

Development of the Pre-Gnathal Segments of the Insect Head Indicates They Are Not Serial Homologues of Trunk Segments

Oren Lev and Ariel D. Chipman

The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem

Abstract

8 The three anterior-most segments in arthropods contain the ganglia that make up the
9 arthropod brain. These segments, the pre-gnathal segments, are known to exhibit many
10 developmental differences to other segments, believed to reflect their divergent morphology.
11 We have analyzed the expression and function of the genes involved in the segment-polarity
12 network in the pre-gnathal segments compared with the trunk segments in the
13 hemimetabolous insect *Oncopeltus fasciatus*. We show that there are fundamental differences
14 in the way the pre-gnathal segments are generated and patterned, relative to all other
15 segments, and that these differences are general to all arthropods. We argue that given these
16 differences, the pre-gnathal segments should not be considered serially homologous to trunk
17 segments. This realization has important implications for our understanding of the evolution
18 of the arthropod head. We suggest a novel scenario for arthropod head evolution that posits
19 duplication of an ancestral single-segmented head into three descendent segments. This
20 scenario is consistent with what we know of head evolution from the fossil record, and helps
21 reconcile some of the debates about early arthropod evolution.

1 **Introduction**

2 Arthropods are a hyper-diverse animal phylum characterized by both very high species
3 numbers and exceptional biomass. One of the reasons for their immense success is believed
4 to be their segmented body plan, which provides high evolvability via a modular organization
5 (1).

6

7 Segments are repeating body units along the anterior to posterior body axis, which form in a
8 developmental process known as segmentation. Although the specifics of the segmentation
9 process vary among species (2, 3) and can even vary within an individual embryo (4, 5), core
10 aspects of the process are highly conserved, and the segments are generally accepted to be
11 homologous between all arthropods and serially homologous within an individual (6, 7).

12 Segmentation is often described as a hierarchical process, based on what is known from the
13 *Drosophila* segmentation cascade, and the different stages of the process are named after the
14 stages in the *Drosophila* mode. Most relevant to comparative analyses of segmentation are
15 the genes of the two last stages: pair-rule genes and segment-polarity genes (2, 8, 9). The
16 pair-rule genes are expressed in a two-segment periodicity in *Drosophila* and in many other
17 holometabolous insects. Their ancestral role is probably to generate the preliminary repeated
18 pattern that is at the base of segmentation (9). They often interact in a complex gene
19 regulatory network (GRN), the details of which vary among species (10-14). Segment-
20 polarity genes are expressed in segmental stripes in *Drosophila* and in all other arthropods
21 studied to date. Their role seems to be defining segmental (or parasegmental) boundaries, and
22 they function as a highly conserved GRN with very similar interactions among and within all
23 studied arthropods (2, 15, 16). The segment-polarity GRN is based upon the interactions of
24 two signaling pathways, Hedgehog and Wnt, and the paralogous transcription factors
25 Engrailed and Invected. Later identity of the segments is conferred by Hox genes, probably
26 together with other genes (17).

27

28 During development, segments are grouped into functional body units called tagmata. The
29 organization of segments into tagmata varies among different arthropod clades, e.g. insects
30 have three tagmata: head, thorax, and abdomen, while chelicerates have two: prosoma and
31 opisthosoma. There is evidence to suggest that the differences between tagmata may have an
32 early developmental basis (1).

33

1 The embryonic insect head can be divided into two areas: the anterior procephalon and the
2 posterior gnathocephalon, which can be clearly distinguished based on their shape during the
3 germband stage. The developing segments of the gnathocephalon are very similar in size and
4 shape to the thoracic segments that lie posterior to them. They develop to give rise to the
5 three segments that carry the adult mouthparts: the mandibles, maxillae and labium (18). The
6 embryonic procephalon makes up the head-lobes, an enlarged region without clearly
7 distinguishable segments, which develops to give rise to three adult segments: the ocular,
8 antennal and intercalary segments, each of which has a dorsal ganglion. The three ganglia
9 together make up the tri-partite brain. Because these three segments lie anterior to the limb-
10 bearing gnathal segments in insects, we refer to them from here on collectively as the pre-
11 gnathal segments (PGS). For simplicity, we will refer to all segments posterior to the PGS as
12 trunk segments. There is mounting evidence that the three anterior segments in all arthropods
13 are homologous and share a deep evolutionary history (19). When discussing them in a
14 general arthropod comparative framework, they are usually referred to by the names of the
15 homologous ganglia they carry, namely (from anterior to posterior) the protocerebral,
16 deutocerebral and tritocerebral segments.

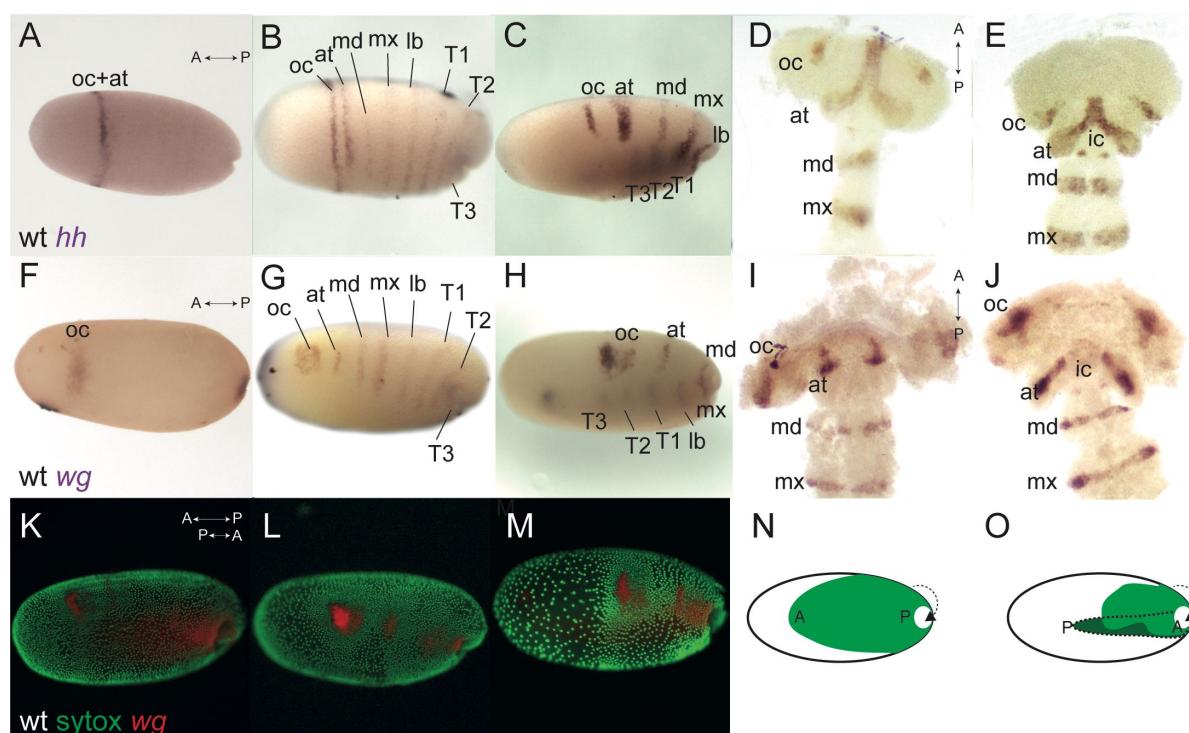
17
18 It has long been known that the PGS are developmentally distinct from other segments (20).
19 One significant difference between the PGS and the rest of the body segments is that pair-rule
20 genes are not expressed in them during early development (18, 20). The later acting Hox
21 genes, which are involved in conferring morphological identity to specific segments, are only
22 expressed in the tritocerebral segment and not in the anterior two PGS.

23
24 The segment polarity genes are expressed in the PGS, but with some variations relative to
25 what is found in other segments. Most notably, the timing of segment polarity gene
26 expression is different: e.g., the segment polarity gene *engrailed* (*en*) is first expressed in the
27 mandibular segment even though the PGS are already patterned at that stage (5, 21, 22).
28 Furthermore, in several cases, *hedgehog* (*hh*) is expressed as a single domain that splits once
29 or twice to give rise to three stripes, each marking a region of a different one of the anterior
30 segments. In the spider *Parasteatoda tepidariorum* and the centipede *Strigamia maritima*, *hh*
31 expression splits twice, from the anterior stripe or the posterior stripe respectively (23-25). In
32 the millipede *Glomeris marginata* (26), the beetle *Tribolium castaneum* (27) and the cricket
33 *Gryllus bimaculatus* (28), *hh* expression splits only once, with a third expression domain
34 appearing later, marking the tritocerebral segment. Work in the model species *Drosophila*

1 *melanogaster* showed unexpected interactions and expression domains of the different
2 segment polarity genes in the anterior head segments (29). The authors of this work focused
3 on relatively late expression and interpreted the differences relative to other segments as
4 being related to the different morphology of the structure formed from these segments.

5
6 While these previous studies have pointed out several unusual characteristics of the
7 patterning of the pre-gnathal segments, there is no single species for which there exist both
8 descriptive and functional studies in both early and late stages of the formation of the PGS.
9 Furthermore, no previous study has attempted to reconstruct the sequence of gene
10 interactions involved in generating these segments and to compare this sequence to that found
11 in other segments. We aim to fill this gap, using the milkweed bug *Oncopeltus fasciatus* as
12 our chosen study organism for this analysis. Unlike *Drosophila*, components of the larval
13 head are generated in full during early development of *Oncopeltus*, making it possible to
14 study the development of all head structures in the embryo (30). The earliest stages of PGS
15 patterning occur during blastoderm segmentation, which has been studied extensively in
16 *Oncopeltus*, is easy to access experimentally and is fairly well-understood (5).

17
18 In this paper, we provide a detailed descriptive and functional analysis of the early stages of
19 the formation of the PGS in *Oncopeltus*. We go beyond this basic description, including
20 published data from other arthropod species and linking the developmental results with what
21 is known about the early fossil record of the arthropod head, to build a comprehensive
22 evolutionary-developmental scenario for the evolution of the arthropod head. We argue that
23 the differences in the early determination of the PGS are due to their having a separate origin
24 and a separate evolutionary history from all other segments.


25

26 **Results**

27 Early wildtype expression of components of the segment-polarity gene network

28 We started by looking at the expression of three segment polarity genes from the earliest
29 stages of formation of the PGS and up to the early segmented germband stage (Fig. 1). The
30 transcription factor encoding gene *invected* is not expressed in the PGS during the blastoderm
31 stage (5). Its earliest expression is after the formation of the head lobes in the germband.
32 Expression of *hh* begins in the mid blastoderm, approximately 30-32 hours after egg laying
33 (hAEL at 25°C). It is first expressed as a ring at the anterior third of the embryo (Fig 1A).
34 Just before blastoderm invagination begins (~36 hAEL) there are two distinct dynamics: a

- 1 stripe splits from the anterior ring and six more stripes appear more or less simultaneously
2 between the first ring and the invagination site (Fig. 1B. Supp. Fig 1).

- 3
4 Figure 1 – Wildtype expression of *hedgehog* (*hh*) and *wingless* (*wg*) in *Oncopeltus*, before and
5 after blastoderm invagination. A) Expression of *hh* at 32 hours after egg laying (hAEL), late
6 blastoderm stage, is as a ring in the anterior third of the embryo. B) at around 36 hAEL, the
7 *hh* anterior expression ring “splits” into two stripes corresponding to the presumed ocular and
8 antennal segments. six additional stripes of expression appear, corresponding to the presumed
9 gnathal and thoracic segments. C) embryo at mid-invagination, ~42 hAEL. The two anterior
10 stripes are fully separated. Thoracic segments have already invaginated and expression in them
11 can be seen through the yolk. D-E) Germband embryos, ~48-52 hAEL. In the later germband
12 embryo, ~52 hAEL (E), two dots of *hh* expression appear in the presumed intercalary segment,
13 which are not seen in the earlier embryo (D). F) Expression of *wg* at ~32 hAEL is located to
14 an anterior stain and a posterior stain marking the future invagination site. G) at ~36 hAEL 7
15 stripes of expression appear simultaneously, corresponding to the presumed antennal, gnathal,
16 and thoracic segments. H) embryo at mid-invagination, ~42 hAEL. I-J) Germband embryos,
17 ~48-52 hAEL. In the later germband embryo, ~52 hAEL (J), two dots of *wg* expression appear
18 in the presumed intercalary segment, which cannot be seen in the earlier embryo (I). K-M)
19 The process of invagination from ~36-42 hAEL. Nuclei stained by SYTOX in green and
20 wildtype *wg* expression in red. At this stage, the anterior-posterior axis of the egg is opposite
21 to that of the invaginating embryo. N-O) Illustration of the invagination process. ‘A’ marks
22 the embryonic anterior and ‘P’ the posterior. The invaginated germband is shown in darker
23 green.
24 Abbreviations: at – antennal segment. ic – intercalary segment. lb – labial segment. oc – ocular
25 segment. md – mandibular segment. mx – maxillary segment. T1-T3 – First to third thoracic
26 segments.
27

1 Throughout invagination (~36-48 hAEL) the expression stripes of *Of-hh* become narrower
2 and dorsalized as the two anterior-most stripes fully separate (Fig. 1C-D). Around 50 hAEL
3 there is a new expression of *Of-hh* in two dots (Fig. 1E). Based on their relative position and
4 shape, and based on previous work on blastoderm segmentation (5) we interpret the two
5 stripes that emerge from the splitting of the initial ring as representing the ocular and antennal
6 segments, the six simultaneous stripes as representing the three gnathal and three thoracic
7 segments, and the two late dots as the intercalary segment.

8

9 Blastodermal expression of *wg* has been previously described in *Oncopeltus* (5). However in
10 previous work we did not follow expression into the germband stage, and we believe we
11 therefore did not identify all of the expression domains correctly. We thus describe it again
12 here. The earliest expression of *wg* appears in two domains: a posterior spot at the future
13 invagination site, and an anterior irregular domain (Fig. 1F). The anterior domain is slightly
14 anterior and ventral to the *hh* ring that appears at the same time (Fig. 1A). This domain
15 (referred to by some authors as the “head blob” (31)) expands and develops two lobes to give
16 a heart shape (Fig. 1G-H). Contrary to what we claimed in (5), the two lobes never separate
17 completely, and the heart shape continues until the germband stage, where it is found in the
18 area of the head lobes corresponding to the ocular segment (Fig. 1I-J). At ~32-36 hAEL,
19 seven blastodermal segmental stripes appear simultaneously (Fig. 1G). Six of these extend
20 from the dorsal side of the embryo almost to the ventral side, and correspond to the gnathal
21 and thoracic segments. The seventh anteriormost stripe is shorter and corresponds to the
22 antennal segment. This stripe was previously incorrectly identified as the intercalary stripe. In
23 fact, expression of *wg* in the intercalary segment appears only in the germband, as two dots
24 (Fig. 1J), similar to the intercalary expression of *hh* (Fig. 1E).

25 The shortening and thickening of the segmental stripes of *hh* and *wg* are due to the
26 condensation of the head lobes that occurs during blastoderm invagination, as evidenced by
27 staining for nuclei together with gene expression (Fig. 1K-M). This condensation is presented
28 schematically in Fig. 1N-O.

29

30 Functions of the segment polarity components in the pre-gnathal segments

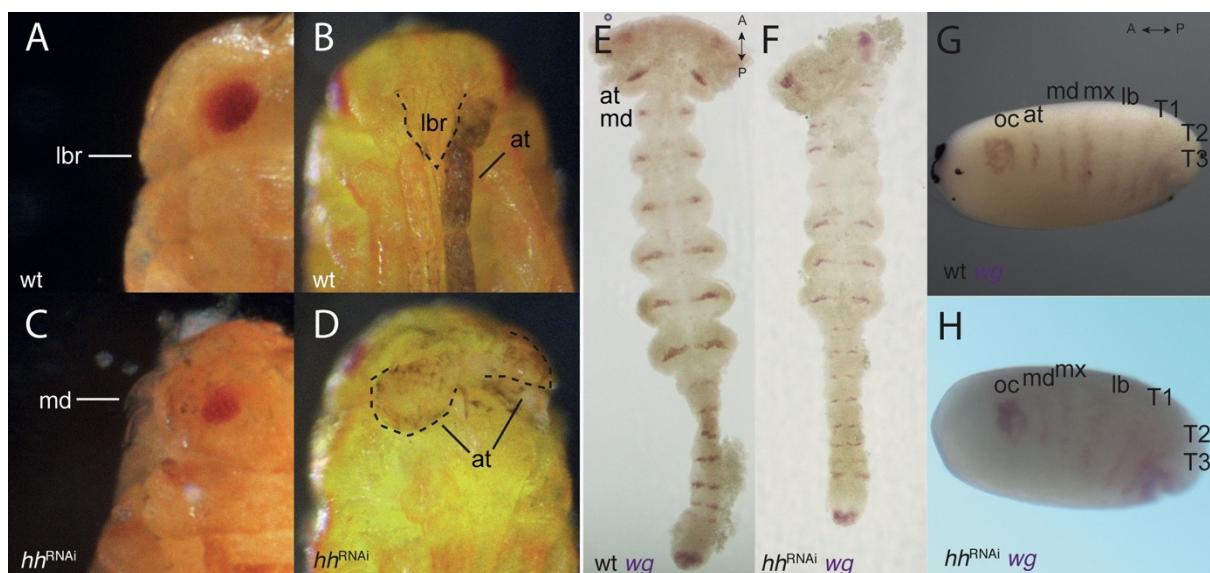
31 To test the function of the Hedgehog and Wnt pathways in the anterior of the embryos, we
32 used parental RNA interference (pRNAi) against positive and negative regulators of each
33 pathway. A positive regulator will decrease the pathway’s activity when knocked-down,
34 while a negative regulator will increase it (Table 1). For the Hedgehog pathway, we chose

1 *hedgehog* (*hh*) – encoding the single arthropod ligand that activates the pathway – and
2 *patched* (*ptc*) – encoding the receptor, which downregulates Hedgehog-signaling when
3 active. For the Wnt pathway, we chose *disheveled* (*dsh*) –which encodes an activating
4 intracellular component of the pathway – and *shaggy* (*sgg*) – which encodes an enzyme that
5 phosphorylates the second messenger β -catenin, thus leading to its degradation. We chose to
6 not directly target either the ligand or the receptor in Wnt-signaling, since both have several
7 copies and are at least partially redundant (32, 33).

8

9

10

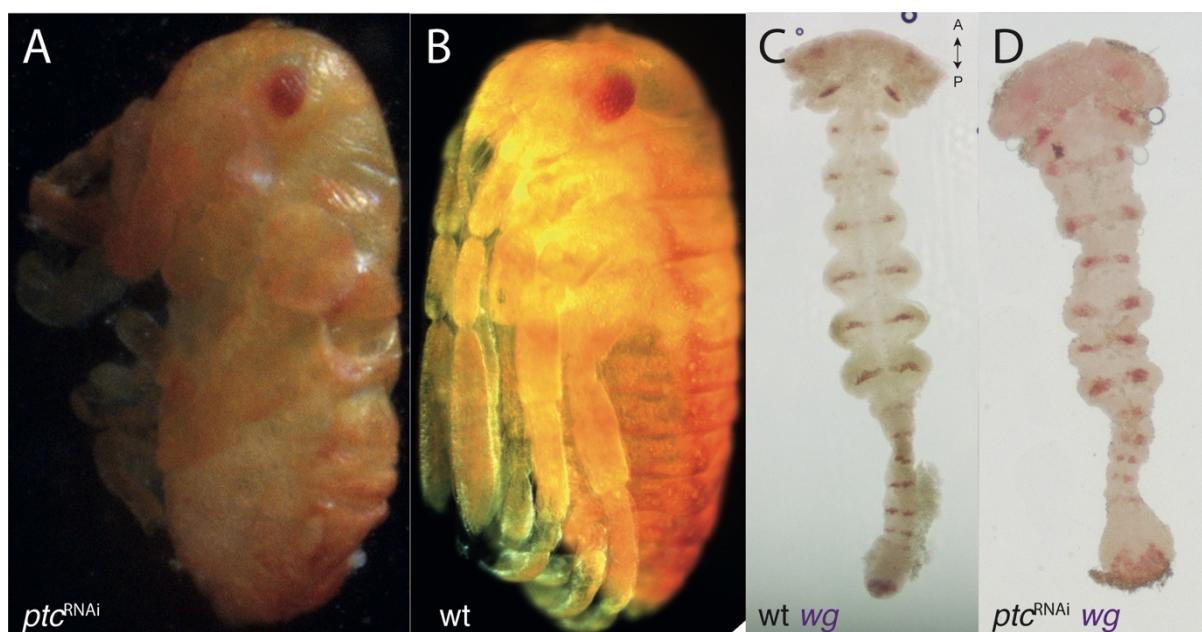

11

Signaling network	Hedgehog		Wnt	
	Negative (pRNAi- <i>ptc</i>)	Positive (pRNAi- <i>hh</i>)	Negative (pRNAi- <i>sgg</i>)	Positive (pRNAi- <i>dsh</i>)
PGS	Enlarged	Reduced	Reduced	Disturbed
Trunk	Irregular segment boundaries	Irregular segment boundaries	Dorsal-Ventral axis disruptions	Reduced thorax and abdomen

12 Table 1 – Summary of the RNAi experiments
13

14
15 Reducing Hedgehog activity via *hh*^{RNAi} results in a subtle but consistent phenotype (Fig. 2) -
16 the reduction of PGS-related structures: The eyes are smaller, and the labrum and antennae
17 are reduced or not developed at all (Fig. 2C-D. Compare with Fig. 2A-B). Without the
18 labrum, the hatchling mandibles and maxillae are exposed. The reduction is also visible when
19 comparing WT *wg* expression in the head lobes (Fig. 2E) to the *wg* expression of *hh*^{RNAi}
20 germbands (Fig. 2F). The segmental *wg* stripe representing the antennal segment is weak or
21 nonexistent in the head lobes during the germband stage, and the head lobes are misshapen
22 and missing the very anterior region. The absence of the antennal *wg* stripe is clear from the
23 first appearance of segmental stripes in the mid-blastoderm (Fig. 2H. Compare with Fig. 2G).
24 There is no obvious effect in other regions of the body.

1


2

3 Figure 2 – *hh*-RNAi phenotypes. A-B) side and front view of a wildtype hatchling, the labrum
4 covers the mandibles and the antennae lie to its sides. C) a side view of a hatchling with a
5 reduced labrum, exposing the mandibles following a *hh*-RNAi. D) front view of the same
6 hatchling as (C) showing malformed stubby antennae. E) wildtype germband expression of *wg*
7 in the mid germband stage. F) *hh*-RNAi germband expression of *wg*, the antennal expression
8 missing. G) wildtype expression of *wg* in the blastoderm (the same embryo from Fig. 1G). H)
9 *hh*-RNAi expression of *wg* in the blastoderm, the antennal segmental stripe is missing.

10 Abbreviations as in Fig. 1.

11

12 Over activating Hedgehog signaling through *ptc* knock-down has a very different effect to
13 *hh*^{RNAi}, causing deformation of the trunk segments, but without any clear effect on the head
14 (Fig. 3). This is evident both in knock-down hatchlings (Fig. 3A. Compare with Fig. 3B) and
15 in mounted germbands stained for *wg* (Fig. 3D. Compare with Fig. 3C). Prior to mounting
16 and flattening the germband to a slide, the embryos were far more twisted than are WT
17 germbands (not shown). The blastodermal expression of *wg* is not affected either by over-
18 activating or by reducing Hedgehog signaling (not shown).

1

2 Figure 3 – *ptc*-RNAi phenotypes. A) *ptc*-RNAi hatchling with segmental boundaries and
3 limb deformities compared to B) wildtype hatchling of the same age. C) wildtype expression
4 of *wg* in the germband (same embryo from Fig. 2E). D) *ptc*-RNAi expression of *wg* in the
5 germband showing a normal head and mis-formed trunk segments.

6

7 When reducing the activity of the Wnt pathway via *sgg*^{RNAi} (fig. 4) and increasing it via
8 *dsh*^{RNAi} (Fig. 5), we see opposite and complementary effects. We find that *sgg*^{RNAi} hatchlings
9 have a severely reduced head (Fig. 4D). Because the head region is missing in these embryos,
10 and the head is normally the last structure to invaginate (Fig. 1L-M) they do not complete
11 invagination properly. We were thus unable to dissect germband stage *sgg*^{RNAi} embryos.
12 Whole mount images of these embryos, show no evidence of anterior expression of *wg* (Fig.
13 4B). The early expression of *hh* in *sgg*^{RNAi} embryos is diffuse and broader than normal in
14 some embryos (Fig. 4C), whereas in others it is completely disrupted (Fig. 4C').

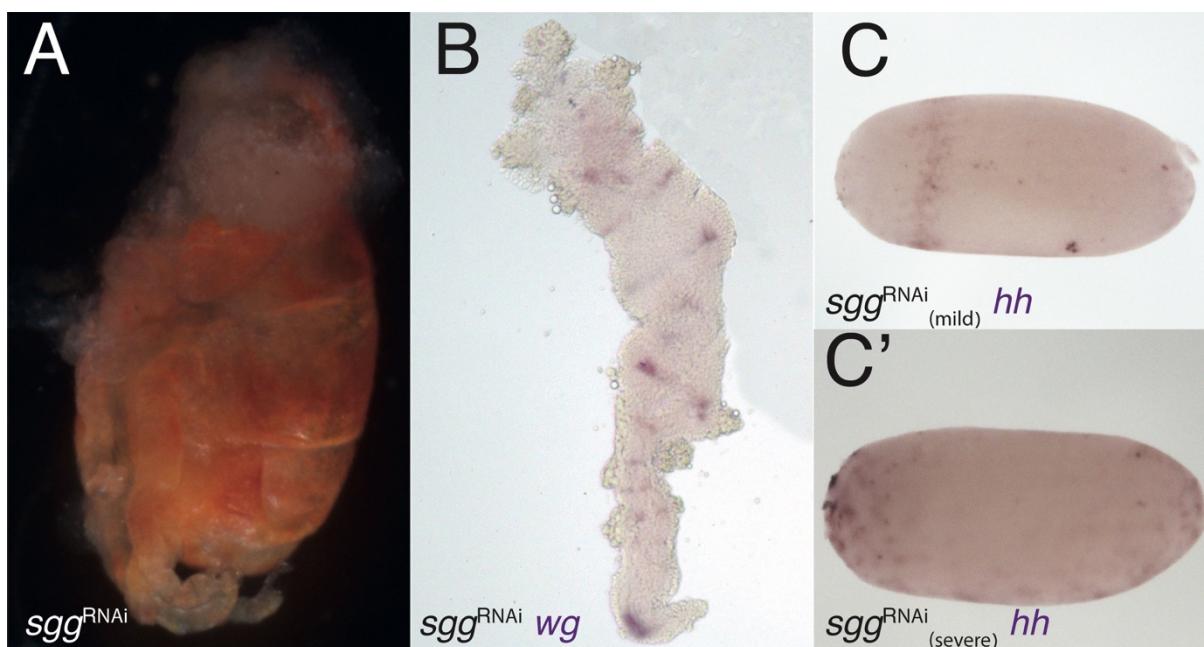


Figure 4 – *sgg*-RNAi phenotypes. A) *sgg*-RNAi hatchling with no head and a reduced abdomen (Compare with Fig. 3B). B) Expression of *wg* in *sgg*-RNAi germband embryo. The germband is severely deformed, with no head lobes and no pre-gnathal segments. The exact identity of the remaining segments is difficult to determine. C) Expression of *hh* in *sgg*-RNAi blastoderm embryo with mild knock-down effect. The expression ring is jagged and not uniform. C') Expression of *hh* in *sgg*-RNAi blastoderm embryo with severe knock-down effect showing patchy expression suggesting that the embryo did not develop at all.

In contrast, *dsh*^{RNAi} hatchlings have a reduced abdomen or, in more severe phenotypes, a reduced abdomen and thorax (Fig. 5A), and severely disrupted and truncated germbands, with almost normal head lobes in *dsh*^{RNAi} embryos (Fig. 5C. Compare with 5B). The early expression of *hh* in *dsh*^{RNAi} embryos is broader than normal and is shifted posteriorly compared with WT embryos (Fig. 5E. Compare with Fig. 5D). Early expression of *wg* in embryos with the Wnt pathway disrupted also have complementary expression patterns. In *sgg*^{RNAi} embryos the anterior expression patch (the “head blob”) is missing, whereas in *dsh*^{RNAi} embryos, the posterior patch is missing (Supp. Fig. 2).

18
19
20
21
22
23
24

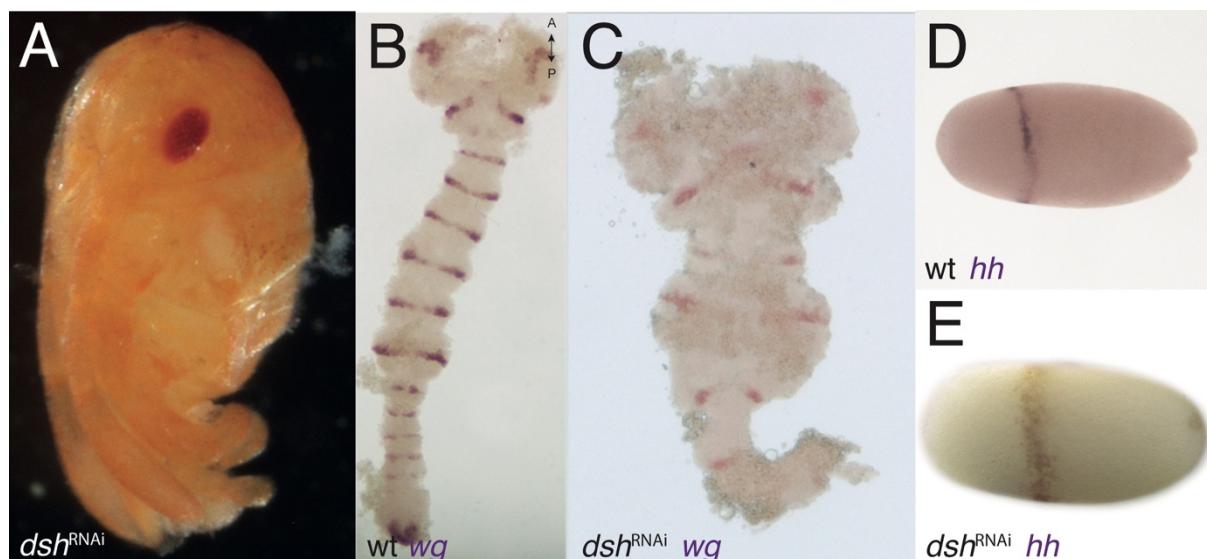


Figure 5 – *dsh*-RNAi phenotypes. A) *dsh*-RNAi hatchling with no abdomen (Compare with Fig. 3B). B) Expression of *wg* in wildtype germband stage embryo (slightly older than the one in Fig. 2E). C) Expression of *wg* in *dsh*-RNAi germband with normal PGS but deformed gnathal segments and missing thoracic and abdominal segments. D) Expression of *hh* in wildtype blastoderm stage embryo (Same embryos from Fig. 1A). (E) expression of *hh* in *dsh*-RNAi blastoderm embryo, the anterior ring is jagged and not uniform.

Discussion

The expression of segment polarity genes in the PGS of *Oncopeltus* is different from all other segments

Previous studies on segment polarity gene expression in *Oncopeltus* (4, 5) identified two distinct dynamic modes for these genes: segmental stripes of expression of segment-polarity genes appear simultaneously in the gnathal and thoracic segments, and sequentially from a segment addition zone in the abdominal segments. In both cases, *hh* and *inv* are expressed in segmental stripes at the posterior of each segment and *wg* is expressed anterior to them. This expression is the same as that seen in all arthropods studied to date, and presumably reflects the ancient and highly conserved segment-polarity GRN (9, 16, 34).

Conversely, as we show here, the expression of the segment polarity genes is different in the PGS. The expression domains of *hh* and *wg* in the ocular segment are very different in shape and extent, and clearly do not overlap. The extent and pattern of expression of both these genes in the ocular segment are also different from those of all other segments. Expression of these two genes in the antennal segment is similar, although we were unable to determine whether they overlap. Both genes are expressed in a clear stripe, as in other segments.

1 Expression in the intercalary segment is not in segmental stripes but in two small dots, and
2 these appear very late in development, after all head and thoracic segments are determined
3 and have begun to differentiate. The dynamics of *hh* expression in the PGS are unique,
4 relative to other segment polarity genes in both the PGS and in the rest of the embryo, and
5 involve a stage of a single broad expression stripe splitting to give two stripes. The
6 expression of the best studied segment polarity gene *inv* (an *en* paralog) in the PGS is
7 significantly later than its expression in trunk segments, first appearing only in the germband
8 stage.

9

10

11 The structure of the segment-polarity network in the PGS in *Oncopeltus* is different to all
12 other segments

13 Focusing on the functions of the three aforementioned segment polarity genes and on the
14 interactions among them also identifies key differences between what happens in the PGS
15 and what happens in trunk segments. The expression and function of *inv* in *Oncopeltus* has
16 been previously described (although it was originally misidentified as *en*). Knocking down
17 *inv* leads to trunk segments that are moderately or severely disrupted, while the PGS are
18 unaffected (35) indicating a difference in the role of this gene between the two groups of
19 segments.

20

21 In *hh*^{RNAi} embryos we find reduced eyes, antennae, and labrum, all of which are structures
22 related to the PGS. However, the “classic” segment polarity knock-down phenotype –
23 disruptions to segment boundaries – is not evident. This is most likely because *hh* is induced
24 by *en* in the trunk segments and is part of a regulatory feedback loop. Therefore, a single
25 knockdown may not result in a noticeable effect, as En/Inv can rescue Hedgehog function
26 through compensation. Because we do see a phenotype in the PGS, we suggest that the
27 segment polarity GRN that maintains *hh* expression in the trunk segments is not active in the
28 same way in the PGS.

29

30 This idea is strengthened by *ptc*^{RNAi} embryos. The knock down of *ptc* causes over-activation
31 of the pathway and disrupts normal segmental boundaries in the trunk segments only. This is
32 evident in *wg* stained germbands and in the knock-down hatchlings.

33

34 In both *dsh*^{RNAi} and *sgg*^{RNAi} embryos we see irregularities in the expression of *Of-hh* during

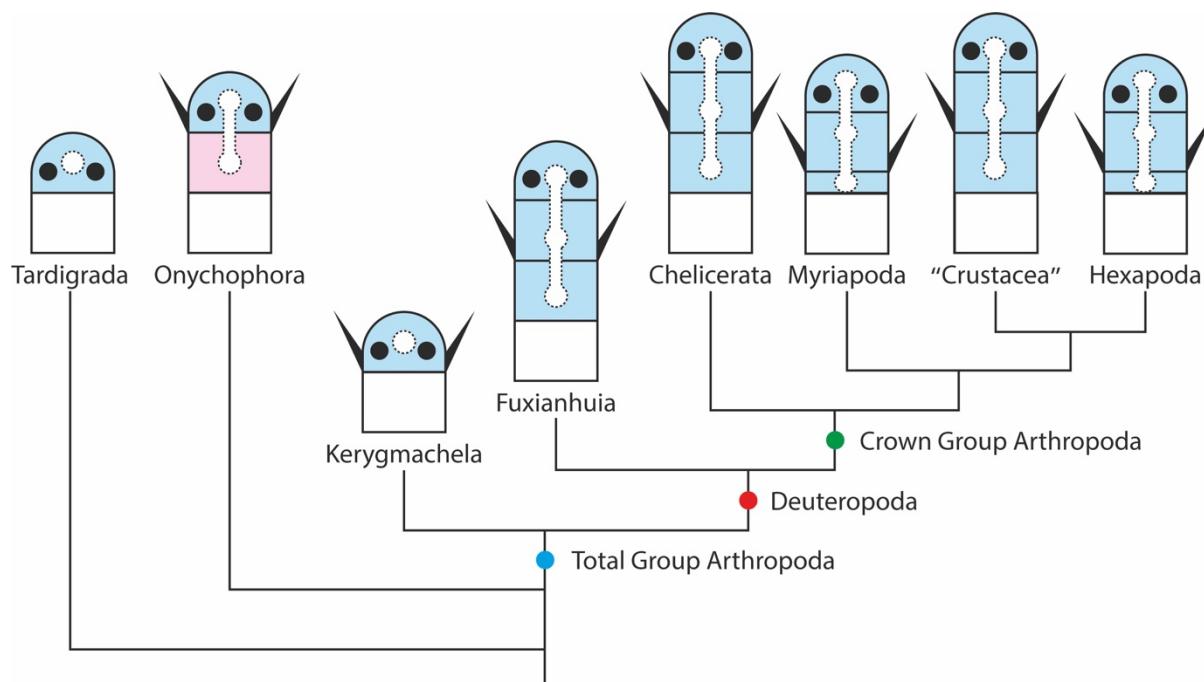
1 PGS formation. However, only *sgg*^{RNAi} shows a reduction in the head. This is due to the Wnt
2 pathway's early function in anterior-posterior axis determination of the embryo (5, 36).
3 Activation of Wnt in the posterior early in bilaterian embryogenesis is crucial for proper pole
4 definition. This process is much earlier than PGS formation, therefore the reduction of the
5 head in *sgg*^{RNAi} is probably a result of a posteriorization of the entire embryo following Wnt
6 over-activation. Conversely, *dsh*^{RNAi} embryos show reduction in the posterior pole of the
7 embryo. Mild cases lack the abdomen, while more severe cases lack all segments up until the
8 gnathal segments. In these embryos the head is not affected by the disruption of the axis.
9 However, the gnathal segments show segmental abnormalities and disrupted *wg* expression,
10 while the PGS are normal. This again suggests that the classical segment polarity GRN does
11 not function in the same manner in the PGS.

12

13 The unique characteristics of the PGS are probably general to all arthropods

14 Detailed functional studies as we present here have not been done in many other species. The
15 only example is early work on *Drosophila*, which mostly focused on late stages of PGS
16 patterning and not on their early formation (29), but showed clearly that the interactions
17 among the segment-polarity genes in the anterior segments are different from those in other
18 segments. Nonetheless, the non-canonical expression of segment-polarity genes in the
19 anteriormost segments has been shown in many arthropod species, although it has not always
20 been pointed out explicitly. Expression of *en* in the PGS appears later than expected based on
21 their position in myriapods (37-39), in spiders (40) and in crustaceans (41, 42). Stripe
22 splitting of the early *hh* stripe in the PGS has been shown in spiders (25), in myriapods (23,
23 and in insects (27, 28). Expression of *wg* in early patterning of the anterior segments has,
24 been studied in a few insect species, and has been shown to have an early “head blob”
25 expression in the ocular segment, similar to what we have shown (31). Despite the patchy
26 nature of the data, the phylogenetic spread of the evidence suggests very strongly that there
27 are numerous differences in determination and patterning between the PGS and segments
28 posterior to them in all arthropods and these differences are ancient and conserved.

29


30 The PGS are not serially homologous to the trunk segments

31 Arthropod segments are said to be serially homologous structures. The exact definition of
32 serial homology has been debated since the early days of comparative morphology (34, 43).
33 While the standard definition of homologous structures is that they are descendent from the

1 same structure in a common ancestor (6), structures within the same organism obviously do
2 not have an ancestor. Thus, we must turn to other definitions of homology. The emerging
3 paradigm within evolutionary developmental biology sees homologous structures as being
4 patterned by conserved gene regulatory networks (44). This definition works for serial
5 homology as well, since several structures in a single organism can be patterned by the same
6 GRN. Wagner (34) defines serial homology as: “two body parts of the same organisms are
7 serially homologous if they result from the repeated activation of the same character identity
8 network” (p. 418). Similarly, Tomoyasu et al. (45) identified serially homologous structures
9 as being orchestrated by the same developmental system. The conserved GRN (Wagner’s
10 character identity network) underlying serially homologous segments is the segment-polarity
11 gene network. This is the most conserved aspect of the segmentation cascade and is
12 repeatedly activated in the formation of all segments in all arthropods studied to date (2, 9).
13 We have shown that the three anterior segments of the arthropod head, collectively known as
14 the pre-gnathal segments, do not share this conserved GRN. The various components of the
15 segment-polarity network are expressed at different relative times and in different relative
16 positions, and have different functional interactions. We therefore assert that under the
17 definition of serial homology given above, the PGS are not serially homologous to the other
18 segments in the arthropod body. Since many of the unusual aspects of the PGS are shared
19 among different arthropod clades, we believe they are homologous within arthropods, an idea
20 supported by neuroanatomy, by the expression of Hox genes and by the fossil record (19).
21

22 Implication for the evolution of the arthropod head

23 The three anterior segments seem to be a distinct set of segments in terms of both
24 evolutionary history and development. A segmented body with an anterior head tagma
25 predates the common ancestor of arthropods (1, 46-48). The earliest branching stem group
26 arthropods probably had a head made up of a single segment. Fossils with preserved nervous
27 tissue of the stem arthropods *Kerygmachela* (49) and *Lyrarapax* (50) indicate that these
28 animals had a single brain ganglion, corresponding to procephalon, as in the brain of
29 tardigrades and thus likely primitive for Panarthropoda as a whole (51, 52). The upper-stem
30 arthropod *Fuxianhuia* already has a tri-partite brain, as evident from exceptionally preserved
31 fossils of this species (53). Most lower-stem arthropods had a single raptorial appendage pair,
32 located on the protocerebral segment. Upper-stem arthropods (which unite with crown group
33 arthropods in a grouping collectively known as Deuteropoda (54)) have their raptorial
34 appendages on the second or deutocerebral segment (Fig. 6).

1
2
3
4
5
6
7
8
9
10
11

Figure 6 – The change in head structure mapped on a phylogenetic tree of Panarthropoda. Each clade is represented by a scheme of the procephalon, marked in blue, and the segment posterior to it, marked in white. Dotted shape – the dorsal ganglion/ganglia. Black circles – eyes. Lateral black spikes – the anterior-most paired appendages. The third (tritocerebral) segment is shown to be reduced in Myriapoda and Hexapoda, where it becomes the appendageless intercalary segment. The Onychophoran second segment is shown in pink, to indicate that it is probably not homologous to the deutocerebral segment in Deuteropoda. The tree and the head structures are based on (19)

12 The transition between a single segmented head with a protocerebral appendage to a three-
13 segmented head with a deutocerebral appendage is one of the most dramatic changes in early
14 arthropod history and the most difficult to reconcile with developmental biology (55). It has
15 been suggested that this transition occurred by the recruitment of two additional trunk
16 segments to the head (19). If this scenario were true, we would expect at least the two “new”
17 head segments to be serially homologous to the trunk segments, which is evidently not the
18 case. We suggest a novel scenario for the evolutionary transition between a single-segmented
19 head in lower stem arthropods and a three-segmented head in Deuteropoda, involving the
20 splitting of an ancient head unit into three.

21
22 We suggest that in the early history of arthropods the body was made up of a series of
23 homonomous trunk segments, with a single unit making up the head and a single neuropil
24 functioning as a brain. This head was patterned and differentiated via a separate

1 developmental pathway than the trunk segments, using some of the same genes that were
2 used in the trunk segments, but with different interactions. As the brain expanded, it split into
3 three parts, concomitantly splitting the surrounding morphological structures into three
4 distinct units. The developmental mechanism through which this was achieved was a three-
5 fold spatial repetition of the process generating the head, so that it generated three segmental
6 units.

7

8 When a gene undergoes duplication, often each new copy takes on part of the roles originally
9 carried out by the parent gene, a phenomenon known as sub-functionalization. By analogy,
10 we suggest that when the ancestral head split to become a three-segmented head, each of the
11 new segments took up some of the structures and functions of the ancestral head. This
12 suggestion provides a possible solution to the debate regarding the homology of the
13 deutocerebral raptorial appendage of Deuteropoda and the frontal raptorial appendage of
14 lower stem arthropods such as *Kerygmachela*. When the ancestral single head segment split,
15 the second of the resulting segments inherited the raptorial appendage of the original
16 segment. The two appendages can thus be seen to be homologous, despite their different
17 segmental position.

18

19 Indeed, we can say the three PGS are not serial homologs of each other, but rather – adopting
20 once again the terminology from gene evolution – paralogs of each other. After splitting, they
21 continued to evolve independently, free from the constraints of a shared gene regulatory
22 network. This is consistent with the differences in the specifics of gene expression among the
23 different segments, as we have shown here. The degradation of the tritocerebral segment to a
24 rudimentary intercalary segment led to reduced and late expression of several of the segment-
25 polarity genes in the insect intercalary segment. This process occurred convergently in
26 myriapods, but with different molecular consequences.

27

28 **Conclusions**

29 We have shown that the gene regulatory network patterning the pre-gnathal segments in the
30 insect *Oncopeltus* is fundamentally different from that patterning all other segments. Patchy,
31 but phylogenetically broad data from other arthropods indicates that this is a general
32 phenomenon. We conclude that the three PGS have an evolutionary history that is
33 independent from trunk segments and suggest they evolved through triplication of an
34 ancestral single-segment head. With this new insight, it should be possible to reinterpret the

1 change in the morphology of the head throughout arthropod evolution, as represented in the
2 fossil record. This insight also opens the door for more detailed analyses of the development
3 of the head in extant arthropods with the aim of reconstructing the precise changes in
4 developmental regulation that lead to the evolution of the complex head we see today.

5

6 **Materials and Methods**

7 Animal culture and egg collection

8 *O. fasciatus* cultures are kept in a temperature-controlled room at 25°C in plexiglass boxes.
9 each box contains several dozens of insects. To collect eggs, which are available year-round,
10 cotton balls are placed in a box with sexually mature bugs, until a female lays a clutch on
11 them or placed there for a pre-determined window of time. Eggs are kept in a 25°C incubator
12 until they reach the desired stage of development.

13

14 Antisense Digoxigenin-labeled probes and dsRNA preparations

15 The primers for the antisense Digoxigenin (DIG) labeled RNA probes and for the dsRNA for
16 parental RNA interference were designed from the published *O. fasciatus* genome (NCBI
17 accession number: PRJNA229125) for all relevant genes using the bioinformatics software
18 Geneious (56).

19 Both probes and dsRNA were made using Sigma-Aldrich T7 RNA polymerase and buffer.
20 Probes were made with Sigma-Aldrich Digoxigenin-labeled ribonucleotides (RNA). dsRNA
21 was made using ribonucleotides from Lucigen.

22

23 RNA interference using dsRNA parental injections

24 Virgin females are sedated with CO₂ gas and injected with about 3-5 µL of dsRNA at an
25 average concentration of 2 (+/- 0.5) mg/mL of respective mRNA in the ventral abdomen. The
26 injected females recover overnight. The following day, each female is introduced to 1-2 adult
27 males and placed in a box with cotton balls. Egg collecting starts from the third day of egg-
28 laying.

29

30 eggs fixation and peeling

31 *O. fasciatus* eggs are submerged in tap water and boiled for three minutes and then
32 immediately placed on ice for at least 5 minutes. The water is then replaced with a 50%/50%
33 mixture of 12% paraformaldehyde in PBS-T (phosphate buffered saline + tween) / heptane
34 and put in a shaking wheel for primary fixation. All liquids are then removed, followed by

1 several washes with 100% methanol. The embryos can be kept at -20°C. To prepare for in
2 situ hybridizations, *O. fasciatus* eggs are peeled and post-fixed in 4% paraformaldehyde in
3 PBS-T for 90-120 minutes in a rotating plate.

4

5 **In situ hybridization staining**

6 Fixed embryos are stepwise transferred to PBS-T solution and placed in a hybridization
7 buffer for at least 1 hour in 60°C. Antisense probes (Digoxigenin labeled RNA) are added to
8 the buffer for a final concentration of 1mg/1mL probe/hybridization solution, and incubated
9 at 60°C overnight. The embryos are washed several times with hybridization buffer to remove
10 excess probes, and then PBS-T before transferred to 10% normal goat serum/PBS-T
11 (blocking) solution for epitope blocking. AP-conjugated antibodies against Digoxigenin are
12 added to a final concentration of 1:2500 antibodies/blocking solution, and the embryos are
13 placed at 4°C overnight.

14 The embryos are then washed with PBS-T and transferred to a staining solution. We stain the
15 embryos until we observe noticeable staining or until the embryo gains a purple tint,
16 suggesting non-specific staining. We transfer the embryos stepwise to 70% glycerol/PBS-T
17 and keep them at 4°C.

18

19 **Microscopy**

20 *O. fasciatus* pictures were taken using an AZ100 stereoscope with Nikon Digital
21 Sight DS-Fi1 camera.

22

23 **Acknowledgements**

24 This work was funded by a grant from the Israel Science Foundation # 120/16. We thank
25 Greg Edgecombe for discussions and for critical comments on an earlier version of this
26 manuscript.

27

28 **Competing Interests**

29 The authors declare they have no competing interests

30

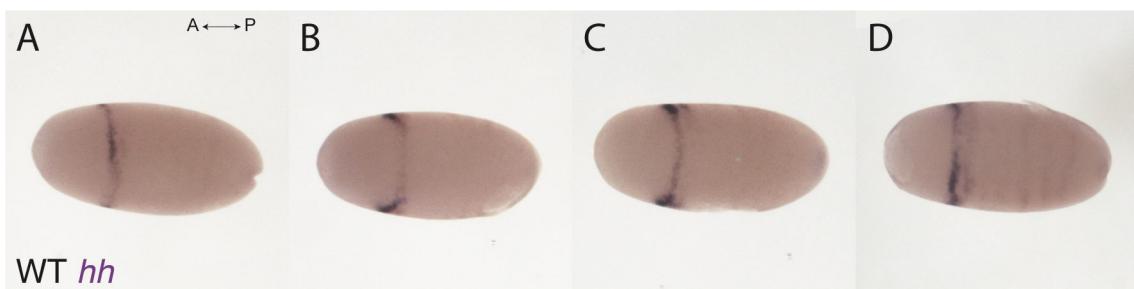
31

32

33

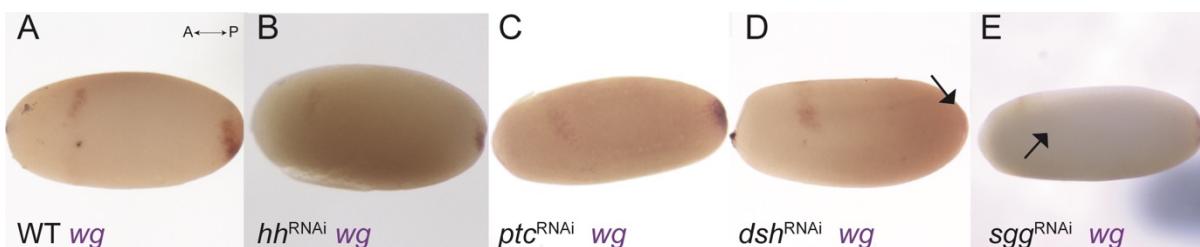
34

1 **Literature Cited**


- 2 1. A. D. Chipman, G. D. Edgecombe, Developing an integrated understanding of the
3 evolution of arthropod segmentation using fossils and evo-devo. *Proc. Roy. Soc. B*
4 **286**, 20191881 (2019).
- 5 2. A. D. Peel, A. D. Chipman, M. Akam, Arthropod segmentation: Beyond the
6 *Drosophila* paradigm. *Nat. Rev. Genet.* **6**, 905-916 (2005).
- 7 3. L. M. Nagy, T. A. Williams, "Cell Division, Movement and Synchronization in
8 Arthropod Segmentation" in Cellular Processes in Segmentation, A. D. Chipman, Ed.
9 (CRC Press, Boca Raton, 2020), chap. 3, pp. 40-70.
- 10 4. T. Auman *et al.*, Dynamics of growth zone patterning in the milkweed bug
11 *Oncopeltus fasciatus*. *Development* **144**, 1896-1905 (2017).
- 12 5. R. Stahi, A. D. Chipman, Blastoderm segmentation in *Oncopeltus fasciatus* and the
13 evolution of arthropod segmentation mechanisms. *Proc. R. Soc. Lond B* **283**,
14 20161745 (2016).
- 15 6. A. Minelli, G. Fusco, "Homology" in The Philosophy of Biology: A Companion for
16 Educators,, K. Kampourakis, Ed. (Springer, Dordrecht, 2013), vol. 1, pp. 289-322.
- 17 7. G. Scholtz, "Segmentation: A Zoological Concept of Seriality" in Cellular Processes in
18 Segmentation, A. D. Chipman, Ed. (CRC Press, Boca Raton, 2020), chap. 1, pp. 3-
19 25.
- 20 8. E. Clark, A. D. Peel, M. Akam, Arthropod segmentation. *Development* **146** (2019).
- 21 9. A. D. Chipman, The evolution of the gene regulatory networks patterning the
22 *Drosophila* blastoderm. *Curr. Top. Dev. Biol.* **139**, 297-324 (2020).
- 23 10. C. P. Choe, S. C. Miller, S. J. Brown, A pair-rule gene circuit defines segments
24 sequentially in the short-germ insect *Tribolium castaneum*. *Proc. Natl. Acad. Sci.*
25 *USA* **103**, 6560-6564 (2006).
- 26 11. E. Clark, Dynamic patterning by the *Drosophila* pair-rule network reconciles long-
27 germ and short-germ segmentation. *PLoS Biol* **15**, e2002439 (2017).
- 28 12. W. G. Damen, R. Janssen, N. M. Prpic, Pair rule gene orthologs in spider
29 segmentation. *Evolution and Development* **7**, 618-628 (2005).
- 30 13. J. Green, M. Akam, Evolution of the pair rule gene network: Insights from a
31 centipede. *Dev. Biol.* **382**, 235-245 (2013).
- 32 14. K. Reding, M. Chen, Y. Lu, A. M. Cheatele Jarvela, L. Pick, Shifting roles of
33 *Drosophila* pair-rule gene orthologs: segmental expression and function in the
34 milkweed bug *Oncopeltus fasciatus*. *Development* **146** (2019).
- 35 15. C. Nüsslein-Volhard, E. Wieschaus, Mutations affecting segment number and polarity
36 in *Drosophila*. *Nature* **287**, 795-801 (1980).
- 37 16. G. von Dassow, E. Meir, E. M. Munro, G. M. Odell, The segment polarity network is
38 a robust developmental module. *Nature* **406**, 188-192 (2000).
- 39 17. T. Auman, A. D. Chipman, The evolution of gene regulatory networks that define
40 arthropod body plans. *Integrative and Comparative Biology* **57**, 523-532 (2017).
- 41 18. N. Posnien, J. B. Schinko, S. Kittelmann, G. Bucher, Genetics, development and
42 composition of the insect head - A beetle's view. *Arthropod Struct. Dev.* **39**, 399-410
43 (2010).
- 44 19. J. Ortega-Hernández, R. Janssen, G. E. Budd, Origin and evolution of the
45 panarthropod head - A palaeobiological and developmental perspective. *Arthropod*
46 *Struct. Dev.* **46**, 354-379 (2017).
- 47 20. B. T. Rogers, T. C. Kaufman, Structure of the insect head in ontogeny and phylogeny:
48 A view from *Drosophila*. *Int. Rev. Cytol.* **174**, 1-84 (1997).
- 49 21. S. J. Brown, N. H. Patel, R. E. Denell, Embryonic Expression of the Single *Tribolium*
50 *Engrailed* Homolog. *Dev. Genet.* **15**, 7-18 (1994).

- 1 22. N. H. Patel, T. B. Kornberg, C. S. Goodman, Expression of *engrailed* during
2 segmentation in grasshopper and crayfish. *Development* **107**, 201-212 (1989).
- 3 23. V. S. Hunnekohl, M. Akam, Formation and subdivision of the head field in the
4 centipede *Strigamia maritima*, as revealed by the expression of head gap gene
5 orthologues and *hedgehog* dynamics. *EvoDevo* **8**, 18 (2017).
- 6 24. M. Pechmann, A. P. McGregor, E. E. Schwager, N. M. Feitosa, W. G. M. Damen,
7 Dynamic gene expression is required for anterior regionalization in a spider. *Proc.
8 Natl. Acad. Sci. USA* **106**, 1468-1472 (2009).
- 9 25. M. Kanayama *et al.*, Travelling and splitting of a wave of *hedgehog* expression
10 involved in spider-head segmentation. *Nat. Commun.* **2**, 500 (2011).
- 11 26. R. Janssen, Segment polarity gene expression in a myriapod reveals conserved and
12 diverged aspects of early head patterning in arthropods. *Dev. Genes Evol.* **222**, 299-
13 309 (2012).
- 14 27. L. Farzana, S. J. Brown, Hedgehog signaling pathway function conserved in
15 *Tribolium* segmentation. *Dev. Genes Evol.* **218**, 181-192 (2008).
- 16 28. K. Miyawaki *et al.*, Involvement of *Wingless/Armadillo* signaling in the posterior
17 sequential segmentation in the cricket, *Gryllus bimaculatus* (Orthoptera), as revealed
18 by RNAi analysis. *Mech. Dev.* **121**, 119-130 (2004).
- 19 29. A. Gallitano-Mendel, R. Finkelstein, Novel segment polarity gene interactions during
20 embryonic head development in *Drosophila*. *Dev. Biol.* **192**, 599-613 (1997).
- 21 30. M. Birkan, N. D. Schaeper, A. D. Chipman, Early patterning and blastodermal fate
22 map of the head in the milkweed bug *Oncopeltus fasciatus*. *Evol. Dev.* **13**, 436-447
23 (2011).
- 24 31. Z. Liu, X. Yang, Y. Dong, M. Friedrich, Tracking down the "head blob": comparative
25 analysis of *wingless* expression in the developing insect procephalon reveals
26 progressive reduction of embryonic visual system patterning in higher insects.
27 *Arthropod Struct. Dev.* **35**, 341-356 (2006).
- 28 32. R. Janssen *et al.*, Conservation, loss, and redeployment of Wnt ligands in
29 protostomes: implications for understanding the evolution of segment formation.
30 *BMC Evol. Biol.* **10**, 374 (2010).
- 31 33. S. Murat, C. Hopfen, A. P. McGregor, The function and evolution of Wnt genes in
32 arthropods. *Arthropod Struct. Dev.* **39**, 446-452 (2010).
- 33 34. G. P. Wagner, *Homology, Genes and Evolutionary Innovation* (Princeton University
34 Press, Princeton and Oxford, 2014).
- 35 35. D. R. Angelini, T. C. Kaufman, Functional analyses in the milkweed bug *Oncopeltus
36 fasciatus* (Hemiptera) support a role for Wnt signaling in body segmentation but not
37 appendage development. *Dev. Biol.* **283**, 409-423 (2005).
- 38 36. C. P. Petersen, P. W. Reddien, Wnt signaling and the polarity of the primary body
39 axis. *Cell* **139**, 1056-1068 (2009).
- 40 37. R. Janssen, N.-M. Prpic, W. G. M. Damen, Gene expression suggests decoupled
41 dorsal and ventral segmentation in the millipede *Glomeris marginata* (Myriapoda :
42 Diplopoda). *Dev. Biol.* **268**, 89-104 (2004).
- 43 38. A. D. Chipman, W. Arthur, M. Akam, Early development and segment formation in
44 the centipede *Strigamia maritima* (Geophilomorpha). *Evol. Dev.* **6**, 78-89 (2004).
- 45 39. C. Kettle, J. Johnstone, T. Jowett, H. Arthur, W. Arthur, The pattern of segment
46 formation, as revealed by *engrailed* expression, in a centipede with a variable number
47 of segments. *Evolution and Development* **5**, 198-207 (2003).
- 48 40. W. G. M. Damen, Parasegmental organization of the spider embryo implies that the
49 parasegment is an evolutionary conserved entity in arthropod embryogenesis.
50 *Development* **129**, 1239-1250 (2002).

- 1 41. R. L. Hannibal, A. L. Price, N. H. Patel, The functional relationship between
2 ectodermal and mesodermal segmentation the crustacean, *Parhyale hawaiensis*. *Dev.*
3 *Biol.* **361**, 427-438 (2012).
- 4 42. G. Scholtz, N. H. Patel, W. Dohle, Serially homologous *engrailed* stripes are
5 generated via different cell lineages in the germ band of amphipod crustaceans
6 (Malacostraca, Peracarida). *Int. J. Dev. Biol.* **38**, 471-478 (1994).
- 7 43. G. B. Moment, The relationship between serial and special homology and organic
8 similarities. *Am. Nat.* **79**, 445-455 (1945).
- 9 44. G. P. Wagner, The developmental genetics of homology. *Nature reviews. Genetics* **8**,
10 473-479 (2007).
- 11 45. Y. Tomoyasu, T. Ohde, C. Clark-Hachtel, What serial homologs can tell us about the
12 origin of insect wings. *F1000Res* **6**, 268 (2017).
- 13 46. G. D. Edgecombe, D. A. Legg, Origins and early evolution of arthropods.
Palaeontology **57**, 457-468 (2014).
- 14 47. G. Giribet, G. D. Edgecombe, The phylogeny and evolutionary history of arthropods.
Curr. Biol. **29**, R592-R602 (2019).
- 15 48. G. E. Budd, A palaeontological solution to the arthropod head problem. *Nature* **417**,
16 271-275 (2002).
- 17 49. T. S. Park *et al.*, Brain and eyes of *Kerygmachela* reveal protocerebral ancestry of the
18 panarthropod head. *Nat. Commun.* **9**, 1019 (2018).
- 19 50. P. Cong, X. Ma, X. Hou, G. D. Edgecombe, N. J. Strausfeld, Brain structure resolves
20 the segmental affinity of anomalocaridid appendages. *Nature* **513**, 538-542 (2014).
- 21 51. F. W. Smith *et al.*, The compact body plan of tardigrades evolved by the loss of a
22 large body region. *Curr. Biol.* **26**, 224-229 (2016).
- 23 52. F. W. Smith, P. J. Bartels, B. Goldstein, A hypothesis for the composition of the
24 tardigrade brain and its implications for panarthropod brain evolution. *Integr. Comp.*
25 *Biol.* **57**, 546-559 (2017).
- 26 53. X. Ma, X. Hou, G. D. Edgecombe, N. J. Strausfeld, Complex brain and optic lobes in
27 an early Cambrian arthropod. *Nature* **490**, 258-261 (2012).
- 28 54. J. Ortega-Hernández, Making sense of 'lower' and 'upper' stem-group Euarthropoda,
29 with comments on the strict use of the name Arthropoda von Siebold, 1848. *Biol. Rev.*
30 *Camb. Philos. Soc.* **91**, 255-273 (2016).
- 31 55. A. D. Chipman, An embryological perspective on the early arthropod fossil record.
BMC Evol. Biol. **15**, 285 (2015).
- 32 56. M. Kearse *et al.*, Geneious Basic: an integrated and extendable desktop software
33 platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647-
34 1649 (2012).
- 35 38
- 36 39
- 37 40


1 **Supplementary figures**

2

3 Supplementary Figure 1 – The development of wildtype expression of *hedgehog* in
4 blastoderm embryos. A-D) from left to right: embryos from ~30 hours after egg laying
5 (hAEL) to ~36 hAEL. an anterior ring of *hh* expression appears ~30 hAEL, which splits
6 gradually, resulting in two stripes correlating to the ocular and antennal segments. the
7 splitting continues during invagination, which starts at ~36 hAEL.

8

9

10

11 Supplementary Figure 2 – Expression of *wingless* in embryos ~32 hours after egg laying
12 (hAEL) following pRNAi against different genes. (A) wildtype expression of *wg* is in an
13 anterior patch which will be the ocular staining (“head blob”), and a posterior patch marking
14 the future site of invagination. (B) Expression of *wg* in *hh*-RNAi embryos shows no
15 significant difference from wildtype. (C) Expression of *wg* in *ptc*-RNAi embryos shows no
16 significant difference from wildtype. (D) Expression of *wg* in *dsh*-RNAi embryos is missing
17 in the posterior future site of invagination (black arrow), the anterior patch is the same as in
18 wildtype embryos. (E) Expression of *wingless* in *sgg*-RNAi embryos is missing the anterior
19 ocular staining (black arrow), the posterior patch is the same as in wildtype embryos.

20

21