

1 **The sugarcane and sorghum kinomes: insights into evolutionary expansion and**
2 **diversification**

3 **The sugarcane and sorghum kinomes**

4 Alexandre Hild Aono^a, Ricardo José Gonzaga Pimenta^a, Ana Letycia Basso Garcia^b, Fernando
5 Henrique Correr^b, Guilherme Kenichi Hosaka^b, Marishani Marin Carrasco^a, Cláudio Benício
6 Cardoso-Silva^a, Melina Cristina Mancini^a, Danilo Augusto Sforça^a, Lucas Borges dos Santos^a,
7 James Shiniti Nagai^c, Luciana Rossini Pinto^d, Marcos Guimarães de Andrade Landell^d, Monalisa
8 Sampaio Carneiro^e, Thiago Willian Balsalobre^e, Marcos Gonçalves Quiles^f, Welison Andrade
9 Pereira^g, Gabriel Rodrigues Alves Margarido^b, Anete Pereira de Souza^{a,h,*}

10 Email addresses: alexandre.aono@gmail.com (Alexandre Hild Aono),
11 ricardojgpimenta@gmail.com (Ricardo José Gonzaga Pimenta), garcia.alb@usp.br (Ana Letycia
12 Basso Garcia), fernando_correr@usp.br (Fernando Henrique Correr), ghosaka8@usp.br
13 (Guilherme Kenichi Hosaka), shmarin243@gmail.com (Marishani Marin Carrasco),
14 benicio.genetic@gmail.com (Cláudio Benício Cardoso-Silva), mel.cmancini@gmail.com
15 (Melina Cristina Mancini), daniloalbi@gmail.com (Danilo Augusto Sforça),
16 lucas.borgesst@gmail.com (Lucas Borges dos Santos), james.nagai@gmail.com (James Shiniti
17 Nagai), lurossini@iac.sp.gov.br (Luciana Rossini Pinto), mlandell@iac.sp.gov.br (Marcos
18 Guimarães de Andrade Landell), monalisa.sampaio@gmail.com (Monalisa Sampaio Carneiro),
19 thiagobalsalobre@gmail.com (Thiago Willian Balsalobre), quiles@unifesp.br (Marcos
20 Gonçalves Quiles), welison.pereira@ufla.br (Welison Andrade Pereira), gramarga@usp.br
21 (Gabriel Rodrigues Alves Margarido), anete@unicamp.br (Anete Pereira de Souza)

22 ^aCenter for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas
23 (UNICAMP), Campinas, São Paulo, Brazil

24 ^bDepartment of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São
25 Paulo (USP), Piracicaba, São Paulo, Brazil

26 ^cInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University,
27 Aachen, 52074, Germany

28 ^dAdvanced Center of Sugarcane Agrobusiness Technological Research, Agronomic Institute of
29 Campinas (IAC), Ribeirão Preto, São Paulo, Brazil

30 ^eDepartamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São
31 Carlos (UFSCar), Centro de Ciências Agrárias, Araras, São Paulo, Brazil

32 ^fInstituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (Unifesp), São José
33 dos Campos, São Paulo, Brazil

34 ^gDepartment of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil

35 ^hDepartment of Plant Biology, Biology Institute, University of Campinas (UNICAMP),
36 Campinas, São Paulo, Brazil

37 ***Corresponding author**

38 Email address: anete@unicamp.br (Anete Pereira de Souza)

39 **Number of tables:** 0

40 **Number of figures:** 8

41 **Word count:** 13,304

42 **Supplementary figures:** 8

43 **Supplementary tables:** 45

44 **Highlight**

45 This study describes the catalog of kinase gene family in *Saccharum spontaneum* and *Sorghum*
46 *bicolor*, providing a reservoir of molecular features and expression patterns based on RNA-Seq
47 and co-expression networks.

48 **Abstract**

49 The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core
50 regulator of cellular signaling. Even considering this substantial importance, the kinomes of
51 sugarcane and sorghum have not been profiled. Here we identified and profiled the complete
52 kinomes of the polyploid *Saccharum spontaneum* (Ssp) and *Sorghum bicolor* (Sbi), a close
53 diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs
54 when disregarding duplications and allelic copies, which were related to 1,345 representative
55 gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and
56 exhibited high compositional similarities and evolutionary divergences. By utilizing the
57 collinearity between these species, this study offers insights about Sbi and Ssp speciation, PK
58 differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq,
59 identifying significant similarities between Sbi and Ssp. Moreover, through coexpression
60 networks, we inferred a core structure of kinase interactions with specific key elements. This
61 study is the first to categorize the allele specificity of a kinome and provides a wide reservoir of
62 molecular and genetic information, enhancing the understanding of the evolutionary history of
63 Sbi and Ssp PKs.

64 **Keywords:** Coexpression networks, Kinase gene family, Phylogenetic analyses, RNA-Seq,
65 *Saccharum spontaneum*, *Sorghum bicolor*

66 **Abbreviations**

67 **Aco:** *Aquilegia coerulea*

68 **AGC:** cyclic AMP-dependent protein kinase (cAPK), cGMP-dependent protein kinase, and lipid
69 signaling kinase families

70 **Aly:** *Arabidopsis lyrata*

71 **Ath:** *Arabidopsis thaliana*

72 **B-lectin:** D-mannose-binding lectin

73 **Bdi:** *Brachypodium distachyon*

74 **CAMK:** calcium- and calmodulin-regulated kinase

75 **Ccl:** *Citrus clementina*

76 **CDS:** DNA coding sequence

77 **CK1:** casein kinase 1

78 **CMGC:** cyclin-dependent kinase, mitogen-activated protein kinase, glycogen synthase kinase

79 and cyclin-dependent kinase-like kinase

80 **Cpa:** *Carica papaya*

81 **Cre:** *Chlamydomonas reinhardtii*

82 **Csa:** *Cucumis sativus*

83 **Csi:** *Citrus sinensis*

84 **DUF26:** Domain of Unknown Function 26

85 **Egr:** *Eucalyptus grandis*

86 **ER:** endoplasmic reticulum

87 **GM:** gene model

88 **Gma:** *Glycine max*

89 **GO:** Gene Ontology

90 **GUB:** galacturonan-binding

91 **HMM:** hidden Markov model

92 **IRE1:** inositol-requiring kinase 1

93 **Ka:** Nonsynonymous substitution rates

94 **Ks:** Synonymous substitution rates

95 **LRR:** leucine-rich repeat

96 **LRRNT:** leucine-rich repeat N-terminal domain

97 **Mes:** *Manihot esculenta*

98 **Mgu:** *Mimulus guttatus*

99 **Mtr:** *Medicago truncatula*

100 **MW:** molecular weight

101 **MYA:** million years ago

102 **Osa:** *Oryza sativa*

103 **PEK:** pancreatic eukaryotic initiation factor-2alpha kinase

104 **PK:** protein kinase

105 **pI:** isoelectric point

106 **Ppa:** *Physcomitrella patens*

107 **Ppe:** *Prunus persica*

108 **Ptr:** *Populus trichocarpa*

109 **Rco:** *Ricinus communis*

110 **RLK:** receptor-like kinase

111 **S-locus-glycop:** S-locus glycoprotein

112 **Sbi:** *Sorghum bicolor*

113 **Sit:** *Setaria italica*

114 **Smo:** *Selaginella moellendorffii*

115 **Ssp:** *Saccharum spontaneum*

116 **STE:** serine/threonine kinase

117 **TKL:** tyrosine kinase-like kinase

118 **TPM:** Transcripts per million

119 **Vca:** *Volvox carteri*

120 **Vvi:** *Vitis vinifera*

121 **WAK:** wall-associated receptor kinase

122 **WGD:** whole-genome duplication

123 **Zma:** *Zea mays*

124 **1. Introduction**

125 Sugarcane is one of the world's most important crops, with the highest production quantity and
126 the sixth highest net production value in 2016 (FAO, 2020). For years, this crop has accounted
127 for approximately 80% of the worldwide sugar production (ISO, 2020) and is predicted to
128 account for nearly 40% of the planet's first-generation biofuel supply in the near future (Lalman
129 *et al.*, 2016). However, it is also known for its unprecedented genomic complexity; modern
130 cultivars arose from interspecific crosses between two autopolyploid species, namely,
131 *Saccharum officinarum* ($2n = 8x = 80, x = 10$) (D'Hont *et al.*, 1998) and *Saccharum spontaneum*
132 ($2n = 5x = 40$ to $16x = 128; x = 8$) (Panje and Babu, 1960). These hybridizations produced large
133 (~10 Gb) (D'Hont *et al.*, 1998), highly polyploid (D'Hont and Glaszmann, 2001) and aneuploid
134 (Sforça *et al.*, 2019) genomes. These genomes also contain numerous repetitive elements, mainly
135 retrotransposons, which can account for more than 50% of the total number of sequences
136 (Figueira *et al.*, 2012; Kim *et al.*, 2013; Mancini *et al.*, 2018).

137 Sugarcane genomic research is severely hampered by this genomic complexity, and for
138 many years depended on resources from a closely related and economically important species:
139 sorghum (*Sorghum bicolor*). *S. bicolor* (Sbi) is a stress-resistant, multifunctional cereal crop that
140 is primarily grown as a staple food in Africa but can also be used for fodder, sugar and biofuel
141 production (Serna-Saldívar *et al.*, 2012). *Saccharum* and *Sorghum* belong to the Saccharinae
142 subtribe of the Poaceae family (Clayton, 1987); however, unlike sugarcane, *Sorghum* has not
143 undergone recent polyploidization events (~96 million years) (Guo *et al.*, 2019) and thus has a
144 diploid and much smaller genome that was fully sequenced in 2009 (Paterson *et al.*, 2009). Due
145 to both the evolutionary proximity between the two species and the extensive collinearity
146 between their chromosomes, sorghum has historically been considered a diploid model for

147 sugarcane, even before the genome of either species was available (Grivet *et al.*, 1996; Grivet
148 and Arruda, 2002).

149 The superfamily of protein kinases (PKs) comprises the enzymes responsible for
150 catalyzing the reversible phosphorylation of proteins—one of the most widespread
151 posttranslational modifications across all living organisms. PKs act by transferring the terminal
152 phosphate group from adenosine triphosphate (ATP) to the hydroxyl group of a serine, threonine
153 or tyrosine residue in the target protein (Hunter, 1995). These reactions are key events regulating
154 the activity of proteins and protein-protein interactions; therefore, PKs are relevant in many
155 cellular and metabolic processes (Champion *et al.*, 2004). In plants, they are involved in the
156 regulation of circadian rhythms and cell cycles, the modulation of various developmental and
157 intracellular processes, and the control of cellular cycles and metabolism (Lehti-Shiu and Shiu,
158 2012). A recent compilation on stress responses in crops (Hasanuzzaman, 2020) cites numerous
159 reports of the involvement of PKs in plant tolerance to drought, heat and metal toxicity;
160 moreover, many studies have shown that these enzymes play roles in the defense response to
161 herbivores and pathogens (Falco *et al.*, 2001; Meng and Zhang, 2013). Several of these responses
162 are predicted to become increasingly relevant in agriculture as a result of climate change; indeed,
163 extreme temperatures and drought are obvious threats from global warming (Dai, 2013; Teixeira
164 *et al.*, 2013). Moreover, pest control is also prone to become more challenging with climate
165 instability (Gregory *et al.*, 2009). Therefore, the study of molecules and processes associated
166 with both biotic and abiotic stresses is highly relevant to the current setting (Ahuja *et al.*, 2010).

167 Dardick *et al.* (2007) noted that phylogenomic studies are particularly valuable in the
168 analysis of large and conserved gene groups such as PKs because of their ability to form a basis
169 for functional predictions and permit the identification of genes with unique properties, which

170 can in turn allow rational selection of candidates for more detailed studies. The first works on the
171 classification of PKs were based on the conservation and phylogenetic analyses of catalytic
172 domains of eukaryotic proteins (Hanks *et al.*, 1988; Hanks and Hunter, 1995). Later studies also
173 considered sequence similarity and domain structure outside the catalytic domains in
174 categorization (Manning *et al.*, 2002; Niedner *et al.*, 2006). More recently, the availability of
175 low-cost technologies for sequencing whole genomes have allowed the characterization of
176 species' kinomes, i.e., their entire repertoire of PKs. Compared to the human genome, plant
177 genomes generally contain not only many more PK genes but also atypical kinase families—
178 either exclusive to plant genomes or of prokaryotic origin (Zulawski and Schulze, 2015). This
179 expansion likely resulted from segmental, whole-genome, and tandem duplication events
180 (Hanada *et al.*, 2008). *Arabidopsis thaliana* was the first plant to have its kinome compiled
181 (Champion *et al.*, 2004), followed by of several other economically important species such as
182 rice, soybean, and grapevine (Dardick *et al.*, 2007; Liu *et al.*, 2015; Zhu *et al.*, 2018b). The
183 kinome of Sbi was compiled shortly after the genome sequencing (Lehti-Shiu and Shiu, 2012).

184 Several studies have analyzed and characterized kinases in sugarcane. The broadest
185 study is probably the study by Papini-Terzi *et al.* (2005), who identified sequences
186 corresponding to signal transduction components in the sugarcane expressed sequence tag
187 (SUCEST) database (Vettore *et al.*, 2003). Although they obtained substantial results considering
188 the limited resources available at the time, these authors reported a relatively low number of PKs
189 (510) in sugarcane. Other studies have indicated that sugarcane PKs are involved in this plant's
190 development and response to environmental stimuli, such as salt, cold and drought stresses
191 (Carraro *et al.*, 2001; Pagariya *et al.*, 2012; Li *et al.*, 2017). Even more relevant is the compelling
192 evidence that a leucine-rich repeat (LRR) receptor-like kinase is related to sucrose-accumulating

193 sugarcane tissues and genotypes, indicating its involvement in the regulation of sucrose synthesis
194 in mature leaves of this sugar crop (Vicentini *et al.*, 2009). However, a more comprehensive
195 identification and characterization of sugarcane PKs has not yet been performed. Recently, a
196 high quality, chromosome-level genome assembly for sugarcane was made available (Zhang *et*
197 *al.*, 2018). The assembly of the genome of the *S. spontaneum* (Ssp) AP85-441 clone ($2n = 4x =$
198 32) is also allele-defined, i.e., it provides separate sequences of each of the four chromosome
199 copies. The availability of this information-rich reference has since opened a range of
200 possibilities in sugarcane research, such as the detailed characterization of specific groups of
201 genes. Since polyploidy may result in chromosome rearrangements, gene loss and unequal rates
202 of sequence evolution and can favor gene neofunctionalization (Premachandran *et al.*, 2011), the
203 sugarcane genome provides fertile ground for related evolutionary and functional studies.

204 In this context, the main objective of this work was to identify and classify the complete
205 set of PKs present in the Ssp and Sbi genomes. For this purpose, we performed phylogenetic
206 analyses and *in silico* predictions of the properties and subcellular localization of these proteins.
207 Taking advantage of the completeness of the available information, we explored the impact of
208 whole-genome and tandem duplications in the distribution and diversification of the genes
209 encoding PKs in the genomes of these two plants. Finally, we constructed coexpression networks
210 using RNA sequencing (RNA-Seq) to evaluate the expression of PK-encoding genes across
211 different sugarcane and sorghum tissues and genotypes.

212 **2. Materials and methods**

213 **2.1. Kinase identification and domain investigation**

214 All kinase identification and classification procedures were performed for both Sbi and Ssp. The
215 Sbi protein-coding gene sequences and additional files from the Sbi genome (v3.1.1) were

216 obtained from Phytozome v.13 (Goodstein *et al.*, 2012). Ssp data were obtained from the AP85-
217 441 genome (Zhang *et al.*, 2018) (GenBank accession number: QVOL00000000). The same
218 pipeline was used for both species. All sequences obtained were aligned against the ‘typical’
219 Pkinase (PF00069) and Pkinase_Tyr (PF07714) families with hidden Markov models (HMMs)
220 retrieved from the Pfam database (El-Gebali *et al.*, 2019) using HMMER v.3.3 (Eddy, 1998). An
221 E-value cutoff of 0.1 was used, and we retained only sequences that covered at least 50% of the
222 respective Pkinase domain (Lehti-Shiu and Shiu, 2012). To avoid redundancy, we selected only
223 the longest variant for genes with isoforms. The domain composition of the putative PKs was
224 also investigated via the HMMER web server (Finn *et al.*, 2011) and Pfam database. The
225 distribution of PKs across the Sbi and Ssp chromosomes was visualized using MapChart v2.2
226 software (Voorrips, 2002).

227 **2.2. Subfamily classification and phylogenetic analyses**

228 All PKs identified were classified into subfamilies according to HMMs built based on a previous
229 classification and analyses of kinases of 25 plant species (Lehti-Shiu & Shiu, 2012): *Aquilegia*
230 *coerulea* (Aco), *Arabidopsis lyrata* (Aly), *Arabidopsis thaliana* (Ath), *Brachypodium distachyon*
231 (Bdi), *Carica papaya* (Cpa), *Citrus clementina* (Ccl), *Citrus sinensis* (Csi), *Chlamydomonas*
232 *reinhardtii* (Cre), *Cucumis sativus* (Csa), *Eucalyptus grandis* (Egr), *Glycine max* (Gma),
233 *Manihot esculenta* (Mes), *Medicago truncatula* (Mtr), *Mimulus guttatus* (Mgu), *Oryza sativa*
234 (Osa), *Populus trichocarpa* (Ptr), *Prunus persica* (Ppe), *Physcomitrella patens* (Ppa), *Ricinus*
235 *communis* (Rco), *Selaginella moellendorffii* (Smo), *Setaria italica* (Sit), *Vitis vinifera* (Vvi),
236 *Volvox carteri* (Vca), *Zea mays* (Zma), and an earlier version of the Sbi genome, which we
237 called v.1. This classification was confirmed through phylogenetic analyses. The Pkinase
238 domains of the putative PKs were aligned using Muscle v.3.8.31 (Edgar, 2004), and a

239 phylogenetic tree was estimated using a maximum likelihood approach implemented in
240 FastTreeMP v2.1.10 (Price *et al.*, 2010) with 1,000 bootstrap replicates using the CIPRES
241 gateway (Miller *et al.*, 2010). Different trees were constructed for (I) PKs from Sbi; (II) PKs
242 from Ssp; and (III) PKs from both Sbi and Ssp. The dendrogram visualization and plotting were
243 generated using R statistical software (R Core Team, 2013) with the ggtree (Yu *et al.*, 2017) and
244 ggplot2 (Villanueva and Chen, 2019) packages.

245 **2.3. Kinase characterization**

246 For each PK identified, the following characteristics were determined: (I) gene chromosomal
247 location and intron number, using GFF files; (II) predicted subcellular localization, with WoLF
248 PSORT (Horton *et al.*, 2007), CELLO v.2.5 (Yu *et al.*, 2006) and LOCALIZER v.1.0.4
249 (Sperschneider *et al.*, 2017) software; (III) presence of N-terminal signal peptides, using SignalP
250 v.4.1 Server (Petersen *et al.*, 2011); (IV) presence of transmembrane domains, using TMHMM
251 v.2.0 Server (Krogh *et al.*, 2001); and (V) Gene Ontology (GO) categories (Ashburner *et al.*,
252 2000), using the Blast2GO tool (Conesa *et al.*, 2005) with the SWISS-PROT (Bairoch and
253 Apweiler, 2000) and UniProt (UniProt Consortium, 2007) databases. Additionally, for Sbi PKs,
254 alternative splicing (AS) events were investigated using the Plant Alternative Splicing Database
255 (Min, 2013; Min *et al.*, 2015). The comparison of these characteristics and calculation of
256 descriptive statistics were performed with R statistical software. Analysis and visualization of
257 GO categories were performed using the REViGO tool (Supek *et al.*, 2011) and R (R Core
258 Team, 2013).

259 **2.4. Duplication events**

260 To investigate PK duplication events, we used the Multiple Collinearity Scan (MCScanX) toolkit
261 (Wang *et al.*, 2012). Tandem duplications were visualized with MapChart v2.2 software

262 (Voorrips, 2002) and segmental events were visualized in circos plots with Circos software
263 (Krzywinski *et al.*, 2009). Synonymous substitution (Ks) and nonsynonymous substitution (Ka)
264 rates were also estimated for segmental duplications using MCScanX (Wang *et al.*, 2012), and
265 Ks values were used to estimate the date of duplication events: $T = Ks/2\lambda$, where λ is the mean
266 value of the clock-like rates of synonymous substitutions (6.5×10^{-9}) (Gaut *et al.*, 1996).

267 **2.5. RNA-Seq experiments**

268 Data from several RNA-Seq experiments were used to estimate kinase expression. Sbi datasets
269 were retrieved from NCBI's Sequence Read Archive (SRA) (Leinonen *et al.*, 2010) and are
270 described in Supplementary Table S1. Samples from different tissues (pollen, shoots, leaves,
271 microspores, seeds, epidermal tissue, spikelets, roots and internodes) and cultivars (BTX623,
272 BTX642, RTX430, and R07020) were used (Dugas *et al.*, 2011; Freeling *et al.*, 2015; Makita *et*
273 *al.*, 2015; Kebrom *et al.*, 2017; Varoquaux *et al.*, 2019). To analyze sugarcane kinase expression,
274 we used novel RNA-Seq datasets described in the following section.

275 *2.5.1. Sugarcane plant material and RNA-Seq*

276 Sugarcane hybrids and *S. officinarum* and Ssp clones were used for expression analyses in
277 sugarcane. Four independent experiments were performed and are detailed in Supplementary
278 Table S2. Experiment 1 was based on root material from the RB867515, RB92579, RB855113,
279 RB855536, SP79-1011, and SP80-3280 hybrid cultivars. This trial was carried out in a
280 greenhouse and used three replicates per cultivar in a completely randomized design. Plants were
281 grown in 18-L plastic pots with a mixture of 20% commercial planting mix and 80% sand.
282 Ninety-five days after planting, we sampled the root material of each plant, avoiding tiller roots.

283 Experiments 2 and 3 were performed with leaf and culm (internode 1) samples,
284 respectively, from plants grown in the field in Araras, Brazil ($22^{\circ} 18' 41.0''$ S, $47^{\circ} 23' 05.0''$ W, at an

285 altitude of 611 m). Leaf samples were collected from portions of the top visible dewlap leaves
286 (+1) of six-month-old sugarcane plants in April 2016. We collected the middle section of each
287 leaf, removing the midrib. For culms, samples from the first internode were collected at four time
288 points in 2016: April (synchronous with leaf sampling), June, August and October.

289 In Experiment 2, we used samples from the SP80-3280, RB72454 and RB855156 hybrid
290 cultivars; TUC71-7 and US85-1008 hybrids; White Transparent and Criolla Rayada *S.*
291 *officinarum* genotypes; IN84-58, IN84-88, Krakatau and SES205A Ssp genotypes; and IJ76-318
292 *Saccharum robustum* genotypes. For six genotypes - SP80-3280, RB72454, US85-1008, White
293 Transparent, IN84-58, SES205A - we collected and sequenced three biological replicates, while
294 the others were represented by one biological replicate. All leaf samples were sequenced in two
295 lanes. In Experiment 3, culm samples were collected from the SP80-3280 and R570 hybrid
296 cultivars, F36-819 hybrid, and IN84-58 *S. spontaneum* genotype. Culm samples were sequenced
297 in six lanes.

298 Experiment 4 was based on samples from the SP80-3280 and IACSP93-3046 hybrid
299 cultivars, Badila De Java *S. officinarum* genotype, and Krakatau Ssp genotype. RNA samples
300 were extracted in triplicate from the top (internode 3) and bottom (internode 8) culms and
301 collected in the field in Ribeirão Preto, Brazil (21° 12 28.7 S, 47° 52 29.1 W) in June 2016.

302 After collection, samples were immediately frozen in liquid nitrogen and stored at -80°C
303 until processed. Total RNA was extracted from 200 mg of ground roots and 50 mg of ground
304 leaves or culms using an RNeasy Plant Mini Kit (Qiagen, Valencia, CA, United States). We
305 quantified the RNA and verified its integrity in a 2100 BioAnalyzer using a Eukaryote Total
306 RNA Nano Assay (Agilent Technologies). A total of 300 ng of RNA per sample was used to
307 prepare cDNA libraries with a TruSeq Stranded mRNA LT Kit (Illumina, San Diego, USA). All

308 libraries were sequenced on the HiSeq 2500 platform (Illumina, San Diego, USA).

309 **2.6. RNA-Seq data processing and coexpression network construction**

310 The quality of the RNA-Seq data was assessed using FastQC software (Andrews, 2010). For read
311 filtering and adapter removal, we used Trimmomatic v.0.39 (Bolger *et al.*, 2014). In the Sbi and
312 sugarcane datasets, bases with Phred scores below 20 were removed, and reads shorter than 30
313 bp were filtered out. In the sugarcane datasets, we also removed the first 12 bases of each read
314 and increased the filter length to 75 bp. For transcript quantification, we used the DNA coding
315 sequences (CDSs) from each species as reference, with k-mers of lengths 31 and 17 for the Ssp
316 and Sbi genomes, respectively, in Salmon v.1.1.0 software (Patro *et al.*, 2015). PK expression
317 quantification was evaluated with transcripts per million (TPM) values. Heatmaps visualizing the
318 expression of kinase subfamilies among tissues and cultivars were generated using the R package
319 pheatmap (Kolde and Kolde, 2015) with average TPM values and a complete-linkage
320 hierarchical clustering approach based on Euclidean distances.

321 Coexpression networks were estimated for PK subfamilies using a minimum Pearson
322 correlation coefficient of 0.6 between PK quantifications across different subfamilies. Network
323 modeling, analysis and visualization were performed using the R package igraph (Csardi and
324 Nepusz, 2006). To assess the Ssp and Sbi network structures and subfamily characteristics within
325 the networks, hub scores for each subfamily were calculated considering Kleinberg's hub
326 centrality scores (Kleinberg, 1999), edge betweenness values estimated by the number of
327 geodesics passing through the edge (Brandes, 2001), and communities defined using a
328 propagating label approach (Raghavan *et al.*, 2007).

329 **3. Results**

330 **3.1. Genome-wide identification of PKs in sugarcane and sorghum**

331 All Ssp and Sbi protein sequences available were aligned against kinase domains using
332 HMMER, and 3,729 (Ssp) and 1,910 (Sbi) different sequences showed significant
333 correspondence with Pkinase families (minimum E-value of 0.1). To avoid redundancies in this
334 set, we removed Sbi isoforms by using its GFF file, resulting in 1,276 sequences. Additionally,
335 the kinase domain coverage of all Ssp and Sbi alignments were evaluated; 810 (Ssp) and 66 (Sbi)
336 sequences did not have a minimum domain coverage of 50% and were therefore discarded, as
337 they likely represented atypical kinases or pseudogenes (Lehti-Shiu and Shiu, 2012; Liu *et al.*,
338 2015). Ultimately, we identified 2,919 putative Ssp and 1,210 putative Sbi PKs. Supplementary
339 Tables S3 and S4 show the discrimination of the kinase domain correspondence for the selected
340 sequences; the data indicate that some PKs (228 Ssp and 49 Sbi PKs) contained multiple kinase
341 domains.

342 Genome-wide identification of Ssp PKs was performed without prior knowledge of
343 allelic relationships among genes; however, due to the allele specificity of Ssp PKs, we also
344 evaluated their gene model (GM) organization as defined by Zhang *et al.* (2018). These authors
345 associated different sets of allele copies, paralog and tandem duplications to only one
346 representative GM. The 2,919 Ssp PKs corresponded to 1,345 different GMs, and the number of
347 Ssp PKs was only ~5% higher than that of Sbi PKs, which did not include allele differences. By
348 analyzing the GM description file (Zhang *et al.*, 2018), we identified 3,717 different gene
349 configurations for the 1,345 selected GMs, exceeding the number of detected kinases (2,919).
350 However, these divergences in quantity were related only to tandem and paralogous duplications,
351 and the number of allele copies (2,575) was identical in both analyses.

352 The Ssp and Sbi PKs were further classified into groups and subfamilies using HMMs
353 built based on the kinase sequences of 25 plant species identified by Lehti-Shiu & Shiu (2012).

354 PKs were classified into the subfamily with the top-scoring HMM correspondence. This process
355 resulted in the identification of 119 kinase subfamilies in Ssp and 120 in Sbi (Supplementary
356 Tables S5 and S6), corresponding to 20 different groups. This classification was confirmed by
357 three different phylogenetic trees (Supplementary Figs. S1-S3) estimated based on Sbi PKs, Ssp
358 PKs and all PKs from the two species. In the dendrogram, only 7 sequences in Ssp and 2 in Sbi
359 did not cluster with any other kinase subfamily. These unclassified PKs were included in an
360 "Unknown" category and considered probable novel gene kinase subfamilies. Comparison of the
361 Ssp GM and Sbi PKs revealed that the number and relative proportion of proteins in each group
362 was similar (Supplementary Table S7) with 40% of subfamilies' quantities having the same
363 values for Ssp and Sbi.

364 Overall, the number of PKs in each subfamily was low. The mean number of PKs per
365 subfamily was 10 in Sbi (median, 3), and 25 in Ssp (median, 4). The most abundant group in
366 both species was the receptor-like kinase (RLK)-Pelle group, accounting for ~70% of the PKs,
367 followed by the calcium- and calmodulin-regulated kinase (CAMK); cyclin-dependent kinase,
368 mitogen-activated protein kinase, glycogen synthase kinase and cyclin-dependent kinase-like
369 kinase (CMGC); tyrosine kinase-like kinase (TKL); serine/threonine kinase (STE); and cyclic
370 AMP-dependent protein kinase (cAPK), cGMP-dependent protein kinase, and lipid signaling
371 kinase families (AGC); and casein kinase 1 (CK1) groups. All other groups contained less than
372 1% of the total number of PKs. The clear separation and high abundance of the RLK group can
373 be seen clearly in Fig. 1. These subfamily abundances were similar for Ssp and Sbi, and only the
374 pancreatic eukaryotic initiation factor-2alpha kinase (PEK_PEK) subfamily was exclusive to Sbi.
375 The absolute counts ranged from 1 to 189 in Ssp GMs and from 1 to 133 in Sbi; the most
376 abundant subfamilies in these species were RLK-Pelle_DLSV (14.04% in Ssp and 10.99% in

377 Sbi), RLK-Pelle_WAK (4.38% in Ssp and 6.12% in Sbi), RLK-Pelle_L-LEC (6.84% in Ssp and
378 5.7% in Sbi), RLK-Pelle_SD-2b (6.39% in Ssp and 4.96% in Sbi), RLK-Pelle_LRR-XII-1
379 (2.67% in Ssp and 4.79% in Sbi), RLK-Pelle_LRR-XI-1 (4.68% in Ssp and 4.21% in Sbi) and
380 CAMK_CDPK (3.27% in Ssp and 3.22% in Sbi).

381 Additionally, we compared the identified subfamily quantities to 25 other plant species
382 included in the study of Lehti-Shiu & Shiu (2012). The heatmap (Supplementary Fig. S4)
383 visualizing the similarities in the numbers of PKs indicated a closeness between the Ssp and Sbi
384 kinase compositions; however, both exhibited closer relationships with other species than with
385 each other. The dendrogram constructed based on the columns (plant species) enabled the
386 identification of the species most similar to Sbi and Ssp in terms of PK quantities. Sbi was found
387 to belong to a cohesive clade with Zma, Bdi, and Sbi v.1; Ssp belonged to a clade with Sit and
388 Osa. Interestingly, even though these groups were separated by other species, together, these two
389 clusters corresponded to all of the monocotyledon species used in this comparison, and the other
390 clusters corresponded to dicotyledon species, bryophytes and green algae. Considering these two
391 clusters containing Sbi and Ssp, 26 subfamilies were not represented by PKs, corroborating the
392 correspondence of the PK quantities between these species.

393 **3.2. Characterization of PKs**

394 Ssp and Sbi PKs were distributed across all Ssp and Sbi chromosomes and alleles (Fig. 2A and
395 B). We found 1,209 PKs among all 10 Sbi chromosomes and 1 PK in a separated scaffold
396 (Supplementary Table S8). The Sbi PK quantities ranged from 67 (5.54%) on chromosome 7 to
397 184 (15.21%) on chromosome 3. In Ssp (Supplementary Table S9), the PK quantities across
398 allelic configurations were similar (762 in A, 748 in B, 675 in C, and 734 in D), and in all
399 configurations, chromosome 2 had the most and the chromosome 6 had the fewest PKs. The

400 accumulation of PKs was generally consistent with an increase in the chromosomal length.

401 The intron distribution differed between Ssp and Sbi PKs (Supplementary Tables S10 and

402 S11) and did not exhibit a clear distribution pattern on a specific chromosome (Fig. 2A and B). A

403 large number of PKs were intronless (154 in Sbi and 329 in Ssp). Additionally, all identified PKs

404 were analyzed against the Pfam database to retrieve related nonkinase domains. In Sbi, we

405 identified 70 additional domains (Supplementary Table S12) distributed across 662 PKs

406 (Supplementary Table S13). Interestingly, none of these additional domains were found in the 49

407 PKs containing multiple kinase domains (Supplementary Table S14). In Ssp, we identified 168

408 additional domains (Supplementary Table S15) across 1,423 PKs (Supplementary Table S16).

409 The 228 Ssp PKs with multiple kinase domains (Supplementary Table S17) also did not present

410 nonkinase domains. These additional domains were similar in Sbi and Ssp PKs (60 domains in

411 common). The 5 most abundant domains in Sbi were LRRs, with 8 in 193 PKs; leucine-rich

412 repeat N-terminal domains (LRRNTs), with 2 in 192 PKs, D-mannose-binding lectin (B-lectin)

413 domains, in 83 PKs; wall-associated receptor kinase (WAK) galacturonan-binding (GUB)

414 domains, in 72 PKs; and S-locus glycoprotein domain (S-locus-glycop) domains, in 71 PKs. In

415 Ssp, the 5 most abundant domains were LRRNTs, with 2 in 390 PKs; LRRs, with 8 in 351 PKs;

416 B-lectin domains, in 218 PKs; S-locus-glycop domains, in 185 PKs; and PAN-like domains

417 (PAN_2), in 182 PKs. Four of the five domains had the same abundance ranking in both species.

418 A full GO annotation of Sbi and Ssp PKs was performed with Blast2GO (Supplementary

419 Tables S18 and S19). In Sbi, we found 1,581 different GO terms related to 18,320

420 correspondences among the PKs. These terms were separated into 3,857 (21.05%) terms related

421 to the cellular component GO category, 3,752 (20.48%) to the molecular function category, and

422 10,711 (58.47%) to the biological process category. In Ssp, we found more categories (1,875)

423 and more correspondences (44,582) due to the larger size of the Ssp kinase. However, the
424 proportion of GO terms was similar: 9,193 (20.62%) in the cellular component GO category,
425 9,429 (21.15%) in the molecular function GO category, and 25,960 (58.23%) in the biological
426 process GO category. This clear similarity can be observed in the GO analysis pie charts in Fig.
427 2C and D. The 30 most abundant GO terms in Sbi and Ssp (with 26 categories in common) are
428 also shown. Due to the clear comprehensiveness of GO categories related to biological
429 processes, an additional analysis was performed using these Sbi and Ssp GO terms. Using
430 REViGO software, treemaps were generated to summarize these categories based on semantic
431 similarities (Supplementary Fig. S5A and B); the most abundant biological processes were
432 related to protein phosphorylation, defense response and cellular development.

433 For Sbi PKs, we investigated the possible occurrence of alternative splicing using the
434 Plant Alternative Splicing Database. One hundred Sbi kinase genes were found to undergo
435 associated alternative splicing events, and GO analysis of the most frequent biological processes
436 associated with these genes (Supplementary Fig. S5C) showed changes in the most frequent
437 categories considering the entire dataset of PK-related GO terms. The most frequent category
438 organization was defense response, which was the third most frequent in the entire set of Sbi PK
439 GO terms. In addition, programmed cell death was included as a category organization instead of
440 cell growth.

441 We also explored the presence of signal peptides and transmembrane helices in the PKs
442 and investigated their estimated molecular weights (MWs), theoretical isoelectric points (pIs),
443 and subcellular localization (Supplementary Tables S20 and 21). Among the Sbi PKs, ~40%
444 were predicted to contain signal peptides (Fig. 2A), in contrast with ~30% of Ssp PKs (Fig. 2B).
445 The MW and IP distributions of Sbi and Ssp PKs are shown in Fig. 2A and B, respectively. Most

446 Ssp PKs (~59%) did not contain transmembrane helices, while 50% of Sbi PKs did not. The
447 remaining sequences in both Sbi and Ssp PKs contained many (between 1 and 3) transmembrane
448 helices (Fig. 2C and D). To predict the subcellular localization of PKs, we used three different
449 software packages (WoLF PSORT, CELLO and LOCALIZER). The results indicated high
450 divergence among these methods; thus, we considered only the predictions identified by a
451 consensus of at least two of the three tools used. The localization of 1,425 Ssp and 616 Sbi PKs
452 was predicted. The PKs were classified as localized in the chloroplast, cytoplasmic, extracellular,
453 mitochondrial, nuclear or membrane regions (Fig. 2C and D). The most frequently identified
454 localization was the membrane, as also indicated by the high frequency of the plasma membrane
455 GO term.

456 The attributes of the PKs are summarized at the kinase subfamily level in Supplementary
457 Table S22 for Sbi and in Supplementary Table S23 for Ssp. To characterize kinase subfamily
458 gene structures, we first calculated the mean quantity of introns per kinase in each subfamily and
459 then determined the standard deviation and the coefficient of variation. As already shown
460 (Supplementary Tables S5 and S6), several subfamilies contained only one representative gene
461 (30 in Sbi and 33 in Ssp). In Ssp, some of these subfamilies with one GM had high intronic
462 divergences in gene allelic copies (with coefficients of variation ranging from 0 to ~141%).
463 Considering only the subfamilies with more than one member, increased coefficients of variation
464 were observed (ranging from 0 to ~241%), corresponding to significant discrepancies in gene
465 organization within kinase subfamilies. By filtering the subfamilies with a maximum coefficient
466 of variation of 20% and at least 2 PKs, we identified only 37 Sbi and 12 Ssp subfamilies with a
467 more cohesive structure, but most of these included only a few PKs. The five subfamilies among
468 these structurally organized groups with the highest number of PKs were RLK-Pelle_LRR-I-2,

469 TKL_CTR1-DRK-2, NEK, CK1_CK1-PI and PEK_GCN2 in Ssp and RLK-Pelle_LRR-II, RLK-
470 Pelle_LRR-I-1, RLK-Pelle_LRR-V, RLK-Pelle_RLCK-VIII, and RLK-Pelle_RLCK-V in Sbi.

471 Interestingly, the highest intron numbers were also observed in members of subfamilies
472 belonging to RLK-Pelle groups, with the exception of PEK_GCN2 in Sbi.

473 Protein properties across kinase subfamilies were also summarized and did not exhibit
474 considerable differences. Based on a maximum coefficient of variation of 20%, 13 subfamilies in
475 Sbi and 15 in Ssp had considerable variations in the IP. The MW exhibited higher variability in
476 Ssp than in Sbi (66 subfamilies with more diverse values, in contrast to 20 in Sbi). Regarding the
477 presence of signal peptides, all PKs in only 18 Sbi PK subfamilies (6 of which contained only
478 one PK) contained these subsequences; the subfamilies with the most members were RLK-
479 Pelle_LRR-V (12 members) and RLK-Pelle_WAK_LRK10L-1 (7 members). In Ssp, all PKs in
480 only 8 subfamilies contained signal peptides, with the inositol-requiring kinase 1 (IRE1) and
481 RLK-Pelle_RLCK-X subfamilies each containing 5 members. Similarly, these highlighted
482 subfamilies also contained transmembrane helices across their kinomes.

483 To complement the protein properties observed in kinase subfamilies, the domain
484 composition was described (Supplementary Tables S24 (Sbi) and S25 (Ssp)). Interestingly, the
485 AGC_RSK-2 subfamily had the highest number of PKs with multiple kinase domains in both Sbi
486 (19 PKs) and Ssp (20 PKs). Furthermore, we investigated the percentage of multikinase domain-
487 containing proteins among the PKs in each subfamily (Supplementary Tables S22 and S23). The
488 highest percentage (100%) was observed in the AGC_NDR and CMGC_SRPK subfamilies in
489 Sbi and in the CMGC_SRPK, CMGC_CDK-CCRK subfamilies in Ssp. Even though the
490 AGC_NDR subfamily did not contain all of the proteins with multiple kinase domains in Ssp, 10
491 of the 15 (~66%) had this characteristic. In general, the same domains were observed in Sbi and

492 Ssp, as already described. Across subfamilies, the 10 most abundant protein domains were
493 almost the same in Sbi and Ssp and comprised the LRRNT_2, LRR_8, LRR_1, LRR_6, LRR_4,
494 B_lectin, S-locus-glycop, GUB_WAK_bind, salt stress response, and antifungal domains. The
495 10 subfamilies with more varied domains belonged to the RLK-Pelle group in Sbi. However, in
496 Ssp, the CMGC_CDK group was the most domain-diverse subfamily.

497 ***3.3. Kinase duplication events in sugarcane and sorghum***

498 Gene duplications in Sbi and Ssp kinases were investigated using MCScanX. We identified
499 numerous kinase genes (1,165 in Sbi and 2,919 in Ssp) with an origin associated with dispersed
500 (7.73% in Sbi and 1.68% in Ssp), proximal (3.18% in Sbi and 1.88% in Ssp), tandem (10.04% in
501 Sbi and 8.94% in Ssp) and segmental duplications (78.97% in Sbi and 87.43% in Ssp). These
502 classifications are described in Supplementary Tables S26 and S27. Ssp PKs with origins related
503 to tandem duplications were differentially distributed across all allele copies on chromosomes
504 (ranging from 2 events on Chr4-B to 16 events on Chr3-A). The mean value per allele was 8.16,
505 with the highest concentration in allele copies on chromosome 3. A visual map of all Ssp PKs
506 organized in tandem was constructed using chromosomal representations according to their
507 physical location retained in the GFF file and were colored according to kinase subfamilies (Fig.
508 3B). Tandemly organized Sbi PKs were also visualized (Fig. 4B). All Sbi chromosomes
509 contained PKs with origins associated with tandem duplications. Chromosome 4 contained only
510 1 PK with a tandem duplication-associated origin, and chromosomes 2 and 3 had the most such
511 PKs (26 PKs on both). By analyzing the tandemly duplicated PKs within subfamilies, we found
512 19 subfamilies containing PKs that originated by tandem duplication. The highest percentages of
513 such Sbi PKs were found in the RLK-Pelle_RLCK-Os (80%), RLK-Pelle_LRR-I-1 (37.5%),
514 CMGC_CDKL-Os (34.78%), RLK-Pelle_LRK10L-2 (34.48%), and CMGC_CK2 33.33%

515 subfamilies. In Ssp, 64 subfamilies had tandemly duplicated PKs, and the 5 subfamilies with the
516 highest percentages were RLK-Pelle_RKF3 (100%), RLK-Pelle_LRR-VIII-1 (37.5%),
517 CAMK_CAMK1-DCAMKL (33.33%), RLK-Pelle_LRR-XIIIb (30%), and TKL_Gdt (28.57%).

518 In the Ssp genome, the distribution of PKs did not exhibit a clear pattern along
519 chromosomes (Fig. 3B); however, in the Sbi genome, PK genes were concentrated in
520 subtelomeric regions and were almost nonexistent in pericentromeric regions (Figure 4B). This
521 pattern of distribution was observed more clearly when the tandemly distributed Sbi PKs were
522 considered. Due to the importance of genes duplicated in tandem in biological processes, we also
523 performed GO analysis to determine the categories related to tandemly duplicated kinases. The
524 GO terms describing the biological processes of these proteins were clearly similar between Ssp
525 and Sbi (Figs. 3A and 4A), and considerable correspondence to the total number of GO terms
526 related to the entire set of PKs was observed (Supplementary Fig. S5A and B).

527 Segmental duplications accounted for the highest percentage of identified duplication
528 types in both Sbi and Ssp PKs. The highest quantities in Ssp were observed in the allelic copies
529 of chromosomes 1 and 2, which also contained the most PKs. In Sbi, chromosome 1 exhibited
530 the most segmental duplications, even though chromosome 3 had the most PK genes. For all
531 gene pairs within these collinear duplications, we calculated the Ka and Ks values to obtain a
532 time indicator of these events and evaluated the primary influence of PK expansion by
533 calculating the Ka/Ks ratio. We considered each gene pair to be under neutral (Ka/Ks=1),
534 negative (Ka/Ks<1) or positive selection (Ka/Ks>1) (Zhang *et al.*, 2006). The distribution of Ks
535 values is visualized in Fig. 2E and F, and a full contrast is provided in Supplementary Tables S28
536 and S29. The Ks values were clearly more evenly distributed in Sbi than in Ssp, which had 1,287
537 (27.5%) segmentally duplicated PKs with a Ks of < 0.05. We used the Ks values to estimate the

538 occurrence times of these duplications; the times ranged between 0 and 230.1 million years ago
539 (MYA) in Ssp, with an average of 45.6 MYA, and between 4.9 and 229.7 MYA in Sbi, with an
540 average of 96.8 MYA. Most segmental duplications with $K_s < 0.05$ in Ssp were estimated to have
541 occurred less than 3.83 MYA. Regarding the Ka/Ks ratio, we found the largest percentage of
542 gene pairs as likely to be under negative selection in both species (~86% in Ssp and ~88% in
543 Sbi).

544 All collinear duplications are shown in Fig. 5. The segmental events among alleles had
545 different configurations, but in most duplications, the order of PKs on one allele was retained on
546 the other allele (Fig. 5A). The correspondences among different chromosomes were much higher
547 in Ssp (Fig. 5B) than in Sbi (Fig. 5C), mainly because of the allele specificity of Ssp, which is
548 not known for Sbi. The duplication patterns were similar between Ssp and Sbi, and this genomic
549 organization is clearly shown in Fig. 5D, where the kinase genomic correspondences indicate the
550 increased synteny between these two species. In most PK subfamilies, the origin of most PKs
551 was characterized by segmental duplications (109 subfamilies in Sbi and 115 in Ssp;
552 Supplementary Tables S22 and S23). Interestingly, 4 subfamilies in Ssp (RLK-Pelle_RKF3,
553 CMGC_Pl-Tthe, SCY1_SCYL2, and CMGC_GSKL) and 8 in Sbi (RLK-Pelle_RLCK-Os,
554 PEK_GCN2, RLK-Pelle_RLCK-XI, STE_STE20-Pl, TLK, SCY1_SCYL2, TKL-Pl-8, and TKL-
555 Pl-7) did not contain any PKs possibly originated by segmental duplications.

556 Due to the PK allele specificity in Ssp, we performed additional analysis to assess the
557 distribution of kinase copies among alleles and investigated possible associations among allelic
558 copies, duplications and related domains (Fig. 6). Each Ssp GM can have up to four allelic
559 copies, depending on the genomic organization of the gene. Subfamilies with larger numbers of
560 PKs had a more dispersed organizational profile in terms of the number of allelic copies per GM.

561 Subfamilies with fewer GMs, on the other hand, did not have a uniform configuration. These
562 subfamilies constitute the majority of the Ssp kinome (~60% of the subfamilies had 5 or fewer
563 representative GMs, and 33 subfamilies (~30%) had only 1 GM). Even with the few related
564 proteins, these small subfamilies did not exhibit similar characteristics. Only 3 of these GMs had
565 copies on the 4 alleles, 10 GMs contained copies on 3 alleles, 9 on 2 alleles, and 11 on only one
566 allele (3 in allelic model A, 3 in B, 2 in C and 3 in D). More tandem and segmental duplications
567 were clearly observed in subfamilies with more elements, but this pattern did not hold for the
568 quantity of functional domains and multikinase domains. Even though the subfamilies foremost
569 clearly exhibiting these characteristics have already been described, these results are further
570 supported in Fig. 6.

571 **3.4. Estimates of kinase expression and construction of coexpression networks**

572 Quantification of kinase expression in Sbi and Ssp was performed via a wide variety of datasets
573 and comprised different tissues and genotypes (Supplementary Tables S1 and S2). For each
574 species, the bioinformatic procedures included quality filtering of the raw sequencing reads
575 followed by transcript quantification using Salmon software with the total set of Sbi and Ssp
576 CDSs. From the CDS quantifications, we separated the subset of kinase coding genes. Via TPM
577 values, Sbi kinase expression was quantified in 205 samples (Supplementary Table S30); Ssp
578 kinase expression, in 234 (Supplementary Table S31). To quantify expression at the subfamily
579 level, the TPM values for all PK members in a subfamily were averaged in each sample
580 (Supplementary Tables S32 and S33). However, most of the experiments contained several
581 biological and technical replicates, and the sample TPM values were also averaged to separately
582 represent the unique characteristics of a tissue from a specific genotype (Supplementary Tables
583 S34 and S35).

584 The expression quantification of Ssp and Sbi kinase subfamilies was visualized with a
585 heatmap (Fig. 7). Evident distinctions are visible in the heatmap columns. Considering the
586 hierarchical clustering analysis performed combining genotypes and tissues (columns) from both
587 species, there was a noticeable division into 5 groups, also identified by the total within sum of
588 squares using a range of group configurations (2-10). From right to left in the heatmap, the
589 groups are separated into (I) sugarcane samples from internodes and roots; (II) Sbi samples from
590 internodes, roots and spikelets; (III) Sbi samples from epidermal tissues, seeds and microspores;
591 (IV) Sbi and sugarcane samples from leaves and shoots; and (V) Sbi samples from pollen. The
592 expression patterns of kinase subfamilies were more similar among similar tissues from different
593 species than among different tissues from the same species. However, these clusters contained
594 subdivisions supporting the species specificities.

595 The differences in subfamily expression profiles were investigated further. For each
596 family, we calculated the dispersion of expression among genotypes and tissues by using the
597 statistical measures of the standard deviation and coefficient of variation (Supplementary Tables
598 S36 and S37). The divergence of these measures among tissues was high in Sbi, as observed in
599 the heatmap and indicated by the high values of the coefficient of variation (ranging from ~38%
600 to ~297%). In Ssp, on the other hand, 16 subfamilies exhibited relatively uniform expression
601 patterns in the analyzed samples (with coefficient of variation of less than or equal to 20%). The
602 coefficients of the other subfamilies ranged from ~21% to ~213%. This difference is possibly
603 explained by greater diversity of tissues used for Sbi than for Ssp. To identify the kinase
604 subfamilies with the highest and the lowest expression values, we calculated additional statistical
605 measures to summarize the distribution of TPM values in each subfamily (i.e., minimum,
606 maximum, mean, and 1st, 2nd and 3rd quartiles). We selected the 12 subfamilies (10% of the

607 dataset) with the highest and lowest values of all statistical measures employed. We considered a
608 subfamily as having the highest or the lowest expression values if that subfamily was ranked in
609 at least 4 of the 6 measures. We identified 8 subfamilies in Sbi and 12 in Ssp with the highest
610 expression patterns in the dataset. Surprisingly, three of these subfamilies (CK1_CK1,
611 CMGC_GSK, and CMGC_RCK) had the highest expression value in both species. Even though
612 their expression values were significantly increased, these subfamilies did not contain the highest
613 numbers of kinases (CMGC_RCK, for example, contained only 3 members in both Sbi and Ssp).
614 In Sbi, we also found CAMK_CDPK, CMGC_CK2, CMGC_MAPK, RLK-Pelle_RLCK-X, and
615 STE_STE11; and in Ssp, AGC_PKA-PKG, CAMK_CAMKL-CHK1, CAMK_OST1L,
616 CK1_CK1-Pl, CMGC_CDK-CDK8, CMGC_CDK-PITSLRE, CMGC_DYRK-YAK, Group-Pl-
617 4, and SCY1_SCYL2.

618 By this approach, 8 subfamilies in Ssp and 9 in Sbi with the lowest expression values
619 were identified, with two overlapping subfamilies (CMGC_CDKL-Os and RLK-Pelle_URK-3).
620 In Sbi, we also identified BUB, CAMK_CAMK1-DCAMKL, RLK-Pelle_LRR-I-1, RLK-
621 Pelle_RLCK-V, RLK-Pelle_WAK, TLK, and ULK_Fused. In Ssp, we found Group-Pl-2, RLK-
622 Pelle_LRR-XIIIa, RLK-Pelle_URK-2, TKL_Gdt, TKL-Pl-8, and ULK_ULK4. RLK-
623 Pelle_URK-3 had only one kinase member in both the Sbi and Ssp kinomes; however,
624 CMGC_CDKL-Os had 37 kinases in Ssp and 23 in Sbi. Due to the apparent lack of a correlation
625 between the expression values and the numbers of kinases in the subfamilies, we calculated the
626 Spearman correlation coefficient between the subfamily expression estimates and kinase
627 quantities (Supplementary Tables S38 and S39), and we did not find any combination of
628 genotype/tissue with a significant correlation—even when only genes with tandem or segmental
629 duplications were compared.

630 Together, the dendrogram and the heatmap indicate the presence of groups of subfamilies
631 with high similarities, whose expression patterns changed jointly according to the
632 tissue/genotype. Collectively considering all Sbi and Ssp quantifications, we evaluated their
633 similarities through correlation analysis. The strongest correlations were higher than 0.97 for the
634 two subfamily pairs RLK-Pelle_RLCK-Os/RLK-Pelle_RLCK-VIIa-2, and RLK-Pelle_RLCK-
635 VIIa-2/RLK-Pelle_RLCK-X. However, to expand and complement the assessment of the
636 similarities in RNA expression among the subfamilies, we also constructed coexpression
637 networks based on the expression correlation among samples in each subfamily. Two networks
638 were constructed: one for Sbi and one for Ssp (Fig. 8). Each node in the network represents a
639 different kinase subfamily (the node sizes represent the mean of the expression values within the
640 subfamily) and each connection has a minimum Pearson correlation coefficient of 0.6 (the edge
641 sizes represent the degree of the correlation). With the network structure, we evaluated the
642 presence of cohesive clusters formed by correlated subfamilies using a network community
643 detection approach based on label propagation. In the Sbi network (Fig. 8A), we identified 4
644 different modules with 87, 15, 3 and 9 elements. Four modules were also identified in the Ssp
645 network (Fig. 8C), but the distribution of the elements differed (83, 13, 8, and 2). In both
646 networks, some subfamilies (6 in the Sbi network and 13 in the Ssp network) were identified as
647 disconnected elements without any significant relationship with the other elements of the
648 networks. There was no evident similarity between these communities (Supplementary Fig. S6,
649 Supplementary Tables S40 and S41), indicating the differences in the expression pattern
650 correspondences between Ssp and Sbi.

651 Apparently, the Sbi and Ssp networks exhibited many different forms and structures;
652 however, by highlighting the connections in common between the Sbi and Ssp networks (Fig. 8B

653 and D), we observed a similar and important substructure between these representations. The
654 main network components were connected by this core structure, indicating the strongest
655 correlations between kinase subfamilies. The Ssp network (Fig. 8D) contained an edge that
656 clearly separates the network into two components; interestingly, this edge also belonged to the
657 common structure. By coloring the network edges according to the betweenness measure (Fig.
658 8A and B), we defined the connections between subfamilies that were most likely to represent
659 vulnerabilities in the networks, possibly indicating influential subfamilies in this complex
660 system. The most important connections were related to the subfamily pairs
661 CAMK_CDPK/RLK-Pelle_LRR-VI-2 and CAMK_CDPK/CMGC_RCK in Sbi, and to RLK-
662 Pelle_L-LEC/RLK-Pelle_LRR-VIII-1, RLK-Pelle_CR4L/RLK-Pelle_LRR-VIII-1, and RLK-
663 Pelle_CR4L/RLK-Pelle_LRR-Xb-1 in Ssp (Supplementary Tables S42 and S43).

664 The last analysis we performed on the networks aimed to identify the most influential
665 subfamilies by ranking the nodes according to their hub scores. These scores were used to color
666 the nodes in the network (the correspondences between nodes and subfamilies are indicated in
667 Supplementary Figs. S7 and S8 and Supplementary Tables S40 and S41). The highest hub scores
668 denote kinase subfamilies with the most connections in the network. The top 5 scores belonged
669 to the subfamilies RLK-Pelle_LRR-III, RLK-Pelle_RLCK-XII-1, CMGC_CDK-CRK7-CDK9,
670 CMGC_GSK, and RLK-Pelle_Extensin in Ssp, and to the Unknown category, RLK-Pelle_LRR-
671 XV, CMGC_GSK, STE_STE20-Fray, and CAMK_OST1L in Sbi. Additionally, high expression
672 values in subfamilies did not indicate increased hub scores (Fig. 8).

673 **4. Discussion**

674 Sugarcane possesses one of the most complex genomes known among crops (O'Hara and
675 Mundree, 2016; Mancini *et al.*, 2018; De Souza Barbosa *et al.*, 2020) which could, until recently,

676 only be assembled at the scaffold level (Grativol *et al.*, 2014; Okura *et al.*, 2016; Riaño-Pachón
677 and Mattiello, 2017; Souza *et al.*, 2019). Only in 2018 did an approach coupling next-generation
678 and long-read sequencing with high-throughput chromatin conformation capture enable a
679 chromosome- and allele-level genome of a Ssp clone to be assembled (Zhang *et al.*, 2018). This
680 study paved the way for several comprehensive analyses of gene families in this species (Hu *et*
681 *al.*, 2018; Hua-Ying *et al.*, 2019; Lin *et al.*, 2019; Shi *et al.*, 2019; Wang *et al.*, 2019a, b, c;
682 Zhang *et al.*, 2019b; Feng *et al.*, 2020; Huang *et al.*, 2020; Li *et al.*, 2020b; Su *et al.*, 2020a,
683 Zhang and Yin, 2020). In the present work, however, we analyzed the kinome of not only
684 sugarcane but also sorghum, a close diploid relative. Studies estimate that the *Saccharum* and
685 *Sorghum* lineages diverged 4.6-5.4 MYA (Kim *et al.*, 2014). After diverging from *Miscanthus*
686 3.1-4.6 MYA (Kim *et al.*, 2014), the *Saccharum* lineage experienced at least two rounds of
687 whole-genome duplication (Zhang *et al.*, 2018), while Sbi remained diploid. Therefore, sorghum
688 genomic resources are a valuable resource in genetic studies in sugarcane (Paterson *et al.*, 2009),
689 in which they have been extensively employed (Okura *et al.*, 2016; Mancini *et al.*, 2018; Bedre
690 *et al.*, 2019). As the genomes of both species are now available, comparisons of the diversity,
691 organization and expression of PKs between these two species enable us to perform in-depth
692 explorations of the evolutionary history of these proteins, which are relevant to numerous
693 biological processes.

694 A previous work that classified PKs from 25 plant species (Lehti-Shiu and Shiu, 2012)
695 indicated that substantial numerical variations in this superfamily exist among species; however,
696 this variation could be overestimated due to differences in the completeness of the genomic
697 assemblies. Moreover, the estimates presented by this and other studies (Singh *et al.*, 2014; Wei
698 *et al.*, 2014; Liu *et al.*, 2015; Zhu *et al.*, 2018a, b) indicated a number of PKs in Sbi (1,210) very

699 similar to those of other Poaceae species, which range between 1,041 in Bdi to 1,417 in Osa
700 (Lehti-Shiu and Shiu, 2012; Wei *et al.*, 2014). This figure is also comparable to the 1,093 PK
701 genes previously estimated for this species using an earlier genomic reference (Lehti-Shiu and
702 Shiu, 2012). The Ssp genome, on the other hand, contains one of the largest numbers of PK
703 genes reported for any plant species (2,919), ranking below only the allohexaploid genome of
704 *Triticum aestivum* (3,269 PKs) (Yan *et al.*, 2017). However, we must consider that this
705 identification was performed using a genome that provides information at the allele level; when
706 only Ssp GMs (i.e., single representatives of all copies of a gene) were analyzed, we found a
707 much lower number of PK genes (1,345), which is also within the range of PKs in other Poaceae
708 species. This discrepancy reinforces the hypothesis of Lehti-Shiu and Shiu (2012) that the
709 expansion of PK genes is directly related to recent whole-genome duplication events, a
710 suggestion that was made considering that paleopolyploid species, such as soybean, have larger
711 repertoires of these proteins. Indeed, because soybean's duplication events are much more
712 ancient than sugarcane's (having occurred ~13-59 MYA) (Schmutz *et al.*, 2010), its homologous
713 chromosomes are not treated as allelic copies. Therefore, it is only natural that more PK genes
714 were identified in the two kinomes compiled for Sbi, namely, 2,099 (Lehti-Shiu and Shiu, 2012)
715 and 2,166 (Liu *et al.*, 2015) PKs, while Ssp, which underwent very recent polyploid evolution,
716 contained many fewer PK genes when allelic copies were considered.

717 In Sbi, PK genes were more commonly located in subtelomeric regions. This pattern was
718 even more evident when only tandemly duplicated PKs were considered; similar (though less
719 pronounced) patterns were observed in the kinomes of soybean (Liu *et al.*, 2015), *T. aestivum*
720 (Yan *et al.*, 2017), *Gossypium raimondii* and *Gossypium barbadense* (Yan *et al.*, 2018). Yan *et*
721 *al.* (2017) noted that this pattern is consistent with *T. aestivum*'s higher gene and expressed

722 sequence tag (EST) densities in distal regions of chromosomes and inferred that this location
723 pattern of PKs could indicate chromosomal rearrangements. Our findings are equally compatible
724 with the general genomic landscape of sorghum: in this species, the density of genes—especially
725 paralogs—is much higher in chromosome extremities, while pericentromeric regions are very
726 rich in long terminal repeat retrotransposons (Paterson *et al.*, 2009; Mace and Jordan, 2011).
727 Studies have further demonstrated that genes are not uniformly distributed throughout the Sbi
728 genome but rather clustered in regions termed “gene insulae” (Gottlieb *et al.*, 2013).

729 On the other hand, the gene density in Ssp is less skewed towards subtelomeric regions
730 (Zhang *et al.*, 2018), which might explain why we did not observe such a clear pattern of PK
731 gene distribution along Ssp chromosomes. An analogous observation was made in a recent
732 analysis that compared the genomic structure of Sbi and those of two *Saccharum* species (Zhang
733 *et al.*, 2019a). Although the three species exhibited considerable collinearity among homologous
734 chromosomes, genes that were widely dispersed in *S. officinarum* and *S. robustum* linkage
735 groups were much more tightly clustered in subtelomeric regions on Sbi chromosomes. This
736 same pattern is visible on circos plots that show the synteny between the Sbi and Ssp kinomes
737 (Fig. 5D); although many of the Sbi PK genes are also present in the Ssp genome and are much
738 more widely distributed along chromosomes in Ssp. The dispersion of Ssp kinase genes between
739 chromosomes and allelic copies was also relatively balanced and somewhat proportional to the
740 chromosome length. Overall, this is similar to the patterns of kinase genes reported for rice
741 (Dardick *et al.*, 2007); pineapple and grapevine, although these genes are more unevenly
742 distributed along chromosomes (Zhu *et al.*, 2018a, b).

743 Comparison of the Sbi and Ssp kinomes alone reveals that their subfamily composition
744 profiles are very similar. The only subfamily found exclusively in Sbi was PEK_PEK. Even

745 though the PEK family is responsible for phosphorylation of eukaryotic translation initiation
746 factor 2 subunit alpha (eIF2 α) (Immanuel *et al.*, 2012), each subfamily is involved in the
747 response to different types of stresses (Donnelly *et al.*, 2013). The PEK_GCN2 subfamily was
748 found in both species, and its activation is related to amino acid and glucose deprivation (Yang *et*
749 *al.*, 2000; Deval *et al.*, 2009; Baker *et al.*, 2012), viral infection (Berlanga *et al.*, 2006;
750 Krishnamoorthy *et al.*, 2008) and UV irradiation (Grallert and Boye, 2007). PEK_PEK
751 subfamily kinases are especially activated during endoplasmic reticulum (ER) stress (Baker *et*
752 *al.*, 2012), and are homologous to IRE1 subfamily proteins (Urano *et al.*, 2000), which are also
753 activated in response to ER stress (Liu *et al.*, 2007a) and were found in both Sbi and Ssp
754 kinomes.

755 The group containing the most kinases is the RLK-Pelle group (Gish and Clark, 2011)
756 and, similar to findings in other kinomes (Singh *et al.*, 2014; Wei *et al.*, 2014; Zulawski *et al.*,
757 2014; Liu *et al.*, 2015; Yan *et al.*, 2017, 2018; Zhu *et al.*, 2018a, b), we found that the RLK-Pelle
758 group had the most members in our study. This expansion in the Sbi and Ssp kinomes is
759 apparently related to a few specific families within this group, most notably the LRR, RLCK,
760 DLSV, L-LEC and SD-2b families. These families have already been associated with the
761 increased number of kinases in the RLK-Pelle group (Zhu *et al.*, 2018a, b), mostly because of
762 their relation with biotic and abiotic stress responses (Dezhsetan, 2017). In the cotton kinome,
763 for instance, LRR subfamilies have been suggested to be significantly associated with plant
764 growth, development and defense responses (Yan *et al.*, 2018), and these associations have
765 already been described for Sbi and Ssp. In Sbi, the LRR family has broadly been linked with the
766 response to several types of stress (Kawahigashi *et al.*, 2011; Azzouz-Olden *et al.*, 2020; Filiz
767 and Kurt, 2020), playing roles related to signal transduction in response to extracellular signals

768 (Azzouz-Olden *et al.*, 2020; Dhaka *et al.*, 2020; Vikal *et al.*, 2020), pollen development (Dhaka
769 *et al.*, 2020), metabolism, and chaperone functions (Vikal *et al.*, 2020). In Ssp, in addition to its
770 association with defense response processes (Xu *et al.*, 2018; Yang *et al.*, 2019), this family has
771 already been associated with hormone metabolism (Chen *et al.*, 2019), cellulose and lignin
772 biosynthesis (Kasirajan *et al.*, 2018), and sucrose synthesis (Vicentini *et al.*, 2009).

773 In addition to the remarkably important LRR family, the RLCK, DLSV, L-LEC, and SD-
774 2b families are also involved in diverse essential mechanisms. Because RLCK family members
775 do not contain extracellular and transmembrane domains (Gao and Xue, 2012; Zulawski *et al.*,
776 2014), these proteins are generally involved in more specific processes (Jurca *et al.*, 2008). In
777 addition to disease resistance, RLCK proteins have been shown to be related to plant growth,
778 immune responses (Yan *et al.*, 2018; Zhu *et al.*, 2018a), and vegetative development (Jurca *et al.*,
779 2008; Gao and Xue, 2012). Together with RLCK family members, DLSV family members were
780 found to be differentially expressed in soybean tissues in stress experiments (Liu *et al.*, 2015).
781 The DLSV family includes Domain of Unknown Function 26 (DUF26), SD-1, LRR-VIII, and
782 VMA (a RLK subfamily specific in moss)-like proteins (Lehti-Shiu and Shiu, 2012), which
783 mediate the control of stress responses and development (Vinagre *et al.*, 2006; Vaattovaara *et al.*,
784 2019), with some members being associated with signaling pathways regulating the responses to
785 cold (Yan *et al.*, 2017) and infection (Yan *et al.*, 2017). L-LEC and SD-2b have established
786 associations with the defense response (Chen *et al.*, 2006; Wei *et al.*, 2014) but also with
787 stomatal immunity regulation via an L-LEC member (Desclos-Theveniau *et al.*, 2012) and with
788 self-incompatibility via SD-2b (Stein *et al.*, 1991). The essentiality of mechanisms shared by
789 these families clearly indicates their functional importance among plants (Vaattovaara *et al.*,
790 2019) and demonstrates their importance in the expansion and maintenance of the Sbi and Ssp

791 kinomes.

792 Differences in PK composition may lead to different functional profiles. Similarly,

793 structural divergences may arise at distinct points in evolutionary history (Teich *et al.*, 2007; Liu

794 *et al.*, 2015), contributing to different domain organizations and, subsequently, to diverse

795 functions (Xu *et al.*, 2012). Although PKs in the same subfamily have similar intron distribution

796 profiles in wheat (Yan *et al.*, 2017), several compositional differences were detected in the

797 soybean kinome (Liu *et al.*, 2015); we also detected these differences in the Ssp and Sbi

798 kinomes. In the Sbi kinome, the distribution of introns across subfamilies was more organized

799 than that in the Ssp kinome, indicating the more recent intron/exon reorganization of Ssp PKs.

800 This more evidently cohesive structure among Sbi subfamilies than Ssp subfamilies indicates

801 that gene reorganization may have occurred after these species diverged. The NEK, CK1_CK1-

802 PI, PEK_GCN2, and TKL_CTR1-DRK-2 families had the most prominent structural

803 organization in both Sbi and Ssp. All of these families play essential roles in cellular processes,

804 which requires a higher level of organization. As mentioned previously, PEK_GCN2 activity is

805 linked with eIF2 α . Interestingly, the Ssp kinome contained more members of this family than

806 any other species examined (Supplementary Fig. S4), and this family had a considerable gene

807 organization. NEK family members have been associated with the cell cycle machinery through

808 microtubule organization, cell growth, and stress responses (Moniz *et al.*, 2011; Takatani *et al.*,

809 2015). The CK1_CK1-PI subfamily is part of the CK1 group identified by Pei *et al.* (2019),

810 which is involved in several vital physiological processes via phosphorylation of different

811 substrates (Tan and Xue, 2014; Karpov *et al.*, 2019). TKL_CTR1 members have already been

812 linked to defense response pathways, including the ethylene signal transduction pathway

813 (Varberg *et al.*, 2018).

814 In contrast with the highly organized gene profile found in some subfamilies, several sets
815 of PKs exhibited considerable domain diversity and composition. Ssp PK subfamilies had the
816 largest number of domains, corroborating the most recent possible gene organization of these
817 PKs. RLK-Pelle subfamilies showed the largest differences in domain composition in both Sbi
818 and Ssp, as expected due to the large size of this family. In addition to RLK members, the
819 CMGC_CDK-CRK7-CDK9 (in Ssp) and CMGC_GSK subfamilies were among the top 10% of
820 subfamilies with the largest number of different domains. Even though the CMGC_CDK-CRK7-
821 CDK9 subfamily had the most members among the CMGC group, the number of PKs in the
822 CMGC_GSK subfamily was similar to those in the other GMC subfamilies. Therefore, this
823 domain diversity might be explained by the diverse functions performed by these proteins. As
824 previously mentioned, the RLK-Pelle group putatively participates in a wide variety of induced
825 biological processes, and the CMGC_CDK family (Joubès *et al.*, 2000) also integrates several
826 functions of transcription and cell division (Malumbres, 2014). Specifically, the CRK7 and
827 CDK9 subfamilies are related to the numerous processes in cell cycle control (Goldberg *et al.*,
828 2006). Additionally, the GSK subfamily affects numerous signaling pathways (Wrzaczek *et al.*,
829 2007).

830 Another interesting observation relates to the number of potential PK genes that were not
831 considered because they had a domain coverage of less than 50%, indicating that they represent
832 atypical kinases or pseudogenes (Lehti-Shiu and Shiu, 2012; Liu *et al.*, 2015). For Sbi, this
833 criterion resulted in the exclusion of 57 genes, which accounted for ~3% of sequences with
834 significant correspondences with PKs. In Ssp, however, 735 such genes were discarded,
835 accounting for almost 20% of the initially identified PKs. In their pioneering work, Lehti-Shiu
836 and Shiu (2012) found that 9.6% of all kinases initially identified in 25 species exhibited a

837 domain coverage of less than 50%, and this value varied considerably in later studies that
838 employed the same methodology. We can also speculate on the influence of polyploidization on
839 the pseudogenization of PK genes. While no kinomes have been published for other
840 autopolyploid species, we may take as examples those that have been generated in
841 allopolyploids. In the *Triticum-Aegilops* complex, the kinome of the allohexaploid *T. aestivum*
842 contains ~22% atypical kinases, while the kinomes of two of its diploid parental species,
843 *Triticum urartu* and *Aegilops tauschii*, contain ~16 and ~14% atypical kinases, respectively.
844 Similarly, in *Gossypium*, the kinomes of two diploid species (*G. raimondii* and *Gossypium*
845 *arboreum*) contain ~4 and ~9% atypical kinases, while in the kinomes of the allotetraploids
846 *Gossypium hirsutum* and *G. barbadense*, ~12% of PKs have these characteristics. The larger
847 numbers of kinase genes with atypical domains in polyploid genomes may have resulted from
848 more frequent pseudogenization events in these species and subsequent whole-genome
849 duplication (WGD), a long-proposed consequence of gene duplication and thus of
850 polyploidization (Magadum *et al.*, 2013).

851 Even though multikinase domains were found in both Sbi and Ssp, Ssp contained more
852 than Sbi, and more repetitions were found in some PKs. Similar to the soybean and grapevine
853 kinomes (Liu *et al.*, 2015; Zhu *et al.*, 2018b), the Sbi kinome contained PKs with only 2 or 3
854 kinase domains, in contrast to the Ssp kinome, which contained PKs with between 2 and 5 kinase
855 domains. Interestingly, the AGC_RSK-2 subfamily was found to have the largest number of
856 multikinase domains in both Sbi and Ssp, accounting for a very high percentage of members of
857 this subfamily, which is explained by the fusion of two PKs in the evolutionary history of the
858 RSK family (Carriere *et al.*, 2008). The AGC_NDR subfamily also exhibited this notable
859 characteristic; however, in this subfamily, the large number of multikinase domains is associated

860 with the insertion of a nuclear localization signal within the kinase domain (Tamaskovic *et al.*,
861 2003). Moreover, in the Sbi and Ssp kinomes, the PKs with most kinase domains were in the
862 RLK-Pelle_WAK subfamily, which is functionally linked to cell growth (Gish and Clark, 2011)
863 and whose loss might result in lethality (Wagner and Kohorn, 2001). As the percentage of
864 multikinase domains found in this family was small, we consider that such domains may interact
865 with specific substrates (Liu *et al.*, 2015).

866 Our study is the first to categorize a kinase superfamily considering allele copies. Even
867 though the presence of kinase domains in Ssp PKs was highly conserved, differences in intron
868 exon organization and domain composition were found. The most common compositional
869 differences were related to domain distribution along the allele copies (e.g., inversion of LRR
870 and kinase domains along the sequences), insertion or loss of domains in allele copies (e.g.,
871 LRR, antifungal, and uroporphyrinogen decarboxylase domains, as well as domains of unknown
872 function); and duplication of domains (e.g., LRR, legume lectin, EF-hand, and kinase domains).
873 Even though we expected minor differences across allele copies, these findings suggest specific
874 rearrangements of kinase sequences, indicating possible functional associations. Other studied
875 protein families in Ssp also had different pattern distributions across allele copies (Huang *et al.*,
876 2020; Li *et al.*, 2020b). In some studies, the gene structure has been reported to be similar across
877 these copies; however, this pattern is not universal (Ma *et al.*, 2019; Shi *et al.*, 2019). The
878 genomic structure and organization of sugarcane is considerably complex (Sforça *et al.*, 2019),
879 and the pattern of gene distribution across alleles is unclear; thus, more studies on specific genes
880 and subfamilies are required to better understand the organization of the sugarcane genome.

881 We also performed several *in silico* analyses to evaluate the molecular characteristics of
882 the PKs identified in the two species. As reported for grapevine (Zhu *et al.*, 2018b), the pIs and

883 MWs of the PKs were generally similar within subfamilies in Ssp and Sbi; these results were
884 expected, as these properties are estimated based on the protein sequence. We observed,
885 however, that Ssp contained many more PK subfamilies with significant variation in the MW
886 than did Sbi, possibly indicating a broader diversity of kinases in Ssp. After verifying the
887 presence of signal peptides in the PK sequences, we estimated that ~40% of Sbi kinases
888 contained signal peptides, in contrast with ~30% in Ssp. This percentage is very similar to that in
889 maize, where ~30% of PKs contain these signal sequences (Wei *et al.*, 2014). Regarding the
890 subcellular localization of the PKs, we noted high divergence in the results obtained with the
891 tested tools. All three methods (Yu *et al.*, 2006; Horton *et al.*, 2007; Sperschneider *et al.*, 2017)
892 are based on machine learning techniques and have unique advantages. Therefore, the discordant
893 localizations may not be reliable, and we decided to use a consensus approach, considering only
894 the results consistent between at least two of the tools. Although this process did not allow the
895 subcellular localization of all PKs to be estimated, it did allow us to determine a more consistent
896 predictive set for categorizing the Sbi and Ssp kinomes. Due to this conservative approach, we
897 did not make inferences about the distribution of subfamily localizations.

898 Annotation of the PKs based on GO terms corroborated the accuracy of their
899 identification. For instance, in both the Ssp and Sbi kinomes, the five most frequently appearing
900 annotated GO terms were (I) defense response to oomycetes, (II) protein serine/threonine
901 phosphorylation, (III) binding, (IV) plasma membrane and (V) pollen development (Fig. 2C and
902 D). All of these terms can be easily linked to kinases; indeed, terms (II) and (III) exhibit the most
903 obvious associations, as PKs catalyze the phosphorylation of proteins by transferring terminal
904 phosphate groups from ATP to serine, threonine or tyrosine residues in other proteins—a process
905 that involves the binding of PKs to their targets (Hunter, 1995). A large portion of eukaryotic

906 plant kinases (as we further demonstrated in the present work) are grouped into the RLK
907 superfamily and are thus located in the plasma membrane, which explains term (IV).
908 Additionally, PKs are frequently shown to participate in responses to infection by various
909 oomycetes in many plant species (Hall *et al.*, 2007; Blanco *et al.*, 2008; Hok *et al.*, 2011, 2014;
910 Carella *et al.*, 2019), as well as in pollen development, in several plants (Zhang *et al.*, 2001; Xu
911 *et al.*, 2011; Lafleur *et al.*, 2015; Chen *et al.*, 2016; Li *et al.*, 2018a), explaining terms (I) and
912 (V). This logic was maintained when the annotation results were summarized in treemaps
913 (Supplementary Fig. S5A and B); first, terms associated with protein phosphorylation were
914 strongly represented in the kinomes of both species. This summarization also highlights the
915 broad presence of terms associated with other mechanisms in which plant PKs are widely and
916 historically known to be involved, such as defense responses (Chen *et al.*, 2006; Tena *et al.*,
917 2011; Wei *et al.*, 2014; Xu *et al.*, 2018; Yang *et al.*, 2019), cellular development (Jin *et al.*, 2002;
918 Matschi *et al.*, 2013; Komis *et al.*, 2018), regulation of stomatal closure (Li *et al.*, 2000; Mustilli
919 *et al.*, 2002; Lee *et al.*, 2016) and development of leaves and pollen (Roe *et al.*, 1993; Benjamins
920 *et al.*, 2001; Khew *et al.*, 2015).

921 In Sbi, we also investigated 100 PKs that are possibly subject to alternative splicing, a
922 process that leads to the production of different mRNA isoforms from a single gene, therefore
923 expanding the functional diversity of the gene. Alternative splicing is extensively reported to
924 regulate plant development, circadian clocks and responses to environmental stimuli, especially
925 stresses (Filichkin *et al.*, 2015; Shang *et al.*, 2017). When only alternatively spliced PKs were
926 annotated and summarized (Supplementary Fig. 5C), we observed similarities to the categories
927 associated with all GO terms in the two species analyzed. One notable difference was the
928 inclusion of a category that included terms related to programmed cell death, a stress-triggered

929 process (Danon *et al.*, 2000) controlled by PKs (Tang *et al.*, 2005; Liu *et al.*, 2007b; Lachaud *et*
930 *al.*, 2013; Wrzaczek *et al.*, 2014; Yadeta *et al.*, 2016). A few PKs that function in response to
931 biotic and abiotic stresses have been shown to undergo alternative splicing (Rostoks *et al.*, 2004;
932 Koo *et al.*, 2007; Lin *et al.*, 2010), which could explain the high frequency of this category with
933 alternatively spliced PKs.

934 Overall, the Ssp and Sbi kinomes exhibited similar duplication patterns; in both species,
935 the most common type of PK duplication was segmental duplication, followed by tandem
936 duplications. These duplication events are usually reported as the two main contributors to PK
937 expansion in the genomes of several other species, especially in the RLK-Pelle superfamily
938 (Champion *et al.*, 2004; Dardick *et al.*, 2007; Wei *et al.*, 2014; Liu *et al.*, 2015; Dezhsetan, 2017;
939 Zhu *et al.*, 2018a, b). Gene retention by tandem duplication in kinases has already been
940 identified, with very high rates in several plants (Lehti-Shiu and Shiu, 2012), and considerable
941 correlation with different kinds of stress (Freeling, 2009). The association of PK expansion
942 through such events with defense response and signaling pathways has been widely reported in
943 kinome studies (Zulawski *et al.*, 2014; Liu *et al.*, 2015; Yan *et al.*, 2018; Zhu *et al.*, 2018a, b),
944 with these events being more pronounced in the RLK-Pelle group. In the Ssp and Sbi kinomes,
945 we found several subfamilies in this group with tandem duplications (mostly in LRR families).
946 By analyzing GO biological process categories related to these events (Figs. 3 and 4), we found a
947 considerable frequency of categories related to the defense response; however, other general
948 categories were also frequent, which is explained by the numerous processes related to these
949 subfamilies. Interestingly, in the RKF-3 family (in the RLK-Pelle group) in Ssp, all duplications
950 were associated with tandem events, and members of this family have already been linked with
951 stress responses and extracellular signaling (Huang *et al.*, 2014; Vaid *et al.*, 2016). Even with

952 this high similarity, several differences in the distribution of tandemly organized genes within
953 subfamilies were found between the Ssp and Sbi kinomes. These species- and chromosomal
954 region-specific organizational characteristics were previously noted by Yan *et al.* (2018) in a
955 comparison of cotton kinomes. With respect to genome organization in Ssp and Sbi, different
956 forms of tandem events have already been found (Wang *et al.*, 2010), with specific gene
957 organization patterns within each genome (Zhang *et al.*, 2018).

958 Segmental duplication events were also the major contributors to PK expansion in other
959 species; in the soybean kinase, these events accounted for the origin of more than 70% of the
960 PKs (Liu *et al.*, 2015); in grapevine, they were estimated to be responsible for the origin of
961 ~30% of the kinases and were thought to be especially relevant in the expansion of the RLK-
962 Pelle family (Zhu *et al.*, 2018b). The most striking duplication-related difference between the
963 Ssp and Sbi kinomes was the distribution of the rate of nonsynonymous mutations (Ks), which
964 was used to estimate the time of occurrence of these segmental duplications. While the range of
965 Sbi PK Ks values was comparatively wide, peaking at 0.65-0.85 (Fig. 2E), the Ks values of Ssp
966 exhibited a very prominent peak between 0 and 0.05 range; in addition, the further distribution of
967 Ks was somewhat similar to that in Sbi (Fig. 2F). Based on the clock-like rates of synonymous
968 substitutions, we estimated that the time of occurrence of this large number of segmental
969 duplications with Ks<0.05 was less than 3.8 MYA. Thus, we postulated that the Ks distribution
970 in Ssp is a consequence of the recent polyploidization events in sugarcane; this hypothesis is
971 supported by recent indications that the *Saccharum*-specific WGDs occurred in the last 3.1-4.6
972 million years (Kim *et al.*, 2014; Zhang *et al.*, 2018). This hypothesis is further reinforced by the
973 findings reported in *Gossypium* spp. kinomes; a profile of Ks distributions very similar to that in
974 Ssp was observed in the allotetraploids *G. hirsutum* and *G. barbadense* but not in its diploid

975 relatives (Yan *et al.*, 2018), strengthening the connection of this profile to WGD events.

976 We also analyzed the ratio of synonymous to nonsynonymous mutations (Ka/Ks), which
977 is used to determine the type of selection acting on a gene (Zhang *et al.*, 2006). We found that in
978 the two kinomes the large majority of segmentally duplicated PKs were under negative selection
979 (Ka/Ks<1), while a smaller percentage were under positive selection (Ka/Ks>1), and very few
980 were under neutral selection (Ka/Ks=1). This pattern is similar to those observed in the soybean,
981 grapevine and pineapple kinomes (Liu *et al.*, 2015; Zhu *et al.*, 2018a, b) and to those reported in
982 smaller gene families in Ssp (Wang *et al.*, 2019c; Li *et al.*, 2020a) and sorghum (Malviya *et al.*,
983 2016; Anand *et al.*, 2017; Mittal *et al.*, 2017).

984 Several RNA-Seq experiments were used to estimate the expression patterns of kinase
985 subfamilies across a considerable range of tissues and genotypes. Due to the similar expression
986 patterns within kinome subfamilies (Liu *et al.*, 2015) and the possibility of detecting clearer
987 expression patterns in different subfamilies than at the individual gene level, expression analysis
988 was performed combining expression levels of genes from subfamilies, instead of individual
989 genes. The differences among samples were more evident when separated by tissue instead of
990 genotype and species (Fig. 7), possibly because of the strong conservation of PKs and their
991 importance in several fundamental biological processes. In addition, as Liu *et al.* (2015)
992 suggested, we also recognized that the Ssp and Sbi kinomes' expression is shaped by the
993 physiological characteristics of these species. The highest expression levels were found for
994 members of the CMGC group in both the Sbi and Ssp kinomes. Additionally, in the AGC,
995 CAMK, and CK1 groups, we found high expression levels in several subfamilies. These findings
996 were previously reported in other plant species, suggesting an association of these groups with
997 developmental processes (Liu *et al.*, 2015; Zhu *et al.*, 2018a, b). Interestingly, even though RLK-

998 Pelle subfamilies account for the largest number of PKs among the kinomes, they were not
999 among the top overexpressed subfamilies.

1000 Among the 10% subfamilies with the highest expression, CMGC_GSK, CMGC_RCK,
1001 and CK1_CK1 were common to both the Sbi and Ssp datasets. Importantly, in addition to being
1002 overexpressed in Sbi, the members of the CMGC_GSK subfamily also contain many functional
1003 domains, as mentioned previously, and this characteristic might reflect their high expression.
1004 Another interesting subfamily with overexpression in the Sbi kinome was CMGC_MAPK
1005 (which exhibited average expression in Ssp), which has already been identified as having
1006 considerable importance in several Ssp and Sbi studies concerning stress signaling (Zhang *et al.*,
1007 2015; Paungfoo-Lonhienne *et al.*, 2016; Li *et al.*, 2016b; Srivastava and Kumar, 2020; Tuleski *et*
1008 *al.*, 2020; Wang *et al.*, 2020).

1009 Despite having only one kinase member in the Ssp and Sbi kinomes, the AGC_PKA-
1010 PKG subfamily showed one of the highest average expression values across Ssp tissues. In
1011 addition to the unremarkable expression of RLK-Pelle subfamily members, the high AGC_PKA-
1012 PKG expression corroborates the observation that in the Ssp and Sbi kinomes, expression was
1013 not related to the number of family members across families and groups. If we assume that PK
1014 subfamilies may have increased in size through duplication events, this might be a case of dosage
1015 balance, a phenomenon wherein the function of regulatory genes is sensitive to a stoichiometric
1016 equilibrium (Birchler & Veitia, 2014). Thus, PK families composed of more members (which
1017 survived duplications and thus present more copies) have a tendency toward lower average
1018 expression, as has been demonstrated in other plants (Birchler & Veitia, 2012). Additionally,
1019 AGC_PKA-PKG subfamily has been reported as broadly important in both Ssp and Sbi. In Ssp,
1020 studies have demonstrated the association of its members with signaling pathways (Kasirajan *et*

1021 *al.*, 2020), cell proliferation (Li *et al.*, 2016b), infection responses (Santa Brigida *et al.*, 2016; Xu
1022 *et al.*, 2018), hormone signal transduction in response to drought (Li *et al.*, 2016a), and pathways
1023 related to sucrose storage and photosynthesis (Hoang *et al.*, 2017; Thirugnanasambandam *et al.*,
1024 2017). In Sbi, the importance of this family is also linked with stress and signal responses (Parra-
1025 Londono *et al.*, 2018; Li *et al.*, 2018b; Nagaraju *et al.*, 2020; Vikal *et al.*, 2020). Therefore, these
1026 insights into expression constitute a valuable reservoir of information for analyzing the
1027 importance of Ssp and Sbi kinases.

1028 The final analysis performed using RNA-Seq datasets aimed to establish closer
1029 relationships among kinase subfamilies in Sbi and Ssp through coexpression networks, enabling
1030 biological inferences using connection patterns. The gene coexpression networks were
1031 constructed with pairwise correlations (similarity scores) from the gene expression quantification
1032 data (Serin *et al.*, 2016). Pearson correlation coefficients were used because of their reasonable
1033 performance in RNA-Seq datasets (Ballouz *et al.*, 2015). Moreover, as Liu *et al.* (2015)
1034 suggested, we constructed the networks based on subfamily relationships instead of single genes
1035 because of the enhanced functional interpretability and general inferences allowed by this
1036 approach. Complex networks have been widely applied to visualize complex biological systems
1037 (Barabási, 2016), and constitute a powerful tool for modeling gene interactions (Zhao *et al.*,
1038 2010). For kinase subfamily representations, these networks can facilitate the interpretation of
1039 relevant relationships among sets of kinases and provide insights into the interactions among
1040 metabolic mechanisms. These applications are possible because similar expression patterns on
1041 genes belonging to the same pathways reflect the network structure (Lee *et al.*, 2015), thus
1042 providing a tool to model these complex molecular interactions (Ficklin and Feltus, 2011).
1043 Together with the network representations, we used community detection methodologies

1044 to identify modules of cohesive elements, which possibly indicate more strongly interconnected
1045 metabolic relationships (Mitra *et al.*, 2013; Mall *et al.*, 2017; Zhang and Yin, 2020). This
1046 structural organization constitutes a reservoir of genetic information among kinomes and
1047 provides important insights into how these subfamilies biologically interact. When some
1048 subfamilies without significant relationships with other elements (disconnected nodes) were
1049 excluded, the network structures (Fig. 8) indicated that all of the subfamilies were
1050 interconnected, considering the nonrandom dependencies across subfamilies captured by the
1051 established correlation coefficient threshold (Ficklin and Feltus, 2011). This connected structure
1052 observed among both the Sbi PKs and the Ssp PKs has been described throughout the
1053 manuscript. Even though they have specific functions, all kinase subfamilies play roles in several
1054 common metabolic processes, and this commonality is clearly reflected in the network structures.

1055 In addition, considering the roles of PKs in metabolic signaling and stress responses, the
1056 organization of several subfamilies is reasonably conserved among different plant species (Lehti-
1057 Shiu and Shiu, 2012). By comparing the Sbi and Ssp networks, we identified a substantial core
1058 of similarity between the subfamily interactions in these species, possibly indicating several
1059 analogous expression profiles, as already observed in the comparison of expression values
1060 among tissues and genotypes (Fig. 7). In addition to the comparison of network connectivities,
1061 other topological characteristics were used to identify important features in the organization of
1062 kinase subfamilies. Hub and betweenness measures were calculated to supply evidence
1063 regarding how specific subfamilies are important in most metabolic processes involving kinases.

1064 Within a network structure, elements with the most connections are called hubs
1065 (Barabási, 2016). These nodes have been used to identify functionally critical components and as
1066 an additional approach to describe the network structure (Hong *et al.*, 2013; Azuaje, 2014; Van

1067 Dam *et al.*, 2018). In the constructed networks, the hub nodes indicate kinase subfamilies with
1068 the most correlations, which might represent sets of kinases with influential roles in diverse
1069 metabolic mechanisms in kinomes. Interestingly, the Sbi and Ssp networks did not exhibit high
1070 overlap of hub nodes. This observation provides evidence that although there are several
1071 similarities among the kinase expression profiles in these species, and the same biological
1072 cascades are activated, as indicated by the GO analyses (Supplementary Fig. S5), the mechanism
1073 by which the expression balance is achieved is species-specific. In fact, previous studies in
1074 polyploids have shown that this balancing varies even among lines of the same species (Mutti *et*
1075 *al.*, 2017).

1076 In both these Sbi and Ssp networks and those constructed in other kinome studies (Liu *et*
1077 *al.*, 2015; Zhu *et al.*, 2018b), different members of the RLK-Pelle group (mostly those in the
1078 LRR and RLCK families) were identified as hubs. Considering the described abundance of these
1079 families, their tandem duplications, and related functional implications, the strong influence of
1080 such nodes on the correlations among kinase subfamilies was expected. CMGC group
1081 subfamilies were also identified as hub elements, as observed in the soybean kinome (Liu *et al.*,
1082 2015). In the sugarcane network, the GSK and CDK families had a considerable number of
1083 connections, which is clearly explained by the very high number of pathways in which their
1084 members are involved, as previously noted. Additionally, the CDK family has already been
1085 found to be related with stress signaling in Ssp (Patade *et al.*, 2011) and in Sbi (Challa and
1086 Neelapu, 2018). In Sbi, the DYRK family also had a high node degree. Interestingly, members of
1087 this family have already been found to be related to the suppression of photosynthesis activity
1088 (Kimura and Ishikawa, 2018); thus, the importance and impact of this family among kinases is
1089 evident. Among the other hubs, the STE group (STE20 family) was also important in the Ssp and

1090 Sbi networks, which can be explained by the high number of biological cascades related to this
1091 subfamily (Xiong *et al.*, 2016).

1092 Several factors can explain why a subfamily constitutes a hub in our constructed
1093 networks, such as a high expression level (CMGC_GSK, CAMK_OST1L, CK1_CK1, and
1094 CMGC_DYRK-YAK), a large number of subfamily members (RLK-Pelle_LRR-III), the
1095 occurrence of tandem duplications (IRE1), a more structured gene organization considering
1096 intron-exon structures (RLK-Pelle_RLCK-XII-1, RLK-Pelle_LRR-VI-1, and CMGC_GSK), and
1097 the presence of diverse functional domains (RLK-Pelle_LRR-III, CMGC_CDK-CRK7-CDK9,
1098 and RLK-Pelle_LRR-VII-1) or multikinase domains (AGC_RSK-2, RLK-Pelle_LRR-III, and
1099 CMGC_CDK-CRK7-CDK9). However, we did not observe a consistent feature profile required
1100 for a subfamily to be considered a hub. Evidence supports the hubs' importance; however, the
1101 real reasons for their key importance within these structures are likely to be linked with
1102 functional properties, as widely discussed in other coexpression studies (Goel *et al.*, 2018; Tai *et*
1103 *al.*, 2018; Wang *et al.*, 2018; Zou *et al.*, 2019; Ding *et al.*, 2020).

1104 In addition to hub descriptions, edge betweenness measures also have high
1105 interpretability considering the complex system modeled by the networks. These calculations are
1106 based on properties from the entire network (Dunn *et al.*, 2005), exploiting the network flow and
1107 identifying possible essential interactions for the visual configuration (Van Dam *et al.*, 2018). In
1108 both the Sbi and Ssp networks, a clearly separated group of PKs that was connected with the
1109 other elements by only one or a few connections was evident. This network configuration might
1110 indicate important relationships among kinase subfamilies, providing evidence indicating how
1111 these specific subfamilies can interconnect. In Ssp, the most critical connections identified by
1112 betweenness calculations were found in the RLK-Pelle_L-LEC/RLK-Pelle_LRR-VIII-1 and

1113 RLK-Pelle_CR4L/RLK-Pelle_LRR-Xb-1 subfamilies. These nodes are members of families
1114 with undeniable importance, as seen in the network structure. The bridges in these kinase-kinase
1115 interactions can be explained by the large number of members within these families that can act
1116 in a connected manner, which is less evident in other subfamilies. However, as observed in the
1117 hub configurations, these structures are more evidently linked with functional roles, such as
1118 interconnected signaling pathways.

1119 In the Sbi network, on the other hand, the highest betweenness values were found in the
1120 CAMK_CDPK/RLK-Pelle_LRR-VI-2 and CAMK_CDPK/CMGC_RCK subfamilies.
1121 Interestingly, CAMK_CDPK subfamily genes have been extensively indicated to be located at
1122 important genomic regions regulating plant growth, development and resistance mechanisms to
1123 several types of abiotic and biotic stresses in both Sbi (Pestenácz and Erdei, 1996; Nhiri *et al.*,
1124 1998; Jain *et al.*, 2008; Li *et al.*, 2010; Monreal *et al.*, 2013; Usha Kiranmayee *et al.*, 2017) and
1125 Ssp (Li *et al.*, 2016b; Marquardt *et al.*, 2017; Ling *et al.*, 2018; Dharshini *et al.*, 2020; Srivastava
1126 and Kumar, 2020; Su *et al.*, 2020b), further supporting the association of functional
1127 characteristics in the network structure.

1128 **5. Conclusions**

1129 This study provided an extensive reservoir of genetic and molecular information for both Sbi and
1130 Ssp. Considering the incontestable importance of kinases in several essential biological
1131 processes, the identification, categorization and analysis of the kinomes of these species resulted
1132 in an important compendium of knowledge for use in further studies. Clear similarities were
1133 found in protein properties, domain compositions, genomic organization, expression profiles and
1134 subfamily interactions. However, we also observed pronounced differences in duplication events,
1135 which probably arose from Ssp recent WGDs, facilitating understanding of how the Sbi and Ssp

1136 kinomes have evolved considering this vast protein superfamily.

1137 **Supplementary data**

1138 **Supplementary figures**

1139 **Fig. S1.** (Additional File 1) Phylogenetic analysis of the identified protein kinases in *Sorghum*
1140 *bicolor* (Sbi) with 1,000 bootstrap replicates. Each protein is separated on the right side of the
1141 tree and is presented with its classification with respect to the kinase subfamilies, which are
1142 colored to represent the differences among subfamilies.

1143 **Fig. S2.** (Additional File 2) Phylogenetic analysis of the identified protein kinases in *Saccharum*
1144 *spontaneum* (Ssp) with 1,000 bootstrap replicates. Each protein is separated on the right side of
1145 the tree and presented with its classification with respect to the kinase subfamilies, which are
1146 colored to represent the differences among subfamilies.

1147 **Fig. S3.** (Additional File 3) Phylogenetic analysis of the protein kinases identified in both
1148 *Sorghum bicolor* (Sbi) and *Saccharum spontaneum* (Ssp) with 1,000 bootstrap replicates. Each
1149 protein is separated on the right side of the tree and presented with its classification with respect
1150 to the kinase subfamilies, which are colored to represent the differences among subfamilies.

1151 **Fig. S4.** (Additional File 4) Kinase subfamily quantification analysis in different plant species.
1152 Each row indicates a different subfamily and each column a plant species, and the numbers of
1153 kinases are noted. This heatmap is colored according to the distribution of quantities present in
1154 the datasets on a scale of beige to dark green.

1155 **Fig. S5.** (Additional File 5) Gene Ontology (GO) category annotation of biological processes in
1156 (A) the entire set of *Saccharum spontaneum* (Ssp) kinases; (B) the entire set of *Sorghum bicolor*
1157 (Sbi) kinases; and (C) the set of Sbi kinases related to alternative splicing events.

1158 **Fig. S6.** (Additional File 6) Venn diagram showing the intersection of subfamilies in the

1159 communities within the *Sorghum bicolor* (Sbi) and *Saccharum spontaneum* (Ssp) networks.

1160 **Fig. S7.** (Additional File 7) Coexpression network for *Sorghum bicolor* (Sbi) kinase subfamilies.

1161 Each node corresponds to a different subfamily, its size corresponds to the average expression

1162 value for all kinases within the subfamily in different samples, and its color corresponds to the

1163 hub score and ranges from beige to dark green. Each edge corresponds to a correlation with a

1164 Pearson correlation coefficient of at least 0.6. The correlation strength is represented by the

1165 edge's width, and the edge betweenness score is represented by the color (ranging from black to

1166 light blue, with light blue representing the highest values). The network background is colored

1167 according to the community detection analysis, and the nodes are labeled according to the

1168 subfamily correspondence found in Supplementary Table S40.

1169 **Fig. S8.** (Additional File 8) Coexpression network for *Saccharum spontaneum* (Ssp) kinase

1170 subfamilies. Each node corresponds to a different subfamily, its size corresponds to the average

1171 expression value of all kinases within the subfamily in different samples, and its color

1172 corresponds to the hub score and ranges from beige to dark green. Each edge corresponds to a

1173 correlation with a Pearson correlation coefficient of at least 0.6. The correlation strength is

1174 represented by the edge's width, and the edge betweenness score is represented by the color

1175 (ranging from black to light blue, with light blue representing the highest values). The network

1176 background is colored according to the community detection analysis, and the nodes are labeled

1177 according to the subfamily correspondence found in Supplementary Table S41.

1178 **Supplementary tables**

1179 **Additional file 9**

1180 **Table S1.** Organization of sorghum RNA-Seq experiments.

1181 **Table S2.** Organization of sugarcane RNA-Seq experiments.

1182 **Table S3.** Kinase domain annotation of the 1,210 sorghum protein kinases.

1183 **Table S4.** Kinase domain annotation of the 2,919 sugarcane protein kinases.

1184 **Table S5.** Subfamily kinase classification of the sorghum 1,210 kinases based on the alignment
1185 on HMMER and confirmed by phylogeny.

1186 **Table S6.** Subfamily kinase classification of the sugarcane 2,919 kinases based on the alignment
1187 on HMMER and confirmed by phylogeny.

1188 **Table S7.** Sorghum and sugarcane kinase subfamily quantifications.

1189 **Table S8.** Sorghum kinase distribution across chromosomes.

1190 **Table S9.** Sugarcane kinase distribution across chromosomes and alleles.

1191 **Table S10.** Localization, intron quantity and possible alternative splicing events of the 1,210
1192 sorghum kinases.

1193 **Table S11.** Localization and intron quantity of the 2,919 sugarcane kinases.

1194 **Table S12.** Domain annotation of the 1,210 sorghum protein kinases.

1195 **Table S13.** Domain organization of the 1,210 sorghum protein kinases.

1196 **Table S14.** Sorghum kinase domain organization for proteins with multiple kinase domains.

1197 **Table S15.** Domain annotation of the 2,919 sugarcane protein kinases.

1198 **Table S16.** Domain organization of the 2,919 sugarcane protein kinases.

1199 **Table S17.** Sugarcane kinase domain organization for proteins with multiple kinase domains.

1200 **Table S18.** Gene Ontology (GO) annotations for the 1,210 sorghum kinases.

1201 **Table S19.** Gene Ontology (GO) annotations for the 2,919 sugarcane kinases.

1202 **Table S20.** Compositional analyses of the 1,210 sorghum kinases.

1203 **Table S21.** Compositional analyses of the 2,919 sugarcane kinases.

1204 **Table S22.** Characteristics of sorghum kinase subfamilies.

1205 **Table S23.** Characteristics of sugarcane kinase subfamilies.

1206 **Table S24.** Presence of domains across sorghum kinase subfamilies.

1207 **Table S25.** Presence of domains across sugarcane kinase subfamilies.

1208 **Table S26.** Duplication origin of the 1,210 sorghum kinases.

1209 **Table S27.** Duplication origin of the 2,919 sugarcane kinases.

1210 **Table S28.** Collinearity events and Ka/Ks values of sorghum protein kinases.

1211 **Table S29.** Collinearity events and Ka/Ks values of sugarcane protein kinases.

1212 **Additional file 10**

1213 **Table S30.** Sorghum kinase transcripts per million (TPM) values across samples.

1214 **Table S32.** Sorghum kinase subfamily quantification across samples.

1215 **Table S34.** Sorghum kinase subfamily quantification across tissues from the selected genotypes.

1216 **Table S36.** Descriptive statistics of subfamily expression across sorghum kinase subfamilies.

1217 **Table S38.** Spearman correlation of average transcripts per million (TPM) values in sorghum

1218 genotypes/tissues with kinase subfamily quantities.

1219 **Table S40.** Sorghum kinase subfamily coexpression network characterization.

1220 **Table S42.** Edge betweenness values calculated across the sorghum coexpression network.

1221 **Additional file 11**

1222 **Table S31.** Sugarcane kinase transcripts per million (TPM) values across samples.

1223 **Table S33.** Sugarcane kinase subfamily quantification across samples.

1224 **Table S35.** Sugarcane kinase subfamily quantification across tissues from the selected geno-

1225 types.

1226 **Table S37.** Descriptive statistics of subfamily expression across sugarcane kinase subfamilies.

1227 **Table S39.** Spearman correlation of average transcripts per million (TPM) values in sugarcane

1228 genotypes/tissues with kinase subfamily quantities.

1229 **Table S41.** Characterization of the sugarcane kinase subfamily coexpression network.

1230 **Table S43.** Edge betweenness values calculated across the sugarcane coexpression network.

1231 **Additional file 12**

1232 **Table S44.** Sugarcane RNA-Seq read counts considering the samples described in

1233 Supplementary Table S2 and *Saccharum spontaneum* coding DNA sequences.

1234 **Additional file 13**

1235 **Table S45.** Sugarcane RNA-Seq transcripts per million (TPM) values considering the samples

1236 described in Supplementary Table S2 and *Saccharum spontaneum* coding DNA sequences.

1237 **Acknowledgements**

1238 This work was supported by grants from the Fundação de Amparo à Pesquisa de do Estado de

1239 São Paulo (FAPESP 2020/07434-0, 2015/22993-7, 2008/52197-4 and 2005/55258-6), the

1240 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 313426/2018-0 and

1241 434886/2018-1), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

1242 (CAPES—Computational Biology Programme and Financial Code 001). AHA received a PhD

1243 fellowship from FAPESP (2019/03232-6); RJGP received MSc fellowships from CAPES

1244 (88887.177386/2018-00) and from FAPESP (2018/18588-8); GKH received a PhD fellowship

1245 from CAPES (88882.160212/2017-01); CBCS received a PD fellowship from FAPESP

1246 (2015/16399-5); MCM received a PD fellowship from FAPESP (2014/11482-9); DAS received a

1247 PhD fellowship from FAPESP (2010/50119-6); LBS received an undergraduate fellowship from

1248 FAPESP (2019/19340-2); TWB received a PhD fellowship from FAPESP (2010/50091-4); and

1249 APS received a research fellowship from CNPq.

1250 **Author contributions**

1251 AHA and RJGP performed all analyses and wrote the manuscript. ALBG, FHC, and GKH
1252 assisted in processing the sugarcane RNA-Seq data, and together with CBCS, MCM, and DAS,
1253 were responsible for the sugarcane RNA-Seq experiments. MMC assisted in the functional
1254 analyses of the kinase subfamilies; LBS contributed to the identification of the kinases; JSON
1255 assisted in the kinase categorization; LRP, MGAL, MSC, and TWB were responsible for the
1256 sugarcane field experiments; MGQ assisted in the network analysis; WAP assisted in the
1257 pipeline definition and kinase categorization; and GRAM and APS conceived the project. All
1258 authors reviewed, read, and approved the manuscript.

1259 **Data availability**

1260 The data that support the findings of this study are openly available in
1261 <https://doi.org/10.6084/m9.figshare.c.5122460.v1>, as well supplementary data.

References

Ahuja I, De Vos RCH, Bones AM, Hall RD. 2010. Plant molecular stress responses face climate change. *Trends in Plant Science* 15, 664-674.

Anand G, Yadav S, Tanveer A, Nasim J, Singh NK, Dubey AK, Yadav D. 2017. Genome-wide assessment of Polygalacturonases-Like (PGL) genes of *Medicago truncatula*, *Sorghum bicolor*, *Vitis vinifera* and *Oryza sativa* using comparative genomics approach. *Interdisciplinary Sciences: Computational Life Sciences* 10, 704-721.

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. Accessed January 2020.

Ashburner M, Ball CA, Blake JA, et al. 2000. Gene ontology: tool for the unification of biology. *Nature Genetics* 25, 25-29.

Azuaje FJ. 2014. Selecting biologically informative genes in co-expression networks with a centrality score. *Biology Direct* 9, 12.

Azzouz-Olden F, Hunt AG, Dinkins R. 2020. Transcriptome analysis of drought-tolerant *Sorghum* genotype SC56 in response to water stress reveals an oxidative stress defense strategy. *Molecular Biology Reports* 47, 3291-3303.

Bairoch A, Apweiler R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic Acids Research* 28, 45-48.

Baker BM, Nargund AM, Sun T, Haynes CM. 2012. Protective coupling of mitochondrial function and protein synthesis via the eIF2 α kinase GCN-2. *PLoS Genetics* 8, e1002760.

Ballouz S, Verleyen W, Gillis J. 2015. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. *Bioinformatics* 31, 2123-2130.

Barabási A. 2016. Network science. Cambridge, UK: Cambridge University Press.

Bedre R, Irigoyen S, Schaker PDC, Monteiro-Vitorello CB, Da Silva JA, Mandadi KK.

2019. Genome-wide alternative splicing landscapes modulated by biotrophic sugarcane smut pathogen. *Scientific Reports* 9, 8876.

Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R. 2001. The PINOID protein kinase regulates organ development in *Arabidopsis* by enhancing polar auxin transport. *Development* (Cambridge, England) 128, 4057-4067.

Berlanga JJ, Ventoso I, Harding HP, Deng J, Ron D, Sonenberg N, Carrasco L, De Haro C. 2006. Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses. *The EMBO Journal* 25, 1730-1740.

Birchler, J. A., & Veitia, R. A. 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. *Proceedings of the National Academy of Sciences*, 109, 14746–14753.

Birchler, J. A., & Veitia, R. A. 2014. The gene balance hypothesis: Dosage effects in plants. *Plant Epigenetics and Epigenomics*, 25-32.

Blanco FA, Zanetti ME, Daleo GR. 2008. Calcium-dependent protein kinases are involved in potato signal transduction in response to elicitors from the oomycete *phytophthora infestans*. *Journal of Phytopathology* 156, 53-61.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114-2120.

Brandes U. 2001. A faster algorithm for betweenness centrality. *Journal of Mathematical Sociology* 25, 163-177.

Carella P, Gogleva A, Hoey DJ, Bridgen AJ, Stolze SC, Nakagami H, Schornack S. 2019. Conserved biochemical defenses underpin host responses to oomycete infection in an

early-divergent land plant lineage. *Current Biology* 29, 2282-2294.e5.

Carraro DM, Lambais MR, Carrer H. 2001. In silico characterization and expression analyses of sugarcane putative sucrose non-fermenting-1 (SNF1) related kinases. *Genetics and Molecular Biology* 24, 35-41.

Carriere A, Ray H, Blenis J, Roux PP. 2008. The RSK factors of activating the Ras/MAPK signaling cascade. *Frontiers in Bioscience* 13, 4258-4275.

Challa S, Neelapu N. 2018. Genome-wide association studies (GWAS) for abiotic stress tolerance in plants. In: Wani S, ed. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Amsterdam, Netherlands: Elsevier, 135-150.

Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y. 2004. Arabidopsis kinome: after the casting. *Functional & Integrative Genomics* 4, 163-187.

Chen L, Guan X, Qin L, Zou T, Zhang Y, Wang J, Wang Y, Pan C, Lu G. 2016. Downregulation of the mitogen-activated protein kinase SlMAPK7 gene results in pollen abortion in tomato. *Plant Cell, Tissue and Organ Culture (PCTOC)* 126, 79-92.

Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G. 2006. AB-lectin receptor kinase gene conferring rice blast resistance. *The Plant Journal* 46, 794-804.

Chen Z, Qin C, Wang M, Liao F, Liao Q, Liu X, Li Y, Lakshmanan P, Long M, Huang D. 2019. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. *BMC Plant Biology* 19, 285.

Clayton W. 1987. Andropogoneae. In: Soderstrom T, ed. *Grass systematics and evolution*. Washington, DC: Smithsonian Institutional Press, 307-309.

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a

universal tool for annotation, visualization and analysis in functional genomics research.

Bioinformatics 21, 3674-3676.

Csardi G, Nepusz T. 2006. The igraph software package for complex network research.

InterJournal, Complex Systems 1695, 1-9.

D'Hont A, Ison D, Alix K, Roux C, Glaszmann JC. 1998. Determination of basic chromosome numbers in the genus *Saccharum* by physical mapping of ribosomal RNA genes. Genome 41, 221-225.

D'Hont A, Glaszmann JC. 2001. Sugarcane genome analysis with molecular markers, a first decade of research. Proceedings of the International Society of Sugar Cane Technologists 24, 556-559.

Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3, 52-58.

Daniels J, Roach B. 1987. Taxonomy and evolution. In: Heinz D, ed. Developments in crop science. Amsterdam, Netherlands: Elsevier, 7-84.

Danon A, Delorme V, Mailhac N, Gallois P. 2000. Plant programmed cell death: a common way to die. Plant Physiology and Biochemistry 38, 647-655.

Dardick C, Chen J, Richter T, Ouyang S, Ronald P. 2007. The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiology 143, 579-586.

De Souza Barbosa G, Dos Santos J, Diniz C, Cursi D, Hoffmann H. 2020. Energy cane breeding. In: Santos F, Rabelo S, De Matos M, Eichler P, eds. Sugarcane biorefinery, technology and perspectives. London, UK: Elsevier, 103-116.

Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJC, Chen WY, Lin YC, Zimmerli L. 2012. The *Arabidopsis* lectin receptor kinase LecRK-V. 5 represses stomatal immunity

induced by *Pseudomonas syringae* pv. tomato DC3000. PLoS Pathogens 8, e1002513.

Deval C, Chaveroux C, Maurin AC, Cherasse Y, Parry L, Carraro V, Milenkovic D, Ferrara M, Bruhat A, Jousse C. 2009. Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways. The FEBS Journal 276, 707-718.

Dezhsetan S. 2017. Genome scanning for identification and mapping of receptor-like kinase (RLK) gene superfamily in *Solanum tuberosum*. Physiology and Molecular Biology of Plants 23, 755-765.

Dhaka N, Krishnan K, Kandpal M, Vashisht I, Pal M, Sharma MK, Sharma R. 2020. Transcriptional trajectories of anther development provide candidates for engineering male fertility in *Sorghum*. Scientific Reports 10, 1-16.

Dharshini S, Hoang NV, Mahadevaiah C, Padmanabhan TS, Alagarasan G, Suresha G, Kumar R, Meena MR, Ram B, Appunu C. 2020. Root transcriptome analysis of *Saccharum spontaneum* uncovers key genes and pathways in response to low-temperature stress. Environmental and Experimental Botany 171, 103935.

Ding Z, Fu L, Tan D, Sun X, Zhang J. 2020. An integrative transcriptomic and genomic analysis reveals novel insights into the hub genes and regulatory networks associated with rubber synthesis in *H. brasiliensis*. Industrial Crops and Products 153, 112562.

Donnelly N, Gorman AM, Gupta S, Samali A. 2013. The eIF2 α kinases: their structures and functions. Cellular and Molecular Life Sciences 70, 3493-3511.

Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE. 2011. Functional annotation of the transcriptome of *Sorghum bicolor* in response to osmotic stress and abscisic acid. BMC Genomics 12, 514.

Dunn R, Dudbridge F, Sanderson CM. 2005. The use of edge-betweenness clustering to investigate biological function in protein interaction networks. *BMC Bioinformatics* 6, 39.

Eddy SR. 1998. Profile hidden Markov models. *Bioinformatics (Oxford, England)* 14, 755-763.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32, 1792-1797.

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The pfam protein families database in 2019. *Nucleic Acids Research*, 47 , D427-D432.

Falco MC, Marbach PAS, Pompermayer P, Lopes FCC, Silva-Filho MC. 2001. Mechanisms of sugarcane response to herbivory. *Genetics and Molecular Biology* 24, 113-122.

FAO. 2020. FAOSTAT: production sheet. <http://www.fao.org/faostat/en/#data>. Accessed April 2020.

Feng X, Wang Y, Zhang N, Wu Z, Zeng Q, Wu J, Wu X, Wang L, Zhang J, Qi Y. 2020. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K⁺ stress in *Saccharum*. *BMC Plant Biology* 20, 1-17.

Ficklin SP, Feltus FA. 2011. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. *Plant Physiology* 156, 1244-1256.

Figueira T, Okura V, Da Silva FR, Da Silva MJ, Kudrna D, Ammiraju JS, Talag J, Wing R, Arruda P. 2012. A BAC library of the SP80-3280 sugarcane variety (*Saccharum* sp.) and its inferred microsynteny with the *Sorghum* genome. *BMC Research Notes* 5, 185.

Filichkin S, Priest HD, Megraw M, Mockler TC. 2015. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. *Current Opinion in Plant Biology* 24, 125-135.

Filiz E, Kurt F. 2020. Antimicrobial peptides Snakin/GASA gene family in *Sorghum* (*Sorghum bicolor*): genome-wide identification and bioinformatics analyses. *Gene Reports* 20, 100766.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. *Nucleic Acids Research* 39, W29-W37.

Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. *Annual Review of Plant Biology* 60, 433-453.

Freeling M, Scanlon MJ, Fowler JE. 2015. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. *Current Opinion in Genetics & Development* 35, 110-118.

Gao LL, Xue HW. 2012. Global analysis of expression profiles of rice receptor-like kinase genes. *Molecular Plant* 5, 143-153.

Gaut BS, Morton BR, McCaig BC, Clegg MT. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene *Adh* parallel rate differences at the plastid gene *rbcL*. *Proceedings of the National Academy of Sciences of the United States of America* 93, 10274-10279.

Gish LA, Clark SE. 2011. The RLK/Pelle family of kinases. *The Plant Journal* 66, 117-127.

Goel P, Sharma NK, Bhuria M, Sharma V, Chauhan R, Pathania S, Swarnkar MK, Chawla V, Acharya V, Shankar R. 2018. Transcriptome and co-expression network

analyses identify key genes regulating nitrogen use efficiency in *Brassica juncea* L.

Scientific Reports 8, 1-18.

Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL. 2006. The Dictyostelium kinome—analysis of the protein kinases from a simple model organism. PLoS Genetics 2, e38.

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40, D1178-D1186.

Gottlieb A, Müller HG, Massa AN, Wanjugi H, Deal KR, You FM, Xu X, Gu YQ, Luo MC, Anderson OD. 2013. Insular organization of gene space in grass genomes. PLoS One 8, e54101.

Grallert B, Boye E. 2007. The Gcn2 kinase as a cell cycle regulator. Cell Cycle 6, 2768-2772.

Grativil C, Regulski M, Bertalan M, McCombie WR, Da Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA. 2014. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus *Saccharum*. The Plant Journal 79, 162-172.

Gregory PJ, Johnson SN, Newton AC, Ingram JS. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany 60, 2827-2838.

Grivet L, Arruda P. 2002. Sugarcane genomics: depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5, 122-127.

Grivet L, D'Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC. 1996. RFLP mapping in cultivated sugarcane (*Saccharum* spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142, 987-1000.

Guo H, Jiao Y, Tan X, Wang X, Huang X, Jin H, Paterson AH. 2019. Gene duplication and genetic innovation in cereal genomes. *Genome Research* 29, 261-269.

Hall HC, Samuel MA, Ellis BE. 2007. SIPK conditions transcriptional responses unique to either bacterial or oomycete elicitation in tobacco. *Molecular Plant Pathology* 8, 581-594.

Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH. 2008. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. *Plant Physiology* 148, 993-1003.

Hanks SK, Hunter T. 1995. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. *The FASEB Journal* 9, 576-596.

Hanks SK, Quinn AM, Hunter T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. *Science* 241, 42-52.

Hasanuzzaman M. 2020. Agronomic crops volume 3: stress responses and tolerance. New York, NY: Springer.

Hoang NV, Furtado A, O'Keeffe AJ, Botha FC, Henry RJ. 2017. Association of gene expression with biomass content and composition in sugarcane. *PLoS One* 12, e0183417.

Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabières F, Attard A, Ris N, Clément M, Barlet X. 2014. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. *Plant Physiology* 166, 1506-1518.

Hok S, Danchin EG, Allasia V, Panabieres F, Attard A, Keller H. 2011. An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. *Plant, Cell & Environment* 34, 1944-1957.

Hong S, Chen X, Jin L, Xiong M. 2013. Canonical correlation analysis for RNA-seq co-expression networks. *Nucleic Acids Research* 41, e95.

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K. 2007.

WoLF PSORT: protein localization predictor. *Nucleic Acids Research* 35, W585-W587.

Hu W, Hua X, Zhang Q, Wang J, Shen Q, Zhang X, Wang K, Yu Q, Lin YR, Ming R. 2018.

New insights into the evolution and functional divergence of the SWEET family in *Saccharum* based on comparative genomics. *BMC Plant Biology* 18, 270.

Hua-Ying M, Wen-Ju W, Wei-Hua S, Ya-Chun S, Feng L, Cong-Na L, Ling W, Xu Z, Li-Ping X, You-Xiong Q. 2019. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. *Plant Cell Reports* 38, 637-655.

Huang TL, Huang LY, Fu SF, Trinh NN, Huang HJ. 2014. Genomic profiling of rice roots with short-and long-term chromium stress. *Plant Molecular Biology* 86, 157-170.

Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, Qiu L, Fan Y, Zhou Z, Zhou H. 2020. Genome-wide analysis of the DREB subfamily in *Saccharum spontaneum* reveals their functional divergence during cold and drought stresses. *Frontiers in Genetics* 10, 1326.

Hunter T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. *Cell* 80, 225-236.

Immanuel TM, Greenwood DR, MacDiarmid RM. 2012. A critical review of translation initiation factor eIF2 α kinases in plants—regulating protein synthesis during stress. *Functional Plant Biology* 39, 717-735.

ISO. 2020. International sugar organization. <https://www.isosugar.org/sugarsector/sugar>.

Accessed April 2020.

Jain M, Li QB, Chourey PS. 2008. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of *Sorghum* and maize endosperm and its implicated role in sugar-to-starch metabolic transition. *Physiologia*

Plantarum 134, 161-173.

Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B. 2002. NPK1,

an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate

immunity and development in plants. *Developmental Cell* 3, 291-297.

Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin J. 2000.

CDK- related protein kinases in plants. In: Inzé D, ed. *The plant cell cycle*. Dordrecht,

Netherlands: Springer, 63-76.

Jurca ME, Bottka S, Fehér A. 2008. Characterization of a family of *Arabidopsis* receptor-like cytoplasmic kinases (RLCK class VI). *Plant Cell Reports* 27, 739-748.

Karpov PA, Sheremet YA, Blume YB, Yemets AI. 2019. Studying the role of protein kinases CK1 in organization of cortical microtubules in *Arabidopsis thaliana* root cells. *Cytology and Genetics* 53, 441-450.

Kasirajan L, Hoang NV, Furtado A, Botha FC, Henry RJ. 2018. Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content. *Scientific Reports* 8, 11612.

Kasirajan L, Valiyaparambth R, Velu J, Hari H, Srinivasavedantham V, Athaiappan S. 2020. Gene expression studies of *Saccharum spontaneum*, a wild relative of sugarcane in response to salinity stress. *Biotechnology and Applied Biochemistry* doi: 10.1038/s41598-018-30033-4

Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu J, Yonemaru JI, Sazuka T, Matsumoto T. 2011. Positional cloning of ds1, the target leaf spot resistance gene against *Bipolaris sorghicola* in *Sorghum*. *Theoretical and Applied Genetics* 123, 131-142.

Kebrom TH, McKinley B, Mullet JE. 2017. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy *Sorghum*. *Biotechnology for Biofuels* 10, 1-16.

Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, Ho CL. 2015. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. *Journal of Plant Physiology* 182, 23-32.

Kim C, Lee TH, Compton RO, Robertson JS, Pierce GJ, Paterson AH. 2013. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. *Plant Molecular Biology* 81, 139-147.

Kim C, Wang X, Lee TH, Jakob K, Lee GJ, Paterson AH. 2014. Comparative analysis of *Miscanthus* and *Saccharum* reveals a shared whole-genome duplication but different evolutionary fates. *The Plant Cell* 26, 2420-2429.

Kimura M, Ishikawa T. 2018. Suppression of DYRK ortholog expression affects wax ester fermentation in *Euglena gracilis*. *Journal of Applied Phycology* 30, 367-373.

Kleinberg JM. 1999. Authoritative sources in a hyperlinked environment. *Journal of the ACM (JACM)* 46, 604-632.

Kolde R, Kolde MR. 2015. Package ‘pheatmap’. R Package 1, 790.

Komis G, Šamajová O, Ovečka M, Šamaj J. 2018. Cell and developmental biology of plant mitogen-activated protein kinases. *Annual Review of Plant Biology* 69, 237-265.

Koo SC, Yoon HW, Kim CY, Moon BC, Cheong YH, Han HJ, Lee SM, Kang KY, Kim MC, Lee SY. 2007. Alternative splicing of the OsBWMK1 gene generates three transcript variants showing differential subcellular localizations. *Biochemical and*

Biophysical Research Communications 360, 188-193.

Krishnamoorthy J, Mounir Z, Raven J, Koromilas A. 2008. The eIF2 α kinases inhibit vesicular stomatitis virus replication independently of eIF2 phosphorylation. *Cell Cycle* 7, 2346-2351.

Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *Journal of Molecular Biology* 305, 567-580.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an information aesthetic for comparative genomics. *Genome Research* 19, 1639-1645.

Lachaud C, Prigent E, Thuleau P, Grat S, Da Silva D, Briere C, Mazars C, Cotelle V. 2013. 14-3-3-regulated Ca 2+-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in *Arabidopsis*. *Cell Death & Differentiation* 20, 209-217.

Lafleur E, Kapfer C, Joly V, Liu Y, Tebbji F, Daigle C, Gray-Mitsumune M, Cappadocia M, Nantel A, Matton DP. 2015. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from *Solanum chacoense* is involved in embryo sac and pollen development. *Journal of Experimental Botany* 66, 1833-1843.

Lalman J, Shewa W, Gallagher J, Ravella S. 2016. Biofuels production from renewable feedstocks. In: Lau P, ed. *Quality living through chemurgy and green chemistry*. New York, NY: Springer, 193-220.

Lee T, Kim H, Lee I. 2015. Network-assisted crop systems genetics: network inference and integrative analysis. *Current Opinion in Plant Biology* 24, 61-70.

Lee Y, Kim YJ, Kim MH, Kwak JM. 2016. MAPK cascades in guard cell signal transduction.

Frontiers in Plant Science 7, 80.

Lehti-Shiu MD, Shiu SH. 2012. Diversity, classification and function of the plant protein kinase superfamily. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 2619-2639.

Leinonen R, Sugawara H, Shumway M, Collaboration INSD. 2010. The sequence read archive. Nucleic Acids Research 39, D19-D21.

Li C, Nong Q, Solanki MK, Liang Q, Xie J, Liu X, Li Y, Wang W, Yang L, Li Y. 2016a. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Scientific Reports 6, 25698.

Li C, Nong Q, Xie J, Wang Z, Liang Q, Solanki MK, Malviya MK, Liu X, Li Y, Htun R. 2017. Molecular characterization and co-expression analysis of the SnRK2 gene family in sugarcane (*Saccharum officinarum* L.). Scientific Reports 7, 1-12.

Li J, Li Y, Deng Y, Chen P, Feng F, Chen W, Zhou X, Wang Y. 2018a. A calcium-dependent protein kinase, ZmCPK32, specifically expressed in maize pollen to regulate pollen tube growth. PLoS One 13, e0195787.

Li J, Tang W, Zhang YW, Chen KN, Wang C, Liu Y, Zhan Q, Wang C, Wang SB, Xie SQ. 2018b. Genome-wide association studies for five forage quality-related traits in *Sorghum* (*Sorghum bicolor* L.). Frontiers in Plant Science 9, 1146.

Li J, Wang XQ, Watson MB, Assmann SM. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287, 300-303.

Li LB, Zhang YR, Liu KC, Ni ZF, Fang ZJ, Sun QX, Gao JW. 2010. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in *Sorghum*. Agricultural Sciences in China 9, 19-30.

Li M, Liang Z, Zeng Y, Jing Y, Wu K, Liang J, He S, Wang G, Mo Z, Tan F. 2016b. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (*Saccharum officinarum* L.). *BMC Genomics* 17, 195.

Li P, Chai Z, Lin P, Huang C, Huang G, Xu L, Deng Z, Zhang M, Zhang Y, Zhao X. 2020a. Genome-wide analysis of AP2/ERF transcription factors in sugarcane *Saccharum spontaneum* L. Reveals functional divergence during drought, salt stress and plant hormones treatment. Research Square doi: 10.21203/rs.3.rs-19836/v1

Li Z, Hua X, Zhong W, Yuan Y, Wang Y, Wang Z, Ming R, Zhang J. 2020b. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid *Saccharum spontaneum*. *Plant and Cell Physiology* 61, 616-630.

Lin J, Zhu M, Cai M, Zhang W, Fatima M, Jia H, Li F, Ming R. 2019. Identification and expression analysis of TCP genes in *Saccharum spontaneum* L. *Tropical Plant Biology* 12, 206-218.

Lin WY, Matsuoka D, Sasayama D, Nanmori T. 2010. A splice variant of Arabidopsis mitogen-activated protein kinase and its regulatory function in the MKK6–MPK13 pathway. *Plant Science* 178, 245-250.

Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. 2018. Transcriptional insights into the sugarcane-sorghum mosaic virus interaction. *Tropical Plant Biology* 11, 163-176.

Liu J, Chen N, Grant JN, Cheng ZM, Stewart Jr CN, Hewezi T. 2015. Soybean kinome: functional classification and gene expression patterns. *Journal of Experimental Botany* 66, 1919-1934.

Liu JX, Srivastava R, Che P, Howell SH. 2007a. Salt stress responses in Arabidopsis utilize a

signal transduction pathway related to endoplasmic reticulum stress signaling. *The Plant Journal* 51, 897-909.

Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. 2007b. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. *The Plant Journal* 51, 941-954.

Ma P, Yuan Y, Shen Q, Jiang Q, Hua X, Zhang Q, Zhang M, Ming R, Zhang J. 2019. Evolution and expression analysis of starch synthase gene families in *Saccharum spontaneum*. *Tropical Plant Biology* 12, 158-173.

Mace E, Jordan D. 2011. Integrating *Sorghum* whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. *Theoretical and Applied Genetics* 123, 169.

Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. 2013. Gene duplication as a major force in evolution. *Journal of Genetics* 92, 155-161.

Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M. 2015. MOROKOSHI: transcriptome database in *Sorghum bicolor*. *Plant and Cell Physiology* 56, e6.

Mall R, Ullah E, Kunji K, D'Angelo F, Bensmail H, Ceccarelli M. 2017. Differential community detection in paired biological networks. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. Massachusetts, MA: ACM, 330-339.

Malumbres M. 2014. Cyclin-dependent kinases. *Genome Biology* 15, 1-10.

Malviya N, Jaiswal P, Yadav D. 2016. Genome-wide characterization of Nuclear Factor Y

(NF-Y) gene family of *Sorghum* [*Sorghum bicolor* (L.) Moench]: a bioinformatics approach. *Physiology and Molecular Biology of Plants* 22, 33-49.

Mancini MC, Cardoso-Silva CB, Sforça DA, De Souza AP. 2018. “Targeted sequencing by gene synteny,” a new strategy for polyploid species: sequencing and physical structure of a complex sugarcane region. *Frontiers in Plant Science* 9, 397.

Manning G, Plowman GD, Hunter T, Sudarsanam S. 2002. Evolution of protein kinase signaling from yeast to man. *Trends in Biochemical Sciences* 27, 514-520.

Marquardt A, Scalia G, Wathen-Dunn K, Botha FC. 2017. Yellow Canopy Syndrome (YCS) in sugarcane is associated with altered carbon partitioning in the leaf. *Sugar Tech* 19, 647-655.

Matschi S, Werner S, Schulze WX, Legen J, Hilger HH, Romeis T. 2013. Function of calcium-dependent protein kinase CPK 28 of *Arabidopsis thaliana* in plant stem elongation and vascular development. *The Plant Journal* 73, 883-896.

Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. *Annual Review of Phytopathology* 51, 245-266.

Miller M, Pfeiffer W, Schwartz T. 2010. Creating the cipres science gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). New Orleans, LA: IEEE, 1-8.

Min XJ. 2013. ASFinder: a tool for genome-wide identification of alternatively splicing transcripts from EST-derived sequences. *International Journal of Bioinformatics Research and Applications* 9, 221-226.

Min XJ, Powell B, Braessler J, Meinken J, Yu F, Sablok G. 2015. Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops. *BMC Genomics* 16, 721.

Mitra K, Carvunis AR, Ramesh SK, Ideker T. 2013. Integrative approaches for finding modular structure in biological networks. *Nature Reviews Genetics* 14, 719-732.

Mittal S, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, Thirunavukkarasu N. 2017. Comparative analysis of CDPK family in maize, arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. *Frontiers in Chemistry* 5, 115.

Moniz L, Dutt P, Haider N, Stambolic V. 2011. Nek family of kinases in cell cycle, checkpoint control and cancer. *Cell Division* 6, 18.

Monreal JA, Arias-Baldrich C, Pérez-Montaño F, Gandullo J, Echevarría C, García-Mauriño S. 2013. Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in *Sorghum* leaves. *Planta* 237, 1401-1413.

Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. *The Plant Cell* 14, 3089-3099.

Mutti, J. S., Bhullar, R. K., & Gill, K. S. 2017. Evolution of gene expression balance among homeologs of natural polyploids. *G3: Genes, Genomes, Genetics*, 7, 1225–1237.

Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kishor PK. 2020. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in *Sorghum bicolor* (L.). *International Journal of Biological Macromolecules* 142, 822-834.

Nhiri M, Bakrim N, Pacquit V, Hachimi-Messouak ZE, Osuna L, Vidal J. 1998. Calcium-dependent and -independent phosphoenolpyruvate carboxylase kinases in *Sorghum* leaves: further evidence for the involvement of the calcium-independent protein kinase in the *in situ* regulatory phosphorylation of C₄ phosphoenolpyruvate carboxylase. *Plant and*

Cell Physiology 39, 241-246.

Niedner RH, Buzko OV, Haste NM, Taylor A, Gribskov M, Taylor SS. 2006. Protein kinase resource: an integrated environment for phosphorylation research. PROTEINS: Structure, Function, and Bioinformatics 63, 78-86.

O'Hara I, Mundree S. 2016. Sugarcane-based biofuels and bioproducts. Hoboken, NJ: Wiley-Blackwell.

Okura VK, De Souza RS, De Siqueira Tada SF, Arruda P. 2016. BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome. Frontiers in Plant Science 7, 342.

Pagariya MC, Devarumath RM, Kawar PG. 2012. Biochemical characterization and identification of differentially expressed candidate genes in salt stressed sugarcane. Plant Science 184, 1-13.

Panje R, Babu C. 1960. Studies in *Saccharum spontaneum* distribution and geographical association of chromosome numbers. Cytologia 25, 152-172.

Papini-Terzi FS, Rocha FR, Nicoliello Vêncio RZ, Oliveira KC, De Maria Felix J, Vicentini R, De Souza Rocha C, Quirino Simões AC, Ulian EC, Di Mauro SMZ. 2005. Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Research 12, 27-38.

Parra-Londono S, Fiedler K, Kavka M, Samans B, Wieckhorst S, Zacharias A, Uptmoor R. 2018. Genetic dissection of early-season cold tolerance in *Sorghum*: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theoretical and Applied Genetics 131, 581-595.

Patade VY, Rai AN, Suprasanna P. 2011. Expression analysis of sugarcane shaggy-like kinase (SuSK) gene identified through cDNA subtractive hybridization in sugarcane

(*Saccharum officinarum* L.). *Protoplasma* 248, 613-621.

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer

G, Hellsten U, Mitros T, Poliakov A. 2009. The *Sorghum bicolor* genome and the

diversification of grasses. *Nature* 457, 551-556.

Patro R, Duggal G, Kingsford C. 2015. Salmon: accurate, versatile and ultrafast quantification

from RNA-seq data using lightweight-alignment. *Biorxiv*, 021592.

Paungfoo-Lonhienne C, Lonhienne TG, Yeoh YK, Donose BC, Webb RI, Parsons J, Liao

W, Sagulenko E, Lakshmanan P, Hugenholtz P. 2016. Crosstalk between sugarcane

and a plant-growth promoting *Burkholderia* species. *Scientific Reports* 6, 37389.

Pei GL, Jun G, Wang QH, Kang ZS. 2019. Comparative analysis of protein kinases and

associated domains between *Ascomycota* and *Basidiomycota*. *Journal of Integrative*

Agriculture 18, 96-107.

Pestenácz A, Erdei L. 1996. Calcium-dependent protein kinase in maize and *Sorghum* induced

by polyethylene glycol. *Physiologia Plantarum* 97, 360-364.

Petersen TN, Brunak S, Von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal

peptides from transmembrane regions. *Nature Methods* 8, 785-786.

Premachandran M, Prathima P, Lekshmi M. 2011. Sugarcane and polyploidy: a review.

Journal of Sugarcane Research 1, 1-15.

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for

large alignments. *PLoS One* 5, e9490.

R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria:

R Foundation for Statistical Computing.

Raghavan UN, Albert R, Kumara S. 2007. Near linear time algorithm to detect community

structures in large-scale networks. *Physical Review E* 76, 036106.

Riaño-Pachón DM, Mattiello L. 2017. Draft genome sequencing of the sugarcane hybrid SP80-3280. *F1000Research* 6, 861.

Roe JL, Rivin CJ, Sessions RA, Feldmann KA, Zambryski PC. 1993. The Tousled gene in *A. thaliana* encodes a protein kinase homolog that is required for leaf and flower development. *Cell* 75, 939-950.

Rostoks N, Steffenson BJ, Kleinhofs A. 2004. Structure and expression of the barley stem rust resistance gene Rpg1 messenger RNA. *Physiological and Molecular Plant Pathology* 64, 91-101.

Santa Brigida AB, Rojas CA, Grativil C, De Armas EM, Entenza JO, Thiebaut F, Lima MDF, Farrinelli L, Hemerly AS, Lifschitz S. 2016. Sugarcane transcriptome analysis in response to infection caused by *Acidovorax avenae* subsp. *avenae*. *PLoS One* 11, e0166473.

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J. 2010. Genome sequence of the palaeopolyploid soybean. *Nature* 463, 178-183.

Serin EA, Nijveen H, Hilhorst HW, Ligterink W. 2016. Learning from co-expression networks: possibilities and challenges. *Frontiers in Plant Science* 7, 444.

Serna-Saldívar SO, Chuck-Hernández C, Pérez-Carrillo E, Heredia-Olea E. 2012. *Sorghum* as a multifunctional crop for the production of fuel ethanol: current status and future trends. *Bioethanol* 2012, 51-74.

Sforça DA, Vautrin S, Cardoso-Silva CB, Mancini MC, Romero-Da Cruz MV, Pereira GS, Conte M, Bellec A, Dahmer N, Fourment J. 2019. Gene duplication in the sugarcane

genome: a case study of allele interactions and evolutionary patterns in two genic regions.

Frontiers in Plant Science 10, 553.

Shang X, Cao Y, Ma L. 2017. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. International Journal of Molecular Sciences 18, 432.

Shi Y, Xu H, Shen Q, Lin J, Wang Y, Hua X, Yao W, Yu Q, Ming R, Zhang J. 2019. Comparative analysis of SUS gene family between *Saccharum officinarum* and *Saccharum spontaneum*. Tropical Plant Biology 12, 174-185.

Singh DK, Calviño M, Brauer EK, Fernandez-Pozo N, Strickler S, Yalamanchili R, Suzuki H, Aoki K, Shibata D, Stratmann JW. 2014. The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species. Molecular Plant-Microbe Interactions 27, 7-17.

Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT, Gaiarsa JW, Diniz AL, Oliveira MDM, Ferreira SDS. 2019. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. GigaScience 8, giz129.

Sperschneider J, Catanzariti AM, DeBoer K, Petre B, Gardiner DM, Singh KB, Dodds PN, Taylor JM. 2017. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports 7, 1-14.

Srivastava S, Kumar P. 2020. Abiotic stress responses and tolerance mechanisms for sustaining crop productivity in sugarcane. In: Naz S, Fatima Z, Iqbal P, Khan A, Zakir I, Noreen S, Younis H, Abbas G, Ahmad S, eds. Agronomic crops. Singapore: Springer, 29-47.

Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB. 1991. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of

Brassica oleracea. Proceedings of the National Academy of Sciences of the United States of America 88, 8816-8820.

Su, W, Ren, Y, Wang, D, Su, Y, Feng, J, Zhang, C, Tang H, Xu L, Muhammad K, Que, Y.
2020a. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC genomics, 21, 1-17.

Su W, Huang L, Ling H, Mao H, Huang N, Su Y, Ren Y, Wang D, Xu L, Muhammad K.
2020b. Sugarcane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Scientific Reports 10, 1-13.

Supék F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800.

Tai Y, Liu C, Yu S, Yang H, Sun J, Guo C, Huang B, Liu Z, Yuan Y, Xia E. 2018. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (*Camellia sinensis*). BMC Genomics 19, 616.

Takatani S, Otani K, Kanazawa M, Takahashi T, Motose H. 2015. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. Journal of Plant Research 128, 875-891.

Tamaskovic R, Bichsel SJ, Hemmings BA. 2003. NDR family of AGC kinases—essential regulators of the cell cycle and morphogenesis. FEBS Letters 546, 73-80.

Tan ST, Xue HW. 2014. Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Reports 9, 1692-1702.

Tang D, Christiansen KM, Innes RW. 2005. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in *Arabidopsis* by the EDR1 protein kinase.

Plant Physiology 138, 1018-1026.

Teich R, Grauvogel C, Petersen J. 2007. Intron distribution in plantae: 500 million years of stasis during land plant evolution. *Gene* 394, 96-104.

Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F. 2013. Global hot-spots of heat stress on agricultural crops due to climate change. *Agricultural and Forest Meteorology* 170, 206-215.

Tena G, Boudsocq M, Sheen J. 2011. Protein kinase signaling networks in plant innate immunity. *Current Opinion in Plant Biology* 14, 519-529.

Thirugnanasambandam PP, Hoang NV, Furtado A, Botha FC, Henry RJ. 2017. Association of variation in the sugarcane transcriptome with sugar content. *BMC Genomics* 18, 909.

Tuleski TR, Kimball J, Do Amaral FP, Pereira TP, Tadra-Sfeir MZ, De Oliveira Pedrosa F, De Souza EM, Balint-Kurti P, Monteiro RA, Stacey G. 2020. *Herbaspirillum rubrisubalbicans* as a phytopathogenic model to study the immune system of *Sorghum bicolor*. *Molecular Plant-Microbe Interactions* 33, 235-246.

UniProt Consortium. 2007. The universal protein resource (UniProt). *Nucleic Acids Research* 36, D190-D195.

Urano F, Bertolotti A, Ron D. 2000. IRE1 and efferent signaling from the endoplasmic reticulum. *Journal of Cell Science* 113, 3697-3702.

Usha Kiranmayee K, Hash C, Kavi Kishor P, Ramu P, Sivasubramani S, Sakhale S, Deshpande S. 2017. Fine mapping of stay-green QTLs on *Sorghum* chromosome SBI-10L—an approach from genome to phenome. *InterDrought-V*. Hyderabad, India: ICRISAT, 235.

Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M,

Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J. 2019. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. *Communications Biology* 2, 1-18.

Vaid N, Pandey PK, Tuteja N. 2016. Lectin receptor-like kinases and their emerging role in abiotic stress tolerance. In: Tuteja N, Gill S, eds. *Abiotic stress response in plants*. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 456.

Van Dam S, Vosa U, Van der Graaf A, Franke L, De Magalhaes JP. 2018. Gene co-expression analysis for functional classification and gene–disease predictions. *Briefings in Bioinformatics* 19, 575-592.

Varberg JM, Coppens I, Arrizabalaga G, Gaji RY. 2018. TgTKL1 is a unique plant-like nuclear kinase that plays an essential role in acute toxoplasmosis. *MBio* 9, e00301-e00318.

Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, Madera M, Jeffers T, Hollingsworth J, Sievert J. 2019. Transcriptomic analysis of field-droughted *Sorghum* from seedling to maturity reveals biotic and metabolic responses. *Proceedings of the National Academy of Sciences of the United States of America* 116, 27124-27132.

Vettore AL, Da Silva FR, Kemper EL, Souza GM, Da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti ÉA, Lemos MV, Coutinho LL. 2003. Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. *Genome Research* 13, 2725-2735.

Vicentini R, De Maria Felix J, Dornelas MC, Menossi M. 2009. Characterization of a sugarcane (*Saccharum* spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content. *Plant Cell Reports* 28, 481-491.

Vikal Y, Kaur A, Jindal J, Kaur K, Pathak D, Garg T, Singh A, Singh P, Yadav I. 2020.

Identification of genomic regions associated with shoot fly resistance in maize and their syntenic relationships in the *Sorghum* genome. PLoS One 15, e0234335.

Villanueva RAM, Chen ZJ. 2019. *ggplot2: elegant graphics for data analysis* (2nd ed.).

Measurement: Interdisciplinary Research and Perspectives 17, 160-167.

Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira E, Baldani J, Ferreira P,

Hemerly A. 2006. SHR5: a novel plant receptor kinase involved in plant–N2-fixing endophytic bacteria association. Journal of Experimental Botany 57, 559-569.

Voorrips R. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93, 77-78.

Wagner TA, Kohorn BD. 2001. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. The Plant Cell 13, 303-318.

Wang H, Gu L, Zhang X, Liu M, Jiang H, Cai R, Zhao Y, Cheng B. 2018. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Molecular Biology 98, 187-203.

Wang H, Wang Y, Xiao N, Hua X, Zhang M, Ming R, Zhang J. 2019a. NAC transcription factors in autopolyploid *Saccharum spontaneum*: genome-wide identification, expression pattern and a ‘Dry’orthologous gene. Research Square doi: 10.21203/rs.2.17032/v1

Wang J, Li Y, Zhu F, Ming R, Chen LQ. 2019b. Genome-wide analysis of nitrate transporter (NRT/NPF) family in sugarcane *Saccharum spontaneum* L. Tropical Plant Biology 12, 133-149.

Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers

J. 2010. Microcollinearity between autopolyploid sugarcane and diploid *Sorghum* genomes. *BMC Genomics* 11, 261.

Wang TJ, Wang XH, Yang QH. 2020. Comparative analysis of drought-responsive transcriptome in different genotype *Saccharum spontaneum* L. *Sugar Tech* 22, 411-427.

Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour AL, Yu Q, Ming R. 2019c. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in *Saccharum*. *BMC Genomics* 20, 83.

Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Research* 40, e49.

Wei K, Wang Y, Xie D. 2014. Identification and expression profile analysis of the protein kinase gene superfamily in maize development. *Molecular Breeding* 33, 155-172.

Wrzaczek M, Rozhon W, Jonak C. 2007. A proteasome-regulated glycogen synthase kinase-3 modulates disease response in plants. *Journal of Biological Chemistry* 282, 5249-5255.

Wrzaczek M, Vainonen JP, Stael S, Tsiatsiani L, Help-Rinta-Rahko H, Gauthier A, Kaufholdt D, Bollhöner B, Lamminmäki A, Staes A. 2014. GRIM REAPER peptide binds to receptor kinase PRK 5 to trigger cell death in *Arabidopsis*. *The EMBO Journal* 34, 55-66.

Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q. 2016. The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in *Arabidopsis*. *Journal of Experimental Botany* 67, 1461-1475.

Xu G, Guo C, Shan H, Kong H. 2012. Divergence of duplicate genes in exon–intron structure. *Proceedings of the National Academy of Sciences of the United States of America* 109,

1187-1192.

Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS. 2011. *Arabidopsis AtVPS15* is

essential for pollen development and germination through modulating

phosphatidylinositol 3-phosphate formation. *Plant Molecular Biology* 77, 251.

Xu S, Wang J, Shang H, Huang Y, Yao W, Chen B, Zhang M. 2018. Transcriptomic

characterization and potential marker development of contrasting sugarcane cultivars.

Scientific Reports 8, 1-11.

Yadeta KA, Elmore JM, Creer AY, Feng B, Franco JY, Rufian JS, He P, Phinney B,

Coaker G. 2016. A cysteine-rich protein kinase associates with a membrane immune

complex and the cysteine residues are required for cell death. *Plant Physiology* 173, 771-

787.

Yan J, Li G, Guo X, Li Y, Cao X. 2018. Genome-wide classification, evolutionary analysis and

gene expression patterns of the kinome in *Gossypium*. *PLoS One* 13, e0197392.

Yan J, Su P, Wei Z, Nevo E, Kong L. 2017. Genome-wide identification, classification,

evolutionary analysis and gene expression patterns of the protein kinase gene family in

wheat and *Aegilops tauschii*. *Plant Molecular Biology* 95, 227-242.

Yang R, Wek SA, Wek RC. 2000. Glucose limitation induces GCN4Translation by activation

of Gcn2 protein kinase. *Molecular and Cellular Biology* 20, 2706-2717.

Yang X, Sood S, Luo Z, Todd J, Wang J. 2019. Genome-wide association studies identified

resistance Loci to orange rust and yellow leaf virus diseases in sugarcane (*Saccharum*

spp.). *Phytopathology* 109, 623-631.

Yu CS, Chen YC, Lu CH, Hwang JK. 2006. Prediction of protein subcellular localization.

Proteins: Structure, Function, and Bioinformatics 64, 643-651.

Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution* 8, 28-36.

Zhang C, Wang J, Tao H, Dang X, Wang Y, Chen M, Zhai Z, Yu W, Xu L, Shim WB. 2015. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. *Frontiers in Microbiology* 6, 1096.

Zhang H, Yin T. 2020. Analysis of topology properties in different tissues of poplar based on gene co-expression networks. *Tree Genetics & Genomes* 16, 6.

Zhang J, Zhang Q, Li L, Tang H, Zhang Q, Chen Y, Arrow J, Zhang X, Wang A, Miao C. 2019a. Recent polyploidization events in three *Saccharum* founding species. *Plant Biotechnology Journal* 17, 264-274.

Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J. 2018. Allele-defined genome of the autopolyploid sugarcane *Saccharum spontaneum* L. *Nature Genetics* 50, 1565-1573.

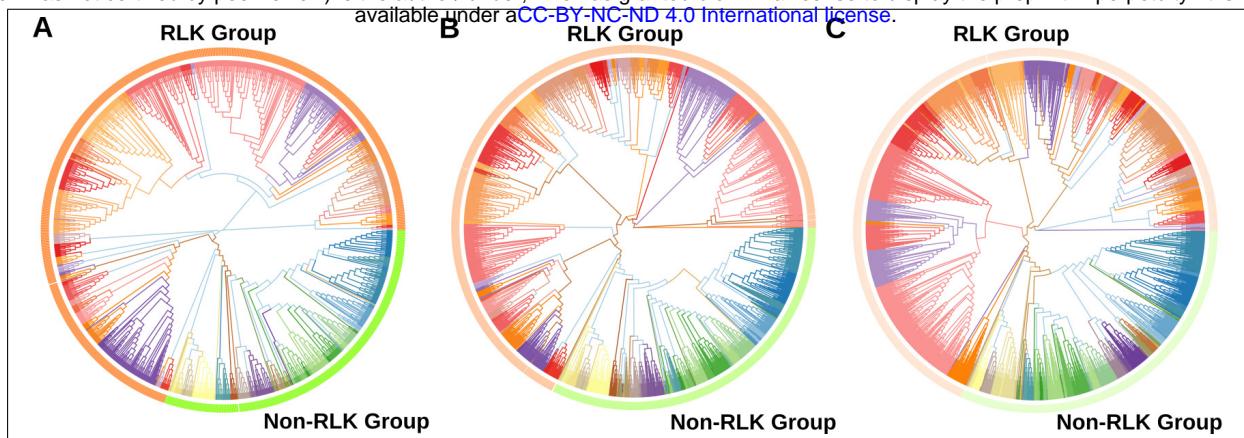
Zhang W, Lin J, Dong F, Ma Q, Wu S, Ma X, Fatima M, Jia H, Ming R. 2019b. Genomic and allelic analyses of Laccase genes in sugarcane (*Saccharum spontaneum* L.). *Tropical Plant Biology* 12, 219-229.

Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG. 2001. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. *The Plant Journal* 28, 431-441.

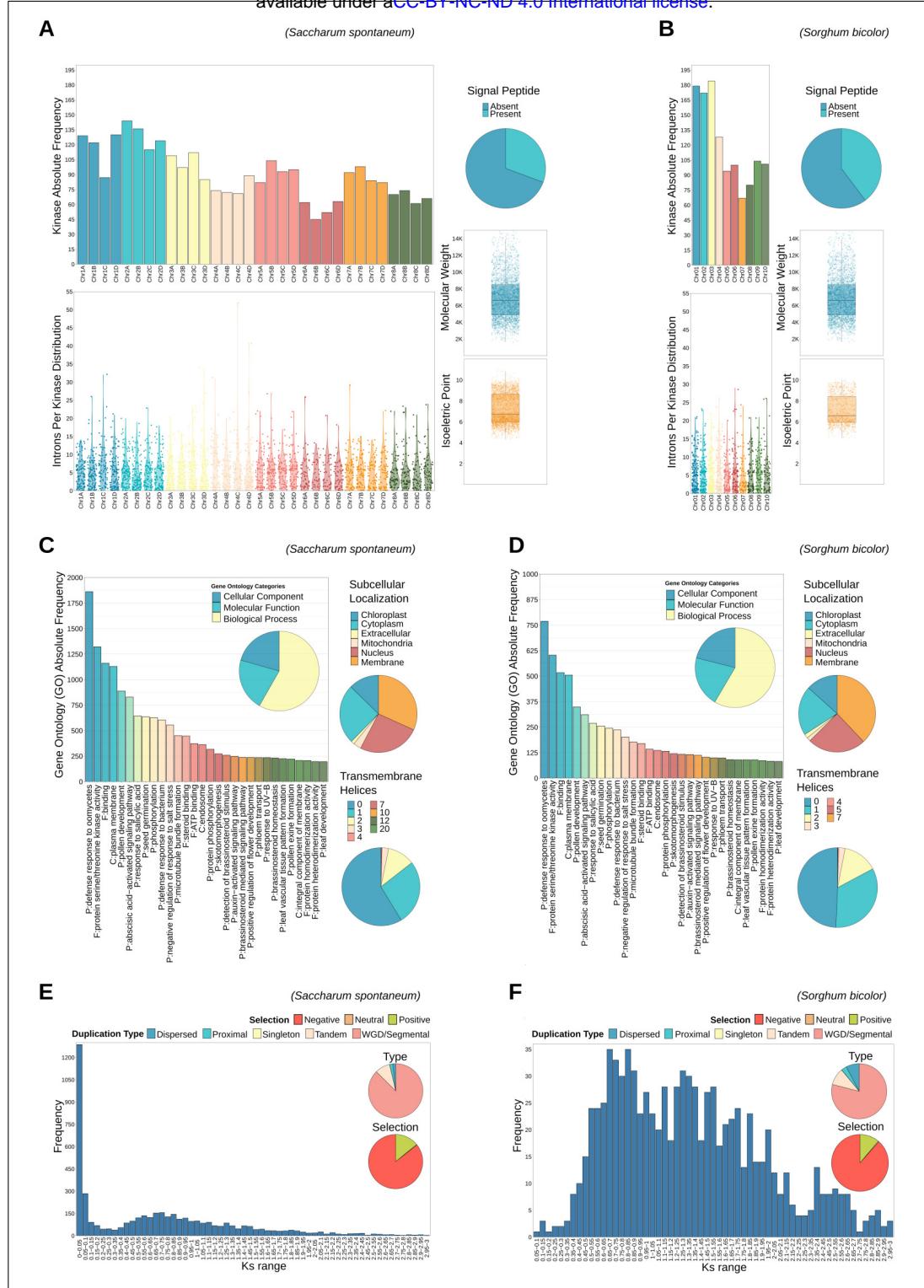
Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J. 2006. KaKs_calculator: calculating Ka and Ks through model selection and model averaging. *Genomics, Proteomics &*

Bioinformatics 4, 259-263.

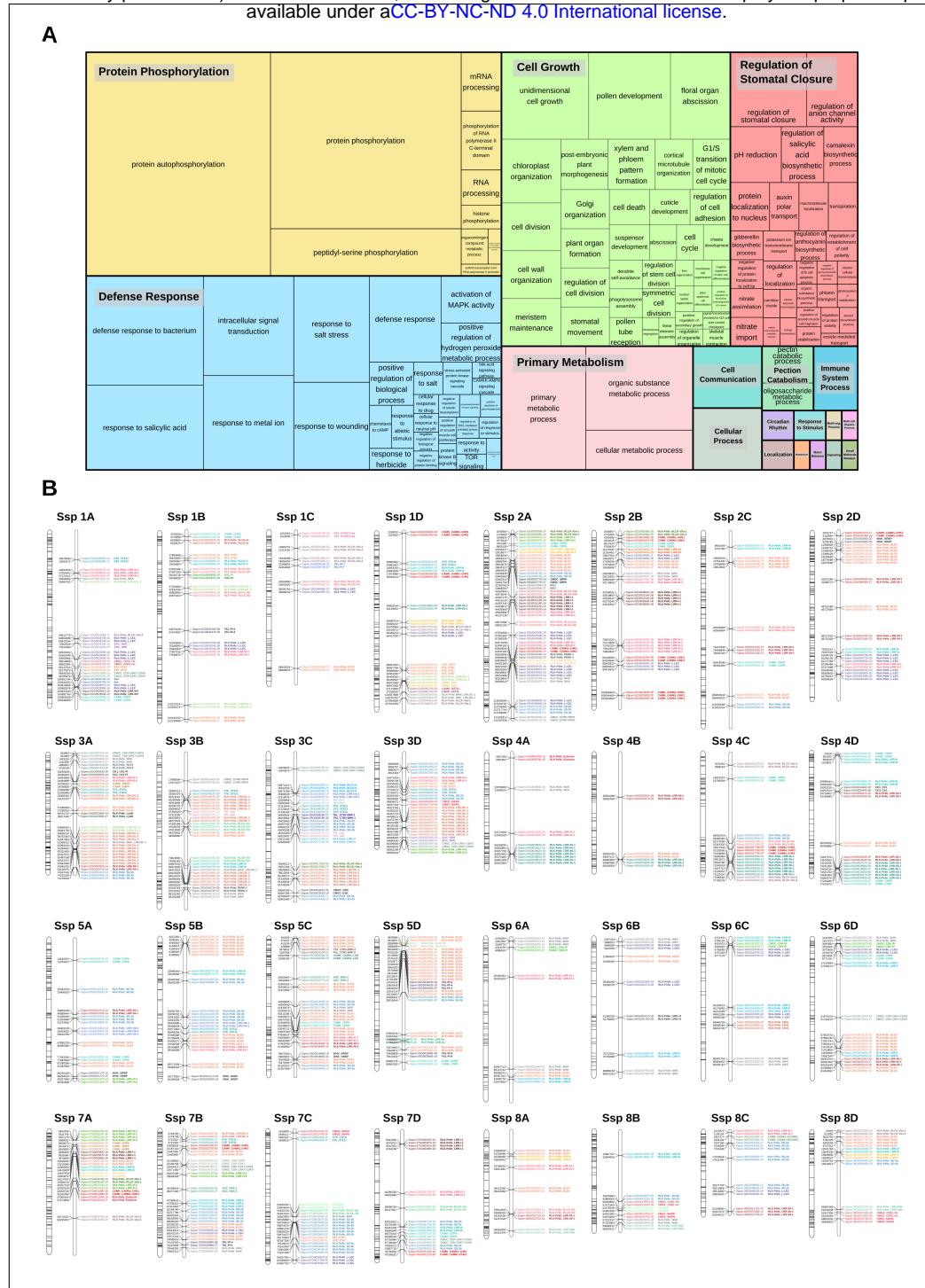
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. 2010. Weighted gene coexpression network analysis: state of the art. Journal of Biopharmaceutical Statistics 20, 281-300.

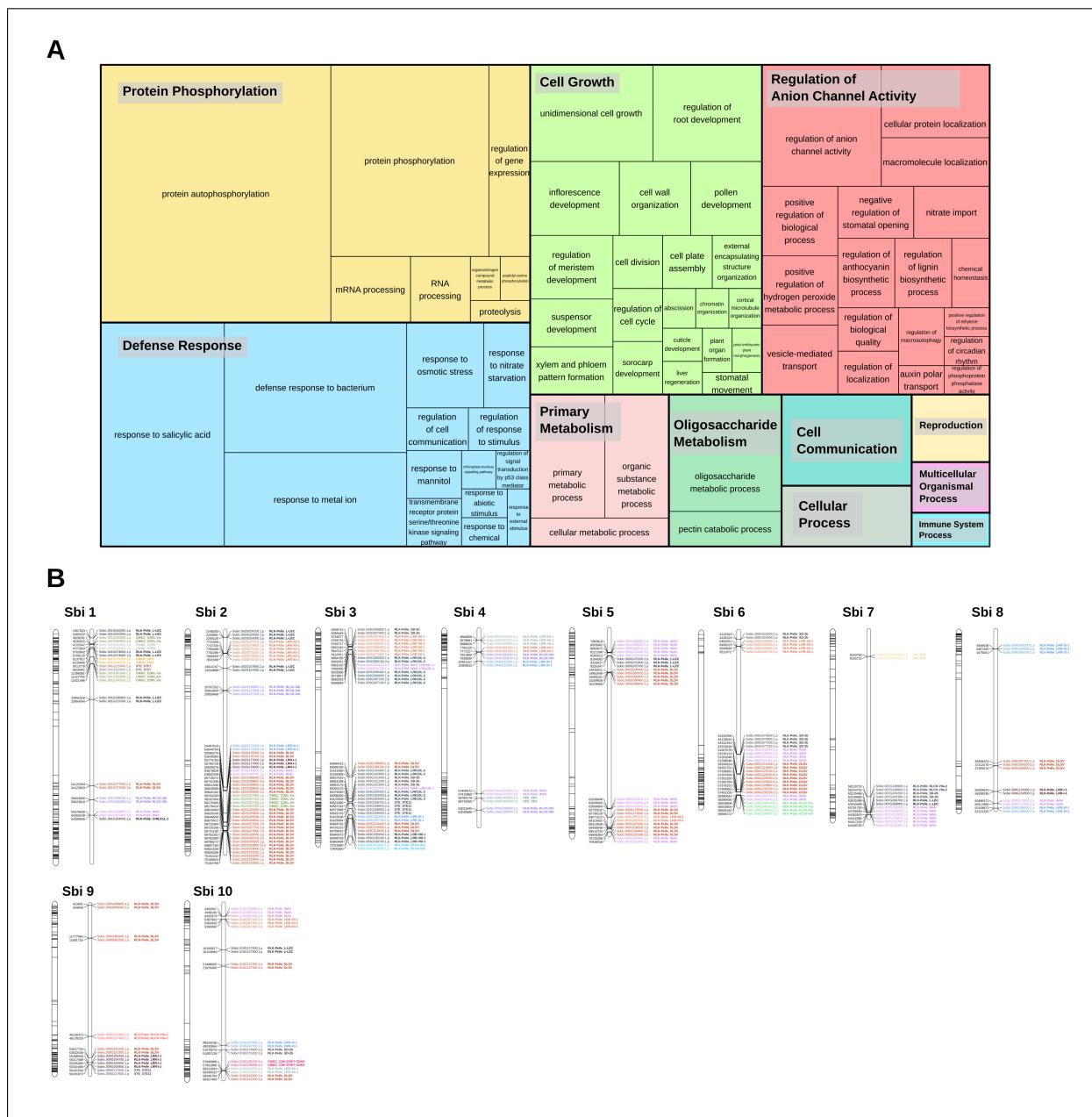

Zhu K, Liu H, Chen X, Cheng Q, Cheng ZMM. 2018a. The kinome of pineapple: catalog and insights into functions in crassulacean acid metabolism plants. BMC Plant Biology 18, 1-16.

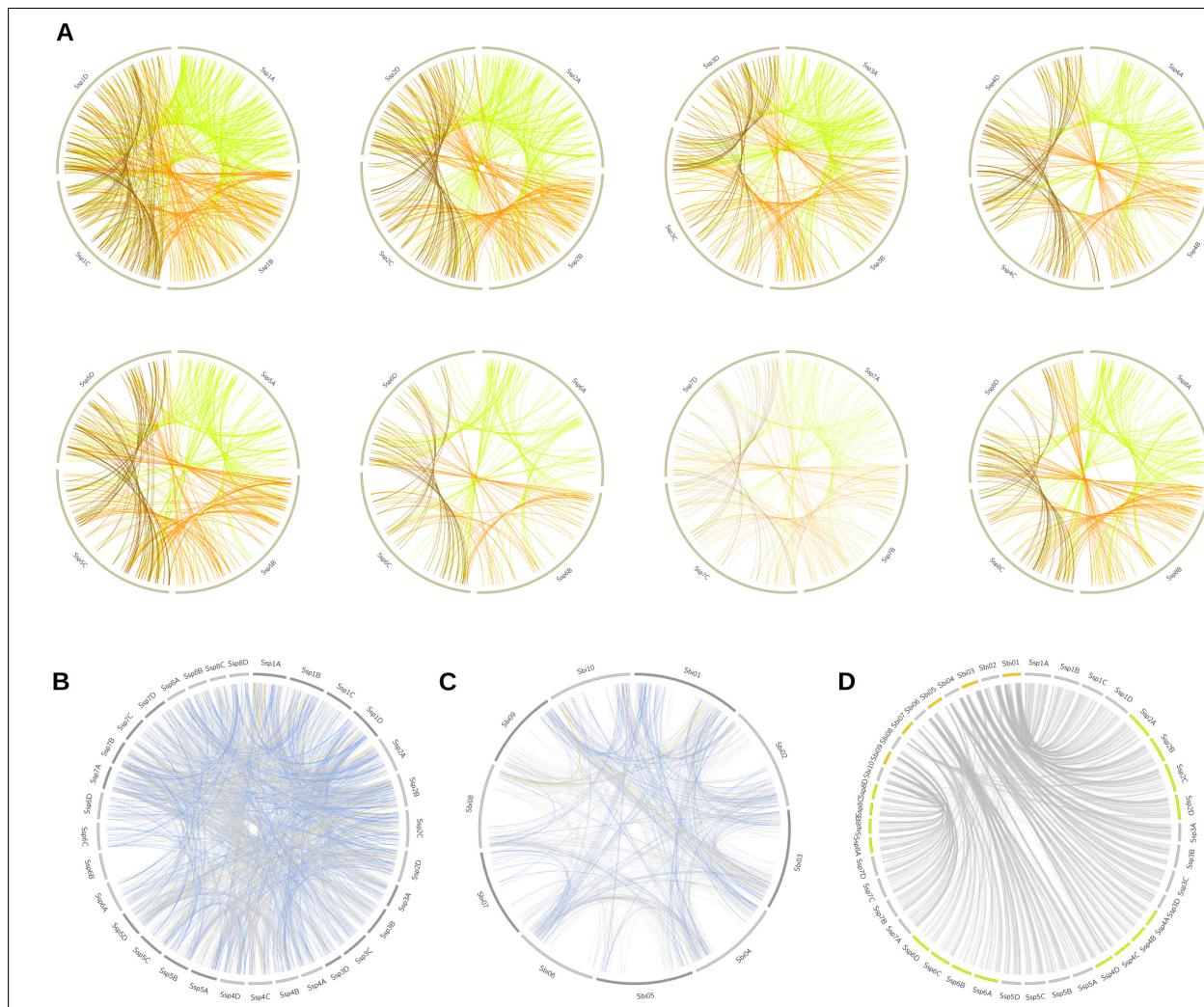
Zhu K, Wang X, Liu J, Tang J, Cheng Q, Chen JG, Cheng ZMM. 2018b. The grapevine kinome: annotation, classification and expression patterns in developmental processes and stress responses. Horticulture Research 5, 1-16.

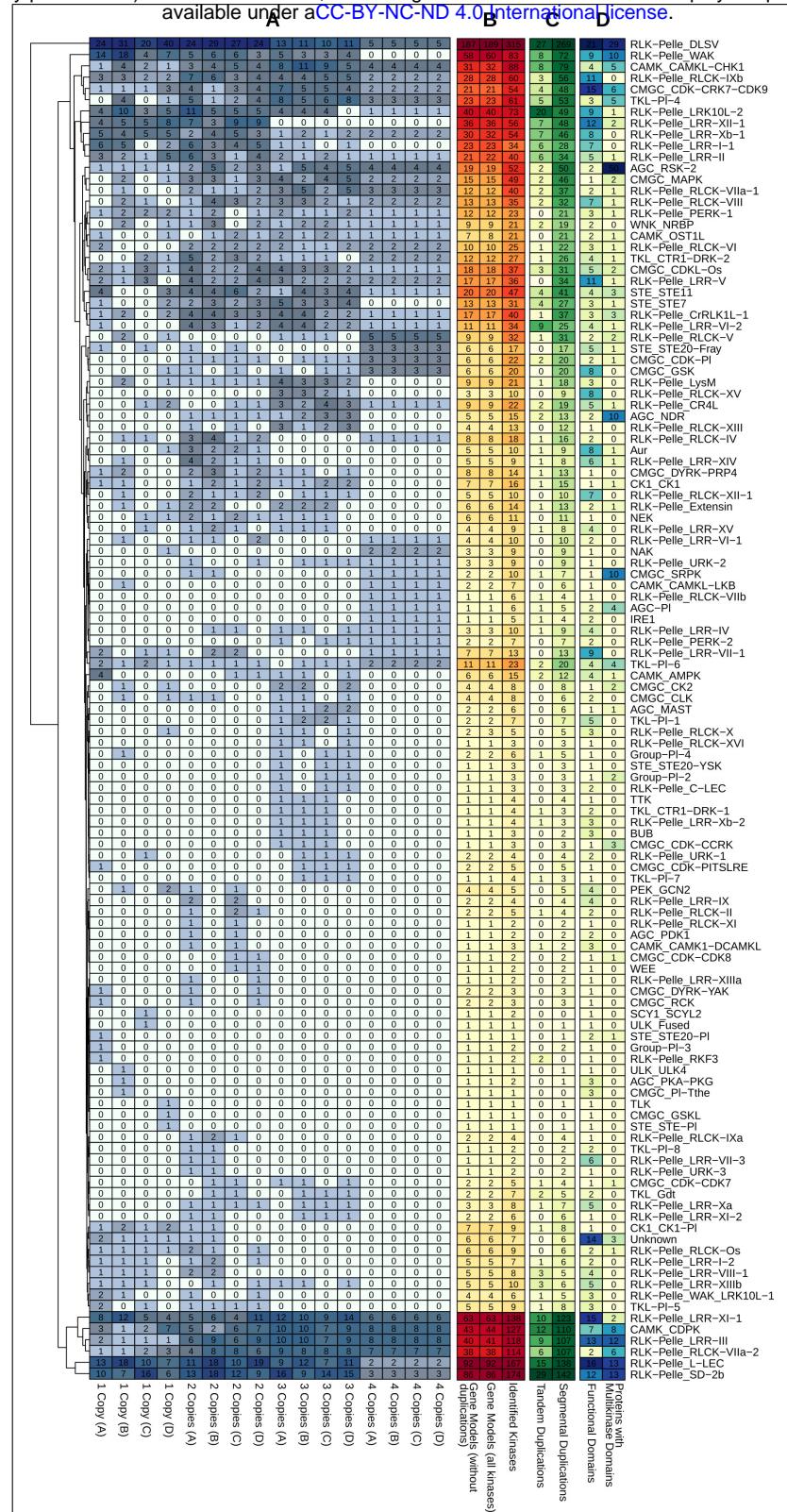

Zou X, Liu A, Zhang Z, Ge Q, Fan S, Gong W, Li J, Gong J, Shi Y, Tian B. 2019. Co-expression network analysis and hub gene selection for high-quality fiber in upland cotton (*Gossypium hirsutum*) using RNA sequencing analysis. Genes 10, 119.

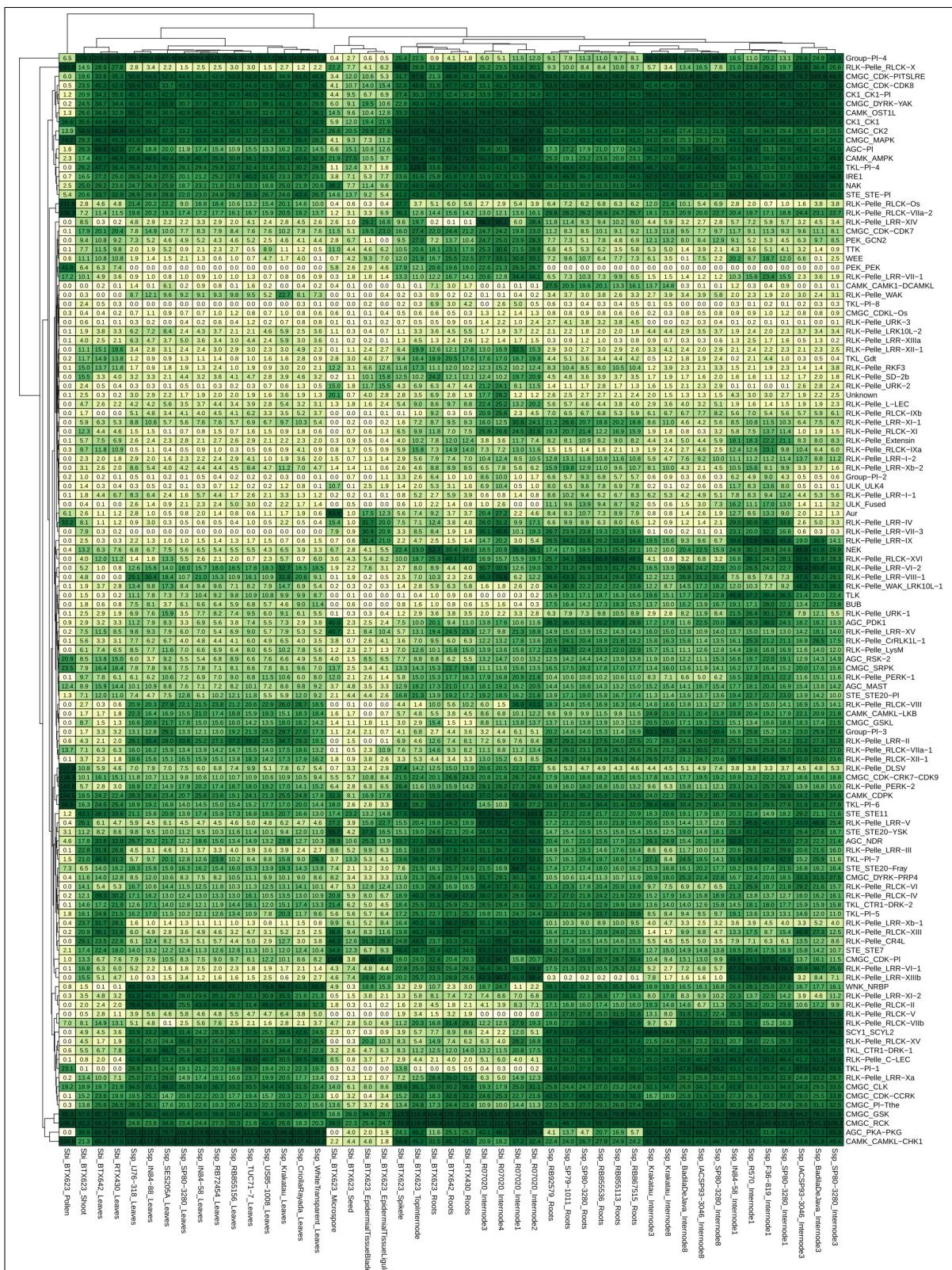
Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX. 2014. The *Arabidopsis* kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15, 1-15.


Zulawski M, Schulze W. 2015. The plant kinome. In: Schulze W, ed. Plant phosphoproteomics. New York, NY: Springer, 1-23.


Fig. 1: Phylogenetic analyses of putative protein kinases (PKs) identified in the *Saccharum spontaneum* (Ssp) and *Sorghum bicolor* (Sbi) genomes. (A) Phylogenetic tree of the 1,210 Sbi PKs organized in 120 subfamilies represented by different colors. (B) Phylogenetic tree of the 2,919 Ssp PKs organized in 119 subfamilies. (C) Phylogenetic tree of PKs in both Sbi and Ssp.


Fig. 2: Descriptive analysis of kinase characteristics in *Saccharum spontaneum* (Ssp) (A, C, and E) and *Sorghum bicolor* (Sbi) (B, D, and F): chromosomal distribution, intron length and chromosomal occurrence, presence of signal peptides, molecular weights (MWs), isoelectric points (pIs), Gene Ontology (GO) terms, subcellular localization, presence of transmembrane helices and duplication events.


Fig. 3: (A) Gene Ontology (GO) categories (biological processes) related to tandemly duplicated kinases in *Saccharum spontaneum* (Ssp). The size of the subdivisions within the blocks represents the abundance of that category in this set of kinases. The colors are related to the similarity to a representative GO annotation for the group. (B) Kinase distribution along Ssp chromosomes. For each chromosome, all genes with kinase domains are indicated on the left, and only the tandemly organized kinases are indicated on the right, colored and labeled according to the subfamily classification.


Fig. 4: (A) Gene Ontology (GO) categories (biological processes) related to tandemly duplicated kinases in *Sorghum bicolor* (Sbi). The size of the subdivisions within the blocks represents the abundance of that category in this set of kinases. The colors are related to the similarity to a representative GO annotation for the group. (B) Kinase distribution along Ssp chromosomes. For each chromosome, all genes with kinase domains are indicated on the left, and only the tandemly organized kinases are indicated on the right, colored and labeled according to the subfamily classification.

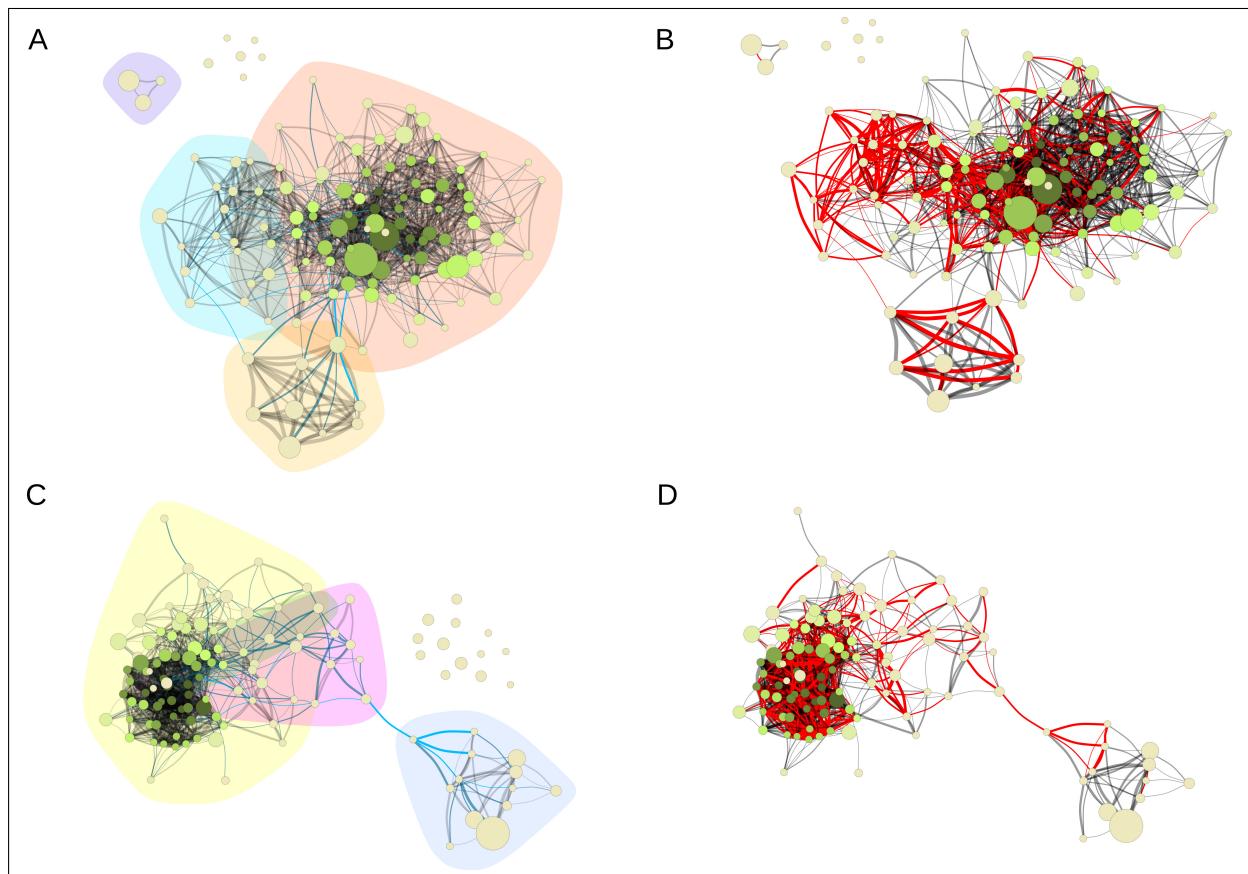

Fig. 5: Segmental duplication events in the *Saccharum spontaneum* (Ssp) and *Sorghum bicolor* (Sbi) genomes, divided into (A) Ssp duplications between alleles on the same chromosome, with the colors representing the origin of the duplication (green for allele A, orange for allele B, and brown for allele C); (B) Ssp duplications between chromosomes, excluding events between alleles on the same chromosome; and (C) Sbi duplications. The colors in (B) and (C) indicate the selection type of the gene pair duplication (gray indicates negative selection; light blue, positive selection; and blue, neutral selection). (D) Representation of kinase correspondences between Sbi and Ssp, indicating the synteny relationships among these species.

Fig. 6: Heatmap representations of kinase subfamily profiles in *Saccharum spontaneum* related to (A) kinase copies among alleles; (B) subfamily quantification considering the entire set of kinases and the respective quantity of gene models; (C) tandem and segmental duplication events; and (D) the presence of different functional domains and multikinase domain-containing proteins within subfamilies.

Fig. 7: RNA expression profiles of *Saccharum spontaneum* and *Sorghum bicolor*, shown on a heatmap indicating the average sample values of different combinations of genotypes and tissues (columns) and considering the organization of kinase subfamilies (rows).

Fig. 8: Coexpression networks for *Sorghum bicolor* (Sbi) and *Saccharum spontaneum* (Ssp) kinase subfamilies. Each node corresponds to a different subfamily, its size corresponds to the average expression value for all kinases within the subfamily in different samples, and its color corresponds to the hub score and ranges from beige to dark green. Each edge corresponds to a correlation with a Pearson correlation coefficient of at least 0.6. The correlation strength is represented by the edge's width and the edge betweenness score is represented by the color (ranging from black to light blue, with light blue representing the highest values). (A) Sbi network with the background colored according to the community detection analysis. (B) Sbi network indicating the similarities with the Ssp network in red. (C) Ssp network with community structure information. (D) Ssp network indicating the similarities with the Sbi network in red.