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Abstract

Background

Breeding has helped improve bread wheat yield significantly over the last century.
Understanding the potential for future crop improvement depends on relating segregating
genetic variation to agronomic traits.

Results

We bred NIAB Diverse MAGIC population, comprising over 500 recombinant inbred lines,
descended from sixteen bread wheat varieties released between 1935-2004. We sequenced
the founders’ exomes and promotors by capture. Despite being highly representative of
North-West European wheat and capturing 73% of global polymorphism, we found 89% of
genes contained no more than three haplotypes. We sequenced each line with 0.3x
coverage whole-genome sequencing, and imputed 1.1M high-quality SNPs that were over
99% concordant with array genotypes. Imputation accuracy remained high at coverage as
low as 0.076x, with or without the use of founder genomes as reference panels. We created
a genotype-phenotype map for 47 traits over two years. We found 136 genome-wide
significant associations, concentrated at 42 genetic loci with large and often pleiotropic
effects. Outside of these loci most traits are polygenic, as revealed by multi-locus shrinkage
modelling.

Conclusions

Historically, wheat breeding has reshuffled a limited palette of haplotypes; continued
improvement will require selection at dozens of loci of diminishing effect, as most of the
major loci we mapped are known. Breeding to optimise one trait generates correlated trait

changes, exemplified by the negative trade-off between yield and protein content, unless
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selection and recombination can break critical unfavourable trait-trait associations. Finally,
low coverage whole genome sequencing of bread wheat populations is an economical and

accurate genotyping strategy.

Introduction

Bread wheat (Triticum aestivum L.) production is a critical component of worldwide food
security. Demand for wheat is predicted to increase by 60% between 2014 and 2050[1], by
which time the human population will have reached 9 billion. Breeding will be a key
component of meeting this demand sustainably[2]. Over the past century, genetic gains have
been responsible for between one third and two thirds of yield improvements in European

wheats, amounting to a 12-120kg increase in yield (~1%) per hectare per year[3-6].

Genomic data is expected to accelerate the rate of genetic gain in wheat[7,8]. Surveys of
global standing genetic variation include, for example, whole genome resequencing (WGS) of
93 accessions[9], exome capture for 870 accessions[10], genotyping by sequencing (~16k
markers) for ~17k breeding programme lines[11], and genotyping array data for collections
of 804[12] and 4,500[13] accessions (~15k and ~113k markers, respectively). Bread wheat’s
large genome size (17Gb) inflates the cost of collecting sequencing data and its hexaploidy
reduces the accuracy and cross-population consistency of genotyping array data[12]. The

potential for genotyping by low-coverage WGS in polyploid wheat has yet to be established.

To aid genetic gain through breeding, it is crucial to link genetic data with phenotypic

information and thereby reveal genotype-phenotype associations[11,14]. Previous
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genotypic/phenotypic datasets include five traits measured in two years for 870 global
accessions with exome capture data[10], and 12 traits measured in two years, six locations,
and three cropping intensities for 191 German varieties with genotyping array data (~9k
markers)[15]. Genotype-trait and trait-trait associations may be confounded by population
structure or hidden by low allele frequencies in studies of existing varieties or breeding lines.
These problems can be controlled in experimental populations produced by crossing.
However, mapping resolution and overall genetic diversity are typically low in experimental
populations. Multiparent Advanced Generation Intercross (MAGIC) populations are designed
to address these issues by accumulating recombination events through generations of

intercrossing and capturing diversity across multiple founders[16—-18].

In this study we undertook a systematic approach to these challenges. We bred a new multi-
parental population, the ‘NIAB DIVERSE MAGIC' population (hereafter ‘NDM’) through
hundreds of structured inter-crosses between sixteen diverse founders. Our multi-funnel
crossing design creates a greater number and more uniform genome-wide distribution of
recombinant haplotypes than alternative multiparent populations[19] and the relatively large
number of diverse founders samples more genetic variation. We sampled founders released
between 1935-2004, aiming to determine the genetic basis for historical changes in
agronomic traits and the potential for future improvement from within the existing pool of
variants. We used a cost-effective genotyping strategy by low-coverage WGS, accurately
imputing over 1M SNPs in over 500 recombinant inbred lines. We measured 47 phenotypes
in the population, of which 25 were assessed across two growing seasons. The power of NDM
comes from the combination of carefully designed germplasm and dense genotypic and

phenotypic information, all of which we make publicly available.
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93

94  We address the following questions. First, what genetic variation exists among the exomes of
95 the NDM founders, how does it reflect global wheat diversity, and specifically how many
96 distinct haplotypes typically segregate at each locus? Second, how does this variation underlie
97  agronomic traits, as revealed through genetic mapping and genomic prediction? And third,
98 what do these models imply about the future potential for phenotypic change and to what
99 extent should we expect selection to cause correlated trait changes due to the sharing of

100 causal genetic variants between traits.

101

102  Results

103  NIAB DIVERSE MAGIC Founders

104  The 16 founders were selected from a panel of 94 historical varieties released in the UK over
105 a ~70 year period (and originating from the UK, France, Denmark, Sweden and the
106  Netherlands, Supplementary Table 1) using 546 Diversity Array Technology (DArT) and 61
107  Single Sequence Repeat (SSR) markers[20]. We sequenced 15 founders after enrichment for
108 (a) genic regions and (b) putative promoters using a capture probe-set[21] at average
109 coverage of 22.94x of the targets (Supplementary Table 1). The remaining founder, Holdfast,
110 was sequenced by WGS, but to ensure consistency across founders, we restricted our
111  attention to the capture targets, for which coverage in Holdfast was 15.8x. We sequenced
112 using Illumina 150bp paired-end reads whose combined length often included sequence
113  differences between homeologous loci on the A, B and D subgenomes of hexaploid wheat,
114  thereby resolving otherwise ambiguous alignments. Furthermore, we only used high quality

115 alignments (mapQ>30) for coverage calculations and variant calling, and subsequently
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116  excluded variant sites with missing or heterozygous calls in any founder (e.g. from
117 homeologous variation and misalignment). After quality control, we called 1.13M high-quality
118  single nucleotide polymorphisms (SNPs) across the 110,790 promoter-gene pairs targeted by
119  the capture probes (557Mb in total), summarised in Supplementary Figure 1. Only 97,727
120 SNPs (8.7%) were on the D subgenome and almost half (17,289/35,021, 49.4%) of the
121  promoter-gene pairs on the D subgenome had no SNPs passing quality control, compared to
122 26.6% (9,656/36,302) and 21.7% (8,012/36,738) on the A and B subgenomes, respectively. A
123 comparative lack of diversity is expected on the D subgenome as it was acquired in the most
124  recent allo-polyploidisation event[22].

125

126  We placed the 16 founders in the context of global wheat diversity by analysing 113,457
127  genotyping array sites that vary among 4,506 diverse global wheat accessions[13], of which
128 50,335 sites were callable across all founders. We classified global wheats into nested subsets
129 representing the UK only (n=154), North-West (NW) Europe (n=1,343), Europe (n=2,331), and
130 Global (n=4,506), to understand how allele frequencies across subsets relate to our founders
131  (Figure 1). Most Global common variants are polymorphicin the founders whereas rare alleles
132 are more likely to be fixed in the founders, particularly those scarce in NW Europe and the
133 UK. For example, 79.7% of those SNPs polymorphic within the UK subset (which includes
134  landraces) also segregate among the founders, falling to 73.4% Global sites across all 4,506
135  accessions. We next asked whether we could have selected 16 founders that more
136  comprehensively sampled the variation space. We simulated selections from the same nested
137  subsets and compared the distribution of the fraction of segregating sites with that in the
138  actual NDM founders, and found the latter capture more diversity than an average selection

139  of UK wheats, about average diversity for NW European wheats, but less than average for


https://doi.org/10.1101/2020.09.15.296533
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.296533; this version posted September 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

N : ok ' S ad 4 L i
PEI pctu‘ﬂly. IS Tauc avdiialice uluch aC C=D T=INC &, U ITIET T iaturidar meerisce.,

140 wider European and Global sets (Figure 1). As the Global dataset is highly diverse, with
141 modern varieties (released 1960-2009, n=2,294), landraces (1800-1959, n=965), and
142  uncategorised/landrace germplasm (n=1,247), we conclude that NDM is representative of

143  NW European wheat germplasm.
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145 Figure 1 The NDM population is representative of NW European wheat. (a) SNPs segregating (green) or fixed
146 (orange) in NDM at 50,335 sites in 4,506 global wheats, grouped into ‘Global’, ‘European’, ‘North-West
147 European’ and ‘UK’ nested subpopulations and binned by the allele frequency in these subpopulations. (b) The
148  fraction of sites that are polymorphic in 16 randomly chosen wheats from each subpopulation based on 1000
149 random replications. The dashed vertical black line at x=0.734 is the fraction of SNPs segregating among NDM
150  founders.

151  We next estimated the haplotypic diversity in the founders at the 1.13M sites. First, we
152  clustered the founders by their haplotypic similarity at the 73,982/110,790 (66.7%) promoter-
153  gene loci with at least two haplotypes. Assuming that founders carry the same haplotype
154  when their genotypic similarity exceeds 95%, 38,535 loci (52% of loci with variants) had only
155 two haplotypes, 61,438 loci (83%) had at most three haplotypes, and 70,602 loci (95%) had
156  four haplotypes at most (Figure 2b). Second, we estimated haplotype diversity by a dynamic
157  programming algorithm that adjusted locus/block boundaries (Figure 2c, Supplementary

158  Figure 2) to minimise the number of distinct haplotypes within a locus, while balancing
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159 transitions between calling identical versus non-identical haplotypes. Over a wide range of
160 parameters, the average number of haplotypes present at any locus rarely exceeded two
161  (Supplementary Figure 2: 81.2% of 1.13M sites inferred to have just two haplotypes). This
162  analysis found slightly fewer haplotypes than the gene-based analysis because it can infer one
163  haplotype (4.1% of sites) when nearby variation is inconsistent, and split genes with high
164  haplotypic diversity into multiple blocks.

165

166  For comparison, the 19 natural accessions that founded the Arabidopsis thaliana MAGIC[23]
167  display much greater haplotypic polymorphism[24]. In A. thaliana, genic haplotypes were
168 determined at the level of protein sequence similarity (>95% similarity within
169  haplotypes)[24]. On average there were 4.8 protein haplotypes per gene and 7,263/13,919
170  (52.2%) of genes with two (n=4,825) or three (n=2,438) haplotypes (excluding genes with no
171  variation). Our estimates for the NDM founders are 2.7 haplotypes per gene and 83% of
172 variable genes having at most three haplotypes. Protein-level differences are lower than DNA
173  level differences making this comparison conservative, and thus the true difference is even

174  greater.

175

176  The NIAB DIVERSE MAGIC Population

177  We developed a total of 596 Recombinant Inbred Lines (RILs), each descended from all 16
178  founders via a crossing funnel (Figure 2a). After 6 generations of inbreeding, all 596 RILs were
179 initially genotyped using the Axiom 35k wheat breeders’ SNP genotyping array[12]. We called
180 SNPs at 20,688 sites, of which 5,747 overlapped with the 1.13M SNP calls made in the
181 founders. These overlapping sites suggested that only 59.8% of genotyping array probes could

182  have been unambiguously placed using BLASTn[25], underlining the difficulty of using short
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183  probes in polyploids (Supplementary Table 2). We used the overlapping sites as a truth
184  genotype set to find sample misidentifications and estimate the accuracy of sequence-based
185  genotyping in the RILs.

186

187  We excluded 46 RILs excessively similar (>92%) to other RILs, indicating possible errors during
188 population development. We sequenced the remaining 550 RILs after 7 generations of
189 inbreeding by low coverage WGS (mean 0.304X) and called variants at the 1.13M founder SNP
190 sites using sequence alignments. A further 46 RILs were excluded as their genotypic
191  concordance with the initial 35k array data was below 95%, leaving 504 RILs in 141 families
192  (RILs in the same ‘family’ are derived from the same 16-way cross), from which we based our

193  main analyses.
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195  Figure 2 NDM population design and haplotypic diversity. (a) Pedigree showing the construction of 504
196 Recombinant Inbred Lines (RILs). One exemplar pedigree is highlighted to show how all 16 founders are
197  intercrossed into each RIL. (b) Founder haplotype groups at 73,982 promoter-gene loci with SNP variation, where
198  founders with the same haplotype have genotypic similarity fractions that exceed the corresponding threshold.
199 (c) Pairwise similarity/dissimilarity between founders on chromosome 1A, determined using a dynamic
200  programming algorithm to infer founder similarity and breakpoint position. Founders that are inferred to have
201 similar haplotypes for each region are the same colour. (d) The total length of genomic blocks in NDM lines
202 inferred to come from each founder; uncertain ancestry blocks have a maximum founder dosage of <90%. (e)
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203 Inferred founder dosage and ancestry mosaics across chromosome 1A for five example RiLs, with founders
204  coloured as in (a).

205 We imputed RIL genotypes using STITCH[26] by inferring the founder haplotype carried by
206  each line at each location. Figure 2c shows the haplotypic similarity among founders on
207  chromosome 1A, indicating that a small number of haplotypes have been heavily recombined
208  during the 69 years of breeding history that separates the founders. Most recombination is
209 located towards the distal ends of the chromosomes, as expected[27]. Only limited further
210 recombination occurs during MAGIC population construction and the haplotype blocks
211  inherited from each founder are relatively long (Supplementary Figure 2) and therefore
212  distinguishable from one another. Thus, it was necessary to assume 16 unique haplotypes
213  were segregating to obtain the highest imputation accuracy (Supplementary Figure 2).
214  Founder haplotypes could be confidently assigned (i.e. with >90% dosage from a single
215  founder) at over 92.2% of sites (Figure 2d). These haplotype assighments implied that an
216  average of 4.8-13.7 recombination events occurred per RIL per chromosome (mean 8.7 sd 2),
217  giving an average of 183 (sd 36.3) recombination events per RIL in total. Consistent with
218 estimated genetic map lengths of 35-37.4M[12,28], 4.9-5.2 recombination events were
219  observed per Morgan, in line with the predicted ~5-fold increase in 16-parent MAGIC
220 populations compared to two-way crosses[29]. Example founder haplotype mosaics across
221  chromosome 1A are shown in Figure 2e.

222

223 The fraction of sites called directly (i.e. without imputation) for 501 RILs varied between 20.9-
224  42.7% (mean 27.8% sd 3.4%), as expected for 0.3x-coverage sequence data. A further three
225  RILs were sequenced to higher depth (2.7x, 4.0x, and 4.3x) and had call rates of 79.9%, 90.0%,
226  and 93.0%, respectively (Figure 3a). After imputation, 94.2% of the 1.13M SNPs (i.e. 1.07M)

227  were called across all 504 RILs and the effective call rate of imputed sites was 99.6%, with

10
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5.8% of the SNP sites inaccessible or removed by quality control: 0.93% of sites are on the
“Un” chromosome in the wheat reference (excluded from imputation), 1.36% were removed
by imputation QC (info score <0.4) and 3.52% had imputed minor allele frequencies below
2.5% and/or missingness above 90%. Figure 3b shows that the concordance between array
and imputed genotypes (Al) and between array and directly called genotypes (AD) are
strongly correlated, suggesting that instances of poorer concordance are unlikely to be caused
by imputation. Overall, imputation marginally improved accuracy versus direct calls (mean Al
99.1% versus mean AD 99.0%) but increased the call rate three-fold. Downsampling read
coverage showed the founder haplotype space and recombination mosaics could be
accurately inferred from coverage as low as 0.076x per sample (Figure 3c); above this level
imputation accuracy was independent of whether founder haplotypes were included as a
reference panel (mean Al 98.7%) or ignored (mean Al 98.5%).
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Figure 3 Call rate and accuracy of genotypes after imputation and after downsampling. (a) Imputed call rate (y-
axis) vs direct call rate (x-axis. Only 28.1% of the 1,131,251 SNP sites can be genotyped directly from the low
coverage sequence data, whereas 93.8% of sites had genotypes after imputation. 5.8% of sites (grey region and
horizontal dashed line in a) were removed by quality control filters after imputation or on the unimputed ‘Un’
chromosome (0.93%). (b,c) Accuracy as evaluated at 5,747 sites that overlap with the Axiom 35k array. (c)
Imputation before/after downsampling was performed with (green) and without (orange) using the genotypes
of the founders as a reference panel.
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249  Introgressions and Segregation Bias

250 Several recent studies have used genomic data (e.g., SNP density[9]) to study the
251  introgression of genetic material into hexaploid bread wheat from the secondary and tertiary
252  gene pool[9,10,30]. We examined evidence for introgressions in previously reported
253  locations[9,31-33] using founder coverage and non-reference allele frequency. Because we
254  developed RILs, we were also able to examine segregation bias, which often accompanies
255  wheat introgressions[34,35]. We found evidence for at least six introgressions covering
256  ~1.1Gb segregating in the population, five of which showed segregation bias (Supplementary
257  Table 3).

258
259  Phenotypic Characterisation and QTL Mapping

260 We measured 47 phenotypes in replicated field trials over two years (Table 1, Supplementary
261 Tables4,5, and 6), including the 10 time points at which Green Leaf Area (GLA) was measured.
262  Of these, 25 phenotypes were collected in both years and two were also measured in smaller
263  1x1m nursery plots (Yellow Rust infection, YR, and Juvenile Growth Habit, JGH) to give a total
264  of 73 phenotypic measurements. Phenotype distributions are shown in Supplementary Figure
265 3, showing that some RILs have more extreme phenotypes than any founder (transgressive
266  segregation) for almost all phenotypes (RIL maximum 2> founder maximum for 61/73
267  phenotypes and RIL minimum < founder minimum for 68/73 phenotypes). All phenotypes
268  have significant (p<0.05, Pearson’s correlation test) correlations with at least one other

269  phenotype (Supplementary Figure 4).

270  Table 1 Phenotypes collected

ABBREVIATION TRAIT ABBREVIATION TRAIT

BIS Basal infertile spikelets GS55 Ear emergence date
EL Ear length GS65 Anthesis date

ETA Ear taper GW Grain width

ETS Ear tip sterility GY Yield
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EW Ear weight HEB Height to ear base

FLA Flag leaf angle HET Height to ear tip

FLED Flag leaf to ear distance HFLB Height to flag leaf base
FLF Flag leaf floppiness JGH Juvenile growth habit
FLL Flag leaf length LOD Lodging

FLS Flag leaf senescence PHS Pre-harvest sprouting
FLW Flag leaf width PIG General pigmentation
GA Grain area SH Spring habit

GL Grain length SPIG Stem pigmentation
GLA# Green leaf area (10 time points, Nov—Mar) | SW Specific weight

GLAU Glaucousity TGW Thousand grain weight
GPC Grain protein content TIS Tip infertile spikelets
GR Germination rate TS Total spikelets

GS39 Flag leaf emergence date YR Yellow rust infection

271

272  From the 1.07M imputed SNPs, we selected a subset of 55,067 pruned by linkage
273  disequilibrium (LD). Using genome-wide association scans (GWAS) on both SNP and founder
274  haplotype data, we mapped 136 Quantitative Trait Loci (QTLs) across the 73 phenotype/year
275  combinations that were genome-wide significant at the 5% level. Many QTLs overlapped for
276  different phenotypes, clustering into 42 distinct genome locations. For 25 phenotypes that
277  were measured in both years, we found 48 QTLs in year 1 and 49 QTLs in year 2, of which 28
278  were mapped to the same location and were genome-wide significant in both years. For
279  example, in replicated trials lacking fungicide treatment we mapped yellow rust (Puccinia
280  striiformis) susceptibility to four QTLs in year 2 (on chromosomes 2A[31,36], 2B[37], 3B, and
281  6A), of which three were also mapped in year 1 (2A, 3B, and 6A); only one (6A) was also
282  mapped in trials treated with fungicide. 126/136 QTLs at 40/42 genomic locations were
283 mapped using SNP-based associations, whereas 87/136 QTLs at 30/42 genomic locations
284  were mapped using haplotype-based association tests. That is, 10 QTLs and two genomic
285  locations were only identified from haplotype-based association whereas 49 QTLs and 12
286 genomic locations were only identified from SNP-based association. This is consistent with
287  the limited gene-level haplotypic diversity observed among the founders.

288
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289  Figure 4b summarises the 40 loci with genome-wide significant SNP-based associations. We
290 were able to assign 21 of these, including most of those with the strongest effects, to
291  previously reported QTLs. In 11 high confidence cases, candidate genes have been reported
292  and/or validated experimentally. In other cases, QTLs contained homeologs or paralogs of
293  these high confidence candidates, or previous studies had reported associations to a genetic
294  map using marker data, but not firmly anchored these locations on the reference genome
295 assembly (low confidence co-localisation, n=10). We checked six high confidence candidate
296 loci with annotated reference genome locations (RHT-1[38], RHT-2[39], WAPO-A1[40], ALI-
297  1[41), TaMyb10-B1[42], Yr7/Yr5/YrSP[37], PPD-D1[43]), all of which were within our mapping
298 intervals. We created a genotype-phenotype map for community use by placing all QTLs on
299  the physical map (Supplementary Table 7) to a median interval of 9.2Mb.

300

301 Most loci with strong effect co-localise with previously reported QTLs. Some large effects are
302 commonly associated with adaptation of the founders to the geographic and temporal range
303 they sample. For example, the early flowering allele at the photoperiod locus PPD-D1 carried
304 by the founder Soissons is favoured in southern Europe to avoid the summer drought[44].
305 The modern semi-dwarfing alleles at RHT-B1 or RHT-D1 that have been favoured globally
306 since the Green Revolution[45] are absent from founders Banco, Bersee, Copain, Flamingo,
307 Holdfast, Kloka, Spark, Steadfast and Stetson.

308

309 To examine the pleiotropic effects of the relatively few genome-wide significant QTLs, we
310 took the most strongly associated SNP at each locus and then tested for associations with all
311 other phenotypes, requiring a lower threshold for evidence of association (p<0.05) than was

312  initially used to establish genome-wide significance. The results are visualised in Figure 4d,
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313  which shows that loci significant for one phenotype are also common to other phenotypes,
314  consistent with extensive pleiotropy and the shared genetic control of correlated phenotypes.
315

316  Gene Deletions

317  Our analysis of SNP variation ignored sites that could not be called reliably in all 16 founders,
318 possibly due to whole-gene deletions relative to the reference genome. We obtained no
319 coverage from at least one founder at 8,019 (7.2%) of genic regions and 1,095 (1.1%) of
320 promoter-gene pairs, suggesting possible structural variations (Supplementary Figure 1).
321 Based on the deviation in gene coverage from that expected given the mean coverage for the
322 founder, we computed a quantitative gene deletion score (GDS) for each gene and founder
323 and imputed the scores into the RILs using the founder ancestry mosaics. We tested the
324  association between each GDS and each phenotype in order to identify potential causal
325 deletions. Across 27/73 phenotypes we found 30 GDS associations with p-values <107
326  (Supplementary Table 8). Significant associations almost always occurred within QTLs
327  previously mapped by SNP association, so this analysis only identified candidate genes with
328 deletion status consistent with the pattern of action across the founders of a QTL. Of these,
329 at 10 loci the peak GDS logP association was at least 90% of the peak SNP logP. Thus most
330 QTLs are not likely to be caused by gene deletions. However, the GDS is based on empirical
331 read coverage, and so is likely to be affected by stochastic experimental variations hence it is
332  possible that the association at a true causal GDS might appear weaker than that of a tagging
333  SNP. A further caveat is that deletions are always inferred relative to the reference genome
334  of Chinese Spring, such that insertions or functional genes missing from the reference genome
335 annotation will not be captured.

336
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337  Genomic Prediction

338 We next performed phenotypic prediction all 55,067 tagging SNPs, to predict the potential
339 for geneticimprovement within the NDM. We trained genomic prediction models using three
340 shrinkage methods: ridge regression (RR), least absolute shrinkage and selection operator
341  (LASSO) and Elastic Nets (EN), using 50-fold cross-validation with randomly-selected training
342  sets comprising 90% of RILs and test sets of the remaining 10%. LASSO and EN had almost
343  identical prediction accuracies but EN included on average 26% more SNPs than LASSO
344  (Supplementary Figure 5). Accordingly, we only report the LASSO results. LASSO prediction
345  accuracies for all traits are shown in Figure 5b, alongside the proportion of heritable variation
346  explained by QTLs (Figure 5a). Across traits, LASSO had higher average prediction accuracy
347  than RR (Figure 5c), particularly for phenotypes where a larger fraction of variation can be
348 explained by genome-wide significant QTLs (Figure 5d), as expected for a model selection
349 method. LASSO prediction accuracies (correlation coefficients) varied from 0.13-1 (mean
350 0.43) across phenotypes, using models with 1-465 SNPs (mean 155 SNPs). The number of
351 SNPs in the LASSO model is higher for phenotypes where the overall heritability estimate
352  greatly exceeds the fraction of variation that can be explained by genome-wide significant
353  QTLs (Figure 5e).

354

355  OQut-of-sample test set prediction confirms that polygenic LASSO SNPs have predictive power
356 and are therefore likely to be tagging genetic variants affecting phenotypic variation. Most
357 phenotypes are polygenic; their prediction models exhibited a mixture of a few large effect
358 and many smaller effect loci. A typical example (for height) of the 193 non-zero LASSO SNP
359 effects is shown in Figure 4c. In contrast, the Mendelian AWN phenotype is fully explained

360 and predicted using a single genome-wide significant QTL.
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The reduced accuracy of RR compared to the LASSO is expected in the absence of significant
population structure. There will be reduced variation in kinship among RILs compared to the
wider germplasm from which the founders are usually selected. Much of the prediction
accuracy of RR results from exploiting kinship rather than from tagging causative variants[46]
so there is less opportunity for high prediction accuracy in MAGIC populations. In these
circumstances, a feature selection method such as the LASSO can more accurately identify
and tag haplotypes contributing to trait variation and give greater prediction accuracies. The
LASSO also accurately predicts traits determined predominantly by a few QTL of large effects,
in which circumstances RR performs poorly (Figure 5d). The LASSO is therefore better for

genomic prediction in MAGIC.
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Figure 4 Genotype-phenotype associations. (a) Exemplar Manhattan plot of the genome-wide -logo p values of
association (logP) between the height to ear tip phenotype from year 2 (HET_2) and 55,067 LD-pruned SNP
dosages (dots) or founder haplotype dosages (line). The horizontal lines show the 5% genome-wide significance
thresholds for SNPs (dotted) and haplotypes (dashed). (b) The 193 non-zero estimated LASSO SNP effects for
HET_2. (c) The 40 genomic locations where genome-wide significant SNP associations were found for at least
one phenotype, classified by effect size (logP; x-axis) and genomic interval width (Mb; y-axis). Each circle
represents one locus, and its size shows the number overlapping QTLs; the smallest interval width and p value is
shown where there are multiple overlapping phenotype associations. Labels indicate QTLs that colocalise with
previously described QTLs or candidate genes; green indicates high-confidence colocalization (n=11) and purple
low-confidence colocalization (n=10). (d) Pleiotropy across 40 loci: those loci without names are labelled by
chromosome and position in Mb) and 73 phenotypes. Shades indicates the significant (p<0.05) locus phenotypic
effects expressed as the number of standard deviations (Z-score). Genome-wide significant QTLs are highlighted

with boxes.
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Figure 5 Genetic architectures of 73 trait/year combinations (47 distinct traits) as revealed by QTL mapping and
genomic prediction. (a) Phenotypic variation explained by all genome-wide significant QTLs (thick bars) and by
the full SNP-based genetic relationship matrix (heritability, thin bars and dots). Phenotypes measured in year 1
and year 2 are paired, shifted to the left and right, respectively. (b) LASSO prediction accuracy (correlation
coefficients) across 50-fold cross validation; error bars show sds. (c) Prediction accuracy correlations (y-axis) and
sqrt(heritability) (x-axis) and in the test and training sets under ridge regression (rr) and LASSO genomic
prediction models. Prediction into the test set is generally higher with LASSO, especially for traits where more
variation is explained by genome-wide significant QTLs (d). (e) LASSO models usually include more SNPs when
more heritable variation is unaccounted by genome-wide significant QTLs (x-axis is difference between
heritability and QTL R?).

We used these genomic prediction models to explore the potential for selection in a much
larger simulated population of 20,160 MAGIC RILs, 40 times larger than the real population.
These were created by permuting the founder identities in the founder genome mosaics
inferred in the real RILs, preserving linkage through the genetic map. Phenotypes were
predicted for the test set of real RILs (10% of all lines) and in the simulated RILs for all 50

prediction models (training/test set jackknife resamples). Figure 6a shows, for two example
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403 phenotypes, that the distribution of predicted phenotypes is almost identical in the real (test
404  set) and simulated RILs. As expected, the most extreme predicted values (maximum and
405 minimum) in the simulated RILs exceed than those in the real dataset because novel allelic
406 combinations are generated in the larger simulated population. However, the average
407 improvement in extrema between the test set and simulated phenotype predictions is only -
408 0.5 (for the minimum) and +0.68 standard deviations (for the maximum). This is in line with
409  extreme-value distribution theory and shows that blind-breeding a very large population in
410 the hope of generating novel combinations of beneficial alleles is inefficient.

411

412  Next, we predicted the theoretical extreme phenotypic values that it is possible to create
413  from segregating variation if unlimited recombination were possible. That is, we computed
414  the phenotypic prediction in an imaginary line that carries all the alleles predicted to
415 increase/decrease each phenotype. For this exercise, we trained the prediction models on
416  the full set of 504 RILs so they differ slightly from those used to predict phenotypes in the test
417  set. In the test set and simulated RILs, the predicted phenotypic extremes generally reflect
418 the population size, which determines the probability that a single line happens to sample
419 many alleles with positive/negative effects. However, Figure 6b shows that the theoretical
420  maximum/minimum phenotypic prediction is linearly related to the complexity of the LASSO
421 model (i.e. the number of non-zero SNP coefficients in the model). This suggests that
422  hundreds of loci would need to be selected over multiple generations to generate any large
423  phenotypic shifts, in line with the decades of breeding that has been required to produce

424  genetic gain.
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426 Figure 6 Predicted potential for phenotypic change. (a) We predicted the phenotypes of real MAGIC recombinant
427 inbred lines, RILs (green distribution), and a large population of 20,160 simulated MAGIC RILs (orange
428 distribution). These distributions largely overlap but more combinations are made in the simulated dataset such
429 the the extreme values are more extreme. Nevertheless, the highest/lowest phenotypic prediction in the
430 simulated population of 20,000 is generally only ~0.5 standard deviations higher/lower than the trait predictions
431 in the real dataset of 504 lines. Upper graphs: predictions based on year 1 phenotype, lower graphs predictions
432 based on year 2 phenotype (b). We also estimated the extemes of the phenotype predictions that are possible
433 given the full lasso genomic prediction models (purple line in a). Large deviations from the current population
434 mean are predicted to be possible but only through the fixation of a large number of loci, with less potential for
435  change predicted at less-highly polygenic traits.

436  For essentially all crops where yield and yield quality are high priority traits, a trade-off is
437  evident between these two phenotypes and this is recognised as a longstanding problem in
438  wheat. Thus, identifying opportunities to break this trade-off is important[47,48]. We
439  estimate that yield has increased by 0.021 t ha' year? based on a regression of average yield
440 on founder release year (p=0.006, n=16, R?=0.43). The highest yields measured in founders
441  and RILs exceeds the maximum predicted yield from the genomic prediction models (Figure
442  6)due to shrinkage in estimating SNP effects. However, high grain yield (GY) is correlated with

443  low grain protein content (GPC) among the founders (Pearson’s correlation coefficient -0.94,
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p<0.001, n=16), Figure 7. Founder genetic material is reshuffled without selection in the RILs,
but the GY-GPC relationship continues (correlation -0.77, p<0.001, n=504), suggesting some
pleiotropy in the underlying genetic effects. To investigate the segregating genetic variation
that may be available to break this trade-off, we analysed the deviation from the trend (PYD:
distance from symmetrical Thiel-Sen regression between GPC and GY, after Z-score
normalisation). The heritability for PYD was 0.41 in year one and 0.25 in year two and could
be predicted with accuracy 0.26 (sd 0.11) in year one and 0.13 (sd 0.11) in year two. These
estimates are lower than those for GY and GPC analysed separately (GY heritability 0.54 and
0.30, prediction accuracy 0.39 and 0.25; GPC heritability 0.55 and 0.55, prediction accuracy
0.375 and 0.36, Figure 5. PYD of the founders did not correlate with release date, but these
results suggest modest potential to break the yield-protein trade off, requiring strong and

targeted breeding effort[47,48].
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458 Figure 7 Negative trade-off across two years between grain yield (GY; x-axis) and grain protein content (GPC; y-
459 axis) in 504 NIAB DIVERSE MAGIC RiLs, 16 founders, and 3 more recently developed varieties (triangles, only
460  one measured in year 1).

461 Discussion

462  We report five main findings. First, imputation from low coverage WGS is a cost-effective and
463  straightforward genotyping strategy for crops, at least in multiparental populations. Despite
464  its large, repetitive and hexaploid genome, wheat genotypes can be reliably imputed from
465  WGS with average per-sample coverage in the range of 0.075x-0.3x and without the use of
466 reference panels[26]. Thus there is no absolute requirement to even know the identities of,
467 let alone sequence, the population founders, although this may be desirable for other
468  purposes such as pan-genome assembly and re-annotation[18,49]. In this study, we were
469  able to impute genotypes and founder haplotypes at >1M SNP sites in >500 NDM RILs, which
470  proved ample for genetic mapping and genomic prediction.

471
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472  Second, based on SNPs called from exome capture, no more than three haplotypes segregate
473  at most genes in commercial NW European bread wheats released since 1935. There appears
474  to be little or no variation at about a quarter of genes on the A and B subgenomes, and at
475  about half on the D subgenome. Complete re-assembly and re-annotation of the 16 founders
476  of the NDM would yield more complete insights into the extent and impact of coding
477  variation. Limits on haplotypic variation are probably the result of historical selection and
478 population bottlenecks that reduced the effective population size before the onset of
479  intensive breeding programmes[12,50], as well as the close relatedness among breeding
480 materials in more recent wheat pedigrees[51]. However, it appears that the low overall level
481  of genetic diversity has not been further reduced during the 20" Century([52,53].

482

483  Third, as a consequence, most QTLs are accounted for by bi-allelic SNPs rather than haplotype
484  differences. For comparison, about 40% of QTLs identified in a multi-founder population of
485 rats were attributed to multi-allelic/haplotypic effects[54]. Furthermore, most genome-wide
486  significant QTLs had pleiotropic effects. Extensive pleiotropy suggests that naive selection on
487  one phenotype is likely to induce correlated responses in other phenotypes. In particular, we
488 found improved yields in recent varieties has come at the cost of a decline in protein content
489  (Figure 7; increasing yield by one t/ha reduces protein content by about 1%). Despite
490 reshuffling haplotypes without selection, this trade-off continues in the NDM, which indicates
491  directed selection would be required to break the yield-quality trade-off, potentially creating
492  varieties with improved nitrogen use efficiency[55,56].

493

494  Fourth, across 47 phenotypes, we found a wide range of underlying genetic architectures. For

495  traits such as awns, pigmentation, spring habit and yellow rust resistance, almost all of the
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496 heritable phenotypic variance could be explained by one to four genome-wide significant
497  QTLs (Figure 5). In other cases, a few loci with large phenotypic effects were accompanied by
498  dozens of loci with smaller effects on traits such as flowering time and height (Figure 4a). The
499 loci with very large effects have mostly been reported before (Figure 4b) because we
500 recapitulate key historical steps such as the introduction of photoperiod sensitive and semi-
501 dwarfing alleles from Japan[44,45]. Traits such as yield were polygenic with the majority of
502 heritable variation coming from many loci of smaller effect (Figure 5).

503

504  Fifth, our genomic prediction models suggest that hundreds of loci will need to be selected
505 and fixed to achieve large phenotypic changes in polygenic traits in the future (Figure 6B). We
506 achieved reasonable prediction accuracy with modest numbers of SNPs; the mean out-of-
507 sample prediction accuracy was 0.43, using on average only 155 SNPs per phenotype, out-
508 performing ridge-regression which considers all markers simultaneously. Other crop and
509 livestock studies have also found very sparse markers can be sufficient for useful genomic
510 prediction[11,57,58]. Here, rather than using low marker densities, we trained models that
511 select a few hundreds of markers from ~55k tagging SNPs. In part, this sparsity is a
512  consequence of the design and construction of MAGIC populations, eliminating rare alleles
513  and creating blocks of markers that can be easily tagged in prediction models[15]. These
514  factors may be responsible for the use of far fewer markers than used to generate polygenic
515  prediction scores in humans[59], where there is a long tail of rare variation and less linkage
516  disequilibrium.

517

518  Our results suggest that dramatic genetic improvement over 70 years of breeding has largely

519 been achieved through the fine shuffling of a low number of haplotypes to recombine
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520 polygenic alleles of small effect, combined with the introduction of alien introgressions from
521  wide crosses. The introgression of large genomic segments from related species has most
522  commonly been for sources of resistance to specific diseases[9,33,34]. Breeders now have a
523  choice whether to continue with the same strategy, i.e. selecting from within existing
524  variation and introgressing selected exotic alleles, or to ambitiously expand the pool of
525 available haplotype diversity genomewide.

526

527 Methods

528 NDM Population Creation

529 The 16 NDM founders were chosen to capture the greatest genetic diversity using
530 PowerMarker genetic analysis software[60]. They were chosen from 94 NW European wheats
531 released in the UK that were genotyped with 546 DArT and 61 SSR markers; the full panel also
532 included 96 US and 50 Australian varieties, which were excluded based on STRUCTURE
533  analysis[61]. The founder selection process was run iteratively with the varieties ‘Robigus’
534  and ‘Soissons’ first fixed to be included to coincide with the founders of the 8-founder NIAB
535 Elite MAGIC population[62]. Then the most frequently selected additional 4, then 9, and 12
536 varieties were fixed in multiple iterative selection runs and finally the most frequently
537 selected 16 were chosen. Seed for the founding varieties was sourced from the John Innes
538 Centre Germplasm Resource Unit (GRU http://www.jic.ac.uk/germplasm/).

539

540 These founders were inter-crossed in a balanced funnel crossing scheme, based on a Latin
541  square field trial design, over four generations to create 16-way crosses with all the founders

542  equally represented in their pedigree. First, all 120 possible 2-way crosses between founders
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543  were made in a half diallel scheme. Two-way plants were then crossed in 60 4-way
544  combinations. Multiple plants from each family were used in crossing from 2-way onwards,
545  in order to maintain maximum founder allelic diversity within the population. 30 crossing
546  combinations were made between 4-way plants to create 8-way crosses, making between
547  five and eight replicate crosses per combination using different plants. These were
548 intercrossed in 15 combinations to create balanced 16-way crosses, with each combination
549  replicated between six and fifteen times using different 8-way plants. This resulted in 174 16-
550 way plants from which one to sixteen inbred lines per 16-way family were made through
551  single seed descent (SSD). 596 RILs were advanced to the F7 stage when seed for phenotyping
552 was multiplied in 1x1m nursery plots. Supplementary Table 9 gives details the number of
553  plants involved in each cross and Figure 2a shows the pedigree for the 504 RILs used in our
554 main analysis only.

555

556  Phenotyping

557  RILs from the population were phenotyped in field trials over multiple environments near
558 Cambridge, UK. Yield trials were conducted in the growing seasons 2016-2017 and 2017-2018,
559 hereafter year 1 and year 2 (phenotype suffix codes _1 and _2). Information on location, soil
560 type, key dates and inputs for both years are given in Supplementary Table 4. Yield plot
561 dimensions were 2m wide and 4m long and plots were sown at a density aiming to achieve
562 300 plants m™2. In year 1, 596 lines were included in two replicates, the sixteen founders in
563  four replicates and the commercial control variety ‘KWS Santiago’ in 24 replicates in a
564 randomised nested block design with 16 main blocks of 80 adjacent plots which comprised
565  each row in the trial and eight sub-blocks of ten plots nested within each main block. In year

566 2 trials, 596 lines and the 16 founders were included in two and four replicates respectively
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567  but three control varieties (‘KWS Santiago’, ‘Skyfall’ and ‘Shabras’) were all included in four
568 replicates. Plots were again randomised in a nested block design but including additional plots
569  making a larger trial, consisting of 20 main blocks of 115 adjacent plots, which comprised each
570 row, and 23 sub-blocks of five plots nested within each main block.

571 Disease observation trials (DOTs) were conducted near Cambridge, UK in the same years as
572  theyield trials to assess resistance to crop diseases. These plots consisted of two 1.2m length
573  rows, treated with no fungicide but otherwise standard inputs. Due to local conditions, DOTs
574  were considered to have natural high pressure of yellow rust (Puccinia striiformis f.sp. tritici).
575 Inbothyears, DOTs included two replicates of 596 RILs, four replicates of the 16 founders and
576 68 additional replicates of the susceptible founder ‘Robigus’. Trial designs included two main
577  blocks of 660 plots, with 11 sub-blocks of 60 plots nested within main blocks. All trial designs
578 for both yield and disease observation trials were made using the package ‘blocksdesign’ in
579 R. Phenotyping of some traits was also carried out in 1x1m seed nursery plots where lines
580 were not replicated but the founders were in three replicates and randomised across the
581 nurseries (phenotype code _N).

582

583 A wide range of traits were phenotyped across the field trials, including traits for crop
584  developmental morphology, phenology, plant stature and canopy architecture, yield and
585 yield components such as spike and grain morphology, disease resistance, pigmentation,
586 plant glaucosity, indications of stress response, lodging, grain protein content and
587  vernalisation requirement. A summary of these traits and abbreviations are presented in
588 Table 1 and details of phenotyping methods are listed in Supplementary Table 5.

589
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590 Trials Analysis

591 Adjusted phenotype values were calculated as Best Linear Unbiased Estimates (BLUEs) for
592  each trait separately for each trial year using mixed effects models with ASRemL[63].
593  Genotype was considered a fixed effect whilst experimental blocking structure as well as
594  other covariates such as harvesting day, where relevant, were included as random effects.
595  Spatial models including first- and second-order auto-regressive spatial models were also
596 used. Model simplification was carried out where models with all possible combinations of
597 random effect terms and spatial terms for row and column were run and the best fitting
598 model was chosen based on Akiake Index Criteria (AIC). Model residuals were visually checked
599 for normality and equal variance to fitted values distribution. Best Linear Unbiased Estimates
600 (BLUEs) for all phenotypes for the 16 founders and for the 504 RILs used in our main analysis
601 (see below) are provided in Supplementary Table 6. We used symmetrical Thiel-Sen
602 regression (implemented in the ‘deming’ R package) after phenotype normalisation to
603  characterise the relationship between protein content (GPC) and yield (GY). The Protein-Yield
604  Deviation (PYD) phenotype is calculated as the Euclidian distance from this regression line.
605

606 Genotyping Array Data

607  All DNA extraction was performed using the Qiagen DNeasy Plant Kit on leaf tissue samples
608 taken from emerging leaves of seedlings. First, genotyping was performed at the Bristol
609  Genomics Facility using the Axiom 35k wheat breeders’ array[12]. Initially, two 384-sample
610 plates were genotyped. Seed from the plants used as founders were genotyped on each plate
611 (32 samples) along with extra seed from the original varietal seed stock used (28 samples)
612 and seed from founders propagated to 2017 (16 samples). In addition, 596 RILs were

613  genotyped after 5 generations of selfing (Fs). To account for genotyping failures and to ensure
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614  the accuracy of sample labels, 150 RILs were re-genotyped in the F7 generation along with a
615  further replicate of each founder.

616

617 Genotype calling was performed using the Affymetrix Power Tools (v1.19) and SNPolisher R
618  packages, following the recommended Axiom analysis pipeline. All samples except two-way
619  crosses were given the standard inbreeding penalty, 4, which penalises calling heterozygous
620 genotypes. Four samples failed the ‘dish quality control’ threshold (0.82) and a further 28
621 samples with call rates were below 97% were excluded. Marker classifications were
622 performed using “ps-classification”, and ps-classification-Supplementary” functions with
623  options --species-type polyploid --hom-ro false. All calls were adjusted using the standard
624  0.025 confidence threshold using the Ps_CallAdjust function.

625

626 Samples were compared to one another using the 14,935 markers classified as
627  ‘PolyHighResolution’ only. Overall, 46 RIL pairs were found to be >92% similar (mean 98.5%
628  genotype similarity), where all other comparisons between MAGIC lines were, at most, 84%
629  similar (mean 67.8%). These apparently duplicated genotypes could indicate genotyping,
630 labelling, or propagation errors so only one RIL from each pair was used for sequencing (550
631  RILs). To ensure pedigree accuracy, we chose the RIL in each pair that was genotypically most
632  similar to other RILs derived from the same 16-way cross (i.e. in the same family).

633

634 Sequencing Data

635 For whole genome sequencing, DNA was extracted from 550 RILs at the F7 generation. DNA
636 for RILs that failed quality control were extracted again at the Fs generation (n=50).

637 Sequencing and library preparation was performed at Novogene, where libraries were
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638 generated from 1.0ug DNA per sample using the NEBNext DNA Library Prep Kit. Sequencing
639  was performed on a NovaSeq 6000 instrument (Illumina) to get at least 6Gb of raw sequence
640 data (2x150bp paired end reads) per sample. One founder (Holdfast) was sequenced to 15.8x
641  coverage using the same method.

642

643  The other founders were sequenced after capture using two recently designed probe sets
644  targeting promoter and genic regions, respectively[21]. Capture was performed at the
645  Earlham Institute following the SeqCap EZ Library SR v5.1 protocol (Roche NimbleGen Inc.,
646  Madison, WI, USA) with 1ug of genomic DNA sheared to 300bp[21]. Four captures were
647 performed using 8 samples per set (2x promoter captures and 2x genic captures). Samples for
648 the founder Stetson were included on all four capture experiments so roughly double the
649 sequence data was obtained for this variety (Supplementary Table 1). Sequencing with
650 2x150bp reads was performed at the Earlham Institute on a NovaSeq 6000 instrument
651  (lllumina) with 16 promoter capture libraries on one lane and 16 genic capture libraries on
652  another lane.

653

654  Variant Calls and Imputation

655  All reads were aligned to the bread wheat reference genome from cv. Chinese Spring (RefSeq
656  v1.0)[27] using bwa-mem (version 0.7.12)[64] and sorted using samtools (version 1.3.1)[65],
657  which was also used to calculate coverage. For compatibility with the bam file format, we split
658 each chromosome in the reference genome at the halfway point before alignment. We called
659  variants from the founder sequences within the high confidence gene, promoter and 5’ UTR
660 regions targeted by the capture probes[21] using GATK (version 4.0.8.0)[66] HaplotypeCaller

661 and GenotypeGVCFs (options --interval-padding 100 --minimum-mapping-quality 30). We
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662  used vcftools (version 0.1.15) to include only bi-allelic single nucleotide polymorphisms
663  (SNPs) with average coverage depth between 5 and 60 (all per sample coverages between 2
664 and 120) and no missing calls. We also filtered with bcftools (version 1.2)[67] using standard
665 quality control options --exclude 'QD<2 || FS$>60.0 || MAQRankSum<-12.5 ||
666  ReadPosRankSum<-8.0 || SOR>3.0 || MQ<40'. This left 1.78M SNPs, of which we only use
667 the 1.13M sites with no heterozygous calls (--genotype “het option) for our main analyses.
668

669 We first called genotypes in the RILs at these 1.13M SNP sites directly using GATK
670 HaplotypeCaller in GENOTYPE-GIVEN-ALLELES mode, using the same options as above. We
671  assessed the concordance between array genotypes and these direct calls (AD) at overlapping
672  sites (see below). For 10 RILs, the directly called sequencing variants most closely matched
673  genotyping array data for a different line than expected. These were excluded because the
674 source of the discrepancy (sequence data or array data) cannot be established. The
675 concordance between our genotyping array data and direct calls (AD) was below 95% for a
676  further 36 RILs, which were excluded (mean AD 84.7% for removed lines), leaving 504 RILs.
677  We estimated heterozygosity in these 504 RILs using only genotypes called from at least four
678 reads. Of 2.6M such genotype calls, only 0.67% were called as heterozygotes.

679

680 We imputed genotypes at the 1.13M SNP sites using the alignments and STITCH software
681 (version 1.5.7)[26]. Because alignments were to a reference genome with chromosomes split
682 in half, we first ran STITCH with the generatelnputOnly option, and then joined the input files
683  for each chromosome half before imputation. For all runs, we used the parameters nGen=3,
684  minRate=0.001, bgFilter=30, method="‘diploid-inbred’ and then filtered all sites with an info

685  score below 0.4, minor allele frequency below 2.5%, or missingness above 10%. For our main
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686  analysis, we used the genotype calls in the founders as a reference panel and outputted the
687  estimated ancestry dosages of each founder at each position in each RIL using the
688  outputHaplotypeProbabilities and output_haplotype_dosages options. When using the
689 founders as a reference panel, we removed options that estimate and update the haplotypes
690 in the population (shuffleHaplotypelterations, reference_shuffleHaplotypelterations,
691 refilllterations). To test accuracy when reference panels aren’t available, we re-ran
692 imputation without the founder haplotypes, using 40 iterations to estimate the haplotype
693  space and recombination mosaics. We also used the downsampleFraction option to randomly
694  sample a fraction of alignments with/without using the founder reference panel. Finally, we
695 tested imputation accuracy (without a reference panel), when fewer than sixteen haplotypes
696  were assumed to segregate in the population by varying the K parameter (Supplementary
697  Figure 2).

698

699  Genotype Comparisons

700  For comparison against the sequencing dataset, we used all genotyping array markers.
701  Replicates of founders and MAGIC RILs (where available) were used to make a consensus call
702  where the most common genotype across replicates was taken as the consensus and only
703  retained when more than 50% of the non-missing calls were in agreement. In addition,
704  markers where one homozygous genotype was missing from all RILs were converted such that
705  all heterozygous calls were assumed to be in the missing homozygous class. The failure to
706  detect a homozygous class is likely to be a result of polyploidy, which can reduce
707  differentiation between the three genotype classes and make them hard to distinguish.
708  Finally, to get plausible physical positions for the genotyped markers, BLASTn v2.2.30[25] was

709 used to compare the 75bp probe sequences (cerealsdb.uk.net)[12] against the reference
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710 genome[27]. When matching the SNP array data with the sequenced SNPs, array sites were
711  excluded if there had missing or heterozygous founder calls or if the genotypes and targeted
712  SNP alleles did not match the founder sequence data. We found 5,877 sites that overlapped
713  between the genotyping array data and the sequencing data (Supplementary Table 2).

714

715 To compare against global wheat diversity, we called founder genotypes at 113,457
716  genotyping array sites that were polymorphic among 4,506 diverse global wheat
717  accessions[13]. We called genotypes from alignments with mapping quality scores of at least
718 30 using GATK HaplotypeCaller in EMIT_ALL_SITES mode with the —emit-ref-confidence
719 BP_RESOLUTION option, providing a bed file of the 113,139 genotyping array sites[13]. We
720  only considered sites where genotypes could be called in all 16 founders (n=56,063). We used
721  genotyping array calls for cv. Chinese Spring to determine reference/non-reference alleles on
722  the genotyping array, ignoring sites called as heterozygous (n=109) or missing (n=306) in
723  Chinese Spring. Seven of the MAGIC founders were also present in the global genotype set
724  (Brigadier, Copain, Maris Fundin, Soissons, Spark, Steadfast, Stetson)’. The average
725  concordance of the global genotype calls and our sequencing calls for these founders was
726  94.3%(sd 0.63%). We excluded 5,491 (9.8%) sites that had mismatches across these founders,
727  many of which are likely to reflect differences in the underlying genetic variation picked up
728 by the different genotyping technologies. Two other founder variety names were in the
729  genotyping array dataset’ (Banco and Holdfast) but the genotyping calls did not match
730  (concordances 74.2% and 71.4%, respectively), which may reflect differences in the seed

731 stock used.
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732

733 Founder Haplotype Diversity

734 First, we used the SNPs called within each promoter-gene pair to estimate haplotypic diversity
735  of the founders. We calculated absolute (Manhattan) pairwise genetic distances between
736  founders at each site and then used complete linkage clustering to define haplotypic groups
737  using dist and hclust functions implemented in R statistical software (version 3.6.0)[68]. This
738 was repeated using different similarity thresholds to define haplotypes. Second, we
739  determined haplotype breakpoints using a dynamic programming algorithm. For each
740  pairwise founder combination, our algorithm calculates a mosaic of genotypic
741  similarity/dissimilarity akin to the Viterbi path from a hidden Markov model. Genotype
742  matches and mismatches are allocated a score (1 by default). To prevent excessive switching
743  between states, there is also a ‘transition penalty’ for inferring a change between matching
744  and mismatching states. Based on their pairwise matching/mismatching states, we then infer
745  the total number of haplotypes inferred at each site. We repeat this procedure with different
746  parameter choices (Supplementary Figure 2).

747

748  Genetic Mapping and Heritability

749  For mapping, we used the full set of 1,065,185 high-quality SNP sites called in 504 RILs after
750 imputation and quality control filters. We also selected a subset of 55,067 SNPs such that
751  every other SNP was tagged at R2>0.99 by a member of the subset using PLINK (version 1.90)
752  with option --indep-pairwise 500 10 0.99. These tagging SNPs were used to calculate the
753  genetic relationship matrix K = GG’ /p. The phenotypic variance-covariance matrix for a

754  given vector y of standardised phenotype values was modelled as V = Ka; + Io? where
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755 aj,aez are the additive genetic and environmental variance components, estimated by
756  maximum-likelihood[69]. The heritability of a trait was defined as h? = o7 /(02 + 02). The
757  matrix square root of the variance matrix was calculated by eigendecomposition of V as A% =
758 V, and the mixed model transformation of the data performed ie. y - A1y, G -
759 A71G,V - Ito remove the inflationary effects of unequal relatedness on genetic
760  associations before association mapping.

761

762  We performed association tests at the level of both SNPs and founder haplotypes using R
763  statistical software (version 3.6.0)[68]. Initially, we tested the null hypothesis of no
764  association at each SNP site in the tagging set (~55k sites). We then determined genome-wide
765  thresholds for statistical significance using 1,000 permutations on the transformed
766  phenotypes. If any association exceeded the 0.05 threshold (smaller p value than found across
767  at least 950 phenotypic permutations), then we repeated the association test at all of the
768  ~1.1M SNPs on the chromosome with the strongest association signal (lowest p value).
769  Mapping intervals were defined to include SNPs surrounding the peak SNP, with logio(p)
770  values within d units of x using d = max {2, 0.1x} where x is the peak logio(p) value. The
771  interval for haplotype-based tests includes the range of sites that have logio(p) values within
772  d units of x. SNP-based intervals were calculated using the same measure but then extended
773 by the minimum of 5Mb or the distance to the next SNP in either direction that the same
774  ‘strain distribution pattern’[54] as any highly-associated SNPs (SNPs with logio(p) values
775  within d units of x). The ‘strain distribution pattern’ is the pattern of major/minor alleles
776  across founders. This procedure is designed to capture the uncertainty in the positioning of
777  relevant recombination events either side of the QTL peak. We fitted QTLs in a stepwise

778  manor by fitting the phenotype against the most strongly associated SNP (or haplotype

36


https://doi.org/10.1101/2020.09.15.296533
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.296533; this version posted September 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

N : ok ' S ad 4 L : :
PETPCUILy. TUIS TTaut avdlialie UlnueT AL U=D T=INC . U TTETT AUl Icli ilbcl IS1SH

779  dosage) whenever genomewide significant QTLs were detected. The above association test
780  procedure was then repeated using the phenotype residuals after fitting all previously
781 identified QTLs. This allows closely-linked QTLs to be detected when they have different
782  patterns of causal variants among RILs. Where QTL associations were found for different
783  genotypes, they were judged to be at the same locus if they had overlapping mapping
784  intervals and at least one matching strain distribution pattern at highly-associated SNP sites.
785

786  Genomic Prediction

787  To evaluate the accuracy of trait prediction within our magic population and estimate the
788  extent of polygenic variation beyond genomewide significant QTLs, we conducted genomic
789  prediction across all phenotypes using three shrinkage-based methods: ridge regression (RR),
790  Elastic Nets (EN) and least absolute shrinkage and selection operator (LASSO). We note that
791  with appropriate choice of ridge parameter 1 = 62 /0?2, RR is equivalent to a mixed model in
792  the sense that the RR estimated SNP effects are identical to the mixed-model Best Linear
793  Unbiased Predictors (BLUPs)[70,71]. This explains the linear correlation between estimates of
794  heritability and RR prediction accuracy (Figure 5c). For each method, we conducted 50 rounds
795  of cross validation by randomly sampling 90% of the RILs (n=454) as a training set in each
796  round to train the model, which was then used to predict the remaining 10% of RILs (n=50) -
797  the test set. For the three methods, the model equation can be written generallyasy = u +
798 PG + &, where y is the estimated trait value, u is the model intercept, S is the vector of SNP
799  effects, G is the genotype dosage matrix, and € is the residual error.

800

801 The genomic prediction models were trained using the R package glmnet[72], which

802  estimates an optimal lambda shrinkage value for all three genomic prediction methods based
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803 on the training set. We then predicted phenotypes in the test set by multiplying all SNP
804 coefficients estimates by their corresponding genotypes in the test set (and adding the
805 intercept term). We report the training and test set prediction accuracy as the mean Pearson
806 correlation coefficient of the predicted trait values and the actual phenotype values over 50
807  rounds of cross validation.

808

809  We used these genomic prediction models to simulate the potential for phenotypic change.
810  First, we permuted the population founder haplotypes identities 40 times across 504 RILs and
811 then projected the permuted founder genotypes onto the new lines. This creates new genetic
812 combinations while retaining the genetic map and linkage found in the real population. We
813  then used the three models trained as described above to predict phenotypes for the
814  simulated MAGIC RILs. We further calculated the theoretical maximum and minimum
815 phenotype values that are possible given the genomic prediction models and the variants
816  segregatinginthe population. To estimate the maximum and minimum potentially achievable
817  phenotype values, we trained new genomic prediction models using the full data set of 504
818  RILs for all phenotypes. We then calculated the maximum/minimum predicted phenotypes
819 by summing the estimated effects for all positive/negative SNP coefficients.

820

821 Gene Deletion Analysis

822 We examined the power of gene-level coverage variation among founders to explain
823  phenotypic variation. In each founder f and at each gene feature g, we computed a deletion
824  index Dyrbased on the number of reads aligning to the associated capture sequences,
825 normalised by the overall coverage for that founder. The gene deletion score (GDS) for each

826  MAGICRIL i and feature j was computed as §;; = Zf H;jsD;r, where H;js is the haplotype
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827  dosage for founder f in RIL{ at gene j, as computed by STITCH. For each phenotype a mixed-
828 model GWAS was performed, using the GDS in place of SNP dosages and with a genetic
829 relationship matrix computed from the GDS (Supplementary Table 8). We also repeated the
830 genomic prediction analysis described above by replacing the SNP genotype dosage matrix
831  with the GDS matrix (Supplementary Figure 5).

832

833 Introgressions

834  The presence of introgressions were determined using summary statistics (coverage, non-
835 reference allele frequency in founders and RILs) calculated in 10Mb windows moved in 5Mb
836  steps. Within introgressions, carriers have a high proportion of non-reference alleles due to
837 the alignment of inter-specific genetic material to the bread wheat reference genome. The
838 introgression extent was determined as the extent of 10Mb windows where all introgression
839 carriers had a higher proportion of non-reference alleles than all non-carriers. Within these
840 regions, we then checked the relative coverage of carriers and the extent to which the alleles
841  of carriers are over- or under-represented among the RILs. This evidence is summarised in
842  Supplementary Table 3. For example, the founder Maris Fundin carries a large introgression
843  (640Mb) from Triticum timopheevi on chromosome 2B that inflates the total number of SNPs
844  called on chromosome 2B, relative to the other chromosomes (Supplementary Figure 1), this
845 introgression is substantially over-represented among RILs, as expected[34].

846
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872  The Genotyping array genotypes for founders and MAGIC RILs are available from

873  http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/index.html in text tabular format.

874
875  The Imputed SNP genotypes and founder haplotype dosages are available from

876  mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/MAGIC diverse FILES/MAGIC PLINK.tar.gz,

877 and

878  mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/MAGIC diverse FILES/MAGIC HAPLOHAPLO.

879  tar.gz (temporary links).

880

881 The remaining datasets supporting the conclusions of this article are included within the
882  article and its additional files.

883

884  Custom analysis scripts (mixed model and haplotype dynamic programming algorithm) are

885  available from github.com/michaelfscott/DIVERSE_MAGIC_WHEAT .
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