses using any neuroimaging modalities. The explosion of community data sharing
1047 (Milham et al., 2020) and multi-center NHP fMRI projects should, therefore, highly benefit from
1048 this resource. Furthermore, the SARM itself was conceived and developed within the context of
1049 the PRIMatE-Data Exchange (PRIME-DE) and will greatly benefit from usage-based feedback
1050 from the community. In addition to its utility for data analysis and identifying structures, the
1051 SARM in stereotaxic space has the potential to aid with surgical planning in studies involving
1052 tracer injections, drug injections, lesions, electrophysiology, optogenetics, and electrical
1053 stimulation, including deep brain stimulation (e.g., Everts et al., 2017). Beyond studies

1054 conducted solely in macaques, providing that homology and nomenclature equivalencies can be
1055 reliably established, future harmonized versions of the SARM, CHARM and human atlas
1056 counterparts could further help in comparing structural and functional organization between
1057 macaques and humans at a broad scale (Mantini et al., 2012). In this context, the detail of the
1058 SARM may be especially important, for example for DBS, where experimentally exploring
1059 spatially distinct neurostimulating sites could help explain variations in clinical results (Everts et
1060 al., 2017).

1061 5. Conclusion

1062 We have presented a new subcortical atlas for the rhesus macaque: the Subcortical Atlas of the
1063 Rhesus Macaque (SARM). Based primarily on the high-resolution MRI of a single subject and
1064 comparison with histological materials, this atlas provides the most detailed subcortical
1065 parcellation to date and is the first specifically applied to the subcortex available in a digital
1066 format for use by the MRI and general neuroscience community. We provide a specific use case
1067 and working examples of the use of this atlas within two popular fMRI analysis software
1068 packages. The SARM is part of a larger push in the NHP neuroimaging community to share
1069 data and resources. Information on the SARM and other macaque resources may be found at
1070 the [PRIME-RE](#) (Messinger et al., this issue).

1071 CRediT author statement

1072 **Renée Hartig:** conceptualization; resources; methodology; software; formal analysis;
1073 visualization; writing - original draft; writing - reviewing & editing
1074 **Daniel Glen:** resources; methodology; software; formal analysis; visualization; data curation;
1075 writing - original draft; writing - reviewing & editing
1076 **Benjamin Jung:** resources; methodology; software; formal analysis; visualization; writing -
1077 original draft; writing - reviewing & editing
1078 **Nikos K. Logothetis:** resources; methodology; funding acquisition.
1079 **George Paxinos:** resources; methodology; writing - reviewing & editing
1080 **Eduardo Garza-Villarreal:** resources; methodology; visualization; software; formal analysis;
1081 writing - original draft; writing - reviewing & editing
1082 **Adam Messinger:** conceptualization; resources; methodology; software; visualization; writing -
1083 original draft; writing - reviewing & editing

1084 **Henry C. Evrard:** conceptualization; resources; methodology; visualization; writing - original
1085 draft; writing - reviewing & editing
1086

1087 Acknowledgments

1088 EAGV would like to thank Gabriel A. Devenyi for his feedback and support, as well as the
1089 Laboratorio Nacional de Visualización Científica Avanzada (LAVIS) for the use of their computer
1090 cluster and the Laboratorio Nacional de Imagenología por Resonancia Magnética (LANIREM).
1091 RH and HCE would like to thank Michael Beyerlein and Thomas Steudel for their technical
1092 assistance with 7T imaging, and Yusuke Murayama for discussions on the visual flicker
1093 paradigm. This work was funded in part by the Max Planck Society and by the Intramural
1094 Research Program of the NIMH and NINDS (ZIA MH002918 and ZICMH002888).
1095

1096 Declaration of competing interest

1097 The authors report no competing interest.
1098

1099 References-

1100 Accolla, E.A., Dukart, J., Helms, G., Weiskopf, N., Kherif, F., Lutti, A., ... Draganski, B., 2014.
1101 Brain tissue properties differentiate between motor and limbic basal ganglia circuits.
1102 Human Brain Mapping. 35, 5083-5092. doi:10.1002/hbm.22533

1103 Amaral, D.G., Price, J.L., Pitkänen, A., Carmichael, S.T., 1992 Anatomical organization of the
1104 primate amygdaloid complex. In: The amygdala: Neurobiological aspects of emotion,
1105 memory, and mental dysfunction (Aggleton JP, ed.) pp. 1-66. New York, NY: Wiley-Liss.

1106 Arsenault, J.T and Vanduffel, W., 2019. Ventral midbrain stimulation induces perceptual
1107 learning and cortical plasticity in primates. Nat Comm. 10, 3591.
1108 doi.org/10.1038/s41467-019-11527-9

1109 Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage. 38, 95-113.

1110 Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C., 2014. The Insight ToolKit
1111 Image Registration Framework. Frontiers in Neuroinformatics. 8: 44.
1112 doi.org/10.3389/fninf.2014.00044

1113 Baker, J.T., Patel, G.H., Corbetta, M., Snyder, L.H., 2006. Distribution of Activity across the
1114 Monkey Cerebral Cortical Surface, Thalamus and Midbrain during Rapid, Visually
1115 Guided Saccades. Cerebral Cortex. 16(4), 447–459. doi: 10.1093/cercor/bhi124

1116 Bakker, R., Tiesinga, P., Kötter, R., 2015. The Scalable Brain Atlas: instant web-based access
1117 to public brain atlases and related content. *Neuroinformatics*. 13, 353-366.
1118 <https://doi.org/10.1007/s12021-014-9258-x>

1119 Calabrese, E., Badea, A., Coe, CL., Lubach, GR., Shi, Y., Styner, MA., Johnson GA., 2015. A
1120 diffusion tensor MRI atlas of the postmortem rhesus macaque brain. *NeuroImage*. 117,
1121 408-416.

1122 Calzavara, R., Zappala, A., Rozzi, S., Matelli, M., Luppino G., 2005. Neurochemical
1123 Characterization of the Cerebellar-Recipient Motor Thalamic Territory in the Macaque
1124 Monkey. *European Journal of Neuroscience* 21(7), 1869-94.
1125 doi.wiley.com/10.1111/j.1460-9568.2005.04020.x

1126 Carmichael, S.T. and Price J.L., 1994. Architectonic subdivision of the orbital and medial
1127 prefrontal cortex in the macaque monkey. *Journal of Comparative Neurology* 346(3),
1128 366-402.

1129 Chakraverty, M.M., Bertand, G., Hodge, C.P., Sadikot, A.F., Collins, D.L., 2006. The creation of
1130 a brain atlas for image guided neurosurgery using serial histological data. *NeuroImage*.
1131 30(2), 359-376.

1132 Cox, R.W., 1996. AFNI: Software for Analysis and Visualization of Functional Magnetic
1133 Resonance Neuroimages. *Computers and Biomedical Research*, 29, 162-173.

1134 Evrard, H.C. Logothetis, N.K., Craig, A.D., 2014. Modular Architectonic Organization of the
1135 Insula in the Macaque Monkey. *Journal of Comparative Neurology* 522(1), 64-97.

1136 Evrard, H.C., Forro, T., Logothetis, N.K., 2012. Von Economo Neurons in the Anterior Insula of
1137 the Macaque Monkey. *Neuron*. 74(3), 482-489. doi.org/10.1016/j.neuron.2012.03.003

1138 Evrard, H.C. and Craig A.D., 2008. Retrograde Analysis of the Cerebellar Projections to the
1139 Posteroventral Part of the Ventral Lateral Thalamic Nucleus in the Macaque Monkey.
1140 *Journal of Comparative Neurology* 508(2), 286-314.

1141 Ewert, S., Plettig, P., Li, N., Chakravarty, M.M., Collins, D.L., Herrington, T.M., Kuehn, A.A.,
1142 Horn, A., 2017. Toward defining deep brain stimulation targets in MNI space: A
1143 subcortical atlas based on multimodal MRI, histology and structural connectivity.
1144 *NeuroImage*. 170, 271-282. doi: 10.1016/j.neuroimage.2017.05.015

1145 Fox, A., Oler, J.A., Shackman, A.J., Shelton, S.E., Raveendran, M., McKay, D.R., Converse,
1146 A.K., Alexander, A., Davidson, R.J., Blangero, J., Rogers, J., Kalin, N.H., 2015. Intergenerational
1147 neural mediators of early-life anxious temperament. *PNAS*. 112(29),
1148 9118-9122. <https://doi.org/10.1073/pnas.1508593112>

1149 Feng, L., Jeon, T., Yu, Q., Ouyang, M., Peng, Q., Mishra, V., Pletikos, M., Sestan, N., Miller,
1150 MI., Mori, S., Hsiao, S., Liu, S., Huang, H., 2017. Population-averaged macaque brain
1151 atlas with high-resolution ex vivo DTI integrated into in vivo space. *Brain Struct Funct*.
1152 222(9), 4131-4147. doi: 10.1007/s00429-017-1463-6

1153 Haber, S.N., Adler, A., Bergman, H., 2012. The Basal Ganglia. In Mai J.K. and Paxinos G.
1154 (Eds), *The Human Nervous System*, 3rd Ed. Academic Press.

1155 Horsley, V. and Clarke, R.H., 1908. THE STRUCTURE AND FUNCTIONS OF THE
1156 CEREBELLUM EXAMINED BY A NEW METHOD. *Brain*. 31(1), 45–124.
1157 <https://doi.org/10.1093/brain/31.1.45>

1158 Jung, B., Taylor, P.A., Seidlitz, J., Sponheim, C., Perkins, P., Ungerleider, L.G., Glen, D.,
1159 Messinger, A., This issue. A comprehensive macaque fMRI pipeline and hierarchical atlas.
1160 *NeuroImage*.
1161

1162 Klink, P.C., Aubry, J.-F., Ferrera, V., Fox, A., Froudast-Walsh, S., Jarraya, B., Konofagou, E.,
1163 Krauzlis, R., Messinger, A., Mitchell, A.S., Ortiz-Rios, M., Oya, H., Premereur, E.,
1164 Roberts, A., Roe, A., Rushworth, M.F.S., Sallet, J., Schmid, M.C., Schroeder, C.E.,
1165 Tasserie, J., Tsao, D., Uhrig, L., Vanduffel, W., Wilke, M., Kagan, I., Petkov, C.I.
1166 Combined Brain Perturbation and Neuroimaging in Non-human Primates. *NeuroImage*.
1167 This issue.

1168 Kochunov, P., Lancaster, J.L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., Fox, P.,
1169 2001. Regional Spatial Normalization: Toward an Optimal Target. *Journal of Computer*
1170 *Assisted Tomography*. 25(5), 805-816.

1171 Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., Baker, C.I., 2009. Circular analysis in
1172 systems neuroscience: the dangers of double dipping. *Nat Neurosci*. 12(5), 535-540.
1173 doi:10.1038/nn.2303

1174 Logothetis, N.K., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H.C., ...
1175 Oeltermann, A., 2012. Hippocampal-cortical interaction during periods of subcortical
1176 silence. *Nature*, 491(7425), 547–553. <https://doi.org/10.1038/nature11618>

1177 Logothetis, N.K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., ... Merkle, H.,
1178 2010. The effects of electrical microstimulation on cortical signal propagation. *Nature*
1179 *Neuroscience*, 13(10), 1283–1291. <https://doi.org/10.1038/nn.2631>

1180 Logothetis, N.K., Guggenberger, H., Peled, S., Pauls, J., 1999. Functional imaging of the
1181 monkey brain. *Nature Neurosci*. 2, 555–562.

1182 Mai, J.K. and Forutan, F., 2012. Thalamus. In Mai, J.K. and Paxinos, G. (Eds), *The Human*
1183 *Nervous System*, 3rd Ed. Academic Press.

1184 Mai, J.K. and Paxinos, G., 2012. *The Human Nervous System*, 3rd Ed. Academic Press.

1185 Mantini, D., Hasson, U., Bett, V., Perrucci, M.G., Romani, G.L., Corbetta, M., Orban G.A.,
1186 Vanduffel, W., 2012. Interspecies activity correlations reveal functional correspondence
1187 between monkey and human brain areas. *Nature Methods*. 9(3), 277–282.
1188 <https://doi.org/10.1038/nmeth.1868>

1189 Martin, R.F. and Bowden, D.M., 2000. *Primate Brain Maps: Structure of the Macaque Brain*.
1190 Elsevier Science. University of Washington, U.S.A.

1191 Martin, R.F., Bowden, D.M., Wu, J., Dubach, M.F., Robertson, J.E., 2000. *Primate Brain Maps: Structure of the Macaque Brain*. Elsevier, Amsterdam, Netherlands.

1192

1193 Messinger, A., et al. submitted. A collaborative resource platform for non-human primate
1194 neuroimaging. *NeuroImage*. This issue.

1195 Milham, M., Petkov, C.I., Margulies, D.S., Schroeder, C.E., Basso, M.A., Belin, P., Fair,
1196 D.A., Fox, A., Kastner, S., Mars, R.B., Messinger, A., Poirier, C., Vanduffel, W., Van
1197 Essen, D.C., Alvand, A., Becker, Y., Ben Hamed, S., Benn, A., Bodin, C., Boretius, S.,
1198 Cagna, B., Coulon, O., El-Gohary, S.H., Evrard, H., Forkel, S.J., Friedrich, P., Froudist-
1199 Walsh, S., Garza-Villarreal, E.A., Gao, Y., Gozzi, A., Grigis, A., Hartig, R., Hayashi, T.,
1200 Heuer, K., Howells, H., Ardesch, D.J., Jarraya, B., Jarrett, W., Jedema, H.P., Kagan, I.,
1201 Kelly, C., Kennedy, H., Klink, P.C., Kwok, S.C., Leech, R., Liu, X., Madan, C.,
1202 Madushanka, W., Majka, P., Mallon, A.-M., Marche, K., Meguerditchian, A., Menon,
1203 R.S., Merchant, H., Mitchell, A., Nenning, K.-H., Nikolaidis, A., Ortiz-Rios, M., Pagani,
1204 M., Pareek, V., Prescott, M., Procyk, E., Rajimehr, R., Rautu, I.-S., Raz, A., Roe, A.W.,
1205 Rossi-Pool, R., Roumazeilles, L., Sakai, T., Sallet, J., García-Saldivar, P., Sato, C.,
1206 Sawiak, S., Schiffer, M., Schwiedrzik, C.M., Seidlitz, J., Sein, J., Shen, Z., Shmuel, A.,
1207 Silva, A.C., Simone, L., Sirmpilatze, N., Sliwa, J., Smallwood, J., Tasserie, J., Thiebaut
1208 de Schotten, M., Toro, R., Trapeau, R., Uhrig, L., Vezoli, J., Wang, Z., Wells, S.,
1209 Williams, B., Xu, T., Xu, A.G., Yacoub, E., Zhan, M., Ai, L., Amiez, C., Balezeau, F.,
1210 Baxter, M.G., Blezer, E.L.A., Brochier, T., Chen, A., Croxson, P.L., Damatac, C.G.,
1211 Dehaene, S., Everling, S., Fleysher, L., Freiwald, W., Griffiths, T.D., Guedj, C., Hadj-
1212 Bouziane, F., Harel, N., Hiba, B., Jung, B., Koo, B., Laland, K.N., Leopold, D.A.,
1213 Lindenfors, P., Meunier, M., Mok, K., Morrison, J.H., Nacef, J., Nagy, J., Pinsk, M.,
1214 Reader, S.M., Roelfsema, P.R., Rudko, D.A., Rushworth, M.F.S., Russ, B.E., Schmid,
1215 M.C., Sullivan, E.L., Thiele, A., Todorov, O.S., Tsao, D., Ungerleider, L., Wilson, C.R.E.,
1216 Ye, F.Q., Zarco, W., Zhou, Y., 2020. Accelerating the Evolution of Nonhuman Primate
1217 Neuroimaging. *Neuron* 105, 600–603. doi.org/10/ggvm7d

1218 Milham, M.P., Ai, L., Koo, B., Xu, T., Amiez, C., Balezeau, F., Baxter, M.G., Blezer,
1219 E.L.A., Brochier, T., Chen, A., Croxson, P.L., Damatac, C.G., Dehaene, S., Everling, S.,
1220 Fair, D.A., Fleysher, L., Freiwald, W., Froudist-Walsh, S., Griffiths, T.D., Guedj, C., Hadj-
1221 Bouziane, F., Ben Hamed, S., Harel, N., Hiba, B., Jarraya, B., Jung, B., Kastner, S.,
1222 Klink, P.C., Kwok, S.C., Laland, K.N., Leopold, D.A., Lindenfors, P., Mars, R.B., Menon,
1223 R.S., Messinger, A., Meunier, M., Mok, K., Morrison, J.H., Nacef, J., Nagy, J., Rios,
1224 M.O., Petkov, C.I., Pinsk, M., Poirier, C., Procyk, E., Rajimehr, R., Reader, S.M.,
1225 Roelfsema, P.R., Rudko, D.A., Rushworth, M.F.S., Russ, B.E., Sallet, J., Schmid, M.C.,
1226 Schwiedrzik, C.M., Seidlitz, J., Sein, J., Shmuel, A., Sullivan, E.L., Ungerleider, L.,
1227 Thiele, A., Todorov, O.S., Tsao, D., Wang, Z., Wilson, C.R.E., Yacoub, E., Ye, F.Q.,
1228 Zarco, W., Zhou, Y., Margulies, D.S., Schroeder, C.E., 2018. An Open Resource for
1229 Non-human Primate Imaging. *Neuron* 100, 61-74.e2. doi.org/10/gffxtn

1230 Molfese, P.J., Glen, D., Mesite, L., Cox, R.W., Hoeft, F., Frost, S.J., Mencl, W.E., Pugh, K., &
1231 Bandettini, P.A. (Accepted). The Haskins pediatric atlas: An MRI-based pediatric
1232 template and atlas. *Pediatric Radiology*.

1233 Morel, A, Magnin, M, Jeanmonod, D., 1997. Multiarchitectonic and stereotactic atlas of the
1234 human thalamus. *J Comp Neurol*. 387, 588–630.

1235 Murris, S.R., Arsenault, J.T., Vanduffel, W., 2020. Frequency- and State-Dependent Network
1236 Effects of Electrical Stimulation Targeting the Ventral Tegmental Area in Macaques.
1237 *Cerebral Cortex*. 00, 1-16. doi.org/10.1093/cercor/bhaa007

1238 Nassi, J.J., Avery M.C., Cetin, A.H., Roe, A.W., Reynolds, J.H., 2015. Optogenetic Activation of
1239 Normalization in Alert Macaque Visual Cortex. *Neuron* 86(6): 1504–1517.
1240 doi.org/10.1016/j.neuron.2015.05.040

1241 Noonan, M.P., Sallet, J., Mars, R.B., Neubert, F.X., O'Reilly, J.X., Andersson, J.L., Mitchell,
1242 A.S., Bell, A.H., Miller, K.L., Rushworth, M.F.S., 2014. A Neural Circuit Covarying with
1243 Social Hierarchy in Macaques. *PLoS Biol* 12(9), e1001940.
1244 doi.org/10.1371/journal.pbio.1001940

1245 Oler, J.A., Birn, R.M., Patriat, R., Fox, A.S., Shelton, S.E., Burghy, C.A., Stodola, D.E., Essex,
1246 M.J., Davidson, R.J., Kalin, N.H., 2012. Evidence for coordinated functional activity
1247 within the extended amygdala of non-human and human primates. *Neuroimage* 61,
1248 1059–1066. doi:10.1016/j.neuroimage.2012.03.045 pmid:22465841

1249 Olszewski, J., 1952. The Thalamus of the Macaca Mulatta: An Atlas for Use with the Stereotaxic
1250 Instrument. Karger, New York.

1251 Ortiz-Rios, M., Kusmierek, P., DeWitt, I., Archakov, D., Azevedo F.A.C., Sams, M.,
1252 Jaaskelainen I.P., Keliris, G.A., Rauschecker, J.P., 2015. Functional MRI of the
1253 Vocalization-Processing Network in the Macaque Brain. *Frontiers in Neuroscience* 9,
1254 113. doi.org/10.3389/fnins.2015.00113

1255 Pauli, W.M., Nili, A.N., Tyszka, J.M., 2018. A high-resolution probabilistic *in vivo* atlas of human
1256 subcortical brain nuclei. *Scientific Data*. 5, 180063.

1257 Paxinos, G., Petrides, M., Evrard, H.C., in preparation. The Rhesus Monkey Brain in Stereotaxic
1258 Coordinates 4th Ed.. Elsevier.

1259 Paxinos, G., Huang, X.-F., Petrides, M., Toga, A.W., 2009. The Rhesus Monkey Brain in
1260 Stereotaxic Coordinates, 2nd Edn. Elsevier Academic Press, San Diego, U.S.A.

1261 Pipitone, J., Park, M.T.M., Winterburn, J., Lett, T.A., Lerch, J.P., Pruessner, J.C., Lepage, M.,
1262 Voineskos, A.N., Chakravarty, M.M., the Alzheimer's Disease Neuroimaging Initiative.,
1263 2014. Multi-atlas segmentation of the whole hippocampus and subfields using multiple
1264 automatically generated templates. *NeuroImage*. 101, 494-512.

1265 Puelles, L., Harrison, M., Paxinos, G., Watson, C., 2013. A developmental ontology for the
1266 mammalian brain based on the prosomeric model. *Trends Neurosci* 36, 570-8.

1267 Quan, Z., Gao, Y., Qu, S., Wang, X., Friedman, R.M., Chernov, M.M., Kroenke, C.D., Roe,
1268 A.W., Zhang, X., 2020. A 16-Channel Loop Array for *in Vivo* Macaque Whole-Brain
1269 Imaging at 3 T. *Magnetic Resonance Imaging*. 68, 167–72.

1270 Reveley, C., Gruslys, A., Ye, F.Q., Glen, D., Samaha, J., Russ, B.E., ... Saleem, K.S., 2017.
1271 Three-Dimensional Digital Template Atlas of the Macaque Brain. *Cerebral Cortex*, 1–15.
1272 doi.org/10.1093/cercor/bhw248

1273 Rohlfing, T., Kroenke, C.D., Sullivan, E.V., Dubach, M.F., Bowden, D.M., Grant, K.A.,
1274 Pfefferbaum A., 2012. The INIA19 Template and NeuroMaps Atlas for Primate Brain
1275 Image Parcellation and Spatial Normalization. *Frontiers in Neuroinformatics*. 6:27.
1276 doi.org/10.3389/fninf.2012.00027

1277 Saad, Z.S., Reynolds, R.C., Argall, B., Japee, S., Cox, R.W., 2004. SUMA: an interface for
1278 surface-based intra- and inter-subject analysis with AFNI. 2nd IEEE International
1279 Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821). 2, 1510-
1280 1513. <https://doi.org/10.1109/ISBI.2004.1398837>

1281 Saad, Z.S., Glen, D.R., Chen, G., Beauchamp, M.S., Desai, R., Cox, R.W., 2009. A new method
1282 for improving functional-to-structural MRI alignment using local Pearson correlation.
1283 *NeuroImage*. 44, 839–848. 10.1016/j.neuroimage.2008.09.037

1284 Saleem, K.S. and Logothetis, N.K. 2012., A Combined MRI and Histology Atlas of the Rhesus
1285 Monkey Brain in Stereotaxic Coordinates, 2nd Edition. Academic Press.

1286 Saper, C.J., 2012. Hypothalamus. In Mai, J.K. and Paxinos, G. (Eds), *The Human Nervous*
1287 *System*, 3rd Ed. Academic Press.

1288 Seidlitz, J., Sponheim, C., Glen, D., Ye, F.Q., Saleem, K.S., Leopold, D.A., Ungerleider, L.,
1289 Messinger, A., 2018. A population MRI brain template and analysis tools for the
1290 macaque. *NeuroImage*. 170, 121-131. doi.org/10.1016/j.neuroimage.2017.04.063

1291 Stauffer, W.R., Lak, A., Yang, A., Borel, M., Paulsen, O., Boyden, E.S., Schultz, W., 2016.
1292 Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. *Cell* 166(6),
1293 1564-1571.e6.

1294 Stefanacci, L. and Amaral, D.G., 2000. Topographic Organization of Cortical Inputs to the
1295 Lateral Nucleus of the Macaque Monkey Amygdala: A Retrograde Tracing Study.
1296 *Journal of Comparative Neurology*. 421(1), 52–79.

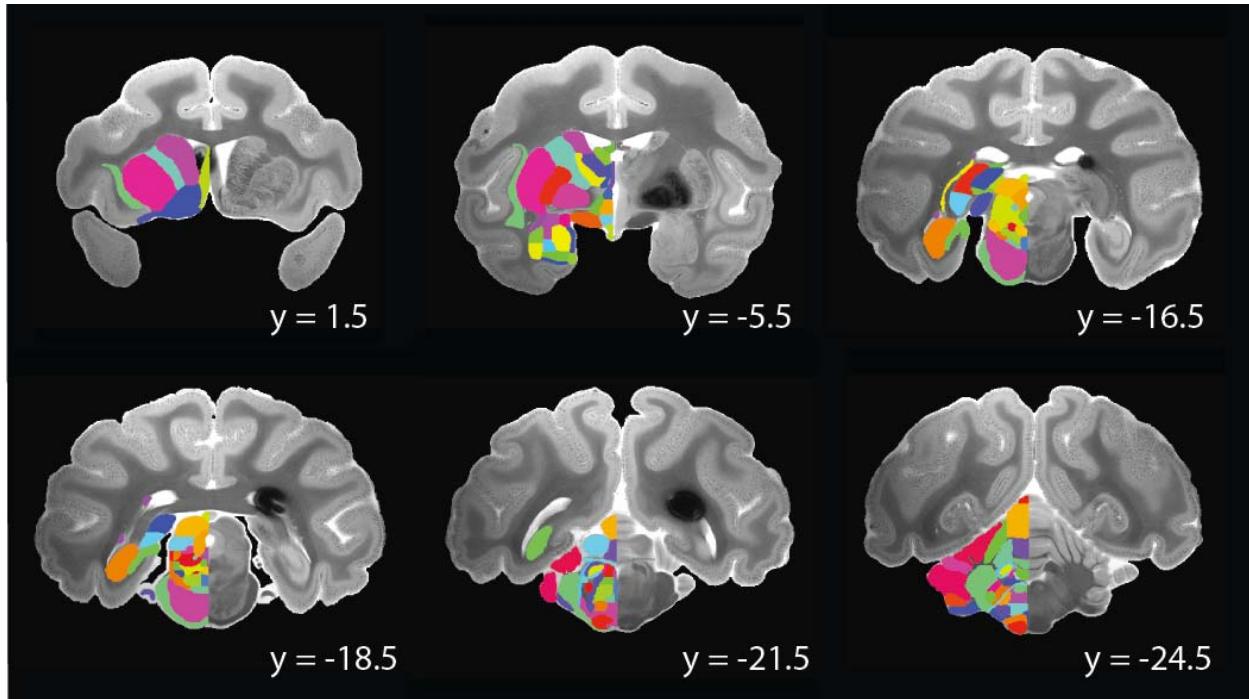
1297 Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.,
1298 2010. N4ITK: Improved N3 Bias Correction. *IEEE Transactions on Medical Imaging*.
1299 29(6), 1310–20.

1300
1301

1302 **Supplementary Material**

1303

1304 **I. Supplementary Tables**


1305

1306 **Table S1: List of all ROIs and their hierarchy.** [See .CSV file.](#)

1307

1308 **II. Supplementary Figures:**

1309

1310

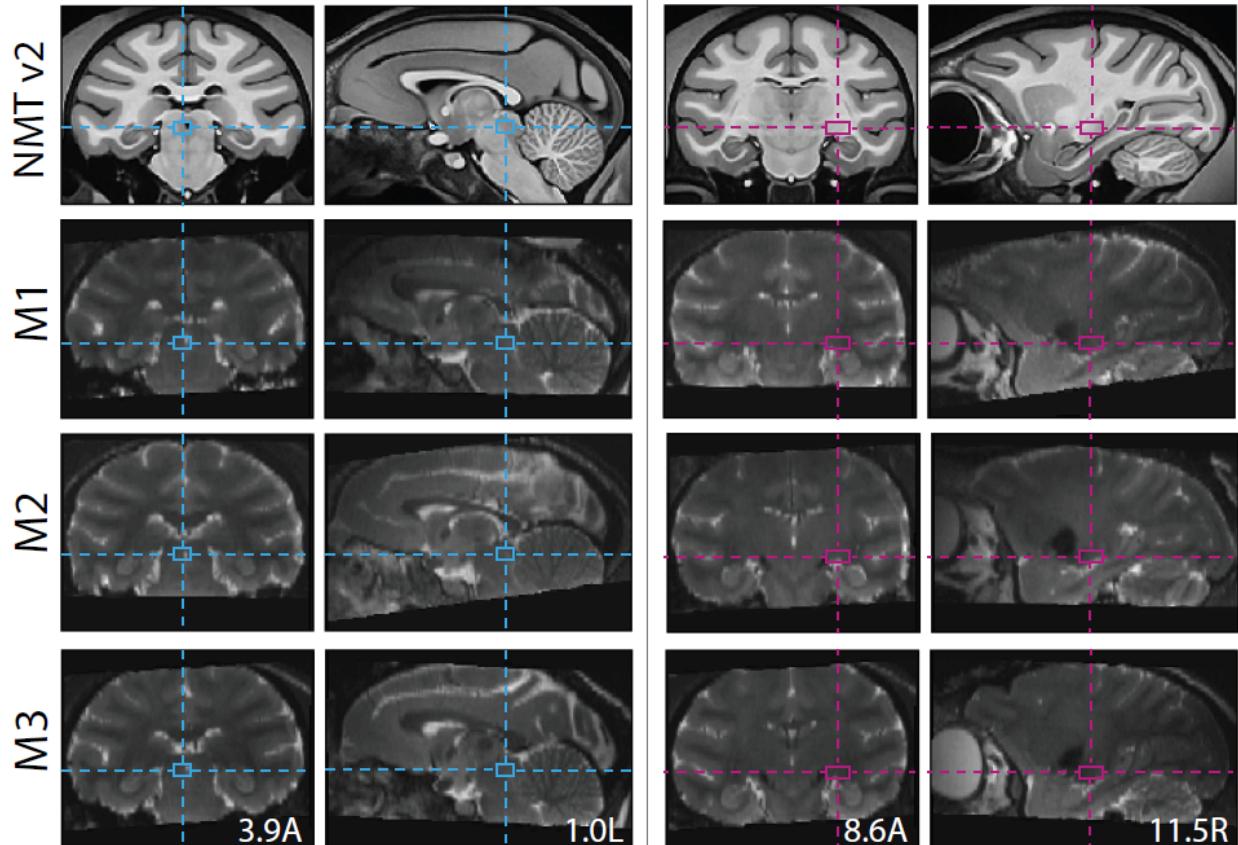
1311

1312

1313

1314

Figure S1. The subcortical atlas in G12 space. Coronal sections from subject G12 are shown with the subcortical parcellation overlaid for the left side regions. The high-resolution ex vivo scan was reoriented from its original orientation to a standard orientation. Coordinates are listed in mm in the individual subject's native space, left hemisphere shown left.


1315

1316

1317

1318

1319

1320
1321 **Figure S2. Nonlinear registration of three rhesus macaques to the NMT v2 template.** Crosshairs
1322 intersecting at two subcortical regions: the left periaqueductal gray nucleus (PAG; left panels) in the
1323 mesencephalon and the right dorsal lateral geniculate nucleus (DLG, right panels) of the thalamus. The
1324 depth of all alignment boxes is 11.6S (stereotaxic coordinates reported in mm from the ear bar zero;
1325 EBZ). The coronal and sagittal sections show the correspondence between the T1-weighted NMT v2 and
1326 the T2-weighted single-subject anatomical scans from macaque monkeys M1-M3 after Dartels-based
1327 nonlinear registration to the population template.
1328
1329
1330
1331
1332
1333