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Highlight
This study describes the catalog of kinase gene family in Saccharum spontaneum and Sorghum
bicolor, providing a reservoir of molecular features and expression patterns based on RNA-Seq

and co-expression networks.
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Abstract

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core
regulator of cellular signaling. Even considering this substantial importance, the kinomes of
sugarcane and sorghum have not been profiled. Here we identified and profiled the complete
kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Shi), a close
diploid relative. The Shi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs
when disregarding duplications and allelic copies, which were related to 1,345 representative
gene models. The Ssp and Shi PKs were grouped into 20 groups and 120 subfamilies and
exhibited high compositional similarities and evolutionary divergences. By utilizing the
collinearity between these species, this study offers insights about Shi and Ssp speciation, PK
differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq,
identifying significant similarities between Shi and Ssp. Moreover, through coexpression
networks, we inferred a core structure of kinase interactions with specific key elements. This
study is the first to categorize the allele specificity of a kinome and provides a wide reservoir of
molecular and genetic information, enhancing the understanding of the evolutionary history of

Sbi and Ssp PKs.

Keywords: Coexpression networks, Kinase gene family, Phylogenetic analyses, RNA-Seq,

Saccharum spontaneum, Sorghum bicolor

Abbreviations

Aco: Aquilegia coerulea

AGC: cyclic AMP-dependent protein kinase (CAPK), cGMP-dependent protein kinase, and lipid
signaling kinase families

Aly: Arabidopsis lyrata
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Ath: Arabidopsis thaliana

B-lectin: D-mannose-binding lectin

Bdi: Brachypodium distachyon

CAMK: calcium- and calmodulin-regulated kinase
Ccl: Citrus clementina

CDS: DNA coding sequence

CKZ1: casein kinase 1

CMGC: cyclin-dependent kinase, mitogen-activated protein kinase, glycogen synthase kinase
and cyclin-dependent kinase-like kinase
Cpa: Carica papaya

Cre: Chlamydomonas reinhardtii

Csa: Cucumis sativus

Csi: Citrus sinensis

DUF26: Domain of Unknown Function 26
Egr: Eucalyptus grandis

ER: endoplasmic reticulum

GM: gene model

Gma: Glycine max

GO: Gene Ontology

GUB: galacturonan-binding

HMM: hidden Markov model

IRE1L: inositol-requiring kinase 1

Ka: Nonsynonymous substitution rates
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94  Ks: Synonymous substitution rates
95 LRR: leucine-rich repeat
96 LRRNT: leucine-rich repeat N-terminal domain
97  Mes: Manihot esculenta
98  Mgu: Mimulus guttatus
99  Mtr: Medicago truncatula
100  MW: molecular weight
101  MYA: million years ago
102  Osa: Oryza sativa
103  PEK: pancreatic eukaryotic initiation factor-2alpha kinase
104  PK: protein kinase
105  pl: isoelectric point
106  Ppa: Physcomitrella patens
107  Ppe: Prunus persica
108  Ptr: Populus trichocarpa
109  Rco: Ricinus communis
110  RLK: receptor-like kinase
111 S-locus-glycop: S-locus glycoprotein
112 Shi: Sorghum bicolor
113 Sit: Setaria italica
114  Smo: Selaginella moellendorffii
115  Ssp: Saccharum spontaneum

116  STE: serine/threonine kinase
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117  TKL: tyrosine kinase-like kinase

118  TPM: Transcripts per million

119  Vca: Volvox carteri

120  Vvi: Vitis vinifera

121  WAK: wall-associated receptor kinase
122 WGD: whole-genome duplication

123  Zma: Zea mays
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1. Introduction

Sugarcane is one of the world’s most important crops, with the highest production quantity and
the sixth highest net production value in 2016 (FAO, 2020). For years, this crop has accounted
for approximately 80% of the worldwide sugar production (ISO, 2020) and is predicted to
account for nearly 40% of the planet’s first-generation biofuel supply in the near future (Lalman
et al., 2016). However, it is also known for its unprecedented genomic complexity; modern
cultivars arose from interspecific crosses between two autopolyploid species, namely,
Saccharum officinarum (2n = 8x = 80, x = 10) (D'Hont et al., 1998) and Saccharum spontaneum
(2n = 5x =40 to 16x = 128; x = 8) (Panje and Babu, 1960). These hybridizations produced large
(~10 Gb) (D'Hont et al., 1998), highly polyploid (D’Hont and Glaszmann, 2001) and aneuploid
(Sforca et al., 2019) genomes. These genomes also contain numerous repetitive elements, mainly
retrotransposons, which can account for more than 50% of the total number of sequences
(Figueira et al., 2012; Kim et al., 2013; Mancini et al., 2018).

Sugarcane genomic research is severely hampered by this genomic complexity, and for
many years depended on resources from a closely related and economically important species:
sorghum (Sorghum bicolor). S. bicolor (Shi) is a stress-resistant, multifunctional cereal crop that
is primarily grown as a staple food in Africa but can also be used for fodder, sugar and biofuel
production (Serna-Saldivar et al., 2012). Saccharum and Sorghum belong to the Saccharinae
subtribe of the Poaceae family (Clayton, 1987); however, unlike sugarcane, Sorghum has not
undergone recent polyploidization events (~96 million years) (Guo et al., 2019) and thus has a
diploid and much smaller genome that was fully sequenced in 2009 (Paterson et al., 2009). Due
to both the evolutionary proximity between the two species and the extensive collinearity

between their chromosomes, sorghum has historically been considered a diploid model for
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147  sugarcane, even before the genome of either species was available (Grivet et al., 1996; Grivet
148  and Arruda, 2002).

149 The superfamily of protein kinases (PKs) comprises the enzymes responsible for

150 catalyzing the reversible phosphorylation of proteins—one of the most widespread

151  posttranslational modifications across all living organisms. PKs act by transferring the terminal
152  phosphate group from adenosine triphosphate (ATP) to the hydroxyl group of a serine, threonine
153  or tyrosine residue in the target protein (Hunter, 1995). These reactions are key events regulating
154  the activity of proteins and protein-protein interactions; therefore, PKs are relevant in many

155  cellular and metabolic processes (Champion et al., 2004). In plants, they are involved in the

156  regulation of circadian rhythms and cell cycles, the modulation of various developmental and
157  intracellular processes, and the control of cellular cycles and metabolism (Lehti-Shiu and Shiu,
158  2012). A recent compilation on stress responses in crops (Hasanuzzaman, 2020) cites numerous
159  reports of the involvement of PKSs in plant tolerance to drought, heat and metal toxicity;

160  moreover, many studies have shown that these enzymes play roles in the defense response to

161  herbivores and pathogens (Falco et al., 2001; Meng and Zhang, 2013). Several of these responses
162  are predicted to become increasingly relevant in agriculture as a result of climate change; indeed,
163  extreme temperatures and drought are obvious threats from global warming (Dai, 2013; Teixeira
164  etal., 2013). Moreover, pest control is also prone to become more challenging with climate

165 instability (Gregory et al., 2009). Therefore, the study of molecules and processes associated

166  with both biotic and abiotic stresses is highly relevant to the current setting (Ahuja et al., 2010).

167 Dardick et al. (2007) noted that phylogenomic studies are particularly valuable in the
168  analysis of large and conserved gene groups such as PKs because of their ability to form a basis

169  for functional predictions and permit the identification of genes with unique properties, which
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can in turn allow rational selection of candidates for more detailed studies. The first works on the
classification of PKs were based on the conservation and phylogenetic analyses of catalytic
domains of eukaryotic proteins (Hanks et al., 1988; Hanks and Hunter, 1995). Later studies also
considered sequence similarity and domain structure outside the catalytic domains in
categorization (Manning et al., 2002; Niedner et al., 2006). More recently, the availability of
low-cost technologies for sequencing whole genomes have allowed the characterization of
species’ kinomes, i.e., their entire repertoire of PKs. Compared to the human genome, plant
genomes generally contain not only many more PK genes but also atypical kinase families—
either exclusive to plant genomes or of prokaryotic origin (Zulawski and Schulze, 2015). This
expansion likely resulted from segmental, whole-genome, and tandem duplication events
(Hanada et al., 2008). Arabidopsis thaliana was the first plant to have its kinome compiled
(Champion et al., 2004), followed by of several other economically important species such as
rice, soybean, and grapevine (Dardick et al., 2007; Liu et al., 2015; Zhu et al., 2018b). The

kinome of Shi was compiled shortly after the genome sequencing (Lehti-Shiu and Shiu, 2012).

Several studies have analyzed and characterized kinases in sugarcane. The broadest
study is probably the study by Papini-Terzi et al. (2005), who identified sequences
corresponding to signal transduction components in the sugarcane expressed sequence tag
(SUCEST) database (Vettore et al., 2003). Although they obtained substantial results considering
the limited resources available at the time, these authors reported a relatively low number of PKs
(510) in sugarcane. Other studies have indicated that sugarcane PKs are involved in this plant’s
development and response to environmental stimuli, such as salt, cold and drought stresses
(Carraro et al., 2001; Pagariya et al., 2012; Li et al., 2017). Even more relevant is the compelling

evidence that a leucine-rich repeat (LRR) receptor-like kinase is related to sucrose-accumulating

10
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sugarcane tissues and genotypes, indicating its involvement in the regulation of sucrose synthesis
in mature leaves of this sugar crop (Vicentini et al., 2009). However, a more comprehensive
identification and characterization of sugarcane PKs has not yet been performed. Recently, a
high quality, chromosome-level genome assembly for sugarcane was made available (Zhang et
al., 2018). The assembly of the genome of the S. spontaneum (Ssp) AP85-441 clone (2n = 4x =
32) is also allele-defined, i.e., it provides separate sequences of each of the four chromosome
copies. The availability of this information-rich reference has since opened a range of
possibilities in sugarcane research, such as the detailed characterization of specific groups of
genes. Since polyploidy may result in chromosome rearrangements, gene loss and unequal rates
of sequence evolution and can favor gene neofunctionalization (Premachandran et al., 2011), the

sugarcane genome provides fertile ground for related evolutionary and functional studies.

In this context, the main objective of this work was to identify and classify the complete
set of PKs present in the Ssp and Sbhi genomes. For this purpose, we performed phylogenetic
analyses and in silico predictions of the properties and subcellular localization of these proteins.
Taking advantage of the completeness of the available information, we explored the impact of
whole-genome and tandem duplications in the distribution and diversification of the genes
encoding PKs in the genomes of these two plants. Finally, we constructed coexpression networks
using RNA sequencing (RNA-Seq) to evaluate the expression of PK-encoding genes across

different sugarcane and sorghum tissues and genotypes.

2. Materials and methods
2.1. Kinase identification and domain investigation
All kinase identification and classification procedures were performed for both Shi and Ssp. The

Sbi protein-coding gene sequences and additional files from the Shi genome (v3.1.1) were

11
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obtained from Phytozome v.13 (Goodstein et al., 2012). Ssp data were obtained from the AP85-
441 genome (Zhang et al., 2018) (GenBank accession number: QVVOL00000000). The same
pipeline was used for both species. All sequences obtained were aligned against the ‘typical’
Pkinase (PF00069) and Pkinase_Tyr (PF07714) families with hidden Markov models (HMMs)
retrieved from the Pfam database (El-Gebali et al., 2019) using HMMER v.3.3 (Eddy, 1998). An
E-value cutoff of 0.1 was used, and we retained only sequences that covered at least 50% of the
respective Pkinase domain (Lehti-Shiu and Shiu, 2012). To avoid redundancy, we selected only
the longest variant for genes with isoforms. The domain composition of the putative PKs was
also investigated via the HMMER web server (Finn et al., 2011) and Pfam database. The
distribution of PKs across the Shi and Ssp chromosomes was visualized using MapChart v2.2

software (Voorrips, 2002).

2.2. Subfamily classification and phylogenetic analyses

All PKs identified were classified into subfamilies according to HMMs built based on a previous
classification and analyses of kinases of 25 plant species (Lehti-Shiu & Shiu, 2012): Aquilegia
coerulea (Aco), Arabidopsis lyrata (Aly), Arabidopsis thaliana (Ath), Brachypodium distachyon
(Bdi), Carica papaya (Cpa), Citrus clementina (Ccl), Citrus sinensis (Csi), Chlamydomonas
reinhardtii (Cre), Cucumis sativus (Csa), Eucalyptus grandis (Egr), Glycine max (Gma),
Manihot esculenta (Mes), Medicago truncatula (Mtr), Mimulus guttatus (Mgu), Oryza sativa
(Osa), Populus trichocarpa (Ptr), Prunus persica (Ppe), Physcomitrella patens (Ppa), Ricinus
communis (Rco), Selaginella moellendorffii (Smo), Setaria italica (Sit), Vitis vinifera (Vvi),
Volvox carteri (Vca), Zea mays (Zma), and an earlier version of the Shi genome, which we
called v.1. This classification was confirmed through phylogenetic analyses. The Pkinase

domains of the putative PKs were aligned using Muscle v.3.8.31 (Edgar, 2004), and a

12
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phylogenetic tree was estimated using a maximum likelihood approach implemented in
FastTreeMP v2.1.10 (Price et al., 2010) with 1,000 bootstrap replicates using the CIPRES
gateway (Miller et al., 2010). Different trees were constructed for (1) PKs from Shi; (I1) PKs
from Ssp; and (111) PKs from both Sbhi and Ssp. The dendrogram visualization and plotting were
generated using R statistical software (R Core Team, 2013) with the ggtree (Yu et al., 2017) and

ggplot2 (Villanueva and Chen, 2019) packages.

2.3. Kinase characterization

For each PK identified, the following characteristics were determined: (1) gene chromosomal
location and intron number, using GFF files; (11) predicted subcellular localization, with WoLF
PSORT (Horton et al., 2007), CELLO v.2.5 (Yu et al., 2006) and LOCALIZER v.1.0.4
(Sperschneider et al., 2017) software; (111) presence of N-terminal signal peptides, using SignalP
v.4.1 Server (Petersen et al., 2011); (IV) presence of transmembrane domains, using TMHMM
v.2.0 Server (Krogh et al., 2001); and (V) Gene Ontology (GO) categories (Ashburner et al.,
2000), using the Blast2GO tool (Conesa et al., 2005) with the SWISS-PROT (Bairoch and
Apweiler, 2000) and UniProt (UniProt Consortium, 2007) databases. Additionally, for Sbi PKs,
alternative splicing (AS) events were investigated using the Plant Alternative Splicing Database
(Min, 2013; Min et al., 2015). The comparison of these characteristics and calculation of
descriptive statistics were performed with R statistical software. Analysis and visualization of
GO categories were performed using the REVIGO tool (Supek et al., 2011) and R (R Core

Team, 2013).

2.4. Duplication events
To investigate PK duplication events, we used the Multiple Collinearity Scan (MCScanX) toolkit

(Wang et al., 2012). Tandem duplications were visualized with MapChart v2.2 software

13
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(Voorrips, 2002) and segmental events were visualized in circos plots with Circos software
(Krzywinski et al., 2009). Synonymous substitution (Ks) and nonsynonymous substitution (Ka)
rates were also estimated for segmental duplications using MCScanX (Wang et al., 2012), and
Ks values were used to estimate the date of duplication events: T = Ks/24, where 1 is the mean

value of the clock-like rates of synonymous substitutions (6.5 x10-9) (Gaut et al., 1996).

2.5. RNA-Seq experiments

Data from several RNA-Seq experiments were used to estimate kinase expression. Sbi datasets
were retrieved from NCBI’s Sequence Read Archive (SRA) (Leinonen et al., 2010) and are
described in Supplementary Table S1. Samples from different tissues (pollen, shoots, leaves,
microspores, seeds, epidermal tissue, spikelets, roots and internodes) and cultivars (BT X623,
BTX642, RTX430, and R07020) were used (Dugas et al., 2011; Freeling et al., 2015; Makita et
al., 2015; Kebrom et al., 2017; Varoquaux et al., 2019). To analyze sugarcane kinase expression,

we used novel RNA-Seq datasets described in the following section.

2.5.1. Sugarcane plant material and RNA-Seq
Sugarcane hybrids and S. officinarum and Ssp clones were used for expression analyses in
sugarcane. Four independent experiments were performed and are detailed in Supplementary
Table S2. Experiment 1 was based on root material from the RB867515, RB92579, RB855113,
RB855536, SP79-1011, and SP80-3280 hybrid cultivars. This trial was carried out in a
greenhouse and used three replicates per cultivar in a completely randomized design. Plants were
grown in 18-L plastic pots with a mixture of 20% commercial planting mix and 80% sand.
Ninety-five days after planting, we sampled the root material of each plant, avoiding tiller roots.
Experiments 2 and 3 were performed with leaf and culm (internode 1) samples,

respectively, from plants grown in the field in Araras, Brazil (22° 18 41.0 S, 47° 23 05.0 W, at an
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altitude of 611 m). Leaf samples were collected from portions of the top visible dewlap leaves
(+1) of six-month-old sugarcane plants in April 2016. We collected the middle section of each
leaf, removing the midrib. For culms, samples from the first internode were collected at four time
points in 2016: April (synchronous with leaf sampling), June, August and October.

In Experiment 2, we used samples from the SP80-3280, RB72454 and RB855156 hybrid
cultivars; TUC71-7 and US85-1008 hybrids; White Transparent and Criolla Rayada S.
officinarum genotypes; IN84-58, IN84-88, Krakatau and SES205A Ssp genotypes; and 1J76-318
Saccharum robustum genotypes. For six genotypes - SP80-3280, RB72454, US85-1008, White
Transparent, IN84-58, SES205A - we collected and sequenced three biological replicates, while
the others were represented by one biological replicate. All leaf samples were sequenced in two
lanes. In Experiment 3, culm samples were collected from the SP80-3280 and R570 hybrid
cultivars, F36-819 hybrid, and IN84-58 S. spontaneum genotype. Culm samples were sequenced
in six lanes.

Experiment 4 was based on samples from the SP80-3280 and IACSP93-3046 hybrid
cultivars, Badila De Java S. officinarum genotype, and Krakatau Ssp genotype. RNA samples
were extracted in triplicate from the top (internode 3) and bottom (internode 8) culms and
collected in the field in Ribeirdo Preto, Brazil (21° 12 28.7 S, 47° 52 29.1 W) in June 2016.

After collection, samples were immediately frozen in liquid nitrogen and stored at -80°C
until processed. Total RNA was extracted from 200 mg of ground roots and 50 mg of ground
leaves or culms using an RNeasy Plant Mini Kit (Qiagen, Valencia, CA, United States). We
quantified the RNA and verified its integrity in a 2100 BioAnalyzer using a Eukaryote Total
RNA Nano Assay (Agilent Technologies). A total of 300 ng of RNA per sample was used to

prepare cDNA libraries with a TruSeq Stranded mMRNA LT Kit (Illumina, San Diego, USA). All
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libraries were sequenced on the HiSeq 2500 platform (Illumina, San Diego, USA).

2.6. RNA-Seq data processing and coexpression network construction

The quality of the RNA-Seq data was assessed using FastQC software (Andrews, 2010). For read
filtering and adapter removal, we used Trimmomatic v.0.39 (Bolger et al., 2014). In the Shi and
sugarcane datasets, bases with Phred scores below 20 were removed, and reads shorter than 30
bp were filtered out. In the sugarcane datasets, we also removed the first 12 bases of each read
and increased the filter length to 75 bp. For transcript quantification, we used the DNA coding
sequences (CDSs) from each species as reference, with k-mers of lengths 31 and 17 for the Ssp
and Sbhi genomes, respectively, in Salmon v.1.1.0 software (Patro et al., 2015). PK expression
quantification was evaluated with transcripts per million (TPM) values. Heatmaps visualizing the
expression of kinase subfamilies among tissues and cultivars were generated using the R package
pheatmap (Kolde and Kolde, 2015) with average TPM values and a complete-linkage
hierarchical clustering approach based on Euclidean distances.

Coexpression networks were estimated for PK subfamilies using a minimum Pearson
correlation coefficient of 0.6 between PK quantifications across different subfamilies. Network
modeling, analysis and visualization were performed using the R package igraph (Csardi and
Nepusz, 2006). To assess the Ssp and Shi network structures and subfamily characteristics within
the networks, hub scores for each subfamily were calculated considering Kleinberg’s hub
centrality scores (Kleinberg, 1999), edge betweenness values estimated by the number of
geodesics passing through the edge (Brandes, 2001), and communities defined using a

propagating label approach (Raghavan et al., 2007).

3. Results

3.1. Genome-wide identification of PKs in sugarcane and sorghum
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331  All Ssp and Shi protein sequences available were aligned against kinase domains using

332 HMMER, and 3,729 (Ssp) and 1,910 (Sbi) different sequences showed significant

333  correspondence with Pkinase families (minimum E-value of 0.1). To avoid redundancies in this
334  set, we removed Shi isoforms by using its GFF file, resulting in 1,276 sequences. Additionally,
335  the kinase domain coverage of all Ssp and Sbi alignments were evaluated; 810 (Ssp) and 66 (Sbi)
336  sequences did not have a minimum domain coverage of 50% and were therefore discarded, as
337  they likely represented atypical kinases or pseudogenes (Lehti-Shiu and Shiu, 2012; Liu et al.,
338  2015). Ultimately, we identified 2,919 putative Ssp and 1,210 putative Shi PKs. Supplementary
339  Tables S3 and S4 show the discrimination of the kinase domain correspondence for the selected
340  sequences; the data indicate that some PKs (228 Ssp and 49 Shi PKs) contained multiple kinase
341  domains.

342 Genome-wide identification of Ssp PKs was performed without prior knowledge of

343  allelic relationships among genes; however, due to the allele specificity of Ssp PKs, we also

344  evaluated their gene model (GM) organization as defined by Zhang et al. (2018). These authors
345  associated different sets of allele copies, paralog and tandem duplications to only one

346  representative GM. The 2,919 Ssp PKs corresponded to 1,345 different GMs, and the number of
347  Ssp PKs was only ~5% higher than that of Sbi PKs, which did not include allele differences. By
348  analyzing the GM description file (Zhang et al., 2018), we identified 3,717 different gene

349  configurations for the 1,345 selected GMs, exceeding the number of detected kinases (2,919).
350 However, these divergences in quantity were related only to tandem and paralogous duplications,
351  and the number of allele copies (2,575) was identical in both analyses.

352 The Ssp and Shi PKs were further classified into groups and subfamilies using HMMs

353  built based on the kinase sequences of 25 plant species identified by Lehti-Shiu & Shiu (2012).
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PKs were classified into the subfamily with the top-scoring HMM correspondence. This process
resulted in the identification of 119 kinase subfamilies in Ssp and 120 in Sbi (Supplementary
Tables S5 and S6), corresponding to 20 different groups. This classification was confirmed by
three different phylogenetic trees (Supplementary Figs. S1-S3) estimated based on Shi PKs, Ssp
PKs and all PKs from the two species. In the dendrogram, only 7 sequences in Ssp and 2 in Sbi
did not cluster with any other kinase subfamily. These unclassified PKs were included in an
"Unknown™ category and considered probable novel gene kinase subfamilies. Comparison of the
Ssp GM and Shi PKs revealed that the number and relative proportion of proteins in each group
was similar (Supplementary Table S7) with 40% of subfamilies' quantities having the same
values for Ssp and Shi.

Overall, the number of PKs in each subfamily was low. The mean number of PKs per
subfamily was 10 in Shi (median, 3), and 25 in Ssp (median, 4). The most abundant group in
both species was the receptor-like kinase (RLK)-Pelle group, accounting for ~70% of the PKs,
followed by the calcium- and calmodulin-regulated kinase (CAMK); cyclin-dependent kinase,
mitogen-activated protein kinase, glycogen synthase kinase and cyclin-dependent kinase-like
kinase (CMGC); tyrosine kinase-like kinase (TKL); serine/threonine kinase (STE); and cyclic
AMP-dependent protein kinase (CAPK), cGMP-dependent protein kinase, and lipid signaling
kinase families (AGC); and casein kinase 1 (CK1) groups. All other groups contained less than
1% of the total number of PKs. The clear separation and high abundance of the RLK group can
be seen clearly in Fig. 1. These subfamily abundances were similar for Ssp and Sbi, and only the
pancreatic eukaryotic initiation factor-2alpha kinase (PEK_PEK) subfamily was exclusive to Sbi.
The absolute counts ranged from 1 to 189 in Ssp GMs and from 1 to 133 in Shi; the most

abundant subfamilies in these species were RLK-Pelle_DLSV (14.04% in Ssp and 10.99% in
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Shi), RLK-Pelle_WAK (4.38% in Ssp and 6.12% in Shi), RLK-Pelle_L-LEC (6.84% in Ssp and
5.7% in Shi), RLK-Pelle_SD-2b (6.39% in Ssp and 4.96% in Sbi), RLK-Pelle_LRR-XII-1
(2.67% in Ssp and 4.79% in Shi), RLK-Pelle_LRR-XI-1 (4.68% in Ssp and 4.21% in Sbi) and
CAMK_CDPK (3.27% in Ssp and 3.22% in Shi).

Additionally, we compared the identified subfamily quantities to 25 other plant species
included in the study of Lehti-Shiu & Shiu (2012). The heatmap (Supplementary Fig. S4)
visualizing the similarities in the numbers of PKs indicated a closeness between the Ssp and Sbi
kinase compositions; however, both exhibited closer relationships with other species than with
each other. The dendrogram constructed based on the columns (plant species) enabled the
identification of the species most similar to Sbi and Ssp in terms of PK quantities. Sbi was found
to belong to a cohesive clade with Zma, Bdi, and Shi v.1; Ssp belonged to a clade with Sit and
Osa. Interestingly, even though these groups were separated by other species, together, these two
clusters corresponded to all of the monocotyledon species used in this comparison, and the other
clusters corresponded to dicotyledon species, bryophytes and green algae. Considering these two
clusters containing Shi and Ssp, 26 subfamilies were not represented by PKs, corroborating the

correspondence of the PK quantities between these species.

3.2. Characterization of PKs

Ssp and Shi PKs were distributed across all Ssp and Shi chromosomes and alleles (Fig. 2A and
B). We found 1,209 PKs among all 10 Shi chromosomes and 1 PK in a separated scaffold
(Supplementary Table S8). The Shi PK quantities ranged from 67 (5.54%) on chromosome 7 to
184 (15.21%) on chromosome 3. In Ssp (Supplementary Table S9), the PK quantities across
allelic configurations were similar (762 in A, 748 in B, 675 in C, and 734 in D), and in all

configurations, chromosome 2 had the most and the chromosome 6 had the fewest PKs. The
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accumulation of PKs was generally consistent with an increase in the chromosomal length.

The intron distribution differed between Ssp and Shi PKs (Supplementary Tables S10 and
S11) and did not exhibit a clear distribution pattern on a specific chromosome (Fig. 2A and B). A
large number of PKs were intronless (154 in Sbi and 329 in Ssp). Additionally, all identified PKs
were analyzed against the Pfam database to retrieve related nonkinase domains. In Sbi, we
identified 70 additional domains (Supplementary Table S12) distributed across 662 PKs
(Supplementary Table S13). Interestingly, none of these additional domains were found in the 49
PKs containing multiple kinase domains (Supplementary Table S14). In Ssp, we identified 168
additional domains (Supplementary Table S15) across 1,423 PKs (Supplementary Table S16).
The 228 Ssp PKs with multiple kinase domains (Supplementary Table S17) also did not present
nonkinase domains. These additional domains were similar in Sbi and Ssp PKs (60 domains in
common). The 5 most abundant domains in Shi were LRRs, with 8 in 193 PKs; leucine-rich
repeat N-terminal domains (LRRNTS), with 2 in 192 PKs, D-mannose-binding lectin (B-lectin)
domains, in 83 PKs; wall-associated receptor kinase (WAK) galacturonan-binding (GUB)
domains, in 72 PKs; and S-locus glycoprotein domain (S-locus-glycop) domains, in 71 PKs. In
Ssp, the 5 most abundant domains were LRRNTS, with 2 in 390 PKs; LRRs, with 8 in 351 PKSs;
B-lectin domains, in 218 PKs; S-locus-glycop domains, in 185 PKs; and PAN-like domains
(PAN_2), in 182 PKs. Four of the five domains had the same abundance ranking in both species.

A full GO annotation of Shi and Ssp PKs was performed with Blast2GO (Supplementary
Tables S18 and S19). In Sbi, we found 1,581 different GO terms related to 18,320
correspondences among the PKs. These terms were separated into 3,857 (21.05%) terms related
to the cellular component GO category, 3,752 (20.48%) to the molecular function category, and

10,711 (58.47%) to the biological process category. In Ssp, we found more categories (1,875)
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and more correspondences (44,582) due to the larger size of the Ssp kinome. However, the
proportion of GO terms was similar: 9,193 (20.62%) in the cellular component GO category,
9,429 (21.15%) in the molecular function GO category, and 25,960 (58.23%) in the biological
process GO category. This clear similarity can be observed in the GO analysis pie charts in Fig.
2C and D. The 30 most abundant GO terms in Shi and Ssp (with 26 categories in common) are
also shown. Due to the clear comprehensiveness of GO categories related to biological
processes, an additional analysis was performed using these Shi and Ssp GO terms. Using
REVIiGO software, treemaps were generated to summarize these categories based on semantic
similarities (Supplementary Fig. S5A and B); the most abundant biological processes were
related to protein phosphorylation, defense response and cellular development.

For Shi PKs, we investigated the possible occurrence of alternative splicing using the
Plant Alternative Splicing Database. One hundred Shi kinase genes were found to undergo
associated alternative splicing events, and GO analysis of the most frequent biological processes
associated with these genes (Supplementary Fig. S5C) showed changes in the most frequent
categories considering the entire dataset of PK-related GO terms. The most frequent category
organization was defense response, which was the third most frequent in the entire set of Shi PK
GO terms. In addition, programmed cell death was included as a category organization instead of
cell growth.

We also explored the presence of signal peptides and transmembrane helices in the PKs
and investigated their estimated molecular weights (MWSs), theoretical isoelectric points (pls),
and subcellular localization (Supplementary Tables S20 and 21). Among the Sbi PKs, ~40%
were predicted to contain signal peptides (Fig. 2A), in contrast with ~30% of Ssp PKs (Fig. 2B).

The MW and IP distributions of Sbi and Ssp PKs are shown in Fig. 2A and B, respectively. Most
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Ssp PKs (~59%) did not contain transmembrane helices, while 50% of Shi PKs did not. The
remaining sequences in both Sbi and Ssp PKs contained many (between 1 and 3) transmembrane
helices (Fig. 2C and D). To predict the subcellular localization of PKs, we used three different
software packages (WoLF PSORT, CELLO and LOCALIZER). The results indicated high
divergence among these methods; thus, we considered only the predictions identified by a
consensus of at least two of the three tools used. The localization of 1,425 Ssp and 616 Shi PKs
was predicted. The PKs were classified as localized in the chloroplast, cytoplasmic, extracellular,
mitochondrial, nuclear or membrane regions (Fig. 2C and D). The most frequently identified
localization was the membrane, as also indicated by the high frequency of the plasma membrane
GO term.

The attributes of the PKs are summarized at the kinase subfamily level in Supplementary
Table S22 for Sbi and in Supplementary Table S23 for Ssp. To characterize kinase subfamily
gene structures, we first calculated the mean quantity of introns per kinase in each subfamily and
then determined the standard deviation and the coefficient of variation. As already shown
(Supplementary Tables S5 and S6), several subfamilies contained only one representative gene
(30 in Shi and 33 in Ssp). In Ssp, some of these subfamilies with one GM had high intronic
divergences in gene allelic copies (with coefficients of variation ranging from 0 to ~141%).
Considering only the subfamilies with more than one member, increased coefficients of variation
were observed (ranging from 0 to ~241%), corresponding to significant discrepancies in gene
organization within kinase subfamilies. By filtering the subfamilies with a maximum coefficient
of variation of 20% and at least 2 PKs, we identified only 37 Shi and 12 Ssp subfamilies with a
more cohesive structure, but most of these included only a few PKs. The five subfamilies among

these structurally organized groups with the highest number of PKs were RLK-Pelle_LRR-I-2,
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469 TKL_CTR1-DRK-2, NEK, CK1_CK1-Pl and PEK_GCN2 in Ssp and RLK-Pelle_LRR-II, RLK-
470  Pelle_LRR-I-1, RLK-Pelle_LRR-V, RLK-Pelle_RLCK-VIII, and RLK-Pelle_RLCK-V in Shi.
471  Interestingly, the highest intron numbers were also observed in members of subfamilies

472 belonging to RLK-Pelle groups, with the exception of PEK_GCNZ2 in Shi.

473 Protein properties across kinase subfamilies were also summarized and did not exhibit
474  considerable differences. Based on a maximum coefficient of variation of 20%, 13 subfamilies in
475  Shi and 15 in Ssp had considerable variations in the IP. The MW exhibited higher variability in
476  Ssp than in Shi (66 subfamilies with more diverse values, in contrast to 20 in Shi). Regarding the
477  presence of signal peptides, all PKs in only 18 Shi PK subfamilies (6 of which contained only
478  one PK) contained these subsequences; the subfamilies with the most members were RLK-

479  Pelle_LRR-V (12 members) and RLK-Pelle_ WAK_LRK10L-1 (7 members). In Ssp, all PKs in
480  only 8 subfamilies contained signal peptides, with the inositol-requiring kinase 1 (IRE1) and

481 RLK-Pelle_RLCK-X subfamilies each containing 5 members. Similarly, these highlighted

482  subfamilies also contained transmembrane helices across their kinomes.

483 To complement the protein properties observed in kinase subfamilies, the domain

484  composition was described (Supplementary Tables S24 (Sbi) and S25 (Ssp)). Interestingly, the
485 AGC_RSK-2 subfamily had the highest number of PKs with multiple kinase domains in both Sbi
486 (19 PKs) and Ssp (20 PKs). Furthermore, we investigated the percentage of multikinase domain-
487  containing proteins among the PKs in each subfamily (Supplementary Tables S22 and S23). The
488  highest percentage (100%) was observed in the AGC_NDR and CMGC_SRPK subfamilies in
489  Sbhiand in the CMGC_SRPK, CMGC_CDK-CCRK subfamilies in Ssp. Even though the

490  AGC_NDR subfamily did not contain all of the proteins with multiple kinase domains in Ssp, 10

491  of the 15 (~66%) had this characteristic. In general, the same domains were observed in Shi and
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Ssp, as already described. Across subfamilies, the 10 most abundant protein domains were
almost the same in Sbi and Ssp and comprised the LRRNT_2, LRR_8, LRR_1, LRR_6, LRR_4,
B_lectin, S-locus-glycop, GUB_WAK _bind, salt stress response, and antifungal domains. The
10 subfamilies with more varied domains belonged to the RLK-Pelle group in Shi. However, in

Ssp, the CMGC_CDK group was the most domain-diverse subfamily.

3.3. Kinase duplication events in sugarcane and sorghum

Gene duplications in Shi and Ssp kinases were investigated using MCScanX. We identified
numerous kinase genes (1,165 in Shi and 2,919 in Ssp) with an origin associated with dispersed
(7.73% in Shi and 1.68% in Ssp), proximal (3.18% in Shi and 1.88% in Ssp), tandem (10.04% in
Sbhi and 8.94% in Ssp) and segmental duplications (78.97% in Shi and 87.43% in Ssp). These
classifications are described in Supplementary Tables S26 and S27. Ssp PKs with origins related
to tandem duplications were differentially distributed across all allele copies on chromosomes
(ranging from 2 events on Chr4-B to 16 events on Chr3-A). The mean value per allele was 8.16,
with the highest concentration in allele copies on chromosome 3. A visual map of all Ssp PKs
organized in tandem was constructed using chromosomal representations according to their
physical location retained in the GFF file and were colored according to kinase subfamilies (Fig.
3B). Tandemly organized Shi PKs were also visualized (Fig. 4B). All Shi chromosomes
contained PKs with origins associated with tandem duplications. Chromosome 4 contained only
1 PK with a tandem duplication-associated origin, and chromosomes 2 and 3 had the most such
PKs (26 PKs on both). By analyzing the tandemly duplicated PKs within subfamilies, we found
19 subfamilies containing PKs that originated by tandem duplication. The highest percentages of
such Sbhi PKs were found in the RLK-Pelle_ RLCK-Os (80%), RLK-Pelle_LRR-I-1 (37.5%),

CMGC_CDKL-Os (34.78%), RLK-Pelle_LRK10L-2 (34.48%), and CMGC_CK2 33.33%)
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subfamilies. In Ssp, 64 subfamilies had tandemly duplicated PKs, and the 5 subfamilies with the
highest percentages were RLK-Pelle_RKF3 (100%), RLK-Pelle_LRR-VII1I-1 (37.5%),
CAMK_CAMK1-DCAMKL (33.33%), RLK-Pelle_LRR-XIl1Ib (30%), and TKL_Gdt (28.57%).

In the Ssp genome, the distribution of PKs did not exhibit a clear pattern along
chromosomes (Fig. 3B); however, in the Sbi genome, PK genes were concentrated in
subtelomeric regions and were almost nonexistent in pericentromeric regions (Figure 4B). This
pattern of distribution was observed more clearly when the tandemly distributed Shi PKs were
considered. Due to the importance of genes duplicated in tandem in biological processes, we also
performed GO analysis to determine the categories related to tandemly duplicated kinases. The
GO terms describing the biological processes of these proteins were clearly similar between Ssp
and Sbi (Figs. 3A and 4A), and considerable correspondence to the total number of GO terms
related to the entire set of PKs was observed (Supplementary Fig. S5A and B).

Segmental duplications accounted for the highest percentage of identified duplication
types in both Shi and Ssp PKs. The highest quantities in Ssp were observed in the allelic copies
of chromosomes 1 and 2, which also contained the most PKs. In Shi, chromosome 1 exhibited
the most segmental duplications, even though chromosome 3 had the most PK genes. For all
gene pairs within these collinear duplications, we calculated the Ka and Ks values to obtain a
time indicator of these events and evaluated the primary influence of PK expansion by
calculating the Ka/Ks ratio. We considered each gene pair to be under neutral (Ka/Ks=1),
negative (Ka/Ks<1) or positive selection (Ka/Ks>1) (Zhang et al., 2006). The distribution of Ks
values is visualized in Fig. 2E and F, and a full contrast is provided in Supplementary Tables S28
and S29. The Ks values were clearly more evenly distributed in Shi than in Ssp, which had 1,287

(27.5%) segmentally duplicated PKs with a Ks of < 0.05. We used the Ks values to estimate the
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occurrence times of these duplications; the times ranged between 0 and 230.1 million years ago
(MYA) in Ssp, with an average of 45.6 MY A, and between 4.9 and 229.7 MYA in Sbi, with an
average of 96.8 MY A. Most segmental duplications with Ks<0.05 in Ssp were estimated to have
occurred less than 3.83 MYA. Regarding the Ka/Ks ratio, we found the largest percentage of
gene pairs as likely to be under negative selection in both species (~86% in Ssp and ~88% in
Shi).

All collinear duplications are shown in Fig. 5. The segmental events among alleles had
different configurations, but in most duplications, the order of PKs on one allele was retained on
the other allele (Fig. 5A). The correspondences among different chromosomes were much higher
in Ssp (Fig. 5B) than in Shi (Fig. 5C), mainly because of the allele specificity of Ssp, which is
not known for Sbi. The duplication patterns were similar between Ssp and Sbi, and this genomic
organization is clearly shown in Fig. 5D, where the kinase genomic correspondences indicate the
increased synteny between these two species. In most PK subfamilies, the origin of most PKs
was characterized by segmental duplications (109 subfamilies in Sbi and 115 in Ssp;
Supplementary Tables S22 and S23). Interestingly, 4 subfamilies in Ssp (RLK-Pelle_RKF3,
CMGC_PI-Tthe, SCY1 SCYL2, and CMGC_GSKL) and 8 in Sbi (RLK-Pelle_ RLCK-Os,
PEK_GCN2, RLK-Pelle_ RLCK-XI, STE_STE20-PI, TLK, SCY1_SCYL2, TKL-PI-8, and TKL-
PI-7) did not contain any PKs possibly originated by segmental duplications.

Due to the PK allele specificity in Ssp, we performed additional analysis to assess the
distribution of kinase copies among alleles and investigated possible associations among allelic
copies, duplications and related domains (Fig. 6). Each Ssp GM can have up to four allelic
copies, depending on the genomic organization of the gene. Subfamilies with larger numbers of

PKs had a more dispersed organizational profile in terms of the number of allelic copies per GM.
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Subfamilies with fewer GMs, on the other hand, did not have a uniform configuration. These
subfamilies constitute the majority of the Ssp kinome (~60% of the subfamilies had 5 or fewer
representative GMs, and 33 subfamilies (~30%) had only 1 GM). Even with the few related
proteins, these small subfamilies did not exhibit similar characteristics. Only 3 of these GMs had
copies on the 4 alleles, 10 GMs contained copies on 3 alleles, 9 on 2 alleles, and 11 on only one
allele (3 in allelic model A, 3in B, 2 in C and 3 in D). More tandem and segmental duplications
were clearly observed in subfamilies with more elements, but this pattern did not hold for the
quantity of functional domains and multikinase domains. Even though the subfamilies foremost
clearly exhibiting these characteristics have already been described, these results are further

supported in Fig. 6.

3.4. Estimates of kinase expression and construction of coexpression networks

Quantification of kinase expression in Shi and Ssp was performed via a wide variety of datasets
and comprised different tissues and genotypes (Supplementary Tables S1 and S2). For each
species, the bioinformatic procedures included quality filtering of the raw sequencing reads
followed by transcript quantification using Salmon software with the total set of Shi and Ssp
CDSs. From the CDS quantifications, we separated the subset of kinase coding genes. Via TPM
values, Sbi kinase expression was quantified in 205 samples (Supplementary Table S30); Ssp
kinase expression, in 234 (Supplementary Table S31). To quantify expression at the subfamily
level, the TPM values for all PK members in a subfamily were averaged in each sample
(Supplementary Tables S32 and S33). However, most of the experiments contained several
biological and technical replicates, and the sample TPM values were also averaged to separately
represent the unique characteristics of a tissue from a specific genotype (Supplementary Tables

S$34 and S35).
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584 The expression quantification of Ssp and Sbi kinase subfamilies was visualized with a
585  heatmap (Fig. 7). Evident distinctions are visible in the heatmap columns. Considering the

586 hierarchical clustering analysis performed combining genotypes and tissues (columns) from both
587  species, there was a noticeable division into 5 groups, also identified by the total within sum of
588  squares using a range of group configurations (2-10). From right to left in the heatmap, the

589  groups are separated into (1) sugarcane samples from internodes and roots; (I1) Shi samples from
590 internodes, roots and spikelets; (111) Sbi samples from epidermal tissues, seeds and microspores;
591  (IV) Shi and sugarcane samples from leaves and shoots; and (V) Shi samples from pollen. The
592  expression patterns of kinase subfamilies were more similar among similar tissues from different
593  species than among different tissues from the same species. However, these clusters contained
594  subdivisions supporting the species specificities.

595 The differences in subfamily expression profiles were investigated further. For each

596  family, we calculated the dispersion of expression among genotypes and tissues by using the

597  statistical measures of the standard deviation and coefficient of variation (Supplementary Tables
598  S36 and S37). The divergence of these measures among tissues was high in Sbi, as observed in
599  the heatmap and indicated by the high values of the coefficient of variation (ranging from ~38%
600 to ~297%). In Ssp, on the other hand, 16 subfamilies exhibited relatively uniform expression
601  patterns in the analyzed samples (with coefficient of variation of less than or equal to 20%). The
602  coefficients of the other subfamilies ranged from ~21% to ~213%. This difference is possibly
603  explained by greater diversity of tissues used for Shi than for Ssp. To identify the kinase

604  subfamilies with the highest and the lowest expression values, we calculated additional statistical
605  measures to summarize the distribution of TPM values in each subfamily (i.e., minimum,

606  maximum, mean, and 1st, 2nd and 3rd quartiles). We selected the 12 subfamilies (10% of the
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dataset) with the highest and lowest values of all statistical measures employed. We considered a
subfamily as having the highest or the lowest expression values if that subfamily was ranked in
at least 4 of the 6 measures. We identified 8 subfamilies in Sbi and 12 in Ssp with the highest
expression patterns in the dataset. Surprisingly, three of these subfamilies (CK1_CK1,
CMGC_GSK, and CMGC_RCK) had the highest expression value in both species. Even though
their expression values were significantly increased, these subfamilies did not contain the highest
numbers of kinases (CMGC_RCK, for example, contained only 3 members in both Sbi and Ssp).
In Shi, we also found CAMK_CDPK, CMGC_CK2, CMGC_MAPK, RLK-Pelle_RLCK-X, and
STE_STE11; and in Ssp, AGC_PKA-PKG, CAMK_CAMKL-CHK1, CAMK_OSTLL,

CK1 _CK1-Pl, CMGC_CDK-CDK8, CMGC_CDK-PITSLRE, CMGC_DYRK-YAK, Group-PI-
4,and SCY1 SCYL2.

By this approach, 8 subfamilies in Ssp and 9 in Shi with the lowest expression values
were identified, with two overlapping subfamilies (CMGC_CDKL-Os and RLK-Pelle_ URK-3).
In Shi, we also identified BUB, CAMK_CAMK1-DCAMKL, RLK-Pelle_LRR-I-1, RLK-
Pelle_RLCK-V, RLK-Pelle_ WAK, TLK, and ULK_Fused. In Ssp, we found Group-PI-2, RLK-
Pelle_LRR-XIlla, RLK-Pelle_URK-2, TKL_Gdt, TKL-PI-8, and ULK_ULK4. RLK-
Pelle_URK-3 had only one kinase member in both the Sbi and Ssp kinomes; however,
CMGC_CDKL-Os had 37 kinases in Ssp and 23 in Shi. Due to the apparent lack of a correlation
between the expression values and the numbers of kinases in the subfamilies, we calculated the
Spearman correlation coefficient between the subfamily expression estimates and kinase
quantities (Supplementary Tables S38 and S39), and we did not find any combination of
genotype/tissue with a significant correlation—even when only genes with tandem or segmental

duplications were compared.
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Together, the dendrogram and the heatmap indicate the presence of groups of subfamilies
with high similarities, whose expression patterns changed jointly according to the
tissue/genotype. Collectively considering all Shi and Ssp quantifications, we evaluated their
similarities through correlation analysis. The strongest correlations were higher than 0.97 for the
two subfamily pairs RLK-Pelle_ RLCK-Os/RLK-Pelle_RLCK-Vlla-2, and RLK-Pelle_ RLCK-
Vlla-2/RLK-Pelle_RLCK-X. However, to expand and complement the assessment of the
similarities in RNA expression among the subfamilies, we also constructed coexpression
networks based on the expression correlation among samples in each subfamily. Two networks
were constructed: one for Sbhi and one for Ssp (Fig. 8). Each node in the network represents a
different kinase subfamily (the node sizes represent the mean of the expression values within the
subfamily) and each connection has a minimum Pearson correlation coefficient of 0.6 (the edge
sizes represent the degree of the correlation). With the network structure, we evaluated the
presence of cohesive clusters formed by correlated subfamilies using a network community
detection approach based on label propagation. In the Shi network (Fig. 8A), we identified 4
different modules with 87, 15, 3 and 9 elements. Four modules were also identified in the Ssp
network (Fig. 8C), but the distribution of the elements differed (83, 13, 8, and 2). In both
networks, some subfamilies (6 in the Sbi network and 13 in the Ssp network) were identified as
disconnected elements without any significant relationship with the other elements of the
networks. There was no evident similarity between these communities (Supplementary Fig. S6,
Supplementary Tables S40 and S41), indicating the differences in the expression pattern
correspondences between Ssp and Shi.

Apparently, the Shi and Ssp networks exhibited many different forms and structures;

however, by highlighting the connections in common between the Shi and Ssp networks (Fig. 8B
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and D), we observed a similar and important substructure between these representations. The
main network components were connected by this core structure, indicating the strongest
correlations between kinase subfamilies. The Ssp network (Fig. 8D) contained an edge that
clearly separates the network into two components; interestingly, this edge also belonged to the
common structure. By coloring the network edges according to the betweenness measure (Fig.
8A and B), we defined the connections between subfamilies that were most likely to represent
vulnerabilities in the networks, possibly indicating influential subfamilies in this complex
system. The most important connections were related to the subfamily pairs
CAMK_CDPK/RLK-Pelle_LRR-VI-2 and CAMK_CDPK/CMGC_RCK in Shi, and to RLK-
Pelle_L-LEC/RLK-Pelle_LRR-VIII-1, RLK-Pelle_CR4L/RLK-Pelle_LRR-VIII-1, and RLK-
Pelle_CR4L/RLK-Pelle_LRR-Xb-1 in Ssp (Supplementary Tables S42 and S43).

The last analysis we performed on the networks aimed to identify the most influential
subfamilies by ranking the nodes according to their hub scores. These scores were used to color
the nodes in the network (the correspondences between nodes and subfamilies are indicated in
Supplementary Figs. S7 and S8 and Supplementary Tables S40 and S41). The highest hub scores
denote kinase subfamilies with the most connections in the network. The top 5 scores belonged
to the subfamilies RLK-Pelle_LRR-II1I, RLK-Pelle_RLCK-XII-1, CMGC_CDK-CRK7-CDKOQ,
CMGC_GSK, and RLK-Pelle_Extensin in Ssp, and to the Unknown category, RLK-Pelle_LRR-
XV, CMGC_GSK, STE_STEZ20-Fray, and CAMK_OST1L in Sbi. Additionally, high expression

values in subfamilies did not indicate increased hub scores (Fig. 8).

4. Discussion
Sugarcane possesses one of the most complex genomes known among crops (O’Hara and

Mundree, 2016; Mancini et al., 2018; De Souza Barbosa et al., 2020) which could, until recently,
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only be assembled at the scaffold level (Grativol et al., 2014; Okura et al., 2016; Riafio-Pachdn
and Mattiello, 2017; Souza et al., 2019). Only in 2018 did an approach coupling next-generation
and long-read sequencing with high-throughput chromatin conformation capture enable a
chromosome- and allele-level genome of a Ssp clone to be assembled (Zhang et al., 2018). This
study paved the way for several comprehensive analyses of gene families in this species (Hu et
al., 2018; Hua-Ying et al., 2019; Lin et al., 2019; Shi et al., 2019; Wang et al., 20193, b, c;
Zhang et al., 2019b; Feng et al., 2020; Huang et al., 2020; Li et al., 2020b; Su et al., 2020a,
Zhang and Yin, 2020). In the present work, however, we analyzed the kinome of not only
sugarcane but also sorghum, a close diploid relative. Studies estimate that the Saccharum and
Sorghum lineages diverged 4.6-5.4 MY A (Kim et al., 2014). After diverging from Miscanthus
3.1-4.6 MYA (Kim et al., 2014), the Saccharum lineage experienced at least two rounds of
whole-genome duplication (Zhang et al., 2018), while Sbi remained diploid. Therefore, sorghum
genomic resources are a valuable resource in genetic studies in sugarcane (Paterson et al., 2009),
in which they have been extensively employed (Okura et al., 2016; Mancini et al., 2018; Bedre
et al., 2019). As the genomes of both species are now available, comparisons of the diversity,
organization and expression of PKs between these two species enable us to perform in-depth
explorations of the evolutionary history of these proteins, which are relevant to numerous
biological processes.

A previous work that classified PKs from 25 plant species (Lehti-Shiu and Shiu, 2012)
indicated that substantial numerical variations in this superfamily exist among species; however,
this variation could be overestimated due to differences in the completeness of the genomic
assemblies. Moreover, the estimates presented by this and other studies (Singh et al., 2014; Wei

et al., 2014; Liu et al., 2015; Zhu et al., 2018a, b) indicated a number of PKs in Shi (1,210) very
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similar to those of other Poaceae species, which range between 1,041 in Bdi to 1,417 in Osa
(Lehti-Shiu and Shiu, 2012; Wei et al., 2014). This figure is also comparable to the 1,093 PK
genes previously estimated for this species using an earlier genomic reference (Lehti-Shiu and
Shiu, 2012). The Ssp genome, on the other hand, contains one of the largest numbers of PK
genes reported for any plant species (2,919), ranking below only the allohexaploid genome of
Triticum aestivum (3,269 PKs) (Yan et al., 2017). However, we must consider that this
identification was performed using a genome that provides information at the allele level; when
only Ssp GMs (i.e., single representatives of all copies of a gene) were analyzed, we found a
much lower number of PK genes (1,345), which is also within the range of PKs in other Poaceae
species. This discrepancy reinforces the hypothesis of Lehti-Shiu and Shiu (2012) that the
expansion of PK genes is directly related to recent whole-genome duplication events, a
suggestion that was made considering that paleopolyploid species, such as soybean, have larger
repertoires of these proteins. Indeed, because soybean’s duplication events are much more
ancient than sugarcane’s (having occurred ~13-59 MYA) (Schmutz et al., 2010), its homologous
chromosomes are not treated as allelic copies. Therefore, it is only natural that more PK genes
were identified in the two kinomes compiled for Shi, namely, 2,099 (Lehti-Shiu and Shiu, 2012)
and 2,166 (Liu et al., 2015) PKs, while Ssp, which underwent very recent polyploid evolution,
contained many fewer PK genes when allelic copies were considered.

In Shi, PK genes were more commonly located in subtelomeric regions. This pattern was
even more evident when only tandemly duplicated PKs were considered; similar (though less
pronounced) patterns were observed in the kinomes of soybean (Liu et al., 2015), T. aestivum
(Yanetal., 2017), Gossypium raimondii and Gossypium barbadense (Yan et al., 2018). Yan et

al. (2017) noted that this pattern is consistent with T. aestivum’s higher gene and expressed
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sequence tag (EST) densities in distal regions of chromosomes and inferred that this location
pattern of PKs could indicate chromosomal rearrangements. Our findings are equally compatible
with the general genomic landscape of sorghum: in this species, the density of genes—especially
paralogs—is much higher in chromosome extremities, while pericentromeric regions are very
rich in long terminal repeat retrotransposons (Paterson et al., 2009; Mace and Jordan, 2011).
Studies have further demonstrated that genes are not uniformly distributed throughout the Shi
genome but rather clustered in regions termed “gene insulae” (Gottlieb et al., 2013).

On the other hand, the gene density in Ssp is less skewed towards subtelomeric regions
(Zhang et al., 2018), which might explain why we did not observe such a clear pattern of PK
gene distribution along Ssp chromosomes. An analogous observation was made in a recent
analysis that compared the genomic structure of Shi and those of two Saccharum species (Zhang
et al., 2019a). Although the three species exhibited considerable collinearity among homologous
chromosomes, genes that were widely dispersed in S. officinarum and S. robustum linkage
groups were much more tightly clustered in subtelomeric regions on Sbi chromosomes. This
same pattern is visible on circos plots that show the synteny between the Sbi and Ssp kinomes
(Fig. 5D); although many of the Shi PK genes are also present in the Ssp genome and are much
more widely distributed along chromosomes in Ssp. The dispersion of Ssp kinase genes between
chromosomes and allelic copies was also relatively balanced and somewhat proportional to the
chromosome length. Overall, this is similar to the patterns of kinase genes reported for rice
(Dardick et al., 2007); pineapple and grapevine, although these genes are more unevenly
distributed along chromosomes (Zhu et al., 2018a, b).

Comparison of the Shi and Ssp kinomes alone reveals that their subfamily composition

profiles are very similar. The only subfamily found exclusively in Shi was PEK_PEK. Even
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though the PEK family is responsible for phosphorylation of eukaryotic translation initiation
factor 2 subunit alpha (elF2a) (Immanuel et al., 2012), each subfamily is involved in the
response to different types of stresses (Donnelly et al., 2013). The PEK_GCNZ2 subfamily was
found in both species, and its activation is related to amino acid and glucose deprivation (Yang et
al., 2000; Deval et al., 2009; Baker et al., 2012), viral infection (Berlanga et al., 2006;
Krishnamoorthy et al., 2008) and UV irradiation (Grallert and Boye, 2007). PEK_PEK
subfamily kinases are especially activated during endoplasmic reticulum (ER) stress (Baker et
al., 2012), and are homologous to IRE1 subfamily proteins (Urano et al., 2000), which are also
activated in response to ER stress (Liu et al., 2007a) and were found in both Sbi and Ssp
kinomes.

The group containing the most kinases is the RLK-Pelle group (Gish and Clark, 2011)
and, similar to findings in other kinomes (Singh et al., 2014; Wei et al., 2014; Zulawski et al.,
2014; Liu et al., 2015; Yan et al., 2017, 2018; Zhu et al., 20183, b), we found that the RLK-Pelle
group had the most members in our study. This expansion in the Sbi and Ssp kinomes is
apparently related to a few specific families within this group, most notably the LRR, RLCK,
DLSV, L-LEC and SD-2b families. These families have already been associated with the
increased number of kinases in the RLK-Pelle group (Zhu et al., 2018a, b), mostly because of
their relation with biotic and abiotic stress responses (Dezhsetan, 2017). In the cotton kinome,
for instance, LRR subfamilies have been suggested to be significantly associated with plant
growth, development and defense responses (Yan et al., 2018), and these associations have
already been described for Shi and Ssp. In Shi, the LRR family has broadly been linked with the
response to several types of stress (Kawahigashi et al., 2011; Azzouz-Olden et al., 2020; Filiz

and Kurt, 2020), playing roles related to signal transduction in response to extracellular signals
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(Azzouz-Olden et al., 2020; Dhaka et al., 2020; Vikal et al., 2020), pollen development (Dhaka
et al., 2020), metabolism, and chaperone functions (Vikal et al., 2020). In Ssp, in addition to its
association with defense response processes (Xu et al., 2018; Yang et al., 2019), this family has
already been associated with hormone metabolism (Chen et al., 2019), cellulose and lignin
biosynthesis (Kasirajan et al., 2018), and sucrose synthesis (Vicentini et al., 2009).

In addition to the remarkably important LRR family, the RLCK, DLSV, L-LEC, and SD-
2b families are also involved in diverse essential mechanisms. Because RLCK family members
do not contain extracellular and transmembrane domains (Gao and Xue, 2012; Zulawski et al.,
2014), these proteins are generally involved in more specific processes (Jurca et al., 2008). In
addition to disease resistance, RLCK proteins have been shown to be related to plant growth,
immune responses (Yan et al., 2018; Zhu et al., 2018a), and vegetative development (Jurca et al.,
2008; Gao and Xue, 2012). Together with RLCK family members, DLSV family members were
found to be differentially expressed in soybean tissues in stress experiments (Liu et al., 2015).
The DLSV family includes Domain of Unknown Function 26 (DUF26), SD-1, LRR-VIII, and
VMA (a RLK subfamily specific in moss)-like proteins (Lehti-Shiu and Shiu, 2012), which
mediate the control of stress responses and development (Vinagre et al., 2006; Vaattovaara et al.,
2019), with some members being associated with signaling pathways regulating the responses to
cold (Yan et al., 2017) and infection (Yan et al., 2017). L-LEC and SD-2b have established
associations with the defense response (Chen et al., 2006; Wei et al., 2014) but also with
stomatal immunity regulation via an L-LEC member (Desclos-Theveniau et al., 2012) and with
self-incompatibility via SD-2b (Stein et al., 1991). The essentiality of mechanisms shared by
these families clearly indicates their functional importance among plants (Vaattovaara et al.,

2019) and demonstrates their importance in the expansion and maintenance of the Shi and Ssp
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791  kinomes.

792 Differences in PK composition may lead to different functional profiles. Similarly,

793  structural divergences may arise at distinct points in evolutionary history (Teich et al., 2007; Liu
794  etal., 2015), contributing to different domain organizations and, subsequently, to diverse

795  functions (Xu et al., 2012). Although PKs in the same subfamily have similar intron distribution
796  profiles in wheat (Yan et al., 2017), several compositional differences were detected in the

797  soybean kinome (Liu et al., 2015); we also detected these differences in the Ssp and Sbi

798  kinomes. In the Shi kinome, the distribution of introns across subfamilies was more organized
799  than that in the Ssp kinome, indicating the more recent intron/exon reorganization of Ssp PKs.
800  This more evidently cohesive structure among Sbi subfamilies than Ssp subfamilies indicates
801 that gene reorganization may have occurred after these species diverged. The NEK, CK1_CK1-
802 Pl PEK_GCNZ2, and TKL_CTR1-DRK-2 families had the most prominent structural

803  organization in both Sbhi and Ssp. All of these families play essential roles in cellular processes,
804  which requires a higher level of organization. As mentioned previously, PEK_GCN2 activity is
805  linked with elF2a. Interestingly, the Ssp kinome contained more members of this family than
806  any other species examined (Supplementary Fig. S4), and this family had a considerable gene
807  organization. NEK family members have been associated with the cell cycle machinery through
808  microtubule organization, cell growth, and stress responses (Moniz et al., 2011; Takatani et al.,
809  2015). The CK1_CK1-PI subfamily is part of the CK1 group identified by Pei et al. (2019),

810  which is involved in several vital physiological processes via phosphorylation of different

811  substrates (Tan and Xue, 2014; Karpov et al., 2019). TKL_CTR1 members have already been
812  linked to defense response pathways, including the ethylene signal transduction pathway

813  (Varbergetal., 2018).
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814 In contrast with the highly organized gene profile found in some subfamilies, several sets
815  of PKs exhibited considerable domain diversity and composition. Ssp PK subfamilies had the
816  largest number of domains, corroborating the most recent possible gene organization of these
817  PKs. RLK-Pelle subfamilies showed the largest differences in domain composition in both Sbi
818 and Ssp, as expected due to the large size of this family. In addition to RLK members, the

819 CMGC_CDK-CRK7-CDKO9 (in Ssp) and CMGC_GSK subfamilies were among the top 10% of
820  subfamilies with the largest number of different domains. Even though the CMGC_CDK-CRKZ7-
821  CDKO subfamily had the most members among the CMGC group, the number of PKs in the

822 CMGC_GSK subfamily was similar to those in the other GMC subfamilies. Therefore, this

823  domain diversity might be explained by the diverse functions performed by these proteins. As
824  previously mentioned, the RLK-Pelle group putatively participates in a wide variety of induced
825  biological processes, and the CMGC_CDK family (Joubes et al., 2000) also integrates several
826  functions of transcription and cell division (Malumbres, 2014). Specifically, the CRK7 and

827  CDKO subfamilies are related to the numerous processes in cell cycle control (Goldberg et al.,
828  2006). Additionally, the GSK subfamily affects numerous signaling pathways (Wrzaczek et al.,
829  2007).

830 Another interesting observation relates to the number of potential PK genes that were not
831  considered because they had a domain coverage of less than 50%, indicating that they represent
832  atypical kinases or pseudogenes (Lehti-Shiu and Shiu, 2012; Liu et al., 2015). For Shi, this

833  criterion resulted in the exclusion of 57 genes, which accounted for ~3% of sequences with

834  significant correspondences with PKs. In Ssp, however, 735 such genes were discarded,

835  accounting for almost 20% of the initially identified PKs. In their pioneering work, Lehti-Shiu

836  and Shiu (2012) found that 9.6% of all kinases initially identified in 25 species exhibited a
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domain coverage of less than 50%, and this value varied considerably in later studies that
employed the same methodology. We can also speculate on the influence of polyploidization on
the pseudogenization of PK genes. While no kinomes have been published for other
autopolyploid species, we may take as examples those that have been generated in
allopolyploids. In the Triticum-Aegilops complex, the kinome of the allohexaploid T. aestivum
contains ~22% atypical kinases, while the kinomes of two of its diploid parental species,
Triticum urartu and Aegilops tauschii, contain ~16 and ~14% atypical kinases, respectively.
Similarly, in Gossypium, the kinomes of two diploid species (G. raimondii and Gossypium
arboretum) contain ~4 and ~9% atypical kinases, while in the kinomes of the allotetraploids
Gossypium hirsutum and G. barbadense, ~12% of PKs have these characteristics. The larger
numbers of kinase genes with atypical domains in polyploid genomes may have resulted from
more frequent pseudogenization events in these species and subsequent whole-genome
duplication (WGD), a long-proposed consequence of gene duplication and thus of
polyploidization (Magadum et al., 2013).

Even though multikinase domains were found in both Sbi and Ssp, Ssp contained more
than Shi, and more repetitions were found in some PKs. Similar to the soybean and grapevine
kinomes (Liu et al., 2015; Zhu et al., 2018b), the Shi kinome contained PKs with only 2 or 3
kinase domains, in contrast to the Ssp kinome, which contained PKs with between 2 and 5 kinase
domains. Interestingly, the AGC_RSK-2 subfamily was found to have the largest number of
multikinase domains in both Shi and Ssp, accounting for a very high percentage of members of
this subfamily, which is explained by the fusion of two PKs in the evolutionary history of the
RSK family (Carriere et al., 2008). The AGC_NDR subfamily also exhibited this notable

characteristic; however, in this subfamily, the large number of multikinase domains is associated
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with the insertion of a nuclear localization signal within the kinase domain (Tamaskovic et al.,
2003). Moreover, in the Shi and Ssp kinomes, the PKs with most kinase domains were in the
RLK-Pelle_WAK subfamily, which is functionally linked to cell growth (Gish and Clark, 2011)
and whose loss might result in lethality (Wagner and Kohorn, 2001). As the percentage of
multikinase domains found in this family was small, we consider that such domains may interact
with specific substrates (Liu et al., 2015).

Our study is the first to categorize a kinase superfamily considering allele copies. Even
though the presence of kinase domains in Ssp PKs was highly conserved, differences in intron
exon organization and domain composition were found. The most common compositional
differences were related to domain distribution along the allele copies (e.g., inversion of LRR
and kinase domains along the sequences), insertion or loss of domains in allele copies (e.g.,
LRR, antifungal, and uroporphyrinogen decarboxylase domains, as well as domains of unknown
function); and duplication of domains (e.g., LRR, legume lectin, EF-hand, and kinase domains).
Even though we expected minor differences across allele copies, these findings suggest specific
rearrangements of kinase sequences, indicating possible functional associations. Other studied
protein families in Ssp also had different pattern distributions across allele copies (Huang et al.,
2020; Li et al., 2020Db). In some studies, the gene structure has been reported to be similar across
these copies; however, this pattern is not universal (Ma et al., 2019; Shi et al., 2019). The
genomic structure and organization of sugarcane is considerably complex (Sforca et al., 2019),
and the pattern of gene distribution across alleles is unclear; thus, more studies on specific genes
and subfamilies are required to better understand the organization of the sugarcane genome.

We also performed several in silico analyses to evaluate the molecular characteristics of

the PKs identified in the two species. As reported for grapevine (Zhu et al., 2018b), the pls and
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883  MWs of the PKs were generally similar within subfamilies in Ssp and Shi; these results were

884  expected, as these properties are estimated based on the protein sequence. We observed,

885  however, that Ssp contained many more PK subfamilies with significant variation in the MW
886  than did Shi, possibly indicating a broader diversity of kinases in Ssp. After verifying the

887  presence of signal peptides in the PK sequences, we estimated that ~40% of Shi kinases

888  contained signal peptides, in contrast with ~30% in Ssp. This percentage is very similar to that in
889  maize, where ~30% of PKs contain these signal sequences (Wei et al., 2014). Regarding the

890  subcellular localization of the PKs, we noted high divergence in the results obtained with the

891  tested tools. All three methods (Yu et al., 2006; Horton et al., 2007; Sperschneider et al., 2017)
892  are based on machine learning techniques and have unique advantages. Therefore, the discordant
893  localizations may not be reliable, and we decided to use a consensus approach, considering only
894  the results consistent between at least two of the tools. Although this process did not allow the
895  subcellular localization of all PKs to be estimated, it did allow us to determine a more consistent
896  predictive set for categorizing the Shi and Ssp kinomes. Due to this conservative approach, we
897  did not make inferences about the distribution of subfamily localizations.

898 Annotation of the PKs based on GO terms corroborated the accuracy of their

899 identification. For instance, in both the Ssp and Sbi kinomes, the five most frequently appearing
900 annotated GO terms were (1) defense response to oomycetes, (I1) protein serine/threonine

901  phosphorylation, (111) binding, (IVV) plasma membrane and (V) pollen development (Fig. 2C and
902 D). All of these terms can be easily linked to kinases; indeed, terms (11) and (111) exhibit the most
903  obvious associations, as PKs catalyze the phosphorylation of proteins by transferring terminal
904  phosphate groups from ATP to serine, threonine or tyrosine residues in other proteins—a process

905 that involves the binding of PKSs to their targets (Hunter, 1995). A large portion of eukaryotic

41


https://doi.org/10.1101/2020.09.15.298612
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.298612; this version posted September 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

available under aCC-BY-NC-ND 4.0 International license.

plant kinases (as we further demonstrated in the present work) are grouped into the RLK
superfamily and are thus located in the plasma membrane, which explains term (1V).
Additionally, PKs are frequently shown to participate in responses to infection by various
oomyecetes in many plant species (Hall et al., 2007; Blanco et al., 2008; Hok et al., 2011, 2014;
Carella et al., 2019), as well as in pollen development, in several plants (Zhang et al., 2001; Xu
etal., 2011; Lafleur et al., 2015; Chen et al., 2016; Li et al., 2018a), explaining terms (I) and
(V). This logic was maintained when the annotation results were summarized in treemaps
(Supplementary Fig. S5A and B); first, terms associated with protein phosphorylation were
strongly represented in the kinomes of both species. This summarization also highlights the
broad presence of terms associated with other mechanisms in which plant PKs are widely and
historically known to be involved, such as defense responses (Chen et al., 2006; Tena et al.,
2011; Wei et al., 2014; Xu et al., 2018; Yang et al., 2019), cellular development (Jin et al., 2002;
Matschi et al., 2013; Komis et al., 2018), regulation of stomatal closure (Li et al., 2000; Mustilli
et al., 2002; Lee et al., 2016) and development of leaves and pollen (Roe et al., 1993; Benjamins
et al., 2001; Khew et al., 2015).

In Shi, we also investigated 100 PKs that are possibly subject to alternative splicing, a
process that leads to the production of different mMRNA isoforms from a single gene, therefore
expanding the functional diversity of the gene. Alternative splicing is extensively reported to
regulate plant development, circadian clocks and responses to environmental stimuli, especially
stresses (Filichkin et al., 2015; Shang et al., 2017). When only alternatively spliced PKs were
annotated and summarized (Supplementary Fig. 5C), we observed similarities to the categories
associated with all GO terms in the two species analyzed. One notable difference was the

inclusion of a category that included terms related to programmed cell death, a stress-triggered
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process (Danon et al., 2000) controlled by PKs (Tang et al., 2005; Liu et al., 2007b; Lachaud et
al., 2013; Wrzaczek et al., 2014; Yadeta et al., 2016). A few PKs that function in response to
biotic and abiotic stresses have been shown to undergo alternative splicing (Rostoks et al., 2004;
Koo et al., 2007; Lin et al., 2010), which could explain the high frequency of this category with
alternatively spliced PKs.

Overall, the Ssp and Shi kinomes exhibited similar duplication patterns; in both species,
the most common type of PK duplication was segmental duplication, followed by tandem
duplications. These duplication events are usually reported as the two main contributors to PK
expansion in the genomes of several other species, especially in the RLK-Pelle superfamily
(Champion et al., 2004; Dardick et al., 2007; Wei et al., 2014; Liu et al., 2015; Dezhsetan, 2017;
Zhu et al., 2018a, b). Gene retention by tandem duplication in kinases has already been
identified, with very high rates in several plants (Lehti-Shiu and Shiu, 2012), and considerable
correlation with different kinds of stress (Freeling, 2009). The association of PK expansion
through such events with defense response and signaling pathways has been widely reported in
kinome studies (Zulawski et al., 2014; Liu et al., 2015; Yan et al., 2018; Zhu et al., 20183, b),
with these events being more pronounced in the RLK-Pelle group. In the Ssp and Shi kinomes,
we found several subfamilies in this group with tandem duplications (mostly in LRR families).
By analyzing GO biological process categories related to these events (Figs. 3 and 4), we found a
considerable frequency of categories related to the defense response; however, other general
categories were also frequent, which is explained by the numerous processes related to these
subfamilies. Interestingly, in the RKF-3 family (in the RLK-Pelle group) in Ssp, all duplications
were associated with tandem events, and members of this family have already been linked with

stress responses and extracellular signaling (Huang et al., 2014; Vaid et al., 2016). Even with
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952 this high similarity, several differences in the distribution of tandemly organized genes within
953  subfamilies were found between the Ssp and Shi kinomes. These species- and chromosomal
954  region-specific organizational characteristics were previously noted by Yan et al. (2018) in a
955  comparison of cotton kinomes. With respect to genome organization in Ssp and Shi, different
956  forms of tandem events have already been found (Wang et al., 2010), with specific gene

957  organization patterns within each genome (Zhang et al., 2018).

958 Segmental duplication events were also the major contributors to PK expansion in other
959  species; in the soybean kinome, these events accounted for the origin of more than 70% of the
960 PKs (Liu et al., 2015); in grapevine, they were estimated to be responsible for the origin of

961 ~30% of the kinases and were thought to be especially relevant in the expansion of the RLK-
962  Pelle family (Zhu et al., 2018b). The most striking duplication-related difference between the
963  Ssp and Shi kinomes was the distribution of the rate of nonsynonymous mutations (Ks), which
964  was used to estimate the time of occurrence of these segmental duplications. While the range of
965  Shi PK Ks values was comparatively wide, peaking at 0.65-0.85 (Fig. 2E), the Ks values of Ssp
966  exhibited a very prominent peak between 0 and 0.05 range; in addition, the further distribution of
967  Ks was somewhat similar to that in Sbi (Fig. 2F). Based on the clock-like rates of synonymous
968  substitutions, we estimated that the time of occurrence of this large number of segmental

969  duplications with Ks<0.05 was less than 3.8 MY A. Thus, we postulated that the Ks distribution
970  in Ssp is a consequence of the recent polyploidization events in sugarcane; this hypothesis is
971  supported by recent indications that the Saccharum-specific WGDs occurred in the last 3.1-4.6
972 million years (Kim et al., 2014; Zhang et al., 2018). This hypothesis is further reinforced by the
973  findings reported in Gossypium spp. kinomes; a profile of Ks distributions very similar to that in

974  Ssp was observed in the allotetraploids G. hirsutum and G. barbadense but not in its diploid
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relatives (Yan et al., 2018), strengthening the connection of this profile to WGD events.

We also analyzed the ratio of synonymous to nonsynonymous mutations (Ka/Ks), which
is used to determine the type of selection acting on a gene (Zhang et al., 2006). We found that in
the two kinomes the large majority of segmentally duplicated PKs were under negative selection
(Ka/Ks<1), while a smaller percentage were under positive selection (Ka/Ks>1), and very few
were under neutral selection (Ka/Ks=1). This pattern is similar to those observed in the soybean,
grapevine and pineapple kinomes (Liu et al., 2015; Zhu et al., 2018a, b) and to those reported in
smaller gene families in Ssp (Wang et al., 2019c; Li et al., 2020a) and sorghum (Malviya et al.,
2016; Anand et al., 2017; Mittal et al., 2017).

Several RNA-Seq experiments were used to estimate the expression patterns of kinase
subfamilies across a considerable range of tissues and genotypes. Due to the similar expression
patterns within kinome subfamilies (Liu et al., 2015) and the possibility of detecting clearer
expression patterns in different subfamilies than at the individual gene level, expression analysis
was performed combining expression levels of genes from subfamilies, instead of individual
genes. The differences among samples were more evident when separated by tissue instead of
genotype and species (Fig. 7), possibly because of the strong conservation of PKs and their
importance in several fundamental biological processes. In addition, as Liu et al. (2015)
suggested, we also recognized that the Ssp and Sbi kinomes’ expression is shaped by the
physiological characteristics of these species. The highest expression levels were found for
members of the CMGC group in both the Shi and Ssp kinomes. Additionally, in the AGC,
CAMK, and CK1 groups, we found high expression levels in several subfamilies. These findings
were previously reported in other plant species, suggesting an association of these groups with

developmental processes (Liu et al., 2015; Zhu et al., 2018a, b). Interestingly, even though RLK-
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Pelle subfamilies account for the largest number of PKs among the kinomes, they were not
among the top overexpressed subfamilies.

Among the 10% subfamilies with the highest expression, CMGC_GSK, CMGC_RCK,
and CK1_CK1 were common to both the Sbi and Ssp datasets. Importantly, in addition to being
overexpressed in Sbi, the members of the CMGC_GSK subfamily also contain many functional
domains, as mentioned previously, and this characteristic might reflect their high expression.
Another interesting subfamily with overexpression in the Shi kinome was CMGC_MAPK
(which exhibited average expression in Ssp), which has already been identified as having
considerable importance in several Ssp and Shi studies concerning stress signaling (Zhang et al.,
2015; Paungfoo-Lonhienne et al., 2016; Li et al., 2016b; Srivastava and Kumar, 2020; Tuleski et
al., 2020; Wang et al., 2020).

Despite having only one kinase member in the Ssp and Shi kinomes, the AGC_PKA-
PKG subfamily showed one of the highest average expression values across Ssp tissues. In
addition to the unremarkable expression of RLK-Pelle subfamily members, the high AGC_PKA-
PKG expression corroborates the observation that in the Ssp and Sbi kinomes, expression was
not related to the number of family members across families and groups. If we assume that PK
subfamilies may have increased in size through duplication events, this might be a case of dosage
balance, a phenomenon wherein the function of regulatory genes is sensitive to a stoichiometric
equilibrium (Birchler & Veitia, 2014). Thus, PK families composed of more members (which
survived duplications and thus present more copies) have a tendency toward lower average
expression, as has been demonstrated in other plants (Birchler & Veitia, 2012). Additionally,
AGC_PKA-PKG subfamily has been reported as broadly important in both Ssp and Sbi. In Ssp,

studies have demonstrated the association of its members with signaling pathways (Kasirajan et
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al., 2020), cell proliferation (Li et al., 2016b), infection responses (Santa Brigida et al., 2016; Xu
et al., 2018), hormone signal transduction in response to drought (Li et al., 2016a), and pathways
related to sucrose storage and photosynthesis (Hoang et al., 2017; Thirugnanasambandam et al.,
2017). In Shi, the importance of this family is also linked with stress and signal responses (Parra-
Londono et al., 2018; Li et al., 2018b; Nagaraju et al., 2020; Vikal et al., 2020). Therefore, these
insights into expression constitute a valuable reservoir of information for analyzing the
importance of Ssp and Shi kinases.

The final analysis performed using RNA-Seq datasets aimed to establish closer
relationships among kinase subfamilies in Shi and Ssp through coexpression networks, enabling
biological inferences using connection patterns. The gene coexpression networks were
constructed with pairwise correlations (similarity scores) from the gene expression quantification
data (Serin et al., 2016). Pearson correlation coefficients were used because of their reasonable
performance in RNA-Seq datasets (Ballouz et al., 2015). Moreover, as Liu et al. (2015)
suggested, we constructed the networks based on subfamily relationships instead of single genes
because of the enhanced functional interpretability and general inferences allowed by this
approach. Complex networks have been widely applied to visualize complex biological systems
(Barabasi, 2016), and constitute a powerful tool for modeling gene interactions (Zhao et al.,
2010). For kinase subfamily representations, these networks can facilitate the interpretation of
relevant relationships among sets of kinases and provide insights into the interactions among
metabolic mechanisms. These applications are possible because similar expression patterns on
genes belonging to the same pathways reflect the network structure (Lee et al., 2015), thus
providing a tool to model these complex molecular interactions (Ficklin and Feltus, 2011).

Together with the network representations, we used community detection methodologies
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to identify modules of cohesive elements, which possibly indicate more strongly interconnected
metabolic relationships (Mitra et al., 2013; Mall et al., 2017; Zhang and Yin, 2020). This
structural organization constitutes a reservoir of genetic information among kinomes and
provides important insights into how these subfamilies biologically interact. When some
subfamilies without significant relationships with other elements (disconnected nodes) were
excluded, the network structures (Fig. 8) indicated that all of the subfamilies were
interconnected, considering the nonrandom dependencies across subfamilies captured by the
established correlation coefficient threshold (Ficklin and Feltus, 2011). This connected structure
observed among both the Shi PKs and the Ssp PKs has been described throughout the
manuscript. Even though they have specific functions, all kinase subfamilies play roles in several
common metabolic processes, and this commonality is clearly reflected in the network structures.
In addition, considering the roles of PKs in metabolic signaling and stress responses, the
organization of several subfamilies is reasonably conserved among different plant species (Lehti-
Shiu and Shiu, 2012). By comparing the Sbi and Ssp networks, we identified a substantial core
of similarity between the subfamily interactions in these species, possibly indicating several
analogous expression profiles, as already observed in the comparison of expression values
among tissues and genotypes (Fig. 7). In addition to the comparison of network connectivities,
other topological characteristics were used to identify important features in the organization of
kinome subfamilies. Hub and betweenness measures were calculated to supply evidence
regarding how specific subfamilies are important in most metabolic processes involving kinases.
Within a network structure, elements with the most connections are called hubs
(Barabasi, 2016). These nodes have been used to identify functionally critical components and as

an additional approach to describe the network structure (Hong et al., 2013; Azuaje, 2014; Van
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Dam et al., 2018). In the constructed networks, the hub nodes indicate kinase subfamilies with
the most correlations, which might represent sets of kinases with influential roles in diverse
metabolic mechanisms in kinomes. Interestingly, the Shi and Ssp networks did not exhibit high
overlap of hub nodes. This observation provides evidence that although there are several
similarities among the kinase expression profiles in these species, and the same biological
cascades are activated, as indicated by the GO analyses (Supplementary Fig. S5), the mechanism
by which the expression balance is achieved is species-specific. In fact, previous studies in
polyploids have shown that this balancing varies even among lines of the same species (Multti et
al., 2017).

In both these Sbi and Ssp networks and those constructed in other kinome studies (Liu et
al., 2015; Zhu et al., 2018b), different members of the RLK-Pelle group (mostly those in the
LRR and RLCK families) were identified as hubs. Considering the described abundance of these
families, their tandem duplications, and related functional implications, the strong influence of
such nodes on the correlations among kinase subfamilies was expected. CMGC group
subfamilies were also identified as hub elements, as observed in the soybean kinome (Liu et al.,
2015). In the sugarcane network, the GSK and CDK families had a considerable number of
connections, which is clearly explained by the very high number of pathways in which their
members are involved, as previously noted. Additionally, the CDK family has already been
found to be related with stress signaling in Ssp (Patade et al., 2011) and in Shi (Challa and
Neelapu, 2018). In Shi, the DYRK family also had a high node degree. Interestingly, members of
this family have already been found to be related to the suppression of photosynthesis activity
(Kimura and Ishikawa, 2018); thus, the importance and impact of this family among kinases is

evident. Among the other hubs, the STE group (STE20 family) was also important in the Ssp and
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Sbi networks, which can be explained by the high number of biological cascades related to this
subfamily (Xiong et al., 2016).

Several factors can explain why a subfamily constitutes a hub in our constructed
networks, such as a high expression level (CMGC_GSK, CAMK_OST1L, CK1_CK1, and
CMGC_DYRK-YAK), a large number of subfamily members (RLK-Pelle_LRR-II1), the
occurrence of tandem duplications (IRE1), a more structured gene organization considering
intron-exon structures (RLK-Pelle_ RLCK-XII-1, RLK-Pelle_LRR-VI-1, and CMGC_GSK), and
the presence of diverse functional domains (RLK-Pelle_LRR-I1l, CMGC_CDK-CRK7-CDKO,
and RLK-Pelle_LRR-VII-1) or multikinase domains (AGC_RSK-2, RLK-Pelle_LRR-IIl, and
CMGC_CDK-CRK7-CDK9). However, we did not observe a consistent feature profile required
for a subfamily to be considered a hub. Evidence supports the hubs’ importance; however, the
real reasons for their key importance within these structures are likely to be linked with
functional properties, as widely discussed in other coexpression studies (Goel et al., 2018; Tai et
al., 2018; Wang et al., 2018; Zou et al., 2019; Ding et al., 2020).

In addition to hub descriptions, edge betweenness measures also have high
interpretability considering the complex system modeled by the networks. These calculations are
based on properties from the entire network (Dunn et al., 2005), exploiting the network flow and
identifying possible essential interactions for the visual configuration (Van Dam et al., 2018). In
both the Shi and Ssp networks, a clearly separated group of PKs that was connected with the
other elements by only one or a few connections was evident. This network configuration might
indicate important relationships among kinase subfamilies, providing evidence indicating how
these specific subfamilies can interconnect. In Ssp, the most critical connections identified by

betweenness calculations were found in the RLK-Pelle_L-LEC/RLK-Pelle_LRR-VIII-1 and
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RLK-Pelle_CR4L/RLK-Pelle_LRR-Xb-1 subfamilies. These nodes are members of families
with undeniable importance, as seen in the network structure. The bridges in these kinase-kinase
interactions can be explained by the large number of members within these families that can act
in a connected manner, which is less evident in other subfamilies. However, as observed in the
hub configurations, these structures are more evidently linked with functional roles, such as
interconnected signaling pathways.

In the Sbi network, on the other hand, the highest betweenness values were found in the
CAMK_CDPK/RLK-Pelle_LRR-VI-2 and CAMK_CDPK/CMGC_RCK subfamilies.
Interestingly, CAMK_CDPK subfamily genes have been extensively indicated to be located at
important genomic regions regulating plant growth, development and resistance mechanisms to
several types of abiotic and biotic stresses in both Shi (Pestenacz and Erdei, 1996; Nhiri et al.,
1998; Jain et al., 2008; Li et al., 2010; Monreal et al., 2013; Usha Kiranmayee et al., 2017) and
Ssp (Li et al., 2016b; Marquardt et al., 2017; Ling et al., 2018; Dharshini et al., 2020; Srivastava
and Kumar, 2020; Su et al., 2020b), further supporting the association of functional

characteristics in the network structure.

5. Conclusions

This study provided an extensive reservoir of genetic and molecular information for both Shi and
Ssp. Considering the incontestable importance of kinases in several essential biological
processes, the identification, categorization and analysis of the kinomes of these species resulted
in an important compendium of knowledge for use in further studies. Clear similarities were
found in protein properties, domain compositions, genomic organization, expression profiles and
subfamily interactions. However, we also observed pronounced differences in duplication events,

which probably arose from Ssp recent WGDs, facilitating understanding of how the Shi and Ssp
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kinomes have evolved considering this vast protein superfamily.

Supplementary data

Supplementary figures

Fig. S1. (Additional File 1) Phylogenetic analysis of the identified protein kinases in Sorghum
bicolor (Shi) with 1,000 bootstrap replicates. Each protein is separated on the right side of the
tree and is presented with its classification with respect to the kinase subfamilies, which are
colored to represent the differences among subfamilies.

Fig. S2. (Additional File 2) Phylogenetic analysis of the identified protein kinases in Saccharum
spontaneum (Ssp) with 1,000 bootstrap replicates. Each protein is separated on the right side of
the tree and presented with its classification with respect to the kinase subfamilies, which are
colored to represent the differences among subfamilies.

Fig. S3. (Additional File 3) Phylogenetic analysis of the protein kinases identified in both
Sorghum bicolor (Sbi) and Saccharum spontaneum (Ssp) with 1,000 bootstrap replicates. Each
protein is separated on the right side of the tree and presented with its classification with respect
to the kinase subfamilies, which are colored to represent the differences among subfamilies.
Fig. S4. (Additional File 4) Kinase subfamily quantification analysis in different plant species.
Each row indicates a different subfamily and each column a plant species, and the numbers of
kinases are noted. This heatmap is colored according to the distribution of quantities present in
the datasets on a scale of beige to dark green.

Fig. S5. (Additional File 5) Gene Ontology (GO) category annotation of biological processes in
(A) the entire set of Saccharum spontaneum (Ssp) kinases; (B) the entire set of Sorghum bicolor
(Sbi) kinases; and (C) the set of Shi kinases related to alternative splicing events.

Fig. S6. (Additional File 6) Venn diagram showing the intersection of subfamilies in the
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communities within the Sorghum bicolor (Sbi) and Saccharum spontaneum (Ssp) networks.
Fig. S7. (Additional File 7) Coexpression network for Sorghum bicolor (Sbi) kinase subfamilies.
Each node corresponds to a different subfamily, its size corresponds to the average expression
value for all kinases within the subfamily in different samples, and its color corresponds to the
hub score and ranges from beige to dark green. Each edge corresponds to a correlation with a
Pearson correlation coefficient of at least 0.6. The correlation strength is represented by the
edge’s width, and the edge betweenness score is represented by the color (ranging from black to
light blue, with light blue representing the highest values). The network background is colored
according to the community detection analysis, and the nodes are labeled according to the
subfamily correspondence found in Supplementary Table S40.

Fig. S8. (Additional File 8) Coexpression network for Saccharum spontaneum (Ssp) kinase
subfamilies. Each node corresponds to a different subfamily, its size corresponds to the average
expression value of all kinases within the subfamily in different samples, and its color
corresponds to the hub score and ranges from beige to dark green. Each edge corresponds to a
correlation with a Pearson correlation coefficient of at least 0.6. The correlation strength is
represented by the edge’s width, and the edge betweenness score is represented by the color
(ranging from black to light blue, with light blue representing the highest values). The network
background is colored according to the community detection analysis, and the nodes are labeled

according to the subfamily correspondence found in Supplementary Table S41.

Supplementary tables
Additional file 9
Table S1. Organization of sorghum RNA-Seq experiments.

Table S2. Organization of sugarcane RNA-Seq experiments.
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Table S3. Kinase domain annotation of the 1,210 sorghum protein kinases.

Table S4. Kinase domain annotation of the 2,919 sugarcane protein kinases.

Table S5. Subfamily kinase classification of the sorghum 1,210 kinases based on the alignment

on HMMER and confirmed by phylogeny.

Table S6. Subfamily kinase classification of the sugarcane 2,919 kinases based on the alignment

on HMMER and confirmed by phylogeny.

Table S7. Sorghum and sugarcane kinase subfamily quantifications.

Table S8. Sorghum kinase distribution across chromosomes.

Table S9. Sugarcane kinase distribution across chromosomes and alleles.

Table S10.

Localization, intron quantity and possible alternative splicing events of the 1,210

sorghum kinases.

Table S11.

Table S12.

Table S13.

Table S14.

Table S15.

Table S16.

Table S17.

Table S18.

Table S19.

Table S20.

Table S21.

Table S22.

Localization and intron quantity of the 2,919 sugarcane kinases.

Domain annotation of the 1,210 sorghum protein kinases.

Domain organization of the 1,210 sorghum protein kinases.

Sorghum kinase domain organization for proteins with multiple kinase domains.
Domain annotation of the 2,919 sugarcane protein kinases.

Domain organization of the 2,919 sugarcane protein Kinases.

Sugarcane kinase domain organization for proteins with multiple kinase domains.
Gene Ontology (GO) annotations for the 1,210 sorghum Kkinases.

Gene Ontology (GO) annotations for the 2,919 sugarcane kinases.
Compositional analyses of the 1,210 sorghum kinases.

Compositional analyses of the 2,919 sugarcane kinases.

Characteristics of sorghum kinase subfamilies.
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Table S23. Characteristics of sugarcane kinase subfamilies.

Table S24. Presence of domains across sorghum kinase subfamilies.

Table S25. Presence of domains across sugarcane kinase subfamilies.

Table S26. Duplication origin of the 1,210 sorghum kinases.

Table S27. Duplication origin of the 2,919 sugarcane kinases.

Table S28. Collinearity events and Ka/Ks values of sorghum protein kinases.

Table S29. Collinearity events and Ka/Ks values of sugarcane protein kinases.

Additional file 10

Table S30. Sorghum kinase transcripts per million (TPM) values across samples.

Table S32. Sorghum kinase subfamily quantification across samples.

Table S34. Sorghum kinase subfamily quantification across tissues from the selected genotypes.
Table S36. Descriptive statistics of subfamily expression across sorghum kinase subfamilies.
Table S38. Spearman correlation of average transcripts per million (TPM) values in sorghum
genotypes/tissues with kinase subfamily quantities.

Table S40. Sorghum kinase subfamily coexpression network characterization.

Table S42. Edge betweenness values calculated across the sorghum coexpression network.
Additional file 11

Table S31. Sugarcane kinase transcripts per million (TPM) values across samples.

Table S33. Sugarcane kinase subfamily quantification across samples.

Table S35. Sugarcane kinase subfamily quantification across tissues from the selected geno-
types.

Table S37. Descriptive statistics of subfamily expression across sugarcane kinase subfamilies.

Table S39. Spearman correlation of average transcripts per million (TPM) values in sugarcane
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1228  genotypes/tissues with kinase subfamily quantities.

1229  Table S41. Characterization of the sugarcane kinase subfamily coexpression network.

1230  Table S43. Edge betweenness values calculated across the sugarcane coexpression network.
1231  Additional file 12

1232  Table S44. Sugarcane RNA-Seq read counts considering the samples described in

1233  Supplementary Table S2 and Saccharum spontaneum coding DNA sequences.

1234  Additional file 13

1235  Table S45. Sugarcane RNA-Seq transcripts per million (TPM) values considering the samples

1236  described in Supplementary Table S2 and Saccharum spontaneum coding DNA sequences.
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Fig. 1: Phylogenetic analyses of putative protein kinases (PKs) identified in the Sac-
charum spontaneum (Ssp) and Sorghum bicolor (Sbi) genomes. (A) Phylogenetic tree
of the 1,210 Shi PKs organized in 120 subfamilies represented by different colors. (B)
Phylogenetic tree of the 2,919 Ssp PKs organized in 119 subfamilies. (C) Phylogenetic
tree of PKs in both Sbhi and Ssp.
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chromosome, with the colors representing the origin of the duplication (green for allele A,
orange for allele B, and brown for allele C); (B) Ssp duplications between chromosomes,
excluding events between alleles on the same chromosome; and (C) Sbi duplications.
The colors in (B) and (C) indicate the selection type of the gene pair duplication (gray
indicates negative selection; light blue, positive selection; and blue, neutral selection). (D)
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Fig. 6: Heatmap representations of kinase subfamily profiles in Saccharum spontaneum
related to (A) kinase copies among alleles; (B) subfamily quantification considering the
entire set of kinases and the respective quantity of gene models; (C) tandem and segmental
duplication events; and (D) the presence of different functional domains and multikinase

domain-containing proteins within subfamilies.
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Fig. 7: RNA expression profiles of Saccharum spontaneum and Sorghum bicolor, shown
on a heatmap indicating the average sample values of different combinations of genotypes

and tissues (columns) and considering the organization of kinase subfamilies (rows).
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Fig. 8: Coexpression networks for Sorghum bicolor (Sbi) and Saccharum spontaneum
(Ssp) kinase subfamilies. Each node corresponds to a different subfamily, its size corre-
sponds to the average expression value for all kinases within the subfamily in different
samples, and its color corresponds to the hub score and ranges from beige to dark green.
Each edge corresponds to a correlation with a Pearson correlation coefficient of at least
0.6. The correlation strength is represented by the edge’s width and the edge between-
ness score is represented by the color (ranging from black to light blue, with light blue
representing the highest values). (A) Sbi network with the background colored according
to the community detection analysis. (B) Sbi network indicating the similarities with the
Ssp network in red. (C) Ssp network with community structure information. (D) Ssp

network indicating the similarities with the Sbi network in red.
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